1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
|
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This is an implementation of the P256 elliptic curve group. It's written to
// be portable 32-bit, although it's still constant-time.
//
// WARNING: Implementing these functions in a constant-time manner is far from
// obvious. Be careful when touching this code.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mincrypt/p256.h"
typedef uint8_t u8;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
/* Our field elements are represented as nine 32-bit limbs.
*
* The value of an felem (field element) is:
* x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
*
* That is, each limb is alternately 29 or 28-bits wide in little-endian
* order.
*
* This means that an felem hits 2**257, rather than 2**256 as we would like. A
* 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
* when multiplying as terms end up one bit short of a limb which would require
* much bit-shifting to correct.
*
* Finally, the values stored in an felem are in Montgomery form. So the value
* |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
*/
typedef u32 limb;
#define NLIMBS 9
typedef limb felem[NLIMBS];
static const limb kBottom28Bits = 0xfffffff;
static const limb kBottom29Bits = 0x1fffffff;
/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
* 28-bit words. */
static const felem kOne = {
2, 0, 0, 0xffff800,
0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
0
};
static const felem kZero = {0};
static const felem kP = {
0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
0, 0, 0x200000, 0xf000000,
0xfffffff
};
static const felem k2P = {
0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
0, 0, 0x400000, 0xe000000,
0x1fffffff
};
/* kPrecomputed contains precomputed values to aid the calculation of scalar
* multiples of the base point, G. It's actually two, equal length, tables
* concatenated.
*
* The first table contains (x,y) felem pairs for 16 multiples of the base
* point, G.
*
* Index | Index (binary) | Value
* 0 | 0000 | 0G (all zeros, omitted)
* 1 | 0001 | G
* 2 | 0010 | 2**64G
* 3 | 0011 | 2**64G + G
* 4 | 0100 | 2**128G
* 5 | 0101 | 2**128G + G
* 6 | 0110 | 2**128G + 2**64G
* 7 | 0111 | 2**128G + 2**64G + G
* 8 | 1000 | 2**192G
* 9 | 1001 | 2**192G + G
* 10 | 1010 | 2**192G + 2**64G
* 11 | 1011 | 2**192G + 2**64G + G
* 12 | 1100 | 2**192G + 2**128G
* 13 | 1101 | 2**192G + 2**128G + G
* 14 | 1110 | 2**192G + 2**128G + 2**64G
* 15 | 1111 | 2**192G + 2**128G + 2**64G + G
*
* The second table follows the same style, but the terms are 2**32G,
* 2**96G, 2**160G, 2**224G.
*
* This is ~2KB of data. */
static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
};
/* Field element operations: */
/* NON_ZERO_TO_ALL_ONES returns:
* 0xffffffff for 0 < x <= 2**31
* 0 for x == 0 or x > 2**31.
*
* x must be a u32 or an equivalent type such as limb. */
#define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1)
/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
* which is a term at 2**257.
*
* On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
* On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */
static void felem_reduce_carry(felem inout, limb carry) {
const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
inout[0] += carry << 1;
inout[3] += 0x10000000 & carry_mask;
/* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
* previous line therefore this doesn't underflow. */
inout[3] -= carry << 11;
inout[4] += (0x20000000 - 1) & carry_mask;
inout[5] += (0x10000000 - 1) & carry_mask;
inout[6] += (0x20000000 - 1) & carry_mask;
inout[6] -= carry << 22;
/* This may underflow if carry is non-zero but, if so, we'll fix it in the
* next line. */
inout[7] -= 1 & carry_mask;
inout[7] += carry << 25;
}
/* felem_sum sets out = in+in2.
*
* On entry, in[i]+in2[i] must not overflow a 32-bit word.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
static void felem_sum(felem out, const felem in, const felem in2) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] = in[i] + in2[i];
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] = in[i] + in2[i];
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
/* zero31 is 0 mod p. */
static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 };
/* felem_diff sets out = in-in2.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
* in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_diff(felem out, const felem in, const felem in2) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] = in[i] - in2[i];
out[i] += zero31[i];
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] = in[i] - in2[i];
out[i] += zero31[i];
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
* with the same 29,28,... bit positions as an felem.
*
* The values in felems are in Montgomery form: x*R mod p where R = 2**257.
* Since we just multiplied two Montgomery values together, the result is
* x*y*R*R mod p. We wish to divide by R in order for the result also to be
* in Montgomery form.
*
* On entry: tmp[i] < 2**64
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
static void felem_reduce_degree(felem out, u64 tmp[17]) {
/* The following table may be helpful when reading this code:
*
* Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
* Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
* Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
* (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */
limb tmp2[18], carry, x, xMask;
unsigned i;
/* tmp contains 64-bit words with the same 29,28,29-bit positions as an
* felem. So the top of an element of tmp might overlap with another
* element two positions down. The following loop eliminates this
* overlap. */
tmp2[0] = (limb)(tmp[0] & kBottom29Bits);
/* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
* and hint to the compiler that it can do a single-word shift by selecting
* the right register rather than doing a double-word shift and truncating
* afterwards. */
tmp2[1] = ((limb) tmp[0]) >> 29;
tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits;
tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
carry = tmp2[1] >> 28;
tmp2[1] &= kBottom28Bits;
for (i = 2; i < 17; i++) {
tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
tmp2[i] += ((limb)(tmp[i - 1])) >> 28;
tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
tmp2[i] += carry;
carry = tmp2[i] >> 29;
tmp2[i] &= kBottom29Bits;
i++;
if (i == 17)
break;
tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
tmp2[i] += ((limb)(tmp[i - 1])) >> 29;
tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
tmp2[i] += carry;
carry = tmp2[i] >> 28;
tmp2[i] &= kBottom28Bits;
}
tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25;
tmp2[17] += ((limb)(tmp[16])) >> 29;
tmp2[17] += (((limb)(tmp[16] >> 32)) << 3);
tmp2[17] += carry;
/* Montgomery elimination of terms.
*
* Since R is 2**257, we can divide by R with a bitwise shift if we can
* ensure that the right-most 257 bits are all zero. We can make that true by
* adding multiplies of p without affecting the value.
*
* So we eliminate limbs from right to left. Since the bottom 29 bits of p
* are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
* We can do that for 8 further limbs and then right shift to eliminate the
* extra factor of R. */
for (i = 0;; i += 2) {
tmp2[i + 1] += tmp2[i] >> 29;
x = tmp2[i] & kBottom29Bits;
xMask = NON_ZERO_TO_ALL_ONES(x);
tmp2[i] = 0;
/* The bounds calculations for this loop are tricky. Each iteration of
* the loop eliminates two words by adding values to words to their
* right.
*
* The following table contains the amounts added to each word (as an
* offset from the value of i at the top of the loop). The amounts are
* accounted for from the first and second half of the loop separately
* and are written as, for example, 28 to mean a value <2**28.
*
* Word: 3 4 5 6 7 8 9 10
* Added in top half: 28 11 29 21 29 28
* 28 29
* 29
* Added in bottom half: 29 10 28 21 28 28
* 29
*
* The value that is currently offset 7 will be offset 5 for the next
* iteration and then offset 3 for the iteration after that. Therefore
* the total value added will be the values added at 7, 5 and 3.
*
* The following table accumulates these values. The sums at the bottom
* are written as, for example, 29+28, to mean a value < 2**29+2**28.
*
* Word: 3 4 5 6 7 8 9 10 11 12 13
* 28 11 10 29 21 29 28 28 28 28 28
* 29 28 11 28 29 28 29 28 29 28
* 29 28 21 21 29 21 29 21
* 10 29 28 21 28 21 28
* 28 29 28 29 28 29 28
* 11 10 29 10 29 10
* 29 28 11 28 11
* 29 29
* --------------------------------------------
* 30+ 31+ 30+ 31+ 30+
* 28+ 29+ 28+ 29+ 21+
* 21+ 28+ 21+ 28+ 10
* 10 21+ 10 21+
* 11 11
*
* So the greatest amount is added to tmp2[10] and tmp2[12]. If
* tmp2[10/12] has an initial value of <2**29, then the maximum value
* will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
* as required. */
tmp2[i + 3] += (x << 10) & kBottom28Bits;
tmp2[i + 4] += (x >> 18);
tmp2[i + 6] += (x << 21) & kBottom29Bits;
tmp2[i + 7] += x >> 8;
/* At position 200, which is the starting bit position for word 7, we
* have a factor of 0xf000000 = 2**28 - 2**24. */
tmp2[i + 7] += 0x10000000 & xMask;
/* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
tmp2[i + 8] += (x - 1) & xMask;
tmp2[i + 7] -= (x << 24) & kBottom28Bits;
tmp2[i + 8] -= x >> 4;
tmp2[i + 8] += 0x20000000 & xMask;
tmp2[i + 8] -= x;
tmp2[i + 8] += (x << 28) & kBottom29Bits;
tmp2[i + 9] += ((x >> 1) - 1) & xMask;
if (i+1 == NLIMBS)
break;
tmp2[i + 2] += tmp2[i + 1] >> 28;
x = tmp2[i + 1] & kBottom28Bits;
xMask = NON_ZERO_TO_ALL_ONES(x);
tmp2[i + 1] = 0;
tmp2[i + 4] += (x << 11) & kBottom29Bits;
tmp2[i + 5] += (x >> 18);
tmp2[i + 7] += (x << 21) & kBottom28Bits;
tmp2[i + 8] += x >> 7;
/* At position 199, which is the starting bit of the 8th word when
* dealing with a context starting on an odd word, we have a factor of
* 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
* word from i+1 is i+8. */
tmp2[i + 8] += 0x20000000 & xMask;
tmp2[i + 9] += (x - 1) & xMask;
tmp2[i + 8] -= (x << 25) & kBottom29Bits;
tmp2[i + 9] -= x >> 4;
tmp2[i + 9] += 0x10000000 & xMask;
tmp2[i + 9] -= x;
tmp2[i + 10] += (x - 1) & xMask;
}
/* We merge the right shift with a carry chain. The words above 2**257 have
* widths of 28,29,... which we need to correct when copying them down. */
carry = 0;
for (i = 0; i < 8; i++) {
/* The maximum value of tmp2[i + 9] occurs on the first iteration and
* is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
* therefore safe. */
out[i] = tmp2[i + 9];
out[i] += carry;
out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
out[i] = tmp2[i + 9] >> 1;
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
out[8] = tmp2[17];
out[8] += carry;
carry = out[8] >> 29;
out[8] &= kBottom29Bits;
felem_reduce_carry(out, carry);
}
/* felem_square sets out=in*in.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_square(felem out, const felem in) {
u64 tmp[17];
tmp[0] = ((u64) in[0]) * in[0];
tmp[1] = ((u64) in[0]) * (in[1] << 1);
tmp[2] = ((u64) in[0]) * (in[2] << 1) +
((u64) in[1]) * (in[1] << 1);
tmp[3] = ((u64) in[0]) * (in[3] << 1) +
((u64) in[1]) * (in[2] << 1);
tmp[4] = ((u64) in[0]) * (in[4] << 1) +
((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2];
tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) *
(in[4] << 1) + ((u64) in[2]) * (in[3] << 1);
tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) *
(in[5] << 2) + ((u64) in[2]) * (in[4] << 1) +
((u64) in[3]) * (in[3] << 1);
tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) *
(in[6] << 1) + ((u64) in[2]) * (in[5] << 1) +
((u64) in[3]) * (in[4] << 1);
/* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
* which is < 2**64 as required. */
tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) *
(in[7] << 2) + ((u64) in[2]) * (in[6] << 1) +
((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4];
tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) *
(in[7] << 1) + ((u64) in[3]) * (in[6] << 1) +
((u64) in[4]) * (in[5] << 1);
tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) *
(in[7] << 2) + ((u64) in[4]) * (in[6] << 1) +
((u64) in[5]) * (in[5] << 1);
tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) *
(in[7] << 1) + ((u64) in[5]) * (in[6] << 1);
tmp[12] = ((u64) in[4]) * (in[8] << 1) +
((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6];
tmp[13] = ((u64) in[5]) * (in[8] << 1) +
((u64) in[6]) * (in[7] << 1);
tmp[14] = ((u64) in[6]) * (in[8] << 1) +
((u64) in[7]) * (in[7] << 1);
tmp[15] = ((u64) in[7]) * (in[8] << 1);
tmp[16] = ((u64) in[8]) * in[8];
felem_reduce_degree(out, tmp);
}
/* felem_mul sets out=in*in2.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
* in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_mul(felem out, const felem in, const felem in2) {
u64 tmp[17];
tmp[0] = ((u64) in[0]) * in2[0];
tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
((u64) in[1]) * (in2[0] << 0);
tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) *
(in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0);
tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) *
(in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) +
((u64) in[3]) * (in2[0] << 0);
tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) *
(in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) +
((u64) in[3]) * (in2[1] << 1) +
((u64) in[4]) * (in2[0] << 0);
tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) *
(in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) +
((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) *
(in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0);
tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) *
(in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) +
((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) *
(in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) +
((u64) in[6]) * (in2[0] << 0);
tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) *
(in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) +
((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) *
(in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) +
((u64) in[6]) * (in2[1] << 0) +
((u64) in[7]) * (in2[0] << 0);
/* tmp[8] has the greatest value but doesn't overflow. See logic in
* felem_square. */
tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) *
(in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) +
((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) *
(in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) +
((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) *
(in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0);
tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) *
(in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) +
((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) *
(in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) +
((u64) in[7]) * (in2[2] << 0) +
((u64) in[8]) * (in2[1] << 0);
tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) *
(in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) +
((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) *
(in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) +
((u64) in[8]) * (in2[2] << 0);
tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) *
(in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) +
((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) *
(in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0);
tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) *
(in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) +
((u64) in[7]) * (in2[5] << 1) +
((u64) in[8]) * (in2[4] << 0);
tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) *
(in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) +
((u64) in[8]) * (in2[5] << 0);
tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) *
(in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0);
tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
((u64) in[8]) * (in2[7] << 0);
tmp[16] = ((u64) in[8]) * (in2[8] << 0);
felem_reduce_degree(out, tmp);
}
static void felem_assign(felem out, const felem in) {
memcpy(out, in, sizeof(felem));
}
/* felem_inv calculates |out| = |in|^{-1}
*
* Based on Fermat's Little Theorem:
* a^p = a (mod p)
* a^{p-1} = 1 (mod p)
* a^{p-2} = a^{-1} (mod p)
*/
static void felem_inv(felem out, const felem in) {
felem ftmp, ftmp2;
/* each e_I will hold |in|^{2^I - 1} */
felem e2, e4, e8, e16, e32, e64;
unsigned i;
felem_square(ftmp, in); /* 2^1 */
felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
felem_assign(e2, ftmp);
felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
felem_assign(e4, ftmp);
felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
felem_assign(e8, ftmp);
for (i = 0; i < 8; i++) {
felem_square(ftmp, ftmp);
} /* 2^16 - 2^8 */
felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
felem_assign(e16, ftmp);
for (i = 0; i < 16; i++) {
felem_square(ftmp, ftmp);
} /* 2^32 - 2^16 */
felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
felem_assign(e32, ftmp);
for (i = 0; i < 32; i++) {
felem_square(ftmp, ftmp);
} /* 2^64 - 2^32 */
felem_assign(e64, ftmp);
felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
for (i = 0; i < 192; i++) {
felem_square(ftmp, ftmp);
} /* 2^256 - 2^224 + 2^192 */
felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
for (i = 0; i < 16; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^80 - 2^16 */
felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
for (i = 0; i < 8; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^88 - 2^8 */
felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
for (i = 0; i < 4; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^92 - 2^4 */
felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
}
/* felem_scalar_3 sets out=3*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_3(felem out) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] *= 3;
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] *= 3;
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_scalar_4 sets out=4*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_4(felem out) {
limb carry = 0, next_carry;
unsigned i;
for (i = 0;; i++) {
next_carry = out[i] >> 27;
out[i] <<= 2;
out[i] &= kBottom29Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 29);
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
next_carry = out[i] >> 26;
out[i] <<= 2;
out[i] &= kBottom28Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 28);
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_scalar_8 sets out=8*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_8(felem out) {
limb carry = 0, next_carry;
unsigned i;
for (i = 0;; i++) {
next_carry = out[i] >> 26;
out[i] <<= 3;
out[i] &= kBottom29Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 29);
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
next_carry = out[i] >> 25;
out[i] <<= 3;
out[i] &= kBottom28Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 28);
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
* time depending on the value of |in|. */
static char felem_is_zero_vartime(const felem in) {
limb carry;
int i;
limb tmp[NLIMBS];
felem_assign(tmp, in);
/* First, reduce tmp to a minimal form. */
do {
carry = 0;
for (i = 0;; i++) {
tmp[i] += carry;
carry = tmp[i] >> 29;
tmp[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
tmp[i] += carry;
carry = tmp[i] >> 28;
tmp[i] &= kBottom28Bits;
}
felem_reduce_carry(tmp, carry);
} while (carry);
/* tmp < 2**257, so the only possible zero values are 0, p and 2p. */
return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
memcmp(tmp, kP, sizeof(tmp)) == 0 ||
memcmp(tmp, k2P, sizeof(tmp)) == 0;
}
/* Group operations:
*
* Elements of the elliptic curve group are represented in Jacobian
* coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
* Jacobian form. */
/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */
static void point_double(felem x_out, felem y_out, felem z_out, const felem x,
const felem y, const felem z) {
felem delta, gamma, alpha, beta, tmp, tmp2;
felem_square(delta, z);
felem_square(gamma, y);
felem_mul(beta, x, gamma);
felem_sum(tmp, x, delta);
felem_diff(tmp2, x, delta);
felem_mul(alpha, tmp, tmp2);
felem_scalar_3(alpha);
felem_sum(tmp, y, z);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, gamma);
felem_diff(z_out, tmp, delta);
felem_scalar_4(beta);
felem_square(x_out, alpha);
felem_diff(x_out, x_out, beta);
felem_diff(x_out, x_out, beta);
felem_diff(tmp, beta, x_out);
felem_mul(tmp, alpha, tmp);
felem_square(tmp2, gamma);
felem_scalar_8(tmp2);
felem_diff(y_out, tmp, tmp2);
}
/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
* (i.e. the second point is affine.)
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* Note that this function does not handle P+P, infinity+P nor P+infinity
* correctly. */
static void point_add_mixed(felem x_out, felem y_out, felem z_out,
const felem x1, const felem y1, const felem z1,
const felem x2, const felem y2) {
felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
felem_square(z1z1, z1);
felem_sum(tmp, z1, z1);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, x1);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, y1);
felem_sum(r, r, r);
felem_mul(v, x1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, y1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* Note that this function does not handle P+P, infinity+P nor P+infinity
* correctly. */
static void point_add(felem x_out, felem y_out, felem z_out, const felem x1,
const felem y1, const felem z1, const felem x2,
const felem y2, const felem z2) {
felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
felem_square(z1z1, z1);
felem_square(z2z2, z2);
felem_mul(u1, x1, z2z2);
felem_sum(tmp, z1, z2);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, z1z1);
felem_diff(tmp, tmp, z2z2);
felem_mul(z2z2z2, z2, z2z2);
felem_mul(s1, y1, z2z2z2);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, u1);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, s1);
felem_sum(r, r, r);
felem_mul(v, u1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, s1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
* {x2,y2,z2}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* This function handles the case where {x1,y1,z1}={x2,y2,z2}. */
static void point_add_or_double_vartime(
felem x_out, felem y_out, felem z_out, const felem x1, const felem y1,
const felem z1, const felem x2, const felem y2, const felem z2) {
felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
char x_equal, y_equal;
felem_square(z1z1, z1);
felem_square(z2z2, z2);
felem_mul(u1, x1, z2z2);
felem_sum(tmp, z1, z2);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, z1z1);
felem_diff(tmp, tmp, z2z2);
felem_mul(z2z2z2, z2, z2z2);
felem_mul(s1, y1, z2z2z2);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, u1);
x_equal = felem_is_zero_vartime(h);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, s1);
y_equal = felem_is_zero_vartime(r);
if (x_equal && y_equal) {
point_double(x_out, y_out, z_out, x1, y1, z1);
return;
}
felem_sum(r, r, r);
felem_mul(v, u1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, s1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
*
* On entry: mask is either 0 or 0xffffffff. */
static void copy_conditional(felem out, const felem in, limb mask) {
int i;
for (i = 0; i < NLIMBS; i++) {
const limb tmp = mask & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
* On entry: index < 16, table[0] must be zero. */
static void select_affine_point(felem out_x, felem out_y, const limb* table,
limb index) {
limb i, j;
memset(out_x, 0, sizeof(felem));
memset(out_y, 0, sizeof(felem));
for (i = 1; i < 16; i++) {
limb mask = i ^ index;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS; j++, table++) {
out_x[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_y[j] |= *table & mask;
}
}
}
/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
* table. On entry: index < 16, table[0] must be zero. */
static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
const limb* table, limb index) {
limb i, j;
memset(out_x, 0, sizeof(felem));
memset(out_y, 0, sizeof(felem));
memset(out_z, 0, sizeof(felem));
/* The implicit value at index 0 is all zero. We don't need to perform that
* iteration of the loop because we already set out_* to zero. */
table += 3 * NLIMBS;
// Hit all entries to obscure cache profiling.
for (i = 1; i < 16; i++) {
limb mask = i ^ index;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS; j++, table++) {
out_x[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_y[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_z[j] |= *table & mask;
}
}
}
/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
* number. Note that the value of scalar must be less than the order of the
* group. */
static void scalar_base_mult(felem nx, felem ny, felem nz,
const p256_int* scalar) {
int i, j;
limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
u32 table_offset;
felem px, py;
felem tx, ty, tz;
memset(nx, 0, sizeof(felem));
memset(ny, 0, sizeof(felem));
memset(nz, 0, sizeof(felem));
/* The loop adds bits at positions 0, 64, 128 and 192, followed by
* positions 32,96,160 and 224 and does this 32 times. */
for (i = 0; i < 32; i++) {
if (i) {
point_double(nx, ny, nz, nx, ny, nz);
}
table_offset = 0;
for (j = 0; j <= 32; j += 32) {
char bit0 = p256_get_bit(scalar, 31 - i + j);
char bit1 = p256_get_bit(scalar, 95 - i + j);
char bit2 = p256_get_bit(scalar, 159 - i + j);
char bit3 = p256_get_bit(scalar, 223 - i + j);
limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
select_affine_point(px, py, kPrecomputed + table_offset, index);
table_offset += 30 * NLIMBS;
/* Since scalar is less than the order of the group, we know that
* {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
* below. */
point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
/* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
* (a.k.a. the point at infinity). We handle that situation by
* copying the point from the table. */
copy_conditional(nx, px, n_is_infinity_mask);
copy_conditional(ny, py, n_is_infinity_mask);
copy_conditional(nz, kOne, n_is_infinity_mask);
/* Equally, the result is also wrong if the point from the table is
* zero, which happens when the index is zero. We handle that by
* only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */
p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
copy_conditional(nx, tx, mask);
copy_conditional(ny, ty, mask);
copy_conditional(nz, tz, mask);
/* If p was not zero, then n is now non-zero. */
n_is_infinity_mask &= ~p_is_noninfinite_mask;
}
}
}
/* point_to_affine converts a Jacobian point to an affine point. If the input
* is the point at infinity then it returns (0, 0) in constant time. */
static void point_to_affine(felem x_out, felem y_out, const felem nx,
const felem ny, const felem nz) {
felem z_inv, z_inv_sq;
felem_inv(z_inv, nz);
felem_square(z_inv_sq, z_inv);
felem_mul(x_out, nx, z_inv_sq);
felem_mul(z_inv, z_inv, z_inv_sq);
felem_mul(y_out, ny, z_inv);
}
/* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */
static void scalar_mult(felem nx, felem ny, felem nz, const felem x,
const felem y, const p256_int* scalar) {
int i;
felem px, py, pz, tx, ty, tz;
felem precomp[16][3];
limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
/* We precompute 0,1,2,... times {x,y}. */
memset(precomp, 0, sizeof(felem) * 3);
memcpy(&precomp[1][0], x, sizeof(felem));
memcpy(&precomp[1][1], y, sizeof(felem));
memcpy(&precomp[1][2], kOne, sizeof(felem));
for (i = 2; i < 16; i += 2) {
point_double(precomp[i][0], precomp[i][1], precomp[i][2],
precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
precomp[i][0], precomp[i][1], precomp[i][2], x, y);
}
memset(nx, 0, sizeof(felem));
memset(ny, 0, sizeof(felem));
memset(nz, 0, sizeof(felem));
n_is_infinity_mask = -1;
/* We add in a window of four bits each iteration and do this 64 times. */
for (i = 0; i < 256; i += 4) {
if (i) {
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
}
index = (p256_get_bit(scalar, 255 - i - 0) << 3) |
(p256_get_bit(scalar, 255 - i - 1) << 2) |
(p256_get_bit(scalar, 255 - i - 2) << 1) |
p256_get_bit(scalar, 255 - i - 3);
/* See the comments in scalar_base_mult about handling infinities. */
select_jacobian_point(px, py, pz, precomp[0][0], index);
point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
copy_conditional(nx, px, n_is_infinity_mask);
copy_conditional(ny, py, n_is_infinity_mask);
copy_conditional(nz, pz, n_is_infinity_mask);
p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
copy_conditional(nx, tx, mask);
copy_conditional(ny, ty, mask);
copy_conditional(nz, tz, mask);
n_is_infinity_mask &= ~p_is_noninfinite_mask;
}
}
#define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p
#define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff} // 1 / 2^257 mod p256.p
static const p256_int kR = { kRDigits };
static const p256_int kRInv = { kRInvDigits };
/* to_montgomery sets out = R*in. */
static void to_montgomery(felem out, const p256_int* in) {
p256_int in_shifted;
int i;
p256_init(&in_shifted);
p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted);
for (i = 0; i < NLIMBS; i++) {
if ((i & 1) == 0) {
out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits;
p256_shr(&in_shifted, 29, &in_shifted);
} else {
out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits;
p256_shr(&in_shifted, 28, &in_shifted);
}
}
p256_clear(&in_shifted);
}
/* from_montgomery sets out=in/R. */
static void from_montgomery(p256_int* out, const felem in) {
p256_int result, tmp;
int i, top;
p256_init(&result);
p256_init(&tmp);
p256_add_d(&tmp, in[NLIMBS - 1], &result);
for (i = NLIMBS - 2; i >= 0; i--) {
if ((i & 1) == 0) {
top = p256_shl(&result, 29, &tmp);
} else {
top = p256_shl(&result, 28, &tmp);
}
top |= p256_add_d(&tmp, in[i], &result);
}
p256_modmul(&SECP256r1_p, &kRInv, top, &result, out);
p256_clear(&result);
p256_clear(&tmp);
}
/* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the
* order of the group. */
void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) {
felem x, y, z;
scalar_base_mult(x, y, z, n);
{
felem x_affine, y_affine;
point_to_affine(x_affine, y_affine, x, y, z);
from_montgomery(out_x, x_affine);
from_montgomery(out_y, y_affine);
}
}
/* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where
* n1 and n2 are < the order of the group.
*
* As indicated by the name, this function operates in variable time. This
* is safe because it's used for signature validation which doesn't deal
* with secrets. */
void p256_points_mul_vartime(
const p256_int* n1, const p256_int* n2, const p256_int* in_x,
const p256_int* in_y, p256_int* out_x, p256_int* out_y) {
felem x1, y1, z1, x2, y2, z2, px, py;
/* If both scalars are zero, then the result is the point at infinity. */
if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) {
p256_clear(out_x);
p256_clear(out_y);
return;
}
to_montgomery(px, in_x);
to_montgomery(py, in_y);
scalar_base_mult(x1, y1, z1, n1);
scalar_mult(x2, y2, z2, px, py, n2);
if (p256_is_zero(n2) != 0) {
/* If n2 == 0, then {x2,y2,z2} is zero and the result is just
* {x1,y1,z1}. */
} else if (p256_is_zero(n1) != 0) {
/* If n1 == 0, then {x1,y1,z1} is zero and the result is just
* {x2,y2,z2}. */
memcpy(x1, x2, sizeof(x2));
memcpy(y1, y2, sizeof(y2));
memcpy(z1, z2, sizeof(z2));
} else {
/* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
}
point_to_affine(px, py, x1, y1, z1);
from_montgomery(out_x, px);
from_montgomery(out_y, py);
}
|