// ChunkDataSerializer.cpp
// Implements the cChunkDataSerializer class representing the object that can:
// - serialize chunk data to different protocol versions
// - cache such serialized data for multiple clients
#include "Globals.h"
#include "ChunkDataSerializer.h"
#include "zlib/zlib.h"
#include "ByteBuffer.h"
#include "Protocol18x.h"
cChunkDataSerializer::cChunkDataSerializer(
const cChunkDef::BlockTypes & a_BlockTypes,
const cChunkDef::BlockNibbles & a_BlockMetas,
const cChunkDef::BlockNibbles & a_BlockLight,
const cChunkDef::BlockNibbles & a_BlockSkyLight,
const unsigned char * a_BiomeData
) :
m_BlockTypes(a_BlockTypes),
m_BlockMetas(a_BlockMetas),
m_BlockLight(a_BlockLight),
m_BlockSkyLight(a_BlockSkyLight),
m_BiomeData(a_BiomeData)
{
}
const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ)
{
Serializations::const_iterator itr = m_Serializations.find(a_Version);
if (itr != m_Serializations.end())
{
return itr->second;
}
AString data;
switch (a_Version)
{
case RELEASE_1_3_2: Serialize39(data); break;
case RELEASE_1_8_0: Serialize47(data, a_ChunkX, a_ChunkZ); break;
// TODO: Other protocol versions may serialize the data differently; implement here
default:
{
LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", a_Version);
ASSERT(!"Unknown chunk data serialization version");
break;
}
}
if (!data.empty())
{
m_Serializations[a_Version] = data;
}
return m_Serializations[a_Version];
}
void cChunkDataSerializer::Serialize39(AString & a_Data)
{
// TODO: Do not copy data and then compress it; rather, compress partial blocks of data (zlib can stream)
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
const int MetadataOffset = sizeof(m_BlockTypes);
const int BlockLightOffset = MetadataOffset + sizeof(m_BlockMetas);
const int SkyLightOffset = BlockLightOffset + sizeof(m_BlockLight);
const int BiomeOffset = SkyLightOffset + sizeof(m_BlockSkyLight);
const int DataSize = BiomeOffset + BiomeDataSize;
// Temporary buffer for the composed data:
char AllData [DataSize];
memcpy(AllData, m_BlockTypes, sizeof(m_BlockTypes));
memcpy(AllData + MetadataOffset, m_BlockMetas, sizeof(m_BlockMetas));
memcpy(AllData + BlockLightOffset, m_BlockLight, sizeof(m_BlockLight));
memcpy(AllData + SkyLightOffset, m_BlockSkyLight, sizeof(m_BlockSkyLight));
memcpy(AllData + BiomeOffset, m_BiomeData, BiomeDataSize);
// Compress the data:
// In order not to use allocation, use a fixed-size buffer, with the size
// that uses the same calculation as compressBound():
const uLongf CompressedMaxSize = DataSize + (DataSize >> 12) + (DataSize >> 14) + (DataSize >> 25) + 16;
char CompressedBlockData[CompressedMaxSize];
uLongf CompressedSize = compressBound(DataSize);
// Run-time check that our compile-time guess about CompressedMaxSize was enough:
ASSERT(CompressedSize <= CompressedMaxSize);
compress2((Bytef*)CompressedBlockData, &CompressedSize, (const Bytef*)AllData, sizeof(AllData), Z_DEFAULT_COMPRESSION);
// Now put all those data into a_Data:
// "Ground-up continuous", or rather, "biome data present" flag:
a_Data.push_back('\x01');
// Two bitmaps; we're aways sending the full chunk with no additional data, so the bitmaps are 0xffff and 0, respectively
// Also, no endian flipping is needed because of the const values
unsigned short BitMap1 = 0xffff;
unsigned short BitMap2 = 0;
a_Data.append((const char *)&BitMap1, sizeof(short));
a_Data.append((const char *)&BitMap2, sizeof(short));
UInt32 CompressedSizeBE = htonl((UInt32)CompressedSize);
a_Data.append((const char *)&CompressedSizeBE, sizeof(CompressedSizeBE));
// Unlike 29, 39 doesn't have the "unused" int
a_Data.append(CompressedBlockData, CompressedSize);
}
void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
// This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet:
cByteBuffer Packet(512 KiB);
Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet)
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBEUInt16(0xffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
// Write the chunk size:
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
UInt32 ChunkSize = (
(cChunkDef::NumBlocks * 2) + // Block meta + type
sizeof(m_BlockLight) + // Block light
sizeof(m_BlockSkyLight) + // Block sky light
BiomeDataSize // Biome data
);
Packet.WriteVarInt32(ChunkSize);
// Write the block types to the packet:
for (size_t Index = 0; Index < cChunkDef::NumBlocks; Index++)
{
BLOCKTYPE BlockType = m_BlockTypes[Index] & 0xFF;
NIBBLETYPE BlockMeta = m_BlockMetas[Index / 2] >> ((Index & 1) * 4) & 0x0f;
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
}
// Write the rest:
Packet.WriteBuf(m_BlockLight, sizeof(m_BlockLight));
Packet.WriteBuf(m_BlockSkyLight, sizeof(m_BlockSkyLight));
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
AString PacketData;
Packet.ReadAll(PacketData);
Packet.CommitRead();
cByteBuffer Buffer(20);
if (PacketData.size() >= 256)
{
if (!cProtocol180::CompressPacket(PacketData, a_Data))
{
ASSERT(!"Packet compression failed.");
a_Data.clear();
return;
}
}
else
{
AString PostData;
Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
Buffer.WriteVarInt32(0);
Buffer.ReadAll(PostData);
Buffer.CommitRead();
a_Data.clear();
a_Data.reserve(PostData.size() + PacketData.size());
a_Data.append(PostData.data(), PostData.size());
a_Data.append(PacketData.data(), PacketData.size());
}
}