summaryrefslogtreecommitdiffstats
path: root/CryptoPP/xtr.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--CryptoPP/xtr.cpp100
1 files changed, 0 insertions, 100 deletions
diff --git a/CryptoPP/xtr.cpp b/CryptoPP/xtr.cpp
deleted file mode 100644
index 673907054..000000000
--- a/CryptoPP/xtr.cpp
+++ /dev/null
@@ -1,100 +0,0 @@
-// cryptlib.cpp - written and placed in the public domain by Wei Dai
-
-#include "pch.h"
-#include "xtr.h"
-#include "nbtheory.h"
-
-#include "algebra.cpp"
-
-NAMESPACE_BEGIN(CryptoPP)
-
-const GFP2Element & GFP2Element::Zero()
-{
- return Singleton<GFP2Element>().Ref();
-}
-
-void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits)
-{
- assert(qbits > 9); // no primes exist for pbits = 10, qbits = 9
- assert(pbits > qbits);
-
- const Integer minQ = Integer::Power2(qbits - 1);
- const Integer maxQ = Integer::Power2(qbits) - 1;
- const Integer minP = Integer::Power2(pbits - 1);
- const Integer maxP = Integer::Power2(pbits) - 1;
-
- Integer r1, r2;
- do
- {
- bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);
- assert(qFound);
- bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);
- assert(solutionsExist);
- } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q));
- assert(((p.Squared() - p + 1) % q).IsZero());
-
- GFP2_ONB<ModularArithmetic> gfp2(p);
- GFP2Element three = gfp2.ConvertIn(3), t;
-
- while (true)
- {
- g.c1.Randomize(rng, Integer::Zero(), p-1);
- g.c2.Randomize(rng, Integer::Zero(), p-1);
- t = XTR_Exponentiate(g, p+1, p);
- if (t.c1 == t.c2)
- continue;
- g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p);
- if (g != three)
- break;
- }
- assert(XTR_Exponentiate(g, q, p) == three);
-}
-
-GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p)
-{
- unsigned int bitCount = e.BitCount();
- if (bitCount == 0)
- return GFP2Element(-3, -3);
-
- // find the lowest bit of e that is 1
- unsigned int lowest1bit;
- for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {}
-
- GFP2_ONB<MontgomeryRepresentation> gfp2(p);
- GFP2Element c = gfp2.ConvertIn(b);
- GFP2Element cp = gfp2.PthPower(c);
- GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)};
-
- // do all exponents bits except the lowest zeros starting from the top
- unsigned int i;
- for (i = e.BitCount() - 1; i>lowest1bit; i--)
- {
- if (e.GetBit(i))
- {
- gfp2.RaiseToPthPower(S[0]);
- gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1]));
- S[1] = gfp2.SpecialOperation1(S[1]);
- S[2] = gfp2.SpecialOperation1(S[2]);
- S[0].swap(S[1]);
- }
- else
- {
- gfp2.RaiseToPthPower(S[2]);
- gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1]));
- S[1] = gfp2.SpecialOperation1(S[1]);
- S[0] = gfp2.SpecialOperation1(S[0]);
- S[2].swap(S[1]);
- }
- }
-
- // now do the lowest zeros
- while (i--)
- S[1] = gfp2.SpecialOperation1(S[1]);
-
- return gfp2.ConvertOut(S[1]);
-}
-
-template class AbstractRing<GFP2Element>;
-template class AbstractGroup<GFP2Element>;
-
-NAMESPACE_END