diff options
author | Alexander Harkness <bearbin@gmail.com> | 2013-11-24 15:21:13 +0100 |
---|---|---|
committer | Alexander Harkness <bearbin@gmail.com> | 2013-11-24 15:21:13 +0100 |
commit | 3438e5d3ddf8444f0e31009ffbe8237ef3752c22 (patch) | |
tree | 7c2f76d5e9281c130e60fb932c4dda89a49863b6 /lib/cryptopp/ecp.cpp | |
parent | Moved source to src (diff) | |
download | cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar.gz cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar.bz2 cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar.lz cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar.xz cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.tar.zst cuberite-3438e5d3ddf8444f0e31009ffbe8237ef3752c22.zip |
Diffstat (limited to 'lib/cryptopp/ecp.cpp')
-rw-r--r-- | lib/cryptopp/ecp.cpp | 473 |
1 files changed, 473 insertions, 0 deletions
diff --git a/lib/cryptopp/ecp.cpp b/lib/cryptopp/ecp.cpp new file mode 100644 index 000000000..55a7cc15b --- /dev/null +++ b/lib/cryptopp/ecp.cpp @@ -0,0 +1,473 @@ +// ecp.cpp - written and placed in the public domain by Wei Dai + +#include "pch.h" + +#ifndef CRYPTOPP_IMPORTS + +#include "ecp.h" +#include "asn.h" +#include "nbtheory.h" + +#include "algebra.cpp" + +NAMESPACE_BEGIN(CryptoPP) + +ANONYMOUS_NAMESPACE_BEGIN +static inline ECP::Point ToMontgomery(const ModularArithmetic &mr, const ECP::Point &P) +{ + return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y)); +} + +static inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &P) +{ + return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y)); +} +NAMESPACE_END + +ECP::ECP(const ECP &ecp, bool convertToMontgomeryRepresentation) +{ + if (convertToMontgomeryRepresentation && !ecp.GetField().IsMontgomeryRepresentation()) + { + m_fieldPtr.reset(new MontgomeryRepresentation(ecp.GetField().GetModulus())); + m_a = GetField().ConvertIn(ecp.m_a); + m_b = GetField().ConvertIn(ecp.m_b); + } + else + operator=(ecp); +} + +ECP::ECP(BufferedTransformation &bt) + : m_fieldPtr(new Field(bt)) +{ + BERSequenceDecoder seq(bt); + GetField().BERDecodeElement(seq, m_a); + GetField().BERDecodeElement(seq, m_b); + // skip optional seed + if (!seq.EndReached()) + { + SecByteBlock seed; + unsigned int unused; + BERDecodeBitString(seq, seed, unused); + } + seq.MessageEnd(); +} + +void ECP::DEREncode(BufferedTransformation &bt) const +{ + GetField().DEREncode(bt); + DERSequenceEncoder seq(bt); + GetField().DEREncodeElement(seq, m_a); + GetField().DEREncodeElement(seq, m_b); + seq.MessageEnd(); +} + +bool ECP::DecodePoint(ECP::Point &P, const byte *encodedPoint, size_t encodedPointLen) const +{ + StringStore store(encodedPoint, encodedPointLen); + return DecodePoint(P, store, encodedPointLen); +} + +bool ECP::DecodePoint(ECP::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const +{ + byte type; + if (encodedPointLen < 1 || !bt.Get(type)) + return false; + + switch (type) + { + case 0: + P.identity = true; + return true; + case 2: + case 3: + { + if (encodedPointLen != EncodedPointSize(true)) + return false; + + Integer p = FieldSize(); + + P.identity = false; + P.x.Decode(bt, GetField().MaxElementByteLength()); + P.y = ((P.x*P.x+m_a)*P.x+m_b) % p; + + if (Jacobi(P.y, p) !=1) + return false; + + P.y = ModularSquareRoot(P.y, p); + + if ((type & 1) != P.y.GetBit(0)) + P.y = p-P.y; + + return true; + } + case 4: + { + if (encodedPointLen != EncodedPointSize(false)) + return false; + + unsigned int len = GetField().MaxElementByteLength(); + P.identity = false; + P.x.Decode(bt, len); + P.y.Decode(bt, len); + return true; + } + default: + return false; + } +} + +void ECP::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const +{ + if (P.identity) + NullStore().TransferTo(bt, EncodedPointSize(compressed)); + else if (compressed) + { + bt.Put(2 + P.y.GetBit(0)); + P.x.Encode(bt, GetField().MaxElementByteLength()); + } + else + { + unsigned int len = GetField().MaxElementByteLength(); + bt.Put(4); // uncompressed + P.x.Encode(bt, len); + P.y.Encode(bt, len); + } +} + +void ECP::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const +{ + ArraySink sink(encodedPoint, EncodedPointSize(compressed)); + EncodePoint(sink, P, compressed); + assert(sink.TotalPutLength() == EncodedPointSize(compressed)); +} + +ECP::Point ECP::BERDecodePoint(BufferedTransformation &bt) const +{ + SecByteBlock str; + BERDecodeOctetString(bt, str); + Point P; + if (!DecodePoint(P, str, str.size())) + BERDecodeError(); + return P; +} + +void ECP::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const +{ + SecByteBlock str(EncodedPointSize(compressed)); + EncodePoint(str, P, compressed); + DEREncodeOctetString(bt, str); +} + +bool ECP::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const +{ + Integer p = FieldSize(); + + bool pass = p.IsOdd(); + pass = pass && !m_a.IsNegative() && m_a<p && !m_b.IsNegative() && m_b<p; + + if (level >= 1) + pass = pass && ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive(); + + if (level >= 2) + pass = pass && VerifyPrime(rng, p); + + return pass; +} + +bool ECP::VerifyPoint(const Point &P) const +{ + const FieldElement &x = P.x, &y = P.y; + Integer p = FieldSize(); + return P.identity || + (!x.IsNegative() && x<p && !y.IsNegative() && y<p + && !(((x*x+m_a)*x+m_b-y*y)%p)); +} + +bool ECP::Equal(const Point &P, const Point &Q) const +{ + if (P.identity && Q.identity) + return true; + + if (P.identity && !Q.identity) + return false; + + if (!P.identity && Q.identity) + return false; + + return (GetField().Equal(P.x,Q.x) && GetField().Equal(P.y,Q.y)); +} + +const ECP::Point& ECP::Identity() const +{ + return Singleton<Point>().Ref(); +} + +const ECP::Point& ECP::Inverse(const Point &P) const +{ + if (P.identity) + return P; + else + { + m_R.identity = false; + m_R.x = P.x; + m_R.y = GetField().Inverse(P.y); + return m_R; + } +} + +const ECP::Point& ECP::Add(const Point &P, const Point &Q) const +{ + if (P.identity) return Q; + if (Q.identity) return P; + if (GetField().Equal(P.x, Q.x)) + return GetField().Equal(P.y, Q.y) ? Double(P) : Identity(); + + FieldElement t = GetField().Subtract(Q.y, P.y); + t = GetField().Divide(t, GetField().Subtract(Q.x, P.x)); + FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x); + m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y); + + m_R.x.swap(x); + m_R.identity = false; + return m_R; +} + +const ECP::Point& ECP::Double(const Point &P) const +{ + if (P.identity || P.y==GetField().Identity()) return Identity(); + + FieldElement t = GetField().Square(P.x); + t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a); + t = GetField().Divide(t, GetField().Double(P.y)); + FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x); + m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y); + + m_R.x.swap(x); + m_R.identity = false; + return m_R; +} + +template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end) +{ + size_t n = end-begin; + if (n == 1) + *begin = ring.MultiplicativeInverse(*begin); + else if (n > 1) + { + std::vector<T> vec((n+1)/2); + unsigned int i; + Iterator it; + + for (i=0, it=begin; i<n/2; i++, it+=2) + vec[i] = ring.Multiply(*it, *(it+1)); + if (n%2 == 1) + vec[n/2] = *it; + + ParallelInvert(ring, vec.begin(), vec.end()); + + for (i=0, it=begin; i<n/2; i++, it+=2) + { + if (!vec[i]) + { + *it = ring.MultiplicativeInverse(*it); + *(it+1) = ring.MultiplicativeInverse(*(it+1)); + } + else + { + std::swap(*it, *(it+1)); + *it = ring.Multiply(*it, vec[i]); + *(it+1) = ring.Multiply(*(it+1), vec[i]); + } + } + if (n%2 == 1) + *it = vec[n/2]; + } +} + +struct ProjectivePoint +{ + ProjectivePoint() {} + ProjectivePoint(const Integer &x, const Integer &y, const Integer &z) + : x(x), y(y), z(z) {} + + Integer x,y,z; +}; + +class ProjectiveDoubling +{ +public: + ProjectiveDoubling(const ModularArithmetic &mr, const Integer &m_a, const Integer &m_b, const ECPPoint &Q) + : mr(mr), firstDoubling(true), negated(false) + { + if (Q.identity) + { + sixteenY4 = P.x = P.y = mr.MultiplicativeIdentity(); + aZ4 = P.z = mr.Identity(); + } + else + { + P.x = Q.x; + P.y = Q.y; + sixteenY4 = P.z = mr.MultiplicativeIdentity(); + aZ4 = m_a; + } + } + + void Double() + { + twoY = mr.Double(P.y); + P.z = mr.Multiply(P.z, twoY); + fourY2 = mr.Square(twoY); + S = mr.Multiply(fourY2, P.x); + aZ4 = mr.Multiply(aZ4, sixteenY4); + M = mr.Square(P.x); + M = mr.Add(mr.Add(mr.Double(M), M), aZ4); + P.x = mr.Square(M); + mr.Reduce(P.x, S); + mr.Reduce(P.x, S); + mr.Reduce(S, P.x); + P.y = mr.Multiply(M, S); + sixteenY4 = mr.Square(fourY2); + mr.Reduce(P.y, mr.Half(sixteenY4)); + } + + const ModularArithmetic &mr; + ProjectivePoint P; + bool firstDoubling, negated; + Integer sixteenY4, aZ4, twoY, fourY2, S, M; +}; + +struct ZIterator +{ + ZIterator() {} + ZIterator(std::vector<ProjectivePoint>::iterator it) : it(it) {} + Integer& operator*() {return it->z;} + int operator-(ZIterator it2) {return int(it-it2.it);} + ZIterator operator+(int i) {return ZIterator(it+i);} + ZIterator& operator+=(int i) {it+=i; return *this;} + std::vector<ProjectivePoint>::iterator it; +}; + +ECP::Point ECP::ScalarMultiply(const Point &P, const Integer &k) const +{ + Element result; + if (k.BitCount() <= 5) + AbstractGroup<ECPPoint>::SimultaneousMultiply(&result, P, &k, 1); + else + ECP::SimultaneousMultiply(&result, P, &k, 1); + return result; +} + +void ECP::SimultaneousMultiply(ECP::Point *results, const ECP::Point &P, const Integer *expBegin, unsigned int expCount) const +{ + if (!GetField().IsMontgomeryRepresentation()) + { + ECP ecpmr(*this, true); + const ModularArithmetic &mr = ecpmr.GetField(); + ecpmr.SimultaneousMultiply(results, ToMontgomery(mr, P), expBegin, expCount); + for (unsigned int i=0; i<expCount; i++) + results[i] = FromMontgomery(mr, results[i]); + return; + } + + ProjectiveDoubling rd(GetField(), m_a, m_b, P); + std::vector<ProjectivePoint> bases; + std::vector<WindowSlider> exponents; + exponents.reserve(expCount); + std::vector<std::vector<word32> > baseIndices(expCount); + std::vector<std::vector<bool> > negateBase(expCount); + std::vector<std::vector<word32> > exponentWindows(expCount); + unsigned int i; + + for (i=0; i<expCount; i++) + { + assert(expBegin->NotNegative()); + exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 5)); + exponents[i].FindNextWindow(); + } + + unsigned int expBitPosition = 0; + bool notDone = true; + + while (notDone) + { + notDone = false; + bool baseAdded = false; + for (i=0; i<expCount; i++) + { + if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin) + { + if (!baseAdded) + { + bases.push_back(rd.P); + baseAdded =true; + } + + exponentWindows[i].push_back(exponents[i].expWindow); + baseIndices[i].push_back((word32)bases.size()-1); + negateBase[i].push_back(exponents[i].negateNext); + + exponents[i].FindNextWindow(); + } + notDone = notDone || !exponents[i].finished; + } + + if (notDone) + { + rd.Double(); + expBitPosition++; + } + } + + // convert from projective to affine coordinates + ParallelInvert(GetField(), ZIterator(bases.begin()), ZIterator(bases.end())); + for (i=0; i<bases.size(); i++) + { + if (bases[i].z.NotZero()) + { + bases[i].y = GetField().Multiply(bases[i].y, bases[i].z); + bases[i].z = GetField().Square(bases[i].z); + bases[i].x = GetField().Multiply(bases[i].x, bases[i].z); + bases[i].y = GetField().Multiply(bases[i].y, bases[i].z); + } + } + + std::vector<BaseAndExponent<Point, Integer> > finalCascade; + for (i=0; i<expCount; i++) + { + finalCascade.resize(baseIndices[i].size()); + for (unsigned int j=0; j<baseIndices[i].size(); j++) + { + ProjectivePoint &base = bases[baseIndices[i][j]]; + if (base.z.IsZero()) + finalCascade[j].base.identity = true; + else + { + finalCascade[j].base.identity = false; + finalCascade[j].base.x = base.x; + if (negateBase[i][j]) + finalCascade[j].base.y = GetField().Inverse(base.y); + else + finalCascade[j].base.y = base.y; + } + finalCascade[j].exponent = Integer(Integer::POSITIVE, 0, exponentWindows[i][j]); + } + results[i] = GeneralCascadeMultiplication(*this, finalCascade.begin(), finalCascade.end()); + } +} + +ECP::Point ECP::CascadeScalarMultiply(const Point &P, const Integer &k1, const Point &Q, const Integer &k2) const +{ + if (!GetField().IsMontgomeryRepresentation()) + { + ECP ecpmr(*this, true); + const ModularArithmetic &mr = ecpmr.GetField(); + return FromMontgomery(mr, ecpmr.CascadeScalarMultiply(ToMontgomery(mr, P), k1, ToMontgomery(mr, Q), k2)); + } + else + return AbstractGroup<Point>::CascadeScalarMultiply(P, k1, Q, k2); +} + +NAMESPACE_END + +#endif |