summaryrefslogtreecommitdiffstats
path: root/CryptoPP/nbtheory.cpp
diff options
context:
space:
mode:
authormadmaxoft@gmail.com <madmaxoft@gmail.com@0a769ca7-a7f5-676a-18bf-c427514a06d6>2012-08-30 23:06:13 +0200
committermadmaxoft@gmail.com <madmaxoft@gmail.com@0a769ca7-a7f5-676a-18bf-c427514a06d6>2012-08-30 23:06:13 +0200
commit539364846a89987ac2679988653f50332cb91d26 (patch)
treef1695473c1f493a19c5fbdb70f7f1faccf99d7f3 /CryptoPP/nbtheory.cpp
parentUpdated to V6 - "Stop" and "Progress report" functionality (diff)
downloadcuberite-539364846a89987ac2679988653f50332cb91d26.tar
cuberite-539364846a89987ac2679988653f50332cb91d26.tar.gz
cuberite-539364846a89987ac2679988653f50332cb91d26.tar.bz2
cuberite-539364846a89987ac2679988653f50332cb91d26.tar.lz
cuberite-539364846a89987ac2679988653f50332cb91d26.tar.xz
cuberite-539364846a89987ac2679988653f50332cb91d26.tar.zst
cuberite-539364846a89987ac2679988653f50332cb91d26.zip
Diffstat (limited to '')
-rw-r--r--CryptoPP/nbtheory.cpp1123
1 files changed, 1123 insertions, 0 deletions
diff --git a/CryptoPP/nbtheory.cpp b/CryptoPP/nbtheory.cpp
new file mode 100644
index 000000000..3fdea4e69
--- /dev/null
+++ b/CryptoPP/nbtheory.cpp
@@ -0,0 +1,1123 @@
+// nbtheory.cpp - written and placed in the public domain by Wei Dai
+
+#include "pch.h"
+
+#ifndef CRYPTOPP_IMPORTS
+
+#include "nbtheory.h"
+#include "modarith.h"
+#include "algparam.h"
+
+#include <math.h>
+#include <vector>
+
+#ifdef _OPENMP
+// needed in MSVC 2005 to generate correct manifest
+#include <omp.h>
+#endif
+
+NAMESPACE_BEGIN(CryptoPP)
+
+const word s_lastSmallPrime = 32719;
+
+struct NewPrimeTable
+{
+ std::vector<word16> * operator()() const
+ {
+ const unsigned int maxPrimeTableSize = 3511;
+
+ std::auto_ptr<std::vector<word16> > pPrimeTable(new std::vector<word16>);
+ std::vector<word16> &primeTable = *pPrimeTable;
+ primeTable.reserve(maxPrimeTableSize);
+
+ primeTable.push_back(2);
+ unsigned int testEntriesEnd = 1;
+
+ for (unsigned int p=3; p<=s_lastSmallPrime; p+=2)
+ {
+ unsigned int j;
+ for (j=1; j<testEntriesEnd; j++)
+ if (p%primeTable[j] == 0)
+ break;
+ if (j == testEntriesEnd)
+ {
+ primeTable.push_back(p);
+ testEntriesEnd = UnsignedMin(54U, primeTable.size());
+ }
+ }
+
+ return pPrimeTable.release();
+ }
+};
+
+const word16 * GetPrimeTable(unsigned int &size)
+{
+ const std::vector<word16> &primeTable = Singleton<std::vector<word16>, NewPrimeTable>().Ref();
+ size = (unsigned int)primeTable.size();
+ return &primeTable[0];
+}
+
+bool IsSmallPrime(const Integer &p)
+{
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ if (p.IsPositive() && p <= primeTable[primeTableSize-1])
+ return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
+ else
+ return false;
+}
+
+bool TrialDivision(const Integer &p, unsigned bound)
+{
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ assert(primeTable[primeTableSize-1] >= bound);
+
+ unsigned int i;
+ for (i = 0; primeTable[i]<bound; i++)
+ if ((p % primeTable[i]) == 0)
+ return true;
+
+ if (bound == primeTable[i])
+ return (p % bound == 0);
+ else
+ return false;
+}
+
+bool SmallDivisorsTest(const Integer &p)
+{
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+ return !TrialDivision(p, primeTable[primeTableSize-1]);
+}
+
+bool IsFermatProbablePrime(const Integer &n, const Integer &b)
+{
+ if (n <= 3)
+ return n==2 || n==3;
+
+ assert(n>3 && b>1 && b<n-1);
+ return a_exp_b_mod_c(b, n-1, n)==1;
+}
+
+bool IsStrongProbablePrime(const Integer &n, const Integer &b)
+{
+ if (n <= 3)
+ return n==2 || n==3;
+
+ assert(n>3 && b>1 && b<n-1);
+
+ if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
+ return false;
+
+ Integer nminus1 = (n-1);
+ unsigned int a;
+
+ // calculate a = largest power of 2 that divides (n-1)
+ for (a=0; ; a++)
+ if (nminus1.GetBit(a))
+ break;
+ Integer m = nminus1>>a;
+
+ Integer z = a_exp_b_mod_c(b, m, n);
+ if (z==1 || z==nminus1)
+ return true;
+ for (unsigned j=1; j<a; j++)
+ {
+ z = z.Squared()%n;
+ if (z==nminus1)
+ return true;
+ if (z==1)
+ return false;
+ }
+ return false;
+}
+
+bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
+{
+ if (n <= 3)
+ return n==2 || n==3;
+
+ assert(n>3);
+
+ Integer b;
+ for (unsigned int i=0; i<rounds; i++)
+ {
+ b.Randomize(rng, 2, n-2);
+ if (!IsStrongProbablePrime(n, b))
+ return false;
+ }
+ return true;
+}
+
+bool IsLucasProbablePrime(const Integer &n)
+{
+ if (n <= 1)
+ return false;
+
+ if (n.IsEven())
+ return n==2;
+
+ assert(n>2);
+
+ Integer b=3;
+ unsigned int i=0;
+ int j;
+
+ while ((j=Jacobi(b.Squared()-4, n)) == 1)
+ {
+ if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
+ return false;
+ ++b; ++b;
+ }
+
+ if (j==0)
+ return false;
+ else
+ return Lucas(n+1, b, n)==2;
+}
+
+bool IsStrongLucasProbablePrime(const Integer &n)
+{
+ if (n <= 1)
+ return false;
+
+ if (n.IsEven())
+ return n==2;
+
+ assert(n>2);
+
+ Integer b=3;
+ unsigned int i=0;
+ int j;
+
+ while ((j=Jacobi(b.Squared()-4, n)) == 1)
+ {
+ if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
+ return false;
+ ++b; ++b;
+ }
+
+ if (j==0)
+ return false;
+
+ Integer n1 = n+1;
+ unsigned int a;
+
+ // calculate a = largest power of 2 that divides n1
+ for (a=0; ; a++)
+ if (n1.GetBit(a))
+ break;
+ Integer m = n1>>a;
+
+ Integer z = Lucas(m, b, n);
+ if (z==2 || z==n-2)
+ return true;
+ for (i=1; i<a; i++)
+ {
+ z = (z.Squared()-2)%n;
+ if (z==n-2)
+ return true;
+ if (z==2)
+ return false;
+ }
+ return false;
+}
+
+struct NewLastSmallPrimeSquared
+{
+ Integer * operator()() const
+ {
+ return new Integer(Integer(s_lastSmallPrime).Squared());
+ }
+};
+
+bool IsPrime(const Integer &p)
+{
+ if (p <= s_lastSmallPrime)
+ return IsSmallPrime(p);
+ else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
+ return SmallDivisorsTest(p);
+ else
+ return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
+}
+
+bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
+{
+ bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
+ if (level >= 1)
+ pass = pass && RabinMillerTest(rng, p, 10);
+ return pass;
+}
+
+unsigned int PrimeSearchInterval(const Integer &max)
+{
+ return max.BitCount();
+}
+
+static inline bool FastProbablePrimeTest(const Integer &n)
+{
+ return IsStrongProbablePrime(n,2);
+}
+
+AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
+{
+ if (productBitLength < 16)
+ throw InvalidArgument("invalid bit length");
+
+ Integer minP, maxP;
+
+ if (productBitLength%2==0)
+ {
+ minP = Integer(182) << (productBitLength/2-8);
+ maxP = Integer::Power2(productBitLength/2)-1;
+ }
+ else
+ {
+ minP = Integer::Power2((productBitLength-1)/2);
+ maxP = Integer(181) << ((productBitLength+1)/2-8);
+ }
+
+ return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
+}
+
+class PrimeSieve
+{
+public:
+ // delta == 1 or -1 means double sieve with p = 2*q + delta
+ PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
+ bool NextCandidate(Integer &c);
+
+ void DoSieve();
+ static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
+
+ Integer m_first, m_last, m_step;
+ signed int m_delta;
+ word m_next;
+ std::vector<bool> m_sieve;
+};
+
+PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
+ : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
+{
+ DoSieve();
+}
+
+bool PrimeSieve::NextCandidate(Integer &c)
+{
+ bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
+ assert(safe);
+ if (m_next == m_sieve.size())
+ {
+ m_first += long(m_sieve.size())*m_step;
+ if (m_first > m_last)
+ return false;
+ else
+ {
+ m_next = 0;
+ DoSieve();
+ return NextCandidate(c);
+ }
+ }
+ else
+ {
+ c = m_first + long(m_next)*m_step;
+ ++m_next;
+ return true;
+ }
+}
+
+void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
+{
+ if (stepInv)
+ {
+ size_t sieveSize = sieve.size();
+ size_t j = (word32(p-(first%p))*stepInv) % p;
+ // if the first multiple of p is p, skip it
+ if (first.WordCount() <= 1 && first + step*long(j) == p)
+ j += p;
+ for (; j < sieveSize; j += p)
+ sieve[j] = true;
+ }
+}
+
+void PrimeSieve::DoSieve()
+{
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ const unsigned int maxSieveSize = 32768;
+ unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
+
+ m_sieve.clear();
+ m_sieve.resize(sieveSize, false);
+
+ if (m_delta == 0)
+ {
+ for (unsigned int i = 0; i < primeTableSize; ++i)
+ SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
+ }
+ else
+ {
+ assert(m_step%2==0);
+ Integer qFirst = (m_first-m_delta) >> 1;
+ Integer halfStep = m_step >> 1;
+ for (unsigned int i = 0; i < primeTableSize; ++i)
+ {
+ word16 p = primeTable[i];
+ word16 stepInv = (word16)m_step.InverseMod(p);
+ SieveSingle(m_sieve, p, m_first, m_step, stepInv);
+
+ word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
+ SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
+ }
+ }
+}
+
+bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
+{
+ assert(!equiv.IsNegative() && equiv < mod);
+
+ Integer gcd = GCD(equiv, mod);
+ if (gcd != Integer::One())
+ {
+ // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
+ if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
+ {
+ p = gcd;
+ return true;
+ }
+ else
+ return false;
+ }
+
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ if (p <= primeTable[primeTableSize-1])
+ {
+ const word16 *pItr;
+
+ --p;
+ if (p.IsPositive())
+ pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
+ else
+ pItr = primeTable;
+
+ while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
+ ++pItr;
+
+ if (pItr < primeTable+primeTableSize)
+ {
+ p = *pItr;
+ return p <= max;
+ }
+
+ p = primeTable[primeTableSize-1]+1;
+ }
+
+ assert(p > primeTable[primeTableSize-1]);
+
+ if (mod.IsOdd())
+ return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
+
+ p += (equiv-p)%mod;
+
+ if (p>max)
+ return false;
+
+ PrimeSieve sieve(p, max, mod);
+
+ while (sieve.NextCandidate(p))
+ {
+ if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
+ return true;
+ }
+
+ return false;
+}
+
+// the following two functions are based on code and comments provided by Preda Mihailescu
+static bool ProvePrime(const Integer &p, const Integer &q)
+{
+ assert(p < q*q*q);
+ assert(p % q == 1);
+
+// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
+// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
+// or be prime. The next two lines build the discriminant of a quadratic equation
+// which holds iff p is built up of two factors (excercise ... )
+
+ Integer r = (p-1)/q;
+ if (((r%q).Squared()-4*(r/q)).IsSquare())
+ return false;
+
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ assert(primeTableSize >= 50);
+ for (int i=0; i<50; i++)
+ {
+ Integer b = a_exp_b_mod_c(primeTable[i], r, p);
+ if (b != 1)
+ return a_exp_b_mod_c(b, q, p) == 1;
+ }
+ return false;
+}
+
+Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
+{
+ Integer p;
+ Integer minP = Integer::Power2(pbits-1);
+ Integer maxP = Integer::Power2(pbits) - 1;
+
+ if (maxP <= Integer(s_lastSmallPrime).Squared())
+ {
+ // Randomize() will generate a prime provable by trial division
+ p.Randomize(rng, minP, maxP, Integer::PRIME);
+ return p;
+ }
+
+ unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
+ Integer q = MihailescuProvablePrime(rng, qbits);
+ Integer q2 = q<<1;
+
+ while (true)
+ {
+ // this initializes the sieve to search in the arithmetic
+ // progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
+ // with q the recursively generated prime above. We will be able
+ // to use Lucas tets for proving primality. A trick of Quisquater
+ // allows taking q > cubic_root(p) rather then square_root: this
+ // decreases the recursion.
+
+ p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
+ PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
+
+ while (sieve.NextCandidate(p))
+ {
+ if (FastProbablePrimeTest(p) && ProvePrime(p, q))
+ return p;
+ }
+ }
+
+ // not reached
+ return p;
+}
+
+Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
+{
+ const unsigned smallPrimeBound = 29, c_opt=10;
+ Integer p;
+
+ unsigned int primeTableSize;
+ const word16 * primeTable = GetPrimeTable(primeTableSize);
+
+ if (bits < smallPrimeBound)
+ {
+ do
+ p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
+ while (TrialDivision(p, 1 << ((bits+1)/2)));
+ }
+ else
+ {
+ const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
+ double relativeSize;
+ do
+ relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
+ while (bits * relativeSize >= bits - margin);
+
+ Integer a,b;
+ Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
+ Integer I = Integer::Power2(bits-2)/q;
+ Integer I2 = I << 1;
+ unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
+ bool success = false;
+ while (!success)
+ {
+ p.Randomize(rng, I, I2, Integer::ANY);
+ p *= q; p <<= 1; ++p;
+ if (!TrialDivision(p, trialDivisorBound))
+ {
+ a.Randomize(rng, 2, p-1, Integer::ANY);
+ b = a_exp_b_mod_c(a, (p-1)/q, p);
+ success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
+ }
+ }
+ }
+ return p;
+}
+
+Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
+{
+ // isn't operator overloading great?
+ return p * (u * (xq-xp) % q) + xp;
+/*
+ Integer t1 = xq-xp;
+ cout << hex << t1 << endl;
+ Integer t2 = u * t1;
+ cout << hex << t2 << endl;
+ Integer t3 = t2 % q;
+ cout << hex << t3 << endl;
+ Integer t4 = p * t3;
+ cout << hex << t4 << endl;
+ Integer t5 = t4 + xp;
+ cout << hex << t5 << endl;
+ return t5;
+*/
+}
+
+Integer ModularSquareRoot(const Integer &a, const Integer &p)
+{
+ if (p%4 == 3)
+ return a_exp_b_mod_c(a, (p+1)/4, p);
+
+ Integer q=p-1;
+ unsigned int r=0;
+ while (q.IsEven())
+ {
+ r++;
+ q >>= 1;
+ }
+
+ Integer n=2;
+ while (Jacobi(n, p) != -1)
+ ++n;
+
+ Integer y = a_exp_b_mod_c(n, q, p);
+ Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
+ Integer b = (x.Squared()%p)*a%p;
+ x = a*x%p;
+ Integer tempb, t;
+
+ while (b != 1)
+ {
+ unsigned m=0;
+ tempb = b;
+ do
+ {
+ m++;
+ b = b.Squared()%p;
+ if (m==r)
+ return Integer::Zero();
+ }
+ while (b != 1);
+
+ t = y;
+ for (unsigned i=0; i<r-m-1; i++)
+ t = t.Squared()%p;
+ y = t.Squared()%p;
+ r = m;
+ x = x*t%p;
+ b = tempb*y%p;
+ }
+
+ assert(x.Squared()%p == a);
+ return x;
+}
+
+bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
+{
+ Integer D = (b.Squared() - 4*a*c) % p;
+ switch (Jacobi(D, p))
+ {
+ default:
+ assert(false); // not reached
+ return false;
+ case -1:
+ return false;
+ case 0:
+ r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
+ assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
+ return true;
+ case 1:
+ Integer s = ModularSquareRoot(D, p);
+ Integer t = (a+a).InverseMod(p);
+ r1 = (s-b)*t % p;
+ r2 = (-s-b)*t % p;
+ assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
+ assert(((r2.Squared()*a + r2*b + c) % p).IsZero());
+ return true;
+ }
+}
+
+Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
+ const Integer &p, const Integer &q, const Integer &u)
+{
+ Integer p2, q2;
+ #pragma omp parallel
+ #pragma omp sections
+ {
+ #pragma omp section
+ p2 = ModularExponentiation((a % p), dp, p);
+ #pragma omp section
+ q2 = ModularExponentiation((a % q), dq, q);
+ }
+ return CRT(p2, p, q2, q, u);
+}
+
+Integer ModularRoot(const Integer &a, const Integer &e,
+ const Integer &p, const Integer &q)
+{
+ Integer dp = EuclideanMultiplicativeInverse(e, p-1);
+ Integer dq = EuclideanMultiplicativeInverse(e, q-1);
+ Integer u = EuclideanMultiplicativeInverse(p, q);
+ assert(!!dp && !!dq && !!u);
+ return ModularRoot(a, dp, dq, p, q, u);
+}
+
+/*
+Integer GCDI(const Integer &x, const Integer &y)
+{
+ Integer a=x, b=y;
+ unsigned k=0;
+
+ assert(!!a && !!b);
+
+ while (a[0]==0 && b[0]==0)
+ {
+ a >>= 1;
+ b >>= 1;
+ k++;
+ }
+
+ while (a[0]==0)
+ a >>= 1;
+
+ while (b[0]==0)
+ b >>= 1;
+
+ while (1)
+ {
+ switch (a.Compare(b))
+ {
+ case -1:
+ b -= a;
+ while (b[0]==0)
+ b >>= 1;
+ break;
+
+ case 0:
+ return (a <<= k);
+
+ case 1:
+ a -= b;
+ while (a[0]==0)
+ a >>= 1;
+ break;
+
+ default:
+ assert(false);
+ }
+ }
+}
+
+Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
+{
+ assert(b.Positive());
+
+ if (a.Negative())
+ return EuclideanMultiplicativeInverse(a%b, b);
+
+ if (b[0]==0)
+ {
+ if (!b || a[0]==0)
+ return Integer::Zero(); // no inverse
+ if (a==1)
+ return 1;
+ Integer u = EuclideanMultiplicativeInverse(b, a);
+ if (!u)
+ return Integer::Zero(); // no inverse
+ else
+ return (b*(a-u)+1)/a;
+ }
+
+ Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
+
+ if (a[0])
+ {
+ t1 = Integer::Zero();
+ t3 = -b;
+ }
+ else
+ {
+ t1 = b2;
+ t3 = a>>1;
+ }
+
+ while (!!t3)
+ {
+ while (t3[0]==0)
+ {
+ t3 >>= 1;
+ if (t1[0]==0)
+ t1 >>= 1;
+ else
+ {
+ t1 >>= 1;
+ t1 += b2;
+ }
+ }
+ if (t3.Positive())
+ {
+ u = t1;
+ d = t3;
+ }
+ else
+ {
+ v1 = b-t1;
+ v3 = -t3;
+ }
+ t1 = u-v1;
+ t3 = d-v3;
+ if (t1.Negative())
+ t1 += b;
+ }
+ if (d==1)
+ return u;
+ else
+ return Integer::Zero(); // no inverse
+}
+*/
+
+int Jacobi(const Integer &aIn, const Integer &bIn)
+{
+ assert(bIn.IsOdd());
+
+ Integer b = bIn, a = aIn%bIn;
+ int result = 1;
+
+ while (!!a)
+ {
+ unsigned i=0;
+ while (a.GetBit(i)==0)
+ i++;
+ a>>=i;
+
+ if (i%2==1 && (b%8==3 || b%8==5))
+ result = -result;
+
+ if (a%4==3 && b%4==3)
+ result = -result;
+
+ std::swap(a, b);
+ a %= b;
+ }
+
+ return (b==1) ? result : 0;
+}
+
+Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
+{
+ unsigned i = e.BitCount();
+ if (i==0)
+ return Integer::Two();
+
+ MontgomeryRepresentation m(n);
+ Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
+ Integer v=p, v1=m.Subtract(m.Square(p), two);
+
+ i--;
+ while (i--)
+ {
+ if (e.GetBit(i))
+ {
+ // v = (v*v1 - p) % m;
+ v = m.Subtract(m.Multiply(v,v1), p);
+ // v1 = (v1*v1 - 2) % m;
+ v1 = m.Subtract(m.Square(v1), two);
+ }
+ else
+ {
+ // v1 = (v*v1 - p) % m;
+ v1 = m.Subtract(m.Multiply(v,v1), p);
+ // v = (v*v - 2) % m;
+ v = m.Subtract(m.Square(v), two);
+ }
+ }
+ return m.ConvertOut(v);
+}
+
+// This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
+// The total number of multiplies and squares used is less than the binary
+// algorithm (see above). Unfortunately I can't get it to run as fast as
+// the binary algorithm because of the extra overhead.
+/*
+Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
+{
+ if (!n)
+ return 2;
+
+#define f(A, B, C) m.Subtract(m.Multiply(A, B), C)
+#define X2(A) m.Subtract(m.Square(A), two)
+#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
+
+ MontgomeryRepresentation m(modulus);
+ Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
+ Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
+
+ while (d!=1)
+ {
+ p = d;
+ unsigned int b = WORD_BITS * p.WordCount();
+ Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
+ r = (p*alpha)>>b;
+ e = d-r;
+ B = A;
+ C = two;
+ d = r;
+
+ while (d!=e)
+ {
+ if (d<e)
+ {
+ swap(d, e);
+ swap(A, B);
+ }
+
+ unsigned int dm2 = d[0], em2 = e[0];
+ unsigned int dm3 = d%3, em3 = e%3;
+
+// if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
+ if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
+ {
+ // #1
+// t = (d+d-e)/3;
+// t = d; t += d; t -= e; t /= 3;
+// e = (e+e-d)/3;
+// e += e; e -= d; e /= 3;
+// d = t;
+
+// t = (d+e)/3
+ t = d; t += e; t /= 3;
+ e -= t;
+ d -= t;
+
+ T = f(A, B, C);
+ U = f(T, A, B);
+ B = f(T, B, A);
+ A = U;
+ continue;
+ }
+
+// if (dm6 == em6 && d <= e + (e>>2))
+ if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
+ {
+ // #2
+// d = (d-e)>>1;
+ d -= e; d >>= 1;
+ B = f(A, B, C);
+ A = X2(A);
+ continue;
+ }
+
+// if (d <= (e<<2))
+ if (d <= (t = e, t <<= 2))
+ {
+ // #3
+ d -= e;
+ C = f(A, B, C);
+ swap(B, C);
+ continue;
+ }
+
+ if (dm2 == em2)
+ {
+ // #4
+// d = (d-e)>>1;
+ d -= e; d >>= 1;
+ B = f(A, B, C);
+ A = X2(A);
+ continue;
+ }
+
+ if (dm2 == 0)
+ {
+ // #5
+ d >>= 1;
+ C = f(A, C, B);
+ A = X2(A);
+ continue;
+ }
+
+ if (dm3 == 0)
+ {
+ // #6
+// d = d/3 - e;
+ d /= 3; d -= e;
+ T = X2(A);
+ C = f(T, f(A, B, C), C);
+ swap(B, C);
+ A = f(T, A, A);
+ continue;
+ }
+
+ if (dm3+em3==0 || dm3+em3==3)
+ {
+ // #7
+// d = (d-e-e)/3;
+ d -= e; d -= e; d /= 3;
+ T = f(A, B, C);
+ B = f(T, A, B);
+ A = X3(A);
+ continue;
+ }
+
+ if (dm3 == em3)
+ {
+ // #8
+// d = (d-e)/3;
+ d -= e; d /= 3;
+ T = f(A, B, C);
+ C = f(A, C, B);
+ B = T;
+ A = X3(A);
+ continue;
+ }
+
+ assert(em2 == 0);
+ // #9
+ e >>= 1;
+ C = f(C, B, A);
+ B = X2(B);
+ }
+
+ A = f(A, B, C);
+ }
+
+#undef f
+#undef X2
+#undef X3
+
+ return m.ConvertOut(A);
+}
+*/
+
+Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
+{
+ Integer d = (m*m-4);
+ Integer p2, q2;
+ #pragma omp parallel
+ #pragma omp sections
+ {
+ #pragma omp section
+ {
+ p2 = p-Jacobi(d,p);
+ p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
+ }
+ #pragma omp section
+ {
+ q2 = q-Jacobi(d,q);
+ q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
+ }
+ }
+ return CRT(p2, p, q2, q, u);
+}
+
+unsigned int FactoringWorkFactor(unsigned int n)
+{
+ // extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
+ // updated to reflect the factoring of RSA-130
+ if (n<5) return 0;
+ else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
+}
+
+unsigned int DiscreteLogWorkFactor(unsigned int n)
+{
+ // assuming discrete log takes about the same time as factoring
+ if (n<5) return 0;
+ else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
+}
+
+// ********************************************************
+
+void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
+{
+ // no prime exists for delta = -1, qbits = 4, and pbits = 5
+ assert(qbits > 4);
+ assert(pbits > qbits);
+
+ if (qbits+1 == pbits)
+ {
+ Integer minP = Integer::Power2(pbits-1);
+ Integer maxP = Integer::Power2(pbits) - 1;
+ bool success = false;
+
+ while (!success)
+ {
+ p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
+ PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
+
+ while (sieve.NextCandidate(p))
+ {
+ assert(IsSmallPrime(p) || SmallDivisorsTest(p));
+ q = (p-delta) >> 1;
+ assert(IsSmallPrime(q) || SmallDivisorsTest(q));
+ if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
+ {
+ success = true;
+ break;
+ }
+ }
+ }
+
+ if (delta == 1)
+ {
+ // find g such that g is a quadratic residue mod p, then g has order q
+ // g=4 always works, but this way we get the smallest quadratic residue (other than 1)
+ for (g=2; Jacobi(g, p) != 1; ++g) {}
+ // contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
+ assert((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
+ }
+ else
+ {
+ assert(delta == -1);
+ // find g such that g*g-4 is a quadratic non-residue,
+ // and such that g has order q
+ for (g=3; ; ++g)
+ if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
+ break;
+ }
+ }
+ else
+ {
+ Integer minQ = Integer::Power2(qbits-1);
+ Integer maxQ = Integer::Power2(qbits) - 1;
+ Integer minP = Integer::Power2(pbits-1);
+ Integer maxP = Integer::Power2(pbits) - 1;
+
+ do
+ {
+ q.Randomize(rng, minQ, maxQ, Integer::PRIME);
+ } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
+
+ // find a random g of order q
+ if (delta==1)
+ {
+ do
+ {
+ Integer h(rng, 2, p-2, Integer::ANY);
+ g = a_exp_b_mod_c(h, (p-1)/q, p);
+ } while (g <= 1);
+ assert(a_exp_b_mod_c(g, q, p)==1);
+ }
+ else
+ {
+ assert(delta==-1);
+ do
+ {
+ Integer h(rng, 3, p-1, Integer::ANY);
+ if (Jacobi(h*h-4, p)==1)
+ continue;
+ g = Lucas((p+1)/q, h, p);
+ } while (g <= 2);
+ assert(Lucas(q, g, p) == 2);
+ }
+ }
+}
+
+NAMESPACE_END
+
+#endif