1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/*****************************************
* This is a library for the ADS1115 A/D Converter
*
* You'll find an example which should enable you to use the library.
*
* You are free to use it, change it or build on it. In case you like
* it, it would be cool if you give it a star.
*
* If you find bugs, please inform me!
*
* Written by Wolfgang (Wolle) Ewald
* https://wolles-elektronikkiste.de/en/ads1115-a-d-converter-with-amplifier (English)
* https://wolles-elektronikkiste.de/ads1115 (German)
*
*******************************************/
#include "ADS1115_WE.h"
ADS1115_WE::ADS1115_WE(int addr){
_wire = &Wire;
i2cAddress = addr;
}
ADS1115_WE::ADS1115_WE(){
_wire = &Wire;
i2cAddress = 0x48;
}
ADS1115_WE::ADS1115_WE(TwoWire *w, int addr){
_wire = w;
i2cAddress = addr;
}
ADS1115_WE::ADS1115_WE(TwoWire *w){
_wire = w;
i2cAddress = 0x48;
}
void ADS1115_WE::reset(){
_wire->beginTransmission(0);
_wire->write(0x06);
_wire->endTransmission();
}
bool ADS1115_WE::init(){
_wire->beginTransmission(i2cAddress);
uint8_t success = _wire->endTransmission();
if(success){
return 0;
}
writeRegister(ADS1115_CONFIG_REG, ADS1115_REG_RESET_VAL);
setVoltageRange_mV(ADS1115_RANGE_2048);
writeRegister(ADS1115_LO_THRESH_REG, 0x8000);
writeRegister(ADS1115_HI_THRESH_REG, 0x7FFF);
deviceMeasureMode = ADS1115_SINGLE;
autoRangeMode = false;
return 1;
}
void ADS1115_WE::setAlertPinMode(ADS1115_COMP_QUE mode){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x0003);
currentConfReg |= mode;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
void ADS1115_WE::setAlertLatch(ADS1115_LATCH latch){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x0004);
currentConfReg |= latch;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
void ADS1115_WE::setAlertPol(ADS1115_ALERT_POL polarity){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x0008);
currentConfReg |= polarity;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
void ADS1115_WE::setAlertModeAndLimit_V(ADS1115_COMP_MODE mode, float hiThres, float loThres){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x0010);
currentConfReg |= mode;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
int16_t alertLimit = calcLimit(hiThres);
writeRegister(ADS1115_HI_THRESH_REG, alertLimit);
alertLimit = calcLimit(loThres);
writeRegister(ADS1115_LO_THRESH_REG, alertLimit);
}
void ADS1115_WE::setConvRate(ADS1115_CONV_RATE rate){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x00E0);
currentConfReg |= rate;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
convRate ADS1115_WE::getConvRate(){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
return (convRate)(currentConfReg & 0xE0);
}
void ADS1115_WE::setMeasureMode(ADS1115_MEASURE_MODE mode){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
deviceMeasureMode = mode;
currentConfReg &= ~(0x0100);
currentConfReg |= mode;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
void ADS1115_WE::setVoltageRange_mV(ADS1115_RANGE range){
uint16_t currentVoltageRange = voltageRange;
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
uint16_t currentRange = (currentConfReg >> 9) & 7;
uint16_t currentAlertPinMode = currentConfReg & 3;
setMeasureMode(ADS1115_SINGLE);
switch(range){
case ADS1115_RANGE_6144:
voltageRange = 6144;
break;
case ADS1115_RANGE_4096:
voltageRange = 4096;
break;
case ADS1115_RANGE_2048:
voltageRange = 2048;
break;
case ADS1115_RANGE_1024:
voltageRange = 1024;
break;
case ADS1115_RANGE_0512:
voltageRange = 512;
break;
case ADS1115_RANGE_0256:
voltageRange = 256;
break;
}
if ((currentRange != range) && (currentAlertPinMode != ADS1115_DISABLE_ALERT)){
int16_t alertLimit = readRegister(ADS1115_HI_THRESH_REG);
alertLimit = alertLimit * (currentVoltageRange * 1.0 / voltageRange);
writeRegister(ADS1115_HI_THRESH_REG, alertLimit);
alertLimit = readRegister(ADS1115_LO_THRESH_REG);
alertLimit = alertLimit * (currentVoltageRange * 1.0 / voltageRange);
writeRegister(ADS1115_LO_THRESH_REG, alertLimit);
}
currentConfReg &= ~(0x0E00);
currentConfReg |= range;
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
convRate rate = getConvRate();
delayAccToRate(rate);
}
void ADS1115_WE::setAutoRange(){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
setVoltageRange_mV(ADS1115_RANGE_6144);
if(deviceMeasureMode == ADS1115_SINGLE){
setMeasureMode(ADS1115_CONTINUOUS);
convRate rate = getConvRate();
delayAccToRate(rate);
}
int16_t rawResult = abs(readRegister(ADS1115_CONV_REG));
range optRange = ADS1115_RANGE_6144;
if(rawResult < 1093){
optRange = ADS1115_RANGE_0256;
}
else if(rawResult < 2185){
optRange = ADS1115_RANGE_0512;
}
else if(rawResult < 4370){
optRange = ADS1115_RANGE_1024;
}
else if(rawResult < 8738){
optRange = ADS1115_RANGE_2048;
}
else if(rawResult < 17476){
optRange = ADS1115_RANGE_4096;
}
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
setVoltageRange_mV(optRange);
}
void ADS1115_WE::setPermanentAutoRangeMode(bool autoMode){
if(autoMode){
autoRangeMode = true;
}
else{
autoRangeMode = false;
}
}
void ADS1115_WE::delayAccToRate(convRate cr){
switch(cr){
case ADS1115_8_SPS:
delay(130);
break;
case ADS1115_16_SPS:
delay(65);
break;
case ADS1115_32_SPS:
delay(32);
break;
case ADS1115_64_SPS:
delay(16);
break;
case ADS1115_128_SPS:
delay(8);
break;
case ADS1115_250_SPS:
delay(4);
break;
case ADS1115_475_SPS:
delay(3);
break;
case ADS1115_860_SPS:
delay(2);
break;
}
}
void ADS1115_WE::setCompareChannels(ADS1115_MUX mux){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg &= ~(0x7000);
currentConfReg |= (mux);
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
if(!(currentConfReg & 0x0100)){ // => if not single shot mode
convRate rate = getConvRate();
delayAccToRate(rate);
delayAccToRate(rate);
}
}
void ADS1115_WE::setSingleChannel(size_t channel) {
if (channel >= 4)
return;
setCompareChannels((ADS1115_MUX)(ADS1115_COMP_0_GND + ADS1115_COMP_INC*channel));
}
bool ADS1115_WE::isBusy(){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
return (!(currentConfReg>>15) & 1);
}
void ADS1115_WE::startSingleMeasurement(){
uint16_t currentConfReg = readRegister(ADS1115_CONFIG_REG);
currentConfReg |= (1 << 15);
writeRegister(ADS1115_CONFIG_REG, currentConfReg);
}
float ADS1115_WE::getResult_V(){
float result = getResult_mV();
result /= 1000;
return result;
}
float ADS1115_WE::getResult_mV(){
int16_t rawResult = getRawResult();
float result = (rawResult * 1.0 / ADS1115_REG_FACTOR) * voltageRange;
return result;
}
int16_t ADS1115_WE::getRawResult(){
int16_t rawResult = readRegister(ADS1115_CONV_REG);
if(autoRangeMode){
if((abs(rawResult) > 26214) && (voltageRange != 6144)){ // 80%
setAutoRange();
rawResult = readRegister(ADS1115_CONV_REG);
}
else if((abs(rawResult) < 9800) && (voltageRange != 256)){ //30%
setAutoRange();
rawResult = readRegister(ADS1115_CONV_REG);
}
}
return rawResult;
}
int16_t ADS1115_WE::getResultWithRange(int16_t min, int16_t max){
int16_t rawResult = getRawResult();
int16_t result = map(rawResult, -32767, 32767, min, max);
return result;
}
int16_t ADS1115_WE::getResultWithRange(int16_t min, int16_t max, int16_t maxMillivolt){
int16_t result = getResultWithRange(min, max);
result = (int16_t) ((1.0 * result * voltageRange / maxMillivolt) + 0.5);
return result;
}
uint16_t ADS1115_WE::getVoltageRange_mV(){
return voltageRange;
}
void ADS1115_WE::setAlertPinToConversionReady(){
writeRegister(ADS1115_LO_THRESH_REG, (0<<15));
writeRegister(ADS1115_HI_THRESH_REG, (1<<15));
}
void ADS1115_WE::clearAlert(){
readRegister(ADS1115_CONV_REG);
}
/************************************************
private functions
*************************************************/
int16_t ADS1115_WE::calcLimit(float rawLimit){
int16_t limit = (int16_t)((rawLimit * ADS1115_REG_FACTOR / voltageRange)*1000);
return limit;
}
uint8_t ADS1115_WE::writeRegister(uint8_t reg, uint16_t val){
_wire->beginTransmission(i2cAddress);
uint8_t lVal = val & 255;
uint8_t hVal = val >> 8;
_wire->write(reg);
_wire->write(hVal);
_wire->write(lVal);
return _wire->endTransmission();
}
uint16_t ADS1115_WE::readRegister(uint8_t reg){
uint8_t MSByte = 0, LSByte = 0;
uint16_t regValue = 0;
_wire->beginTransmission(i2cAddress);
_wire->write(reg);
_wire->endTransmission(false);
_wire->requestFrom(i2cAddress,2);
if(_wire->available()){
MSByte = _wire->read();
LSByte = _wire->read();
}
regValue = (MSByte<<8) + LSByte;
return regValue;
}
|