diff options
Diffstat (limited to 'lib/sqlite/sqlite3.c')
m--------- | lib/sqlite | 0 | ||||
-rw-r--r-- | lib/sqlite/sqlite3.c | 138114 |
2 files changed, 0 insertions, 138114 deletions
diff --git a/lib/sqlite b/lib/sqlite new file mode 160000 +Subproject b6e653bc6e2ab5fdddff6ad2f9c20523e613222 diff --git a/lib/sqlite/sqlite3.c b/lib/sqlite/sqlite3.c deleted file mode 100644 index 37ee4ad38..000000000 --- a/lib/sqlite/sqlite3.c +++ /dev/null @@ -1,138114 +0,0 @@ -/****************************************************************************** -** This file is an amalgamation of many separate C source files from SQLite -** version 3.7.16.1. By combining all the individual C code files into this -** single large file, the entire code can be compiled as a single translation -** unit. This allows many compilers to do optimizations that would not be -** possible if the files were compiled separately. Performance improvements -** of 5% or more are commonly seen when SQLite is compiled as a single -** translation unit. -** -** This file is all you need to compile SQLite. To use SQLite in other -** programs, you need this file and the "sqlite3.h" header file that defines -** the programming interface to the SQLite library. (If you do not have -** the "sqlite3.h" header file at hand, you will find a copy embedded within -** the text of this file. Search for "Begin file sqlite3.h" to find the start -** of the embedded sqlite3.h header file.) Additional code files may be needed -** if you want a wrapper to interface SQLite with your choice of programming -** language. The code for the "sqlite3" command-line shell is also in a -** separate file. This file contains only code for the core SQLite library. -*/ -#define SQLITE_CORE 1 -#define SQLITE_AMALGAMATION 1 -#ifndef SQLITE_PRIVATE -# define SQLITE_PRIVATE static -#endif -#ifndef SQLITE_API -# define SQLITE_API -#endif -/************** Begin file sqliteInt.h ***************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Internal interface definitions for SQLite. -** -*/ -#ifndef _SQLITEINT_H_ -#define _SQLITEINT_H_ - -/* -** These #defines should enable >2GB file support on POSIX if the -** underlying operating system supports it. If the OS lacks -** large file support, or if the OS is windows, these should be no-ops. -** -** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any -** system #includes. Hence, this block of code must be the very first -** code in all source files. -** -** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch -** on the compiler command line. This is necessary if you are compiling -** on a recent machine (ex: Red Hat 7.2) but you want your code to work -** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 -** without this option, LFS is enable. But LFS does not exist in the kernel -** in Red Hat 6.0, so the code won't work. Hence, for maximum binary -** portability you should omit LFS. -** -** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. -*/ -#ifndef SQLITE_DISABLE_LFS -# define _LARGE_FILE 1 -# ifndef _FILE_OFFSET_BITS -# define _FILE_OFFSET_BITS 64 -# endif -# define _LARGEFILE_SOURCE 1 -#endif - -/* -** Include the configuration header output by 'configure' if we're using the -** autoconf-based build -*/ -#ifdef _HAVE_SQLITE_CONFIG_H -#include "config.h" -#endif - -/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ -/************** Begin file sqliteLimit.h *************************************/ -/* -** 2007 May 7 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file defines various limits of what SQLite can process. -*/ - -/* -** The maximum length of a TEXT or BLOB in bytes. This also -** limits the size of a row in a table or index. -** -** The hard limit is the ability of a 32-bit signed integer -** to count the size: 2^31-1 or 2147483647. -*/ -#ifndef SQLITE_MAX_LENGTH -# define SQLITE_MAX_LENGTH 1000000000 -#endif - -/* -** This is the maximum number of -** -** * Columns in a table -** * Columns in an index -** * Columns in a view -** * Terms in the SET clause of an UPDATE statement -** * Terms in the result set of a SELECT statement -** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. -** * Terms in the VALUES clause of an INSERT statement -** -** The hard upper limit here is 32676. Most database people will -** tell you that in a well-normalized database, you usually should -** not have more than a dozen or so columns in any table. And if -** that is the case, there is no point in having more than a few -** dozen values in any of the other situations described above. -*/ -#ifndef SQLITE_MAX_COLUMN -# define SQLITE_MAX_COLUMN 2000 -#endif - -/* -** The maximum length of a single SQL statement in bytes. -** -** It used to be the case that setting this value to zero would -** turn the limit off. That is no longer true. It is not possible -** to turn this limit off. -*/ -#ifndef SQLITE_MAX_SQL_LENGTH -# define SQLITE_MAX_SQL_LENGTH 1000000000 -#endif - -/* -** The maximum depth of an expression tree. This is limited to -** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might -** want to place more severe limits on the complexity of an -** expression. -** -** A value of 0 used to mean that the limit was not enforced. -** But that is no longer true. The limit is now strictly enforced -** at all times. -*/ -#ifndef SQLITE_MAX_EXPR_DEPTH -# define SQLITE_MAX_EXPR_DEPTH 1000 -#endif - -/* -** The maximum number of terms in a compound SELECT statement. -** The code generator for compound SELECT statements does one -** level of recursion for each term. A stack overflow can result -** if the number of terms is too large. In practice, most SQL -** never has more than 3 or 4 terms. Use a value of 0 to disable -** any limit on the number of terms in a compount SELECT. -*/ -#ifndef SQLITE_MAX_COMPOUND_SELECT -# define SQLITE_MAX_COMPOUND_SELECT 500 -#endif - -/* -** The maximum number of opcodes in a VDBE program. -** Not currently enforced. -*/ -#ifndef SQLITE_MAX_VDBE_OP -# define SQLITE_MAX_VDBE_OP 25000 -#endif - -/* -** The maximum number of arguments to an SQL function. -*/ -#ifndef SQLITE_MAX_FUNCTION_ARG -# define SQLITE_MAX_FUNCTION_ARG 127 -#endif - -/* -** The maximum number of in-memory pages to use for the main database -** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE -*/ -#ifndef SQLITE_DEFAULT_CACHE_SIZE -# define SQLITE_DEFAULT_CACHE_SIZE 2000 -#endif -#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE -# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500 -#endif - -/* -** The default number of frames to accumulate in the log file before -** checkpointing the database in WAL mode. -*/ -#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT -# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 -#endif - -/* -** The maximum number of attached databases. This must be between 0 -** and 62. The upper bound on 62 is because a 64-bit integer bitmap -** is used internally to track attached databases. -*/ -#ifndef SQLITE_MAX_ATTACHED -# define SQLITE_MAX_ATTACHED 10 -#endif - - -/* -** The maximum value of a ?nnn wildcard that the parser will accept. -*/ -#ifndef SQLITE_MAX_VARIABLE_NUMBER -# define SQLITE_MAX_VARIABLE_NUMBER 999 -#endif - -/* Maximum page size. The upper bound on this value is 65536. This a limit -** imposed by the use of 16-bit offsets within each page. -** -** Earlier versions of SQLite allowed the user to change this value at -** compile time. This is no longer permitted, on the grounds that it creates -** a library that is technically incompatible with an SQLite library -** compiled with a different limit. If a process operating on a database -** with a page-size of 65536 bytes crashes, then an instance of SQLite -** compiled with the default page-size limit will not be able to rollback -** the aborted transaction. This could lead to database corruption. -*/ -#ifdef SQLITE_MAX_PAGE_SIZE -# undef SQLITE_MAX_PAGE_SIZE -#endif -#define SQLITE_MAX_PAGE_SIZE 65536 - - -/* -** The default size of a database page. -*/ -#ifndef SQLITE_DEFAULT_PAGE_SIZE -# define SQLITE_DEFAULT_PAGE_SIZE 1024 -#endif -#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE -# undef SQLITE_DEFAULT_PAGE_SIZE -# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE -#endif - -/* -** Ordinarily, if no value is explicitly provided, SQLite creates databases -** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain -** device characteristics (sector-size and atomic write() support), -** SQLite may choose a larger value. This constant is the maximum value -** SQLite will choose on its own. -*/ -#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE -# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 -#endif -#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE -# undef SQLITE_MAX_DEFAULT_PAGE_SIZE -# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE -#endif - - -/* -** Maximum number of pages in one database file. -** -** This is really just the default value for the max_page_count pragma. -** This value can be lowered (or raised) at run-time using that the -** max_page_count macro. -*/ -#ifndef SQLITE_MAX_PAGE_COUNT -# define SQLITE_MAX_PAGE_COUNT 1073741823 -#endif - -/* -** Maximum length (in bytes) of the pattern in a LIKE or GLOB -** operator. -*/ -#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH -# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 -#endif - -/* -** Maximum depth of recursion for triggers. -** -** A value of 1 means that a trigger program will not be able to itself -** fire any triggers. A value of 0 means that no trigger programs at all -** may be executed. -*/ -#ifndef SQLITE_MAX_TRIGGER_DEPTH -# define SQLITE_MAX_TRIGGER_DEPTH 1000 -#endif - -/************** End of sqliteLimit.h *****************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ - -/* Disable nuisance warnings on Borland compilers */ -#if defined(__BORLANDC__) -#pragma warn -rch /* unreachable code */ -#pragma warn -ccc /* Condition is always true or false */ -#pragma warn -aus /* Assigned value is never used */ -#pragma warn -csu /* Comparing signed and unsigned */ -#pragma warn -spa /* Suspicious pointer arithmetic */ -#endif - -/* Needed for various definitions... */ -#ifndef _GNU_SOURCE -# define _GNU_SOURCE -#endif - -#if defined(__OpenBSD__) && !defined(_BSD_SOURCE) -# define _BSD_SOURCE -#endif - -/* -** Include standard header files as necessary -*/ -#ifdef HAVE_STDINT_H -#include <stdint.h> -#endif -#ifdef HAVE_INTTYPES_H -#include <inttypes.h> -#endif - -/* -** The following macros are used to cast pointers to integers and -** integers to pointers. The way you do this varies from one compiler -** to the next, so we have developed the following set of #if statements -** to generate appropriate macros for a wide range of compilers. -** -** The correct "ANSI" way to do this is to use the intptr_t type. -** Unfortunately, that typedef is not available on all compilers, or -** if it is available, it requires an #include of specific headers -** that vary from one machine to the next. -** -** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on -** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). -** So we have to define the macros in different ways depending on the -** compiler. -*/ -#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ -# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) -# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) -#elif !defined(__GNUC__) /* Works for compilers other than LLVM */ -# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) -# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) -#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ -# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) -# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) -#else /* Generates a warning - but it always works */ -# define SQLITE_INT_TO_PTR(X) ((void*)(X)) -# define SQLITE_PTR_TO_INT(X) ((int)(X)) -#endif - -/* -** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. -** 0 means mutexes are permanently disable and the library is never -** threadsafe. 1 means the library is serialized which is the highest -** level of threadsafety. 2 means the libary is multithreaded - multiple -** threads can use SQLite as long as no two threads try to use the same -** database connection at the same time. -** -** Older versions of SQLite used an optional THREADSAFE macro. -** We support that for legacy. -*/ -#if !defined(SQLITE_THREADSAFE) -#if defined(THREADSAFE) -# define SQLITE_THREADSAFE THREADSAFE -#else -# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ -#endif -#endif - -/* -** Powersafe overwrite is on by default. But can be turned off using -** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. -*/ -#ifndef SQLITE_POWERSAFE_OVERWRITE -# define SQLITE_POWERSAFE_OVERWRITE 1 -#endif - -/* -** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. -** It determines whether or not the features related to -** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can -** be overridden at runtime using the sqlite3_config() API. -*/ -#if !defined(SQLITE_DEFAULT_MEMSTATUS) -# define SQLITE_DEFAULT_MEMSTATUS 1 -#endif - -/* -** Exactly one of the following macros must be defined in order to -** specify which memory allocation subsystem to use. -** -** SQLITE_SYSTEM_MALLOC // Use normal system malloc() -** SQLITE_WIN32_MALLOC // Use Win32 native heap API -** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails -** SQLITE_MEMDEBUG // Debugging version of system malloc() -** -** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the -** assert() macro is enabled, each call into the Win32 native heap subsystem -** will cause HeapValidate to be called. If heap validation should fail, an -** assertion will be triggered. -** -** (Historical note: There used to be several other options, but we've -** pared it down to just these three.) -** -** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as -** the default. -*/ -#if defined(SQLITE_SYSTEM_MALLOC) \ - + defined(SQLITE_WIN32_MALLOC) \ - + defined(SQLITE_ZERO_MALLOC) \ - + defined(SQLITE_MEMDEBUG)>1 -# error "Two or more of the following compile-time configuration options\ - are defined but at most one is allowed:\ - SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ - SQLITE_ZERO_MALLOC" -#endif -#if defined(SQLITE_SYSTEM_MALLOC) \ - + defined(SQLITE_WIN32_MALLOC) \ - + defined(SQLITE_ZERO_MALLOC) \ - + defined(SQLITE_MEMDEBUG)==0 -# define SQLITE_SYSTEM_MALLOC 1 -#endif - -/* -** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the -** sizes of memory allocations below this value where possible. -*/ -#if !defined(SQLITE_MALLOC_SOFT_LIMIT) -# define SQLITE_MALLOC_SOFT_LIMIT 1024 -#endif - -/* -** We need to define _XOPEN_SOURCE as follows in order to enable -** recursive mutexes on most Unix systems. But Mac OS X is different. -** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, -** so it is omitted there. See ticket #2673. -** -** Later we learn that _XOPEN_SOURCE is poorly or incorrectly -** implemented on some systems. So we avoid defining it at all -** if it is already defined or if it is unneeded because we are -** not doing a threadsafe build. Ticket #2681. -** -** See also ticket #2741. -*/ -#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ - && !defined(__APPLE__) && SQLITE_THREADSAFE -# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ -#endif - -/* -** The TCL headers are only needed when compiling the TCL bindings. -*/ -#if defined(SQLITE_TCL) || defined(TCLSH) -# include <tcl.h> -#endif - -/* -** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that -** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, -** make it true by defining or undefining NDEBUG. -** -** Setting NDEBUG makes the code smaller and run faster by disabling the -** number assert() statements in the code. So we want the default action -** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG -** is set. Thus NDEBUG becomes an opt-in rather than an opt-out -** feature. -*/ -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif -#if defined(NDEBUG) && defined(SQLITE_DEBUG) -# undef NDEBUG -#endif - -/* -** The testcase() macro is used to aid in coverage testing. When -** doing coverage testing, the condition inside the argument to -** testcase() must be evaluated both true and false in order to -** get full branch coverage. The testcase() macro is inserted -** to help ensure adequate test coverage in places where simple -** condition/decision coverage is inadequate. For example, testcase() -** can be used to make sure boundary values are tested. For -** bitmask tests, testcase() can be used to make sure each bit -** is significant and used at least once. On switch statements -** where multiple cases go to the same block of code, testcase() -** can insure that all cases are evaluated. -** -*/ -#ifdef SQLITE_COVERAGE_TEST -SQLITE_PRIVATE void sqlite3Coverage(int); -# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } -#else -# define testcase(X) -#endif - -/* -** The TESTONLY macro is used to enclose variable declarations or -** other bits of code that are needed to support the arguments -** within testcase() and assert() macros. -*/ -#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) -# define TESTONLY(X) X -#else -# define TESTONLY(X) -#endif - -/* -** Sometimes we need a small amount of code such as a variable initialization -** to setup for a later assert() statement. We do not want this code to -** appear when assert() is disabled. The following macro is therefore -** used to contain that setup code. The "VVA" acronym stands for -** "Verification, Validation, and Accreditation". In other words, the -** code within VVA_ONLY() will only run during verification processes. -*/ -#ifndef NDEBUG -# define VVA_ONLY(X) X -#else -# define VVA_ONLY(X) -#endif - -/* -** The ALWAYS and NEVER macros surround boolean expressions which -** are intended to always be true or false, respectively. Such -** expressions could be omitted from the code completely. But they -** are included in a few cases in order to enhance the resilience -** of SQLite to unexpected behavior - to make the code "self-healing" -** or "ductile" rather than being "brittle" and crashing at the first -** hint of unplanned behavior. -** -** In other words, ALWAYS and NEVER are added for defensive code. -** -** When doing coverage testing ALWAYS and NEVER are hard-coded to -** be true and false so that the unreachable code then specify will -** not be counted as untested code. -*/ -#if defined(SQLITE_COVERAGE_TEST) -# define ALWAYS(X) (1) -# define NEVER(X) (0) -#elif !defined(NDEBUG) -# define ALWAYS(X) ((X)?1:(assert(0),0)) -# define NEVER(X) ((X)?(assert(0),1):0) -#else -# define ALWAYS(X) (X) -# define NEVER(X) (X) -#endif - -/* -** Return true (non-zero) if the input is a integer that is too large -** to fit in 32-bits. This macro is used inside of various testcase() -** macros to verify that we have tested SQLite for large-file support. -*/ -#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) - -/* -** The macro unlikely() is a hint that surrounds a boolean -** expression that is usually false. Macro likely() surrounds -** a boolean expression that is usually true. GCC is able to -** use these hints to generate better code, sometimes. -*/ -#if defined(__GNUC__) && 0 -# define likely(X) __builtin_expect((X),1) -# define unlikely(X) __builtin_expect((X),0) -#else -# define likely(X) !!(X) -# define unlikely(X) !!(X) -#endif - -/************** Include sqlite3.h in the middle of sqliteInt.h ***************/ -/************** Begin file sqlite3.h *****************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the SQLite library -** presents to client programs. If a C-function, structure, datatype, -** or constant definition does not appear in this file, then it is -** not a published API of SQLite, is subject to change without -** notice, and should not be referenced by programs that use SQLite. -** -** Some of the definitions that are in this file are marked as -** "experimental". Experimental interfaces are normally new -** features recently added to SQLite. We do not anticipate changes -** to experimental interfaces but reserve the right to make minor changes -** if experience from use "in the wild" suggest such changes are prudent. -** -** The official C-language API documentation for SQLite is derived -** from comments in this file. This file is the authoritative source -** on how SQLite interfaces are suppose to operate. -** -** The name of this file under configuration management is "sqlite.h.in". -** The makefile makes some minor changes to this file (such as inserting -** the version number) and changes its name to "sqlite3.h" as -** part of the build process. -*/ -#ifndef _SQLITE3_H_ -#define _SQLITE3_H_ -#include <stdarg.h> /* Needed for the definition of va_list */ - -/* -** Make sure we can call this stuff from C++. -*/ -#if 0 -extern "C" { -#endif - - -/* -** Add the ability to override 'extern' -*/ -#ifndef SQLITE_EXTERN -# define SQLITE_EXTERN extern -#endif - -#ifndef SQLITE_API -# define SQLITE_API -#endif - - -/* -** These no-op macros are used in front of interfaces to mark those -** interfaces as either deprecated or experimental. New applications -** should not use deprecated interfaces - they are support for backwards -** compatibility only. Application writers should be aware that -** experimental interfaces are subject to change in point releases. -** -** These macros used to resolve to various kinds of compiler magic that -** would generate warning messages when they were used. But that -** compiler magic ended up generating such a flurry of bug reports -** that we have taken it all out and gone back to using simple -** noop macros. -*/ -#define SQLITE_DEPRECATED -#define SQLITE_EXPERIMENTAL - -/* -** Ensure these symbols were not defined by some previous header file. -*/ -#ifdef SQLITE_VERSION -# undef SQLITE_VERSION -#endif -#ifdef SQLITE_VERSION_NUMBER -# undef SQLITE_VERSION_NUMBER -#endif - -/* -** CAPI3REF: Compile-Time Library Version Numbers -** -** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header -** evaluates to a string literal that is the SQLite version in the -** format "X.Y.Z" where X is the major version number (always 3 for -** SQLite3) and Y is the minor version number and Z is the release number.)^ -** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer -** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same -** numbers used in [SQLITE_VERSION].)^ -** The SQLITE_VERSION_NUMBER for any given release of SQLite will also -** be larger than the release from which it is derived. Either Y will -** be held constant and Z will be incremented or else Y will be incremented -** and Z will be reset to zero. -** -** Since version 3.6.18, SQLite source code has been stored in the -** <a href="http://www.fossil-scm.org/">Fossil configuration management -** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to -** a string which identifies a particular check-in of SQLite -** within its configuration management system. ^The SQLITE_SOURCE_ID -** string contains the date and time of the check-in (UTC) and an SHA1 -** hash of the entire source tree. -** -** See also: [sqlite3_libversion()], -** [sqlite3_libversion_number()], [sqlite3_sourceid()], -** [sqlite_version()] and [sqlite_source_id()]. -*/ -#define SQLITE_VERSION "3.7.16.1" -#define SQLITE_VERSION_NUMBER 3007016 -#define SQLITE_SOURCE_ID "2013-03-29 13:44:34 527231bc67285f01fb18d4451b28f61da3c4e39d" - -/* -** CAPI3REF: Run-Time Library Version Numbers -** KEYWORDS: sqlite3_version, sqlite3_sourceid -** -** These interfaces provide the same information as the [SQLITE_VERSION], -** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros -** but are associated with the library instead of the header file. ^(Cautious -** programmers might include assert() statements in their application to -** verify that values returned by these interfaces match the macros in -** the header, and thus insure that the application is -** compiled with matching library and header files. -** -** <blockquote><pre> -** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER ); -** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 ); -** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 ); -** </pre></blockquote>)^ -** -** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] -** macro. ^The sqlite3_libversion() function returns a pointer to the -** to the sqlite3_version[] string constant. The sqlite3_libversion() -** function is provided for use in DLLs since DLL users usually do not have -** direct access to string constants within the DLL. ^The -** sqlite3_libversion_number() function returns an integer equal to -** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns -** a pointer to a string constant whose value is the same as the -** [SQLITE_SOURCE_ID] C preprocessor macro. -** -** See also: [sqlite_version()] and [sqlite_source_id()]. -*/ -SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; -SQLITE_API const char *sqlite3_libversion(void); -SQLITE_API const char *sqlite3_sourceid(void); -SQLITE_API int sqlite3_libversion_number(void); - -/* -** CAPI3REF: Run-Time Library Compilation Options Diagnostics -** -** ^The sqlite3_compileoption_used() function returns 0 or 1 -** indicating whether the specified option was defined at -** compile time. ^The SQLITE_ prefix may be omitted from the -** option name passed to sqlite3_compileoption_used(). -** -** ^The sqlite3_compileoption_get() function allows iterating -** over the list of options that were defined at compile time by -** returning the N-th compile time option string. ^If N is out of range, -** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ -** prefix is omitted from any strings returned by -** sqlite3_compileoption_get(). -** -** ^Support for the diagnostic functions sqlite3_compileoption_used() -** and sqlite3_compileoption_get() may be omitted by specifying the -** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. -** -** See also: SQL functions [sqlite_compileoption_used()] and -** [sqlite_compileoption_get()] and the [compile_options pragma]. -*/ -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS -SQLITE_API int sqlite3_compileoption_used(const char *zOptName); -SQLITE_API const char *sqlite3_compileoption_get(int N); -#endif - -/* -** CAPI3REF: Test To See If The Library Is Threadsafe -** -** ^The sqlite3_threadsafe() function returns zero if and only if -** SQLite was compiled with mutexing code omitted due to the -** [SQLITE_THREADSAFE] compile-time option being set to 0. -** -** SQLite can be compiled with or without mutexes. When -** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes -** are enabled and SQLite is threadsafe. When the -** [SQLITE_THREADSAFE] macro is 0, -** the mutexes are omitted. Without the mutexes, it is not safe -** to use SQLite concurrently from more than one thread. -** -** Enabling mutexes incurs a measurable performance penalty. -** So if speed is of utmost importance, it makes sense to disable -** the mutexes. But for maximum safety, mutexes should be enabled. -** ^The default behavior is for mutexes to be enabled. -** -** This interface can be used by an application to make sure that the -** version of SQLite that it is linking against was compiled with -** the desired setting of the [SQLITE_THREADSAFE] macro. -** -** This interface only reports on the compile-time mutex setting -** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with -** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but -** can be fully or partially disabled using a call to [sqlite3_config()] -** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], -** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the -** sqlite3_threadsafe() function shows only the compile-time setting of -** thread safety, not any run-time changes to that setting made by -** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() -** is unchanged by calls to sqlite3_config().)^ -** -** See the [threading mode] documentation for additional information. -*/ -SQLITE_API int sqlite3_threadsafe(void); - -/* -** CAPI3REF: Database Connection Handle -** KEYWORDS: {database connection} {database connections} -** -** Each open SQLite database is represented by a pointer to an instance of -** the opaque structure named "sqlite3". It is useful to think of an sqlite3 -** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and -** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] -** and [sqlite3_close_v2()] are its destructors. There are many other -** interfaces (such as -** [sqlite3_prepare_v2()], [sqlite3_create_function()], and -** [sqlite3_busy_timeout()] to name but three) that are methods on an -** sqlite3 object. -*/ -typedef struct sqlite3 sqlite3; - -/* -** CAPI3REF: 64-Bit Integer Types -** KEYWORDS: sqlite_int64 sqlite_uint64 -** -** Because there is no cross-platform way to specify 64-bit integer types -** SQLite includes typedefs for 64-bit signed and unsigned integers. -** -** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. -** The sqlite_int64 and sqlite_uint64 types are supported for backwards -** compatibility only. -** -** ^The sqlite3_int64 and sqlite_int64 types can store integer values -** between -9223372036854775808 and +9223372036854775807 inclusive. ^The -** sqlite3_uint64 and sqlite_uint64 types can store integer values -** between 0 and +18446744073709551615 inclusive. -*/ -#ifdef SQLITE_INT64_TYPE - typedef SQLITE_INT64_TYPE sqlite_int64; - typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; -#elif defined(_MSC_VER) || defined(__BORLANDC__) - typedef __int64 sqlite_int64; - typedef unsigned __int64 sqlite_uint64; -#else - typedef long long int sqlite_int64; - typedef unsigned long long int sqlite_uint64; -#endif -typedef sqlite_int64 sqlite3_int64; -typedef sqlite_uint64 sqlite3_uint64; - -/* -** If compiling for a processor that lacks floating point support, -** substitute integer for floating-point. -*/ -#ifdef SQLITE_OMIT_FLOATING_POINT -# define double sqlite3_int64 -#endif - -/* -** CAPI3REF: Closing A Database Connection -** -** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors -** for the [sqlite3] object. -** ^Calls to sqlite3_close() and sqlite3_close_v2() return SQLITE_OK if -** the [sqlite3] object is successfully destroyed and all associated -** resources are deallocated. -** -** ^If the database connection is associated with unfinalized prepared -** statements or unfinished sqlite3_backup objects then sqlite3_close() -** will leave the database connection open and return [SQLITE_BUSY]. -** ^If sqlite3_close_v2() is called with unfinalized prepared statements -** and unfinished sqlite3_backups, then the database connection becomes -** an unusable "zombie" which will automatically be deallocated when the -** last prepared statement is finalized or the last sqlite3_backup is -** finished. The sqlite3_close_v2() interface is intended for use with -** host languages that are garbage collected, and where the order in which -** destructors are called is arbitrary. -** -** Applications should [sqlite3_finalize | finalize] all [prepared statements], -** [sqlite3_blob_close | close] all [BLOB handles], and -** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated -** with the [sqlite3] object prior to attempting to close the object. ^If -** sqlite3_close_v2() is called on a [database connection] that still has -** outstanding [prepared statements], [BLOB handles], and/or -** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation -** of resources is deferred until all [prepared statements], [BLOB handles], -** and [sqlite3_backup] objects are also destroyed. -** -** ^If an [sqlite3] object is destroyed while a transaction is open, -** the transaction is automatically rolled back. -** -** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)] -** must be either a NULL -** pointer or an [sqlite3] object pointer obtained -** from [sqlite3_open()], [sqlite3_open16()], or -** [sqlite3_open_v2()], and not previously closed. -** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer -** argument is a harmless no-op. -*/ -SQLITE_API int sqlite3_close(sqlite3*); -SQLITE_API int sqlite3_close_v2(sqlite3*); - -/* -** The type for a callback function. -** This is legacy and deprecated. It is included for historical -** compatibility and is not documented. -*/ -typedef int (*sqlite3_callback)(void*,int,char**, char**); - -/* -** CAPI3REF: One-Step Query Execution Interface -** -** The sqlite3_exec() interface is a convenience wrapper around -** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], -** that allows an application to run multiple statements of SQL -** without having to use a lot of C code. -** -** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, -** semicolon-separate SQL statements passed into its 2nd argument, -** in the context of the [database connection] passed in as its 1st -** argument. ^If the callback function of the 3rd argument to -** sqlite3_exec() is not NULL, then it is invoked for each result row -** coming out of the evaluated SQL statements. ^The 4th argument to -** sqlite3_exec() is relayed through to the 1st argument of each -** callback invocation. ^If the callback pointer to sqlite3_exec() -** is NULL, then no callback is ever invoked and result rows are -** ignored. -** -** ^If an error occurs while evaluating the SQL statements passed into -** sqlite3_exec(), then execution of the current statement stops and -** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() -** is not NULL then any error message is written into memory obtained -** from [sqlite3_malloc()] and passed back through the 5th parameter. -** To avoid memory leaks, the application should invoke [sqlite3_free()] -** on error message strings returned through the 5th parameter of -** of sqlite3_exec() after the error message string is no longer needed. -** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors -** occur, then sqlite3_exec() sets the pointer in its 5th parameter to -** NULL before returning. -** -** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() -** routine returns SQLITE_ABORT without invoking the callback again and -** without running any subsequent SQL statements. -** -** ^The 2nd argument to the sqlite3_exec() callback function is the -** number of columns in the result. ^The 3rd argument to the sqlite3_exec() -** callback is an array of pointers to strings obtained as if from -** [sqlite3_column_text()], one for each column. ^If an element of a -** result row is NULL then the corresponding string pointer for the -** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the -** sqlite3_exec() callback is an array of pointers to strings where each -** entry represents the name of corresponding result column as obtained -** from [sqlite3_column_name()]. -** -** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer -** to an empty string, or a pointer that contains only whitespace and/or -** SQL comments, then no SQL statements are evaluated and the database -** is not changed. -** -** Restrictions: -** -** <ul> -** <li> The application must insure that the 1st parameter to sqlite3_exec() -** is a valid and open [database connection]. -** <li> The application must not close [database connection] specified by -** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. -** <li> The application must not modify the SQL statement text passed into -** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. -** </ul> -*/ -SQLITE_API int sqlite3_exec( - sqlite3*, /* An open database */ - const char *sql, /* SQL to be evaluated */ - int (*callback)(void*,int,char**,char**), /* Callback function */ - void *, /* 1st argument to callback */ - char **errmsg /* Error msg written here */ -); - -/* -** CAPI3REF: Result Codes -** KEYWORDS: SQLITE_OK {error code} {error codes} -** KEYWORDS: {result code} {result codes} -** -** Many SQLite functions return an integer result code from the set shown -** here in order to indicate success or failure. -** -** New error codes may be added in future versions of SQLite. -** -** See also: [SQLITE_IOERR_READ | extended result codes], -** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. -*/ -#define SQLITE_OK 0 /* Successful result */ -/* beginning-of-error-codes */ -#define SQLITE_ERROR 1 /* SQL error or missing database */ -#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ -#define SQLITE_PERM 3 /* Access permission denied */ -#define SQLITE_ABORT 4 /* Callback routine requested an abort */ -#define SQLITE_BUSY 5 /* The database file is locked */ -#define SQLITE_LOCKED 6 /* A table in the database is locked */ -#define SQLITE_NOMEM 7 /* A malloc() failed */ -#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ -#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ -#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ -#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ -#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ -#define SQLITE_FULL 13 /* Insertion failed because database is full */ -#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ -#define SQLITE_PROTOCOL 15 /* Database lock protocol error */ -#define SQLITE_EMPTY 16 /* Database is empty */ -#define SQLITE_SCHEMA 17 /* The database schema changed */ -#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ -#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ -#define SQLITE_MISMATCH 20 /* Data type mismatch */ -#define SQLITE_MISUSE 21 /* Library used incorrectly */ -#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ -#define SQLITE_AUTH 23 /* Authorization denied */ -#define SQLITE_FORMAT 24 /* Auxiliary database format error */ -#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ -#define SQLITE_NOTADB 26 /* File opened that is not a database file */ -#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ -#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ -/* end-of-error-codes */ - -/* -** CAPI3REF: Extended Result Codes -** KEYWORDS: {extended error code} {extended error codes} -** KEYWORDS: {extended result code} {extended result codes} -** -** In its default configuration, SQLite API routines return one of 26 integer -** [SQLITE_OK | result codes]. However, experience has shown that many of -** these result codes are too coarse-grained. They do not provide as -** much information about problems as programmers might like. In an effort to -** address this, newer versions of SQLite (version 3.3.8 and later) include -** support for additional result codes that provide more detailed information -** about errors. The extended result codes are enabled or disabled -** on a per database connection basis using the -** [sqlite3_extended_result_codes()] API. -** -** Some of the available extended result codes are listed here. -** One may expect the number of extended result codes will be expand -** over time. Software that uses extended result codes should expect -** to see new result codes in future releases of SQLite. -** -** The SQLITE_OK result code will never be extended. It will always -** be exactly zero. -*/ -#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) -#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) -#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) -#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) -#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) -#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) -#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) -#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) -#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) -#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) -#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) -#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) -#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) -#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) -#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) -#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) -#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) -#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) -#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) -#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) -#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) -#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) -#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) -#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) -#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) -#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) -#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) -#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) -#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) -#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) -#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) -#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) -#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) -#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) -#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) -#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) -#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) -#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) -#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) -#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) -#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) -#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) - -/* -** CAPI3REF: Flags For File Open Operations -** -** These bit values are intended for use in the -** 3rd parameter to the [sqlite3_open_v2()] interface and -** in the 4th parameter to the [sqlite3_vfs.xOpen] method. -*/ -#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ -#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ -#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ -#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ -#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ -#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ -#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ -#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ -#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ -#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ -#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ -#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ - -/* Reserved: 0x00F00000 */ - -/* -** CAPI3REF: Device Characteristics -** -** The xDeviceCharacteristics method of the [sqlite3_io_methods] -** object returns an integer which is a vector of these -** bit values expressing I/O characteristics of the mass storage -** device that holds the file that the [sqlite3_io_methods] -** refers to. -** -** The SQLITE_IOCAP_ATOMIC property means that all writes of -** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values -** mean that writes of blocks that are nnn bytes in size and -** are aligned to an address which is an integer multiple of -** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means -** that when data is appended to a file, the data is appended -** first then the size of the file is extended, never the other -** way around. The SQLITE_IOCAP_SEQUENTIAL property means that -** information is written to disk in the same order as calls -** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that -** after reboot following a crash or power loss, the only bytes in a -** file that were written at the application level might have changed -** and that adjacent bytes, even bytes within the same sector are -** guaranteed to be unchanged. -*/ -#define SQLITE_IOCAP_ATOMIC 0x00000001 -#define SQLITE_IOCAP_ATOMIC512 0x00000002 -#define SQLITE_IOCAP_ATOMIC1K 0x00000004 -#define SQLITE_IOCAP_ATOMIC2K 0x00000008 -#define SQLITE_IOCAP_ATOMIC4K 0x00000010 -#define SQLITE_IOCAP_ATOMIC8K 0x00000020 -#define SQLITE_IOCAP_ATOMIC16K 0x00000040 -#define SQLITE_IOCAP_ATOMIC32K 0x00000080 -#define SQLITE_IOCAP_ATOMIC64K 0x00000100 -#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 -#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 -#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 -#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 - -/* -** CAPI3REF: File Locking Levels -** -** SQLite uses one of these integer values as the second -** argument to calls it makes to the xLock() and xUnlock() methods -** of an [sqlite3_io_methods] object. -*/ -#define SQLITE_LOCK_NONE 0 -#define SQLITE_LOCK_SHARED 1 -#define SQLITE_LOCK_RESERVED 2 -#define SQLITE_LOCK_PENDING 3 -#define SQLITE_LOCK_EXCLUSIVE 4 - -/* -** CAPI3REF: Synchronization Type Flags -** -** When SQLite invokes the xSync() method of an -** [sqlite3_io_methods] object it uses a combination of -** these integer values as the second argument. -** -** When the SQLITE_SYNC_DATAONLY flag is used, it means that the -** sync operation only needs to flush data to mass storage. Inode -** information need not be flushed. If the lower four bits of the flag -** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. -** If the lower four bits equal SQLITE_SYNC_FULL, that means -** to use Mac OS X style fullsync instead of fsync(). -** -** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags -** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL -** settings. The [synchronous pragma] determines when calls to the -** xSync VFS method occur and applies uniformly across all platforms. -** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how -** energetic or rigorous or forceful the sync operations are and -** only make a difference on Mac OSX for the default SQLite code. -** (Third-party VFS implementations might also make the distinction -** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the -** operating systems natively supported by SQLite, only Mac OSX -** cares about the difference.) -*/ -#define SQLITE_SYNC_NORMAL 0x00002 -#define SQLITE_SYNC_FULL 0x00003 -#define SQLITE_SYNC_DATAONLY 0x00010 - -/* -** CAPI3REF: OS Interface Open File Handle -** -** An [sqlite3_file] object represents an open file in the -** [sqlite3_vfs | OS interface layer]. Individual OS interface -** implementations will -** want to subclass this object by appending additional fields -** for their own use. The pMethods entry is a pointer to an -** [sqlite3_io_methods] object that defines methods for performing -** I/O operations on the open file. -*/ -typedef struct sqlite3_file sqlite3_file; -struct sqlite3_file { - const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ -}; - -/* -** CAPI3REF: OS Interface File Virtual Methods Object -** -** Every file opened by the [sqlite3_vfs.xOpen] method populates an -** [sqlite3_file] object (or, more commonly, a subclass of the -** [sqlite3_file] object) with a pointer to an instance of this object. -** This object defines the methods used to perform various operations -** against the open file represented by the [sqlite3_file] object. -** -** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element -** to a non-NULL pointer, then the sqlite3_io_methods.xClose method -** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The -** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen] -** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element -** to NULL. -** -** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or -** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). -** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY] -** flag may be ORed in to indicate that only the data of the file -** and not its inode needs to be synced. -** -** The integer values to xLock() and xUnlock() are one of -** <ul> -** <li> [SQLITE_LOCK_NONE], -** <li> [SQLITE_LOCK_SHARED], -** <li> [SQLITE_LOCK_RESERVED], -** <li> [SQLITE_LOCK_PENDING], or -** <li> [SQLITE_LOCK_EXCLUSIVE]. -** </ul> -** xLock() increases the lock. xUnlock() decreases the lock. -** The xCheckReservedLock() method checks whether any database connection, -** either in this process or in some other process, is holding a RESERVED, -** PENDING, or EXCLUSIVE lock on the file. It returns true -** if such a lock exists and false otherwise. -** -** The xFileControl() method is a generic interface that allows custom -** VFS implementations to directly control an open file using the -** [sqlite3_file_control()] interface. The second "op" argument is an -** integer opcode. The third argument is a generic pointer intended to -** point to a structure that may contain arguments or space in which to -** write return values. Potential uses for xFileControl() might be -** functions to enable blocking locks with timeouts, to change the -** locking strategy (for example to use dot-file locks), to inquire -** about the status of a lock, or to break stale locks. The SQLite -** core reserves all opcodes less than 100 for its own use. -** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. -** Applications that define a custom xFileControl method should use opcodes -** greater than 100 to avoid conflicts. VFS implementations should -** return [SQLITE_NOTFOUND] for file control opcodes that they do not -** recognize. -** -** The xSectorSize() method returns the sector size of the -** device that underlies the file. The sector size is the -** minimum write that can be performed without disturbing -** other bytes in the file. The xDeviceCharacteristics() -** method returns a bit vector describing behaviors of the -** underlying device: -** -** <ul> -** <li> [SQLITE_IOCAP_ATOMIC] -** <li> [SQLITE_IOCAP_ATOMIC512] -** <li> [SQLITE_IOCAP_ATOMIC1K] -** <li> [SQLITE_IOCAP_ATOMIC2K] -** <li> [SQLITE_IOCAP_ATOMIC4K] -** <li> [SQLITE_IOCAP_ATOMIC8K] -** <li> [SQLITE_IOCAP_ATOMIC16K] -** <li> [SQLITE_IOCAP_ATOMIC32K] -** <li> [SQLITE_IOCAP_ATOMIC64K] -** <li> [SQLITE_IOCAP_SAFE_APPEND] -** <li> [SQLITE_IOCAP_SEQUENTIAL] -** </ul> -** -** The SQLITE_IOCAP_ATOMIC property means that all writes of -** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values -** mean that writes of blocks that are nnn bytes in size and -** are aligned to an address which is an integer multiple of -** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means -** that when data is appended to a file, the data is appended -** first then the size of the file is extended, never the other -** way around. The SQLITE_IOCAP_SEQUENTIAL property means that -** information is written to disk in the same order as calls -** to xWrite(). -** -** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill -** in the unread portions of the buffer with zeros. A VFS that -** fails to zero-fill short reads might seem to work. However, -** failure to zero-fill short reads will eventually lead to -** database corruption. -*/ -typedef struct sqlite3_io_methods sqlite3_io_methods; -struct sqlite3_io_methods { - int iVersion; - int (*xClose)(sqlite3_file*); - int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); - int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); - int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); - int (*xSync)(sqlite3_file*, int flags); - int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); - int (*xLock)(sqlite3_file*, int); - int (*xUnlock)(sqlite3_file*, int); - int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); - int (*xFileControl)(sqlite3_file*, int op, void *pArg); - int (*xSectorSize)(sqlite3_file*); - int (*xDeviceCharacteristics)(sqlite3_file*); - /* Methods above are valid for version 1 */ - int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**); - int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); - void (*xShmBarrier)(sqlite3_file*); - int (*xShmUnmap)(sqlite3_file*, int deleteFlag); - /* Methods above are valid for version 2 */ - /* Additional methods may be added in future releases */ -}; - -/* -** CAPI3REF: Standard File Control Opcodes -** -** These integer constants are opcodes for the xFileControl method -** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] -** interface. -** -** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This -** opcode causes the xFileControl method to write the current state of -** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], -** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) -** into an integer that the pArg argument points to. This capability -** is used during testing and only needs to be supported when SQLITE_TEST -** is defined. -** <ul> -** <li>[[SQLITE_FCNTL_SIZE_HINT]] -** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS -** layer a hint of how large the database file will grow to be during the -** current transaction. This hint is not guaranteed to be accurate but it -** is often close. The underlying VFS might choose to preallocate database -** file space based on this hint in order to help writes to the database -** file run faster. -** -** <li>[[SQLITE_FCNTL_CHUNK_SIZE]] -** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS -** extends and truncates the database file in chunks of a size specified -** by the user. The fourth argument to [sqlite3_file_control()] should -** point to an integer (type int) containing the new chunk-size to use -** for the nominated database. Allocating database file space in large -** chunks (say 1MB at a time), may reduce file-system fragmentation and -** improve performance on some systems. -** -** <li>[[SQLITE_FCNTL_FILE_POINTER]] -** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer -** to the [sqlite3_file] object associated with a particular database -** connection. See the [sqlite3_file_control()] documentation for -** additional information. -** -** <li>[[SQLITE_FCNTL_SYNC_OMITTED]] -** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by -** SQLite and sent to all VFSes in place of a call to the xSync method -** when the database connection has [PRAGMA synchronous] set to OFF.)^ -** Some specialized VFSes need this signal in order to operate correctly -** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most -** VFSes do not need this signal and should silently ignore this opcode. -** Applications should not call [sqlite3_file_control()] with this -** opcode as doing so may disrupt the operation of the specialized VFSes -** that do require it. -** -** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]] -** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic -** retry counts and intervals for certain disk I/O operations for the -** windows [VFS] in order to provide robustness in the presence of -** anti-virus programs. By default, the windows VFS will retry file read, -** file write, and file delete operations up to 10 times, with a delay -** of 25 milliseconds before the first retry and with the delay increasing -** by an additional 25 milliseconds with each subsequent retry. This -** opcode allows these two values (10 retries and 25 milliseconds of delay) -** to be adjusted. The values are changed for all database connections -** within the same process. The argument is a pointer to an array of two -** integers where the first integer i the new retry count and the second -** integer is the delay. If either integer is negative, then the setting -** is not changed but instead the prior value of that setting is written -** into the array entry, allowing the current retry settings to be -** interrogated. The zDbName parameter is ignored. -** -** <li>[[SQLITE_FCNTL_PERSIST_WAL]] -** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the -** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary -** write ahead log and shared memory files used for transaction control -** are automatically deleted when the latest connection to the database -** closes. Setting persistent WAL mode causes those files to persist after -** close. Persisting the files is useful when other processes that do not -** have write permission on the directory containing the database file want -** to read the database file, as the WAL and shared memory files must exist -** in order for the database to be readable. The fourth parameter to -** [sqlite3_file_control()] for this opcode should be a pointer to an integer. -** That integer is 0 to disable persistent WAL mode or 1 to enable persistent -** WAL mode. If the integer is -1, then it is overwritten with the current -** WAL persistence setting. -** -** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]] -** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the -** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting -** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the -** xDeviceCharacteristics methods. The fourth parameter to -** [sqlite3_file_control()] for this opcode should be a pointer to an integer. -** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage -** mode. If the integer is -1, then it is overwritten with the current -** zero-damage mode setting. -** -** <li>[[SQLITE_FCNTL_OVERWRITE]] -** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening -** a write transaction to indicate that, unless it is rolled back for some -** reason, the entire database file will be overwritten by the current -** transaction. This is used by VACUUM operations. -** -** <li>[[SQLITE_FCNTL_VFSNAME]] -** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of -** all [VFSes] in the VFS stack. The names are of all VFS shims and the -** final bottom-level VFS are written into memory obtained from -** [sqlite3_malloc()] and the result is stored in the char* variable -** that the fourth parameter of [sqlite3_file_control()] points to. -** The caller is responsible for freeing the memory when done. As with -** all file-control actions, there is no guarantee that this will actually -** do anything. Callers should initialize the char* variable to a NULL -** pointer in case this file-control is not implemented. This file-control -** is intended for diagnostic use only. -** -** <li>[[SQLITE_FCNTL_PRAGMA]] -** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] -** file control is sent to the open [sqlite3_file] object corresponding -** to the database file to which the pragma statement refers. ^The argument -** to the [SQLITE_FCNTL_PRAGMA] file control is an array of -** pointers to strings (char**) in which the second element of the array -** is the name of the pragma and the third element is the argument to the -** pragma or NULL if the pragma has no argument. ^The handler for an -** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element -** of the char** argument point to a string obtained from [sqlite3_mprintf()] -** or the equivalent and that string will become the result of the pragma or -** the error message if the pragma fails. ^If the -** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal -** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] -** file control returns [SQLITE_OK], then the parser assumes that the -** VFS has handled the PRAGMA itself and the parser generates a no-op -** prepared statement. ^If the [SQLITE_FCNTL_PRAGMA] file control returns -** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means -** that the VFS encountered an error while handling the [PRAGMA] and the -** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] -** file control occurs at the beginning of pragma statement analysis and so -** it is able to override built-in [PRAGMA] statements. -** -** <li>[[SQLITE_FCNTL_BUSYHANDLER]] -** ^This file-control may be invoked by SQLite on the database file handle -** shortly after it is opened in order to provide a custom VFS with access -** to the connections busy-handler callback. The argument is of type (void **) -** - an array of two (void *) values. The first (void *) actually points -** to a function of type (int (*)(void *)). In order to invoke the connections -** busy-handler, this function should be invoked with the second (void *) in -** the array as the only argument. If it returns non-zero, then the operation -** should be retried. If it returns zero, the custom VFS should abandon the -** current operation. -** -** <li>[[SQLITE_FCNTL_TEMPFILENAME]] -** ^Application can invoke this file-control to have SQLite generate a -** temporary filename using the same algorithm that is followed to generate -** temporary filenames for TEMP tables and other internal uses. The -** argument should be a char** which will be filled with the filename -** written into memory obtained from [sqlite3_malloc()]. The caller should -** invoke [sqlite3_free()] on the result to avoid a memory leak. -** -** </ul> -*/ -#define SQLITE_FCNTL_LOCKSTATE 1 -#define SQLITE_GET_LOCKPROXYFILE 2 -#define SQLITE_SET_LOCKPROXYFILE 3 -#define SQLITE_LAST_ERRNO 4 -#define SQLITE_FCNTL_SIZE_HINT 5 -#define SQLITE_FCNTL_CHUNK_SIZE 6 -#define SQLITE_FCNTL_FILE_POINTER 7 -#define SQLITE_FCNTL_SYNC_OMITTED 8 -#define SQLITE_FCNTL_WIN32_AV_RETRY 9 -#define SQLITE_FCNTL_PERSIST_WAL 10 -#define SQLITE_FCNTL_OVERWRITE 11 -#define SQLITE_FCNTL_VFSNAME 12 -#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 -#define SQLITE_FCNTL_PRAGMA 14 -#define SQLITE_FCNTL_BUSYHANDLER 15 -#define SQLITE_FCNTL_TEMPFILENAME 16 - -/* -** CAPI3REF: Mutex Handle -** -** The mutex module within SQLite defines [sqlite3_mutex] to be an -** abstract type for a mutex object. The SQLite core never looks -** at the internal representation of an [sqlite3_mutex]. It only -** deals with pointers to the [sqlite3_mutex] object. -** -** Mutexes are created using [sqlite3_mutex_alloc()]. -*/ -typedef struct sqlite3_mutex sqlite3_mutex; - -/* -** CAPI3REF: OS Interface Object -** -** An instance of the sqlite3_vfs object defines the interface between -** the SQLite core and the underlying operating system. The "vfs" -** in the name of the object stands for "virtual file system". See -** the [VFS | VFS documentation] for further information. -** -** The value of the iVersion field is initially 1 but may be larger in -** future versions of SQLite. Additional fields may be appended to this -** object when the iVersion value is increased. Note that the structure -** of the sqlite3_vfs object changes in the transaction between -** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not -** modified. -** -** The szOsFile field is the size of the subclassed [sqlite3_file] -** structure used by this VFS. mxPathname is the maximum length of -** a pathname in this VFS. -** -** Registered sqlite3_vfs objects are kept on a linked list formed by -** the pNext pointer. The [sqlite3_vfs_register()] -** and [sqlite3_vfs_unregister()] interfaces manage this list -** in a thread-safe way. The [sqlite3_vfs_find()] interface -** searches the list. Neither the application code nor the VFS -** implementation should use the pNext pointer. -** -** The pNext field is the only field in the sqlite3_vfs -** structure that SQLite will ever modify. SQLite will only access -** or modify this field while holding a particular static mutex. -** The application should never modify anything within the sqlite3_vfs -** object once the object has been registered. -** -** The zName field holds the name of the VFS module. The name must -** be unique across all VFS modules. -** -** [[sqlite3_vfs.xOpen]] -** ^SQLite guarantees that the zFilename parameter to xOpen -** is either a NULL pointer or string obtained -** from xFullPathname() with an optional suffix added. -** ^If a suffix is added to the zFilename parameter, it will -** consist of a single "-" character followed by no more than -** 11 alphanumeric and/or "-" characters. -** ^SQLite further guarantees that -** the string will be valid and unchanged until xClose() is -** called. Because of the previous sentence, -** the [sqlite3_file] can safely store a pointer to the -** filename if it needs to remember the filename for some reason. -** If the zFilename parameter to xOpen is a NULL pointer then xOpen -** must invent its own temporary name for the file. ^Whenever the -** xFilename parameter is NULL it will also be the case that the -** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. -** -** The flags argument to xOpen() includes all bits set in -** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] -** or [sqlite3_open16()] is used, then flags includes at least -** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. -** If xOpen() opens a file read-only then it sets *pOutFlags to -** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. -** -** ^(SQLite will also add one of the following flags to the xOpen() -** call, depending on the object being opened: -** -** <ul> -** <li> [SQLITE_OPEN_MAIN_DB] -** <li> [SQLITE_OPEN_MAIN_JOURNAL] -** <li> [SQLITE_OPEN_TEMP_DB] -** <li> [SQLITE_OPEN_TEMP_JOURNAL] -** <li> [SQLITE_OPEN_TRANSIENT_DB] -** <li> [SQLITE_OPEN_SUBJOURNAL] -** <li> [SQLITE_OPEN_MASTER_JOURNAL] -** <li> [SQLITE_OPEN_WAL] -** </ul>)^ -** -** The file I/O implementation can use the object type flags to -** change the way it deals with files. For example, an application -** that does not care about crash recovery or rollback might make -** the open of a journal file a no-op. Writes to this journal would -** also be no-ops, and any attempt to read the journal would return -** SQLITE_IOERR. Or the implementation might recognize that a database -** file will be doing page-aligned sector reads and writes in a random -** order and set up its I/O subsystem accordingly. -** -** SQLite might also add one of the following flags to the xOpen method: -** -** <ul> -** <li> [SQLITE_OPEN_DELETEONCLOSE] -** <li> [SQLITE_OPEN_EXCLUSIVE] -** </ul> -** -** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be -** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE] -** will be set for TEMP databases and their journals, transient -** databases, and subjournals. -** -** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction -** with the [SQLITE_OPEN_CREATE] flag, which are both directly -** analogous to the O_EXCL and O_CREAT flags of the POSIX open() -** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the -** SQLITE_OPEN_CREATE, is used to indicate that file should always -** be created, and that it is an error if it already exists. -** It is <i>not</i> used to indicate the file should be opened -** for exclusive access. -** -** ^At least szOsFile bytes of memory are allocated by SQLite -** to hold the [sqlite3_file] structure passed as the third -** argument to xOpen. The xOpen method does not have to -** allocate the structure; it should just fill it in. Note that -** the xOpen method must set the sqlite3_file.pMethods to either -** a valid [sqlite3_io_methods] object or to NULL. xOpen must do -** this even if the open fails. SQLite expects that the sqlite3_file.pMethods -** element will be valid after xOpen returns regardless of the success -** or failure of the xOpen call. -** -** [[sqlite3_vfs.xAccess]] -** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] -** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to -** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] -** to test whether a file is at least readable. The file can be a -** directory. -** -** ^SQLite will always allocate at least mxPathname+1 bytes for the -** output buffer xFullPathname. The exact size of the output buffer -** is also passed as a parameter to both methods. If the output buffer -** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is -** handled as a fatal error by SQLite, vfs implementations should endeavor -** to prevent this by setting mxPathname to a sufficiently large value. -** -** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64() -** interfaces are not strictly a part of the filesystem, but they are -** included in the VFS structure for completeness. -** The xRandomness() function attempts to return nBytes bytes -** of good-quality randomness into zOut. The return value is -** the actual number of bytes of randomness obtained. -** The xSleep() method causes the calling thread to sleep for at -** least the number of microseconds given. ^The xCurrentTime() -** method returns a Julian Day Number for the current date and time as -** a floating point value. -** ^The xCurrentTimeInt64() method returns, as an integer, the Julian -** Day Number multiplied by 86400000 (the number of milliseconds in -** a 24-hour day). -** ^SQLite will use the xCurrentTimeInt64() method to get the current -** date and time if that method is available (if iVersion is 2 or -** greater and the function pointer is not NULL) and will fall back -** to xCurrentTime() if xCurrentTimeInt64() is unavailable. -** -** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces -** are not used by the SQLite core. These optional interfaces are provided -** by some VFSes to facilitate testing of the VFS code. By overriding -** system calls with functions under its control, a test program can -** simulate faults and error conditions that would otherwise be difficult -** or impossible to induce. The set of system calls that can be overridden -** varies from one VFS to another, and from one version of the same VFS to the -** next. Applications that use these interfaces must be prepared for any -** or all of these interfaces to be NULL or for their behavior to change -** from one release to the next. Applications must not attempt to access -** any of these methods if the iVersion of the VFS is less than 3. -*/ -typedef struct sqlite3_vfs sqlite3_vfs; -typedef void (*sqlite3_syscall_ptr)(void); -struct sqlite3_vfs { - int iVersion; /* Structure version number (currently 3) */ - int szOsFile; /* Size of subclassed sqlite3_file */ - int mxPathname; /* Maximum file pathname length */ - sqlite3_vfs *pNext; /* Next registered VFS */ - const char *zName; /* Name of this virtual file system */ - void *pAppData; /* Pointer to application-specific data */ - int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, - int flags, int *pOutFlags); - int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); - int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); - int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); - void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); - void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); - void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void); - void (*xDlClose)(sqlite3_vfs*, void*); - int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); - int (*xSleep)(sqlite3_vfs*, int microseconds); - int (*xCurrentTime)(sqlite3_vfs*, double*); - int (*xGetLastError)(sqlite3_vfs*, int, char *); - /* - ** The methods above are in version 1 of the sqlite_vfs object - ** definition. Those that follow are added in version 2 or later - */ - int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); - /* - ** The methods above are in versions 1 and 2 of the sqlite_vfs object. - ** Those below are for version 3 and greater. - */ - int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); - sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); - const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); - /* - ** The methods above are in versions 1 through 3 of the sqlite_vfs object. - ** New fields may be appended in figure versions. The iVersion - ** value will increment whenever this happens. - */ -}; - -/* -** CAPI3REF: Flags for the xAccess VFS method -** -** These integer constants can be used as the third parameter to -** the xAccess method of an [sqlite3_vfs] object. They determine -** what kind of permissions the xAccess method is looking for. -** With SQLITE_ACCESS_EXISTS, the xAccess method -** simply checks whether the file exists. -** With SQLITE_ACCESS_READWRITE, the xAccess method -** checks whether the named directory is both readable and writable -** (in other words, if files can be added, removed, and renamed within -** the directory). -** The SQLITE_ACCESS_READWRITE constant is currently used only by the -** [temp_store_directory pragma], though this could change in a future -** release of SQLite. -** With SQLITE_ACCESS_READ, the xAccess method -** checks whether the file is readable. The SQLITE_ACCESS_READ constant is -** currently unused, though it might be used in a future release of -** SQLite. -*/ -#define SQLITE_ACCESS_EXISTS 0 -#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */ -#define SQLITE_ACCESS_READ 2 /* Unused */ - -/* -** CAPI3REF: Flags for the xShmLock VFS method -** -** These integer constants define the various locking operations -** allowed by the xShmLock method of [sqlite3_io_methods]. The -** following are the only legal combinations of flags to the -** xShmLock method: -** -** <ul> -** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED -** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE -** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED -** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE -** </ul> -** -** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as -** was given no the corresponding lock. -** -** The xShmLock method can transition between unlocked and SHARED or -** between unlocked and EXCLUSIVE. It cannot transition between SHARED -** and EXCLUSIVE. -*/ -#define SQLITE_SHM_UNLOCK 1 -#define SQLITE_SHM_LOCK 2 -#define SQLITE_SHM_SHARED 4 -#define SQLITE_SHM_EXCLUSIVE 8 - -/* -** CAPI3REF: Maximum xShmLock index -** -** The xShmLock method on [sqlite3_io_methods] may use values -** between 0 and this upper bound as its "offset" argument. -** The SQLite core will never attempt to acquire or release a -** lock outside of this range -*/ -#define SQLITE_SHM_NLOCK 8 - - -/* -** CAPI3REF: Initialize The SQLite Library -** -** ^The sqlite3_initialize() routine initializes the -** SQLite library. ^The sqlite3_shutdown() routine -** deallocates any resources that were allocated by sqlite3_initialize(). -** These routines are designed to aid in process initialization and -** shutdown on embedded systems. Workstation applications using -** SQLite normally do not need to invoke either of these routines. -** -** A call to sqlite3_initialize() is an "effective" call if it is -** the first time sqlite3_initialize() is invoked during the lifetime of -** the process, or if it is the first time sqlite3_initialize() is invoked -** following a call to sqlite3_shutdown(). ^(Only an effective call -** of sqlite3_initialize() does any initialization. All other calls -** are harmless no-ops.)^ -** -** A call to sqlite3_shutdown() is an "effective" call if it is the first -** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only -** an effective call to sqlite3_shutdown() does any deinitialization. -** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ -** -** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() -** is not. The sqlite3_shutdown() interface must only be called from a -** single thread. All open [database connections] must be closed and all -** other SQLite resources must be deallocated prior to invoking -** sqlite3_shutdown(). -** -** Among other things, ^sqlite3_initialize() will invoke -** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() -** will invoke sqlite3_os_end(). -** -** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. -** ^If for some reason, sqlite3_initialize() is unable to initialize -** the library (perhaps it is unable to allocate a needed resource such -** as a mutex) it returns an [error code] other than [SQLITE_OK]. -** -** ^The sqlite3_initialize() routine is called internally by many other -** SQLite interfaces so that an application usually does not need to -** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] -** calls sqlite3_initialize() so the SQLite library will be automatically -** initialized when [sqlite3_open()] is called if it has not be initialized -** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] -** compile-time option, then the automatic calls to sqlite3_initialize() -** are omitted and the application must call sqlite3_initialize() directly -** prior to using any other SQLite interface. For maximum portability, -** it is recommended that applications always invoke sqlite3_initialize() -** directly prior to using any other SQLite interface. Future releases -** of SQLite may require this. In other words, the behavior exhibited -** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the -** default behavior in some future release of SQLite. -** -** The sqlite3_os_init() routine does operating-system specific -** initialization of the SQLite library. The sqlite3_os_end() -** routine undoes the effect of sqlite3_os_init(). Typical tasks -** performed by these routines include allocation or deallocation -** of static resources, initialization of global variables, -** setting up a default [sqlite3_vfs] module, or setting up -** a default configuration using [sqlite3_config()]. -** -** The application should never invoke either sqlite3_os_init() -** or sqlite3_os_end() directly. The application should only invoke -** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() -** interface is called automatically by sqlite3_initialize() and -** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate -** implementations for sqlite3_os_init() and sqlite3_os_end() -** are built into SQLite when it is compiled for Unix, Windows, or OS/2. -** When [custom builds | built for other platforms] -** (using the [SQLITE_OS_OTHER=1] compile-time -** option) the application must supply a suitable implementation for -** sqlite3_os_init() and sqlite3_os_end(). An application-supplied -** implementation of sqlite3_os_init() or sqlite3_os_end() -** must return [SQLITE_OK] on success and some other [error code] upon -** failure. -*/ -SQLITE_API int sqlite3_initialize(void); -SQLITE_API int sqlite3_shutdown(void); -SQLITE_API int sqlite3_os_init(void); -SQLITE_API int sqlite3_os_end(void); - -/* -** CAPI3REF: Configuring The SQLite Library -** -** The sqlite3_config() interface is used to make global configuration -** changes to SQLite in order to tune SQLite to the specific needs of -** the application. The default configuration is recommended for most -** applications and so this routine is usually not necessary. It is -** provided to support rare applications with unusual needs. -** -** The sqlite3_config() interface is not threadsafe. The application -** must insure that no other SQLite interfaces are invoked by other -** threads while sqlite3_config() is running. Furthermore, sqlite3_config() -** may only be invoked prior to library initialization using -** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. -** ^If sqlite3_config() is called after [sqlite3_initialize()] and before -** [sqlite3_shutdown()] then it will return SQLITE_MISUSE. -** Note, however, that ^sqlite3_config() can be called as part of the -** implementation of an application-defined [sqlite3_os_init()]. -** -** The first argument to sqlite3_config() is an integer -** [configuration option] that determines -** what property of SQLite is to be configured. Subsequent arguments -** vary depending on the [configuration option] -** in the first argument. -** -** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. -** ^If the option is unknown or SQLite is unable to set the option -** then this routine returns a non-zero [error code]. -*/ -SQLITE_API int sqlite3_config(int, ...); - -/* -** CAPI3REF: Configure database connections -** -** The sqlite3_db_config() interface is used to make configuration -** changes to a [database connection]. The interface is similar to -** [sqlite3_config()] except that the changes apply to a single -** [database connection] (specified in the first argument). -** -** The second argument to sqlite3_db_config(D,V,...) is the -** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code -** that indicates what aspect of the [database connection] is being configured. -** Subsequent arguments vary depending on the configuration verb. -** -** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if -** the call is considered successful. -*/ -SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); - -/* -** CAPI3REF: Memory Allocation Routines -** -** An instance of this object defines the interface between SQLite -** and low-level memory allocation routines. -** -** This object is used in only one place in the SQLite interface. -** A pointer to an instance of this object is the argument to -** [sqlite3_config()] when the configuration option is -** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. -** By creating an instance of this object -** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) -** during configuration, an application can specify an alternative -** memory allocation subsystem for SQLite to use for all of its -** dynamic memory needs. -** -** Note that SQLite comes with several [built-in memory allocators] -** that are perfectly adequate for the overwhelming majority of applications -** and that this object is only useful to a tiny minority of applications -** with specialized memory allocation requirements. This object is -** also used during testing of SQLite in order to specify an alternative -** memory allocator that simulates memory out-of-memory conditions in -** order to verify that SQLite recovers gracefully from such -** conditions. -** -** The xMalloc, xRealloc, and xFree methods must work like the -** malloc(), realloc() and free() functions from the standard C library. -** ^SQLite guarantees that the second argument to -** xRealloc is always a value returned by a prior call to xRoundup. -** -** xSize should return the allocated size of a memory allocation -** previously obtained from xMalloc or xRealloc. The allocated size -** is always at least as big as the requested size but may be larger. -** -** The xRoundup method returns what would be the allocated size of -** a memory allocation given a particular requested size. Most memory -** allocators round up memory allocations at least to the next multiple -** of 8. Some allocators round up to a larger multiple or to a power of 2. -** Every memory allocation request coming in through [sqlite3_malloc()] -** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, -** that causes the corresponding memory allocation to fail. -** -** The xInit method initializes the memory allocator. (For example, -** it might allocate any require mutexes or initialize internal data -** structures. The xShutdown method is invoked (indirectly) by -** [sqlite3_shutdown()] and should deallocate any resources acquired -** by xInit. The pAppData pointer is used as the only parameter to -** xInit and xShutdown. -** -** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes -** the xInit method, so the xInit method need not be threadsafe. The -** xShutdown method is only called from [sqlite3_shutdown()] so it does -** not need to be threadsafe either. For all other methods, SQLite -** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the -** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which -** it is by default) and so the methods are automatically serialized. -** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other -** methods must be threadsafe or else make their own arrangements for -** serialization. -** -** SQLite will never invoke xInit() more than once without an intervening -** call to xShutdown(). -*/ -typedef struct sqlite3_mem_methods sqlite3_mem_methods; -struct sqlite3_mem_methods { - void *(*xMalloc)(int); /* Memory allocation function */ - void (*xFree)(void*); /* Free a prior allocation */ - void *(*xRealloc)(void*,int); /* Resize an allocation */ - int (*xSize)(void*); /* Return the size of an allocation */ - int (*xRoundup)(int); /* Round up request size to allocation size */ - int (*xInit)(void*); /* Initialize the memory allocator */ - void (*xShutdown)(void*); /* Deinitialize the memory allocator */ - void *pAppData; /* Argument to xInit() and xShutdown() */ -}; - -/* -** CAPI3REF: Configuration Options -** KEYWORDS: {configuration option} -** -** These constants are the available integer configuration options that -** can be passed as the first argument to the [sqlite3_config()] interface. -** -** New configuration options may be added in future releases of SQLite. -** Existing configuration options might be discontinued. Applications -** should check the return code from [sqlite3_config()] to make sure that -** the call worked. The [sqlite3_config()] interface will return a -** non-zero [error code] if a discontinued or unsupported configuration option -** is invoked. -** -** <dl> -** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt> -** <dd>There are no arguments to this option. ^This option sets the -** [threading mode] to Single-thread. In other words, it disables -** all mutexing and puts SQLite into a mode where it can only be used -** by a single thread. ^If SQLite is compiled with -** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then -** it is not possible to change the [threading mode] from its default -** value of Single-thread and so [sqlite3_config()] will return -** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD -** configuration option.</dd> -** -** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt> -** <dd>There are no arguments to this option. ^This option sets the -** [threading mode] to Multi-thread. In other words, it disables -** mutexing on [database connection] and [prepared statement] objects. -** The application is responsible for serializing access to -** [database connections] and [prepared statements]. But other mutexes -** are enabled so that SQLite will be safe to use in a multi-threaded -** environment as long as no two threads attempt to use the same -** [database connection] at the same time. ^If SQLite is compiled with -** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then -** it is not possible to set the Multi-thread [threading mode] and -** [sqlite3_config()] will return [SQLITE_ERROR] if called with the -** SQLITE_CONFIG_MULTITHREAD configuration option.</dd> -** -** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt> -** <dd>There are no arguments to this option. ^This option sets the -** [threading mode] to Serialized. In other words, this option enables -** all mutexes including the recursive -** mutexes on [database connection] and [prepared statement] objects. -** In this mode (which is the default when SQLite is compiled with -** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access -** to [database connections] and [prepared statements] so that the -** application is free to use the same [database connection] or the -** same [prepared statement] in different threads at the same time. -** ^If SQLite is compiled with -** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then -** it is not possible to set the Serialized [threading mode] and -** [sqlite3_config()] will return [SQLITE_ERROR] if called with the -** SQLITE_CONFIG_SERIALIZED configuration option.</dd> -** -** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt> -** <dd> ^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mem_methods] structure. The argument specifies -** alternative low-level memory allocation routines to be used in place of -** the memory allocation routines built into SQLite.)^ ^SQLite makes -** its own private copy of the content of the [sqlite3_mem_methods] structure -** before the [sqlite3_config()] call returns.</dd> -** -** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt> -** <dd> ^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] -** structure is filled with the currently defined memory allocation routines.)^ -** This option can be used to overload the default memory allocation -** routines with a wrapper that simulations memory allocation failure or -** tracks memory usage, for example. </dd> -** -** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt> -** <dd> ^This option takes single argument of type int, interpreted as a -** boolean, which enables or disables the collection of memory allocation -** statistics. ^(When memory allocation statistics are disabled, the -** following SQLite interfaces become non-operational: -** <ul> -** <li> [sqlite3_memory_used()] -** <li> [sqlite3_memory_highwater()] -** <li> [sqlite3_soft_heap_limit64()] -** <li> [sqlite3_status()] -** </ul>)^ -** ^Memory allocation statistics are enabled by default unless SQLite is -** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory -** allocation statistics are disabled by default. -** </dd> -** -** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt> -** <dd> ^This option specifies a static memory buffer that SQLite can use for -** scratch memory. There are three arguments: A pointer an 8-byte -** aligned memory buffer from which the scratch allocations will be -** drawn, the size of each scratch allocation (sz), -** and the maximum number of scratch allocations (N). The sz -** argument must be a multiple of 16. -** The first argument must be a pointer to an 8-byte aligned buffer -** of at least sz*N bytes of memory. -** ^SQLite will use no more than two scratch buffers per thread. So -** N should be set to twice the expected maximum number of threads. -** ^SQLite will never require a scratch buffer that is more than 6 -** times the database page size. ^If SQLite needs needs additional -** scratch memory beyond what is provided by this configuration option, then -** [sqlite3_malloc()] will be used to obtain the memory needed.</dd> -** -** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt> -** <dd> ^This option specifies a static memory buffer that SQLite can use for -** the database page cache with the default page cache implementation. -** This configuration should not be used if an application-define page -** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option. -** There are three arguments to this option: A pointer to 8-byte aligned -** memory, the size of each page buffer (sz), and the number of pages (N). -** The sz argument should be the size of the largest database page -** (a power of two between 512 and 32768) plus a little extra for each -** page header. ^The page header size is 20 to 40 bytes depending on -** the host architecture. ^It is harmless, apart from the wasted memory, -** to make sz a little too large. The first -** argument should point to an allocation of at least sz*N bytes of memory. -** ^SQLite will use the memory provided by the first argument to satisfy its -** memory needs for the first N pages that it adds to cache. ^If additional -** page cache memory is needed beyond what is provided by this option, then -** SQLite goes to [sqlite3_malloc()] for the additional storage space. -** The pointer in the first argument must -** be aligned to an 8-byte boundary or subsequent behavior of SQLite -** will be undefined.</dd> -** -** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt> -** <dd> ^This option specifies a static memory buffer that SQLite will use -** for all of its dynamic memory allocation needs beyond those provided -** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. -** There are three arguments: An 8-byte aligned pointer to the memory, -** the number of bytes in the memory buffer, and the minimum allocation size. -** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts -** to using its default memory allocator (the system malloc() implementation), -** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the -** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or -** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory -** allocator is engaged to handle all of SQLites memory allocation needs. -** The first pointer (the memory pointer) must be aligned to an 8-byte -** boundary or subsequent behavior of SQLite will be undefined. -** The minimum allocation size is capped at 2**12. Reasonable values -** for the minimum allocation size are 2**5 through 2**8.</dd> -** -** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt> -** <dd> ^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mutex_methods] structure. The argument specifies -** alternative low-level mutex routines to be used in place -** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the -** content of the [sqlite3_mutex_methods] structure before the call to -** [sqlite3_config()] returns. ^If SQLite is compiled with -** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then -** the entire mutexing subsystem is omitted from the build and hence calls to -** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will -** return [SQLITE_ERROR].</dd> -** -** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt> -** <dd> ^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mutex_methods] structure. The -** [sqlite3_mutex_methods] -** structure is filled with the currently defined mutex routines.)^ -** This option can be used to overload the default mutex allocation -** routines with a wrapper used to track mutex usage for performance -** profiling or testing, for example. ^If SQLite is compiled with -** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then -** the entire mutexing subsystem is omitted from the build and hence calls to -** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will -** return [SQLITE_ERROR].</dd> -** -** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt> -** <dd> ^(This option takes two arguments that determine the default -** memory allocation for the lookaside memory allocator on each -** [database connection]. The first argument is the -** size of each lookaside buffer slot and the second is the number of -** slots allocated to each database connection.)^ ^(This option sets the -** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] -** verb to [sqlite3_db_config()] can be used to change the lookaside -** configuration on individual connections.)^ </dd> -** -** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt> -** <dd> ^(This option takes a single argument which is a pointer to -** an [sqlite3_pcache_methods2] object. This object specifies the interface -** to a custom page cache implementation.)^ ^SQLite makes a copy of the -** object and uses it for page cache memory allocations.</dd> -** -** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt> -** <dd> ^(This option takes a single argument which is a pointer to an -** [sqlite3_pcache_methods2] object. SQLite copies of the current -** page cache implementation into that object.)^ </dd> -** -** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt> -** <dd> ^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a -** function with a call signature of void(*)(void*,int,const char*), -** and a pointer to void. ^If the function pointer is not NULL, it is -** invoked by [sqlite3_log()] to process each logging event. ^If the -** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op. -** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is -** passed through as the first parameter to the application-defined logger -** function whenever that function is invoked. ^The second parameter to -** the logger function is a copy of the first parameter to the corresponding -** [sqlite3_log()] call and is intended to be a [result code] or an -** [extended result code]. ^The third parameter passed to the logger is -** log message after formatting via [sqlite3_snprintf()]. -** The SQLite logging interface is not reentrant; the logger function -** supplied by the application must not invoke any SQLite interface. -** In a multi-threaded application, the application-defined logger -** function must be threadsafe. </dd> -** -** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI -** <dd> This option takes a single argument of type int. If non-zero, then -** URI handling is globally enabled. If the parameter is zero, then URI handling -** is globally disabled. If URI handling is globally enabled, all filenames -** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or -** specified as part of [ATTACH] commands are interpreted as URIs, regardless -** of whether or not the [SQLITE_OPEN_URI] flag is set when the database -** connection is opened. If it is globally disabled, filenames are -** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the -** database connection is opened. By default, URI handling is globally -** disabled. The default value may be changed by compiling with the -** [SQLITE_USE_URI] symbol defined. -** -** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN -** <dd> This option takes a single integer argument which is interpreted as -** a boolean in order to enable or disable the use of covering indices for -** full table scans in the query optimizer. The default setting is determined -** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" -** if that compile-time option is omitted. -** The ability to disable the use of covering indices for full table scans -** is because some incorrectly coded legacy applications might malfunction -** malfunction when the optimization is enabled. Providing the ability to -** disable the optimization allows the older, buggy application code to work -** without change even with newer versions of SQLite. -** -** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]] -** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE -** <dd> These options are obsolete and should not be used by new code. -** They are retained for backwards compatibility but are now no-ops. -** </dl> -** -** [[SQLITE_CONFIG_SQLLOG]] -** <dt>SQLITE_CONFIG_SQLLOG -** <dd>This option is only available if sqlite is compiled with the -** SQLITE_ENABLE_SQLLOG pre-processor macro defined. The first argument should -** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int). -** The second should be of type (void*). The callback is invoked by the library -** in three separate circumstances, identified by the value passed as the -** fourth parameter. If the fourth parameter is 0, then the database connection -** passed as the second argument has just been opened. The third argument -** points to a buffer containing the name of the main database file. If the -** fourth parameter is 1, then the SQL statement that the third parameter -** points to has just been executed. Or, if the fourth parameter is 2, then -** the connection being passed as the second parameter is being closed. The -** third parameter is passed NULL In this case. -** </dl> -*/ -#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ -#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ -#define SQLITE_CONFIG_SERIALIZED 3 /* nil */ -#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ -#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ -#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */ -#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ -#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ -#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ -#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ -#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ -/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ -#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ -#define SQLITE_CONFIG_PCACHE 14 /* no-op */ -#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */ -#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ -#define SQLITE_CONFIG_URI 17 /* int */ -#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ -#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ -#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ -#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ - -/* -** CAPI3REF: Database Connection Configuration Options -** -** These constants are the available integer configuration options that -** can be passed as the second argument to the [sqlite3_db_config()] interface. -** -** New configuration options may be added in future releases of SQLite. -** Existing configuration options might be discontinued. Applications -** should check the return code from [sqlite3_db_config()] to make sure that -** the call worked. ^The [sqlite3_db_config()] interface will return a -** non-zero [error code] if a discontinued or unsupported configuration option -** is invoked. -** -** <dl> -** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> -** <dd> ^This option takes three additional arguments that determine the -** [lookaside memory allocator] configuration for the [database connection]. -** ^The first argument (the third parameter to [sqlite3_db_config()] is a -** pointer to a memory buffer to use for lookaside memory. -** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb -** may be NULL in which case SQLite will allocate the -** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the -** size of each lookaside buffer slot. ^The third argument is the number of -** slots. The size of the buffer in the first argument must be greater than -** or equal to the product of the second and third arguments. The buffer -** must be aligned to an 8-byte boundary. ^If the second argument to -** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally -** rounded down to the next smaller multiple of 8. ^(The lookaside memory -** configuration for a database connection can only be changed when that -** connection is not currently using lookaside memory, or in other words -** when the "current value" returned by -** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. -** Any attempt to change the lookaside memory configuration when lookaside -** memory is in use leaves the configuration unchanged and returns -** [SQLITE_BUSY].)^</dd> -** -** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> -** <dd> ^This option is used to enable or disable the enforcement of -** [foreign key constraints]. There should be two additional arguments. -** The first argument is an integer which is 0 to disable FK enforcement, -** positive to enable FK enforcement or negative to leave FK enforcement -** unchanged. The second parameter is a pointer to an integer into which -** is written 0 or 1 to indicate whether FK enforcement is off or on -** following this call. The second parameter may be a NULL pointer, in -** which case the FK enforcement setting is not reported back. </dd> -** -** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> -** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. -** There should be two additional arguments. -** The first argument is an integer which is 0 to disable triggers, -** positive to enable triggers or negative to leave the setting unchanged. -** The second parameter is a pointer to an integer into which -** is written 0 or 1 to indicate whether triggers are disabled or enabled -** following this call. The second parameter may be a NULL pointer, in -** which case the trigger setting is not reported back. </dd> -** -** </dl> -*/ -#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ -#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ -#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ - - -/* -** CAPI3REF: Enable Or Disable Extended Result Codes -** -** ^The sqlite3_extended_result_codes() routine enables or disables the -** [extended result codes] feature of SQLite. ^The extended result -** codes are disabled by default for historical compatibility. -*/ -SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); - -/* -** CAPI3REF: Last Insert Rowid -** -** ^Each entry in an SQLite table has a unique 64-bit signed -** integer key called the [ROWID | "rowid"]. ^The rowid is always available -** as an undeclared column named ROWID, OID, or _ROWID_ as long as those -** names are not also used by explicitly declared columns. ^If -** the table has a column of type [INTEGER PRIMARY KEY] then that column -** is another alias for the rowid. -** -** ^This routine returns the [rowid] of the most recent -** successful [INSERT] into the database from the [database connection] -** in the first argument. ^As of SQLite version 3.7.7, this routines -** records the last insert rowid of both ordinary tables and [virtual tables]. -** ^If no successful [INSERT]s -** have ever occurred on that database connection, zero is returned. -** -** ^(If an [INSERT] occurs within a trigger or within a [virtual table] -** method, then this routine will return the [rowid] of the inserted -** row as long as the trigger or virtual table method is running. -** But once the trigger or virtual table method ends, the value returned -** by this routine reverts to what it was before the trigger or virtual -** table method began.)^ -** -** ^An [INSERT] that fails due to a constraint violation is not a -** successful [INSERT] and does not change the value returned by this -** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, -** and INSERT OR ABORT make no changes to the return value of this -** routine when their insertion fails. ^(When INSERT OR REPLACE -** encounters a constraint violation, it does not fail. The -** INSERT continues to completion after deleting rows that caused -** the constraint problem so INSERT OR REPLACE will always change -** the return value of this interface.)^ -** -** ^For the purposes of this routine, an [INSERT] is considered to -** be successful even if it is subsequently rolled back. -** -** This function is accessible to SQL statements via the -** [last_insert_rowid() SQL function]. -** -** If a separate thread performs a new [INSERT] on the same -** database connection while the [sqlite3_last_insert_rowid()] -** function is running and thus changes the last insert [rowid], -** then the value returned by [sqlite3_last_insert_rowid()] is -** unpredictable and might not equal either the old or the new -** last insert [rowid]. -*/ -SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); - -/* -** CAPI3REF: Count The Number Of Rows Modified -** -** ^This function returns the number of database rows that were changed -** or inserted or deleted by the most recently completed SQL statement -** on the [database connection] specified by the first parameter. -** ^(Only changes that are directly specified by the [INSERT], [UPDATE], -** or [DELETE] statement are counted. Auxiliary changes caused by -** triggers or [foreign key actions] are not counted.)^ Use the -** [sqlite3_total_changes()] function to find the total number of changes -** including changes caused by triggers and foreign key actions. -** -** ^Changes to a view that are simulated by an [INSTEAD OF trigger] -** are not counted. Only real table changes are counted. -** -** ^(A "row change" is a change to a single row of a single table -** caused by an INSERT, DELETE, or UPDATE statement. Rows that -** are changed as side effects of [REPLACE] constraint resolution, -** rollback, ABORT processing, [DROP TABLE], or by any other -** mechanisms do not count as direct row changes.)^ -** -** A "trigger context" is a scope of execution that begins and -** ends with the script of a [CREATE TRIGGER | trigger]. -** Most SQL statements are -** evaluated outside of any trigger. This is the "top level" -** trigger context. If a trigger fires from the top level, a -** new trigger context is entered for the duration of that one -** trigger. Subtriggers create subcontexts for their duration. -** -** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does -** not create a new trigger context. -** -** ^This function returns the number of direct row changes in the -** most recent INSERT, UPDATE, or DELETE statement within the same -** trigger context. -** -** ^Thus, when called from the top level, this function returns the -** number of changes in the most recent INSERT, UPDATE, or DELETE -** that also occurred at the top level. ^(Within the body of a trigger, -** the sqlite3_changes() interface can be called to find the number of -** changes in the most recently completed INSERT, UPDATE, or DELETE -** statement within the body of the same trigger. -** However, the number returned does not include changes -** caused by subtriggers since those have their own context.)^ -** -** See also the [sqlite3_total_changes()] interface, the -** [count_changes pragma], and the [changes() SQL function]. -** -** If a separate thread makes changes on the same database connection -** while [sqlite3_changes()] is running then the value returned -** is unpredictable and not meaningful. -*/ -SQLITE_API int sqlite3_changes(sqlite3*); - -/* -** CAPI3REF: Total Number Of Rows Modified -** -** ^This function returns the number of row changes caused by [INSERT], -** [UPDATE] or [DELETE] statements since the [database connection] was opened. -** ^(The count returned by sqlite3_total_changes() includes all changes -** from all [CREATE TRIGGER | trigger] contexts and changes made by -** [foreign key actions]. However, -** the count does not include changes used to implement [REPLACE] constraints, -** do rollbacks or ABORT processing, or [DROP TABLE] processing. The -** count does not include rows of views that fire an [INSTEAD OF trigger], -** though if the INSTEAD OF trigger makes changes of its own, those changes -** are counted.)^ -** ^The sqlite3_total_changes() function counts the changes as soon as -** the statement that makes them is completed (when the statement handle -** is passed to [sqlite3_reset()] or [sqlite3_finalize()]). -** -** See also the [sqlite3_changes()] interface, the -** [count_changes pragma], and the [total_changes() SQL function]. -** -** If a separate thread makes changes on the same database connection -** while [sqlite3_total_changes()] is running then the value -** returned is unpredictable and not meaningful. -*/ -SQLITE_API int sqlite3_total_changes(sqlite3*); - -/* -** CAPI3REF: Interrupt A Long-Running Query -** -** ^This function causes any pending database operation to abort and -** return at its earliest opportunity. This routine is typically -** called in response to a user action such as pressing "Cancel" -** or Ctrl-C where the user wants a long query operation to halt -** immediately. -** -** ^It is safe to call this routine from a thread different from the -** thread that is currently running the database operation. But it -** is not safe to call this routine with a [database connection] that -** is closed or might close before sqlite3_interrupt() returns. -** -** ^If an SQL operation is very nearly finished at the time when -** sqlite3_interrupt() is called, then it might not have an opportunity -** to be interrupted and might continue to completion. -** -** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. -** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE -** that is inside an explicit transaction, then the entire transaction -** will be rolled back automatically. -** -** ^The sqlite3_interrupt(D) call is in effect until all currently running -** SQL statements on [database connection] D complete. ^Any new SQL statements -** that are started after the sqlite3_interrupt() call and before the -** running statements reaches zero are interrupted as if they had been -** running prior to the sqlite3_interrupt() call. ^New SQL statements -** that are started after the running statement count reaches zero are -** not effected by the sqlite3_interrupt(). -** ^A call to sqlite3_interrupt(D) that occurs when there are no running -** SQL statements is a no-op and has no effect on SQL statements -** that are started after the sqlite3_interrupt() call returns. -** -** If the database connection closes while [sqlite3_interrupt()] -** is running then bad things will likely happen. -*/ -SQLITE_API void sqlite3_interrupt(sqlite3*); - -/* -** CAPI3REF: Determine If An SQL Statement Is Complete -** -** These routines are useful during command-line input to determine if the -** currently entered text seems to form a complete SQL statement or -** if additional input is needed before sending the text into -** SQLite for parsing. ^These routines return 1 if the input string -** appears to be a complete SQL statement. ^A statement is judged to be -** complete if it ends with a semicolon token and is not a prefix of a -** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within -** string literals or quoted identifier names or comments are not -** independent tokens (they are part of the token in which they are -** embedded) and thus do not count as a statement terminator. ^Whitespace -** and comments that follow the final semicolon are ignored. -** -** ^These routines return 0 if the statement is incomplete. ^If a -** memory allocation fails, then SQLITE_NOMEM is returned. -** -** ^These routines do not parse the SQL statements thus -** will not detect syntactically incorrect SQL. -** -** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior -** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked -** automatically by sqlite3_complete16(). If that initialization fails, -** then the return value from sqlite3_complete16() will be non-zero -** regardless of whether or not the input SQL is complete.)^ -** -** The input to [sqlite3_complete()] must be a zero-terminated -** UTF-8 string. -** -** The input to [sqlite3_complete16()] must be a zero-terminated -** UTF-16 string in native byte order. -*/ -SQLITE_API int sqlite3_complete(const char *sql); -SQLITE_API int sqlite3_complete16(const void *sql); - -/* -** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors -** -** ^This routine sets a callback function that might be invoked whenever -** an attempt is made to open a database table that another thread -** or process has locked. -** -** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] -** is returned immediately upon encountering the lock. ^If the busy callback -** is not NULL, then the callback might be invoked with two arguments. -** -** ^The first argument to the busy handler is a copy of the void* pointer which -** is the third argument to sqlite3_busy_handler(). ^The second argument to -** the busy handler callback is the number of times that the busy handler has -** been invoked for this locking event. ^If the -** busy callback returns 0, then no additional attempts are made to -** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. -** ^If the callback returns non-zero, then another attempt -** is made to open the database for reading and the cycle repeats. -** -** The presence of a busy handler does not guarantee that it will be invoked -** when there is lock contention. ^If SQLite determines that invoking the busy -** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] -** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. -** Consider a scenario where one process is holding a read lock that -** it is trying to promote to a reserved lock and -** a second process is holding a reserved lock that it is trying -** to promote to an exclusive lock. The first process cannot proceed -** because it is blocked by the second and the second process cannot -** proceed because it is blocked by the first. If both processes -** invoke the busy handlers, neither will make any progress. Therefore, -** SQLite returns [SQLITE_BUSY] for the first process, hoping that this -** will induce the first process to release its read lock and allow -** the second process to proceed. -** -** ^The default busy callback is NULL. -** -** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] -** when SQLite is in the middle of a large transaction where all the -** changes will not fit into the in-memory cache. SQLite will -** already hold a RESERVED lock on the database file, but it needs -** to promote this lock to EXCLUSIVE so that it can spill cache -** pages into the database file without harm to concurrent -** readers. ^If it is unable to promote the lock, then the in-memory -** cache will be left in an inconsistent state and so the error -** code is promoted from the relatively benign [SQLITE_BUSY] to -** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion -** forces an automatic rollback of the changes. See the -** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError"> -** CorruptionFollowingBusyError</a> wiki page for a discussion of why -** this is important. -** -** ^(There can only be a single busy handler defined for each -** [database connection]. Setting a new busy handler clears any -** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] -** will also set or clear the busy handler. -** -** The busy callback should not take any actions which modify the -** database connection that invoked the busy handler. Any such actions -** result in undefined behavior. -** -** A busy handler must not close the database connection -** or [prepared statement] that invoked the busy handler. -*/ -SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); - -/* -** CAPI3REF: Set A Busy Timeout -** -** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps -** for a specified amount of time when a table is locked. ^The handler -** will sleep multiple times until at least "ms" milliseconds of sleeping -** have accumulated. ^After at least "ms" milliseconds of sleeping, -** the handler returns 0 which causes [sqlite3_step()] to return -** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. -** -** ^Calling this routine with an argument less than or equal to zero -** turns off all busy handlers. -** -** ^(There can only be a single busy handler for a particular -** [database connection] any any given moment. If another busy handler -** was defined (using [sqlite3_busy_handler()]) prior to calling -** this routine, that other busy handler is cleared.)^ -*/ -SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); - -/* -** CAPI3REF: Convenience Routines For Running Queries -** -** This is a legacy interface that is preserved for backwards compatibility. -** Use of this interface is not recommended. -** -** Definition: A <b>result table</b> is memory data structure created by the -** [sqlite3_get_table()] interface. A result table records the -** complete query results from one or more queries. -** -** The table conceptually has a number of rows and columns. But -** these numbers are not part of the result table itself. These -** numbers are obtained separately. Let N be the number of rows -** and M be the number of columns. -** -** A result table is an array of pointers to zero-terminated UTF-8 strings. -** There are (N+1)*M elements in the array. The first M pointers point -** to zero-terminated strings that contain the names of the columns. -** The remaining entries all point to query results. NULL values result -** in NULL pointers. All other values are in their UTF-8 zero-terminated -** string representation as returned by [sqlite3_column_text()]. -** -** A result table might consist of one or more memory allocations. -** It is not safe to pass a result table directly to [sqlite3_free()]. -** A result table should be deallocated using [sqlite3_free_table()]. -** -** ^(As an example of the result table format, suppose a query result -** is as follows: -** -** <blockquote><pre> -** Name | Age -** ----------------------- -** Alice | 43 -** Bob | 28 -** Cindy | 21 -** </pre></blockquote> -** -** There are two column (M==2) and three rows (N==3). Thus the -** result table has 8 entries. Suppose the result table is stored -** in an array names azResult. Then azResult holds this content: -** -** <blockquote><pre> -** azResult[0] = "Name"; -** azResult[1] = "Age"; -** azResult[2] = "Alice"; -** azResult[3] = "43"; -** azResult[4] = "Bob"; -** azResult[5] = "28"; -** azResult[6] = "Cindy"; -** azResult[7] = "21"; -** </pre></blockquote>)^ -** -** ^The sqlite3_get_table() function evaluates one or more -** semicolon-separated SQL statements in the zero-terminated UTF-8 -** string of its 2nd parameter and returns a result table to the -** pointer given in its 3rd parameter. -** -** After the application has finished with the result from sqlite3_get_table(), -** it must pass the result table pointer to sqlite3_free_table() in order to -** release the memory that was malloced. Because of the way the -** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling -** function must not try to call [sqlite3_free()] directly. Only -** [sqlite3_free_table()] is able to release the memory properly and safely. -** -** The sqlite3_get_table() interface is implemented as a wrapper around -** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access -** to any internal data structures of SQLite. It uses only the public -** interface defined here. As a consequence, errors that occur in the -** wrapper layer outside of the internal [sqlite3_exec()] call are not -** reflected in subsequent calls to [sqlite3_errcode()] or -** [sqlite3_errmsg()]. -*/ -SQLITE_API int sqlite3_get_table( - sqlite3 *db, /* An open database */ - const char *zSql, /* SQL to be evaluated */ - char ***pazResult, /* Results of the query */ - int *pnRow, /* Number of result rows written here */ - int *pnColumn, /* Number of result columns written here */ - char **pzErrmsg /* Error msg written here */ -); -SQLITE_API void sqlite3_free_table(char **result); - -/* -** CAPI3REF: Formatted String Printing Functions -** -** These routines are work-alikes of the "printf()" family of functions -** from the standard C library. -** -** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their -** results into memory obtained from [sqlite3_malloc()]. -** The strings returned by these two routines should be -** released by [sqlite3_free()]. ^Both routines return a -** NULL pointer if [sqlite3_malloc()] is unable to allocate enough -** memory to hold the resulting string. -** -** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from -** the standard C library. The result is written into the -** buffer supplied as the second parameter whose size is given by -** the first parameter. Note that the order of the -** first two parameters is reversed from snprintf().)^ This is an -** historical accident that cannot be fixed without breaking -** backwards compatibility. ^(Note also that sqlite3_snprintf() -** returns a pointer to its buffer instead of the number of -** characters actually written into the buffer.)^ We admit that -** the number of characters written would be a more useful return -** value but we cannot change the implementation of sqlite3_snprintf() -** now without breaking compatibility. -** -** ^As long as the buffer size is greater than zero, sqlite3_snprintf() -** guarantees that the buffer is always zero-terminated. ^The first -** parameter "n" is the total size of the buffer, including space for -** the zero terminator. So the longest string that can be completely -** written will be n-1 characters. -** -** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). -** -** These routines all implement some additional formatting -** options that are useful for constructing SQL statements. -** All of the usual printf() formatting options apply. In addition, there -** is are "%q", "%Q", and "%z" options. -** -** ^(The %q option works like %s in that it substitutes a nul-terminated -** string from the argument list. But %q also doubles every '\'' character. -** %q is designed for use inside a string literal.)^ By doubling each '\'' -** character it escapes that character and allows it to be inserted into -** the string. -** -** For example, assume the string variable zText contains text as follows: -** -** <blockquote><pre> -** char *zText = "It's a happy day!"; -** </pre></blockquote> -** -** One can use this text in an SQL statement as follows: -** -** <blockquote><pre> -** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText); -** sqlite3_exec(db, zSQL, 0, 0, 0); -** sqlite3_free(zSQL); -** </pre></blockquote> -** -** Because the %q format string is used, the '\'' character in zText -** is escaped and the SQL generated is as follows: -** -** <blockquote><pre> -** INSERT INTO table1 VALUES('It''s a happy day!') -** </pre></blockquote> -** -** This is correct. Had we used %s instead of %q, the generated SQL -** would have looked like this: -** -** <blockquote><pre> -** INSERT INTO table1 VALUES('It's a happy day!'); -** </pre></blockquote> -** -** This second example is an SQL syntax error. As a general rule you should -** always use %q instead of %s when inserting text into a string literal. -** -** ^(The %Q option works like %q except it also adds single quotes around -** the outside of the total string. Additionally, if the parameter in the -** argument list is a NULL pointer, %Q substitutes the text "NULL" (without -** single quotes).)^ So, for example, one could say: -** -** <blockquote><pre> -** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText); -** sqlite3_exec(db, zSQL, 0, 0, 0); -** sqlite3_free(zSQL); -** </pre></blockquote> -** -** The code above will render a correct SQL statement in the zSQL -** variable even if the zText variable is a NULL pointer. -** -** ^(The "%z" formatting option works like "%s" but with the -** addition that after the string has been read and copied into -** the result, [sqlite3_free()] is called on the input string.)^ -*/ -SQLITE_API char *sqlite3_mprintf(const char*,...); -SQLITE_API char *sqlite3_vmprintf(const char*, va_list); -SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...); -SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list); - -/* -** CAPI3REF: Memory Allocation Subsystem -** -** The SQLite core uses these three routines for all of its own -** internal memory allocation needs. "Core" in the previous sentence -** does not include operating-system specific VFS implementation. The -** Windows VFS uses native malloc() and free() for some operations. -** -** ^The sqlite3_malloc() routine returns a pointer to a block -** of memory at least N bytes in length, where N is the parameter. -** ^If sqlite3_malloc() is unable to obtain sufficient free -** memory, it returns a NULL pointer. ^If the parameter N to -** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns -** a NULL pointer. -** -** ^Calling sqlite3_free() with a pointer previously returned -** by sqlite3_malloc() or sqlite3_realloc() releases that memory so -** that it might be reused. ^The sqlite3_free() routine is -** a no-op if is called with a NULL pointer. Passing a NULL pointer -** to sqlite3_free() is harmless. After being freed, memory -** should neither be read nor written. Even reading previously freed -** memory might result in a segmentation fault or other severe error. -** Memory corruption, a segmentation fault, or other severe error -** might result if sqlite3_free() is called with a non-NULL pointer that -** was not obtained from sqlite3_malloc() or sqlite3_realloc(). -** -** ^(The sqlite3_realloc() interface attempts to resize a -** prior memory allocation to be at least N bytes, where N is the -** second parameter. The memory allocation to be resized is the first -** parameter.)^ ^ If the first parameter to sqlite3_realloc() -** is a NULL pointer then its behavior is identical to calling -** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). -** ^If the second parameter to sqlite3_realloc() is zero or -** negative then the behavior is exactly the same as calling -** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). -** ^sqlite3_realloc() returns a pointer to a memory allocation -** of at least N bytes in size or NULL if sufficient memory is unavailable. -** ^If M is the size of the prior allocation, then min(N,M) bytes -** of the prior allocation are copied into the beginning of buffer returned -** by sqlite3_realloc() and the prior allocation is freed. -** ^If sqlite3_realloc() returns NULL, then the prior allocation -** is not freed. -** -** ^The memory returned by sqlite3_malloc() and sqlite3_realloc() -** is always aligned to at least an 8 byte boundary, or to a -** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time -** option is used. -** -** In SQLite version 3.5.0 and 3.5.1, it was possible to define -** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in -** implementation of these routines to be omitted. That capability -** is no longer provided. Only built-in memory allocators can be used. -** -** Prior to SQLite version 3.7.10, the Windows OS interface layer called -** the system malloc() and free() directly when converting -** filenames between the UTF-8 encoding used by SQLite -** and whatever filename encoding is used by the particular Windows -** installation. Memory allocation errors were detected, but -** they were reported back as [SQLITE_CANTOPEN] or -** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. -** -** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] -** must be either NULL or else pointers obtained from a prior -** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have -** not yet been released. -** -** The application must not read or write any part of -** a block of memory after it has been released using -** [sqlite3_free()] or [sqlite3_realloc()]. -*/ -SQLITE_API void *sqlite3_malloc(int); -SQLITE_API void *sqlite3_realloc(void*, int); -SQLITE_API void sqlite3_free(void*); - -/* -** CAPI3REF: Memory Allocator Statistics -** -** SQLite provides these two interfaces for reporting on the status -** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] -** routines, which form the built-in memory allocation subsystem. -** -** ^The [sqlite3_memory_used()] routine returns the number of bytes -** of memory currently outstanding (malloced but not freed). -** ^The [sqlite3_memory_highwater()] routine returns the maximum -** value of [sqlite3_memory_used()] since the high-water mark -** was last reset. ^The values returned by [sqlite3_memory_used()] and -** [sqlite3_memory_highwater()] include any overhead -** added by SQLite in its implementation of [sqlite3_malloc()], -** but not overhead added by the any underlying system library -** routines that [sqlite3_malloc()] may call. -** -** ^The memory high-water mark is reset to the current value of -** [sqlite3_memory_used()] if and only if the parameter to -** [sqlite3_memory_highwater()] is true. ^The value returned -** by [sqlite3_memory_highwater(1)] is the high-water mark -** prior to the reset. -*/ -SQLITE_API sqlite3_int64 sqlite3_memory_used(void); -SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag); - -/* -** CAPI3REF: Pseudo-Random Number Generator -** -** SQLite contains a high-quality pseudo-random number generator (PRNG) used to -** select random [ROWID | ROWIDs] when inserting new records into a table that -** already uses the largest possible [ROWID]. The PRNG is also used for -** the build-in random() and randomblob() SQL functions. This interface allows -** applications to access the same PRNG for other purposes. -** -** ^A call to this routine stores N bytes of randomness into buffer P. -** -** ^The first time this routine is invoked (either internally or by -** the application) the PRNG is seeded using randomness obtained -** from the xRandomness method of the default [sqlite3_vfs] object. -** ^On all subsequent invocations, the pseudo-randomness is generated -** internally and without recourse to the [sqlite3_vfs] xRandomness -** method. -*/ -SQLITE_API void sqlite3_randomness(int N, void *P); - -/* -** CAPI3REF: Compile-Time Authorization Callbacks -** -** ^This routine registers an authorizer callback with a particular -** [database connection], supplied in the first argument. -** ^The authorizer callback is invoked as SQL statements are being compiled -** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], -** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various -** points during the compilation process, as logic is being created -** to perform various actions, the authorizer callback is invoked to -** see if those actions are allowed. ^The authorizer callback should -** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the -** specific action but allow the SQL statement to continue to be -** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be -** rejected with an error. ^If the authorizer callback returns -** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] -** then the [sqlite3_prepare_v2()] or equivalent call that triggered -** the authorizer will fail with an error message. -** -** When the callback returns [SQLITE_OK], that means the operation -** requested is ok. ^When the callback returns [SQLITE_DENY], the -** [sqlite3_prepare_v2()] or equivalent call that triggered the -** authorizer will fail with an error message explaining that -** access is denied. -** -** ^The first parameter to the authorizer callback is a copy of the third -** parameter to the sqlite3_set_authorizer() interface. ^The second parameter -** to the callback is an integer [SQLITE_COPY | action code] that specifies -** the particular action to be authorized. ^The third through sixth parameters -** to the callback are zero-terminated strings that contain additional -** details about the action to be authorized. -** -** ^If the action code is [SQLITE_READ] -** and the callback returns [SQLITE_IGNORE] then the -** [prepared statement] statement is constructed to substitute -** a NULL value in place of the table column that would have -** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] -** return can be used to deny an untrusted user access to individual -** columns of a table. -** ^If the action code is [SQLITE_DELETE] and the callback returns -** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the -** [truncate optimization] is disabled and all rows are deleted individually. -** -** An authorizer is used when [sqlite3_prepare | preparing] -** SQL statements from an untrusted source, to ensure that the SQL statements -** do not try to access data they are not allowed to see, or that they do not -** try to execute malicious statements that damage the database. For -** example, an application may allow a user to enter arbitrary -** SQL queries for evaluation by a database. But the application does -** not want the user to be able to make arbitrary changes to the -** database. An authorizer could then be put in place while the -** user-entered SQL is being [sqlite3_prepare | prepared] that -** disallows everything except [SELECT] statements. -** -** Applications that need to process SQL from untrusted sources -** might also consider lowering resource limits using [sqlite3_limit()] -** and limiting database size using the [max_page_count] [PRAGMA] -** in addition to using an authorizer. -** -** ^(Only a single authorizer can be in place on a database connection -** at a time. Each call to sqlite3_set_authorizer overrides the -** previous call.)^ ^Disable the authorizer by installing a NULL callback. -** The authorizer is disabled by default. -** -** The authorizer callback must not do anything that will modify -** the database connection that invoked the authorizer callback. -** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their -** database connections for the meaning of "modify" in this paragraph. -** -** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the -** statement might be re-prepared during [sqlite3_step()] due to a -** schema change. Hence, the application should ensure that the -** correct authorizer callback remains in place during the [sqlite3_step()]. -** -** ^Note that the authorizer callback is invoked only during -** [sqlite3_prepare()] or its variants. Authorization is not -** performed during statement evaluation in [sqlite3_step()], unless -** as stated in the previous paragraph, sqlite3_step() invokes -** sqlite3_prepare_v2() to reprepare a statement after a schema change. -*/ -SQLITE_API int sqlite3_set_authorizer( - sqlite3*, - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), - void *pUserData -); - -/* -** CAPI3REF: Authorizer Return Codes -** -** The [sqlite3_set_authorizer | authorizer callback function] must -** return either [SQLITE_OK] or one of these two constants in order -** to signal SQLite whether or not the action is permitted. See the -** [sqlite3_set_authorizer | authorizer documentation] for additional -** information. -** -** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code] -** from the [sqlite3_vtab_on_conflict()] interface. -*/ -#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ -#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ - -/* -** CAPI3REF: Authorizer Action Codes -** -** The [sqlite3_set_authorizer()] interface registers a callback function -** that is invoked to authorize certain SQL statement actions. The -** second parameter to the callback is an integer code that specifies -** what action is being authorized. These are the integer action codes that -** the authorizer callback may be passed. -** -** These action code values signify what kind of operation is to be -** authorized. The 3rd and 4th parameters to the authorization -** callback function will be parameters or NULL depending on which of these -** codes is used as the second parameter. ^(The 5th parameter to the -** authorizer callback is the name of the database ("main", "temp", -** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback -** is the name of the inner-most trigger or view that is responsible for -** the access attempt or NULL if this access attempt is directly from -** top-level SQL code. -*/ -/******************************************* 3rd ************ 4th ***********/ -#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ -#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ -#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ -#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ -#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ -#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ -#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ -#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ -#define SQLITE_DELETE 9 /* Table Name NULL */ -#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ -#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ -#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ -#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ -#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ -#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ -#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ -#define SQLITE_DROP_VIEW 17 /* View Name NULL */ -#define SQLITE_INSERT 18 /* Table Name NULL */ -#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ -#define SQLITE_READ 20 /* Table Name Column Name */ -#define SQLITE_SELECT 21 /* NULL NULL */ -#define SQLITE_TRANSACTION 22 /* Operation NULL */ -#define SQLITE_UPDATE 23 /* Table Name Column Name */ -#define SQLITE_ATTACH 24 /* Filename NULL */ -#define SQLITE_DETACH 25 /* Database Name NULL */ -#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ -#define SQLITE_REINDEX 27 /* Index Name NULL */ -#define SQLITE_ANALYZE 28 /* Table Name NULL */ -#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ -#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ -#define SQLITE_FUNCTION 31 /* NULL Function Name */ -#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ -#define SQLITE_COPY 0 /* No longer used */ - -/* -** CAPI3REF: Tracing And Profiling Functions -** -** These routines register callback functions that can be used for -** tracing and profiling the execution of SQL statements. -** -** ^The callback function registered by sqlite3_trace() is invoked at -** various times when an SQL statement is being run by [sqlite3_step()]. -** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the -** SQL statement text as the statement first begins executing. -** ^(Additional sqlite3_trace() callbacks might occur -** as each triggered subprogram is entered. The callbacks for triggers -** contain a UTF-8 SQL comment that identifies the trigger.)^ -** -** ^The callback function registered by sqlite3_profile() is invoked -** as each SQL statement finishes. ^The profile callback contains -** the original statement text and an estimate of wall-clock time -** of how long that statement took to run. ^The profile callback -** time is in units of nanoseconds, however the current implementation -** is only capable of millisecond resolution so the six least significant -** digits in the time are meaningless. Future versions of SQLite -** might provide greater resolution on the profiler callback. The -** sqlite3_profile() function is considered experimental and is -** subject to change in future versions of SQLite. -*/ -SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); -SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, - void(*xProfile)(void*,const char*,sqlite3_uint64), void*); - -/* -** CAPI3REF: Query Progress Callbacks -** -** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback -** function X to be invoked periodically during long running calls to -** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for -** database connection D. An example use for this -** interface is to keep a GUI updated during a large query. -** -** ^The parameter P is passed through as the only parameter to the -** callback function X. ^The parameter N is the number of -** [virtual machine instructions] that are evaluated between successive -** invocations of the callback X. -** -** ^Only a single progress handler may be defined at one time per -** [database connection]; setting a new progress handler cancels the -** old one. ^Setting parameter X to NULL disables the progress handler. -** ^The progress handler is also disabled by setting N to a value less -** than 1. -** -** ^If the progress callback returns non-zero, the operation is -** interrupted. This feature can be used to implement a -** "Cancel" button on a GUI progress dialog box. -** -** The progress handler callback must not do anything that will modify -** the database connection that invoked the progress handler. -** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their -** database connections for the meaning of "modify" in this paragraph. -** -*/ -SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); - -/* -** CAPI3REF: Opening A New Database Connection -** -** ^These routines open an SQLite database file as specified by the -** filename argument. ^The filename argument is interpreted as UTF-8 for -** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte -** order for sqlite3_open16(). ^(A [database connection] handle is usually -** returned in *ppDb, even if an error occurs. The only exception is that -** if SQLite is unable to allocate memory to hold the [sqlite3] object, -** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] -** object.)^ ^(If the database is opened (and/or created) successfully, then -** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The -** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain -** an English language description of the error following a failure of any -** of the sqlite3_open() routines. -** -** ^The default encoding for the database will be UTF-8 if -** sqlite3_open() or sqlite3_open_v2() is called and -** UTF-16 in the native byte order if sqlite3_open16() is used. -** -** Whether or not an error occurs when it is opened, resources -** associated with the [database connection] handle should be released by -** passing it to [sqlite3_close()] when it is no longer required. -** -** The sqlite3_open_v2() interface works like sqlite3_open() -** except that it accepts two additional parameters for additional control -** over the new database connection. ^(The flags parameter to -** sqlite3_open_v2() can take one of -** the following three values, optionally combined with the -** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE], -** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^ -** -** <dl> -** ^(<dt>[SQLITE_OPEN_READONLY]</dt> -** <dd>The database is opened in read-only mode. If the database does not -** already exist, an error is returned.</dd>)^ -** -** ^(<dt>[SQLITE_OPEN_READWRITE]</dt> -** <dd>The database is opened for reading and writing if possible, or reading -** only if the file is write protected by the operating system. In either -** case the database must already exist, otherwise an error is returned.</dd>)^ -** -** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt> -** <dd>The database is opened for reading and writing, and is created if -** it does not already exist. This is the behavior that is always used for -** sqlite3_open() and sqlite3_open16().</dd>)^ -** </dl> -** -** If the 3rd parameter to sqlite3_open_v2() is not one of the -** combinations shown above optionally combined with other -** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] -** then the behavior is undefined. -** -** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection -** opens in the multi-thread [threading mode] as long as the single-thread -** mode has not been set at compile-time or start-time. ^If the -** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens -** in the serialized [threading mode] unless single-thread was -** previously selected at compile-time or start-time. -** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be -** eligible to use [shared cache mode], regardless of whether or not shared -** cache is enabled using [sqlite3_enable_shared_cache()]. ^The -** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not -** participate in [shared cache mode] even if it is enabled. -** -** ^The fourth parameter to sqlite3_open_v2() is the name of the -** [sqlite3_vfs] object that defines the operating system interface that -** the new database connection should use. ^If the fourth parameter is -** a NULL pointer then the default [sqlite3_vfs] object is used. -** -** ^If the filename is ":memory:", then a private, temporary in-memory database -** is created for the connection. ^This in-memory database will vanish when -** the database connection is closed. Future versions of SQLite might -** make use of additional special filenames that begin with the ":" character. -** It is recommended that when a database filename actually does begin with -** a ":" character you should prefix the filename with a pathname such as -** "./" to avoid ambiguity. -** -** ^If the filename is an empty string, then a private, temporary -** on-disk database will be created. ^This private database will be -** automatically deleted as soon as the database connection is closed. -** -** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3> -** -** ^If [URI filename] interpretation is enabled, and the filename argument -** begins with "file:", then the filename is interpreted as a URI. ^URI -** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is -** set in the fourth argument to sqlite3_open_v2(), or if it has -** been enabled globally using the [SQLITE_CONFIG_URI] option with the -** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option. -** As of SQLite version 3.7.7, URI filename interpretation is turned off -** by default, but future releases of SQLite might enable URI filename -** interpretation by default. See "[URI filenames]" for additional -** information. -** -** URI filenames are parsed according to RFC 3986. ^If the URI contains an -** authority, then it must be either an empty string or the string -** "localhost". ^If the authority is not an empty string or "localhost", an -** error is returned to the caller. ^The fragment component of a URI, if -** present, is ignored. -** -** ^SQLite uses the path component of the URI as the name of the disk file -** which contains the database. ^If the path begins with a '/' character, -** then it is interpreted as an absolute path. ^If the path does not begin -** with a '/' (meaning that the authority section is omitted from the URI) -** then the path is interpreted as a relative path. -** ^On windows, the first component of an absolute path -** is a drive specification (e.g. "C:"). -** -** [[core URI query parameters]] -** The query component of a URI may contain parameters that are interpreted -** either by SQLite itself, or by a [VFS | custom VFS implementation]. -** SQLite interprets the following three query parameters: -** -** <ul> -** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of -** a VFS object that provides the operating system interface that should -** be used to access the database file on disk. ^If this option is set to -** an empty string the default VFS object is used. ^Specifying an unknown -** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is -** present, then the VFS specified by the option takes precedence over -** the value passed as the fourth parameter to sqlite3_open_v2(). -** -** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw", -** "rwc", or "memory". Attempting to set it to any other value is -** an error)^. -** ^If "ro" is specified, then the database is opened for read-only -** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the -** third argument to sqlite3_open_v2(). ^If the mode option is set to -** "rw", then the database is opened for read-write (but not create) -** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had -** been set. ^Value "rwc" is equivalent to setting both -** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is -** set to "memory" then a pure [in-memory database] that never reads -** or writes from disk is used. ^It is an error to specify a value for -** the mode parameter that is less restrictive than that specified by -** the flags passed in the third parameter to sqlite3_open_v2(). -** -** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or -** "private". ^Setting it to "shared" is equivalent to setting the -** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to -** sqlite3_open_v2(). ^Setting the cache parameter to "private" is -** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. -** ^If sqlite3_open_v2() is used and the "cache" parameter is present in -** a URI filename, its value overrides any behavior requested by setting -** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. -** </ul> -** -** ^Specifying an unknown parameter in the query component of a URI is not an -** error. Future versions of SQLite might understand additional query -** parameters. See "[query parameters with special meaning to SQLite]" for -** additional information. -** -** [[URI filename examples]] <h3>URI filename examples</h3> -** -** <table border="1" align=center cellpadding=5> -** <tr><th> URI filenames <th> Results -** <tr><td> file:data.db <td> -** Open the file "data.db" in the current directory. -** <tr><td> file:/home/fred/data.db<br> -** file:///home/fred/data.db <br> -** file://localhost/home/fred/data.db <br> <td> -** Open the database file "/home/fred/data.db". -** <tr><td> file://darkstar/home/fred/data.db <td> -** An error. "darkstar" is not a recognized authority. -** <tr><td style="white-space:nowrap"> -** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db -** <td> Windows only: Open the file "data.db" on fred's desktop on drive -** C:. Note that the %20 escaping in this example is not strictly -** necessary - space characters can be used literally -** in URI filenames. -** <tr><td> file:data.db?mode=ro&cache=private <td> -** Open file "data.db" in the current directory for read-only access. -** Regardless of whether or not shared-cache mode is enabled by -** default, use a private cache. -** <tr><td> file:/home/fred/data.db?vfs=unix-nolock <td> -** Open file "/home/fred/data.db". Use the special VFS "unix-nolock". -** <tr><td> file:data.db?mode=readonly <td> -** An error. "readonly" is not a valid option for the "mode" parameter. -** </table> -** -** ^URI hexadecimal escape sequences (%HH) are supported within the path and -** query components of a URI. A hexadecimal escape sequence consists of a -** percent sign - "%" - followed by exactly two hexadecimal digits -** specifying an octet value. ^Before the path or query components of a -** URI filename are interpreted, they are encoded using UTF-8 and all -** hexadecimal escape sequences replaced by a single byte containing the -** corresponding octet. If this process generates an invalid UTF-8 encoding, -** the results are undefined. -** -** <b>Note to Windows users:</b> The encoding used for the filename argument -** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever -** codepage is currently defined. Filenames containing international -** characters must be converted to UTF-8 prior to passing them into -** sqlite3_open() or sqlite3_open_v2(). -** -** <b>Note to Windows Runtime users:</b> The temporary directory must be set -** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various -** features that require the use of temporary files may fail. -** -** See also: [sqlite3_temp_directory] -*/ -SQLITE_API int sqlite3_open( - const char *filename, /* Database filename (UTF-8) */ - sqlite3 **ppDb /* OUT: SQLite db handle */ -); -SQLITE_API int sqlite3_open16( - const void *filename, /* Database filename (UTF-16) */ - sqlite3 **ppDb /* OUT: SQLite db handle */ -); -SQLITE_API int sqlite3_open_v2( - const char *filename, /* Database filename (UTF-8) */ - sqlite3 **ppDb, /* OUT: SQLite db handle */ - int flags, /* Flags */ - const char *zVfs /* Name of VFS module to use */ -); - -/* -** CAPI3REF: Obtain Values For URI Parameters -** -** These are utility routines, useful to VFS implementations, that check -** to see if a database file was a URI that contained a specific query -** parameter, and if so obtains the value of that query parameter. -** -** If F is the database filename pointer passed into the xOpen() method of -** a VFS implementation when the flags parameter to xOpen() has one or -** more of the [SQLITE_OPEN_URI] or [SQLITE_OPEN_MAIN_DB] bits set and -** P is the name of the query parameter, then -** sqlite3_uri_parameter(F,P) returns the value of the P -** parameter if it exists or a NULL pointer if P does not appear as a -** query parameter on F. If P is a query parameter of F -** has no explicit value, then sqlite3_uri_parameter(F,P) returns -** a pointer to an empty string. -** -** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean -** parameter and returns true (1) or false (0) according to the value -** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the -** value of query parameter P is one of "yes", "true", or "on" in any -** case or if the value begins with a non-zero number. The -** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of -** query parameter P is one of "no", "false", or "off" in any case or -** if the value begins with a numeric zero. If P is not a query -** parameter on F or if the value of P is does not match any of the -** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0). -** -** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a -** 64-bit signed integer and returns that integer, or D if P does not -** exist. If the value of P is something other than an integer, then -** zero is returned. -** -** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and -** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and -** is not a database file pathname pointer that SQLite passed into the xOpen -** VFS method, then the behavior of this routine is undefined and probably -** undesirable. -*/ -SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); -SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); -SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); - - -/* -** CAPI3REF: Error Codes And Messages -** -** ^The sqlite3_errcode() interface returns the numeric [result code] or -** [extended result code] for the most recent failed sqlite3_* API call -** associated with a [database connection]. If a prior API call failed -** but the most recent API call succeeded, the return value from -** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode() -** interface is the same except that it always returns the -** [extended result code] even when extended result codes are -** disabled. -** -** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language -** text that describes the error, as either UTF-8 or UTF-16 respectively. -** ^(Memory to hold the error message string is managed internally. -** The application does not need to worry about freeing the result. -** However, the error string might be overwritten or deallocated by -** subsequent calls to other SQLite interface functions.)^ -** -** ^The sqlite3_errstr() interface returns the English-language text -** that describes the [result code], as UTF-8. -** ^(Memory to hold the error message string is managed internally -** and must not be freed by the application)^. -** -** When the serialized [threading mode] is in use, it might be the -** case that a second error occurs on a separate thread in between -** the time of the first error and the call to these interfaces. -** When that happens, the second error will be reported since these -** interfaces always report the most recent result. To avoid -** this, each thread can obtain exclusive use of the [database connection] D -** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning -** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after -** all calls to the interfaces listed here are completed. -** -** If an interface fails with SQLITE_MISUSE, that means the interface -** was invoked incorrectly by the application. In that case, the -** error code and message may or may not be set. -*/ -SQLITE_API int sqlite3_errcode(sqlite3 *db); -SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); -SQLITE_API const char *sqlite3_errmsg(sqlite3*); -SQLITE_API const void *sqlite3_errmsg16(sqlite3*); -SQLITE_API const char *sqlite3_errstr(int); - -/* -** CAPI3REF: SQL Statement Object -** KEYWORDS: {prepared statement} {prepared statements} -** -** An instance of this object represents a single SQL statement. -** This object is variously known as a "prepared statement" or a -** "compiled SQL statement" or simply as a "statement". -** -** The life of a statement object goes something like this: -** -** <ol> -** <li> Create the object using [sqlite3_prepare_v2()] or a related -** function. -** <li> Bind values to [host parameters] using the sqlite3_bind_*() -** interfaces. -** <li> Run the SQL by calling [sqlite3_step()] one or more times. -** <li> Reset the statement using [sqlite3_reset()] then go back -** to step 2. Do this zero or more times. -** <li> Destroy the object using [sqlite3_finalize()]. -** </ol> -** -** Refer to documentation on individual methods above for additional -** information. -*/ -typedef struct sqlite3_stmt sqlite3_stmt; - -/* -** CAPI3REF: Run-time Limits -** -** ^(This interface allows the size of various constructs to be limited -** on a connection by connection basis. The first parameter is the -** [database connection] whose limit is to be set or queried. The -** second parameter is one of the [limit categories] that define a -** class of constructs to be size limited. The third parameter is the -** new limit for that construct.)^ -** -** ^If the new limit is a negative number, the limit is unchanged. -** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a -** [limits | hard upper bound] -** set at compile-time by a C preprocessor macro called -** [limits | SQLITE_MAX_<i>NAME</i>]. -** (The "_LIMIT_" in the name is changed to "_MAX_".))^ -** ^Attempts to increase a limit above its hard upper bound are -** silently truncated to the hard upper bound. -** -** ^Regardless of whether or not the limit was changed, the -** [sqlite3_limit()] interface returns the prior value of the limit. -** ^Hence, to find the current value of a limit without changing it, -** simply invoke this interface with the third parameter set to -1. -** -** Run-time limits are intended for use in applications that manage -** both their own internal database and also databases that are controlled -** by untrusted external sources. An example application might be a -** web browser that has its own databases for storing history and -** separate databases controlled by JavaScript applications downloaded -** off the Internet. The internal databases can be given the -** large, default limits. Databases managed by external sources can -** be given much smaller limits designed to prevent a denial of service -** attack. Developers might also want to use the [sqlite3_set_authorizer()] -** interface to further control untrusted SQL. The size of the database -** created by an untrusted script can be contained using the -** [max_page_count] [PRAGMA]. -** -** New run-time limit categories may be added in future releases. -*/ -SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); - -/* -** CAPI3REF: Run-Time Limit Categories -** KEYWORDS: {limit category} {*limit categories} -** -** These constants define various performance limits -** that can be lowered at run-time using [sqlite3_limit()]. -** The synopsis of the meanings of the various limits is shown below. -** Additional information is available at [limits | Limits in SQLite]. -** -** <dl> -** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt> -** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^ -** -** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt> -** <dd>The maximum length of an SQL statement, in bytes.</dd>)^ -** -** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt> -** <dd>The maximum number of columns in a table definition or in the -** result set of a [SELECT] or the maximum number of columns in an index -** or in an ORDER BY or GROUP BY clause.</dd>)^ -** -** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt> -** <dd>The maximum depth of the parse tree on any expression.</dd>)^ -** -** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt> -** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^ -** -** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt> -** <dd>The maximum number of instructions in a virtual machine program -** used to implement an SQL statement. This limit is not currently -** enforced, though that might be added in some future release of -** SQLite.</dd>)^ -** -** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt> -** <dd>The maximum number of arguments on a function.</dd>)^ -** -** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt> -** <dd>The maximum number of [ATTACH | attached databases].)^</dd> -** -** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]] -** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> -** <dd>The maximum length of the pattern argument to the [LIKE] or -** [GLOB] operators.</dd>)^ -** -** [[SQLITE_LIMIT_VARIABLE_NUMBER]] -** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> -** <dd>The maximum index number of any [parameter] in an SQL statement.)^ -** -** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt> -** <dd>The maximum depth of recursion for triggers.</dd>)^ -** </dl> -*/ -#define SQLITE_LIMIT_LENGTH 0 -#define SQLITE_LIMIT_SQL_LENGTH 1 -#define SQLITE_LIMIT_COLUMN 2 -#define SQLITE_LIMIT_EXPR_DEPTH 3 -#define SQLITE_LIMIT_COMPOUND_SELECT 4 -#define SQLITE_LIMIT_VDBE_OP 5 -#define SQLITE_LIMIT_FUNCTION_ARG 6 -#define SQLITE_LIMIT_ATTACHED 7 -#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 -#define SQLITE_LIMIT_VARIABLE_NUMBER 9 -#define SQLITE_LIMIT_TRIGGER_DEPTH 10 - -/* -** CAPI3REF: Compiling An SQL Statement -** KEYWORDS: {SQL statement compiler} -** -** To execute an SQL query, it must first be compiled into a byte-code -** program using one of these routines. -** -** The first argument, "db", is a [database connection] obtained from a -** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or -** [sqlite3_open16()]. The database connection must not have been closed. -** -** The second argument, "zSql", is the statement to be compiled, encoded -** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() -** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() -** use UTF-16. -** -** ^If the nByte argument is less than zero, then zSql is read up to the -** first zero terminator. ^If nByte is non-negative, then it is the maximum -** number of bytes read from zSql. ^When nByte is non-negative, the -** zSql string ends at either the first '\000' or '\u0000' character or -** the nByte-th byte, whichever comes first. If the caller knows -** that the supplied string is nul-terminated, then there is a small -** performance advantage to be gained by passing an nByte parameter that -** is equal to the number of bytes in the input string <i>including</i> -** the nul-terminator bytes as this saves SQLite from having to -** make a copy of the input string. -** -** ^If pzTail is not NULL then *pzTail is made to point to the first byte -** past the end of the first SQL statement in zSql. These routines only -** compile the first statement in zSql, so *pzTail is left pointing to -** what remains uncompiled. -** -** ^*ppStmt is left pointing to a compiled [prepared statement] that can be -** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set -** to NULL. ^If the input text contains no SQL (if the input is an empty -** string or a comment) then *ppStmt is set to NULL. -** The calling procedure is responsible for deleting the compiled -** SQL statement using [sqlite3_finalize()] after it has finished with it. -** ppStmt may not be NULL. -** -** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; -** otherwise an [error code] is returned. -** -** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are -** recommended for all new programs. The two older interfaces are retained -** for backwards compatibility, but their use is discouraged. -** ^In the "v2" interfaces, the prepared statement -** that is returned (the [sqlite3_stmt] object) contains a copy of the -** original SQL text. This causes the [sqlite3_step()] interface to -** behave differently in three ways: -** -** <ol> -** <li> -** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it -** always used to do, [sqlite3_step()] will automatically recompile the SQL -** statement and try to run it again. -** </li> -** -** <li> -** ^When an error occurs, [sqlite3_step()] will return one of the detailed -** [error codes] or [extended error codes]. ^The legacy behavior was that -** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code -** and the application would have to make a second call to [sqlite3_reset()] -** in order to find the underlying cause of the problem. With the "v2" prepare -** interfaces, the underlying reason for the error is returned immediately. -** </li> -** -** <li> -** ^If the specific value bound to [parameter | host parameter] in the -** WHERE clause might influence the choice of query plan for a statement, -** then the statement will be automatically recompiled, as if there had been -** a schema change, on the first [sqlite3_step()] call following any change -** to the [sqlite3_bind_text | bindings] of that [parameter]. -** ^The specific value of WHERE-clause [parameter] might influence the -** choice of query plan if the parameter is the left-hand side of a [LIKE] -** or [GLOB] operator or if the parameter is compared to an indexed column -** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. -** the -** </li> -** </ol> -*/ -SQLITE_API int sqlite3_prepare( - sqlite3 *db, /* Database handle */ - const char *zSql, /* SQL statement, UTF-8 encoded */ - int nByte, /* Maximum length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: Statement handle */ - const char **pzTail /* OUT: Pointer to unused portion of zSql */ -); -SQLITE_API int sqlite3_prepare_v2( - sqlite3 *db, /* Database handle */ - const char *zSql, /* SQL statement, UTF-8 encoded */ - int nByte, /* Maximum length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: Statement handle */ - const char **pzTail /* OUT: Pointer to unused portion of zSql */ -); -SQLITE_API int sqlite3_prepare16( - sqlite3 *db, /* Database handle */ - const void *zSql, /* SQL statement, UTF-16 encoded */ - int nByte, /* Maximum length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: Statement handle */ - const void **pzTail /* OUT: Pointer to unused portion of zSql */ -); -SQLITE_API int sqlite3_prepare16_v2( - sqlite3 *db, /* Database handle */ - const void *zSql, /* SQL statement, UTF-16 encoded */ - int nByte, /* Maximum length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: Statement handle */ - const void **pzTail /* OUT: Pointer to unused portion of zSql */ -); - -/* -** CAPI3REF: Retrieving Statement SQL -** -** ^This interface can be used to retrieve a saved copy of the original -** SQL text used to create a [prepared statement] if that statement was -** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. -*/ -SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Determine If An SQL Statement Writes The Database -** -** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if -** and only if the [prepared statement] X makes no direct changes to -** the content of the database file. -** -** Note that [application-defined SQL functions] or -** [virtual tables] might change the database indirectly as a side effect. -** ^(For example, if an application defines a function "eval()" that -** calls [sqlite3_exec()], then the following SQL statement would -** change the database file through side-effects: -** -** <blockquote><pre> -** SELECT eval('DELETE FROM t1') FROM t2; -** </pre></blockquote> -** -** But because the [SELECT] statement does not change the database file -** directly, sqlite3_stmt_readonly() would still return true.)^ -** -** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK], -** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, -** since the statements themselves do not actually modify the database but -** rather they control the timing of when other statements modify the -** database. ^The [ATTACH] and [DETACH] statements also cause -** sqlite3_stmt_readonly() to return true since, while those statements -** change the configuration of a database connection, they do not make -** changes to the content of the database files on disk. -*/ -SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Determine If A Prepared Statement Has Been Reset -** -** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the -** [prepared statement] S has been stepped at least once using -** [sqlite3_step(S)] but has not run to completion and/or has not -** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) -** interface returns false if S is a NULL pointer. If S is not a -** NULL pointer and is not a pointer to a valid [prepared statement] -** object, then the behavior is undefined and probably undesirable. -** -** This interface can be used in combination [sqlite3_next_stmt()] -** to locate all prepared statements associated with a database -** connection that are in need of being reset. This can be used, -** for example, in diagnostic routines to search for prepared -** statements that are holding a transaction open. -*/ -SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); - -/* -** CAPI3REF: Dynamically Typed Value Object -** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} -** -** SQLite uses the sqlite3_value object to represent all values -** that can be stored in a database table. SQLite uses dynamic typing -** for the values it stores. ^Values stored in sqlite3_value objects -** can be integers, floating point values, strings, BLOBs, or NULL. -** -** An sqlite3_value object may be either "protected" or "unprotected". -** Some interfaces require a protected sqlite3_value. Other interfaces -** will accept either a protected or an unprotected sqlite3_value. -** Every interface that accepts sqlite3_value arguments specifies -** whether or not it requires a protected sqlite3_value. -** -** The terms "protected" and "unprotected" refer to whether or not -** a mutex is held. An internal mutex is held for a protected -** sqlite3_value object but no mutex is held for an unprotected -** sqlite3_value object. If SQLite is compiled to be single-threaded -** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) -** or if SQLite is run in one of reduced mutex modes -** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] -** then there is no distinction between protected and unprotected -** sqlite3_value objects and they can be used interchangeably. However, -** for maximum code portability it is recommended that applications -** still make the distinction between protected and unprotected -** sqlite3_value objects even when not strictly required. -** -** ^The sqlite3_value objects that are passed as parameters into the -** implementation of [application-defined SQL functions] are protected. -** ^The sqlite3_value object returned by -** [sqlite3_column_value()] is unprotected. -** Unprotected sqlite3_value objects may only be used with -** [sqlite3_result_value()] and [sqlite3_bind_value()]. -** The [sqlite3_value_blob | sqlite3_value_type()] family of -** interfaces require protected sqlite3_value objects. -*/ -typedef struct Mem sqlite3_value; - -/* -** CAPI3REF: SQL Function Context Object -** -** The context in which an SQL function executes is stored in an -** sqlite3_context object. ^A pointer to an sqlite3_context object -** is always first parameter to [application-defined SQL functions]. -** The application-defined SQL function implementation will pass this -** pointer through into calls to [sqlite3_result_int | sqlite3_result()], -** [sqlite3_aggregate_context()], [sqlite3_user_data()], -** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], -** and/or [sqlite3_set_auxdata()]. -*/ -typedef struct sqlite3_context sqlite3_context; - -/* -** CAPI3REF: Binding Values To Prepared Statements -** KEYWORDS: {host parameter} {host parameters} {host parameter name} -** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} -** -** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, -** literals may be replaced by a [parameter] that matches one of following -** templates: -** -** <ul> -** <li> ? -** <li> ?NNN -** <li> :VVV -** <li> @VVV -** <li> $VVV -** </ul> -** -** In the templates above, NNN represents an integer literal, -** and VVV represents an alphanumeric identifier.)^ ^The values of these -** parameters (also called "host parameter names" or "SQL parameters") -** can be set using the sqlite3_bind_*() routines defined here. -** -** ^The first argument to the sqlite3_bind_*() routines is always -** a pointer to the [sqlite3_stmt] object returned from -** [sqlite3_prepare_v2()] or its variants. -** -** ^The second argument is the index of the SQL parameter to be set. -** ^The leftmost SQL parameter has an index of 1. ^When the same named -** SQL parameter is used more than once, second and subsequent -** occurrences have the same index as the first occurrence. -** ^The index for named parameters can be looked up using the -** [sqlite3_bind_parameter_index()] API if desired. ^The index -** for "?NNN" parameters is the value of NNN. -** ^The NNN value must be between 1 and the [sqlite3_limit()] -** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). -** -** ^The third argument is the value to bind to the parameter. -** -** ^(In those routines that have a fourth argument, its value is the -** number of bytes in the parameter. To be clear: the value is the -** number of <u>bytes</u> in the value, not the number of characters.)^ -** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() -** is negative, then the length of the string is -** the number of bytes up to the first zero terminator. -** If the fourth parameter to sqlite3_bind_blob() is negative, then -** the behavior is undefined. -** If a non-negative fourth parameter is provided to sqlite3_bind_text() -** or sqlite3_bind_text16() then that parameter must be the byte offset -** where the NUL terminator would occur assuming the string were NUL -** terminated. If any NUL characters occur at byte offsets less than -** the value of the fourth parameter then the resulting string value will -** contain embedded NULs. The result of expressions involving strings -** with embedded NULs is undefined. -** -** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and -** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or -** string after SQLite has finished with it. ^The destructor is called -** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(), -** sqlite3_bind_text(), or sqlite3_bind_text16() fails. -** ^If the fifth argument is -** the special value [SQLITE_STATIC], then SQLite assumes that the -** information is in static, unmanaged space and does not need to be freed. -** ^If the fifth argument has the value [SQLITE_TRANSIENT], then -** SQLite makes its own private copy of the data immediately, before -** the sqlite3_bind_*() routine returns. -** -** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that -** is filled with zeroes. ^A zeroblob uses a fixed amount of memory -** (just an integer to hold its size) while it is being processed. -** Zeroblobs are intended to serve as placeholders for BLOBs whose -** content is later written using -** [sqlite3_blob_open | incremental BLOB I/O] routines. -** ^A negative value for the zeroblob results in a zero-length BLOB. -** -** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer -** for the [prepared statement] or with a prepared statement for which -** [sqlite3_step()] has been called more recently than [sqlite3_reset()], -** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() -** routine is passed a [prepared statement] that has been finalized, the -** result is undefined and probably harmful. -** -** ^Bindings are not cleared by the [sqlite3_reset()] routine. -** ^Unbound parameters are interpreted as NULL. -** -** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an -** [error code] if anything goes wrong. -** ^[SQLITE_RANGE] is returned if the parameter -** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. -** -** See also: [sqlite3_bind_parameter_count()], -** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. -*/ -SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); -SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); -SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); -SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); -SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); -SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); -SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); -SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); -SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); - -/* -** CAPI3REF: Number Of SQL Parameters -** -** ^This routine can be used to find the number of [SQL parameters] -** in a [prepared statement]. SQL parameters are tokens of the -** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as -** placeholders for values that are [sqlite3_bind_blob | bound] -** to the parameters at a later time. -** -** ^(This routine actually returns the index of the largest (rightmost) -** parameter. For all forms except ?NNN, this will correspond to the -** number of unique parameters. If parameters of the ?NNN form are used, -** there may be gaps in the list.)^ -** -** See also: [sqlite3_bind_blob|sqlite3_bind()], -** [sqlite3_bind_parameter_name()], and -** [sqlite3_bind_parameter_index()]. -*/ -SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); - -/* -** CAPI3REF: Name Of A Host Parameter -** -** ^The sqlite3_bind_parameter_name(P,N) interface returns -** the name of the N-th [SQL parameter] in the [prepared statement] P. -** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" -** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" -** respectively. -** In other words, the initial ":" or "$" or "@" or "?" -** is included as part of the name.)^ -** ^Parameters of the form "?" without a following integer have no name -** and are referred to as "nameless" or "anonymous parameters". -** -** ^The first host parameter has an index of 1, not 0. -** -** ^If the value N is out of range or if the N-th parameter is -** nameless, then NULL is returned. ^The returned string is -** always in UTF-8 encoding even if the named parameter was -** originally specified as UTF-16 in [sqlite3_prepare16()] or -** [sqlite3_prepare16_v2()]. -** -** See also: [sqlite3_bind_blob|sqlite3_bind()], -** [sqlite3_bind_parameter_count()], and -** [sqlite3_bind_parameter_index()]. -*/ -SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); - -/* -** CAPI3REF: Index Of A Parameter With A Given Name -** -** ^Return the index of an SQL parameter given its name. ^The -** index value returned is suitable for use as the second -** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero -** is returned if no matching parameter is found. ^The parameter -** name must be given in UTF-8 even if the original statement -** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. -** -** See also: [sqlite3_bind_blob|sqlite3_bind()], -** [sqlite3_bind_parameter_count()], and -** [sqlite3_bind_parameter_index()]. -*/ -SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); - -/* -** CAPI3REF: Reset All Bindings On A Prepared Statement -** -** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset -** the [sqlite3_bind_blob | bindings] on a [prepared statement]. -** ^Use this routine to reset all host parameters to NULL. -*/ -SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); - -/* -** CAPI3REF: Number Of Columns In A Result Set -** -** ^Return the number of columns in the result set returned by the -** [prepared statement]. ^This routine returns 0 if pStmt is an SQL -** statement that does not return data (for example an [UPDATE]). -** -** See also: [sqlite3_data_count()] -*/ -SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Column Names In A Result Set -** -** ^These routines return the name assigned to a particular column -** in the result set of a [SELECT] statement. ^The sqlite3_column_name() -** interface returns a pointer to a zero-terminated UTF-8 string -** and sqlite3_column_name16() returns a pointer to a zero-terminated -** UTF-16 string. ^The first parameter is the [prepared statement] -** that implements the [SELECT] statement. ^The second parameter is the -** column number. ^The leftmost column is number 0. -** -** ^The returned string pointer is valid until either the [prepared statement] -** is destroyed by [sqlite3_finalize()] or until the statement is automatically -** reprepared by the first call to [sqlite3_step()] for a particular run -** or until the next call to -** sqlite3_column_name() or sqlite3_column_name16() on the same column. -** -** ^If sqlite3_malloc() fails during the processing of either routine -** (for example during a conversion from UTF-8 to UTF-16) then a -** NULL pointer is returned. -** -** ^The name of a result column is the value of the "AS" clause for -** that column, if there is an AS clause. If there is no AS clause -** then the name of the column is unspecified and may change from -** one release of SQLite to the next. -*/ -SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); -SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); - -/* -** CAPI3REF: Source Of Data In A Query Result -** -** ^These routines provide a means to determine the database, table, and -** table column that is the origin of a particular result column in -** [SELECT] statement. -** ^The name of the database or table or column can be returned as -** either a UTF-8 or UTF-16 string. ^The _database_ routines return -** the database name, the _table_ routines return the table name, and -** the origin_ routines return the column name. -** ^The returned string is valid until the [prepared statement] is destroyed -** using [sqlite3_finalize()] or until the statement is automatically -** reprepared by the first call to [sqlite3_step()] for a particular run -** or until the same information is requested -** again in a different encoding. -** -** ^The names returned are the original un-aliased names of the -** database, table, and column. -** -** ^The first argument to these interfaces is a [prepared statement]. -** ^These functions return information about the Nth result column returned by -** the statement, where N is the second function argument. -** ^The left-most column is column 0 for these routines. -** -** ^If the Nth column returned by the statement is an expression or -** subquery and is not a column value, then all of these functions return -** NULL. ^These routine might also return NULL if a memory allocation error -** occurs. ^Otherwise, they return the name of the attached database, table, -** or column that query result column was extracted from. -** -** ^As with all other SQLite APIs, those whose names end with "16" return -** UTF-16 encoded strings and the other functions return UTF-8. -** -** ^These APIs are only available if the library was compiled with the -** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. -** -** If two or more threads call one or more of these routines against the same -** prepared statement and column at the same time then the results are -** undefined. -** -** If two or more threads call one or more -** [sqlite3_column_database_name | column metadata interfaces] -** for the same [prepared statement] and result column -** at the same time then the results are undefined. -*/ -SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int); -SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int); -SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int); -SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int); -SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); -SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); - -/* -** CAPI3REF: Declared Datatype Of A Query Result -** -** ^(The first parameter is a [prepared statement]. -** If this statement is a [SELECT] statement and the Nth column of the -** returned result set of that [SELECT] is a table column (not an -** expression or subquery) then the declared type of the table -** column is returned.)^ ^If the Nth column of the result set is an -** expression or subquery, then a NULL pointer is returned. -** ^The returned string is always UTF-8 encoded. -** -** ^(For example, given the database schema: -** -** CREATE TABLE t1(c1 VARIANT); -** -** and the following statement to be compiled: -** -** SELECT c1 + 1, c1 FROM t1; -** -** this routine would return the string "VARIANT" for the second result -** column (i==1), and a NULL pointer for the first result column (i==0).)^ -** -** ^SQLite uses dynamic run-time typing. ^So just because a column -** is declared to contain a particular type does not mean that the -** data stored in that column is of the declared type. SQLite is -** strongly typed, but the typing is dynamic not static. ^Type -** is associated with individual values, not with the containers -** used to hold those values. -*/ -SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); -SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); - -/* -** CAPI3REF: Evaluate An SQL Statement -** -** After a [prepared statement] has been prepared using either -** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy -** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function -** must be called one or more times to evaluate the statement. -** -** The details of the behavior of the sqlite3_step() interface depend -** on whether the statement was prepared using the newer "v2" interface -** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy -** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the -** new "v2" interface is recommended for new applications but the legacy -** interface will continue to be supported. -** -** ^In the legacy interface, the return value will be either [SQLITE_BUSY], -** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. -** ^With the "v2" interface, any of the other [result codes] or -** [extended result codes] might be returned as well. -** -** ^[SQLITE_BUSY] means that the database engine was unable to acquire the -** database locks it needs to do its job. ^If the statement is a [COMMIT] -** or occurs outside of an explicit transaction, then you can retry the -** statement. If the statement is not a [COMMIT] and occurs within an -** explicit transaction then you should rollback the transaction before -** continuing. -** -** ^[SQLITE_DONE] means that the statement has finished executing -** successfully. sqlite3_step() should not be called again on this virtual -** machine without first calling [sqlite3_reset()] to reset the virtual -** machine back to its initial state. -** -** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] -** is returned each time a new row of data is ready for processing by the -** caller. The values may be accessed using the [column access functions]. -** sqlite3_step() is called again to retrieve the next row of data. -** -** ^[SQLITE_ERROR] means that a run-time error (such as a constraint -** violation) has occurred. sqlite3_step() should not be called again on -** the VM. More information may be found by calling [sqlite3_errmsg()]. -** ^With the legacy interface, a more specific error code (for example, -** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) -** can be obtained by calling [sqlite3_reset()] on the -** [prepared statement]. ^In the "v2" interface, -** the more specific error code is returned directly by sqlite3_step(). -** -** [SQLITE_MISUSE] means that the this routine was called inappropriately. -** Perhaps it was called on a [prepared statement] that has -** already been [sqlite3_finalize | finalized] or on one that had -** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could -** be the case that the same database connection is being used by two or -** more threads at the same moment in time. -** -** For all versions of SQLite up to and including 3.6.23.1, a call to -** [sqlite3_reset()] was required after sqlite3_step() returned anything -** other than [SQLITE_ROW] before any subsequent invocation of -** sqlite3_step(). Failure to reset the prepared statement using -** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from -** sqlite3_step(). But after version 3.6.23.1, sqlite3_step() began -** calling [sqlite3_reset()] automatically in this circumstance rather -** than returning [SQLITE_MISUSE]. This is not considered a compatibility -** break because any application that ever receives an SQLITE_MISUSE error -** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option -** can be used to restore the legacy behavior. -** -** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step() -** API always returns a generic error code, [SQLITE_ERROR], following any -** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call -** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the -** specific [error codes] that better describes the error. -** We admit that this is a goofy design. The problem has been fixed -** with the "v2" interface. If you prepare all of your SQL statements -** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead -** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, -** then the more specific [error codes] are returned directly -** by sqlite3_step(). The use of the "v2" interface is recommended. -*/ -SQLITE_API int sqlite3_step(sqlite3_stmt*); - -/* -** CAPI3REF: Number of columns in a result set -** -** ^The sqlite3_data_count(P) interface returns the number of columns in the -** current row of the result set of [prepared statement] P. -** ^If prepared statement P does not have results ready to return -** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of -** interfaces) then sqlite3_data_count(P) returns 0. -** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. -** ^The sqlite3_data_count(P) routine returns 0 if the previous call to -** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P) -** will return non-zero if previous call to [sqlite3_step](P) returned -** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum] -** where it always returns zero since each step of that multi-step -** pragma returns 0 columns of data. -** -** See also: [sqlite3_column_count()] -*/ -SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Fundamental Datatypes -** KEYWORDS: SQLITE_TEXT -** -** ^(Every value in SQLite has one of five fundamental datatypes: -** -** <ul> -** <li> 64-bit signed integer -** <li> 64-bit IEEE floating point number -** <li> string -** <li> BLOB -** <li> NULL -** </ul>)^ -** -** These constants are codes for each of those types. -** -** Note that the SQLITE_TEXT constant was also used in SQLite version 2 -** for a completely different meaning. Software that links against both -** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not -** SQLITE_TEXT. -*/ -#define SQLITE_INTEGER 1 -#define SQLITE_FLOAT 2 -#define SQLITE_BLOB 4 -#define SQLITE_NULL 5 -#ifdef SQLITE_TEXT -# undef SQLITE_TEXT -#else -# define SQLITE_TEXT 3 -#endif -#define SQLITE3_TEXT 3 - -/* -** CAPI3REF: Result Values From A Query -** KEYWORDS: {column access functions} -** -** These routines form the "result set" interface. -** -** ^These routines return information about a single column of the current -** result row of a query. ^In every case the first argument is a pointer -** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] -** that was returned from [sqlite3_prepare_v2()] or one of its variants) -** and the second argument is the index of the column for which information -** should be returned. ^The leftmost column of the result set has the index 0. -** ^The number of columns in the result can be determined using -** [sqlite3_column_count()]. -** -** If the SQL statement does not currently point to a valid row, or if the -** column index is out of range, the result is undefined. -** These routines may only be called when the most recent call to -** [sqlite3_step()] has returned [SQLITE_ROW] and neither -** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. -** If any of these routines are called after [sqlite3_reset()] or -** [sqlite3_finalize()] or after [sqlite3_step()] has returned -** something other than [SQLITE_ROW], the results are undefined. -** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] -** are called from a different thread while any of these routines -** are pending, then the results are undefined. -** -** ^The sqlite3_column_type() routine returns the -** [SQLITE_INTEGER | datatype code] for the initial data type -** of the result column. ^The returned value is one of [SQLITE_INTEGER], -** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value -** returned by sqlite3_column_type() is only meaningful if no type -** conversions have occurred as described below. After a type conversion, -** the value returned by sqlite3_column_type() is undefined. Future -** versions of SQLite may change the behavior of sqlite3_column_type() -** following a type conversion. -** -** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() -** routine returns the number of bytes in that BLOB or string. -** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts -** the string to UTF-8 and then returns the number of bytes. -** ^If the result is a numeric value then sqlite3_column_bytes() uses -** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns -** the number of bytes in that string. -** ^If the result is NULL, then sqlite3_column_bytes() returns zero. -** -** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16() -** routine returns the number of bytes in that BLOB or string. -** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts -** the string to UTF-16 and then returns the number of bytes. -** ^If the result is a numeric value then sqlite3_column_bytes16() uses -** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns -** the number of bytes in that string. -** ^If the result is NULL, then sqlite3_column_bytes16() returns zero. -** -** ^The values returned by [sqlite3_column_bytes()] and -** [sqlite3_column_bytes16()] do not include the zero terminators at the end -** of the string. ^For clarity: the values returned by -** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of -** bytes in the string, not the number of characters. -** -** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), -** even empty strings, are always zero-terminated. ^The return -** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. -** -** ^The object returned by [sqlite3_column_value()] is an -** [unprotected sqlite3_value] object. An unprotected sqlite3_value object -** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. -** If the [unprotected sqlite3_value] object returned by -** [sqlite3_column_value()] is used in any other way, including calls -** to routines like [sqlite3_value_int()], [sqlite3_value_text()], -** or [sqlite3_value_bytes()], then the behavior is undefined. -** -** These routines attempt to convert the value where appropriate. ^For -** example, if the internal representation is FLOAT and a text result -** is requested, [sqlite3_snprintf()] is used internally to perform the -** conversion automatically. ^(The following table details the conversions -** that are applied: -** -** <blockquote> -** <table border="1"> -** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion -** -** <tr><td> NULL <td> INTEGER <td> Result is 0 -** <tr><td> NULL <td> FLOAT <td> Result is 0.0 -** <tr><td> NULL <td> TEXT <td> Result is NULL pointer -** <tr><td> NULL <td> BLOB <td> Result is NULL pointer -** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float -** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer -** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT -** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer -** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float -** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT -** <tr><td> TEXT <td> INTEGER <td> Use atoi() -** <tr><td> TEXT <td> FLOAT <td> Use atof() -** <tr><td> TEXT <td> BLOB <td> No change -** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi() -** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof() -** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed -** </table> -** </blockquote>)^ -** -** The table above makes reference to standard C library functions atoi() -** and atof(). SQLite does not really use these functions. It has its -** own equivalent internal routines. The atoi() and atof() names are -** used in the table for brevity and because they are familiar to most -** C programmers. -** -** Note that when type conversions occur, pointers returned by prior -** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or -** sqlite3_column_text16() may be invalidated. -** Type conversions and pointer invalidations might occur -** in the following cases: -** -** <ul> -** <li> The initial content is a BLOB and sqlite3_column_text() or -** sqlite3_column_text16() is called. A zero-terminator might -** need to be added to the string.</li> -** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or -** sqlite3_column_text16() is called. The content must be converted -** to UTF-16.</li> -** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or -** sqlite3_column_text() is called. The content must be converted -** to UTF-8.</li> -** </ul> -** -** ^Conversions between UTF-16be and UTF-16le are always done in place and do -** not invalidate a prior pointer, though of course the content of the buffer -** that the prior pointer references will have been modified. Other kinds -** of conversion are done in place when it is possible, but sometimes they -** are not possible and in those cases prior pointers are invalidated. -** -** The safest and easiest to remember policy is to invoke these routines -** in one of the following ways: -** -** <ul> -** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li> -** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li> -** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li> -** </ul> -** -** In other words, you should call sqlite3_column_text(), -** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result -** into the desired format, then invoke sqlite3_column_bytes() or -** sqlite3_column_bytes16() to find the size of the result. Do not mix calls -** to sqlite3_column_text() or sqlite3_column_blob() with calls to -** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() -** with calls to sqlite3_column_bytes(). -** -** ^The pointers returned are valid until a type conversion occurs as -** described above, or until [sqlite3_step()] or [sqlite3_reset()] or -** [sqlite3_finalize()] is called. ^The memory space used to hold strings -** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned -** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into -** [sqlite3_free()]. -** -** ^(If a memory allocation error occurs during the evaluation of any -** of these routines, a default value is returned. The default value -** is either the integer 0, the floating point number 0.0, or a NULL -** pointer. Subsequent calls to [sqlite3_errcode()] will return -** [SQLITE_NOMEM].)^ -*/ -SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); -SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); -SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); -SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol); -SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol); -SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); -SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); -SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); -SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); -SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); - -/* -** CAPI3REF: Destroy A Prepared Statement Object -** -** ^The sqlite3_finalize() function is called to delete a [prepared statement]. -** ^If the most recent evaluation of the statement encountered no errors -** or if the statement is never been evaluated, then sqlite3_finalize() returns -** SQLITE_OK. ^If the most recent evaluation of statement S failed, then -** sqlite3_finalize(S) returns the appropriate [error code] or -** [extended error code]. -** -** ^The sqlite3_finalize(S) routine can be called at any point during -** the life cycle of [prepared statement] S: -** before statement S is ever evaluated, after -** one or more calls to [sqlite3_reset()], or after any call -** to [sqlite3_step()] regardless of whether or not the statement has -** completed execution. -** -** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op. -** -** The application must finalize every [prepared statement] in order to avoid -** resource leaks. It is a grievous error for the application to try to use -** a prepared statement after it has been finalized. Any use of a prepared -** statement after it has been finalized can result in undefined and -** undesirable behavior such as segfaults and heap corruption. -*/ -SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Reset A Prepared Statement Object -** -** The sqlite3_reset() function is called to reset a [prepared statement] -** object back to its initial state, ready to be re-executed. -** ^Any SQL statement variables that had values bound to them using -** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. -** Use [sqlite3_clear_bindings()] to reset the bindings. -** -** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S -** back to the beginning of its program. -** -** ^If the most recent call to [sqlite3_step(S)] for the -** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], -** or if [sqlite3_step(S)] has never before been called on S, -** then [sqlite3_reset(S)] returns [SQLITE_OK]. -** -** ^If the most recent call to [sqlite3_step(S)] for the -** [prepared statement] S indicated an error, then -** [sqlite3_reset(S)] returns an appropriate [error code]. -** -** ^The [sqlite3_reset(S)] interface does not change the values -** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. -*/ -SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Create Or Redefine SQL Functions -** KEYWORDS: {function creation routines} -** KEYWORDS: {application-defined SQL function} -** KEYWORDS: {application-defined SQL functions} -** -** ^These functions (collectively known as "function creation routines") -** are used to add SQL functions or aggregates or to redefine the behavior -** of existing SQL functions or aggregates. The only differences between -** these routines are the text encoding expected for -** the second parameter (the name of the function being created) -** and the presence or absence of a destructor callback for -** the application data pointer. -** -** ^The first parameter is the [database connection] to which the SQL -** function is to be added. ^If an application uses more than one database -** connection then application-defined SQL functions must be added -** to each database connection separately. -** -** ^The second parameter is the name of the SQL function to be created or -** redefined. ^The length of the name is limited to 255 bytes in a UTF-8 -** representation, exclusive of the zero-terminator. ^Note that the name -** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes. -** ^Any attempt to create a function with a longer name -** will result in [SQLITE_MISUSE] being returned. -** -** ^The third parameter (nArg) -** is the number of arguments that the SQL function or -** aggregate takes. ^If this parameter is -1, then the SQL function or -** aggregate may take any number of arguments between 0 and the limit -** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third -** parameter is less than -1 or greater than 127 then the behavior is -** undefined. -** -** ^The fourth parameter, eTextRep, specifies what -** [SQLITE_UTF8 | text encoding] this SQL function prefers for -** its parameters. Every SQL function implementation must be able to work -** with UTF-8, UTF-16le, or UTF-16be. But some implementations may be -** more efficient with one encoding than another. ^An application may -** invoke sqlite3_create_function() or sqlite3_create_function16() multiple -** times with the same function but with different values of eTextRep. -** ^When multiple implementations of the same function are available, SQLite -** will pick the one that involves the least amount of data conversion. -** If there is only a single implementation which does not care what text -** encoding is used, then the fourth argument should be [SQLITE_ANY]. -** -** ^(The fifth parameter is an arbitrary pointer. The implementation of the -** function can gain access to this pointer using [sqlite3_user_data()].)^ -** -** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are -** pointers to C-language functions that implement the SQL function or -** aggregate. ^A scalar SQL function requires an implementation of the xFunc -** callback only; NULL pointers must be passed as the xStep and xFinal -** parameters. ^An aggregate SQL function requires an implementation of xStep -** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing -** SQL function or aggregate, pass NULL pointers for all three function -** callbacks. -** -** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL, -** then it is destructor for the application data pointer. -** The destructor is invoked when the function is deleted, either by being -** overloaded or when the database connection closes.)^ -** ^The destructor is also invoked if the call to -** sqlite3_create_function_v2() fails. -** ^When the destructor callback of the tenth parameter is invoked, it -** is passed a single argument which is a copy of the application data -** pointer which was the fifth parameter to sqlite3_create_function_v2(). -** -** ^It is permitted to register multiple implementations of the same -** functions with the same name but with either differing numbers of -** arguments or differing preferred text encodings. ^SQLite will use -** the implementation that most closely matches the way in which the -** SQL function is used. ^A function implementation with a non-negative -** nArg parameter is a better match than a function implementation with -** a negative nArg. ^A function where the preferred text encoding -** matches the database encoding is a better -** match than a function where the encoding is different. -** ^A function where the encoding difference is between UTF16le and UTF16be -** is a closer match than a function where the encoding difference is -** between UTF8 and UTF16. -** -** ^Built-in functions may be overloaded by new application-defined functions. -** -** ^An application-defined function is permitted to call other -** SQLite interfaces. However, such calls must not -** close the database connection nor finalize or reset the prepared -** statement in which the function is running. -*/ -SQLITE_API int sqlite3_create_function( - sqlite3 *db, - const char *zFunctionName, - int nArg, - int eTextRep, - void *pApp, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*) -); -SQLITE_API int sqlite3_create_function16( - sqlite3 *db, - const void *zFunctionName, - int nArg, - int eTextRep, - void *pApp, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*) -); -SQLITE_API int sqlite3_create_function_v2( - sqlite3 *db, - const char *zFunctionName, - int nArg, - int eTextRep, - void *pApp, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*), - void(*xDestroy)(void*) -); - -/* -** CAPI3REF: Text Encodings -** -** These constant define integer codes that represent the various -** text encodings supported by SQLite. -*/ -#define SQLITE_UTF8 1 -#define SQLITE_UTF16LE 2 -#define SQLITE_UTF16BE 3 -#define SQLITE_UTF16 4 /* Use native byte order */ -#define SQLITE_ANY 5 /* sqlite3_create_function only */ -#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ - -/* -** CAPI3REF: Deprecated Functions -** DEPRECATED -** -** These functions are [deprecated]. In order to maintain -** backwards compatibility with older code, these functions continue -** to be supported. However, new applications should avoid -** the use of these functions. To help encourage people to avoid -** using these functions, we are not going to tell you what they do. -*/ -#ifndef SQLITE_OMIT_DEPRECATED -SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); -SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); -SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); -SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void); -SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); -SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), - void*,sqlite3_int64); -#endif - -/* -** CAPI3REF: Obtaining SQL Function Parameter Values -** -** The C-language implementation of SQL functions and aggregates uses -** this set of interface routines to access the parameter values on -** the function or aggregate. -** -** The xFunc (for scalar functions) or xStep (for aggregates) parameters -** to [sqlite3_create_function()] and [sqlite3_create_function16()] -** define callbacks that implement the SQL functions and aggregates. -** The 3rd parameter to these callbacks is an array of pointers to -** [protected sqlite3_value] objects. There is one [sqlite3_value] object for -** each parameter to the SQL function. These routines are used to -** extract values from the [sqlite3_value] objects. -** -** These routines work only with [protected sqlite3_value] objects. -** Any attempt to use these routines on an [unprotected sqlite3_value] -** object results in undefined behavior. -** -** ^These routines work just like the corresponding [column access functions] -** except that these routines take a single [protected sqlite3_value] object -** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. -** -** ^The sqlite3_value_text16() interface extracts a UTF-16 string -** in the native byte-order of the host machine. ^The -** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces -** extract UTF-16 strings as big-endian and little-endian respectively. -** -** ^(The sqlite3_value_numeric_type() interface attempts to apply -** numeric affinity to the value. This means that an attempt is -** made to convert the value to an integer or floating point. If -** such a conversion is possible without loss of information (in other -** words, if the value is a string that looks like a number) -** then the conversion is performed. Otherwise no conversion occurs. -** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ -** -** Please pay particular attention to the fact that the pointer returned -** from [sqlite3_value_blob()], [sqlite3_value_text()], or -** [sqlite3_value_text16()] can be invalidated by a subsequent call to -** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], -** or [sqlite3_value_text16()]. -** -** These routines must be called from the same thread as -** the SQL function that supplied the [sqlite3_value*] parameters. -*/ -SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); -SQLITE_API int sqlite3_value_bytes(sqlite3_value*); -SQLITE_API int sqlite3_value_bytes16(sqlite3_value*); -SQLITE_API double sqlite3_value_double(sqlite3_value*); -SQLITE_API int sqlite3_value_int(sqlite3_value*); -SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*); -SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*); -SQLITE_API const void *sqlite3_value_text16(sqlite3_value*); -SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*); -SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*); -SQLITE_API int sqlite3_value_type(sqlite3_value*); -SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); - -/* -** CAPI3REF: Obtain Aggregate Function Context -** -** Implementations of aggregate SQL functions use this -** routine to allocate memory for storing their state. -** -** ^The first time the sqlite3_aggregate_context(C,N) routine is called -** for a particular aggregate function, SQLite -** allocates N of memory, zeroes out that memory, and returns a pointer -** to the new memory. ^On second and subsequent calls to -** sqlite3_aggregate_context() for the same aggregate function instance, -** the same buffer is returned. Sqlite3_aggregate_context() is normally -** called once for each invocation of the xStep callback and then one -** last time when the xFinal callback is invoked. ^(When no rows match -** an aggregate query, the xStep() callback of the aggregate function -** implementation is never called and xFinal() is called exactly once. -** In those cases, sqlite3_aggregate_context() might be called for the -** first time from within xFinal().)^ -** -** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer -** when first called if N is less than or equal to zero or if a memory -** allocate error occurs. -** -** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is -** determined by the N parameter on first successful call. Changing the -** value of N in subsequent call to sqlite3_aggregate_context() within -** the same aggregate function instance will not resize the memory -** allocation.)^ Within the xFinal callback, it is customary to set -** N=0 in calls to sqlite3_aggregate_context(C,N) so that no -** pointless memory allocations occur. -** -** ^SQLite automatically frees the memory allocated by -** sqlite3_aggregate_context() when the aggregate query concludes. -** -** The first parameter must be a copy of the -** [sqlite3_context | SQL function context] that is the first parameter -** to the xStep or xFinal callback routine that implements the aggregate -** function. -** -** This routine must be called from the same thread in which -** the aggregate SQL function is running. -*/ -SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); - -/* -** CAPI3REF: User Data For Functions -** -** ^The sqlite3_user_data() interface returns a copy of -** the pointer that was the pUserData parameter (the 5th parameter) -** of the [sqlite3_create_function()] -** and [sqlite3_create_function16()] routines that originally -** registered the application defined function. -** -** This routine must be called from the same thread in which -** the application-defined function is running. -*/ -SQLITE_API void *sqlite3_user_data(sqlite3_context*); - -/* -** CAPI3REF: Database Connection For Functions -** -** ^The sqlite3_context_db_handle() interface returns a copy of -** the pointer to the [database connection] (the 1st parameter) -** of the [sqlite3_create_function()] -** and [sqlite3_create_function16()] routines that originally -** registered the application defined function. -*/ -SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); - -/* -** CAPI3REF: Function Auxiliary Data -** -** The following two functions may be used by scalar SQL functions to -** associate metadata with argument values. If the same value is passed to -** multiple invocations of the same SQL function during query execution, under -** some circumstances the associated metadata may be preserved. This may -** be used, for example, to add a regular-expression matching scalar -** function. The compiled version of the regular expression is stored as -** metadata associated with the SQL value passed as the regular expression -** pattern. The compiled regular expression can be reused on multiple -** invocations of the same function so that the original pattern string -** does not need to be recompiled on each invocation. -** -** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata -** associated by the sqlite3_set_auxdata() function with the Nth argument -** value to the application-defined function. ^If no metadata has been ever -** been set for the Nth argument of the function, or if the corresponding -** function parameter has changed since the meta-data was set, -** then sqlite3_get_auxdata() returns a NULL pointer. -** -** ^The sqlite3_set_auxdata() interface saves the metadata -** pointed to by its 3rd parameter as the metadata for the N-th -** argument of the application-defined function. Subsequent -** calls to sqlite3_get_auxdata() might return this data, if it has -** not been destroyed. -** ^If it is not NULL, SQLite will invoke the destructor -** function given by the 4th parameter to sqlite3_set_auxdata() on -** the metadata when the corresponding function parameter changes -** or when the SQL statement completes, whichever comes first. -** -** SQLite is free to call the destructor and drop metadata on any -** parameter of any function at any time. ^The only guarantee is that -** the destructor will be called before the metadata is dropped. -** -** ^(In practice, metadata is preserved between function calls for -** expressions that are constant at compile time. This includes literal -** values and [parameters].)^ -** -** These routines must be called from the same thread in which -** the SQL function is running. -*/ -SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); -SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); - - -/* -** CAPI3REF: Constants Defining Special Destructor Behavior -** -** These are special values for the destructor that is passed in as the -** final argument to routines like [sqlite3_result_blob()]. ^If the destructor -** argument is SQLITE_STATIC, it means that the content pointer is constant -** and will never change. It does not need to be destroyed. ^The -** SQLITE_TRANSIENT value means that the content will likely change in -** the near future and that SQLite should make its own private copy of -** the content before returning. -** -** The typedef is necessary to work around problems in certain -** C++ compilers. See ticket #2191. -*/ -typedef void (*sqlite3_destructor_type)(void*); -#define SQLITE_STATIC ((sqlite3_destructor_type)0) -#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) - -/* -** CAPI3REF: Setting The Result Of An SQL Function -** -** These routines are used by the xFunc or xFinal callbacks that -** implement SQL functions and aggregates. See -** [sqlite3_create_function()] and [sqlite3_create_function16()] -** for additional information. -** -** These functions work very much like the [parameter binding] family of -** functions used to bind values to host parameters in prepared statements. -** Refer to the [SQL parameter] documentation for additional information. -** -** ^The sqlite3_result_blob() interface sets the result from -** an application-defined function to be the BLOB whose content is pointed -** to by the second parameter and which is N bytes long where N is the -** third parameter. -** -** ^The sqlite3_result_zeroblob() interfaces set the result of -** the application-defined function to be a BLOB containing all zero -** bytes and N bytes in size, where N is the value of the 2nd parameter. -** -** ^The sqlite3_result_double() interface sets the result from -** an application-defined function to be a floating point value specified -** by its 2nd argument. -** -** ^The sqlite3_result_error() and sqlite3_result_error16() functions -** cause the implemented SQL function to throw an exception. -** ^SQLite uses the string pointed to by the -** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() -** as the text of an error message. ^SQLite interprets the error -** message string from sqlite3_result_error() as UTF-8. ^SQLite -** interprets the string from sqlite3_result_error16() as UTF-16 in native -** byte order. ^If the third parameter to sqlite3_result_error() -** or sqlite3_result_error16() is negative then SQLite takes as the error -** message all text up through the first zero character. -** ^If the third parameter to sqlite3_result_error() or -** sqlite3_result_error16() is non-negative then SQLite takes that many -** bytes (not characters) from the 2nd parameter as the error message. -** ^The sqlite3_result_error() and sqlite3_result_error16() -** routines make a private copy of the error message text before -** they return. Hence, the calling function can deallocate or -** modify the text after they return without harm. -** ^The sqlite3_result_error_code() function changes the error code -** returned by SQLite as a result of an error in a function. ^By default, -** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() -** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. -** -** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an -** error indicating that a string or BLOB is too long to represent. -** -** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an -** error indicating that a memory allocation failed. -** -** ^The sqlite3_result_int() interface sets the return value -** of the application-defined function to be the 32-bit signed integer -** value given in the 2nd argument. -** ^The sqlite3_result_int64() interface sets the return value -** of the application-defined function to be the 64-bit signed integer -** value given in the 2nd argument. -** -** ^The sqlite3_result_null() interface sets the return value -** of the application-defined function to be NULL. -** -** ^The sqlite3_result_text(), sqlite3_result_text16(), -** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces -** set the return value of the application-defined function to be -** a text string which is represented as UTF-8, UTF-16 native byte order, -** UTF-16 little endian, or UTF-16 big endian, respectively. -** ^SQLite takes the text result from the application from -** the 2nd parameter of the sqlite3_result_text* interfaces. -** ^If the 3rd parameter to the sqlite3_result_text* interfaces -** is negative, then SQLite takes result text from the 2nd parameter -** through the first zero character. -** ^If the 3rd parameter to the sqlite3_result_text* interfaces -** is non-negative, then as many bytes (not characters) of the text -** pointed to by the 2nd parameter are taken as the application-defined -** function result. If the 3rd parameter is non-negative, then it -** must be the byte offset into the string where the NUL terminator would -** appear if the string where NUL terminated. If any NUL characters occur -** in the string at a byte offset that is less than the value of the 3rd -** parameter, then the resulting string will contain embedded NULs and the -** result of expressions operating on strings with embedded NULs is undefined. -** ^If the 4th parameter to the sqlite3_result_text* interfaces -** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that -** function as the destructor on the text or BLOB result when it has -** finished using that result. -** ^If the 4th parameter to the sqlite3_result_text* interfaces or to -** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite -** assumes that the text or BLOB result is in constant space and does not -** copy the content of the parameter nor call a destructor on the content -** when it has finished using that result. -** ^If the 4th parameter to the sqlite3_result_text* interfaces -** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT -** then SQLite makes a copy of the result into space obtained from -** from [sqlite3_malloc()] before it returns. -** -** ^The sqlite3_result_value() interface sets the result of -** the application-defined function to be a copy the -** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The -** sqlite3_result_value() interface makes a copy of the [sqlite3_value] -** so that the [sqlite3_value] specified in the parameter may change or -** be deallocated after sqlite3_result_value() returns without harm. -** ^A [protected sqlite3_value] object may always be used where an -** [unprotected sqlite3_value] object is required, so either -** kind of [sqlite3_value] object can be used with this interface. -** -** If these routines are called from within the different thread -** than the one containing the application-defined function that received -** the [sqlite3_context] pointer, the results are undefined. -*/ -SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); -SQLITE_API void sqlite3_result_double(sqlite3_context*, double); -SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int); -SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int); -SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*); -SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*); -SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int); -SQLITE_API void sqlite3_result_int(sqlite3_context*, int); -SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); -SQLITE_API void sqlite3_result_null(sqlite3_context*); -SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); -SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); -SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); -SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); -SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); -SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); - -/* -** CAPI3REF: Define New Collating Sequences -** -** ^These functions add, remove, or modify a [collation] associated -** with the [database connection] specified as the first argument. -** -** ^The name of the collation is a UTF-8 string -** for sqlite3_create_collation() and sqlite3_create_collation_v2() -** and a UTF-16 string in native byte order for sqlite3_create_collation16(). -** ^Collation names that compare equal according to [sqlite3_strnicmp()] are -** considered to be the same name. -** -** ^(The third argument (eTextRep) must be one of the constants: -** <ul> -** <li> [SQLITE_UTF8], -** <li> [SQLITE_UTF16LE], -** <li> [SQLITE_UTF16BE], -** <li> [SQLITE_UTF16], or -** <li> [SQLITE_UTF16_ALIGNED]. -** </ul>)^ -** ^The eTextRep argument determines the encoding of strings passed -** to the collating function callback, xCallback. -** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep -** force strings to be UTF16 with native byte order. -** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin -** on an even byte address. -** -** ^The fourth argument, pArg, is an application data pointer that is passed -** through as the first argument to the collating function callback. -** -** ^The fifth argument, xCallback, is a pointer to the collating function. -** ^Multiple collating functions can be registered using the same name but -** with different eTextRep parameters and SQLite will use whichever -** function requires the least amount of data transformation. -** ^If the xCallback argument is NULL then the collating function is -** deleted. ^When all collating functions having the same name are deleted, -** that collation is no longer usable. -** -** ^The collating function callback is invoked with a copy of the pArg -** application data pointer and with two strings in the encoding specified -** by the eTextRep argument. The collating function must return an -** integer that is negative, zero, or positive -** if the first string is less than, equal to, or greater than the second, -** respectively. A collating function must always return the same answer -** given the same inputs. If two or more collating functions are registered -** to the same collation name (using different eTextRep values) then all -** must give an equivalent answer when invoked with equivalent strings. -** The collating function must obey the following properties for all -** strings A, B, and C: -** -** <ol> -** <li> If A==B then B==A. -** <li> If A==B and B==C then A==C. -** <li> If A<B THEN B>A. -** <li> If A<B and B<C then A<C. -** </ol> -** -** If a collating function fails any of the above constraints and that -** collating function is registered and used, then the behavior of SQLite -** is undefined. -** -** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() -** with the addition that the xDestroy callback is invoked on pArg when -** the collating function is deleted. -** ^Collating functions are deleted when they are overridden by later -** calls to the collation creation functions or when the -** [database connection] is closed using [sqlite3_close()]. -** -** ^The xDestroy callback is <u>not</u> called if the -** sqlite3_create_collation_v2() function fails. Applications that invoke -** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should -** check the return code and dispose of the application data pointer -** themselves rather than expecting SQLite to deal with it for them. -** This is different from every other SQLite interface. The inconsistency -** is unfortunate but cannot be changed without breaking backwards -** compatibility. -** -** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. -*/ -SQLITE_API int sqlite3_create_collation( - sqlite3*, - const char *zName, - int eTextRep, - void *pArg, - int(*xCompare)(void*,int,const void*,int,const void*) -); -SQLITE_API int sqlite3_create_collation_v2( - sqlite3*, - const char *zName, - int eTextRep, - void *pArg, - int(*xCompare)(void*,int,const void*,int,const void*), - void(*xDestroy)(void*) -); -SQLITE_API int sqlite3_create_collation16( - sqlite3*, - const void *zName, - int eTextRep, - void *pArg, - int(*xCompare)(void*,int,const void*,int,const void*) -); - -/* -** CAPI3REF: Collation Needed Callbacks -** -** ^To avoid having to register all collation sequences before a database -** can be used, a single callback function may be registered with the -** [database connection] to be invoked whenever an undefined collation -** sequence is required. -** -** ^If the function is registered using the sqlite3_collation_needed() API, -** then it is passed the names of undefined collation sequences as strings -** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, -** the names are passed as UTF-16 in machine native byte order. -** ^A call to either function replaces the existing collation-needed callback. -** -** ^(When the callback is invoked, the first argument passed is a copy -** of the second argument to sqlite3_collation_needed() or -** sqlite3_collation_needed16(). The second argument is the database -** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], -** or [SQLITE_UTF16LE], indicating the most desirable form of the collation -** sequence function required. The fourth parameter is the name of the -** required collation sequence.)^ -** -** The callback function should register the desired collation using -** [sqlite3_create_collation()], [sqlite3_create_collation16()], or -** [sqlite3_create_collation_v2()]. -*/ -SQLITE_API int sqlite3_collation_needed( - sqlite3*, - void*, - void(*)(void*,sqlite3*,int eTextRep,const char*) -); -SQLITE_API int sqlite3_collation_needed16( - sqlite3*, - void*, - void(*)(void*,sqlite3*,int eTextRep,const void*) -); - -#ifdef SQLITE_HAS_CODEC -/* -** Specify the key for an encrypted database. This routine should be -** called right after sqlite3_open(). -** -** The code to implement this API is not available in the public release -** of SQLite. -*/ -SQLITE_API int sqlite3_key( - sqlite3 *db, /* Database to be rekeyed */ - const void *pKey, int nKey /* The key */ -); - -/* -** Change the key on an open database. If the current database is not -** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the -** database is decrypted. -** -** The code to implement this API is not available in the public release -** of SQLite. -*/ -SQLITE_API int sqlite3_rekey( - sqlite3 *db, /* Database to be rekeyed */ - const void *pKey, int nKey /* The new key */ -); - -/* -** Specify the activation key for a SEE database. Unless -** activated, none of the SEE routines will work. -*/ -SQLITE_API void sqlite3_activate_see( - const char *zPassPhrase /* Activation phrase */ -); -#endif - -#ifdef SQLITE_ENABLE_CEROD -/* -** Specify the activation key for a CEROD database. Unless -** activated, none of the CEROD routines will work. -*/ -SQLITE_API void sqlite3_activate_cerod( - const char *zPassPhrase /* Activation phrase */ -); -#endif - -/* -** CAPI3REF: Suspend Execution For A Short Time -** -** The sqlite3_sleep() function causes the current thread to suspend execution -** for at least a number of milliseconds specified in its parameter. -** -** If the operating system does not support sleep requests with -** millisecond time resolution, then the time will be rounded up to -** the nearest second. The number of milliseconds of sleep actually -** requested from the operating system is returned. -** -** ^SQLite implements this interface by calling the xSleep() -** method of the default [sqlite3_vfs] object. If the xSleep() method -** of the default VFS is not implemented correctly, or not implemented at -** all, then the behavior of sqlite3_sleep() may deviate from the description -** in the previous paragraphs. -*/ -SQLITE_API int sqlite3_sleep(int); - -/* -** CAPI3REF: Name Of The Folder Holding Temporary Files -** -** ^(If this global variable is made to point to a string which is -** the name of a folder (a.k.a. directory), then all temporary files -** created by SQLite when using a built-in [sqlite3_vfs | VFS] -** will be placed in that directory.)^ ^If this variable -** is a NULL pointer, then SQLite performs a search for an appropriate -** temporary file directory. -** -** It is not safe to read or modify this variable in more than one -** thread at a time. It is not safe to read or modify this variable -** if a [database connection] is being used at the same time in a separate -** thread. -** It is intended that this variable be set once -** as part of process initialization and before any SQLite interface -** routines have been called and that this variable remain unchanged -** thereafter. -** -** ^The [temp_store_directory pragma] may modify this variable and cause -** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, -** the [temp_store_directory pragma] always assumes that any string -** that this variable points to is held in memory obtained from -** [sqlite3_malloc] and the pragma may attempt to free that memory -** using [sqlite3_free]. -** Hence, if this variable is modified directly, either it should be -** made NULL or made to point to memory obtained from [sqlite3_malloc] -** or else the use of the [temp_store_directory pragma] should be avoided. -** -** <b>Note to Windows Runtime users:</b> The temporary directory must be set -** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various -** features that require the use of temporary files may fail. Here is an -** example of how to do this using C++ with the Windows Runtime: -** -** <blockquote><pre> -** LPCWSTR zPath = Windows::Storage::ApplicationData::Current-> -** TemporaryFolder->Path->Data(); -** char zPathBuf[MAX_PATH + 1]; -** memset(zPathBuf, 0, sizeof(zPathBuf)); -** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf), -** NULL, NULL); -** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf); -** </pre></blockquote> -*/ -SQLITE_API char *sqlite3_temp_directory; - -/* -** CAPI3REF: Name Of The Folder Holding Database Files -** -** ^(If this global variable is made to point to a string which is -** the name of a folder (a.k.a. directory), then all database files -** specified with a relative pathname and created or accessed by -** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed -** to be relative to that directory.)^ ^If this variable is a NULL -** pointer, then SQLite assumes that all database files specified -** with a relative pathname are relative to the current directory -** for the process. Only the windows VFS makes use of this global -** variable; it is ignored by the unix VFS. -** -** Changing the value of this variable while a database connection is -** open can result in a corrupt database. -** -** It is not safe to read or modify this variable in more than one -** thread at a time. It is not safe to read or modify this variable -** if a [database connection] is being used at the same time in a separate -** thread. -** It is intended that this variable be set once -** as part of process initialization and before any SQLite interface -** routines have been called and that this variable remain unchanged -** thereafter. -** -** ^The [data_store_directory pragma] may modify this variable and cause -** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, -** the [data_store_directory pragma] always assumes that any string -** that this variable points to is held in memory obtained from -** [sqlite3_malloc] and the pragma may attempt to free that memory -** using [sqlite3_free]. -** Hence, if this variable is modified directly, either it should be -** made NULL or made to point to memory obtained from [sqlite3_malloc] -** or else the use of the [data_store_directory pragma] should be avoided. -*/ -SQLITE_API char *sqlite3_data_directory; - -/* -** CAPI3REF: Test For Auto-Commit Mode -** KEYWORDS: {autocommit mode} -** -** ^The sqlite3_get_autocommit() interface returns non-zero or -** zero if the given database connection is or is not in autocommit mode, -** respectively. ^Autocommit mode is on by default. -** ^Autocommit mode is disabled by a [BEGIN] statement. -** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. -** -** If certain kinds of errors occur on a statement within a multi-statement -** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], -** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the -** transaction might be rolled back automatically. The only way to -** find out whether SQLite automatically rolled back the transaction after -** an error is to use this function. -** -** If another thread changes the autocommit status of the database -** connection while this routine is running, then the return value -** is undefined. -*/ -SQLITE_API int sqlite3_get_autocommit(sqlite3*); - -/* -** CAPI3REF: Find The Database Handle Of A Prepared Statement -** -** ^The sqlite3_db_handle interface returns the [database connection] handle -** to which a [prepared statement] belongs. ^The [database connection] -** returned by sqlite3_db_handle is the same [database connection] -** that was the first argument -** to the [sqlite3_prepare_v2()] call (or its variants) that was used to -** create the statement in the first place. -*/ -SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); - -/* -** CAPI3REF: Return The Filename For A Database Connection -** -** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename -** associated with database N of connection D. ^The main database file -** has the name "main". If there is no attached database N on the database -** connection D, or if database N is a temporary or in-memory database, then -** a NULL pointer is returned. -** -** ^The filename returned by this function is the output of the -** xFullPathname method of the [VFS]. ^In other words, the filename -** will be an absolute pathname, even if the filename used -** to open the database originally was a URI or relative pathname. -*/ -SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName); - -/* -** CAPI3REF: Determine if a database is read-only -** -** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N -** of connection D is read-only, 0 if it is read/write, or -1 if N is not -** the name of a database on connection D. -*/ -SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); - -/* -** CAPI3REF: Find the next prepared statement -** -** ^This interface returns a pointer to the next [prepared statement] after -** pStmt associated with the [database connection] pDb. ^If pStmt is NULL -** then this interface returns a pointer to the first prepared statement -** associated with the database connection pDb. ^If no prepared statement -** satisfies the conditions of this routine, it returns NULL. -** -** The [database connection] pointer D in a call to -** [sqlite3_next_stmt(D,S)] must refer to an open database -** connection and in particular must not be a NULL pointer. -*/ -SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); - -/* -** CAPI3REF: Commit And Rollback Notification Callbacks -** -** ^The sqlite3_commit_hook() interface registers a callback -** function to be invoked whenever a transaction is [COMMIT | committed]. -** ^Any callback set by a previous call to sqlite3_commit_hook() -** for the same database connection is overridden. -** ^The sqlite3_rollback_hook() interface registers a callback -** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. -** ^Any callback set by a previous call to sqlite3_rollback_hook() -** for the same database connection is overridden. -** ^The pArg argument is passed through to the callback. -** ^If the callback on a commit hook function returns non-zero, -** then the commit is converted into a rollback. -** -** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions -** return the P argument from the previous call of the same function -** on the same [database connection] D, or NULL for -** the first call for each function on D. -** -** The commit and rollback hook callbacks are not reentrant. -** The callback implementation must not do anything that will modify -** the database connection that invoked the callback. Any actions -** to modify the database connection must be deferred until after the -** completion of the [sqlite3_step()] call that triggered the commit -** or rollback hook in the first place. -** Note that running any other SQL statements, including SELECT statements, -** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify -** the database connections for the meaning of "modify" in this paragraph. -** -** ^Registering a NULL function disables the callback. -** -** ^When the commit hook callback routine returns zero, the [COMMIT] -** operation is allowed to continue normally. ^If the commit hook -** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. -** ^The rollback hook is invoked on a rollback that results from a commit -** hook returning non-zero, just as it would be with any other rollback. -** -** ^For the purposes of this API, a transaction is said to have been -** rolled back if an explicit "ROLLBACK" statement is executed, or -** an error or constraint causes an implicit rollback to occur. -** ^The rollback callback is not invoked if a transaction is -** automatically rolled back because the database connection is closed. -** -** See also the [sqlite3_update_hook()] interface. -*/ -SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); -SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); - -/* -** CAPI3REF: Data Change Notification Callbacks -** -** ^The sqlite3_update_hook() interface registers a callback function -** with the [database connection] identified by the first argument -** to be invoked whenever a row is updated, inserted or deleted. -** ^Any callback set by a previous call to this function -** for the same database connection is overridden. -** -** ^The second argument is a pointer to the function to invoke when a -** row is updated, inserted or deleted. -** ^The first argument to the callback is a copy of the third argument -** to sqlite3_update_hook(). -** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], -** or [SQLITE_UPDATE], depending on the operation that caused the callback -** to be invoked. -** ^The third and fourth arguments to the callback contain pointers to the -** database and table name containing the affected row. -** ^The final callback parameter is the [rowid] of the row. -** ^In the case of an update, this is the [rowid] after the update takes place. -** -** ^(The update hook is not invoked when internal system tables are -** modified (i.e. sqlite_master and sqlite_sequence).)^ -** -** ^In the current implementation, the update hook -** is not invoked when duplication rows are deleted because of an -** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook -** invoked when rows are deleted using the [truncate optimization]. -** The exceptions defined in this paragraph might change in a future -** release of SQLite. -** -** The update hook implementation must not do anything that will modify -** the database connection that invoked the update hook. Any actions -** to modify the database connection must be deferred until after the -** completion of the [sqlite3_step()] call that triggered the update hook. -** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their -** database connections for the meaning of "modify" in this paragraph. -** -** ^The sqlite3_update_hook(D,C,P) function -** returns the P argument from the previous call -** on the same [database connection] D, or NULL for -** the first call on D. -** -** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()] -** interfaces. -*/ -SQLITE_API void *sqlite3_update_hook( - sqlite3*, - void(*)(void *,int ,char const *,char const *,sqlite3_int64), - void* -); - -/* -** CAPI3REF: Enable Or Disable Shared Pager Cache -** -** ^(This routine enables or disables the sharing of the database cache -** and schema data structures between [database connection | connections] -** to the same database. Sharing is enabled if the argument is true -** and disabled if the argument is false.)^ -** -** ^Cache sharing is enabled and disabled for an entire process. -** This is a change as of SQLite version 3.5.0. In prior versions of SQLite, -** sharing was enabled or disabled for each thread separately. -** -** ^(The cache sharing mode set by this interface effects all subsequent -** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. -** Existing database connections continue use the sharing mode -** that was in effect at the time they were opened.)^ -** -** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled -** successfully. An [error code] is returned otherwise.)^ -** -** ^Shared cache is disabled by default. But this might change in -** future releases of SQLite. Applications that care about shared -** cache setting should set it explicitly. -** -** This interface is threadsafe on processors where writing a -** 32-bit integer is atomic. -** -** See Also: [SQLite Shared-Cache Mode] -*/ -SQLITE_API int sqlite3_enable_shared_cache(int); - -/* -** CAPI3REF: Attempt To Free Heap Memory -** -** ^The sqlite3_release_memory() interface attempts to free N bytes -** of heap memory by deallocating non-essential memory allocations -** held by the database library. Memory used to cache database -** pages to improve performance is an example of non-essential memory. -** ^sqlite3_release_memory() returns the number of bytes actually freed, -** which might be more or less than the amount requested. -** ^The sqlite3_release_memory() routine is a no-op returning zero -** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT]. -** -** See also: [sqlite3_db_release_memory()] -*/ -SQLITE_API int sqlite3_release_memory(int); - -/* -** CAPI3REF: Free Memory Used By A Database Connection -** -** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap -** memory as possible from database connection D. Unlike the -** [sqlite3_release_memory()] interface, this interface is effect even -** when then [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is -** omitted. -** -** See also: [sqlite3_release_memory()] -*/ -SQLITE_API int sqlite3_db_release_memory(sqlite3*); - -/* -** CAPI3REF: Impose A Limit On Heap Size -** -** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the -** soft limit on the amount of heap memory that may be allocated by SQLite. -** ^SQLite strives to keep heap memory utilization below the soft heap -** limit by reducing the number of pages held in the page cache -** as heap memory usages approaches the limit. -** ^The soft heap limit is "soft" because even though SQLite strives to stay -** below the limit, it will exceed the limit rather than generate -** an [SQLITE_NOMEM] error. In other words, the soft heap limit -** is advisory only. -** -** ^The return value from sqlite3_soft_heap_limit64() is the size of -** the soft heap limit prior to the call, or negative in the case of an -** error. ^If the argument N is negative -** then no change is made to the soft heap limit. Hence, the current -** size of the soft heap limit can be determined by invoking -** sqlite3_soft_heap_limit64() with a negative argument. -** -** ^If the argument N is zero then the soft heap limit is disabled. -** -** ^(The soft heap limit is not enforced in the current implementation -** if one or more of following conditions are true: -** -** <ul> -** <li> The soft heap limit is set to zero. -** <li> Memory accounting is disabled using a combination of the -** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and -** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. -** <li> An alternative page cache implementation is specified using -** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...). -** <li> The page cache allocates from its own memory pool supplied -** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than -** from the heap. -** </ul>)^ -** -** Beginning with SQLite version 3.7.3, the soft heap limit is enforced -** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT] -** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT], -** the soft heap limit is enforced on every memory allocation. Without -** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced -** when memory is allocated by the page cache. Testing suggests that because -** the page cache is the predominate memory user in SQLite, most -** applications will achieve adequate soft heap limit enforcement without -** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT]. -** -** The circumstances under which SQLite will enforce the soft heap limit may -** changes in future releases of SQLite. -*/ -SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N); - -/* -** CAPI3REF: Deprecated Soft Heap Limit Interface -** DEPRECATED -** -** This is a deprecated version of the [sqlite3_soft_heap_limit64()] -** interface. This routine is provided for historical compatibility -** only. All new applications should use the -** [sqlite3_soft_heap_limit64()] interface rather than this one. -*/ -SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); - - -/* -** CAPI3REF: Extract Metadata About A Column Of A Table -** -** ^This routine returns metadata about a specific column of a specific -** database table accessible using the [database connection] handle -** passed as the first function argument. -** -** ^The column is identified by the second, third and fourth parameters to -** this function. ^The second parameter is either the name of the database -** (i.e. "main", "temp", or an attached database) containing the specified -** table or NULL. ^If it is NULL, then all attached databases are searched -** for the table using the same algorithm used by the database engine to -** resolve unqualified table references. -** -** ^The third and fourth parameters to this function are the table and column -** name of the desired column, respectively. Neither of these parameters -** may be NULL. -** -** ^Metadata is returned by writing to the memory locations passed as the 5th -** and subsequent parameters to this function. ^Any of these arguments may be -** NULL, in which case the corresponding element of metadata is omitted. -** -** ^(<blockquote> -** <table border="1"> -** <tr><th> Parameter <th> Output<br>Type <th> Description -** -** <tr><td> 5th <td> const char* <td> Data type -** <tr><td> 6th <td> const char* <td> Name of default collation sequence -** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint -** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY -** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT] -** </table> -** </blockquote>)^ -** -** ^The memory pointed to by the character pointers returned for the -** declaration type and collation sequence is valid only until the next -** call to any SQLite API function. -** -** ^If the specified table is actually a view, an [error code] is returned. -** -** ^If the specified column is "rowid", "oid" or "_rowid_" and an -** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output -** parameters are set for the explicitly declared column. ^(If there is no -** explicitly declared [INTEGER PRIMARY KEY] column, then the output -** parameters are set as follows: -** -** <pre> -** data type: "INTEGER" -** collation sequence: "BINARY" -** not null: 0 -** primary key: 1 -** auto increment: 0 -** </pre>)^ -** -** ^(This function may load one or more schemas from database files. If an -** error occurs during this process, or if the requested table or column -** cannot be found, an [error code] is returned and an error message left -** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^ -** -** ^This API is only available if the library was compiled with the -** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. -*/ -SQLITE_API int sqlite3_table_column_metadata( - sqlite3 *db, /* Connection handle */ - const char *zDbName, /* Database name or NULL */ - const char *zTableName, /* Table name */ - const char *zColumnName, /* Column name */ - char const **pzDataType, /* OUTPUT: Declared data type */ - char const **pzCollSeq, /* OUTPUT: Collation sequence name */ - int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ - int *pPrimaryKey, /* OUTPUT: True if column part of PK */ - int *pAutoinc /* OUTPUT: True if column is auto-increment */ -); - -/* -** CAPI3REF: Load An Extension -** -** ^This interface loads an SQLite extension library from the named file. -** -** ^The sqlite3_load_extension() interface attempts to load an -** SQLite extension library contained in the file zFile. -** -** ^The entry point is zProc. -** ^zProc may be 0, in which case the name of the entry point -** defaults to "sqlite3_extension_init". -** ^The sqlite3_load_extension() interface returns -** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. -** ^If an error occurs and pzErrMsg is not 0, then the -** [sqlite3_load_extension()] interface shall attempt to -** fill *pzErrMsg with error message text stored in memory -** obtained from [sqlite3_malloc()]. The calling function -** should free this memory by calling [sqlite3_free()]. -** -** ^Extension loading must be enabled using -** [sqlite3_enable_load_extension()] prior to calling this API, -** otherwise an error will be returned. -** -** See also the [load_extension() SQL function]. -*/ -SQLITE_API int sqlite3_load_extension( - sqlite3 *db, /* Load the extension into this database connection */ - const char *zFile, /* Name of the shared library containing extension */ - const char *zProc, /* Entry point. Derived from zFile if 0 */ - char **pzErrMsg /* Put error message here if not 0 */ -); - -/* -** CAPI3REF: Enable Or Disable Extension Loading -** -** ^So as not to open security holes in older applications that are -** unprepared to deal with extension loading, and as a means of disabling -** extension loading while evaluating user-entered SQL, the following API -** is provided to turn the [sqlite3_load_extension()] mechanism on and off. -** -** ^Extension loading is off by default. See ticket #1863. -** ^Call the sqlite3_enable_load_extension() routine with onoff==1 -** to turn extension loading on and call it with onoff==0 to turn -** it back off again. -*/ -SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); - -/* -** CAPI3REF: Automatically Load Statically Linked Extensions -** -** ^This interface causes the xEntryPoint() function to be invoked for -** each new [database connection] that is created. The idea here is that -** xEntryPoint() is the entry point for a statically linked SQLite extension -** that is to be automatically loaded into all new database connections. -** -** ^(Even though the function prototype shows that xEntryPoint() takes -** no arguments and returns void, SQLite invokes xEntryPoint() with three -** arguments and expects and integer result as if the signature of the -** entry point where as follows: -** -** <blockquote><pre> -** int xEntryPoint( -** sqlite3 *db, -** const char **pzErrMsg, -** const struct sqlite3_api_routines *pThunk -** ); -** </pre></blockquote>)^ -** -** If the xEntryPoint routine encounters an error, it should make *pzErrMsg -** point to an appropriate error message (obtained from [sqlite3_mprintf()]) -** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg -** is NULL before calling the xEntryPoint(). ^SQLite will invoke -** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any -** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], -** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. -** -** ^Calling sqlite3_auto_extension(X) with an entry point X that is already -** on the list of automatic extensions is a harmless no-op. ^No entry point -** will be called more than once for each database connection that is opened. -** -** See also: [sqlite3_reset_auto_extension()]. -*/ -SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void)); - -/* -** CAPI3REF: Reset Automatic Extension Loading -** -** ^This interface disables all automatic extensions previously -** registered using [sqlite3_auto_extension()]. -*/ -SQLITE_API void sqlite3_reset_auto_extension(void); - -/* -** The interface to the virtual-table mechanism is currently considered -** to be experimental. The interface might change in incompatible ways. -** If this is a problem for you, do not use the interface at this time. -** -** When the virtual-table mechanism stabilizes, we will declare the -** interface fixed, support it indefinitely, and remove this comment. -*/ - -/* -** Structures used by the virtual table interface -*/ -typedef struct sqlite3_vtab sqlite3_vtab; -typedef struct sqlite3_index_info sqlite3_index_info; -typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; -typedef struct sqlite3_module sqlite3_module; - -/* -** CAPI3REF: Virtual Table Object -** KEYWORDS: sqlite3_module {virtual table module} -** -** This structure, sometimes called a "virtual table module", -** defines the implementation of a [virtual tables]. -** This structure consists mostly of methods for the module. -** -** ^A virtual table module is created by filling in a persistent -** instance of this structure and passing a pointer to that instance -** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. -** ^The registration remains valid until it is replaced by a different -** module or until the [database connection] closes. The content -** of this structure must not change while it is registered with -** any database connection. -*/ -struct sqlite3_module { - int iVersion; - int (*xCreate)(sqlite3*, void *pAux, - int argc, const char *const*argv, - sqlite3_vtab **ppVTab, char**); - int (*xConnect)(sqlite3*, void *pAux, - int argc, const char *const*argv, - sqlite3_vtab **ppVTab, char**); - int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); - int (*xDisconnect)(sqlite3_vtab *pVTab); - int (*xDestroy)(sqlite3_vtab *pVTab); - int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); - int (*xClose)(sqlite3_vtab_cursor*); - int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, - int argc, sqlite3_value **argv); - int (*xNext)(sqlite3_vtab_cursor*); - int (*xEof)(sqlite3_vtab_cursor*); - int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); - int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); - int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); - int (*xBegin)(sqlite3_vtab *pVTab); - int (*xSync)(sqlite3_vtab *pVTab); - int (*xCommit)(sqlite3_vtab *pVTab); - int (*xRollback)(sqlite3_vtab *pVTab); - int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, - void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), - void **ppArg); - int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); - /* The methods above are in version 1 of the sqlite_module object. Those - ** below are for version 2 and greater. */ - int (*xSavepoint)(sqlite3_vtab *pVTab, int); - int (*xRelease)(sqlite3_vtab *pVTab, int); - int (*xRollbackTo)(sqlite3_vtab *pVTab, int); -}; - -/* -** CAPI3REF: Virtual Table Indexing Information -** KEYWORDS: sqlite3_index_info -** -** The sqlite3_index_info structure and its substructures is used as part -** of the [virtual table] interface to -** pass information into and receive the reply from the [xBestIndex] -** method of a [virtual table module]. The fields under **Inputs** are the -** inputs to xBestIndex and are read-only. xBestIndex inserts its -** results into the **Outputs** fields. -** -** ^(The aConstraint[] array records WHERE clause constraints of the form: -** -** <blockquote>column OP expr</blockquote> -** -** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is -** stored in aConstraint[].op using one of the -** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ -** ^(The index of the column is stored in -** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the -** expr on the right-hand side can be evaluated (and thus the constraint -** is usable) and false if it cannot.)^ -** -** ^The optimizer automatically inverts terms of the form "expr OP column" -** and makes other simplifications to the WHERE clause in an attempt to -** get as many WHERE clause terms into the form shown above as possible. -** ^The aConstraint[] array only reports WHERE clause terms that are -** relevant to the particular virtual table being queried. -** -** ^Information about the ORDER BY clause is stored in aOrderBy[]. -** ^Each term of aOrderBy records a column of the ORDER BY clause. -** -** The [xBestIndex] method must fill aConstraintUsage[] with information -** about what parameters to pass to xFilter. ^If argvIndex>0 then -** the right-hand side of the corresponding aConstraint[] is evaluated -** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit -** is true, then the constraint is assumed to be fully handled by the -** virtual table and is not checked again by SQLite.)^ -** -** ^The idxNum and idxPtr values are recorded and passed into the -** [xFilter] method. -** ^[sqlite3_free()] is used to free idxPtr if and only if -** needToFreeIdxPtr is true. -** -** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in -** the correct order to satisfy the ORDER BY clause so that no separate -** sorting step is required. -** -** ^The estimatedCost value is an estimate of the cost of doing the -** particular lookup. A full scan of a table with N entries should have -** a cost of N. A binary search of a table of N entries should have a -** cost of approximately log(N). -*/ -struct sqlite3_index_info { - /* Inputs */ - int nConstraint; /* Number of entries in aConstraint */ - struct sqlite3_index_constraint { - int iColumn; /* Column on left-hand side of constraint */ - unsigned char op; /* Constraint operator */ - unsigned char usable; /* True if this constraint is usable */ - int iTermOffset; /* Used internally - xBestIndex should ignore */ - } *aConstraint; /* Table of WHERE clause constraints */ - int nOrderBy; /* Number of terms in the ORDER BY clause */ - struct sqlite3_index_orderby { - int iColumn; /* Column number */ - unsigned char desc; /* True for DESC. False for ASC. */ - } *aOrderBy; /* The ORDER BY clause */ - /* Outputs */ - struct sqlite3_index_constraint_usage { - int argvIndex; /* if >0, constraint is part of argv to xFilter */ - unsigned char omit; /* Do not code a test for this constraint */ - } *aConstraintUsage; - int idxNum; /* Number used to identify the index */ - char *idxStr; /* String, possibly obtained from sqlite3_malloc */ - int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ - int orderByConsumed; /* True if output is already ordered */ - double estimatedCost; /* Estimated cost of using this index */ -}; - -/* -** CAPI3REF: Virtual Table Constraint Operator Codes -** -** These macros defined the allowed values for the -** [sqlite3_index_info].aConstraint[].op field. Each value represents -** an operator that is part of a constraint term in the wHERE clause of -** a query that uses a [virtual table]. -*/ -#define SQLITE_INDEX_CONSTRAINT_EQ 2 -#define SQLITE_INDEX_CONSTRAINT_GT 4 -#define SQLITE_INDEX_CONSTRAINT_LE 8 -#define SQLITE_INDEX_CONSTRAINT_LT 16 -#define SQLITE_INDEX_CONSTRAINT_GE 32 -#define SQLITE_INDEX_CONSTRAINT_MATCH 64 - -/* -** CAPI3REF: Register A Virtual Table Implementation -** -** ^These routines are used to register a new [virtual table module] name. -** ^Module names must be registered before -** creating a new [virtual table] using the module and before using a -** preexisting [virtual table] for the module. -** -** ^The module name is registered on the [database connection] specified -** by the first parameter. ^The name of the module is given by the -** second parameter. ^The third parameter is a pointer to -** the implementation of the [virtual table module]. ^The fourth -** parameter is an arbitrary client data pointer that is passed through -** into the [xCreate] and [xConnect] methods of the virtual table module -** when a new virtual table is be being created or reinitialized. -** -** ^The sqlite3_create_module_v2() interface has a fifth parameter which -** is a pointer to a destructor for the pClientData. ^SQLite will -** invoke the destructor function (if it is not NULL) when SQLite -** no longer needs the pClientData pointer. ^The destructor will also -** be invoked if the call to sqlite3_create_module_v2() fails. -** ^The sqlite3_create_module() -** interface is equivalent to sqlite3_create_module_v2() with a NULL -** destructor. -*/ -SQLITE_API int sqlite3_create_module( - sqlite3 *db, /* SQLite connection to register module with */ - const char *zName, /* Name of the module */ - const sqlite3_module *p, /* Methods for the module */ - void *pClientData /* Client data for xCreate/xConnect */ -); -SQLITE_API int sqlite3_create_module_v2( - sqlite3 *db, /* SQLite connection to register module with */ - const char *zName, /* Name of the module */ - const sqlite3_module *p, /* Methods for the module */ - void *pClientData, /* Client data for xCreate/xConnect */ - void(*xDestroy)(void*) /* Module destructor function */ -); - -/* -** CAPI3REF: Virtual Table Instance Object -** KEYWORDS: sqlite3_vtab -** -** Every [virtual table module] implementation uses a subclass -** of this object to describe a particular instance -** of the [virtual table]. Each subclass will -** be tailored to the specific needs of the module implementation. -** The purpose of this superclass is to define certain fields that are -** common to all module implementations. -** -** ^Virtual tables methods can set an error message by assigning a -** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should -** take care that any prior string is freed by a call to [sqlite3_free()] -** prior to assigning a new string to zErrMsg. ^After the error message -** is delivered up to the client application, the string will be automatically -** freed by sqlite3_free() and the zErrMsg field will be zeroed. -*/ -struct sqlite3_vtab { - const sqlite3_module *pModule; /* The module for this virtual table */ - int nRef; /* NO LONGER USED */ - char *zErrMsg; /* Error message from sqlite3_mprintf() */ - /* Virtual table implementations will typically add additional fields */ -}; - -/* -** CAPI3REF: Virtual Table Cursor Object -** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} -** -** Every [virtual table module] implementation uses a subclass of the -** following structure to describe cursors that point into the -** [virtual table] and are used -** to loop through the virtual table. Cursors are created using the -** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed -** by the [sqlite3_module.xClose | xClose] method. Cursors are used -** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods -** of the module. Each module implementation will define -** the content of a cursor structure to suit its own needs. -** -** This superclass exists in order to define fields of the cursor that -** are common to all implementations. -*/ -struct sqlite3_vtab_cursor { - sqlite3_vtab *pVtab; /* Virtual table of this cursor */ - /* Virtual table implementations will typically add additional fields */ -}; - -/* -** CAPI3REF: Declare The Schema Of A Virtual Table -** -** ^The [xCreate] and [xConnect] methods of a -** [virtual table module] call this interface -** to declare the format (the names and datatypes of the columns) of -** the virtual tables they implement. -*/ -SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL); - -/* -** CAPI3REF: Overload A Function For A Virtual Table -** -** ^(Virtual tables can provide alternative implementations of functions -** using the [xFindFunction] method of the [virtual table module]. -** But global versions of those functions -** must exist in order to be overloaded.)^ -** -** ^(This API makes sure a global version of a function with a particular -** name and number of parameters exists. If no such function exists -** before this API is called, a new function is created.)^ ^The implementation -** of the new function always causes an exception to be thrown. So -** the new function is not good for anything by itself. Its only -** purpose is to be a placeholder function that can be overloaded -** by a [virtual table]. -*/ -SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); - -/* -** The interface to the virtual-table mechanism defined above (back up -** to a comment remarkably similar to this one) is currently considered -** to be experimental. The interface might change in incompatible ways. -** If this is a problem for you, do not use the interface at this time. -** -** When the virtual-table mechanism stabilizes, we will declare the -** interface fixed, support it indefinitely, and remove this comment. -*/ - -/* -** CAPI3REF: A Handle To An Open BLOB -** KEYWORDS: {BLOB handle} {BLOB handles} -** -** An instance of this object represents an open BLOB on which -** [sqlite3_blob_open | incremental BLOB I/O] can be performed. -** ^Objects of this type are created by [sqlite3_blob_open()] -** and destroyed by [sqlite3_blob_close()]. -** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces -** can be used to read or write small subsections of the BLOB. -** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. -*/ -typedef struct sqlite3_blob sqlite3_blob; - -/* -** CAPI3REF: Open A BLOB For Incremental I/O -** -** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located -** in row iRow, column zColumn, table zTable in database zDb; -** in other words, the same BLOB that would be selected by: -** -** <pre> -** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow; -** </pre>)^ -** -** ^If the flags parameter is non-zero, then the BLOB is opened for read -** and write access. ^If it is zero, the BLOB is opened for read access. -** ^It is not possible to open a column that is part of an index or primary -** key for writing. ^If [foreign key constraints] are enabled, it is -** not possible to open a column that is part of a [child key] for writing. -** -** ^Note that the database name is not the filename that contains -** the database but rather the symbolic name of the database that -** appears after the AS keyword when the database is connected using [ATTACH]. -** ^For the main database file, the database name is "main". -** ^For TEMP tables, the database name is "temp". -** -** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written -** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set -** to be a null pointer.)^ -** ^This function sets the [database connection] error code and message -** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related -** functions. ^Note that the *ppBlob variable is always initialized in a -** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob -** regardless of the success or failure of this routine. -** -** ^(If the row that a BLOB handle points to is modified by an -** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects -** then the BLOB handle is marked as "expired". -** This is true if any column of the row is changed, even a column -** other than the one the BLOB handle is open on.)^ -** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for -** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. -** ^(Changes written into a BLOB prior to the BLOB expiring are not -** rolled back by the expiration of the BLOB. Such changes will eventually -** commit if the transaction continues to completion.)^ -** -** ^Use the [sqlite3_blob_bytes()] interface to determine the size of -** the opened blob. ^The size of a blob may not be changed by this -** interface. Use the [UPDATE] SQL command to change the size of a -** blob. -** -** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces -** and the built-in [zeroblob] SQL function can be used, if desired, -** to create an empty, zero-filled blob in which to read or write using -** this interface. -** -** To avoid a resource leak, every open [BLOB handle] should eventually -** be released by a call to [sqlite3_blob_close()]. -*/ -SQLITE_API int sqlite3_blob_open( - sqlite3*, - const char *zDb, - const char *zTable, - const char *zColumn, - sqlite3_int64 iRow, - int flags, - sqlite3_blob **ppBlob -); - -/* -** CAPI3REF: Move a BLOB Handle to a New Row -** -** ^This function is used to move an existing blob handle so that it points -** to a different row of the same database table. ^The new row is identified -** by the rowid value passed as the second argument. Only the row can be -** changed. ^The database, table and column on which the blob handle is open -** remain the same. Moving an existing blob handle to a new row can be -** faster than closing the existing handle and opening a new one. -** -** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] - -** it must exist and there must be either a blob or text value stored in -** the nominated column.)^ ^If the new row is not present in the table, or if -** it does not contain a blob or text value, or if another error occurs, an -** SQLite error code is returned and the blob handle is considered aborted. -** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or -** [sqlite3_blob_reopen()] on an aborted blob handle immediately return -** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle -** always returns zero. -** -** ^This function sets the database handle error code and message. -*/ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); - -/* -** CAPI3REF: Close A BLOB Handle -** -** ^Closes an open [BLOB handle]. -** -** ^Closing a BLOB shall cause the current transaction to commit -** if there are no other BLOBs, no pending prepared statements, and the -** database connection is in [autocommit mode]. -** ^If any writes were made to the BLOB, they might be held in cache -** until the close operation if they will fit. -** -** ^(Closing the BLOB often forces the changes -** out to disk and so if any I/O errors occur, they will likely occur -** at the time when the BLOB is closed. Any errors that occur during -** closing are reported as a non-zero return value.)^ -** -** ^(The BLOB is closed unconditionally. Even if this routine returns -** an error code, the BLOB is still closed.)^ -** -** ^Calling this routine with a null pointer (such as would be returned -** by a failed call to [sqlite3_blob_open()]) is a harmless no-op. -*/ -SQLITE_API int sqlite3_blob_close(sqlite3_blob *); - -/* -** CAPI3REF: Return The Size Of An Open BLOB -** -** ^Returns the size in bytes of the BLOB accessible via the -** successfully opened [BLOB handle] in its only argument. ^The -** incremental blob I/O routines can only read or overwriting existing -** blob content; they cannot change the size of a blob. -** -** This routine only works on a [BLOB handle] which has been created -** by a prior successful call to [sqlite3_blob_open()] and which has not -** been closed by [sqlite3_blob_close()]. Passing any other pointer in -** to this routine results in undefined and probably undesirable behavior. -*/ -SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); - -/* -** CAPI3REF: Read Data From A BLOB Incrementally -** -** ^(This function is used to read data from an open [BLOB handle] into a -** caller-supplied buffer. N bytes of data are copied into buffer Z -** from the open BLOB, starting at offset iOffset.)^ -** -** ^If offset iOffset is less than N bytes from the end of the BLOB, -** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is -** less than zero, [SQLITE_ERROR] is returned and no data is read. -** ^The size of the blob (and hence the maximum value of N+iOffset) -** can be determined using the [sqlite3_blob_bytes()] interface. -** -** ^An attempt to read from an expired [BLOB handle] fails with an -** error code of [SQLITE_ABORT]. -** -** ^(On success, sqlite3_blob_read() returns SQLITE_OK. -** Otherwise, an [error code] or an [extended error code] is returned.)^ -** -** This routine only works on a [BLOB handle] which has been created -** by a prior successful call to [sqlite3_blob_open()] and which has not -** been closed by [sqlite3_blob_close()]. Passing any other pointer in -** to this routine results in undefined and probably undesirable behavior. -** -** See also: [sqlite3_blob_write()]. -*/ -SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); - -/* -** CAPI3REF: Write Data Into A BLOB Incrementally -** -** ^This function is used to write data into an open [BLOB handle] from a -** caller-supplied buffer. ^N bytes of data are copied from the buffer Z -** into the open BLOB, starting at offset iOffset. -** -** ^If the [BLOB handle] passed as the first argument was not opened for -** writing (the flags parameter to [sqlite3_blob_open()] was zero), -** this function returns [SQLITE_READONLY]. -** -** ^This function may only modify the contents of the BLOB; it is -** not possible to increase the size of a BLOB using this API. -** ^If offset iOffset is less than N bytes from the end of the BLOB, -** [SQLITE_ERROR] is returned and no data is written. ^If N is -** less than zero [SQLITE_ERROR] is returned and no data is written. -** The size of the BLOB (and hence the maximum value of N+iOffset) -** can be determined using the [sqlite3_blob_bytes()] interface. -** -** ^An attempt to write to an expired [BLOB handle] fails with an -** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred -** before the [BLOB handle] expired are not rolled back by the -** expiration of the handle, though of course those changes might -** have been overwritten by the statement that expired the BLOB handle -** or by other independent statements. -** -** ^(On success, sqlite3_blob_write() returns SQLITE_OK. -** Otherwise, an [error code] or an [extended error code] is returned.)^ -** -** This routine only works on a [BLOB handle] which has been created -** by a prior successful call to [sqlite3_blob_open()] and which has not -** been closed by [sqlite3_blob_close()]. Passing any other pointer in -** to this routine results in undefined and probably undesirable behavior. -** -** See also: [sqlite3_blob_read()]. -*/ -SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); - -/* -** CAPI3REF: Virtual File System Objects -** -** A virtual filesystem (VFS) is an [sqlite3_vfs] object -** that SQLite uses to interact -** with the underlying operating system. Most SQLite builds come with a -** single default VFS that is appropriate for the host computer. -** New VFSes can be registered and existing VFSes can be unregistered. -** The following interfaces are provided. -** -** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. -** ^Names are case sensitive. -** ^Names are zero-terminated UTF-8 strings. -** ^If there is no match, a NULL pointer is returned. -** ^If zVfsName is NULL then the default VFS is returned. -** -** ^New VFSes are registered with sqlite3_vfs_register(). -** ^Each new VFS becomes the default VFS if the makeDflt flag is set. -** ^The same VFS can be registered multiple times without injury. -** ^To make an existing VFS into the default VFS, register it again -** with the makeDflt flag set. If two different VFSes with the -** same name are registered, the behavior is undefined. If a -** VFS is registered with a name that is NULL or an empty string, -** then the behavior is undefined. -** -** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. -** ^(If the default VFS is unregistered, another VFS is chosen as -** the default. The choice for the new VFS is arbitrary.)^ -*/ -SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); -SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); -SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); - -/* -** CAPI3REF: Mutexes -** -** The SQLite core uses these routines for thread -** synchronization. Though they are intended for internal -** use by SQLite, code that links against SQLite is -** permitted to use any of these routines. -** -** The SQLite source code contains multiple implementations -** of these mutex routines. An appropriate implementation -** is selected automatically at compile-time. ^(The following -** implementations are available in the SQLite core: -** -** <ul> -** <li> SQLITE_MUTEX_PTHREADS -** <li> SQLITE_MUTEX_W32 -** <li> SQLITE_MUTEX_NOOP -** </ul>)^ -** -** ^The SQLITE_MUTEX_NOOP implementation is a set of routines -** that does no real locking and is appropriate for use in -** a single-threaded application. ^The SQLITE_MUTEX_PTHREADS and -** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix -** and Windows. -** -** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor -** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex -** implementation is included with the library. In this case the -** application must supply a custom mutex implementation using the -** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function -** before calling sqlite3_initialize() or any other public sqlite3_ -** function that calls sqlite3_initialize().)^ -** -** ^The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. ^If it returns NULL -** that means that a mutex could not be allocated. ^SQLite -** will unwind its stack and return an error. ^(The argument -** to sqlite3_mutex_alloc() is one of these integer constants: -** -** <ul> -** <li> SQLITE_MUTEX_FAST -** <li> SQLITE_MUTEX_RECURSIVE -** <li> SQLITE_MUTEX_STATIC_MASTER -** <li> SQLITE_MUTEX_STATIC_MEM -** <li> SQLITE_MUTEX_STATIC_MEM2 -** <li> SQLITE_MUTEX_STATIC_PRNG -** <li> SQLITE_MUTEX_STATIC_LRU -** <li> SQLITE_MUTEX_STATIC_LRU2 -** </ul>)^ -** -** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) -** cause sqlite3_mutex_alloc() to create -** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE -** is used but not necessarily so when SQLITE_MUTEX_FAST is used. -** The mutex implementation does not need to make a distinction -** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. ^SQLite will only request a recursive mutex in -** cases where it really needs one. ^If a faster non-recursive mutex -** implementation is available on the host platform, the mutex subsystem -** might return such a mutex in response to SQLITE_MUTEX_FAST. -** -** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other -** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return -** a pointer to a static preexisting mutex. ^Six static mutexes are -** used by the current version of SQLite. Future versions of SQLite -** may add additional static mutexes. Static mutexes are for internal -** use by SQLite only. Applications that use SQLite mutexes should -** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or -** SQLITE_MUTEX_RECURSIVE. -** -** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST -** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. ^But for the static -** mutex types, the same mutex is returned on every call that has -** the same type number. -** -** ^The sqlite3_mutex_free() routine deallocates a previously -** allocated dynamic mutex. ^SQLite is careful to deallocate every -** dynamic mutex that it allocates. The dynamic mutexes must not be in -** use when they are deallocated. Attempting to deallocate a static -** mutex results in undefined behavior. ^SQLite never deallocates -** a static mutex. -** -** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. ^If another thread is already within the mutex, -** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] -** upon successful entry. ^(Mutexes created using -** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. -** In such cases the, -** mutex must be exited an equal number of times before another thread -** can enter.)^ ^(If the same thread tries to enter any other -** kind of mutex more than once, the behavior is undefined. -** SQLite will never exhibit -** such behavior in its own use of mutexes.)^ -** -** ^(Some systems (for example, Windows 95) do not support the operation -** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() -** will always return SQLITE_BUSY. The SQLite core only ever uses -** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^ -** -** ^The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. ^(The behavior -** is undefined if the mutex is not currently entered by the -** calling thread or is not currently allocated. SQLite will -** never do either.)^ -** -** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or -** sqlite3_mutex_leave() is a NULL pointer, then all three routines -** behave as no-ops. -** -** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. -*/ -SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); -SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); -SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); -SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); -SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); - -/* -** CAPI3REF: Mutex Methods Object -** -** An instance of this structure defines the low-level routines -** used to allocate and use mutexes. -** -** Usually, the default mutex implementations provided by SQLite are -** sufficient, however the user has the option of substituting a custom -** implementation for specialized deployments or systems for which SQLite -** does not provide a suitable implementation. In this case, the user -** creates and populates an instance of this structure to pass -** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. -** Additionally, an instance of this structure can be used as an -** output variable when querying the system for the current mutex -** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. -** -** ^The xMutexInit method defined by this structure is invoked as -** part of system initialization by the sqlite3_initialize() function. -** ^The xMutexInit routine is called by SQLite exactly once for each -** effective call to [sqlite3_initialize()]. -** -** ^The xMutexEnd method defined by this structure is invoked as -** part of system shutdown by the sqlite3_shutdown() function. The -** implementation of this method is expected to release all outstanding -** resources obtained by the mutex methods implementation, especially -** those obtained by the xMutexInit method. ^The xMutexEnd() -** interface is invoked exactly once for each call to [sqlite3_shutdown()]. -** -** ^(The remaining seven methods defined by this structure (xMutexAlloc, -** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and -** xMutexNotheld) implement the following interfaces (respectively): -** -** <ul> -** <li> [sqlite3_mutex_alloc()] </li> -** <li> [sqlite3_mutex_free()] </li> -** <li> [sqlite3_mutex_enter()] </li> -** <li> [sqlite3_mutex_try()] </li> -** <li> [sqlite3_mutex_leave()] </li> -** <li> [sqlite3_mutex_held()] </li> -** <li> [sqlite3_mutex_notheld()] </li> -** </ul>)^ -** -** The only difference is that the public sqlite3_XXX functions enumerated -** above silently ignore any invocations that pass a NULL pointer instead -** of a valid mutex handle. The implementations of the methods defined -** by this structure are not required to handle this case, the results -** of passing a NULL pointer instead of a valid mutex handle are undefined -** (i.e. it is acceptable to provide an implementation that segfaults if -** it is passed a NULL pointer). -** -** The xMutexInit() method must be threadsafe. ^It must be harmless to -** invoke xMutexInit() multiple times within the same process and without -** intervening calls to xMutexEnd(). Second and subsequent calls to -** xMutexInit() must be no-ops. -** -** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] -** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory -** allocation for a static mutex. ^However xMutexAlloc() may use SQLite -** memory allocation for a fast or recursive mutex. -** -** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is -** called, but only if the prior call to xMutexInit returned SQLITE_OK. -** If xMutexInit fails in any way, it is expected to clean up after itself -** prior to returning. -*/ -typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; -struct sqlite3_mutex_methods { - int (*xMutexInit)(void); - int (*xMutexEnd)(void); - sqlite3_mutex *(*xMutexAlloc)(int); - void (*xMutexFree)(sqlite3_mutex *); - void (*xMutexEnter)(sqlite3_mutex *); - int (*xMutexTry)(sqlite3_mutex *); - void (*xMutexLeave)(sqlite3_mutex *); - int (*xMutexHeld)(sqlite3_mutex *); - int (*xMutexNotheld)(sqlite3_mutex *); -}; - -/* -** CAPI3REF: Mutex Verification Routines -** -** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines -** are intended for use inside assert() statements. ^The SQLite core -** never uses these routines except inside an assert() and applications -** are advised to follow the lead of the core. ^The SQLite core only -** provides implementations for these routines when it is compiled -** with the SQLITE_DEBUG flag. ^External mutex implementations -** are only required to provide these routines if SQLITE_DEBUG is -** defined and if NDEBUG is not defined. -** -** ^These routines should return true if the mutex in their argument -** is held or not held, respectively, by the calling thread. -** -** ^The implementation is not required to provide versions of these -** routines that actually work. If the implementation does not provide working -** versions of these routines, it should at least provide stubs that always -** return true so that one does not get spurious assertion failures. -** -** ^If the argument to sqlite3_mutex_held() is a NULL pointer then -** the routine should return 1. This seems counter-intuitive since -** clearly the mutex cannot be held if it does not exist. But -** the reason the mutex does not exist is because the build is not -** using mutexes. And we do not want the assert() containing the -** call to sqlite3_mutex_held() to fail, so a non-zero return is -** the appropriate thing to do. ^The sqlite3_mutex_notheld() -** interface should also return 1 when given a NULL pointer. -*/ -#ifndef NDEBUG -SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); -SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); -#endif - -/* -** CAPI3REF: Mutex Types -** -** The [sqlite3_mutex_alloc()] interface takes a single argument -** which is one of these integer constants. -** -** The set of static mutexes may change from one SQLite release to the -** next. Applications that override the built-in mutex logic must be -** prepared to accommodate additional static mutexes. -*/ -#define SQLITE_MUTEX_FAST 0 -#define SQLITE_MUTEX_RECURSIVE 1 -#define SQLITE_MUTEX_STATIC_MASTER 2 -#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ -#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */ -#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ -#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ -#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ -#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ -#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ - -/* -** CAPI3REF: Retrieve the mutex for a database connection -** -** ^This interface returns a pointer the [sqlite3_mutex] object that -** serializes access to the [database connection] given in the argument -** when the [threading mode] is Serialized. -** ^If the [threading mode] is Single-thread or Multi-thread then this -** routine returns a NULL pointer. -*/ -SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); - -/* -** CAPI3REF: Low-Level Control Of Database Files -** -** ^The [sqlite3_file_control()] interface makes a direct call to the -** xFileControl method for the [sqlite3_io_methods] object associated -** with a particular database identified by the second argument. ^The -** name of the database is "main" for the main database or "temp" for the -** TEMP database, or the name that appears after the AS keyword for -** databases that are added using the [ATTACH] SQL command. -** ^A NULL pointer can be used in place of "main" to refer to the -** main database file. -** ^The third and fourth parameters to this routine -** are passed directly through to the second and third parameters of -** the xFileControl method. ^The return value of the xFileControl -** method becomes the return value of this routine. -** -** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes -** a pointer to the underlying [sqlite3_file] object to be written into -** the space pointed to by the 4th parameter. ^The SQLITE_FCNTL_FILE_POINTER -** case is a short-circuit path which does not actually invoke the -** underlying sqlite3_io_methods.xFileControl method. -** -** ^If the second parameter (zDbName) does not match the name of any -** open database file, then SQLITE_ERROR is returned. ^This error -** code is not remembered and will not be recalled by [sqlite3_errcode()] -** or [sqlite3_errmsg()]. The underlying xFileControl method might -** also return SQLITE_ERROR. There is no way to distinguish between -** an incorrect zDbName and an SQLITE_ERROR return from the underlying -** xFileControl method. -** -** See also: [SQLITE_FCNTL_LOCKSTATE] -*/ -SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); - -/* -** CAPI3REF: Testing Interface -** -** ^The sqlite3_test_control() interface is used to read out internal -** state of SQLite and to inject faults into SQLite for testing -** purposes. ^The first parameter is an operation code that determines -** the number, meaning, and operation of all subsequent parameters. -** -** This interface is not for use by applications. It exists solely -** for verifying the correct operation of the SQLite library. Depending -** on how the SQLite library is compiled, this interface might not exist. -** -** The details of the operation codes, their meanings, the parameters -** they take, and what they do are all subject to change without notice. -** Unlike most of the SQLite API, this function is not guaranteed to -** operate consistently from one release to the next. -*/ -SQLITE_API int sqlite3_test_control(int op, ...); - -/* -** CAPI3REF: Testing Interface Operation Codes -** -** These constants are the valid operation code parameters used -** as the first argument to [sqlite3_test_control()]. -** -** These parameters and their meanings are subject to change -** without notice. These values are for testing purposes only. -** Applications should not use any of these parameters or the -** [sqlite3_test_control()] interface. -*/ -#define SQLITE_TESTCTRL_FIRST 5 -#define SQLITE_TESTCTRL_PRNG_SAVE 5 -#define SQLITE_TESTCTRL_PRNG_RESTORE 6 -#define SQLITE_TESTCTRL_PRNG_RESET 7 -#define SQLITE_TESTCTRL_BITVEC_TEST 8 -#define SQLITE_TESTCTRL_FAULT_INSTALL 9 -#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 -#define SQLITE_TESTCTRL_PENDING_BYTE 11 -#define SQLITE_TESTCTRL_ASSERT 12 -#define SQLITE_TESTCTRL_ALWAYS 13 -#define SQLITE_TESTCTRL_RESERVE 14 -#define SQLITE_TESTCTRL_OPTIMIZATIONS 15 -#define SQLITE_TESTCTRL_ISKEYWORD 16 -#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 -#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 -#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 -#define SQLITE_TESTCTRL_LAST 19 - -/* -** CAPI3REF: SQLite Runtime Status -** -** ^This interface is used to retrieve runtime status information -** about the performance of SQLite, and optionally to reset various -** highwater marks. ^The first argument is an integer code for -** the specific parameter to measure. ^(Recognized integer codes -** are of the form [status parameters | SQLITE_STATUS_...].)^ -** ^The current value of the parameter is returned into *pCurrent. -** ^The highest recorded value is returned in *pHighwater. ^If the -** resetFlag is true, then the highest record value is reset after -** *pHighwater is written. ^(Some parameters do not record the highest -** value. For those parameters -** nothing is written into *pHighwater and the resetFlag is ignored.)^ -** ^(Other parameters record only the highwater mark and not the current -** value. For these latter parameters nothing is written into *pCurrent.)^ -** -** ^The sqlite3_status() routine returns SQLITE_OK on success and a -** non-zero [error code] on failure. -** -** This routine is threadsafe but is not atomic. This routine can be -** called while other threads are running the same or different SQLite -** interfaces. However the values returned in *pCurrent and -** *pHighwater reflect the status of SQLite at different points in time -** and it is possible that another thread might change the parameter -** in between the times when *pCurrent and *pHighwater are written. -** -** See also: [sqlite3_db_status()] -*/ -SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); - - -/* -** CAPI3REF: Status Parameters -** KEYWORDS: {status parameters} -** -** These integer constants designate various run-time status parameters -** that can be returned by [sqlite3_status()]. -** -** <dl> -** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt> -** <dd>This parameter is the current amount of memory checked out -** using [sqlite3_malloc()], either directly or indirectly. The -** figure includes calls made to [sqlite3_malloc()] by the application -** and internal memory usage by the SQLite library. Scratch memory -** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache -** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in -** this parameter. The amount returned is the sum of the allocation -** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^ -** -** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt> -** <dd>This parameter records the largest memory allocation request -** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their -** internal equivalents). Only the value returned in the -** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.</dd>)^ -** -** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt> -** <dd>This parameter records the number of separate memory allocations -** currently checked out.</dd>)^ -** -** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt> -** <dd>This parameter returns the number of pages used out of the -** [pagecache memory allocator] that was configured using -** [SQLITE_CONFIG_PAGECACHE]. The -** value returned is in pages, not in bytes.</dd>)^ -** -** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]] -** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt> -** <dd>This parameter returns the number of bytes of page cache -** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE] -** buffer and where forced to overflow to [sqlite3_malloc()]. The -** returned value includes allocations that overflowed because they -** where too large (they were larger than the "sz" parameter to -** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because -** no space was left in the page cache.</dd>)^ -** -** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt> -** <dd>This parameter records the largest memory allocation request -** handed to [pagecache memory allocator]. Only the value returned in the -** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.</dd>)^ -** -** [[SQLITE_STATUS_SCRATCH_USED]] ^(<dt>SQLITE_STATUS_SCRATCH_USED</dt> -** <dd>This parameter returns the number of allocations used out of the -** [scratch memory allocator] configured using -** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not -** in bytes. Since a single thread may only have one scratch allocation -** outstanding at time, this parameter also reports the number of threads -** using scratch memory at the same time.</dd>)^ -** -** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt> -** <dd>This parameter returns the number of bytes of scratch memory -** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH] -** buffer and where forced to overflow to [sqlite3_malloc()]. The values -** returned include overflows because the requested allocation was too -** larger (that is, because the requested allocation was larger than the -** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer -** slots were available. -** </dd>)^ -** -** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt> -** <dd>This parameter records the largest memory allocation request -** handed to [scratch memory allocator]. Only the value returned in the -** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.</dd>)^ -** -** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt> -** <dd>This parameter records the deepest parser stack. It is only -** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^ -** </dl> -** -** New status parameters may be added from time to time. -*/ -#define SQLITE_STATUS_MEMORY_USED 0 -#define SQLITE_STATUS_PAGECACHE_USED 1 -#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 -#define SQLITE_STATUS_SCRATCH_USED 3 -#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 -#define SQLITE_STATUS_MALLOC_SIZE 5 -#define SQLITE_STATUS_PARSER_STACK 6 -#define SQLITE_STATUS_PAGECACHE_SIZE 7 -#define SQLITE_STATUS_SCRATCH_SIZE 8 -#define SQLITE_STATUS_MALLOC_COUNT 9 - -/* -** CAPI3REF: Database Connection Status -** -** ^This interface is used to retrieve runtime status information -** about a single [database connection]. ^The first argument is the -** database connection object to be interrogated. ^The second argument -** is an integer constant, taken from the set of -** [SQLITE_DBSTATUS options], that -** determines the parameter to interrogate. The set of -** [SQLITE_DBSTATUS options] is likely -** to grow in future releases of SQLite. -** -** ^The current value of the requested parameter is written into *pCur -** and the highest instantaneous value is written into *pHiwtr. ^If -** the resetFlg is true, then the highest instantaneous value is -** reset back down to the current value. -** -** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a -** non-zero [error code] on failure. -** -** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. -*/ -SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); - -/* -** CAPI3REF: Status Parameters for database connections -** KEYWORDS: {SQLITE_DBSTATUS options} -** -** These constants are the available integer "verbs" that can be passed as -** the second argument to the [sqlite3_db_status()] interface. -** -** New verbs may be added in future releases of SQLite. Existing verbs -** might be discontinued. Applications should check the return code from -** [sqlite3_db_status()] to make sure that the call worked. -** The [sqlite3_db_status()] interface will return a non-zero error code -** if a discontinued or unsupported verb is invoked. -** -** <dl> -** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> -** <dd>This parameter returns the number of lookaside memory slots currently -** checked out.</dd>)^ -** -** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt> -** <dd>This parameter returns the number malloc attempts that were -** satisfied using lookaside memory. Only the high-water value is meaningful; -** the current value is always zero.)^ -** -** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]] -** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt> -** <dd>This parameter returns the number malloc attempts that might have -** been satisfied using lookaside memory but failed due to the amount of -** memory requested being larger than the lookaside slot size. -** Only the high-water value is meaningful; -** the current value is always zero.)^ -** -** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]] -** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt> -** <dd>This parameter returns the number malloc attempts that might have -** been satisfied using lookaside memory but failed due to all lookaside -** memory already being in use. -** Only the high-water value is meaningful; -** the current value is always zero.)^ -** -** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> -** <dd>This parameter returns the approximate number of of bytes of heap -** memory used by all pager caches associated with the database connection.)^ -** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. -** -** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt> -** <dd>This parameter returns the approximate number of of bytes of heap -** memory used to store the schema for all databases associated -** with the connection - main, temp, and any [ATTACH]-ed databases.)^ -** ^The full amount of memory used by the schemas is reported, even if the -** schema memory is shared with other database connections due to -** [shared cache mode] being enabled. -** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. -** -** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt> -** <dd>This parameter returns the approximate number of of bytes of heap -** and lookaside memory used by all prepared statements associated with -** the database connection.)^ -** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. -** </dd> -** -** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt> -** <dd>This parameter returns the number of pager cache hits that have -** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT -** is always 0. -** </dd> -** -** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt> -** <dd>This parameter returns the number of pager cache misses that have -** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS -** is always 0. -** </dd> -** -** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt> -** <dd>This parameter returns the number of dirty cache entries that have -** been written to disk. Specifically, the number of pages written to the -** wal file in wal mode databases, or the number of pages written to the -** database file in rollback mode databases. Any pages written as part of -** transaction rollback or database recovery operations are not included. -** If an IO or other error occurs while writing a page to disk, the effect -** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The -** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. -** </dd> -** </dl> -*/ -#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 -#define SQLITE_DBSTATUS_CACHE_USED 1 -#define SQLITE_DBSTATUS_SCHEMA_USED 2 -#define SQLITE_DBSTATUS_STMT_USED 3 -#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 -#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 -#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 -#define SQLITE_DBSTATUS_CACHE_HIT 7 -#define SQLITE_DBSTATUS_CACHE_MISS 8 -#define SQLITE_DBSTATUS_CACHE_WRITE 9 -#define SQLITE_DBSTATUS_MAX 9 /* Largest defined DBSTATUS */ - - -/* -** CAPI3REF: Prepared Statement Status -** -** ^(Each prepared statement maintains various -** [SQLITE_STMTSTATUS counters] that measure the number -** of times it has performed specific operations.)^ These counters can -** be used to monitor the performance characteristics of the prepared -** statements. For example, if the number of table steps greatly exceeds -** the number of table searches or result rows, that would tend to indicate -** that the prepared statement is using a full table scan rather than -** an index. -** -** ^(This interface is used to retrieve and reset counter values from -** a [prepared statement]. The first argument is the prepared statement -** object to be interrogated. The second argument -** is an integer code for a specific [SQLITE_STMTSTATUS counter] -** to be interrogated.)^ -** ^The current value of the requested counter is returned. -** ^If the resetFlg is true, then the counter is reset to zero after this -** interface call returns. -** -** See also: [sqlite3_status()] and [sqlite3_db_status()]. -*/ -SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); - -/* -** CAPI3REF: Status Parameters for prepared statements -** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters} -** -** These preprocessor macros define integer codes that name counter -** values associated with the [sqlite3_stmt_status()] interface. -** The meanings of the various counters are as follows: -** -** <dl> -** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt> -** <dd>^This is the number of times that SQLite has stepped forward in -** a table as part of a full table scan. Large numbers for this counter -** may indicate opportunities for performance improvement through -** careful use of indices.</dd> -** -** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt> -** <dd>^This is the number of sort operations that have occurred. -** A non-zero value in this counter may indicate an opportunity to -** improvement performance through careful use of indices.</dd> -** -** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt> -** <dd>^This is the number of rows inserted into transient indices that -** were created automatically in order to help joins run faster. -** A non-zero value in this counter may indicate an opportunity to -** improvement performance by adding permanent indices that do not -** need to be reinitialized each time the statement is run.</dd> -** </dl> -*/ -#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 -#define SQLITE_STMTSTATUS_SORT 2 -#define SQLITE_STMTSTATUS_AUTOINDEX 3 - -/* -** CAPI3REF: Custom Page Cache Object -** -** The sqlite3_pcache type is opaque. It is implemented by -** the pluggable module. The SQLite core has no knowledge of -** its size or internal structure and never deals with the -** sqlite3_pcache object except by holding and passing pointers -** to the object. -** -** See [sqlite3_pcache_methods2] for additional information. -*/ -typedef struct sqlite3_pcache sqlite3_pcache; - -/* -** CAPI3REF: Custom Page Cache Object -** -** The sqlite3_pcache_page object represents a single page in the -** page cache. The page cache will allocate instances of this -** object. Various methods of the page cache use pointers to instances -** of this object as parameters or as their return value. -** -** See [sqlite3_pcache_methods2] for additional information. -*/ -typedef struct sqlite3_pcache_page sqlite3_pcache_page; -struct sqlite3_pcache_page { - void *pBuf; /* The content of the page */ - void *pExtra; /* Extra information associated with the page */ -}; - -/* -** CAPI3REF: Application Defined Page Cache. -** KEYWORDS: {page cache} -** -** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can -** register an alternative page cache implementation by passing in an -** instance of the sqlite3_pcache_methods2 structure.)^ -** In many applications, most of the heap memory allocated by -** SQLite is used for the page cache. -** By implementing a -** custom page cache using this API, an application can better control -** the amount of memory consumed by SQLite, the way in which -** that memory is allocated and released, and the policies used to -** determine exactly which parts of a database file are cached and for -** how long. -** -** The alternative page cache mechanism is an -** extreme measure that is only needed by the most demanding applications. -** The built-in page cache is recommended for most uses. -** -** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an -** internal buffer by SQLite within the call to [sqlite3_config]. Hence -** the application may discard the parameter after the call to -** [sqlite3_config()] returns.)^ -** -** [[the xInit() page cache method]] -** ^(The xInit() method is called once for each effective -** call to [sqlite3_initialize()])^ -** (usually only once during the lifetime of the process). ^(The xInit() -** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^ -** The intent of the xInit() method is to set up global data structures -** required by the custom page cache implementation. -** ^(If the xInit() method is NULL, then the -** built-in default page cache is used instead of the application defined -** page cache.)^ -** -** [[the xShutdown() page cache method]] -** ^The xShutdown() method is called by [sqlite3_shutdown()]. -** It can be used to clean up -** any outstanding resources before process shutdown, if required. -** ^The xShutdown() method may be NULL. -** -** ^SQLite automatically serializes calls to the xInit method, -** so the xInit method need not be threadsafe. ^The -** xShutdown method is only called from [sqlite3_shutdown()] so it does -** not need to be threadsafe either. All other methods must be threadsafe -** in multithreaded applications. -** -** ^SQLite will never invoke xInit() more than once without an intervening -** call to xShutdown(). -** -** [[the xCreate() page cache methods]] -** ^SQLite invokes the xCreate() method to construct a new cache instance. -** SQLite will typically create one cache instance for each open database file, -** though this is not guaranteed. ^The -** first parameter, szPage, is the size in bytes of the pages that must -** be allocated by the cache. ^szPage will always a power of two. ^The -** second parameter szExtra is a number of bytes of extra storage -** associated with each page cache entry. ^The szExtra parameter will -** a number less than 250. SQLite will use the -** extra szExtra bytes on each page to store metadata about the underlying -** database page on disk. The value passed into szExtra depends -** on the SQLite version, the target platform, and how SQLite was compiled. -** ^The third argument to xCreate(), bPurgeable, is true if the cache being -** created will be used to cache database pages of a file stored on disk, or -** false if it is used for an in-memory database. The cache implementation -** does not have to do anything special based with the value of bPurgeable; -** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will -** never invoke xUnpin() except to deliberately delete a page. -** ^In other words, calls to xUnpin() on a cache with bPurgeable set to -** false will always have the "discard" flag set to true. -** ^Hence, a cache created with bPurgeable false will -** never contain any unpinned pages. -** -** [[the xCachesize() page cache method]] -** ^(The xCachesize() method may be called at any time by SQLite to set the -** suggested maximum cache-size (number of pages stored by) the cache -** instance passed as the first argument. This is the value configured using -** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable -** parameter, the implementation is not required to do anything with this -** value; it is advisory only. -** -** [[the xPagecount() page cache methods]] -** The xPagecount() method must return the number of pages currently -** stored in the cache, both pinned and unpinned. -** -** [[the xFetch() page cache methods]] -** The xFetch() method locates a page in the cache and returns a pointer to -** an sqlite3_pcache_page object associated with that page, or a NULL pointer. -** The pBuf element of the returned sqlite3_pcache_page object will be a -** pointer to a buffer of szPage bytes used to store the content of a -** single database page. The pExtra element of sqlite3_pcache_page will be -** a pointer to the szExtra bytes of extra storage that SQLite has requested -** for each entry in the page cache. -** -** The page to be fetched is determined by the key. ^The minimum key value -** is 1. After it has been retrieved using xFetch, the page is considered -** to be "pinned". -** -** If the requested page is already in the page cache, then the page cache -** implementation must return a pointer to the page buffer with its content -** intact. If the requested page is not already in the cache, then the -** cache implementation should use the value of the createFlag -** parameter to help it determined what action to take: -** -** <table border=1 width=85% align=center> -** <tr><th> createFlag <th> Behavior when page is not already in cache -** <tr><td> 0 <td> Do not allocate a new page. Return NULL. -** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so. -** Otherwise return NULL. -** <tr><td> 2 <td> Make every effort to allocate a new page. Only return -** NULL if allocating a new page is effectively impossible. -** </table> -** -** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite -** will only use a createFlag of 2 after a prior call with a createFlag of 1 -** failed.)^ In between the to xFetch() calls, SQLite may -** attempt to unpin one or more cache pages by spilling the content of -** pinned pages to disk and synching the operating system disk cache. -** -** [[the xUnpin() page cache method]] -** ^xUnpin() is called by SQLite with a pointer to a currently pinned page -** as its second argument. If the third parameter, discard, is non-zero, -** then the page must be evicted from the cache. -** ^If the discard parameter is -** zero, then the page may be discarded or retained at the discretion of -** page cache implementation. ^The page cache implementation -** may choose to evict unpinned pages at any time. -** -** The cache must not perform any reference counting. A single -** call to xUnpin() unpins the page regardless of the number of prior calls -** to xFetch(). -** -** [[the xRekey() page cache methods]] -** The xRekey() method is used to change the key value associated with the -** page passed as the second argument. If the cache -** previously contains an entry associated with newKey, it must be -** discarded. ^Any prior cache entry associated with newKey is guaranteed not -** to be pinned. -** -** When SQLite calls the xTruncate() method, the cache must discard all -** existing cache entries with page numbers (keys) greater than or equal -** to the value of the iLimit parameter passed to xTruncate(). If any -** of these pages are pinned, they are implicitly unpinned, meaning that -** they can be safely discarded. -** -** [[the xDestroy() page cache method]] -** ^The xDestroy() method is used to delete a cache allocated by xCreate(). -** All resources associated with the specified cache should be freed. ^After -** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] -** handle invalid, and will not use it with any other sqlite3_pcache_methods2 -** functions. -** -** [[the xShrink() page cache method]] -** ^SQLite invokes the xShrink() method when it wants the page cache to -** free up as much of heap memory as possible. The page cache implementation -** is not obligated to free any memory, but well-behaved implementations should -** do their best. -*/ -typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2; -struct sqlite3_pcache_methods2 { - int iVersion; - void *pArg; - int (*xInit)(void*); - void (*xShutdown)(void*); - sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable); - void (*xCachesize)(sqlite3_pcache*, int nCachesize); - int (*xPagecount)(sqlite3_pcache*); - sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); - void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard); - void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*, - unsigned oldKey, unsigned newKey); - void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); - void (*xDestroy)(sqlite3_pcache*); - void (*xShrink)(sqlite3_pcache*); -}; - -/* -** This is the obsolete pcache_methods object that has now been replaced -** by sqlite3_pcache_methods2. This object is not used by SQLite. It is -** retained in the header file for backwards compatibility only. -*/ -typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; -struct sqlite3_pcache_methods { - void *pArg; - int (*xInit)(void*); - void (*xShutdown)(void*); - sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable); - void (*xCachesize)(sqlite3_pcache*, int nCachesize); - int (*xPagecount)(sqlite3_pcache*); - void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); - void (*xUnpin)(sqlite3_pcache*, void*, int discard); - void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey); - void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); - void (*xDestroy)(sqlite3_pcache*); -}; - - -/* -** CAPI3REF: Online Backup Object -** -** The sqlite3_backup object records state information about an ongoing -** online backup operation. ^The sqlite3_backup object is created by -** a call to [sqlite3_backup_init()] and is destroyed by a call to -** [sqlite3_backup_finish()]. -** -** See Also: [Using the SQLite Online Backup API] -*/ -typedef struct sqlite3_backup sqlite3_backup; - -/* -** CAPI3REF: Online Backup API. -** -** The backup API copies the content of one database into another. -** It is useful either for creating backups of databases or -** for copying in-memory databases to or from persistent files. -** -** See Also: [Using the SQLite Online Backup API] -** -** ^SQLite holds a write transaction open on the destination database file -** for the duration of the backup operation. -** ^The source database is read-locked only while it is being read; -** it is not locked continuously for the entire backup operation. -** ^Thus, the backup may be performed on a live source database without -** preventing other database connections from -** reading or writing to the source database while the backup is underway. -** -** ^(To perform a backup operation: -** <ol> -** <li><b>sqlite3_backup_init()</b> is called once to initialize the -** backup, -** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer -** the data between the two databases, and finally -** <li><b>sqlite3_backup_finish()</b> is called to release all resources -** associated with the backup operation. -** </ol>)^ -** There should be exactly one call to sqlite3_backup_finish() for each -** successful call to sqlite3_backup_init(). -** -** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b> -** -** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the -** [database connection] associated with the destination database -** and the database name, respectively. -** ^The database name is "main" for the main database, "temp" for the -** temporary database, or the name specified after the AS keyword in -** an [ATTACH] statement for an attached database. -** ^The S and M arguments passed to -** sqlite3_backup_init(D,N,S,M) identify the [database connection] -** and database name of the source database, respectively. -** ^The source and destination [database connections] (parameters S and D) -** must be different or else sqlite3_backup_init(D,N,S,M) will fail with -** an error. -** -** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is -** returned and an error code and error message are stored in the -** destination [database connection] D. -** ^The error code and message for the failed call to sqlite3_backup_init() -** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or -** [sqlite3_errmsg16()] functions. -** ^A successful call to sqlite3_backup_init() returns a pointer to an -** [sqlite3_backup] object. -** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and -** sqlite3_backup_finish() functions to perform the specified backup -** operation. -** -** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b> -** -** ^Function sqlite3_backup_step(B,N) will copy up to N pages between -** the source and destination databases specified by [sqlite3_backup] object B. -** ^If N is negative, all remaining source pages are copied. -** ^If sqlite3_backup_step(B,N) successfully copies N pages and there -** are still more pages to be copied, then the function returns [SQLITE_OK]. -** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages -** from source to destination, then it returns [SQLITE_DONE]. -** ^If an error occurs while running sqlite3_backup_step(B,N), -** then an [error code] is returned. ^As well as [SQLITE_OK] and -** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], -** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an -** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. -** -** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if -** <ol> -** <li> the destination database was opened read-only, or -** <li> the destination database is using write-ahead-log journaling -** and the destination and source page sizes differ, or -** <li> the destination database is an in-memory database and the -** destination and source page sizes differ. -** </ol>)^ -** -** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then -** the [sqlite3_busy_handler | busy-handler function] -** is invoked (if one is specified). ^If the -** busy-handler returns non-zero before the lock is available, then -** [SQLITE_BUSY] is returned to the caller. ^In this case the call to -** sqlite3_backup_step() can be retried later. ^If the source -** [database connection] -** is being used to write to the source database when sqlite3_backup_step() -** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this -** case the call to sqlite3_backup_step() can be retried later on. ^(If -** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or -** [SQLITE_READONLY] is returned, then -** there is no point in retrying the call to sqlite3_backup_step(). These -** errors are considered fatal.)^ The application must accept -** that the backup operation has failed and pass the backup operation handle -** to the sqlite3_backup_finish() to release associated resources. -** -** ^The first call to sqlite3_backup_step() obtains an exclusive lock -** on the destination file. ^The exclusive lock is not released until either -** sqlite3_backup_finish() is called or the backup operation is complete -** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to -** sqlite3_backup_step() obtains a [shared lock] on the source database that -** lasts for the duration of the sqlite3_backup_step() call. -** ^Because the source database is not locked between calls to -** sqlite3_backup_step(), the source database may be modified mid-way -** through the backup process. ^If the source database is modified by an -** external process or via a database connection other than the one being -** used by the backup operation, then the backup will be automatically -** restarted by the next call to sqlite3_backup_step(). ^If the source -** database is modified by the using the same database connection as is used -** by the backup operation, then the backup database is automatically -** updated at the same time. -** -** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b> -** -** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the -** application wishes to abandon the backup operation, the application -** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). -** ^The sqlite3_backup_finish() interfaces releases all -** resources associated with the [sqlite3_backup] object. -** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any -** active write-transaction on the destination database is rolled back. -** The [sqlite3_backup] object is invalid -** and may not be used following a call to sqlite3_backup_finish(). -** -** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no -** sqlite3_backup_step() errors occurred, regardless or whether or not -** sqlite3_backup_step() completed. -** ^If an out-of-memory condition or IO error occurred during any prior -** sqlite3_backup_step() call on the same [sqlite3_backup] object, then -** sqlite3_backup_finish() returns the corresponding [error code]. -** -** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() -** is not a permanent error and does not affect the return value of -** sqlite3_backup_finish(). -** -** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]] -** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b> -** -** ^Each call to sqlite3_backup_step() sets two values inside -** the [sqlite3_backup] object: the number of pages still to be backed -** up and the total number of pages in the source database file. -** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces -** retrieve these two values, respectively. -** -** ^The values returned by these functions are only updated by -** sqlite3_backup_step(). ^If the source database is modified during a backup -** operation, then the values are not updated to account for any extra -** pages that need to be updated or the size of the source database file -** changing. -** -** <b>Concurrent Usage of Database Handles</b> -** -** ^The source [database connection] may be used by the application for other -** purposes while a backup operation is underway or being initialized. -** ^If SQLite is compiled and configured to support threadsafe database -** connections, then the source database connection may be used concurrently -** from within other threads. -** -** However, the application must guarantee that the destination -** [database connection] is not passed to any other API (by any thread) after -** sqlite3_backup_init() is called and before the corresponding call to -** sqlite3_backup_finish(). SQLite does not currently check to see -** if the application incorrectly accesses the destination [database connection] -** and so no error code is reported, but the operations may malfunction -** nevertheless. Use of the destination database connection while a -** backup is in progress might also also cause a mutex deadlock. -** -** If running in [shared cache mode], the application must -** guarantee that the shared cache used by the destination database -** is not accessed while the backup is running. In practice this means -** that the application must guarantee that the disk file being -** backed up to is not accessed by any connection within the process, -** not just the specific connection that was passed to sqlite3_backup_init(). -** -** The [sqlite3_backup] object itself is partially threadsafe. Multiple -** threads may safely make multiple concurrent calls to sqlite3_backup_step(). -** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount() -** APIs are not strictly speaking threadsafe. If they are invoked at the -** same time as another thread is invoking sqlite3_backup_step() it is -** possible that they return invalid values. -*/ -SQLITE_API sqlite3_backup *sqlite3_backup_init( - sqlite3 *pDest, /* Destination database handle */ - const char *zDestName, /* Destination database name */ - sqlite3 *pSource, /* Source database handle */ - const char *zSourceName /* Source database name */ -); -SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage); -SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p); -SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p); -SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); - -/* -** CAPI3REF: Unlock Notification -** -** ^When running in shared-cache mode, a database operation may fail with -** an [SQLITE_LOCKED] error if the required locks on the shared-cache or -** individual tables within the shared-cache cannot be obtained. See -** [SQLite Shared-Cache Mode] for a description of shared-cache locking. -** ^This API may be used to register a callback that SQLite will invoke -** when the connection currently holding the required lock relinquishes it. -** ^This API is only available if the library was compiled with the -** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. -** -** See Also: [Using the SQLite Unlock Notification Feature]. -** -** ^Shared-cache locks are released when a database connection concludes -** its current transaction, either by committing it or rolling it back. -** -** ^When a connection (known as the blocked connection) fails to obtain a -** shared-cache lock and SQLITE_LOCKED is returned to the caller, the -** identity of the database connection (the blocking connection) that -** has locked the required resource is stored internally. ^After an -** application receives an SQLITE_LOCKED error, it may call the -** sqlite3_unlock_notify() method with the blocked connection handle as -** the first argument to register for a callback that will be invoked -** when the blocking connections current transaction is concluded. ^The -** callback is invoked from within the [sqlite3_step] or [sqlite3_close] -** call that concludes the blocking connections transaction. -** -** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, -** there is a chance that the blocking connection will have already -** concluded its transaction by the time sqlite3_unlock_notify() is invoked. -** If this happens, then the specified callback is invoked immediately, -** from within the call to sqlite3_unlock_notify().)^ -** -** ^If the blocked connection is attempting to obtain a write-lock on a -** shared-cache table, and more than one other connection currently holds -** a read-lock on the same table, then SQLite arbitrarily selects one of -** the other connections to use as the blocking connection. -** -** ^(There may be at most one unlock-notify callback registered by a -** blocked connection. If sqlite3_unlock_notify() is called when the -** blocked connection already has a registered unlock-notify callback, -** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is -** called with a NULL pointer as its second argument, then any existing -** unlock-notify callback is canceled. ^The blocked connections -** unlock-notify callback may also be canceled by closing the blocked -** connection using [sqlite3_close()]. -** -** The unlock-notify callback is not reentrant. If an application invokes -** any sqlite3_xxx API functions from within an unlock-notify callback, a -** crash or deadlock may be the result. -** -** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always -** returns SQLITE_OK. -** -** <b>Callback Invocation Details</b> -** -** When an unlock-notify callback is registered, the application provides a -** single void* pointer that is passed to the callback when it is invoked. -** However, the signature of the callback function allows SQLite to pass -** it an array of void* context pointers. The first argument passed to -** an unlock-notify callback is a pointer to an array of void* pointers, -** and the second is the number of entries in the array. -** -** When a blocking connections transaction is concluded, there may be -** more than one blocked connection that has registered for an unlock-notify -** callback. ^If two or more such blocked connections have specified the -** same callback function, then instead of invoking the callback function -** multiple times, it is invoked once with the set of void* context pointers -** specified by the blocked connections bundled together into an array. -** This gives the application an opportunity to prioritize any actions -** related to the set of unblocked database connections. -** -** <b>Deadlock Detection</b> -** -** Assuming that after registering for an unlock-notify callback a -** database waits for the callback to be issued before taking any further -** action (a reasonable assumption), then using this API may cause the -** application to deadlock. For example, if connection X is waiting for -** connection Y's transaction to be concluded, and similarly connection -** Y is waiting on connection X's transaction, then neither connection -** will proceed and the system may remain deadlocked indefinitely. -** -** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock -** detection. ^If a given call to sqlite3_unlock_notify() would put the -** system in a deadlocked state, then SQLITE_LOCKED is returned and no -** unlock-notify callback is registered. The system is said to be in -** a deadlocked state if connection A has registered for an unlock-notify -** callback on the conclusion of connection B's transaction, and connection -** B has itself registered for an unlock-notify callback when connection -** A's transaction is concluded. ^Indirect deadlock is also detected, so -** the system is also considered to be deadlocked if connection B has -** registered for an unlock-notify callback on the conclusion of connection -** C's transaction, where connection C is waiting on connection A. ^Any -** number of levels of indirection are allowed. -** -** <b>The "DROP TABLE" Exception</b> -** -** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost -** always appropriate to call sqlite3_unlock_notify(). There is however, -** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement, -** SQLite checks if there are any currently executing SELECT statements -** that belong to the same connection. If there are, SQLITE_LOCKED is -** returned. In this case there is no "blocking connection", so invoking -** sqlite3_unlock_notify() results in the unlock-notify callback being -** invoked immediately. If the application then re-attempts the "DROP TABLE" -** or "DROP INDEX" query, an infinite loop might be the result. -** -** One way around this problem is to check the extended error code returned -** by an sqlite3_step() call. ^(If there is a blocking connection, then the -** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in -** the special "DROP TABLE/INDEX" case, the extended error code is just -** SQLITE_LOCKED.)^ -*/ -SQLITE_API int sqlite3_unlock_notify( - sqlite3 *pBlocked, /* Waiting connection */ - void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */ - void *pNotifyArg /* Argument to pass to xNotify */ -); - - -/* -** CAPI3REF: String Comparison -** -** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications -** and extensions to compare the contents of two buffers containing UTF-8 -** strings in a case-independent fashion, using the same definition of "case -** independence" that SQLite uses internally when comparing identifiers. -*/ -SQLITE_API int sqlite3_stricmp(const char *, const char *); -SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); - -/* -** CAPI3REF: Error Logging Interface -** -** ^The [sqlite3_log()] interface writes a message into the error log -** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. -** ^If logging is enabled, the zFormat string and subsequent arguments are -** used with [sqlite3_snprintf()] to generate the final output string. -** -** The sqlite3_log() interface is intended for use by extensions such as -** virtual tables, collating functions, and SQL functions. While there is -** nothing to prevent an application from calling sqlite3_log(), doing so -** is considered bad form. -** -** The zFormat string must not be NULL. -** -** To avoid deadlocks and other threading problems, the sqlite3_log() routine -** will not use dynamically allocated memory. The log message is stored in -** a fixed-length buffer on the stack. If the log message is longer than -** a few hundred characters, it will be truncated to the length of the -** buffer. -*/ -SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); - -/* -** CAPI3REF: Write-Ahead Log Commit Hook -** -** ^The [sqlite3_wal_hook()] function is used to register a callback that -** will be invoked each time a database connection commits data to a -** [write-ahead log] (i.e. whenever a transaction is committed in -** [journal_mode | journal_mode=WAL mode]). -** -** ^The callback is invoked by SQLite after the commit has taken place and -** the associated write-lock on the database released, so the implementation -** may read, write or [checkpoint] the database as required. -** -** ^The first parameter passed to the callback function when it is invoked -** is a copy of the third parameter passed to sqlite3_wal_hook() when -** registering the callback. ^The second is a copy of the database handle. -** ^The third parameter is the name of the database that was written to - -** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter -** is the number of pages currently in the write-ahead log file, -** including those that were just committed. -** -** The callback function should normally return [SQLITE_OK]. ^If an error -** code is returned, that error will propagate back up through the -** SQLite code base to cause the statement that provoked the callback -** to report an error, though the commit will have still occurred. If the -** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value -** that does not correspond to any valid SQLite error code, the results -** are undefined. -** -** A single database handle may have at most a single write-ahead log callback -** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any -** previously registered write-ahead log callback. ^Note that the -** [sqlite3_wal_autocheckpoint()] interface and the -** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will -** those overwrite any prior [sqlite3_wal_hook()] settings. -*/ -SQLITE_API void *sqlite3_wal_hook( - sqlite3*, - int(*)(void *,sqlite3*,const char*,int), - void* -); - -/* -** CAPI3REF: Configure an auto-checkpoint -** -** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around -** [sqlite3_wal_hook()] that causes any database on [database connection] D -** to automatically [checkpoint] -** after committing a transaction if there are N or -** more frames in the [write-ahead log] file. ^Passing zero or -** a negative value as the nFrame parameter disables automatic -** checkpoints entirely. -** -** ^The callback registered by this function replaces any existing callback -** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback -** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism -** configured by this function. -** -** ^The [wal_autocheckpoint pragma] can be used to invoke this interface -** from SQL. -** -** ^Every new [database connection] defaults to having the auto-checkpoint -** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] -** pages. The use of this interface -** is only necessary if the default setting is found to be suboptimal -** for a particular application. -*/ -SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); - -/* -** CAPI3REF: Checkpoint a database -** -** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X -** on [database connection] D to be [checkpointed]. ^If X is NULL or an -** empty string, then a checkpoint is run on all databases of -** connection D. ^If the database connection D is not in -** [WAL | write-ahead log mode] then this interface is a harmless no-op. -** -** ^The [wal_checkpoint pragma] can be used to invoke this interface -** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the -** [wal_autocheckpoint pragma] can be used to cause this interface to be -** run whenever the WAL reaches a certain size threshold. -** -** See also: [sqlite3_wal_checkpoint_v2()] -*/ -SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); - -/* -** CAPI3REF: Checkpoint a database -** -** Run a checkpoint operation on WAL database zDb attached to database -** handle db. The specific operation is determined by the value of the -** eMode parameter: -** -** <dl> -** <dt>SQLITE_CHECKPOINT_PASSIVE<dd> -** Checkpoint as many frames as possible without waiting for any database -** readers or writers to finish. Sync the db file if all frames in the log -** are checkpointed. This mode is the same as calling -** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. -** -** <dt>SQLITE_CHECKPOINT_FULL<dd> -** This mode blocks (calls the busy-handler callback) until there is no -** database writer and all readers are reading from the most recent database -** snapshot. It then checkpoints all frames in the log file and syncs the -** database file. This call blocks database writers while it is running, -** but not database readers. -** -** <dt>SQLITE_CHECKPOINT_RESTART<dd> -** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after -** checkpointing the log file it blocks (calls the busy-handler callback) -** until all readers are reading from the database file only. This ensures -** that the next client to write to the database file restarts the log file -** from the beginning. This call blocks database writers while it is running, -** but not database readers. -** </dl> -** -** If pnLog is not NULL, then *pnLog is set to the total number of frames in -** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to -** the total number of checkpointed frames (including any that were already -** checkpointed when this function is called). *pnLog and *pnCkpt may be -** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. -** If no values are available because of an error, they are both set to -1 -** before returning to communicate this to the caller. -** -** All calls obtain an exclusive "checkpoint" lock on the database file. If -** any other process is running a checkpoint operation at the same time, the -** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a -** busy-handler configured, it will not be invoked in this case. -** -** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive -** "writer" lock on the database file. If the writer lock cannot be obtained -** immediately, and a busy-handler is configured, it is invoked and the writer -** lock retried until either the busy-handler returns 0 or the lock is -** successfully obtained. The busy-handler is also invoked while waiting for -** database readers as described above. If the busy-handler returns 0 before -** the writer lock is obtained or while waiting for database readers, the -** checkpoint operation proceeds from that point in the same way as -** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible -** without blocking any further. SQLITE_BUSY is returned in this case. -** -** If parameter zDb is NULL or points to a zero length string, then the -** specified operation is attempted on all WAL databases. In this case the -** values written to output parameters *pnLog and *pnCkpt are undefined. If -** an SQLITE_BUSY error is encountered when processing one or more of the -** attached WAL databases, the operation is still attempted on any remaining -** attached databases and SQLITE_BUSY is returned to the caller. If any other -** error occurs while processing an attached database, processing is abandoned -** and the error code returned to the caller immediately. If no error -** (SQLITE_BUSY or otherwise) is encountered while processing the attached -** databases, SQLITE_OK is returned. -** -** If database zDb is the name of an attached database that is not in WAL -** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If -** zDb is not NULL (or a zero length string) and is not the name of any -** attached database, SQLITE_ERROR is returned to the caller. -*/ -SQLITE_API int sqlite3_wal_checkpoint_v2( - sqlite3 *db, /* Database handle */ - const char *zDb, /* Name of attached database (or NULL) */ - int eMode, /* SQLITE_CHECKPOINT_* value */ - int *pnLog, /* OUT: Size of WAL log in frames */ - int *pnCkpt /* OUT: Total number of frames checkpointed */ -); - -/* -** CAPI3REF: Checkpoint operation parameters -** -** These constants can be used as the 3rd parameter to -** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] -** documentation for additional information about the meaning and use of -** each of these values. -*/ -#define SQLITE_CHECKPOINT_PASSIVE 0 -#define SQLITE_CHECKPOINT_FULL 1 -#define SQLITE_CHECKPOINT_RESTART 2 - -/* -** CAPI3REF: Virtual Table Interface Configuration -** -** This function may be called by either the [xConnect] or [xCreate] method -** of a [virtual table] implementation to configure -** various facets of the virtual table interface. -** -** If this interface is invoked outside the context of an xConnect or -** xCreate virtual table method then the behavior is undefined. -** -** At present, there is only one option that may be configured using -** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].) Further options -** may be added in the future. -*/ -SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...); - -/* -** CAPI3REF: Virtual Table Configuration Options -** -** These macros define the various options to the -** [sqlite3_vtab_config()] interface that [virtual table] implementations -** can use to customize and optimize their behavior. -** -** <dl> -** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT -** <dd>Calls of the form -** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, -** where X is an integer. If X is zero, then the [virtual table] whose -** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not -** support constraints. In this configuration (which is the default) if -** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire -** statement is rolled back as if [ON CONFLICT | OR ABORT] had been -** specified as part of the users SQL statement, regardless of the actual -** ON CONFLICT mode specified. -** -** If X is non-zero, then the virtual table implementation guarantees -** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before -** any modifications to internal or persistent data structures have been made. -** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite -** is able to roll back a statement or database transaction, and abandon -** or continue processing the current SQL statement as appropriate. -** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns -** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode -** had been ABORT. -** -** Virtual table implementations that are required to handle OR REPLACE -** must do so within the [xUpdate] method. If a call to the -** [sqlite3_vtab_on_conflict()] function indicates that the current ON -** CONFLICT policy is REPLACE, the virtual table implementation should -** silently replace the appropriate rows within the xUpdate callback and -** return SQLITE_OK. Or, if this is not possible, it may return -** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT -** constraint handling. -** </dl> -*/ -#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 - -/* -** CAPI3REF: Determine The Virtual Table Conflict Policy -** -** This function may only be called from within a call to the [xUpdate] method -** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The -** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], -** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode -** of the SQL statement that triggered the call to the [xUpdate] method of the -** [virtual table]. -*/ -SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); - -/* -** CAPI3REF: Conflict resolution modes -** -** These constants are returned by [sqlite3_vtab_on_conflict()] to -** inform a [virtual table] implementation what the [ON CONFLICT] mode -** is for the SQL statement being evaluated. -** -** Note that the [SQLITE_IGNORE] constant is also used as a potential -** return value from the [sqlite3_set_authorizer()] callback and that -** [SQLITE_ABORT] is also a [result code]. -*/ -#define SQLITE_ROLLBACK 1 -/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ -#define SQLITE_FAIL 3 -/* #define SQLITE_ABORT 4 // Also an error code */ -#define SQLITE_REPLACE 5 - - - -/* -** Undo the hack that converts floating point types to integer for -** builds on processors without floating point support. -*/ -#ifdef SQLITE_OMIT_FLOATING_POINT -# undef double -#endif - -#if 0 -} /* End of the 'extern "C"' block */ -#endif -#endif - -/* -** 2010 August 30 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -*/ - -#ifndef _SQLITE3RTREE_H_ -#define _SQLITE3RTREE_H_ - - -#if 0 -extern "C" { -#endif - -typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; - -/* -** Register a geometry callback named zGeom that can be used as part of an -** R-Tree geometry query as follows: -** -** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...) -*/ -SQLITE_API int sqlite3_rtree_geometry_callback( - sqlite3 *db, - const char *zGeom, -#ifdef SQLITE_RTREE_INT_ONLY - int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes), -#else - int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes), -#endif - void *pContext -); - - -/* -** A pointer to a structure of the following type is passed as the first -** argument to callbacks registered using rtree_geometry_callback(). -*/ -struct sqlite3_rtree_geometry { - void *pContext; /* Copy of pContext passed to s_r_g_c() */ - int nParam; /* Size of array aParam[] */ - double *aParam; /* Parameters passed to SQL geom function */ - void *pUser; /* Callback implementation user data */ - void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ -}; - - -#if 0 -} /* end of the 'extern "C"' block */ -#endif - -#endif /* ifndef _SQLITE3RTREE_H_ */ - - -/************** End of sqlite3.h *********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include hash.h in the middle of sqliteInt.h ******************/ -/************** Begin file hash.h ********************************************/ -/* -** 2001 September 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the header file for the generic hash-table implementation -** used in SQLite. -*/ -#ifndef _SQLITE_HASH_H_ -#define _SQLITE_HASH_H_ - -/* Forward declarations of structures. */ -typedef struct Hash Hash; -typedef struct HashElem HashElem; - -/* A complete hash table is an instance of the following structure. -** The internals of this structure are intended to be opaque -- client -** code should not attempt to access or modify the fields of this structure -** directly. Change this structure only by using the routines below. -** However, some of the "procedures" and "functions" for modifying and -** accessing this structure are really macros, so we can't really make -** this structure opaque. -** -** All elements of the hash table are on a single doubly-linked list. -** Hash.first points to the head of this list. -** -** There are Hash.htsize buckets. Each bucket points to a spot in -** the global doubly-linked list. The contents of the bucket are the -** element pointed to plus the next _ht.count-1 elements in the list. -** -** Hash.htsize and Hash.ht may be zero. In that case lookup is done -** by a linear search of the global list. For small tables, the -** Hash.ht table is never allocated because if there are few elements -** in the table, it is faster to do a linear search than to manage -** the hash table. -*/ -struct Hash { - unsigned int htsize; /* Number of buckets in the hash table */ - unsigned int count; /* Number of entries in this table */ - HashElem *first; /* The first element of the array */ - struct _ht { /* the hash table */ - int count; /* Number of entries with this hash */ - HashElem *chain; /* Pointer to first entry with this hash */ - } *ht; -}; - -/* Each element in the hash table is an instance of the following -** structure. All elements are stored on a single doubly-linked list. -** -** Again, this structure is intended to be opaque, but it can't really -** be opaque because it is used by macros. -*/ -struct HashElem { - HashElem *next, *prev; /* Next and previous elements in the table */ - void *data; /* Data associated with this element */ - const char *pKey; int nKey; /* Key associated with this element */ -}; - -/* -** Access routines. To delete, insert a NULL pointer. -*/ -SQLITE_PRIVATE void sqlite3HashInit(Hash*); -SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData); -SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey); -SQLITE_PRIVATE void sqlite3HashClear(Hash*); - -/* -** Macros for looping over all elements of a hash table. The idiom is -** like this: -** -** Hash h; -** HashElem *p; -** ... -** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ -** SomeStructure *pData = sqliteHashData(p); -** // do something with pData -** } -*/ -#define sqliteHashFirst(H) ((H)->first) -#define sqliteHashNext(E) ((E)->next) -#define sqliteHashData(E) ((E)->data) -/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ -/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ - -/* -** Number of entries in a hash table -*/ -/* #define sqliteHashCount(H) ((H)->count) // NOT USED */ - -#endif /* _SQLITE_HASH_H_ */ - -/************** End of hash.h ************************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include parse.h in the middle of sqliteInt.h *****************/ -/************** Begin file parse.h *******************************************/ -#define TK_SEMI 1 -#define TK_EXPLAIN 2 -#define TK_QUERY 3 -#define TK_PLAN 4 -#define TK_BEGIN 5 -#define TK_TRANSACTION 6 -#define TK_DEFERRED 7 -#define TK_IMMEDIATE 8 -#define TK_EXCLUSIVE 9 -#define TK_COMMIT 10 -#define TK_END 11 -#define TK_ROLLBACK 12 -#define TK_SAVEPOINT 13 -#define TK_RELEASE 14 -#define TK_TO 15 -#define TK_TABLE 16 -#define TK_CREATE 17 -#define TK_IF 18 -#define TK_NOT 19 -#define TK_EXISTS 20 -#define TK_TEMP 21 -#define TK_LP 22 -#define TK_RP 23 -#define TK_AS 24 -#define TK_COMMA 25 -#define TK_ID 26 -#define TK_INDEXED 27 -#define TK_ABORT 28 -#define TK_ACTION 29 -#define TK_AFTER 30 -#define TK_ANALYZE 31 -#define TK_ASC 32 -#define TK_ATTACH 33 -#define TK_BEFORE 34 -#define TK_BY 35 -#define TK_CASCADE 36 -#define TK_CAST 37 -#define TK_COLUMNKW 38 -#define TK_CONFLICT 39 -#define TK_DATABASE 40 -#define TK_DESC 41 -#define TK_DETACH 42 -#define TK_EACH 43 -#define TK_FAIL 44 -#define TK_FOR 45 -#define TK_IGNORE 46 -#define TK_INITIALLY 47 -#define TK_INSTEAD 48 -#define TK_LIKE_KW 49 -#define TK_MATCH 50 -#define TK_NO 51 -#define TK_KEY 52 -#define TK_OF 53 -#define TK_OFFSET 54 -#define TK_PRAGMA 55 -#define TK_RAISE 56 -#define TK_REPLACE 57 -#define TK_RESTRICT 58 -#define TK_ROW 59 -#define TK_TRIGGER 60 -#define TK_VACUUM 61 -#define TK_VIEW 62 -#define TK_VIRTUAL 63 -#define TK_REINDEX 64 -#define TK_RENAME 65 -#define TK_CTIME_KW 66 -#define TK_ANY 67 -#define TK_OR 68 -#define TK_AND 69 -#define TK_IS 70 -#define TK_BETWEEN 71 -#define TK_IN 72 -#define TK_ISNULL 73 -#define TK_NOTNULL 74 -#define TK_NE 75 -#define TK_EQ 76 -#define TK_GT 77 -#define TK_LE 78 -#define TK_LT 79 -#define TK_GE 80 -#define TK_ESCAPE 81 -#define TK_BITAND 82 -#define TK_BITOR 83 -#define TK_LSHIFT 84 -#define TK_RSHIFT 85 -#define TK_PLUS 86 -#define TK_MINUS 87 -#define TK_STAR 88 -#define TK_SLASH 89 -#define TK_REM 90 -#define TK_CONCAT 91 -#define TK_COLLATE 92 -#define TK_BITNOT 93 -#define TK_STRING 94 -#define TK_JOIN_KW 95 -#define TK_CONSTRAINT 96 -#define TK_DEFAULT 97 -#define TK_NULL 98 -#define TK_PRIMARY 99 -#define TK_UNIQUE 100 -#define TK_CHECK 101 -#define TK_REFERENCES 102 -#define TK_AUTOINCR 103 -#define TK_ON 104 -#define TK_INSERT 105 -#define TK_DELETE 106 -#define TK_UPDATE 107 -#define TK_SET 108 -#define TK_DEFERRABLE 109 -#define TK_FOREIGN 110 -#define TK_DROP 111 -#define TK_UNION 112 -#define TK_ALL 113 -#define TK_EXCEPT 114 -#define TK_INTERSECT 115 -#define TK_SELECT 116 -#define TK_DISTINCT 117 -#define TK_DOT 118 -#define TK_FROM 119 -#define TK_JOIN 120 -#define TK_USING 121 -#define TK_ORDER 122 -#define TK_GROUP 123 -#define TK_HAVING 124 -#define TK_LIMIT 125 -#define TK_WHERE 126 -#define TK_INTO 127 -#define TK_VALUES 128 -#define TK_INTEGER 129 -#define TK_FLOAT 130 -#define TK_BLOB 131 -#define TK_REGISTER 132 -#define TK_VARIABLE 133 -#define TK_CASE 134 -#define TK_WHEN 135 -#define TK_THEN 136 -#define TK_ELSE 137 -#define TK_INDEX 138 -#define TK_ALTER 139 -#define TK_ADD 140 -#define TK_TO_TEXT 141 -#define TK_TO_BLOB 142 -#define TK_TO_NUMERIC 143 -#define TK_TO_INT 144 -#define TK_TO_REAL 145 -#define TK_ISNOT 146 -#define TK_END_OF_FILE 147 -#define TK_ILLEGAL 148 -#define TK_SPACE 149 -#define TK_UNCLOSED_STRING 150 -#define TK_FUNCTION 151 -#define TK_COLUMN 152 -#define TK_AGG_FUNCTION 153 -#define TK_AGG_COLUMN 154 -#define TK_CONST_FUNC 155 -#define TK_UMINUS 156 -#define TK_UPLUS 157 - -/************** End of parse.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <assert.h> -#include <stddef.h> - -/* -** If compiling for a processor that lacks floating point support, -** substitute integer for floating-point -*/ -#ifdef SQLITE_OMIT_FLOATING_POINT -# define double sqlite_int64 -# define float sqlite_int64 -# define LONGDOUBLE_TYPE sqlite_int64 -# ifndef SQLITE_BIG_DBL -# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) -# endif -# define SQLITE_OMIT_DATETIME_FUNCS 1 -# define SQLITE_OMIT_TRACE 1 -# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT -# undef SQLITE_HAVE_ISNAN -#endif -#ifndef SQLITE_BIG_DBL -# define SQLITE_BIG_DBL (1e99) -#endif - -/* -** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 -** afterward. Having this macro allows us to cause the C compiler -** to omit code used by TEMP tables without messy #ifndef statements. -*/ -#ifdef SQLITE_OMIT_TEMPDB -#define OMIT_TEMPDB 1 -#else -#define OMIT_TEMPDB 0 -#endif - -/* -** The "file format" number is an integer that is incremented whenever -** the VDBE-level file format changes. The following macros define the -** the default file format for new databases and the maximum file format -** that the library can read. -*/ -#define SQLITE_MAX_FILE_FORMAT 4 -#ifndef SQLITE_DEFAULT_FILE_FORMAT -# define SQLITE_DEFAULT_FILE_FORMAT 4 -#endif - -/* -** Determine whether triggers are recursive by default. This can be -** changed at run-time using a pragma. -*/ -#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS -# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 -#endif - -/* -** Provide a default value for SQLITE_TEMP_STORE in case it is not specified -** on the command-line -*/ -#ifndef SQLITE_TEMP_STORE -# define SQLITE_TEMP_STORE 1 -#endif - -/* -** GCC does not define the offsetof() macro so we'll have to do it -** ourselves. -*/ -#ifndef offsetof -#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) -#endif - -/* -** Check to see if this machine uses EBCDIC. (Yes, believe it or -** not, there are still machines out there that use EBCDIC.) -*/ -#if 'A' == '\301' -# define SQLITE_EBCDIC 1 -#else -# define SQLITE_ASCII 1 -#endif - -/* -** Integers of known sizes. These typedefs might change for architectures -** where the sizes very. Preprocessor macros are available so that the -** types can be conveniently redefined at compile-type. Like this: -** -** cc '-DUINTPTR_TYPE=long long int' ... -*/ -#ifndef UINT32_TYPE -# ifdef HAVE_UINT32_T -# define UINT32_TYPE uint32_t -# else -# define UINT32_TYPE unsigned int -# endif -#endif -#ifndef UINT16_TYPE -# ifdef HAVE_UINT16_T -# define UINT16_TYPE uint16_t -# else -# define UINT16_TYPE unsigned short int -# endif -#endif -#ifndef INT16_TYPE -# ifdef HAVE_INT16_T -# define INT16_TYPE int16_t -# else -# define INT16_TYPE short int -# endif -#endif -#ifndef UINT8_TYPE -# ifdef HAVE_UINT8_T -# define UINT8_TYPE uint8_t -# else -# define UINT8_TYPE unsigned char -# endif -#endif -#ifndef INT8_TYPE -# ifdef HAVE_INT8_T -# define INT8_TYPE int8_t -# else -# define INT8_TYPE signed char -# endif -#endif -#ifndef LONGDOUBLE_TYPE -# define LONGDOUBLE_TYPE long double -#endif -typedef sqlite_int64 i64; /* 8-byte signed integer */ -typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ -typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ -typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ -typedef INT16_TYPE i16; /* 2-byte signed integer */ -typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ -typedef INT8_TYPE i8; /* 1-byte signed integer */ - -/* -** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value -** that can be stored in a u32 without loss of data. The value -** is 0x00000000ffffffff. But because of quirks of some compilers, we -** have to specify the value in the less intuitive manner shown: -*/ -#define SQLITE_MAX_U32 ((((u64)1)<<32)-1) - -/* -** The datatype used to store estimates of the number of rows in a -** table or index. This is an unsigned integer type. For 99.9% of -** the world, a 32-bit integer is sufficient. But a 64-bit integer -** can be used at compile-time if desired. -*/ -#ifdef SQLITE_64BIT_STATS - typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ -#else - typedef u32 tRowcnt; /* 32-bit is the default */ -#endif - -/* -** Macros to determine whether the machine is big or little endian, -** evaluated at runtime. -*/ -#ifdef SQLITE_AMALGAMATION -SQLITE_PRIVATE const int sqlite3one = 1; -#else -SQLITE_PRIVATE const int sqlite3one; -#endif -#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ - || defined(__x86_64) || defined(__x86_64__) -# define SQLITE_BIGENDIAN 0 -# define SQLITE_LITTLEENDIAN 1 -# define SQLITE_UTF16NATIVE SQLITE_UTF16LE -#else -# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) -# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) -# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) -#endif - -/* -** Constants for the largest and smallest possible 64-bit signed integers. -** These macros are designed to work correctly on both 32-bit and 64-bit -** compilers. -*/ -#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) -#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) - -/* -** Round up a number to the next larger multiple of 8. This is used -** to force 8-byte alignment on 64-bit architectures. -*/ -#define ROUND8(x) (((x)+7)&~7) - -/* -** Round down to the nearest multiple of 8 -*/ -#define ROUNDDOWN8(x) ((x)&~7) - -/* -** Assert that the pointer X is aligned to an 8-byte boundary. This -** macro is used only within assert() to verify that the code gets -** all alignment restrictions correct. -** -** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the -** underlying malloc() implemention might return us 4-byte aligned -** pointers. In that case, only verify 4-byte alignment. -*/ -#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC -# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) -#else -# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) -#endif - - -/* -** An instance of the following structure is used to store the busy-handler -** callback for a given sqlite handle. -** -** The sqlite.busyHandler member of the sqlite struct contains the busy -** callback for the database handle. Each pager opened via the sqlite -** handle is passed a pointer to sqlite.busyHandler. The busy-handler -** callback is currently invoked only from within pager.c. -*/ -typedef struct BusyHandler BusyHandler; -struct BusyHandler { - int (*xFunc)(void *,int); /* The busy callback */ - void *pArg; /* First arg to busy callback */ - int nBusy; /* Incremented with each busy call */ -}; - -/* -** Name of the master database table. The master database table -** is a special table that holds the names and attributes of all -** user tables and indices. -*/ -#define MASTER_NAME "sqlite_master" -#define TEMP_MASTER_NAME "sqlite_temp_master" - -/* -** The root-page of the master database table. -*/ -#define MASTER_ROOT 1 - -/* -** The name of the schema table. -*/ -#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) - -/* -** A convenience macro that returns the number of elements in -** an array. -*/ -#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) - -/* -** Determine if the argument is a power of two -*/ -#define IsPowerOfTwo(X) (((X)&((X)-1))==0) - -/* -** The following value as a destructor means to use sqlite3DbFree(). -** The sqlite3DbFree() routine requires two parameters instead of the -** one parameter that destructors normally want. So we have to introduce -** this magic value that the code knows to handle differently. Any -** pointer will work here as long as it is distinct from SQLITE_STATIC -** and SQLITE_TRANSIENT. -*/ -#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) - -/* -** When SQLITE_OMIT_WSD is defined, it means that the target platform does -** not support Writable Static Data (WSD) such as global and static variables. -** All variables must either be on the stack or dynamically allocated from -** the heap. When WSD is unsupported, the variable declarations scattered -** throughout the SQLite code must become constants instead. The SQLITE_WSD -** macro is used for this purpose. And instead of referencing the variable -** directly, we use its constant as a key to lookup the run-time allocated -** buffer that holds real variable. The constant is also the initializer -** for the run-time allocated buffer. -** -** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL -** macros become no-ops and have zero performance impact. -*/ -#ifdef SQLITE_OMIT_WSD - #define SQLITE_WSD const - #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) - #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) -SQLITE_API int sqlite3_wsd_init(int N, int J); -SQLITE_API void *sqlite3_wsd_find(void *K, int L); -#else - #define SQLITE_WSD - #define GLOBAL(t,v) v - #define sqlite3GlobalConfig sqlite3Config -#endif - -/* -** The following macros are used to suppress compiler warnings and to -** make it clear to human readers when a function parameter is deliberately -** left unused within the body of a function. This usually happens when -** a function is called via a function pointer. For example the -** implementation of an SQL aggregate step callback may not use the -** parameter indicating the number of arguments passed to the aggregate, -** if it knows that this is enforced elsewhere. -** -** When a function parameter is not used at all within the body of a function, -** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. -** However, these macros may also be used to suppress warnings related to -** parameters that may or may not be used depending on compilation options. -** For example those parameters only used in assert() statements. In these -** cases the parameters are named as per the usual conventions. -*/ -#define UNUSED_PARAMETER(x) (void)(x) -#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) - -/* -** Forward references to structures -*/ -typedef struct AggInfo AggInfo; -typedef struct AuthContext AuthContext; -typedef struct AutoincInfo AutoincInfo; -typedef struct Bitvec Bitvec; -typedef struct CollSeq CollSeq; -typedef struct Column Column; -typedef struct Db Db; -typedef struct Schema Schema; -typedef struct Expr Expr; -typedef struct ExprList ExprList; -typedef struct ExprSpan ExprSpan; -typedef struct FKey FKey; -typedef struct FuncDestructor FuncDestructor; -typedef struct FuncDef FuncDef; -typedef struct FuncDefHash FuncDefHash; -typedef struct IdList IdList; -typedef struct Index Index; -typedef struct IndexSample IndexSample; -typedef struct KeyClass KeyClass; -typedef struct KeyInfo KeyInfo; -typedef struct Lookaside Lookaside; -typedef struct LookasideSlot LookasideSlot; -typedef struct Module Module; -typedef struct NameContext NameContext; -typedef struct Parse Parse; -typedef struct RowSet RowSet; -typedef struct Savepoint Savepoint; -typedef struct Select Select; -typedef struct SelectDest SelectDest; -typedef struct SrcList SrcList; -typedef struct StrAccum StrAccum; -typedef struct Table Table; -typedef struct TableLock TableLock; -typedef struct Token Token; -typedef struct Trigger Trigger; -typedef struct TriggerPrg TriggerPrg; -typedef struct TriggerStep TriggerStep; -typedef struct UnpackedRecord UnpackedRecord; -typedef struct VTable VTable; -typedef struct VtabCtx VtabCtx; -typedef struct Walker Walker; -typedef struct WherePlan WherePlan; -typedef struct WhereInfo WhereInfo; -typedef struct WhereLevel WhereLevel; - -/* -** Defer sourcing vdbe.h and btree.h until after the "u8" and -** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque -** pointer types (i.e. FuncDef) defined above. -*/ -/************** Include btree.h in the middle of sqliteInt.h *****************/ -/************** Begin file btree.h *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the sqlite B-Tree file -** subsystem. See comments in the source code for a detailed description -** of what each interface routine does. -*/ -#ifndef _BTREE_H_ -#define _BTREE_H_ - -/* TODO: This definition is just included so other modules compile. It -** needs to be revisited. -*/ -#define SQLITE_N_BTREE_META 10 - -/* -** If defined as non-zero, auto-vacuum is enabled by default. Otherwise -** it must be turned on for each database using "PRAGMA auto_vacuum = 1". -*/ -#ifndef SQLITE_DEFAULT_AUTOVACUUM - #define SQLITE_DEFAULT_AUTOVACUUM 0 -#endif - -#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ -#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ -#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ - -/* -** Forward declarations of structure -*/ -typedef struct Btree Btree; -typedef struct BtCursor BtCursor; -typedef struct BtShared BtShared; - - -SQLITE_PRIVATE int sqlite3BtreeOpen( - sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ - const char *zFilename, /* Name of database file to open */ - sqlite3 *db, /* Associated database connection */ - Btree **ppBtree, /* Return open Btree* here */ - int flags, /* Flags */ - int vfsFlags /* Flags passed through to VFS open */ -); - -/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the -** following values. -** -** NOTE: These values must match the corresponding PAGER_ values in -** pager.h. -*/ -#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ -#define BTREE_MEMORY 2 /* This is an in-memory DB */ -#define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ -#define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ - -SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int); -SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); -SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); -SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); -SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); -#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG) -SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p); -#endif -SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); -SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); -SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); -SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); -SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); -SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); -SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); -SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); -SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); -SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); -SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); -SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); - -SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); -SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); -SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); - -SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); - -/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR -** of the flags shown below. -** -** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. -** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data -** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With -** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored -** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL -** indices.) -*/ -#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ -#define BTREE_BLOBKEY 2 /* Table has keys only - no data */ - -SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); -SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*); -SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int); - -SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); -SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); - -SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); - -/* -** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta -** should be one of the following values. The integer values are assigned -** to constants so that the offset of the corresponding field in an -** SQLite database header may be found using the following formula: -** -** offset = 36 + (idx * 4) -** -** For example, the free-page-count field is located at byte offset 36 of -** the database file header. The incr-vacuum-flag field is located at -** byte offset 64 (== 36+4*7). -*/ -#define BTREE_FREE_PAGE_COUNT 0 -#define BTREE_SCHEMA_VERSION 1 -#define BTREE_FILE_FORMAT 2 -#define BTREE_DEFAULT_CACHE_SIZE 3 -#define BTREE_LARGEST_ROOT_PAGE 4 -#define BTREE_TEXT_ENCODING 5 -#define BTREE_USER_VERSION 6 -#define BTREE_INCR_VACUUM 7 - -/* -** Values that may be OR'd together to form the second argument of an -** sqlite3BtreeCursorHints() call. -*/ -#define BTREE_BULKLOAD 0x00000001 - -SQLITE_PRIVATE int sqlite3BtreeCursor( - Btree*, /* BTree containing table to open */ - int iTable, /* Index of root page */ - int wrFlag, /* 1 for writing. 0 for read-only */ - struct KeyInfo*, /* First argument to compare function */ - BtCursor *pCursor /* Space to write cursor structure */ -); -SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); -SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); - -SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( - BtCursor*, - UnpackedRecord *pUnKey, - i64 intKey, - int bias, - int *pRes -); -SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*); -SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, - const void *pData, int nData, - int nZero, int bias, int seekResult); -SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); -SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); -SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); -SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); -SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); -SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); - -SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); -SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); - -SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); -SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); -SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); -SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); - -#ifndef NDEBUG -SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); -#endif - -#ifndef SQLITE_OMIT_BTREECOUNT -SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *); -#endif - -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); -SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); -#endif - -#ifndef SQLITE_OMIT_WAL -SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); -#endif - -/* -** If we are not using shared cache, then there is no need to -** use mutexes to access the BtShared structures. So make the -** Enter and Leave procedures no-ops. -*/ -#ifndef SQLITE_OMIT_SHARED_CACHE -SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); -SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); -#else -# define sqlite3BtreeEnter(X) -# define sqlite3BtreeEnterAll(X) -#endif - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE -SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); -SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); -SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); -SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); -SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); -#ifndef NDEBUG - /* These routines are used inside assert() statements only. */ -SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); -SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); -SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); -#endif -#else - -# define sqlite3BtreeSharable(X) 0 -# define sqlite3BtreeLeave(X) -# define sqlite3BtreeEnterCursor(X) -# define sqlite3BtreeLeaveCursor(X) -# define sqlite3BtreeLeaveAll(X) - -# define sqlite3BtreeHoldsMutex(X) 1 -# define sqlite3BtreeHoldsAllMutexes(X) 1 -# define sqlite3SchemaMutexHeld(X,Y,Z) 1 -#endif - - -#endif /* _BTREE_H_ */ - -/************** End of btree.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include vdbe.h in the middle of sqliteInt.h ******************/ -/************** Begin file vdbe.h ********************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Header file for the Virtual DataBase Engine (VDBE) -** -** This header defines the interface to the virtual database engine -** or VDBE. The VDBE implements an abstract machine that runs a -** simple program to access and modify the underlying database. -*/ -#ifndef _SQLITE_VDBE_H_ -#define _SQLITE_VDBE_H_ -/* #include <stdio.h> */ - -/* -** A single VDBE is an opaque structure named "Vdbe". Only routines -** in the source file sqliteVdbe.c are allowed to see the insides -** of this structure. -*/ -typedef struct Vdbe Vdbe; - -/* -** The names of the following types declared in vdbeInt.h are required -** for the VdbeOp definition. -*/ -typedef struct VdbeFunc VdbeFunc; -typedef struct Mem Mem; -typedef struct SubProgram SubProgram; - -/* -** A single instruction of the virtual machine has an opcode -** and as many as three operands. The instruction is recorded -** as an instance of the following structure: -*/ -struct VdbeOp { - u8 opcode; /* What operation to perform */ - signed char p4type; /* One of the P4_xxx constants for p4 */ - u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ - u8 p5; /* Fifth parameter is an unsigned character */ - int p1; /* First operand */ - int p2; /* Second parameter (often the jump destination) */ - int p3; /* The third parameter */ - union { /* fourth parameter */ - int i; /* Integer value if p4type==P4_INT32 */ - void *p; /* Generic pointer */ - char *z; /* Pointer to data for string (char array) types */ - i64 *pI64; /* Used when p4type is P4_INT64 */ - double *pReal; /* Used when p4type is P4_REAL */ - FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ - VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ - CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ - Mem *pMem; /* Used when p4type is P4_MEM */ - VTable *pVtab; /* Used when p4type is P4_VTAB */ - KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ - int *ai; /* Used when p4type is P4_INTARRAY */ - SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ - int (*xAdvance)(BtCursor *, int *); - } p4; -#ifdef SQLITE_DEBUG - char *zComment; /* Comment to improve readability */ -#endif -#ifdef VDBE_PROFILE - int cnt; /* Number of times this instruction was executed */ - u64 cycles; /* Total time spent executing this instruction */ -#endif -}; -typedef struct VdbeOp VdbeOp; - - -/* -** A sub-routine used to implement a trigger program. -*/ -struct SubProgram { - VdbeOp *aOp; /* Array of opcodes for sub-program */ - int nOp; /* Elements in aOp[] */ - int nMem; /* Number of memory cells required */ - int nCsr; /* Number of cursors required */ - int nOnce; /* Number of OP_Once instructions */ - void *token; /* id that may be used to recursive triggers */ - SubProgram *pNext; /* Next sub-program already visited */ -}; - -/* -** A smaller version of VdbeOp used for the VdbeAddOpList() function because -** it takes up less space. -*/ -struct VdbeOpList { - u8 opcode; /* What operation to perform */ - signed char p1; /* First operand */ - signed char p2; /* Second parameter (often the jump destination) */ - signed char p3; /* Third parameter */ -}; -typedef struct VdbeOpList VdbeOpList; - -/* -** Allowed values of VdbeOp.p4type -*/ -#define P4_NOTUSED 0 /* The P4 parameter is not used */ -#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ -#define P4_STATIC (-2) /* Pointer to a static string */ -#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ -#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ -#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ -#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ -#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ -#define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ -#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ -#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ -#define P4_REAL (-12) /* P4 is a 64-bit floating point value */ -#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ -#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ -#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ -#define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ -#define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ - -/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure -** is made. That copy is freed when the Vdbe is finalized. But if the -** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still -** gets freed when the Vdbe is finalized so it still should be obtained -** from a single sqliteMalloc(). But no copy is made and the calling -** function should *not* try to free the KeyInfo. -*/ -#define P4_KEYINFO_HANDOFF (-16) -#define P4_KEYINFO_STATIC (-17) - -/* -** The Vdbe.aColName array contains 5n Mem structures, where n is the -** number of columns of data returned by the statement. -*/ -#define COLNAME_NAME 0 -#define COLNAME_DECLTYPE 1 -#define COLNAME_DATABASE 2 -#define COLNAME_TABLE 3 -#define COLNAME_COLUMN 4 -#ifdef SQLITE_ENABLE_COLUMN_METADATA -# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ -#else -# ifdef SQLITE_OMIT_DECLTYPE -# define COLNAME_N 1 /* Store only the name */ -# else -# define COLNAME_N 2 /* Store the name and decltype */ -# endif -#endif - -/* -** The following macro converts a relative address in the p2 field -** of a VdbeOp structure into a negative number so that -** sqlite3VdbeAddOpList() knows that the address is relative. Calling -** the macro again restores the address. -*/ -#define ADDR(X) (-1-(X)) - -/* -** The makefile scans the vdbe.c source file and creates the "opcodes.h" -** header file that defines a number for each opcode used by the VDBE. -*/ -/************** Include opcodes.h in the middle of vdbe.h ********************/ -/************** Begin file opcodes.h *****************************************/ -/* Automatically generated. Do not edit */ -/* See the mkopcodeh.awk script for details */ -#define OP_Goto 1 -#define OP_Gosub 2 -#define OP_Return 3 -#define OP_Yield 4 -#define OP_HaltIfNull 5 -#define OP_Halt 6 -#define OP_Integer 7 -#define OP_Int64 8 -#define OP_Real 130 /* same as TK_FLOAT */ -#define OP_String8 94 /* same as TK_STRING */ -#define OP_String 9 -#define OP_Null 10 -#define OP_Blob 11 -#define OP_Variable 12 -#define OP_Move 13 -#define OP_Copy 14 -#define OP_SCopy 15 -#define OP_ResultRow 16 -#define OP_Concat 91 /* same as TK_CONCAT */ -#define OP_Add 86 /* same as TK_PLUS */ -#define OP_Subtract 87 /* same as TK_MINUS */ -#define OP_Multiply 88 /* same as TK_STAR */ -#define OP_Divide 89 /* same as TK_SLASH */ -#define OP_Remainder 90 /* same as TK_REM */ -#define OP_CollSeq 17 -#define OP_Function 18 -#define OP_BitAnd 82 /* same as TK_BITAND */ -#define OP_BitOr 83 /* same as TK_BITOR */ -#define OP_ShiftLeft 84 /* same as TK_LSHIFT */ -#define OP_ShiftRight 85 /* same as TK_RSHIFT */ -#define OP_AddImm 20 -#define OP_MustBeInt 21 -#define OP_RealAffinity 22 -#define OP_ToText 141 /* same as TK_TO_TEXT */ -#define OP_ToBlob 142 /* same as TK_TO_BLOB */ -#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/ -#define OP_ToInt 144 /* same as TK_TO_INT */ -#define OP_ToReal 145 /* same as TK_TO_REAL */ -#define OP_Eq 76 /* same as TK_EQ */ -#define OP_Ne 75 /* same as TK_NE */ -#define OP_Lt 79 /* same as TK_LT */ -#define OP_Le 78 /* same as TK_LE */ -#define OP_Gt 77 /* same as TK_GT */ -#define OP_Ge 80 /* same as TK_GE */ -#define OP_Permutation 23 -#define OP_Compare 24 -#define OP_Jump 25 -#define OP_And 69 /* same as TK_AND */ -#define OP_Or 68 /* same as TK_OR */ -#define OP_Not 19 /* same as TK_NOT */ -#define OP_BitNot 93 /* same as TK_BITNOT */ -#define OP_Once 26 -#define OP_If 27 -#define OP_IfNot 28 -#define OP_IsNull 73 /* same as TK_ISNULL */ -#define OP_NotNull 74 /* same as TK_NOTNULL */ -#define OP_Column 29 -#define OP_Affinity 30 -#define OP_MakeRecord 31 -#define OP_Count 32 -#define OP_Savepoint 33 -#define OP_AutoCommit 34 -#define OP_Transaction 35 -#define OP_ReadCookie 36 -#define OP_SetCookie 37 -#define OP_VerifyCookie 38 -#define OP_OpenRead 39 -#define OP_OpenWrite 40 -#define OP_OpenAutoindex 41 -#define OP_OpenEphemeral 42 -#define OP_SorterOpen 43 -#define OP_OpenPseudo 44 -#define OP_Close 45 -#define OP_SeekLt 46 -#define OP_SeekLe 47 -#define OP_SeekGe 48 -#define OP_SeekGt 49 -#define OP_Seek 50 -#define OP_NotFound 51 -#define OP_Found 52 -#define OP_IsUnique 53 -#define OP_NotExists 54 -#define OP_Sequence 55 -#define OP_NewRowid 56 -#define OP_Insert 57 -#define OP_InsertInt 58 -#define OP_Delete 59 -#define OP_ResetCount 60 -#define OP_SorterCompare 61 -#define OP_SorterData 62 -#define OP_RowKey 63 -#define OP_RowData 64 -#define OP_Rowid 65 -#define OP_NullRow 66 -#define OP_Last 67 -#define OP_SorterSort 70 -#define OP_Sort 71 -#define OP_Rewind 72 -#define OP_SorterNext 81 -#define OP_Prev 92 -#define OP_Next 95 -#define OP_SorterInsert 96 -#define OP_IdxInsert 97 -#define OP_IdxDelete 98 -#define OP_IdxRowid 99 -#define OP_IdxLT 100 -#define OP_IdxGE 101 -#define OP_Destroy 102 -#define OP_Clear 103 -#define OP_CreateIndex 104 -#define OP_CreateTable 105 -#define OP_ParseSchema 106 -#define OP_LoadAnalysis 107 -#define OP_DropTable 108 -#define OP_DropIndex 109 -#define OP_DropTrigger 110 -#define OP_IntegrityCk 111 -#define OP_RowSetAdd 112 -#define OP_RowSetRead 113 -#define OP_RowSetTest 114 -#define OP_Program 115 -#define OP_Param 116 -#define OP_FkCounter 117 -#define OP_FkIfZero 118 -#define OP_MemMax 119 -#define OP_IfPos 120 -#define OP_IfNeg 121 -#define OP_IfZero 122 -#define OP_AggStep 123 -#define OP_AggFinal 124 -#define OP_Checkpoint 125 -#define OP_JournalMode 126 -#define OP_Vacuum 127 -#define OP_IncrVacuum 128 -#define OP_Expire 129 -#define OP_TableLock 131 -#define OP_VBegin 132 -#define OP_VCreate 133 -#define OP_VDestroy 134 -#define OP_VOpen 135 -#define OP_VFilter 136 -#define OP_VColumn 137 -#define OP_VNext 138 -#define OP_VRename 139 -#define OP_VUpdate 140 -#define OP_Pagecount 146 -#define OP_MaxPgcnt 147 -#define OP_Trace 148 -#define OP_Noop 149 -#define OP_Explain 150 - - -/* Properties such as "out2" or "jump" that are specified in -** comments following the "case" for each opcode in the vdbe.c -** are encoded into bitvectors as follows: -*/ -#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ -#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ -#define OPFLG_IN1 0x0004 /* in1: P1 is an input */ -#define OPFLG_IN2 0x0008 /* in2: P2 is an input */ -#define OPFLG_IN3 0x0010 /* in3: P3 is an input */ -#define OPFLG_OUT2 0x0020 /* out2: P2 is an output */ -#define OPFLG_OUT3 0x0040 /* out3: P3 is an output */ -#define OPFLG_INITIALIZER {\ -/* 0 */ 0x00, 0x01, 0x01, 0x04, 0x04, 0x10, 0x00, 0x02,\ -/* 8 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x24,\ -/* 16 */ 0x00, 0x00, 0x00, 0x24, 0x04, 0x05, 0x04, 0x00,\ -/* 24 */ 0x00, 0x01, 0x01, 0x05, 0x05, 0x00, 0x00, 0x00,\ -/* 32 */ 0x02, 0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x00,\ -/* 40 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x11,\ -/* 48 */ 0x11, 0x11, 0x08, 0x11, 0x11, 0x11, 0x11, 0x02,\ -/* 56 */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ -/* 64 */ 0x00, 0x02, 0x00, 0x01, 0x4c, 0x4c, 0x01, 0x01,\ -/* 72 */ 0x01, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\ -/* 80 */ 0x15, 0x01, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c,\ -/* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x01, 0x24, 0x02, 0x01,\ -/* 96 */ 0x08, 0x08, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00,\ -/* 104 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ -/* 112 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\ -/* 120 */ 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02, 0x00,\ -/* 128 */ 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\ -/* 136 */ 0x01, 0x00, 0x01, 0x00, 0x00, 0x04, 0x04, 0x04,\ -/* 144 */ 0x04, 0x04, 0x02, 0x02, 0x00, 0x00, 0x00,} - -/************** End of opcodes.h *********************************************/ -/************** Continuing where we left off in vdbe.h ***********************/ - -/* -** Prototypes for the VDBE interface. See comments on the implementation -** for a description of what each of these routines does. -*/ -SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*); -SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); -SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); -SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); -SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); -SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); -SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); -SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); -SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr); -SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); -SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); -SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); -SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeClearObject(sqlite3*,Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*); -SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); -SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); -SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*); -#endif -SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*); -SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); -SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); -SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); -SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); -SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); -SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); -SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8); -SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); -#ifndef SQLITE_OMIT_TRACE -SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); -#endif - -SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); -SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); -SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); - -#ifndef SQLITE_OMIT_TRIGGER -SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); -#endif - - -#ifndef NDEBUG -SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); -# define VdbeComment(X) sqlite3VdbeComment X -SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); -# define VdbeNoopComment(X) sqlite3VdbeNoopComment X -#else -# define VdbeComment(X) -# define VdbeNoopComment(X) -#endif - -#endif - -/************** End of vdbe.h ************************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include pager.h in the middle of sqliteInt.h *****************/ -/************** Begin file pager.h *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the sqlite page cache -** subsystem. The page cache subsystem reads and writes a file a page -** at a time and provides a journal for rollback. -*/ - -#ifndef _PAGER_H_ -#define _PAGER_H_ - -/* -** Default maximum size for persistent journal files. A negative -** value means no limit. This value may be overridden using the -** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". -*/ -#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT - #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 -#endif - -/* -** The type used to represent a page number. The first page in a file -** is called page 1. 0 is used to represent "not a page". -*/ -typedef u32 Pgno; - -/* -** Each open file is managed by a separate instance of the "Pager" structure. -*/ -typedef struct Pager Pager; - -/* -** Handle type for pages. -*/ -typedef struct PgHdr DbPage; - -/* -** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is -** reserved for working around a windows/posix incompatibility). It is -** used in the journal to signify that the remainder of the journal file -** is devoted to storing a master journal name - there are no more pages to -** roll back. See comments for function writeMasterJournal() in pager.c -** for details. -*/ -#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) - -/* -** Allowed values for the flags parameter to sqlite3PagerOpen(). -** -** NOTE: These values must match the corresponding BTREE_ values in btree.h. -*/ -#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ -#define PAGER_MEMORY 0x0002 /* In-memory database */ - -/* -** Valid values for the second argument to sqlite3PagerLockingMode(). -*/ -#define PAGER_LOCKINGMODE_QUERY -1 -#define PAGER_LOCKINGMODE_NORMAL 0 -#define PAGER_LOCKINGMODE_EXCLUSIVE 1 - -/* -** Numeric constants that encode the journalmode. -*/ -#define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ -#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ -#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ -#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ -#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ -#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ -#define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ - -/* -** The remainder of this file contains the declarations of the functions -** that make up the Pager sub-system API. See source code comments for -** a detailed description of each routine. -*/ - -/* Open and close a Pager connection. */ -SQLITE_PRIVATE int sqlite3PagerOpen( - sqlite3_vfs*, - Pager **ppPager, - const char*, - int, - int, - int, - void(*)(DbPage*) -); -SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); - -/* Functions used to configure a Pager object. */ -SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); -SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); -SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); -SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); -SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); -SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int,int); -SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); -SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int); -SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*); -SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*); -SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); -SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); - -/* Functions used to obtain and release page references. */ -SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); -#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) -SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); -SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); -SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); - -/* Operations on page references. */ -SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); -SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); -SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); -SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); -SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); -SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); - -/* Functions used to manage pager transactions and savepoints. */ -SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*); -SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); -SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); -SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*); -SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); -SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); -SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); -SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); -SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); - -#ifndef SQLITE_OMIT_WAL -SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*); -SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); -SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager); -#endif - -#ifdef SQLITE_ENABLE_ZIPVFS -SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); -#endif - -/* Functions used to query pager state and configuration. */ -SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); -SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); -SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*); -SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int); -SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); -SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); -SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); -SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); -SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); -SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); -SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *); -SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *); -SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *); - -/* Functions used to truncate the database file. */ -SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); - -#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) -SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *); -#endif - -/* Functions to support testing and debugging. */ -#if !defined(NDEBUG) || defined(SQLITE_TEST) -SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); -SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); -#endif -#ifdef SQLITE_TEST -SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); -SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); - void disable_simulated_io_errors(void); - void enable_simulated_io_errors(void); -#else -# define disable_simulated_io_errors() -# define enable_simulated_io_errors() -#endif - -#endif /* _PAGER_H_ */ - -/************** End of pager.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include pcache.h in the middle of sqliteInt.h ****************/ -/************** Begin file pcache.h ******************************************/ -/* -** 2008 August 05 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the sqlite page cache -** subsystem. -*/ - -#ifndef _PCACHE_H_ - -typedef struct PgHdr PgHdr; -typedef struct PCache PCache; - -/* -** Every page in the cache is controlled by an instance of the following -** structure. -*/ -struct PgHdr { - sqlite3_pcache_page *pPage; /* Pcache object page handle */ - void *pData; /* Page data */ - void *pExtra; /* Extra content */ - PgHdr *pDirty; /* Transient list of dirty pages */ - Pager *pPager; /* The pager this page is part of */ - Pgno pgno; /* Page number for this page */ -#ifdef SQLITE_CHECK_PAGES - u32 pageHash; /* Hash of page content */ -#endif - u16 flags; /* PGHDR flags defined below */ - - /********************************************************************** - ** Elements above are public. All that follows is private to pcache.c - ** and should not be accessed by other modules. - */ - i16 nRef; /* Number of users of this page */ - PCache *pCache; /* Cache that owns this page */ - - PgHdr *pDirtyNext; /* Next element in list of dirty pages */ - PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ -}; - -/* Bit values for PgHdr.flags */ -#define PGHDR_DIRTY 0x002 /* Page has changed */ -#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before - ** writing this page to the database */ -#define PGHDR_NEED_READ 0x008 /* Content is unread */ -#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */ -#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ - -/* Initialize and shutdown the page cache subsystem */ -SQLITE_PRIVATE int sqlite3PcacheInitialize(void); -SQLITE_PRIVATE void sqlite3PcacheShutdown(void); - -/* Page cache buffer management: -** These routines implement SQLITE_CONFIG_PAGECACHE. -*/ -SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); - -/* Create a new pager cache. -** Under memory stress, invoke xStress to try to make pages clean. -** Only clean and unpinned pages can be reclaimed. -*/ -SQLITE_PRIVATE void sqlite3PcacheOpen( - int szPage, /* Size of every page */ - int szExtra, /* Extra space associated with each page */ - int bPurgeable, /* True if pages are on backing store */ - int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ - void *pStress, /* Argument to xStress */ - PCache *pToInit /* Preallocated space for the PCache */ -); - -/* Modify the page-size after the cache has been created. */ -SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int); - -/* Return the size in bytes of a PCache object. Used to preallocate -** storage space. -*/ -SQLITE_PRIVATE int sqlite3PcacheSize(void); - -/* One release per successful fetch. Page is pinned until released. -** Reference counted. -*/ -SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**); -SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); - -SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ -SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ -SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ -SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ - -/* Change a page number. Used by incr-vacuum. */ -SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); - -/* Remove all pages with pgno>x. Reset the cache if x==0 */ -SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); - -/* Get a list of all dirty pages in the cache, sorted by page number */ -SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); - -/* Reset and close the cache object */ -SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); - -/* Clear flags from pages of the page cache */ -SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); - -/* Discard the contents of the cache */ -SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); - -/* Return the total number of outstanding page references */ -SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*); - -/* Increment the reference count of an existing page */ -SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); - -SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*); - -/* Return the total number of pages stored in the cache */ -SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); - -#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) -/* Iterate through all dirty pages currently stored in the cache. This -** interface is only available if SQLITE_CHECK_PAGES is defined when the -** library is built. -*/ -SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); -#endif - -/* Set and get the suggested cache-size for the specified pager-cache. -** -** If no global maximum is configured, then the system attempts to limit -** the total number of pages cached by purgeable pager-caches to the sum -** of the suggested cache-sizes. -*/ -SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); -#endif - -/* Free up as much memory as possible from the page cache */ -SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*); - -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT -/* Try to return memory used by the pcache module to the main memory heap */ -SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); -#endif - -#ifdef SQLITE_TEST -SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); -#endif - -SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); - -#endif /* _PCACHE_H_ */ - -/************** End of pcache.h **********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ - -/************** Include os.h in the middle of sqliteInt.h ********************/ -/************** Begin file os.h **********************************************/ -/* -** 2001 September 16 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This header file (together with is companion C source-code file -** "os.c") attempt to abstract the underlying operating system so that -** the SQLite library will work on both POSIX and windows systems. -** -** This header file is #include-ed by sqliteInt.h and thus ends up -** being included by every source file. -*/ -#ifndef _SQLITE_OS_H_ -#define _SQLITE_OS_H_ - -/* -** Figure out if we are dealing with Unix, Windows, or some other -** operating system. After the following block of preprocess macros, -** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, and SQLITE_OS_OTHER -** will defined to either 1 or 0. One of the four will be 1. The other -** three will be 0. -*/ -#if defined(SQLITE_OS_OTHER) -# if SQLITE_OS_OTHER==1 -# undef SQLITE_OS_UNIX -# define SQLITE_OS_UNIX 0 -# undef SQLITE_OS_WIN -# define SQLITE_OS_WIN 0 -# else -# undef SQLITE_OS_OTHER -# endif -#endif -#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) -# define SQLITE_OS_OTHER 0 -# ifndef SQLITE_OS_WIN -# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) -# define SQLITE_OS_WIN 1 -# define SQLITE_OS_UNIX 0 -# else -# define SQLITE_OS_WIN 0 -# define SQLITE_OS_UNIX 1 -# endif -# else -# define SQLITE_OS_UNIX 0 -# endif -#else -# ifndef SQLITE_OS_WIN -# define SQLITE_OS_WIN 0 -# endif -#endif - -#if SQLITE_OS_WIN -# include <windows.h> -#endif - -/* -** Determine if we are dealing with Windows NT. -** -** We ought to be able to determine if we are compiling for win98 or winNT -** using the _WIN32_WINNT macro as follows: -** -** #if defined(_WIN32_WINNT) -** # define SQLITE_OS_WINNT 1 -** #else -** # define SQLITE_OS_WINNT 0 -** #endif -** -** However, vs2005 does not set _WIN32_WINNT by default, as it ought to, -** so the above test does not work. We'll just assume that everything is -** winNT unless the programmer explicitly says otherwise by setting -** SQLITE_OS_WINNT to 0. -*/ -#if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT) -# define SQLITE_OS_WINNT 1 -#endif - -/* -** Determine if we are dealing with WindowsCE - which has a much -** reduced API. -*/ -#if defined(_WIN32_WCE) -# define SQLITE_OS_WINCE 1 -#else -# define SQLITE_OS_WINCE 0 -#endif - -/* -** Determine if we are dealing with WinRT, which provides only a subset of -** the full Win32 API. -*/ -#if !defined(SQLITE_OS_WINRT) -# define SQLITE_OS_WINRT 0 -#endif - -/* -** When compiled for WinCE or WinRT, there is no concept of the current -** directory. - */ -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT -# define SQLITE_CURDIR 1 -#endif - -/* If the SET_FULLSYNC macro is not defined above, then make it -** a no-op -*/ -#ifndef SET_FULLSYNC -# define SET_FULLSYNC(x,y) -#endif - -/* -** The default size of a disk sector -*/ -#ifndef SQLITE_DEFAULT_SECTOR_SIZE -# define SQLITE_DEFAULT_SECTOR_SIZE 4096 -#endif - -/* -** Temporary files are named starting with this prefix followed by 16 random -** alphanumeric characters, and no file extension. They are stored in the -** OS's standard temporary file directory, and are deleted prior to exit. -** If sqlite is being embedded in another program, you may wish to change the -** prefix to reflect your program's name, so that if your program exits -** prematurely, old temporary files can be easily identified. This can be done -** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. -** -** 2006-10-31: The default prefix used to be "sqlite_". But then -** Mcafee started using SQLite in their anti-virus product and it -** started putting files with the "sqlite" name in the c:/temp folder. -** This annoyed many windows users. Those users would then do a -** Google search for "sqlite", find the telephone numbers of the -** developers and call to wake them up at night and complain. -** For this reason, the default name prefix is changed to be "sqlite" -** spelled backwards. So the temp files are still identified, but -** anybody smart enough to figure out the code is also likely smart -** enough to know that calling the developer will not help get rid -** of the file. -*/ -#ifndef SQLITE_TEMP_FILE_PREFIX -# define SQLITE_TEMP_FILE_PREFIX "etilqs_" -#endif - -/* -** The following values may be passed as the second argument to -** sqlite3OsLock(). The various locks exhibit the following semantics: -** -** SHARED: Any number of processes may hold a SHARED lock simultaneously. -** RESERVED: A single process may hold a RESERVED lock on a file at -** any time. Other processes may hold and obtain new SHARED locks. -** PENDING: A single process may hold a PENDING lock on a file at -** any one time. Existing SHARED locks may persist, but no new -** SHARED locks may be obtained by other processes. -** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. -** -** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a -** process that requests an EXCLUSIVE lock may actually obtain a PENDING -** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to -** sqlite3OsLock(). -*/ -#define NO_LOCK 0 -#define SHARED_LOCK 1 -#define RESERVED_LOCK 2 -#define PENDING_LOCK 3 -#define EXCLUSIVE_LOCK 4 - -/* -** File Locking Notes: (Mostly about windows but also some info for Unix) -** -** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because -** those functions are not available. So we use only LockFile() and -** UnlockFile(). -** -** LockFile() prevents not just writing but also reading by other processes. -** A SHARED_LOCK is obtained by locking a single randomly-chosen -** byte out of a specific range of bytes. The lock byte is obtained at -** random so two separate readers can probably access the file at the -** same time, unless they are unlucky and choose the same lock byte. -** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. -** There can only be one writer. A RESERVED_LOCK is obtained by locking -** a single byte of the file that is designated as the reserved lock byte. -** A PENDING_LOCK is obtained by locking a designated byte different from -** the RESERVED_LOCK byte. -** -** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, -** which means we can use reader/writer locks. When reader/writer locks -** are used, the lock is placed on the same range of bytes that is used -** for probabilistic locking in Win95/98/ME. Hence, the locking scheme -** will support two or more Win95 readers or two or more WinNT readers. -** But a single Win95 reader will lock out all WinNT readers and a single -** WinNT reader will lock out all other Win95 readers. -** -** The following #defines specify the range of bytes used for locking. -** SHARED_SIZE is the number of bytes available in the pool from which -** a random byte is selected for a shared lock. The pool of bytes for -** shared locks begins at SHARED_FIRST. -** -** The same locking strategy and -** byte ranges are used for Unix. This leaves open the possiblity of having -** clients on win95, winNT, and unix all talking to the same shared file -** and all locking correctly. To do so would require that samba (or whatever -** tool is being used for file sharing) implements locks correctly between -** windows and unix. I'm guessing that isn't likely to happen, but by -** using the same locking range we are at least open to the possibility. -** -** Locking in windows is manditory. For this reason, we cannot store -** actual data in the bytes used for locking. The pager never allocates -** the pages involved in locking therefore. SHARED_SIZE is selected so -** that all locks will fit on a single page even at the minimum page size. -** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE -** is set high so that we don't have to allocate an unused page except -** for very large databases. But one should test the page skipping logic -** by setting PENDING_BYTE low and running the entire regression suite. -** -** Changing the value of PENDING_BYTE results in a subtly incompatible -** file format. Depending on how it is changed, you might not notice -** the incompatibility right away, even running a full regression test. -** The default location of PENDING_BYTE is the first byte past the -** 1GB boundary. -** -*/ -#ifdef SQLITE_OMIT_WSD -# define PENDING_BYTE (0x40000000) -#else -# define PENDING_BYTE sqlite3PendingByte -#endif -#define RESERVED_BYTE (PENDING_BYTE+1) -#define SHARED_FIRST (PENDING_BYTE+2) -#define SHARED_SIZE 510 - -/* -** Wrapper around OS specific sqlite3_os_init() function. -*/ -SQLITE_PRIVATE int sqlite3OsInit(void); - -/* -** Functions for accessing sqlite3_file methods -*/ -SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); -SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); -SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); -SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); -SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); -SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); -SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); -SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*); -#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 -SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); -SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); -SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **); -SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int); -SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id); -SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int); - - -/* -** Functions for accessing sqlite3_vfs methods -*/ -SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); -SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); -SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); -SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); -#ifndef SQLITE_OMIT_LOAD_EXTENSION -SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); -SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); -SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); -SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); -#endif /* SQLITE_OMIT_LOAD_EXTENSION */ -SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); -SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); -SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*); - -/* -** Convenience functions for opening and closing files using -** sqlite3_malloc() to obtain space for the file-handle structure. -*/ -SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); -SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *); - -#endif /* _SQLITE_OS_H_ */ - -/************** End of os.h **************************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include mutex.h in the middle of sqliteInt.h *****************/ -/************** Begin file mutex.h *******************************************/ -/* -** 2007 August 28 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains the common header for all mutex implementations. -** The sqliteInt.h header #includes this file so that it is available -** to all source files. We break it out in an effort to keep the code -** better organized. -** -** NOTE: source files should *not* #include this header file directly. -** Source files should #include the sqliteInt.h file and let that file -** include this one indirectly. -*/ - - -/* -** Figure out what version of the code to use. The choices are -** -** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The -** mutexes implemention cannot be overridden -** at start-time. -** -** SQLITE_MUTEX_NOOP For single-threaded applications. No -** mutual exclusion is provided. But this -** implementation can be overridden at -** start-time. -** -** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. -** -** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. -*/ -#if !SQLITE_THREADSAFE -# define SQLITE_MUTEX_OMIT -#endif -#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) -# if SQLITE_OS_UNIX -# define SQLITE_MUTEX_PTHREADS -# elif SQLITE_OS_WIN -# define SQLITE_MUTEX_W32 -# else -# define SQLITE_MUTEX_NOOP -# endif -#endif - -#ifdef SQLITE_MUTEX_OMIT -/* -** If this is a no-op implementation, implement everything as macros. -*/ -#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) -#define sqlite3_mutex_free(X) -#define sqlite3_mutex_enter(X) -#define sqlite3_mutex_try(X) SQLITE_OK -#define sqlite3_mutex_leave(X) -#define sqlite3_mutex_held(X) ((void)(X),1) -#define sqlite3_mutex_notheld(X) ((void)(X),1) -#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) -#define sqlite3MutexInit() SQLITE_OK -#define sqlite3MutexEnd() -#define MUTEX_LOGIC(X) -#else -#define MUTEX_LOGIC(X) X -#endif /* defined(SQLITE_MUTEX_OMIT) */ - -/************** End of mutex.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ - - -/* -** Each database file to be accessed by the system is an instance -** of the following structure. There are normally two of these structures -** in the sqlite.aDb[] array. aDb[0] is the main database file and -** aDb[1] is the database file used to hold temporary tables. Additional -** databases may be attached. -*/ -struct Db { - char *zName; /* Name of this database */ - Btree *pBt; /* The B*Tree structure for this database file */ - u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ - u8 safety_level; /* How aggressive at syncing data to disk */ - Schema *pSchema; /* Pointer to database schema (possibly shared) */ -}; - -/* -** An instance of the following structure stores a database schema. -** -** Most Schema objects are associated with a Btree. The exception is -** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. -** In shared cache mode, a single Schema object can be shared by multiple -** Btrees that refer to the same underlying BtShared object. -** -** Schema objects are automatically deallocated when the last Btree that -** references them is destroyed. The TEMP Schema is manually freed by -** sqlite3_close(). -* -** A thread must be holding a mutex on the corresponding Btree in order -** to access Schema content. This implies that the thread must also be -** holding a mutex on the sqlite3 connection pointer that owns the Btree. -** For a TEMP Schema, only the connection mutex is required. -*/ -struct Schema { - int schema_cookie; /* Database schema version number for this file */ - int iGeneration; /* Generation counter. Incremented with each change */ - Hash tblHash; /* All tables indexed by name */ - Hash idxHash; /* All (named) indices indexed by name */ - Hash trigHash; /* All triggers indexed by name */ - Hash fkeyHash; /* All foreign keys by referenced table name */ - Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ - u8 file_format; /* Schema format version for this file */ - u8 enc; /* Text encoding used by this database */ - u16 flags; /* Flags associated with this schema */ - int cache_size; /* Number of pages to use in the cache */ -}; - -/* -** These macros can be used to test, set, or clear bits in the -** Db.pSchema->flags field. -*/ -#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) -#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) -#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) -#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) - -/* -** Allowed values for the DB.pSchema->flags field. -** -** The DB_SchemaLoaded flag is set after the database schema has been -** read into internal hash tables. -** -** DB_UnresetViews means that one or more views have column names that -** have been filled out. If the schema changes, these column names might -** changes and so the view will need to be reset. -*/ -#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ -#define DB_UnresetViews 0x0002 /* Some views have defined column names */ -#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ - -/* -** The number of different kinds of things that can be limited -** using the sqlite3_limit() interface. -*/ -#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) - -/* -** Lookaside malloc is a set of fixed-size buffers that can be used -** to satisfy small transient memory allocation requests for objects -** associated with a particular database connection. The use of -** lookaside malloc provides a significant performance enhancement -** (approx 10%) by avoiding numerous malloc/free requests while parsing -** SQL statements. -** -** The Lookaside structure holds configuration information about the -** lookaside malloc subsystem. Each available memory allocation in -** the lookaside subsystem is stored on a linked list of LookasideSlot -** objects. -** -** Lookaside allocations are only allowed for objects that are associated -** with a particular database connection. Hence, schema information cannot -** be stored in lookaside because in shared cache mode the schema information -** is shared by multiple database connections. Therefore, while parsing -** schema information, the Lookaside.bEnabled flag is cleared so that -** lookaside allocations are not used to construct the schema objects. -*/ -struct Lookaside { - u16 sz; /* Size of each buffer in bytes */ - u8 bEnabled; /* False to disable new lookaside allocations */ - u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ - int nOut; /* Number of buffers currently checked out */ - int mxOut; /* Highwater mark for nOut */ - int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ - LookasideSlot *pFree; /* List of available buffers */ - void *pStart; /* First byte of available memory space */ - void *pEnd; /* First byte past end of available space */ -}; -struct LookasideSlot { - LookasideSlot *pNext; /* Next buffer in the list of free buffers */ -}; - -/* -** A hash table for function definitions. -** -** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. -** Collisions are on the FuncDef.pHash chain. -*/ -struct FuncDefHash { - FuncDef *a[23]; /* Hash table for functions */ -}; - -/* -** Each database connection is an instance of the following structure. -*/ -struct sqlite3 { - sqlite3_vfs *pVfs; /* OS Interface */ - struct Vdbe *pVdbe; /* List of active virtual machines */ - CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ - sqlite3_mutex *mutex; /* Connection mutex */ - Db *aDb; /* All backends */ - int nDb; /* Number of backends currently in use */ - int flags; /* Miscellaneous flags. See below */ - i64 lastRowid; /* ROWID of most recent insert (see above) */ - unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ - int errCode; /* Most recent error code (SQLITE_*) */ - int errMask; /* & result codes with this before returning */ - u16 dbOptFlags; /* Flags to enable/disable optimizations */ - u8 autoCommit; /* The auto-commit flag. */ - u8 temp_store; /* 1: file 2: memory 0: default */ - u8 mallocFailed; /* True if we have seen a malloc failure */ - u8 dfltLockMode; /* Default locking-mode for attached dbs */ - signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ - u8 suppressErr; /* Do not issue error messages if true */ - u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ - u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ - int nextPagesize; /* Pagesize after VACUUM if >0 */ - u32 magic; /* Magic number for detect library misuse */ - int nChange; /* Value returned by sqlite3_changes() */ - int nTotalChange; /* Value returned by sqlite3_total_changes() */ - int aLimit[SQLITE_N_LIMIT]; /* Limits */ - struct sqlite3InitInfo { /* Information used during initialization */ - int newTnum; /* Rootpage of table being initialized */ - u8 iDb; /* Which db file is being initialized */ - u8 busy; /* TRUE if currently initializing */ - u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ - } init; - int activeVdbeCnt; /* Number of VDBEs currently executing */ - int writeVdbeCnt; /* Number of active VDBEs that are writing */ - int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ - int nExtension; /* Number of loaded extensions */ - void **aExtension; /* Array of shared library handles */ - void (*xTrace)(void*,const char*); /* Trace function */ - void *pTraceArg; /* Argument to the trace function */ - void (*xProfile)(void*,const char*,u64); /* Profiling function */ - void *pProfileArg; /* Argument to profile function */ - void *pCommitArg; /* Argument to xCommitCallback() */ - int (*xCommitCallback)(void*); /* Invoked at every commit. */ - void *pRollbackArg; /* Argument to xRollbackCallback() */ - void (*xRollbackCallback)(void*); /* Invoked at every commit. */ - void *pUpdateArg; - void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); -#ifndef SQLITE_OMIT_WAL - int (*xWalCallback)(void *, sqlite3 *, const char *, int); - void *pWalArg; -#endif - void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); - void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); - void *pCollNeededArg; - sqlite3_value *pErr; /* Most recent error message */ - char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ - char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ - union { - volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ - double notUsed1; /* Spacer */ - } u1; - Lookaside lookaside; /* Lookaside malloc configuration */ -#ifndef SQLITE_OMIT_AUTHORIZATION - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); - /* Access authorization function */ - void *pAuthArg; /* 1st argument to the access auth function */ -#endif -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - int (*xProgress)(void *); /* The progress callback */ - void *pProgressArg; /* Argument to the progress callback */ - int nProgressOps; /* Number of opcodes for progress callback */ -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - int nVTrans; /* Allocated size of aVTrans */ - Hash aModule; /* populated by sqlite3_create_module() */ - VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ - VTable **aVTrans; /* Virtual tables with open transactions */ - VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ -#endif - FuncDefHash aFunc; /* Hash table of connection functions */ - Hash aCollSeq; /* All collating sequences */ - BusyHandler busyHandler; /* Busy callback */ - Db aDbStatic[2]; /* Static space for the 2 default backends */ - Savepoint *pSavepoint; /* List of active savepoints */ - int busyTimeout; /* Busy handler timeout, in msec */ - int nSavepoint; /* Number of non-transaction savepoints */ - int nStatement; /* Number of nested statement-transactions */ - i64 nDeferredCons; /* Net deferred constraints this transaction. */ - int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ - -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY - /* The following variables are all protected by the STATIC_MASTER - ** mutex, not by sqlite3.mutex. They are used by code in notify.c. - ** - ** When X.pUnlockConnection==Y, that means that X is waiting for Y to - ** unlock so that it can proceed. - ** - ** When X.pBlockingConnection==Y, that means that something that X tried - ** tried to do recently failed with an SQLITE_LOCKED error due to locks - ** held by Y. - */ - sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ - sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ - void *pUnlockArg; /* Argument to xUnlockNotify */ - void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ - sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ -#endif -}; - -/* -** A macro to discover the encoding of a database. -*/ -#define ENC(db) ((db)->aDb[0].pSchema->enc) - -/* -** Possible values for the sqlite3.flags. -*/ -#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ -#define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ -#define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ -#define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ -#define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ - /* DELETE, or UPDATE and return */ - /* the count using a callback. */ -#define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ - /* result set is empty */ -#define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ -#define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ -#define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ -#define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ -#define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ -#define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ -#define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ -#define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ -#define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ -#define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ -#define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ -#define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ -#define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ -#define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ -#define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ -#define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ -#define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ - -/* -** Bits of the sqlite3.dbOptFlags field that are used by the -** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to -** selectively disable various optimizations. -*/ -#define SQLITE_QueryFlattener 0x0001 /* Query flattening */ -#define SQLITE_ColumnCache 0x0002 /* Column cache */ -#define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ -#define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ -#define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ -#define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ -#define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ -#define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ -#define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ -#define SQLITE_Transitive 0x0200 /* Transitive constraints */ -#define SQLITE_AllOpts 0xffff /* All optimizations */ - -/* -** Macros for testing whether or not optimizations are enabled or disabled. -*/ -#ifndef SQLITE_OMIT_BUILTIN_TEST -#define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) -#define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) -#else -#define OptimizationDisabled(db, mask) 0 -#define OptimizationEnabled(db, mask) 1 -#endif - -/* -** Possible values for the sqlite.magic field. -** The numbers are obtained at random and have no special meaning, other -** than being distinct from one another. -*/ -#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ -#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ -#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ -#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ -#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ -#define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ - -/* -** Each SQL function is defined by an instance of the following -** structure. A pointer to this structure is stored in the sqlite.aFunc -** hash table. When multiple functions have the same name, the hash table -** points to a linked list of these structures. -*/ -struct FuncDef { - i16 nArg; /* Number of arguments. -1 means unlimited */ - u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ - u8 flags; /* Some combination of SQLITE_FUNC_* */ - void *pUserData; /* User data parameter */ - FuncDef *pNext; /* Next function with same name */ - void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ - void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ - void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ - char *zName; /* SQL name of the function. */ - FuncDef *pHash; /* Next with a different name but the same hash */ - FuncDestructor *pDestructor; /* Reference counted destructor function */ -}; - -/* -** This structure encapsulates a user-function destructor callback (as -** configured using create_function_v2()) and a reference counter. When -** create_function_v2() is called to create a function with a destructor, -** a single object of this type is allocated. FuncDestructor.nRef is set to -** the number of FuncDef objects created (either 1 or 3, depending on whether -** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor -** member of each of the new FuncDef objects is set to point to the allocated -** FuncDestructor. -** -** Thereafter, when one of the FuncDef objects is deleted, the reference -** count on this object is decremented. When it reaches 0, the destructor -** is invoked and the FuncDestructor structure freed. -*/ -struct FuncDestructor { - int nRef; - void (*xDestroy)(void *); - void *pUserData; -}; - -/* -** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF -** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There -** are assert() statements in the code to verify this. -*/ -#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ -#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ -#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ -#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ -#define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ -#define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ -#define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ -#define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ - -/* -** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are -** used to create the initializers for the FuncDef structures. -** -** FUNCTION(zName, nArg, iArg, bNC, xFunc) -** Used to create a scalar function definition of a function zName -** implemented by C function xFunc that accepts nArg arguments. The -** value passed as iArg is cast to a (void*) and made available -** as the user-data (sqlite3_user_data()) for the function. If -** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. -** -** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) -** Used to create an aggregate function definition implemented by -** the C functions xStep and xFinal. The first four parameters -** are interpreted in the same way as the first 4 parameters to -** FUNCTION(). -** -** LIKEFUNC(zName, nArg, pArg, flags) -** Used to create a scalar function definition of a function zName -** that accepts nArg arguments and is implemented by a call to C -** function likeFunc. Argument pArg is cast to a (void *) and made -** available as the function user-data (sqlite3_user_data()). The -** FuncDef.flags variable is set to the value passed as the flags -** parameter. -*/ -#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ - {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ - SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} -#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ - {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ - SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} -#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ - {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ - pArg, 0, xFunc, 0, 0, #zName, 0, 0} -#define LIKEFUNC(zName, nArg, arg, flags) \ - {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} -#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ - {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ - SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} - -/* -** All current savepoints are stored in a linked list starting at -** sqlite3.pSavepoint. The first element in the list is the most recently -** opened savepoint. Savepoints are added to the list by the vdbe -** OP_Savepoint instruction. -*/ -struct Savepoint { - char *zName; /* Savepoint name (nul-terminated) */ - i64 nDeferredCons; /* Number of deferred fk violations */ - Savepoint *pNext; /* Parent savepoint (if any) */ -}; - -/* -** The following are used as the second parameter to sqlite3Savepoint(), -** and as the P1 argument to the OP_Savepoint instruction. -*/ -#define SAVEPOINT_BEGIN 0 -#define SAVEPOINT_RELEASE 1 -#define SAVEPOINT_ROLLBACK 2 - - -/* -** Each SQLite module (virtual table definition) is defined by an -** instance of the following structure, stored in the sqlite3.aModule -** hash table. -*/ -struct Module { - const sqlite3_module *pModule; /* Callback pointers */ - const char *zName; /* Name passed to create_module() */ - void *pAux; /* pAux passed to create_module() */ - void (*xDestroy)(void *); /* Module destructor function */ -}; - -/* -** information about each column of an SQL table is held in an instance -** of this structure. -*/ -struct Column { - char *zName; /* Name of this column */ - Expr *pDflt; /* Default value of this column */ - char *zDflt; /* Original text of the default value */ - char *zType; /* Data type for this column */ - char *zColl; /* Collating sequence. If NULL, use the default */ - u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ - char affinity; /* One of the SQLITE_AFF_... values */ - u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ -}; - -/* Allowed values for Column.colFlags: -*/ -#define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ -#define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ - -/* -** A "Collating Sequence" is defined by an instance of the following -** structure. Conceptually, a collating sequence consists of a name and -** a comparison routine that defines the order of that sequence. -** -** If CollSeq.xCmp is NULL, it means that the -** collating sequence is undefined. Indices built on an undefined -** collating sequence may not be read or written. -*/ -struct CollSeq { - char *zName; /* Name of the collating sequence, UTF-8 encoded */ - u8 enc; /* Text encoding handled by xCmp() */ - void *pUser; /* First argument to xCmp() */ - int (*xCmp)(void*,int, const void*, int, const void*); - void (*xDel)(void*); /* Destructor for pUser */ -}; - -/* -** A sort order can be either ASC or DESC. -*/ -#define SQLITE_SO_ASC 0 /* Sort in ascending order */ -#define SQLITE_SO_DESC 1 /* Sort in ascending order */ - -/* -** Column affinity types. -** -** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and -** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve -** the speed a little by numbering the values consecutively. -** -** But rather than start with 0 or 1, we begin with 'a'. That way, -** when multiple affinity types are concatenated into a string and -** used as the P4 operand, they will be more readable. -** -** Note also that the numeric types are grouped together so that testing -** for a numeric type is a single comparison. -*/ -#define SQLITE_AFF_TEXT 'a' -#define SQLITE_AFF_NONE 'b' -#define SQLITE_AFF_NUMERIC 'c' -#define SQLITE_AFF_INTEGER 'd' -#define SQLITE_AFF_REAL 'e' - -#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) - -/* -** The SQLITE_AFF_MASK values masks off the significant bits of an -** affinity value. -*/ -#define SQLITE_AFF_MASK 0x67 - -/* -** Additional bit values that can be ORed with an affinity without -** changing the affinity. -*/ -#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ -#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ -#define SQLITE_NULLEQ 0x80 /* NULL=NULL */ - -/* -** An object of this type is created for each virtual table present in -** the database schema. -** -** If the database schema is shared, then there is one instance of this -** structure for each database connection (sqlite3*) that uses the shared -** schema. This is because each database connection requires its own unique -** instance of the sqlite3_vtab* handle used to access the virtual table -** implementation. sqlite3_vtab* handles can not be shared between -** database connections, even when the rest of the in-memory database -** schema is shared, as the implementation often stores the database -** connection handle passed to it via the xConnect() or xCreate() method -** during initialization internally. This database connection handle may -** then be used by the virtual table implementation to access real tables -** within the database. So that they appear as part of the callers -** transaction, these accesses need to be made via the same database -** connection as that used to execute SQL operations on the virtual table. -** -** All VTable objects that correspond to a single table in a shared -** database schema are initially stored in a linked-list pointed to by -** the Table.pVTable member variable of the corresponding Table object. -** When an sqlite3_prepare() operation is required to access the virtual -** table, it searches the list for the VTable that corresponds to the -** database connection doing the preparing so as to use the correct -** sqlite3_vtab* handle in the compiled query. -** -** When an in-memory Table object is deleted (for example when the -** schema is being reloaded for some reason), the VTable objects are not -** deleted and the sqlite3_vtab* handles are not xDisconnect()ed -** immediately. Instead, they are moved from the Table.pVTable list to -** another linked list headed by the sqlite3.pDisconnect member of the -** corresponding sqlite3 structure. They are then deleted/xDisconnected -** next time a statement is prepared using said sqlite3*. This is done -** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. -** Refer to comments above function sqlite3VtabUnlockList() for an -** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect -** list without holding the corresponding sqlite3.mutex mutex. -** -** The memory for objects of this type is always allocated by -** sqlite3DbMalloc(), using the connection handle stored in VTable.db as -** the first argument. -*/ -struct VTable { - sqlite3 *db; /* Database connection associated with this table */ - Module *pMod; /* Pointer to module implementation */ - sqlite3_vtab *pVtab; /* Pointer to vtab instance */ - int nRef; /* Number of pointers to this structure */ - u8 bConstraint; /* True if constraints are supported */ - int iSavepoint; /* Depth of the SAVEPOINT stack */ - VTable *pNext; /* Next in linked list (see above) */ -}; - -/* -** Each SQL table is represented in memory by an instance of the -** following structure. -** -** Table.zName is the name of the table. The case of the original -** CREATE TABLE statement is stored, but case is not significant for -** comparisons. -** -** Table.nCol is the number of columns in this table. Table.aCol is a -** pointer to an array of Column structures, one for each column. -** -** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of -** the column that is that key. Otherwise Table.iPKey is negative. Note -** that the datatype of the PRIMARY KEY must be INTEGER for this field to -** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of -** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid -** is generated for each row of the table. TF_HasPrimaryKey is set if -** the table has any PRIMARY KEY, INTEGER or otherwise. -** -** Table.tnum is the page number for the root BTree page of the table in the -** database file. If Table.iDb is the index of the database table backend -** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that -** holds temporary tables and indices. If TF_Ephemeral is set -** then the table is stored in a file that is automatically deleted -** when the VDBE cursor to the table is closed. In this case Table.tnum -** refers VDBE cursor number that holds the table open, not to the root -** page number. Transient tables are used to hold the results of a -** sub-query that appears instead of a real table name in the FROM clause -** of a SELECT statement. -*/ -struct Table { - char *zName; /* Name of the table or view */ - Column *aCol; /* Information about each column */ - Index *pIndex; /* List of SQL indexes on this table. */ - Select *pSelect; /* NULL for tables. Points to definition if a view. */ - FKey *pFKey; /* Linked list of all foreign keys in this table */ - char *zColAff; /* String defining the affinity of each column */ -#ifndef SQLITE_OMIT_CHECK - ExprList *pCheck; /* All CHECK constraints */ -#endif - tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ - int tnum; /* Root BTree node for this table (see note above) */ - i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ - i16 nCol; /* Number of columns in this table */ - u16 nRef; /* Number of pointers to this Table */ - u8 tabFlags; /* Mask of TF_* values */ - u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ -#ifndef SQLITE_OMIT_ALTERTABLE - int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - int nModuleArg; /* Number of arguments to the module */ - char **azModuleArg; /* Text of all module args. [0] is module name */ - VTable *pVTable; /* List of VTable objects. */ -#endif - Trigger *pTrigger; /* List of triggers stored in pSchema */ - Schema *pSchema; /* Schema that contains this table */ - Table *pNextZombie; /* Next on the Parse.pZombieTab list */ -}; - -/* -** Allowed values for Tabe.tabFlags. -*/ -#define TF_Readonly 0x01 /* Read-only system table */ -#define TF_Ephemeral 0x02 /* An ephemeral table */ -#define TF_HasPrimaryKey 0x04 /* Table has a primary key */ -#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ -#define TF_Virtual 0x10 /* Is a virtual table */ - - -/* -** Test to see whether or not a table is a virtual table. This is -** done as a macro so that it will be optimized out when virtual -** table support is omitted from the build. -*/ -#ifndef SQLITE_OMIT_VIRTUALTABLE -# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) -# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) -#else -# define IsVirtual(X) 0 -# define IsHiddenColumn(X) 0 -#endif - -/* -** Each foreign key constraint is an instance of the following structure. -** -** A foreign key is associated with two tables. The "from" table is -** the table that contains the REFERENCES clause that creates the foreign -** key. The "to" table is the table that is named in the REFERENCES clause. -** Consider this example: -** -** CREATE TABLE ex1( -** a INTEGER PRIMARY KEY, -** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) -** ); -** -** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". -** -** Each REFERENCES clause generates an instance of the following structure -** which is attached to the from-table. The to-table need not exist when -** the from-table is created. The existence of the to-table is not checked. -*/ -struct FKey { - Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ - FKey *pNextFrom; /* Next foreign key in pFrom */ - char *zTo; /* Name of table that the key points to (aka: Parent) */ - FKey *pNextTo; /* Next foreign key on table named zTo */ - FKey *pPrevTo; /* Previous foreign key on table named zTo */ - int nCol; /* Number of columns in this key */ - /* EV: R-30323-21917 */ - u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ - u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ - Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ - struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ - int iFrom; /* Index of column in pFrom */ - char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ - } aCol[1]; /* One entry for each of nCol column s */ -}; - -/* -** SQLite supports many different ways to resolve a constraint -** error. ROLLBACK processing means that a constraint violation -** causes the operation in process to fail and for the current transaction -** to be rolled back. ABORT processing means the operation in process -** fails and any prior changes from that one operation are backed out, -** but the transaction is not rolled back. FAIL processing means that -** the operation in progress stops and returns an error code. But prior -** changes due to the same operation are not backed out and no rollback -** occurs. IGNORE means that the particular row that caused the constraint -** error is not inserted or updated. Processing continues and no error -** is returned. REPLACE means that preexisting database rows that caused -** a UNIQUE constraint violation are removed so that the new insert or -** update can proceed. Processing continues and no error is reported. -** -** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. -** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the -** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign -** key is set to NULL. CASCADE means that a DELETE or UPDATE of the -** referenced table row is propagated into the row that holds the -** foreign key. -** -** The following symbolic values are used to record which type -** of action to take. -*/ -#define OE_None 0 /* There is no constraint to check */ -#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ -#define OE_Abort 2 /* Back out changes but do no rollback transaction */ -#define OE_Fail 3 /* Stop the operation but leave all prior changes */ -#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ -#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ - -#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ -#define OE_SetNull 7 /* Set the foreign key value to NULL */ -#define OE_SetDflt 8 /* Set the foreign key value to its default */ -#define OE_Cascade 9 /* Cascade the changes */ - -#define OE_Default 99 /* Do whatever the default action is */ - - -/* -** An instance of the following structure is passed as the first -** argument to sqlite3VdbeKeyCompare and is used to control the -** comparison of the two index keys. -*/ -struct KeyInfo { - sqlite3 *db; /* The database connection */ - u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ - u16 nField; /* Number of entries in aColl[] */ - u8 *aSortOrder; /* Sort order for each column. May be NULL */ - CollSeq *aColl[1]; /* Collating sequence for each term of the key */ -}; - -/* -** An instance of the following structure holds information about a -** single index record that has already been parsed out into individual -** values. -** -** A record is an object that contains one or more fields of data. -** Records are used to store the content of a table row and to store -** the key of an index. A blob encoding of a record is created by -** the OP_MakeRecord opcode of the VDBE and is disassembled by the -** OP_Column opcode. -** -** This structure holds a record that has already been disassembled -** into its constituent fields. -*/ -struct UnpackedRecord { - KeyInfo *pKeyInfo; /* Collation and sort-order information */ - u16 nField; /* Number of entries in apMem[] */ - u8 flags; /* Boolean settings. UNPACKED_... below */ - i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ - Mem *aMem; /* Values */ -}; - -/* -** Allowed values of UnpackedRecord.flags -*/ -#define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ -#define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ -#define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ - -/* -** Each SQL index is represented in memory by an -** instance of the following structure. -** -** The columns of the table that are to be indexed are described -** by the aiColumn[] field of this structure. For example, suppose -** we have the following table and index: -** -** CREATE TABLE Ex1(c1 int, c2 int, c3 text); -** CREATE INDEX Ex2 ON Ex1(c3,c1); -** -** In the Table structure describing Ex1, nCol==3 because there are -** three columns in the table. In the Index structure describing -** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. -** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the -** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. -** The second column to be indexed (c1) has an index of 0 in -** Ex1.aCol[], hence Ex2.aiColumn[1]==0. -** -** The Index.onError field determines whether or not the indexed columns -** must be unique and what to do if they are not. When Index.onError=OE_None, -** it means this is not a unique index. Otherwise it is a unique index -** and the value of Index.onError indicate the which conflict resolution -** algorithm to employ whenever an attempt is made to insert a non-unique -** element. -*/ -struct Index { - char *zName; /* Name of this index */ - int *aiColumn; /* Which columns are used by this index. 1st is 0 */ - tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ - Table *pTable; /* The SQL table being indexed */ - char *zColAff; /* String defining the affinity of each column */ - Index *pNext; /* The next index associated with the same table */ - Schema *pSchema; /* Schema containing this index */ - u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ - char **azColl; /* Array of collation sequence names for index */ - int tnum; /* DB Page containing root of this index */ - u16 nColumn; /* Number of columns in table used by this index */ - u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ - unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ - unsigned bUnordered:1; /* Use this index for == or IN queries only */ -#ifdef SQLITE_ENABLE_STAT3 - int nSample; /* Number of elements in aSample[] */ - tRowcnt avgEq; /* Average nEq value for key values not in aSample */ - IndexSample *aSample; /* Samples of the left-most key */ -#endif -}; - -/* -** Each sample stored in the sqlite_stat3 table is represented in memory -** using a structure of this type. See documentation at the top of the -** analyze.c source file for additional information. -*/ -struct IndexSample { - union { - char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ - double r; /* Value if eType is SQLITE_FLOAT */ - i64 i; /* Value if eType is SQLITE_INTEGER */ - } u; - u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ - int nByte; /* Size in byte of text or blob. */ - tRowcnt nEq; /* Est. number of rows where the key equals this sample */ - tRowcnt nLt; /* Est. number of rows where key is less than this sample */ - tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ -}; - -/* -** Each token coming out of the lexer is an instance of -** this structure. Tokens are also used as part of an expression. -** -** Note if Token.z==0 then Token.dyn and Token.n are undefined and -** may contain random values. Do not make any assumptions about Token.dyn -** and Token.n when Token.z==0. -*/ -struct Token { - const char *z; /* Text of the token. Not NULL-terminated! */ - unsigned int n; /* Number of characters in this token */ -}; - -/* -** An instance of this structure contains information needed to generate -** code for a SELECT that contains aggregate functions. -** -** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a -** pointer to this structure. The Expr.iColumn field is the index in -** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate -** code for that node. -** -** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the -** original Select structure that describes the SELECT statement. These -** fields do not need to be freed when deallocating the AggInfo structure. -*/ -struct AggInfo { - u8 directMode; /* Direct rendering mode means take data directly - ** from source tables rather than from accumulators */ - u8 useSortingIdx; /* In direct mode, reference the sorting index rather - ** than the source table */ - int sortingIdx; /* Cursor number of the sorting index */ - int sortingIdxPTab; /* Cursor number of pseudo-table */ - int nSortingColumn; /* Number of columns in the sorting index */ - ExprList *pGroupBy; /* The group by clause */ - struct AggInfo_col { /* For each column used in source tables */ - Table *pTab; /* Source table */ - int iTable; /* Cursor number of the source table */ - int iColumn; /* Column number within the source table */ - int iSorterColumn; /* Column number in the sorting index */ - int iMem; /* Memory location that acts as accumulator */ - Expr *pExpr; /* The original expression */ - } *aCol; - int nColumn; /* Number of used entries in aCol[] */ - int nAccumulator; /* Number of columns that show through to the output. - ** Additional columns are used only as parameters to - ** aggregate functions */ - struct AggInfo_func { /* For each aggregate function */ - Expr *pExpr; /* Expression encoding the function */ - FuncDef *pFunc; /* The aggregate function implementation */ - int iMem; /* Memory location that acts as accumulator */ - int iDistinct; /* Ephemeral table used to enforce DISTINCT */ - } *aFunc; - int nFunc; /* Number of entries in aFunc[] */ -}; - -/* -** The datatype ynVar is a signed integer, either 16-bit or 32-bit. -** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater -** than 32767 we have to make it 32-bit. 16-bit is preferred because -** it uses less memory in the Expr object, which is a big memory user -** in systems with lots of prepared statements. And few applications -** need more than about 10 or 20 variables. But some extreme users want -** to have prepared statements with over 32767 variables, and for them -** the option is available (at compile-time). -*/ -#if SQLITE_MAX_VARIABLE_NUMBER<=32767 -typedef i16 ynVar; -#else -typedef int ynVar; -#endif - -/* -** Each node of an expression in the parse tree is an instance -** of this structure. -** -** Expr.op is the opcode. The integer parser token codes are reused -** as opcodes here. For example, the parser defines TK_GE to be an integer -** code representing the ">=" operator. This same integer code is reused -** to represent the greater-than-or-equal-to operator in the expression -** tree. -** -** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, -** or TK_STRING), then Expr.token contains the text of the SQL literal. If -** the expression is a variable (TK_VARIABLE), then Expr.token contains the -** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), -** then Expr.token contains the name of the function. -** -** Expr.pRight and Expr.pLeft are the left and right subexpressions of a -** binary operator. Either or both may be NULL. -** -** Expr.x.pList is a list of arguments if the expression is an SQL function, -** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". -** Expr.x.pSelect is used if the expression is a sub-select or an expression of -** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the -** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is -** valid. -** -** An expression of the form ID or ID.ID refers to a column in a table. -** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is -** the integer cursor number of a VDBE cursor pointing to that table and -** Expr.iColumn is the column number for the specific column. If the -** expression is used as a result in an aggregate SELECT, then the -** value is also stored in the Expr.iAgg column in the aggregate so that -** it can be accessed after all aggregates are computed. -** -** If the expression is an unbound variable marker (a question mark -** character '?' in the original SQL) then the Expr.iTable holds the index -** number for that variable. -** -** If the expression is a subquery then Expr.iColumn holds an integer -** register number containing the result of the subquery. If the -** subquery gives a constant result, then iTable is -1. If the subquery -** gives a different answer at different times during statement processing -** then iTable is the address of a subroutine that computes the subquery. -** -** If the Expr is of type OP_Column, and the table it is selecting from -** is a disk table or the "old.*" pseudo-table, then pTab points to the -** corresponding table definition. -** -** ALLOCATION NOTES: -** -** Expr objects can use a lot of memory space in database schema. To -** help reduce memory requirements, sometimes an Expr object will be -** truncated. And to reduce the number of memory allocations, sometimes -** two or more Expr objects will be stored in a single memory allocation, -** together with Expr.zToken strings. -** -** If the EP_Reduced and EP_TokenOnly flags are set when -** an Expr object is truncated. When EP_Reduced is set, then all -** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees -** are contained within the same memory allocation. Note, however, that -** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately -** allocated, regardless of whether or not EP_Reduced is set. -*/ -struct Expr { - u8 op; /* Operation performed by this node */ - char affinity; /* The affinity of the column or 0 if not a column */ - u16 flags; /* Various flags. EP_* See below */ - union { - char *zToken; /* Token value. Zero terminated and dequoted */ - int iValue; /* Non-negative integer value if EP_IntValue */ - } u; - - /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no - ** space is allocated for the fields below this point. An attempt to - ** access them will result in a segfault or malfunction. - *********************************************************************/ - - Expr *pLeft; /* Left subnode */ - Expr *pRight; /* Right subnode */ - union { - ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ - Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ - } x; - - /* If the EP_Reduced flag is set in the Expr.flags mask, then no - ** space is allocated for the fields below this point. An attempt to - ** access them will result in a segfault or malfunction. - *********************************************************************/ - -#if SQLITE_MAX_EXPR_DEPTH>0 - int nHeight; /* Height of the tree headed by this node */ -#endif - int iTable; /* TK_COLUMN: cursor number of table holding column - ** TK_REGISTER: register number - ** TK_TRIGGER: 1 -> new, 0 -> old */ - ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. - ** TK_VARIABLE: variable number (always >= 1). */ - i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ - i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ - u8 flags2; /* Second set of flags. EP2_... */ - u8 op2; /* TK_REGISTER: original value of Expr.op - ** TK_COLUMN: the value of p5 for OP_Column - ** TK_AGG_FUNCTION: nesting depth */ - AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ - Table *pTab; /* Table for TK_COLUMN expressions. */ -}; - -/* -** The following are the meanings of bits in the Expr.flags field. -*/ -#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ -#define EP_Agg 0x0002 /* Contains one or more aggregate functions */ -#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ -#define EP_Error 0x0008 /* Expression contains one or more errors */ -#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ -#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ -#define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ -#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ -#define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ -#define EP_FixedDest 0x0200 /* Result needed in a specific register */ -#define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ -#define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ -#define EP_Hint 0x1000 /* Not used */ -#define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ -#define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ -#define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ - -/* -** The following are the meanings of bits in the Expr.flags2 field. -*/ -#define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ -#define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ - -/* -** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible -** flag on an expression structure. This flag is used for VV&A only. The -** routine is implemented as a macro that only works when in debugging mode, -** so as not to burden production code. -*/ -#ifdef SQLITE_DEBUG -# define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible -#else -# define ExprSetIrreducible(X) -#endif - -/* -** These macros can be used to test, set, or clear bits in the -** Expr.flags field. -*/ -#define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) -#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) -#define ExprSetProperty(E,P) (E)->flags|=(P) -#define ExprClearProperty(E,P) (E)->flags&=~(P) - -/* -** Macros to determine the number of bytes required by a normal Expr -** struct, an Expr struct with the EP_Reduced flag set in Expr.flags -** and an Expr struct with the EP_TokenOnly flag set. -*/ -#define EXPR_FULLSIZE sizeof(Expr) /* Full size */ -#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ -#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ - -/* -** Flags passed to the sqlite3ExprDup() function. See the header comment -** above sqlite3ExprDup() for details. -*/ -#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ - -/* -** A list of expressions. Each expression may optionally have a -** name. An expr/name combination can be used in several ways, such -** as the list of "expr AS ID" fields following a "SELECT" or in the -** list of "ID = expr" items in an UPDATE. A list of expressions can -** also be used as the argument to a function, in which case the a.zName -** field is not used. -** -** By default the Expr.zSpan field holds a human-readable description of -** the expression that is used in the generation of error messages and -** column labels. In this case, Expr.zSpan is typically the text of a -** column expression as it exists in a SELECT statement. However, if -** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name -** of the result column in the form: DATABASE.TABLE.COLUMN. This later -** form is used for name resolution with nested FROM clauses. -*/ -struct ExprList { - int nExpr; /* Number of expressions on the list */ - int iECursor; /* VDBE Cursor associated with this ExprList */ - struct ExprList_item { /* For each expression in the list */ - Expr *pExpr; /* The list of expressions */ - char *zName; /* Token associated with this expression */ - char *zSpan; /* Original text of the expression */ - u8 sortOrder; /* 1 for DESC or 0 for ASC */ - unsigned done :1; /* A flag to indicate when processing is finished */ - unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ - u16 iOrderByCol; /* For ORDER BY, column number in result set */ - u16 iAlias; /* Index into Parse.aAlias[] for zName */ - } *a; /* Alloc a power of two greater or equal to nExpr */ -}; - -/* -** An instance of this structure is used by the parser to record both -** the parse tree for an expression and the span of input text for an -** expression. -*/ -struct ExprSpan { - Expr *pExpr; /* The expression parse tree */ - const char *zStart; /* First character of input text */ - const char *zEnd; /* One character past the end of input text */ -}; - -/* -** An instance of this structure can hold a simple list of identifiers, -** such as the list "a,b,c" in the following statements: -** -** INSERT INTO t(a,b,c) VALUES ...; -** CREATE INDEX idx ON t(a,b,c); -** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; -** -** The IdList.a.idx field is used when the IdList represents the list of -** column names after a table name in an INSERT statement. In the statement -** -** INSERT INTO t(a,b,c) ... -** -** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. -*/ -struct IdList { - struct IdList_item { - char *zName; /* Name of the identifier */ - int idx; /* Index in some Table.aCol[] of a column named zName */ - } *a; - int nId; /* Number of identifiers on the list */ -}; - -/* -** The bitmask datatype defined below is used for various optimizations. -** -** Changing this from a 64-bit to a 32-bit type limits the number of -** tables in a join to 32 instead of 64. But it also reduces the size -** of the library by 738 bytes on ix86. -*/ -typedef u64 Bitmask; - -/* -** The number of bits in a Bitmask. "BMS" means "BitMask Size". -*/ -#define BMS ((int)(sizeof(Bitmask)*8)) - -/* -** The following structure describes the FROM clause of a SELECT statement. -** Each table or subquery in the FROM clause is a separate element of -** the SrcList.a[] array. -** -** With the addition of multiple database support, the following structure -** can also be used to describe a particular table such as the table that -** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, -** such a table must be a simple name: ID. But in SQLite, the table can -** now be identified by a database name, a dot, then the table name: ID.ID. -** -** The jointype starts out showing the join type between the current table -** and the next table on the list. The parser builds the list this way. -** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each -** jointype expresses the join between the table and the previous table. -** -** In the colUsed field, the high-order bit (bit 63) is set if the table -** contains more than 63 columns and the 64-th or later column is used. -*/ -struct SrcList { - i16 nSrc; /* Number of tables or subqueries in the FROM clause */ - i16 nAlloc; /* Number of entries allocated in a[] below */ - struct SrcList_item { - Schema *pSchema; /* Schema to which this item is fixed */ - char *zDatabase; /* Name of database holding this table */ - char *zName; /* Name of the table */ - char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ - Table *pTab; /* An SQL table corresponding to zName */ - Select *pSelect; /* A SELECT statement used in place of a table name */ - int addrFillSub; /* Address of subroutine to manifest a subquery */ - int regReturn; /* Register holding return address of addrFillSub */ - u8 jointype; /* Type of join between this able and the previous */ - unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ - unsigned isCorrelated :1; /* True if sub-query is correlated */ - unsigned viaCoroutine :1; /* Implemented as a co-routine */ -#ifndef SQLITE_OMIT_EXPLAIN - u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ -#endif - int iCursor; /* The VDBE cursor number used to access this table */ - Expr *pOn; /* The ON clause of a join */ - IdList *pUsing; /* The USING clause of a join */ - Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ - char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ - Index *pIndex; /* Index structure corresponding to zIndex, if any */ - } a[1]; /* One entry for each identifier on the list */ -}; - -/* -** Permitted values of the SrcList.a.jointype field -*/ -#define JT_INNER 0x0001 /* Any kind of inner or cross join */ -#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ -#define JT_NATURAL 0x0004 /* True for a "natural" join */ -#define JT_LEFT 0x0008 /* Left outer join */ -#define JT_RIGHT 0x0010 /* Right outer join */ -#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ -#define JT_ERROR 0x0040 /* unknown or unsupported join type */ - - -/* -** A WherePlan object holds information that describes a lookup -** strategy. -** -** This object is intended to be opaque outside of the where.c module. -** It is included here only so that that compiler will know how big it -** is. None of the fields in this object should be used outside of -** the where.c module. -** -** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. -** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx -** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the -** case that more than one of these conditions is true. -*/ -struct WherePlan { - u32 wsFlags; /* WHERE_* flags that describe the strategy */ - u16 nEq; /* Number of == constraints */ - u16 nOBSat; /* Number of ORDER BY terms satisfied */ - double nRow; /* Estimated number of rows (for EQP) */ - union { - Index *pIdx; /* Index when WHERE_INDEXED is true */ - struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ - sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ - } u; -}; - -/* -** For each nested loop in a WHERE clause implementation, the WhereInfo -** structure contains a single instance of this structure. This structure -** is intended to be private to the where.c module and should not be -** access or modified by other modules. -** -** The pIdxInfo field is used to help pick the best index on a -** virtual table. The pIdxInfo pointer contains indexing -** information for the i-th table in the FROM clause before reordering. -** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. -** All other information in the i-th WhereLevel object for the i-th table -** after FROM clause ordering. -*/ -struct WhereLevel { - WherePlan plan; /* query plan for this element of the FROM clause */ - int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ - int iTabCur; /* The VDBE cursor used to access the table */ - int iIdxCur; /* The VDBE cursor used to access pIdx */ - int addrBrk; /* Jump here to break out of the loop */ - int addrNxt; /* Jump here to start the next IN combination */ - int addrCont; /* Jump here to continue with the next loop cycle */ - int addrFirst; /* First instruction of interior of the loop */ - u8 iFrom; /* Which entry in the FROM clause */ - u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ - int p1, p2; /* Operands of the opcode used to ends the loop */ - union { /* Information that depends on plan.wsFlags */ - struct { - int nIn; /* Number of entries in aInLoop[] */ - struct InLoop { - int iCur; /* The VDBE cursor used by this IN operator */ - int addrInTop; /* Top of the IN loop */ - u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ - } *aInLoop; /* Information about each nested IN operator */ - } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ - Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ - } u; - double rOptCost; /* "Optimal" cost for this level */ - - /* The following field is really not part of the current level. But - ** we need a place to cache virtual table index information for each - ** virtual table in the FROM clause and the WhereLevel structure is - ** a convenient place since there is one WhereLevel for each FROM clause - ** element. - */ - sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ -}; - -/* -** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() -** and the WhereInfo.wctrlFlags member. -*/ -#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ -#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ -#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ -#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ -#define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ -#define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ -#define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ -#define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ -#define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ - -/* -** The WHERE clause processing routine has two halves. The -** first part does the start of the WHERE loop and the second -** half does the tail of the WHERE loop. An instance of -** this structure is returned by the first half and passed -** into the second half to give some continuity. -*/ -struct WhereInfo { - Parse *pParse; /* Parsing and code generating context */ - SrcList *pTabList; /* List of tables in the join */ - u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ - u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ - u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ - u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ - u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ - int iTop; /* The very beginning of the WHERE loop */ - int iContinue; /* Jump here to continue with next record */ - int iBreak; /* Jump here to break out of the loop */ - int nLevel; /* Number of nested loop */ - struct WhereClause *pWC; /* Decomposition of the WHERE clause */ - double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ - double nRowOut; /* Estimated number of output rows */ - WhereLevel a[1]; /* Information about each nest loop in WHERE */ -}; - -/* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ -#define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ -#define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ -#define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ -#define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ - -/* -** A NameContext defines a context in which to resolve table and column -** names. The context consists of a list of tables (the pSrcList) field and -** a list of named expression (pEList). The named expression list may -** be NULL. The pSrc corresponds to the FROM clause of a SELECT or -** to the table being operated on by INSERT, UPDATE, or DELETE. The -** pEList corresponds to the result set of a SELECT and is NULL for -** other statements. -** -** NameContexts can be nested. When resolving names, the inner-most -** context is searched first. If no match is found, the next outer -** context is checked. If there is still no match, the next context -** is checked. This process continues until either a match is found -** or all contexts are check. When a match is found, the nRef member of -** the context containing the match is incremented. -** -** Each subquery gets a new NameContext. The pNext field points to the -** NameContext in the parent query. Thus the process of scanning the -** NameContext list corresponds to searching through successively outer -** subqueries looking for a match. -*/ -struct NameContext { - Parse *pParse; /* The parser */ - SrcList *pSrcList; /* One or more tables used to resolve names */ - ExprList *pEList; /* Optional list of named expressions */ - AggInfo *pAggInfo; /* Information about aggregates at this level */ - NameContext *pNext; /* Next outer name context. NULL for outermost */ - int nRef; /* Number of names resolved by this context */ - int nErr; /* Number of errors encountered while resolving names */ - u8 ncFlags; /* Zero or more NC_* flags defined below */ -}; - -/* -** Allowed values for the NameContext, ncFlags field. -*/ -#define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ -#define NC_HasAgg 0x02 /* One or more aggregate functions seen */ -#define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ -#define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ - -/* -** An instance of the following structure contains all information -** needed to generate code for a single SELECT statement. -** -** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. -** If there is a LIMIT clause, the parser sets nLimit to the value of the -** limit and nOffset to the value of the offset (or 0 if there is not -** offset). But later on, nLimit and nOffset become the memory locations -** in the VDBE that record the limit and offset counters. -** -** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. -** These addresses must be stored so that we can go back and fill in -** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor -** the number of columns in P2 can be computed at the same time -** as the OP_OpenEphm instruction is coded because not -** enough information about the compound query is known at that point. -** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences -** for the result set. The KeyInfo for addrOpenEphm[2] contains collating -** sequences for the ORDER BY clause. -*/ -struct Select { - ExprList *pEList; /* The fields of the result */ - u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ - u16 selFlags; /* Various SF_* values */ - int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ - int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ - double nSelectRow; /* Estimated number of result rows */ - SrcList *pSrc; /* The FROM clause */ - Expr *pWhere; /* The WHERE clause */ - ExprList *pGroupBy; /* The GROUP BY clause */ - Expr *pHaving; /* The HAVING clause */ - ExprList *pOrderBy; /* The ORDER BY clause */ - Select *pPrior; /* Prior select in a compound select statement */ - Select *pNext; /* Next select to the left in a compound */ - Select *pRightmost; /* Right-most select in a compound select statement */ - Expr *pLimit; /* LIMIT expression. NULL means not used. */ - Expr *pOffset; /* OFFSET expression. NULL means not used. */ -}; - -/* -** Allowed values for Select.selFlags. The "SF" prefix stands for -** "Select Flag". -*/ -#define SF_Distinct 0x0001 /* Output should be DISTINCT */ -#define SF_Resolved 0x0002 /* Identifiers have been resolved */ -#define SF_Aggregate 0x0004 /* Contains aggregate functions */ -#define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ -#define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ -#define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ -#define SF_UseSorter 0x0040 /* Sort using a sorter */ -#define SF_Values 0x0080 /* Synthesized from VALUES clause */ -#define SF_Materialize 0x0100 /* Force materialization of views */ -#define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ - - -/* -** The results of a select can be distributed in several ways. The -** "SRT" prefix means "SELECT Result Type". -*/ -#define SRT_Union 1 /* Store result as keys in an index */ -#define SRT_Except 2 /* Remove result from a UNION index */ -#define SRT_Exists 3 /* Store 1 if the result is not empty */ -#define SRT_Discard 4 /* Do not save the results anywhere */ - -/* The ORDER BY clause is ignored for all of the above */ -#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) - -#define SRT_Output 5 /* Output each row of result */ -#define SRT_Mem 6 /* Store result in a memory cell */ -#define SRT_Set 7 /* Store results as keys in an index */ -#define SRT_Table 8 /* Store result as data with an automatic rowid */ -#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ -#define SRT_Coroutine 10 /* Generate a single row of result */ - -/* -** An instance of this object describes where to put of the results of -** a SELECT statement. -*/ -struct SelectDest { - u8 eDest; /* How to dispose of the results. On of SRT_* above. */ - char affSdst; /* Affinity used when eDest==SRT_Set */ - int iSDParm; /* A parameter used by the eDest disposal method */ - int iSdst; /* Base register where results are written */ - int nSdst; /* Number of registers allocated */ -}; - -/* -** During code generation of statements that do inserts into AUTOINCREMENT -** tables, the following information is attached to the Table.u.autoInc.p -** pointer of each autoincrement table to record some side information that -** the code generator needs. We have to keep per-table autoincrement -** information in case inserts are down within triggers. Triggers do not -** normally coordinate their activities, but we do need to coordinate the -** loading and saving of autoincrement information. -*/ -struct AutoincInfo { - AutoincInfo *pNext; /* Next info block in a list of them all */ - Table *pTab; /* Table this info block refers to */ - int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ - int regCtr; /* Memory register holding the rowid counter */ -}; - -/* -** Size of the column cache -*/ -#ifndef SQLITE_N_COLCACHE -# define SQLITE_N_COLCACHE 10 -#endif - -/* -** At least one instance of the following structure is created for each -** trigger that may be fired while parsing an INSERT, UPDATE or DELETE -** statement. All such objects are stored in the linked list headed at -** Parse.pTriggerPrg and deleted once statement compilation has been -** completed. -** -** A Vdbe sub-program that implements the body and WHEN clause of trigger -** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of -** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. -** The Parse.pTriggerPrg list never contains two entries with the same -** values for both pTrigger and orconf. -** -** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns -** accessed (or set to 0 for triggers fired as a result of INSERT -** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to -** a mask of new.* columns used by the program. -*/ -struct TriggerPrg { - Trigger *pTrigger; /* Trigger this program was coded from */ - TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ - SubProgram *pProgram; /* Program implementing pTrigger/orconf */ - int orconf; /* Default ON CONFLICT policy */ - u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ -}; - -/* -** The yDbMask datatype for the bitmask of all attached databases. -*/ -#if SQLITE_MAX_ATTACHED>30 - typedef sqlite3_uint64 yDbMask; -#else - typedef unsigned int yDbMask; -#endif - -/* -** An SQL parser context. A copy of this structure is passed through -** the parser and down into all the parser action routine in order to -** carry around information that is global to the entire parse. -** -** The structure is divided into two parts. When the parser and code -** generate call themselves recursively, the first part of the structure -** is constant but the second part is reset at the beginning and end of -** each recursion. -** -** The nTableLock and aTableLock variables are only used if the shared-cache -** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are -** used to store the set of table-locks required by the statement being -** compiled. Function sqlite3TableLock() is used to add entries to the -** list. -*/ -struct Parse { - sqlite3 *db; /* The main database structure */ - char *zErrMsg; /* An error message */ - Vdbe *pVdbe; /* An engine for executing database bytecode */ - int rc; /* Return code from execution */ - u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ - u8 checkSchema; /* Causes schema cookie check after an error */ - u8 nested; /* Number of nested calls to the parser/code generator */ - u8 nTempReg; /* Number of temporary registers in aTempReg[] */ - u8 nTempInUse; /* Number of aTempReg[] currently checked out */ - u8 nColCache; /* Number of entries in aColCache[] */ - u8 iColCache; /* Next entry in aColCache[] to replace */ - u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ - u8 mayAbort; /* True if statement may throw an ABORT exception */ - int aTempReg[8]; /* Holding area for temporary registers */ - int nRangeReg; /* Size of the temporary register block */ - int iRangeReg; /* First register in temporary register block */ - int nErr; /* Number of errors seen */ - int nTab; /* Number of previously allocated VDBE cursors */ - int nMem; /* Number of memory cells used so far */ - int nSet; /* Number of sets used so far */ - int nOnce; /* Number of OP_Once instructions so far */ - int ckBase; /* Base register of data during check constraints */ - int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ - int iCacheCnt; /* Counter used to generate aColCache[].lru values */ - struct yColCache { - int iTable; /* Table cursor number */ - int iColumn; /* Table column number */ - u8 tempReg; /* iReg is a temp register that needs to be freed */ - int iLevel; /* Nesting level */ - int iReg; /* Reg with value of this column. 0 means none. */ - int lru; /* Least recently used entry has the smallest value */ - } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ - yDbMask writeMask; /* Start a write transaction on these databases */ - yDbMask cookieMask; /* Bitmask of schema verified databases */ - int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ - int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ - int regRowid; /* Register holding rowid of CREATE TABLE entry */ - int regRoot; /* Register holding root page number for new objects */ - int nMaxArg; /* Max args passed to user function by sub-program */ - Token constraintName;/* Name of the constraint currently being parsed */ -#ifndef SQLITE_OMIT_SHARED_CACHE - int nTableLock; /* Number of locks in aTableLock */ - TableLock *aTableLock; /* Required table locks for shared-cache mode */ -#endif - AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ - - /* Information used while coding trigger programs. */ - Parse *pToplevel; /* Parse structure for main program (or NULL) */ - Table *pTriggerTab; /* Table triggers are being coded for */ - double nQueryLoop; /* Estimated number of iterations of a query */ - u32 oldmask; /* Mask of old.* columns referenced */ - u32 newmask; /* Mask of new.* columns referenced */ - u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ - u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ - u8 disableTriggers; /* True to disable triggers */ - - /* Above is constant between recursions. Below is reset before and after - ** each recursion */ - - int nVar; /* Number of '?' variables seen in the SQL so far */ - int nzVar; /* Number of available slots in azVar[] */ - u8 explain; /* True if the EXPLAIN flag is found on the query */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ - int nVtabLock; /* Number of virtual tables to lock */ -#endif - int nAlias; /* Number of aliased result set columns */ - int nHeight; /* Expression tree height of current sub-select */ -#ifndef SQLITE_OMIT_EXPLAIN - int iSelectId; /* ID of current select for EXPLAIN output */ - int iNextSelectId; /* Next available select ID for EXPLAIN output */ -#endif - char **azVar; /* Pointers to names of parameters */ - Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ - int *aAlias; /* Register used to hold aliased result */ - const char *zTail; /* All SQL text past the last semicolon parsed */ - Table *pNewTable; /* A table being constructed by CREATE TABLE */ - Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ - const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ - Token sNameToken; /* Token with unqualified schema object name */ - Token sLastToken; /* The last token parsed */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - Token sArg; /* Complete text of a module argument */ - Table **apVtabLock; /* Pointer to virtual tables needing locking */ -#endif - Table *pZombieTab; /* List of Table objects to delete after code gen */ - TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ -}; - -/* -** Return true if currently inside an sqlite3_declare_vtab() call. -*/ -#ifdef SQLITE_OMIT_VIRTUALTABLE - #define IN_DECLARE_VTAB 0 -#else - #define IN_DECLARE_VTAB (pParse->declareVtab) -#endif - -/* -** An instance of the following structure can be declared on a stack and used -** to save the Parse.zAuthContext value so that it can be restored later. -*/ -struct AuthContext { - const char *zAuthContext; /* Put saved Parse.zAuthContext here */ - Parse *pParse; /* The Parse structure */ -}; - -/* -** Bitfield flags for P5 value in various opcodes. -*/ -#define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ -#define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ -#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ -#define OPFLAG_APPEND 0x08 /* This is likely to be an append */ -#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ -#define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ -#define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ -#define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ -#define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ -#define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ -#define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ - -/* - * Each trigger present in the database schema is stored as an instance of - * struct Trigger. - * - * Pointers to instances of struct Trigger are stored in two ways. - * 1. In the "trigHash" hash table (part of the sqlite3* that represents the - * database). This allows Trigger structures to be retrieved by name. - * 2. All triggers associated with a single table form a linked list, using the - * pNext member of struct Trigger. A pointer to the first element of the - * linked list is stored as the "pTrigger" member of the associated - * struct Table. - * - * The "step_list" member points to the first element of a linked list - * containing the SQL statements specified as the trigger program. - */ -struct Trigger { - char *zName; /* The name of the trigger */ - char *table; /* The table or view to which the trigger applies */ - u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ - u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ - Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ - IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, - the <column-list> is stored here */ - Schema *pSchema; /* Schema containing the trigger */ - Schema *pTabSchema; /* Schema containing the table */ - TriggerStep *step_list; /* Link list of trigger program steps */ - Trigger *pNext; /* Next trigger associated with the table */ -}; - -/* -** A trigger is either a BEFORE or an AFTER trigger. The following constants -** determine which. -** -** If there are multiple triggers, you might of some BEFORE and some AFTER. -** In that cases, the constants below can be ORed together. -*/ -#define TRIGGER_BEFORE 1 -#define TRIGGER_AFTER 2 - -/* - * An instance of struct TriggerStep is used to store a single SQL statement - * that is a part of a trigger-program. - * - * Instances of struct TriggerStep are stored in a singly linked list (linked - * using the "pNext" member) referenced by the "step_list" member of the - * associated struct Trigger instance. The first element of the linked list is - * the first step of the trigger-program. - * - * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or - * "SELECT" statement. The meanings of the other members is determined by the - * value of "op" as follows: - * - * (op == TK_INSERT) - * orconf -> stores the ON CONFLICT algorithm - * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then - * this stores a pointer to the SELECT statement. Otherwise NULL. - * target -> A token holding the quoted name of the table to insert into. - * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then - * this stores values to be inserted. Otherwise NULL. - * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... - * statement, then this stores the column-names to be - * inserted into. - * - * (op == TK_DELETE) - * target -> A token holding the quoted name of the table to delete from. - * pWhere -> The WHERE clause of the DELETE statement if one is specified. - * Otherwise NULL. - * - * (op == TK_UPDATE) - * target -> A token holding the quoted name of the table to update rows of. - * pWhere -> The WHERE clause of the UPDATE statement if one is specified. - * Otherwise NULL. - * pExprList -> A list of the columns to update and the expressions to update - * them to. See sqlite3Update() documentation of "pChanges" - * argument. - * - */ -struct TriggerStep { - u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ - u8 orconf; /* OE_Rollback etc. */ - Trigger *pTrig; /* The trigger that this step is a part of */ - Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ - Token target; /* Target table for DELETE, UPDATE, INSERT */ - Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ - ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ - IdList *pIdList; /* Column names for INSERT */ - TriggerStep *pNext; /* Next in the link-list */ - TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ -}; - -/* -** The following structure contains information used by the sqliteFix... -** routines as they walk the parse tree to make database references -** explicit. -*/ -typedef struct DbFixer DbFixer; -struct DbFixer { - Parse *pParse; /* The parsing context. Error messages written here */ - Schema *pSchema; /* Fix items to this schema */ - const char *zDb; /* Make sure all objects are contained in this database */ - const char *zType; /* Type of the container - used for error messages */ - const Token *pName; /* Name of the container - used for error messages */ -}; - -/* -** An objected used to accumulate the text of a string where we -** do not necessarily know how big the string will be in the end. -*/ -struct StrAccum { - sqlite3 *db; /* Optional database for lookaside. Can be NULL */ - char *zBase; /* A base allocation. Not from malloc. */ - char *zText; /* The string collected so far */ - int nChar; /* Length of the string so far */ - int nAlloc; /* Amount of space allocated in zText */ - int mxAlloc; /* Maximum allowed string length */ - u8 mallocFailed; /* Becomes true if any memory allocation fails */ - u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ - u8 tooBig; /* Becomes true if string size exceeds limits */ -}; - -/* -** A pointer to this structure is used to communicate information -** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. -*/ -typedef struct { - sqlite3 *db; /* The database being initialized */ - char **pzErrMsg; /* Error message stored here */ - int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ - int rc; /* Result code stored here */ -} InitData; - -/* -** Structure containing global configuration data for the SQLite library. -** -** This structure also contains some state information. -*/ -struct Sqlite3Config { - int bMemstat; /* True to enable memory status */ - int bCoreMutex; /* True to enable core mutexing */ - int bFullMutex; /* True to enable full mutexing */ - int bOpenUri; /* True to interpret filenames as URIs */ - int bUseCis; /* Use covering indices for full-scans */ - int mxStrlen; /* Maximum string length */ - int szLookaside; /* Default lookaside buffer size */ - int nLookaside; /* Default lookaside buffer count */ - sqlite3_mem_methods m; /* Low-level memory allocation interface */ - sqlite3_mutex_methods mutex; /* Low-level mutex interface */ - sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ - void *pHeap; /* Heap storage space */ - int nHeap; /* Size of pHeap[] */ - int mnReq, mxReq; /* Min and max heap requests sizes */ - void *pScratch; /* Scratch memory */ - int szScratch; /* Size of each scratch buffer */ - int nScratch; /* Number of scratch buffers */ - void *pPage; /* Page cache memory */ - int szPage; /* Size of each page in pPage[] */ - int nPage; /* Number of pages in pPage[] */ - int mxParserStack; /* maximum depth of the parser stack */ - int sharedCacheEnabled; /* true if shared-cache mode enabled */ - /* The above might be initialized to non-zero. The following need to always - ** initially be zero, however. */ - int isInit; /* True after initialization has finished */ - int inProgress; /* True while initialization in progress */ - int isMutexInit; /* True after mutexes are initialized */ - int isMallocInit; /* True after malloc is initialized */ - int isPCacheInit; /* True after malloc is initialized */ - sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ - int nRefInitMutex; /* Number of users of pInitMutex */ - void (*xLog)(void*,int,const char*); /* Function for logging */ - void *pLogArg; /* First argument to xLog() */ - int bLocaltimeFault; /* True to fail localtime() calls */ -#ifdef SQLITE_ENABLE_SQLLOG - void(*xSqllog)(void*,sqlite3*,const char*, int); - void *pSqllogArg; -#endif -}; - -/* -** Context pointer passed down through the tree-walk. -*/ -struct Walker { - int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ - int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ - Parse *pParse; /* Parser context. */ - int walkerDepth; /* Number of subqueries */ - union { /* Extra data for callback */ - NameContext *pNC; /* Naming context */ - int i; /* Integer value */ - SrcList *pSrcList; /* FROM clause */ - struct SrcCount *pSrcCount; /* Counting column references */ - } u; -}; - -/* Forward declarations */ -SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*); -SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*); -SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*); -SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*); -SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*); - -/* -** Return code from the parse-tree walking primitives and their -** callbacks. -*/ -#define WRC_Continue 0 /* Continue down into children */ -#define WRC_Prune 1 /* Omit children but continue walking siblings */ -#define WRC_Abort 2 /* Abandon the tree walk */ - -/* -** Assuming zIn points to the first byte of a UTF-8 character, -** advance zIn to point to the first byte of the next UTF-8 character. -*/ -#define SQLITE_SKIP_UTF8(zIn) { \ - if( (*(zIn++))>=0xc0 ){ \ - while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ - } \ -} - -/* -** The SQLITE_*_BKPT macros are substitutes for the error codes with -** the same name but without the _BKPT suffix. These macros invoke -** routines that report the line-number on which the error originated -** using sqlite3_log(). The routines also provide a convenient place -** to set a debugger breakpoint. -*/ -SQLITE_PRIVATE int sqlite3CorruptError(int); -SQLITE_PRIVATE int sqlite3MisuseError(int); -SQLITE_PRIVATE int sqlite3CantopenError(int); -#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) -#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) -#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) - - -/* -** FTS4 is really an extension for FTS3. It is enabled using the -** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all -** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. -*/ -#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) -# define SQLITE_ENABLE_FTS3 -#endif - -/* -** The ctype.h header is needed for non-ASCII systems. It is also -** needed by FTS3 when FTS3 is included in the amalgamation. -*/ -#if !defined(SQLITE_ASCII) || \ - (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) -# include <ctype.h> -#endif - -/* -** The following macros mimic the standard library functions toupper(), -** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The -** sqlite versions only work for ASCII characters, regardless of locale. -*/ -#ifdef SQLITE_ASCII -# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) -# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) -# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) -# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) -# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) -# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) -# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) -#else -# define sqlite3Toupper(x) toupper((unsigned char)(x)) -# define sqlite3Isspace(x) isspace((unsigned char)(x)) -# define sqlite3Isalnum(x) isalnum((unsigned char)(x)) -# define sqlite3Isalpha(x) isalpha((unsigned char)(x)) -# define sqlite3Isdigit(x) isdigit((unsigned char)(x)) -# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) -# define sqlite3Tolower(x) tolower((unsigned char)(x)) -#endif - -/* -** Internal function prototypes -*/ -#define sqlite3StrICmp sqlite3_stricmp -SQLITE_PRIVATE int sqlite3Strlen30(const char*); -#define sqlite3StrNICmp sqlite3_strnicmp - -SQLITE_PRIVATE int sqlite3MallocInit(void); -SQLITE_PRIVATE void sqlite3MallocEnd(void); -SQLITE_PRIVATE void *sqlite3Malloc(int); -SQLITE_PRIVATE void *sqlite3MallocZero(int); -SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, int); -SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, int); -SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*); -SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int); -SQLITE_PRIVATE void *sqlite3Realloc(void*, int); -SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); -SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int); -SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*); -SQLITE_PRIVATE int sqlite3MallocSize(void*); -SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*); -SQLITE_PRIVATE void *sqlite3ScratchMalloc(int); -SQLITE_PRIVATE void sqlite3ScratchFree(void*); -SQLITE_PRIVATE void *sqlite3PageMalloc(int); -SQLITE_PRIVATE void sqlite3PageFree(void*); -SQLITE_PRIVATE void sqlite3MemSetDefault(void); -SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); -SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); - -/* -** On systems with ample stack space and that support alloca(), make -** use of alloca() to obtain space for large automatic objects. By default, -** obtain space from malloc(). -** -** The alloca() routine never returns NULL. This will cause code paths -** that deal with sqlite3StackAlloc() failures to be unreachable. -*/ -#ifdef SQLITE_USE_ALLOCA -# define sqlite3StackAllocRaw(D,N) alloca(N) -# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) -# define sqlite3StackFree(D,P) -#else -# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) -# define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) -# define sqlite3StackFree(D,P) sqlite3DbFree(D,P) -#endif - -#ifdef SQLITE_ENABLE_MEMSYS3 -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); -#endif -#ifdef SQLITE_ENABLE_MEMSYS5 -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); -#endif - - -#ifndef SQLITE_MUTEX_OMIT -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void); -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void); -SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int); -SQLITE_PRIVATE int sqlite3MutexInit(void); -SQLITE_PRIVATE int sqlite3MutexEnd(void); -#endif - -SQLITE_PRIVATE int sqlite3StatusValue(int); -SQLITE_PRIVATE void sqlite3StatusAdd(int, int); -SQLITE_PRIVATE void sqlite3StatusSet(int, int); - -#ifndef SQLITE_OMIT_FLOATING_POINT -SQLITE_PRIVATE int sqlite3IsNaN(double); -#else -# define sqlite3IsNaN(X) 0 -#endif - -SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); -#ifndef SQLITE_OMIT_TRACE -SQLITE_PRIVATE void sqlite3XPrintf(StrAccum*, const char*, ...); -#endif -SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); -SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); -SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3*,char*,const char*,...); -#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) -SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); -#endif -#if defined(SQLITE_TEST) -SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); -#endif - -/* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) -SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe*); -SQLITE_PRIVATE void sqlite3ExplainPrintf(Vdbe*, const char*, ...); -SQLITE_PRIVATE void sqlite3ExplainNL(Vdbe*); -SQLITE_PRIVATE void sqlite3ExplainPush(Vdbe*); -SQLITE_PRIVATE void sqlite3ExplainPop(Vdbe*); -SQLITE_PRIVATE void sqlite3ExplainFinish(Vdbe*); -SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe*, Select*); -SQLITE_PRIVATE void sqlite3ExplainExpr(Vdbe*, Expr*); -SQLITE_PRIVATE void sqlite3ExplainExprList(Vdbe*, ExprList*); -SQLITE_PRIVATE const char *sqlite3VdbeExplanation(Vdbe*); -#else -# define sqlite3ExplainBegin(X) -# define sqlite3ExplainSelect(A,B) -# define sqlite3ExplainExpr(A,B) -# define sqlite3ExplainExprList(A,B) -# define sqlite3ExplainFinish(X) -# define sqlite3VdbeExplanation(X) 0 -#endif - - -SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*, ...); -SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...); -SQLITE_PRIVATE int sqlite3Dequote(char*); -SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int); -SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **); -SQLITE_PRIVATE void sqlite3FinishCoding(Parse*); -SQLITE_PRIVATE int sqlite3GetTempReg(Parse*); -SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int); -SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int); -SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int); -SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*); -SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); -SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*); -SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); -SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); -SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); -SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); -SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*); -SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*); -SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); -SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); -SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); -SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*); -SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**); -SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**); -SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); -SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*); -SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int); -SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*); -SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int); -SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*); -SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*); -SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int); -SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); -SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*); -SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int); -SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); -SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*); -SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*); -SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*); -SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); -SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*); -SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*, - sqlite3_vfs**,char**,char **); -SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*); -SQLITE_PRIVATE int sqlite3CodeOnce(Parse *); - -SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); -SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); -SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); -SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); -SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); -SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); -SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); - -SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); -SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*); -SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); -SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); -SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*); - -SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); - -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) -SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*); -#else -# define sqlite3ViewGetColumnNames(A,B) 0 -#endif - -SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int); -SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int); -SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*); -#ifndef SQLITE_OMIT_AUTOINCREMENT -SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse); -SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse); -#else -# define sqlite3AutoincrementBegin(X) -# define sqlite3AutoincrementEnd(X) -#endif -SQLITE_PRIVATE int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); -SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); -SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); -SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); -SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*); -SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); -SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); -SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, - Token*, Select*, Expr*, IdList*); -SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); -SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); -SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*); -SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); -SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*); -SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*); -SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, - Token*, int, int); -SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int); -SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*); -SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, - Expr*,ExprList*,u16,Expr*,Expr*); -SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*); -SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*); -SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int); -SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); -#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) -SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); -#endif -SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); -SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); -SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); -SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*); -SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); -SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); -SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); -SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int); -SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*); -SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int); -SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int); -SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*); -SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int); -SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int); -SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*); -SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); -SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int); -SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*); -SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); -SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); -SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); -SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); -SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); -SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); -SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); -SQLITE_PRIVATE void sqlite3Vacuum(Parse*); -SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); -SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); -SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*); -SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*); -SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); -SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); -SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); -SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); -SQLITE_PRIVATE void sqlite3PrngSaveState(void); -SQLITE_PRIVATE void sqlite3PrngRestoreState(void); -SQLITE_PRIVATE void sqlite3PrngResetState(void); -SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); -SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); -SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); -SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); -SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); -SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); -SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); -SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); -SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*); -SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); -SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); -SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); -SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); -SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); -SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); -SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); -SQLITE_PRIVATE int sqlite3IsRowid(const char*); -SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); -SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); -SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); -SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, - int*,int,int,int,int,int*); -SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); -SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); -SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); -SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); -SQLITE_PRIVATE void sqlite3MayAbort(Parse*); -SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, int); -SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int); -SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); -SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); -SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*); -SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int); -SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); -SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); -SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*); -SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void); -SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void); -SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); -SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); -SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int); - -#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) -SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, int); -#endif - -#ifndef SQLITE_OMIT_TRIGGER -SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, - Expr*,int, int); -SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); -SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); -SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); -SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); -SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *); -SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, - int, int, int); -SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); - void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); -SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); -SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); -SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, - ExprList*,Select*,u8); -SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); -SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); -SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); -SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); -# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) -#else -# define sqlite3TriggersExist(B,C,D,E,F) 0 -# define sqlite3DeleteTrigger(A,B) -# define sqlite3DropTriggerPtr(A,B) -# define sqlite3UnlinkAndDeleteTrigger(A,B,C) -# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) -# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) -# define sqlite3TriggerList(X, Y) 0 -# define sqlite3ParseToplevel(p) p -# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 -#endif - -SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); -SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); -SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); -#ifndef SQLITE_OMIT_AUTHORIZATION -SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); -SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); -SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); -SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*); -SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int); -#else -# define sqlite3AuthRead(a,b,c,d) -# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK -# define sqlite3AuthContextPush(a,b,c) -# define sqlite3AuthContextPop(a) ((void)(a)) -#endif -SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); -SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); -SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); -SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); -SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); -SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); -SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*); -SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); -SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); -SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); -SQLITE_PRIVATE int sqlite3Atoi(const char*); -SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); -SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte); -SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**); - -/* -** Routines to read and write variable-length integers. These used to -** be defined locally, but now we use the varint routines in the util.c -** file. Code should use the MACRO forms below, as the Varint32 versions -** are coded to assume the single byte case is already handled (which -** the MACRO form does). -*/ -SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64); -SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32); -SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *); -SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *); -SQLITE_PRIVATE int sqlite3VarintLen(u64 v); - -/* -** The header of a record consists of a sequence variable-length integers. -** These integers are almost always small and are encoded as a single byte. -** The following macros take advantage this fact to provide a fast encode -** and decode of the integers in a record header. It is faster for the common -** case where the integer is a single byte. It is a little slower when the -** integer is two or more bytes. But overall it is faster. -** -** The following expressions are equivalent: -** -** x = sqlite3GetVarint32( A, &B ); -** x = sqlite3PutVarint32( A, B ); -** -** x = getVarint32( A, B ); -** x = putVarint32( A, B ); -** -*/ -#define getVarint32(A,B) \ - (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) -#define putVarint32(A,B) \ - (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ - sqlite3PutVarint32((A),(B))) -#define getVarint sqlite3GetVarint -#define putVarint sqlite3PutVarint - - -SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *); -SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *); -SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2); -SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); -SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr); -SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8); -SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...); -SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); -SQLITE_PRIVATE u8 sqlite3HexToInt(int h); -SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); -SQLITE_PRIVATE const char *sqlite3ErrStr(int); -SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse); -SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); -SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); -SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); -SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); -SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); -SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*); -SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); -SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); -SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); -SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); -SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); -SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); -SQLITE_PRIVATE int sqlite3AbsInt32(int); -#ifdef SQLITE_ENABLE_8_3_NAMES -SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*); -#else -# define sqlite3FileSuffix3(X,Y) -#endif -SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,int); - -SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); -SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); -SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, - void(*)(void*)); -SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); -SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); -SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); -#ifdef SQLITE_ENABLE_STAT3 -SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); -#endif -SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); -SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); -#ifndef SQLITE_AMALGAMATION -SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[]; -SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; -SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[]; -SQLITE_PRIVATE const Token sqlite3IntTokens[]; -SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; -SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; -#ifndef SQLITE_OMIT_WSD -SQLITE_PRIVATE int sqlite3PendingByte; -#endif -#endif -SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int); -SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); -SQLITE_PRIVATE void sqlite3AlterFunctions(void); -SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); -SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); -SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); -SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); -SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); -SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); -SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); -SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); -SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); -SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); -SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); -SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); -SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); -SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); -SQLITE_PRIVATE char sqlite3AffinityType(const char*); -SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); -SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); -SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); -SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); -SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); -SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); -SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); -SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); -SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); -SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); -SQLITE_PRIVATE void sqlite3SchemaClear(void *); -SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); -SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); -SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); -SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, - void (*)(sqlite3_context*,int,sqlite3_value **), - void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), - FuncDestructor *pDestructor -); -SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); -SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); - -SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, char*, int, int); -SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int); -SQLITE_PRIVATE void sqlite3AppendSpace(StrAccum*,int); -SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); -SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*); -SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); -SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); - -SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *); -SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); - -/* -** The interface to the LEMON-generated parser -*/ -SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t)); -SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*)); -SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*); -#ifdef YYTRACKMAXSTACKDEPTH -SQLITE_PRIVATE int sqlite3ParserStackPeak(void*); -#endif - -SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*); -#ifndef SQLITE_OMIT_LOAD_EXTENSION -SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*); -#else -# define sqlite3CloseExtensions(X) -#endif - -#ifndef SQLITE_OMIT_SHARED_CACHE -SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *); -#else - #define sqlite3TableLock(v,w,x,y,z) -#endif - -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*); -#endif - -#ifdef SQLITE_OMIT_VIRTUALTABLE -# define sqlite3VtabClear(Y) -# define sqlite3VtabSync(X,Y) SQLITE_OK -# define sqlite3VtabRollback(X) -# define sqlite3VtabCommit(X) -# define sqlite3VtabInSync(db) 0 -# define sqlite3VtabLock(X) -# define sqlite3VtabUnlock(X) -# define sqlite3VtabUnlockList(X) -# define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK -# define sqlite3GetVTable(X,Y) ((VTable*)0) -#else -SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*); -SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p); -SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **); -SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db); -SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db); -SQLITE_PRIVATE void sqlite3VtabLock(VTable *); -SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *); -SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*); -SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *, int, int); -SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*); -# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) -#endif -SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*); -SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); -SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*); -SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*); -SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*); -SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); -SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*); -SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); -SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *); -SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); -SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); -SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); -SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); -SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); -SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); -SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); -SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); -SQLITE_PRIVATE const char *sqlite3JournalModename(int); -#ifndef SQLITE_OMIT_WAL -SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); -SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); -#endif - -/* Declarations for functions in fkey.c. All of these are replaced by -** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign -** key functionality is available. If OMIT_TRIGGER is defined but -** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In -** this case foreign keys are parsed, but no other functionality is -** provided (enforcement of FK constraints requires the triggers sub-system). -*/ -#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) -SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int); -SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*); -SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int); -SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int); -SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*); -SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *); -#else - #define sqlite3FkActions(a,b,c,d) - #define sqlite3FkCheck(a,b,c,d) - #define sqlite3FkDropTable(a,b,c) - #define sqlite3FkOldmask(a,b) 0 - #define sqlite3FkRequired(a,b,c,d) 0 -#endif -#ifndef SQLITE_OMIT_FOREIGN_KEY -SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*); -SQLITE_PRIVATE int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); -#else - #define sqlite3FkDelete(a,b) - #define sqlite3FkLocateIndex(a,b,c,d,e) -#endif - - -/* -** Available fault injectors. Should be numbered beginning with 0. -*/ -#define SQLITE_FAULTINJECTOR_MALLOC 0 -#define SQLITE_FAULTINJECTOR_COUNT 1 - -/* -** The interface to the code in fault.c used for identifying "benign" -** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST -** is not defined. -*/ -#ifndef SQLITE_OMIT_BUILTIN_TEST -SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void); -SQLITE_PRIVATE void sqlite3EndBenignMalloc(void); -#else - #define sqlite3BeginBenignMalloc() - #define sqlite3EndBenignMalloc() -#endif - -#define IN_INDEX_ROWID 1 -#define IN_INDEX_EPH 2 -#define IN_INDEX_INDEX_ASC 3 -#define IN_INDEX_INDEX_DESC 4 -SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int*); - -#ifdef SQLITE_ENABLE_ATOMIC_WRITE -SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); -SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *); -SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *); -SQLITE_PRIVATE int sqlite3JournalExists(sqlite3_file *p); -#else - #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) - #define sqlite3JournalExists(p) 1 -#endif - -SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *); -SQLITE_PRIVATE int sqlite3MemJournalSize(void); -SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *); - -#if SQLITE_MAX_EXPR_DEPTH>0 -SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p); -SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *); -SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int); -#else - #define sqlite3ExprSetHeight(x,y) - #define sqlite3SelectExprHeight(x) 0 - #define sqlite3ExprCheckHeight(x,y) -#endif - -SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); -SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); - -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY -SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); -SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db); -SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db); -#else - #define sqlite3ConnectionBlocked(x,y) - #define sqlite3ConnectionUnlocked(x) - #define sqlite3ConnectionClosed(x) -#endif - -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *); -#endif - -/* -** If the SQLITE_ENABLE IOTRACE exists then the global variable -** sqlite3IoTrace is a pointer to a printf-like routine used to -** print I/O tracing messages. -*/ -#ifdef SQLITE_ENABLE_IOTRACE -# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } -SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*); -SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...); -#else -# define IOTRACE(A) -# define sqlite3VdbeIOTraceSql(X) -#endif - -/* -** These routines are available for the mem2.c debugging memory allocator -** only. They are used to verify that different "types" of memory -** allocations are properly tracked by the system. -** -** sqlite3MemdebugSetType() sets the "type" of an allocation to one of -** the MEMTYPE_* macros defined below. The type must be a bitmask with -** a single bit set. -** -** sqlite3MemdebugHasType() returns true if any of the bits in its second -** argument match the type set by the previous sqlite3MemdebugSetType(). -** sqlite3MemdebugHasType() is intended for use inside assert() statements. -** -** sqlite3MemdebugNoType() returns true if none of the bits in its second -** argument match the type set by the previous sqlite3MemdebugSetType(). -** -** Perhaps the most important point is the difference between MEMTYPE_HEAP -** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means -** it might have been allocated by lookaside, except the allocation was -** too large or lookaside was already full. It is important to verify -** that allocations that might have been satisfied by lookaside are not -** passed back to non-lookaside free() routines. Asserts such as the -** example above are placed on the non-lookaside free() routines to verify -** this constraint. -** -** All of this is no-op for a production build. It only comes into -** play when the SQLITE_MEMDEBUG compile-time option is used. -*/ -#ifdef SQLITE_MEMDEBUG -SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8); -SQLITE_PRIVATE int sqlite3MemdebugHasType(void*,u8); -SQLITE_PRIVATE int sqlite3MemdebugNoType(void*,u8); -#else -# define sqlite3MemdebugSetType(X,Y) /* no-op */ -# define sqlite3MemdebugHasType(X,Y) 1 -# define sqlite3MemdebugNoType(X,Y) 1 -#endif -#define MEMTYPE_HEAP 0x01 /* General heap allocations */ -#define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ -#define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ -#define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ -#define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ - -#endif /* _SQLITEINT_H_ */ - -/************** End of sqliteInt.h *******************************************/ -/************** Begin file global.c ******************************************/ -/* -** 2008 June 13 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains definitions of global variables and contants. -*/ - -/* An array to map all upper-case characters into their corresponding -** lower-case character. -** -** SQLite only considers US-ASCII (or EBCDIC) characters. We do not -** handle case conversions for the UTF character set since the tables -** involved are nearly as big or bigger than SQLite itself. -*/ -SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = { -#ifdef SQLITE_ASCII - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, - 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, - 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, - 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, - 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, - 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, - 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, - 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, - 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, - 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, - 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, - 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, - 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, - 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, - 252,253,254,255 -#endif -#ifdef SQLITE_EBCDIC - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ - 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ - 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ - 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ - 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ - 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ - 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */ - 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */ - 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ - 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */ - 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ - 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ - 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ - 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ - 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */ - 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */ -#endif -}; - -/* -** The following 256 byte lookup table is used to support SQLites built-in -** equivalents to the following standard library functions: -** -** isspace() 0x01 -** isalpha() 0x02 -** isdigit() 0x04 -** isalnum() 0x06 -** isxdigit() 0x08 -** toupper() 0x20 -** SQLite identifier character 0x40 -** -** Bit 0x20 is set if the mapped character requires translation to upper -** case. i.e. if the character is a lower-case ASCII character. -** If x is a lower-case ASCII character, then its upper-case equivalent -** is (x - 0x20). Therefore toupper() can be implemented as: -** -** (x & ~(map[x]&0x20)) -** -** Standard function tolower() is implemented using the sqlite3UpperToLower[] -** array. tolower() is used more often than toupper() by SQLite. -** -** Bit 0x40 is set if the character non-alphanumeric and can be used in an -** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any -** non-ASCII UTF character. Hence the test for whether or not a character is -** part of an identifier is 0x46. -** -** SQLite's versions are identical to the standard versions assuming a -** locale of "C". They are implemented as macros in sqliteInt.h. -*/ -#ifdef SQLITE_ASCII -SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */ - 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */ - 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, /* 20..27 !"#$%&' */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */ - 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */ - 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */ - - 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */ - 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */ - 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */ - 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */ - 0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */ - 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */ - 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */ - 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */ - - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */ - - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */ - 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */ -}; -#endif - -#ifndef SQLITE_USE_URI -# define SQLITE_USE_URI 0 -#endif - -#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN -# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1 -#endif - -/* -** The following singleton contains the global configuration for -** the SQLite library. -*/ -SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = { - SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ - 1, /* bCoreMutex */ - SQLITE_THREADSAFE==1, /* bFullMutex */ - SQLITE_USE_URI, /* bOpenUri */ - SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */ - 0x7ffffffe, /* mxStrlen */ - 128, /* szLookaside */ - 500, /* nLookaside */ - {0,0,0,0,0,0,0,0}, /* m */ - {0,0,0,0,0,0,0,0,0}, /* mutex */ - {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ - (void*)0, /* pHeap */ - 0, /* nHeap */ - 0, 0, /* mnHeap, mxHeap */ - (void*)0, /* pScratch */ - 0, /* szScratch */ - 0, /* nScratch */ - (void*)0, /* pPage */ - 0, /* szPage */ - 0, /* nPage */ - 0, /* mxParserStack */ - 0, /* sharedCacheEnabled */ - /* All the rest should always be initialized to zero */ - 0, /* isInit */ - 0, /* inProgress */ - 0, /* isMutexInit */ - 0, /* isMallocInit */ - 0, /* isPCacheInit */ - 0, /* pInitMutex */ - 0, /* nRefInitMutex */ - 0, /* xLog */ - 0, /* pLogArg */ - 0, /* bLocaltimeFault */ -#ifdef SQLITE_ENABLE_SQLLOG - 0, /* xSqllog */ - 0 /* pSqllogArg */ -#endif -}; - - -/* -** Hash table for global functions - functions common to all -** database connections. After initialization, this table is -** read-only. -*/ -SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; - -/* -** Constant tokens for values 0 and 1. -*/ -SQLITE_PRIVATE const Token sqlite3IntTokens[] = { - { "0", 1 }, - { "1", 1 } -}; - - -/* -** The value of the "pending" byte must be 0x40000000 (1 byte past the -** 1-gibabyte boundary) in a compatible database. SQLite never uses -** the database page that contains the pending byte. It never attempts -** to read or write that page. The pending byte page is set assign -** for use by the VFS layers as space for managing file locks. -** -** During testing, it is often desirable to move the pending byte to -** a different position in the file. This allows code that has to -** deal with the pending byte to run on files that are much smaller -** than 1 GiB. The sqlite3_test_control() interface can be used to -** move the pending byte. -** -** IMPORTANT: Changing the pending byte to any value other than -** 0x40000000 results in an incompatible database file format! -** Changing the pending byte during operating results in undefined -** and dileterious behavior. -*/ -#ifndef SQLITE_OMIT_WSD -SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000; -#endif - -/* -** Properties of opcodes. The OPFLG_INITIALIZER macro is -** created by mkopcodeh.awk during compilation. Data is obtained -** from the comments following the "case OP_xxxx:" statements in -** the vdbe.c file. -*/ -SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER; - -/************** End of global.c **********************************************/ -/************** Begin file ctime.c *******************************************/ -/* -** 2010 February 23 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file implements routines used to report what compile-time options -** SQLite was built with. -*/ - -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS - - -/* -** An array of names of all compile-time options. This array should -** be sorted A-Z. -** -** This array looks large, but in a typical installation actually uses -** only a handful of compile-time options, so most times this array is usually -** rather short and uses little memory space. -*/ -static const char * const azCompileOpt[] = { - -/* These macros are provided to "stringify" the value of the define -** for those options in which the value is meaningful. */ -#define CTIMEOPT_VAL_(opt) #opt -#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt) - -#ifdef SQLITE_32BIT_ROWID - "32BIT_ROWID", -#endif -#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC - "4_BYTE_ALIGNED_MALLOC", -#endif -#ifdef SQLITE_CASE_SENSITIVE_LIKE - "CASE_SENSITIVE_LIKE", -#endif -#ifdef SQLITE_CHECK_PAGES - "CHECK_PAGES", -#endif -#ifdef SQLITE_COVERAGE_TEST - "COVERAGE_TEST", -#endif -#ifdef SQLITE_CURDIR - "CURDIR", -#endif -#ifdef SQLITE_DEBUG - "DEBUG", -#endif -#ifdef SQLITE_DEFAULT_LOCKING_MODE - "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE), -#endif -#ifdef SQLITE_DISABLE_DIRSYNC - "DISABLE_DIRSYNC", -#endif -#ifdef SQLITE_DISABLE_LFS - "DISABLE_LFS", -#endif -#ifdef SQLITE_ENABLE_ATOMIC_WRITE - "ENABLE_ATOMIC_WRITE", -#endif -#ifdef SQLITE_ENABLE_CEROD - "ENABLE_CEROD", -#endif -#ifdef SQLITE_ENABLE_COLUMN_METADATA - "ENABLE_COLUMN_METADATA", -#endif -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - "ENABLE_EXPENSIVE_ASSERT", -#endif -#ifdef SQLITE_ENABLE_FTS1 - "ENABLE_FTS1", -#endif -#ifdef SQLITE_ENABLE_FTS2 - "ENABLE_FTS2", -#endif -#ifdef SQLITE_ENABLE_FTS3 - "ENABLE_FTS3", -#endif -#ifdef SQLITE_ENABLE_FTS3_PARENTHESIS - "ENABLE_FTS3_PARENTHESIS", -#endif -#ifdef SQLITE_ENABLE_FTS4 - "ENABLE_FTS4", -#endif -#ifdef SQLITE_ENABLE_ICU - "ENABLE_ICU", -#endif -#ifdef SQLITE_ENABLE_IOTRACE - "ENABLE_IOTRACE", -#endif -#ifdef SQLITE_ENABLE_LOAD_EXTENSION - "ENABLE_LOAD_EXTENSION", -#endif -#ifdef SQLITE_ENABLE_LOCKING_STYLE - "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE), -#endif -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT - "ENABLE_MEMORY_MANAGEMENT", -#endif -#ifdef SQLITE_ENABLE_MEMSYS3 - "ENABLE_MEMSYS3", -#endif -#ifdef SQLITE_ENABLE_MEMSYS5 - "ENABLE_MEMSYS5", -#endif -#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK - "ENABLE_OVERSIZE_CELL_CHECK", -#endif -#ifdef SQLITE_ENABLE_RTREE - "ENABLE_RTREE", -#endif -#ifdef SQLITE_ENABLE_STAT3 - "ENABLE_STAT3", -#endif -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY - "ENABLE_UNLOCK_NOTIFY", -#endif -#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT - "ENABLE_UPDATE_DELETE_LIMIT", -#endif -#ifdef SQLITE_HAS_CODEC - "HAS_CODEC", -#endif -#ifdef SQLITE_HAVE_ISNAN - "HAVE_ISNAN", -#endif -#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX - "HOMEGROWN_RECURSIVE_MUTEX", -#endif -#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS - "IGNORE_AFP_LOCK_ERRORS", -#endif -#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS - "IGNORE_FLOCK_LOCK_ERRORS", -#endif -#ifdef SQLITE_INT64_TYPE - "INT64_TYPE", -#endif -#ifdef SQLITE_LOCK_TRACE - "LOCK_TRACE", -#endif -#ifdef SQLITE_MAX_SCHEMA_RETRY - "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY), -#endif -#ifdef SQLITE_MEMDEBUG - "MEMDEBUG", -#endif -#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT - "MIXED_ENDIAN_64BIT_FLOAT", -#endif -#ifdef SQLITE_NO_SYNC - "NO_SYNC", -#endif -#ifdef SQLITE_OMIT_ALTERTABLE - "OMIT_ALTERTABLE", -#endif -#ifdef SQLITE_OMIT_ANALYZE - "OMIT_ANALYZE", -#endif -#ifdef SQLITE_OMIT_ATTACH - "OMIT_ATTACH", -#endif -#ifdef SQLITE_OMIT_AUTHORIZATION - "OMIT_AUTHORIZATION", -#endif -#ifdef SQLITE_OMIT_AUTOINCREMENT - "OMIT_AUTOINCREMENT", -#endif -#ifdef SQLITE_OMIT_AUTOINIT - "OMIT_AUTOINIT", -#endif -#ifdef SQLITE_OMIT_AUTOMATIC_INDEX - "OMIT_AUTOMATIC_INDEX", -#endif -#ifdef SQLITE_OMIT_AUTORESET - "OMIT_AUTORESET", -#endif -#ifdef SQLITE_OMIT_AUTOVACUUM - "OMIT_AUTOVACUUM", -#endif -#ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION - "OMIT_BETWEEN_OPTIMIZATION", -#endif -#ifdef SQLITE_OMIT_BLOB_LITERAL - "OMIT_BLOB_LITERAL", -#endif -#ifdef SQLITE_OMIT_BTREECOUNT - "OMIT_BTREECOUNT", -#endif -#ifdef SQLITE_OMIT_BUILTIN_TEST - "OMIT_BUILTIN_TEST", -#endif -#ifdef SQLITE_OMIT_CAST - "OMIT_CAST", -#endif -#ifdef SQLITE_OMIT_CHECK - "OMIT_CHECK", -#endif -/* // redundant -** #ifdef SQLITE_OMIT_COMPILEOPTION_DIAGS -** "OMIT_COMPILEOPTION_DIAGS", -** #endif -*/ -#ifdef SQLITE_OMIT_COMPLETE - "OMIT_COMPLETE", -#endif -#ifdef SQLITE_OMIT_COMPOUND_SELECT - "OMIT_COMPOUND_SELECT", -#endif -#ifdef SQLITE_OMIT_DATETIME_FUNCS - "OMIT_DATETIME_FUNCS", -#endif -#ifdef SQLITE_OMIT_DECLTYPE - "OMIT_DECLTYPE", -#endif -#ifdef SQLITE_OMIT_DEPRECATED - "OMIT_DEPRECATED", -#endif -#ifdef SQLITE_OMIT_DISKIO - "OMIT_DISKIO", -#endif -#ifdef SQLITE_OMIT_EXPLAIN - "OMIT_EXPLAIN", -#endif -#ifdef SQLITE_OMIT_FLAG_PRAGMAS - "OMIT_FLAG_PRAGMAS", -#endif -#ifdef SQLITE_OMIT_FLOATING_POINT - "OMIT_FLOATING_POINT", -#endif -#ifdef SQLITE_OMIT_FOREIGN_KEY - "OMIT_FOREIGN_KEY", -#endif -#ifdef SQLITE_OMIT_GET_TABLE - "OMIT_GET_TABLE", -#endif -#ifdef SQLITE_OMIT_INCRBLOB - "OMIT_INCRBLOB", -#endif -#ifdef SQLITE_OMIT_INTEGRITY_CHECK - "OMIT_INTEGRITY_CHECK", -#endif -#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION - "OMIT_LIKE_OPTIMIZATION", -#endif -#ifdef SQLITE_OMIT_LOAD_EXTENSION - "OMIT_LOAD_EXTENSION", -#endif -#ifdef SQLITE_OMIT_LOCALTIME - "OMIT_LOCALTIME", -#endif -#ifdef SQLITE_OMIT_LOOKASIDE - "OMIT_LOOKASIDE", -#endif -#ifdef SQLITE_OMIT_MEMORYDB - "OMIT_MEMORYDB", -#endif -#ifdef SQLITE_OMIT_OR_OPTIMIZATION - "OMIT_OR_OPTIMIZATION", -#endif -#ifdef SQLITE_OMIT_PAGER_PRAGMAS - "OMIT_PAGER_PRAGMAS", -#endif -#ifdef SQLITE_OMIT_PRAGMA - "OMIT_PRAGMA", -#endif -#ifdef SQLITE_OMIT_PROGRESS_CALLBACK - "OMIT_PROGRESS_CALLBACK", -#endif -#ifdef SQLITE_OMIT_QUICKBALANCE - "OMIT_QUICKBALANCE", -#endif -#ifdef SQLITE_OMIT_REINDEX - "OMIT_REINDEX", -#endif -#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS - "OMIT_SCHEMA_PRAGMAS", -#endif -#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS - "OMIT_SCHEMA_VERSION_PRAGMAS", -#endif -#ifdef SQLITE_OMIT_SHARED_CACHE - "OMIT_SHARED_CACHE", -#endif -#ifdef SQLITE_OMIT_SUBQUERY - "OMIT_SUBQUERY", -#endif -#ifdef SQLITE_OMIT_TCL_VARIABLE - "OMIT_TCL_VARIABLE", -#endif -#ifdef SQLITE_OMIT_TEMPDB - "OMIT_TEMPDB", -#endif -#ifdef SQLITE_OMIT_TRACE - "OMIT_TRACE", -#endif -#ifdef SQLITE_OMIT_TRIGGER - "OMIT_TRIGGER", -#endif -#ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION - "OMIT_TRUNCATE_OPTIMIZATION", -#endif -#ifdef SQLITE_OMIT_UTF16 - "OMIT_UTF16", -#endif -#ifdef SQLITE_OMIT_VACUUM - "OMIT_VACUUM", -#endif -#ifdef SQLITE_OMIT_VIEW - "OMIT_VIEW", -#endif -#ifdef SQLITE_OMIT_VIRTUALTABLE - "OMIT_VIRTUALTABLE", -#endif -#ifdef SQLITE_OMIT_WAL - "OMIT_WAL", -#endif -#ifdef SQLITE_OMIT_WSD - "OMIT_WSD", -#endif -#ifdef SQLITE_OMIT_XFER_OPT - "OMIT_XFER_OPT", -#endif -#ifdef SQLITE_PERFORMANCE_TRACE - "PERFORMANCE_TRACE", -#endif -#ifdef SQLITE_PROXY_DEBUG - "PROXY_DEBUG", -#endif -#ifdef SQLITE_RTREE_INT_ONLY - "RTREE_INT_ONLY", -#endif -#ifdef SQLITE_SECURE_DELETE - "SECURE_DELETE", -#endif -#ifdef SQLITE_SMALL_STACK - "SMALL_STACK", -#endif -#ifdef SQLITE_SOUNDEX - "SOUNDEX", -#endif -#ifdef SQLITE_TCL - "TCL", -#endif -#ifdef SQLITE_TEMP_STORE - "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), -#endif -#ifdef SQLITE_TEST - "TEST", -#endif -#ifdef SQLITE_THREADSAFE - "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), -#endif -#ifdef SQLITE_USE_ALLOCA - "USE_ALLOCA", -#endif -#ifdef SQLITE_ZERO_MALLOC - "ZERO_MALLOC" -#endif -}; - -/* -** Given the name of a compile-time option, return true if that option -** was used and false if not. -** -** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix -** is not required for a match. -*/ -SQLITE_API int sqlite3_compileoption_used(const char *zOptName){ - int i, n; - if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; - n = sqlite3Strlen30(zOptName); - - /* Since ArraySize(azCompileOpt) is normally in single digits, a - ** linear search is adequate. No need for a binary search. */ - for(i=0; i<ArraySize(azCompileOpt); i++){ - if( (sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0) - && ( (azCompileOpt[i][n]==0) || (azCompileOpt[i][n]=='=') ) ) return 1; - } - return 0; -} - -/* -** Return the N-th compile-time option string. If N is out of range, -** return a NULL pointer. -*/ -SQLITE_API const char *sqlite3_compileoption_get(int N){ - if( N>=0 && N<ArraySize(azCompileOpt) ){ - return azCompileOpt[N]; - } - return 0; -} - -#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ - -/************** End of ctime.c ***********************************************/ -/************** Begin file status.c ******************************************/ -/* -** 2008 June 18 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This module implements the sqlite3_status() interface and related -** functionality. -*/ -/************** Include vdbeInt.h in the middle of status.c ******************/ -/************** Begin file vdbeInt.h *****************************************/ -/* -** 2003 September 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the header file for information that is private to the -** VDBE. This information used to all be at the top of the single -** source code file "vdbe.c". When that file became too big (over -** 6000 lines long) it was split up into several smaller files and -** this header information was factored out. -*/ -#ifndef _VDBEINT_H_ -#define _VDBEINT_H_ - -/* -** SQL is translated into a sequence of instructions to be -** executed by a virtual machine. Each instruction is an instance -** of the following structure. -*/ -typedef struct VdbeOp Op; - -/* -** Boolean values -*/ -typedef unsigned char Bool; - -/* Opaque type used by code in vdbesort.c */ -typedef struct VdbeSorter VdbeSorter; - -/* Opaque type used by the explainer */ -typedef struct Explain Explain; - -/* -** A cursor is a pointer into a single BTree within a database file. -** The cursor can seek to a BTree entry with a particular key, or -** loop over all entries of the Btree. You can also insert new BTree -** entries or retrieve the key or data from the entry that the cursor -** is currently pointing to. -** -** Every cursor that the virtual machine has open is represented by an -** instance of the following structure. -*/ -struct VdbeCursor { - BtCursor *pCursor; /* The cursor structure of the backend */ - Btree *pBt; /* Separate file holding temporary table */ - KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ - int iDb; /* Index of cursor database in db->aDb[] (or -1) */ - int pseudoTableReg; /* Register holding pseudotable content. */ - int nField; /* Number of fields in the header */ - Bool zeroed; /* True if zeroed out and ready for reuse */ - Bool rowidIsValid; /* True if lastRowid is valid */ - Bool atFirst; /* True if pointing to first entry */ - Bool useRandomRowid; /* Generate new record numbers semi-randomly */ - Bool nullRow; /* True if pointing to a row with no data */ - Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ - Bool isTable; /* True if a table requiring integer keys */ - Bool isIndex; /* True if an index containing keys only - no data */ - Bool isOrdered; /* True if the underlying table is BTREE_UNORDERED */ - Bool isSorter; /* True if a new-style sorter */ - Bool multiPseudo; /* Multi-register pseudo-cursor */ - sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ - const sqlite3_module *pModule; /* Module for cursor pVtabCursor */ - i64 seqCount; /* Sequence counter */ - i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ - i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ - VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ - - /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or - ** OP_IsUnique opcode on this cursor. */ - int seekResult; - - /* Cached information about the header for the data record that the - ** cursor is currently pointing to. Only valid if cacheStatus matches - ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of - ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that - ** the cache is out of date. - ** - ** aRow might point to (ephemeral) data for the current row, or it might - ** be NULL. - */ - u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ - int payloadSize; /* Total number of bytes in the record */ - u32 *aType; /* Type values for all entries in the record */ - u32 *aOffset; /* Cached offsets to the start of each columns data */ - u8 *aRow; /* Data for the current row, if all on one page */ -}; -typedef struct VdbeCursor VdbeCursor; - -/* -** When a sub-program is executed (OP_Program), a structure of this type -** is allocated to store the current value of the program counter, as -** well as the current memory cell array and various other frame specific -** values stored in the Vdbe struct. When the sub-program is finished, -** these values are copied back to the Vdbe from the VdbeFrame structure, -** restoring the state of the VM to as it was before the sub-program -** began executing. -** -** The memory for a VdbeFrame object is allocated and managed by a memory -** cell in the parent (calling) frame. When the memory cell is deleted or -** overwritten, the VdbeFrame object is not freed immediately. Instead, it -** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame -** list is deleted when the VM is reset in VdbeHalt(). The reason for doing -** this instead of deleting the VdbeFrame immediately is to avoid recursive -** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the -** child frame are released. -** -** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is -** set to NULL if the currently executing frame is the main program. -*/ -typedef struct VdbeFrame VdbeFrame; -struct VdbeFrame { - Vdbe *v; /* VM this frame belongs to */ - VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */ - Op *aOp; /* Program instructions for parent frame */ - Mem *aMem; /* Array of memory cells for parent frame */ - u8 *aOnceFlag; /* Array of OP_Once flags for parent frame */ - VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ - void *token; /* Copy of SubProgram.token */ - i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ - int nCursor; /* Number of entries in apCsr */ - int pc; /* Program Counter in parent (calling) frame */ - int nOp; /* Size of aOp array */ - int nMem; /* Number of entries in aMem */ - int nOnceFlag; /* Number of entries in aOnceFlag */ - int nChildMem; /* Number of memory cells for child frame */ - int nChildCsr; /* Number of cursors for child frame */ - int nChange; /* Statement changes (Vdbe.nChanges) */ -}; - -#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))]) - -/* -** A value for VdbeCursor.cacheValid that means the cache is always invalid. -*/ -#define CACHE_STALE 0 - -/* -** Internally, the vdbe manipulates nearly all SQL values as Mem -** structures. Each Mem struct may cache multiple representations (string, -** integer etc.) of the same value. -*/ -struct Mem { - sqlite3 *db; /* The associated database connection */ - char *z; /* String or BLOB value */ - double r; /* Real value */ - union { - i64 i; /* Integer value used when MEM_Int is set in flags */ - int nZero; /* Used when bit MEM_Zero is set in flags */ - FuncDef *pDef; /* Used only when flags==MEM_Agg */ - RowSet *pRowSet; /* Used only when flags==MEM_RowSet */ - VdbeFrame *pFrame; /* Used when flags==MEM_Frame */ - } u; - int n; /* Number of characters in string value, excluding '\0' */ - u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ - u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ - u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ -#ifdef SQLITE_DEBUG - Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ - void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */ -#endif - void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ - char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ -}; - -/* One or more of the following flags are set to indicate the validOK -** representations of the value stored in the Mem struct. -** -** If the MEM_Null flag is set, then the value is an SQL NULL value. -** No other flags may be set in this case. -** -** If the MEM_Str flag is set then Mem.z points at a string representation. -** Usually this is encoded in the same unicode encoding as the main -** database (see below for exceptions). If the MEM_Term flag is also -** set, then the string is nul terminated. The MEM_Int and MEM_Real -** flags may coexist with the MEM_Str flag. -*/ -#define MEM_Null 0x0001 /* Value is NULL */ -#define MEM_Str 0x0002 /* Value is a string */ -#define MEM_Int 0x0004 /* Value is an integer */ -#define MEM_Real 0x0008 /* Value is a real number */ -#define MEM_Blob 0x0010 /* Value is a BLOB */ -#define MEM_RowSet 0x0020 /* Value is a RowSet object */ -#define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ -#define MEM_Invalid 0x0080 /* Value is undefined */ -#define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */ -#define MEM_TypeMask 0x01ff /* Mask of type bits */ - - -/* Whenever Mem contains a valid string or blob representation, one of -** the following flags must be set to determine the memory management -** policy for Mem.z. The MEM_Term flag tells us whether or not the -** string is \000 or \u0000 terminated -*/ -#define MEM_Term 0x0200 /* String rep is nul terminated */ -#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */ -#define MEM_Static 0x0800 /* Mem.z points to a static string */ -#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */ -#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */ -#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */ -#ifdef SQLITE_OMIT_INCRBLOB - #undef MEM_Zero - #define MEM_Zero 0x0000 -#endif - -/* -** Clear any existing type flags from a Mem and replace them with f -*/ -#define MemSetTypeFlag(p, f) \ - ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f) - -/* -** Return true if a memory cell is not marked as invalid. This macro -** is for use inside assert() statements only. -*/ -#ifdef SQLITE_DEBUG -#define memIsValid(M) ((M)->flags & MEM_Invalid)==0 -#endif - - -/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains -** additional information about auxiliary information bound to arguments -** of the function. This is used to implement the sqlite3_get_auxdata() -** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data -** that can be associated with a constant argument to a function. This -** allows functions such as "regexp" to compile their constant regular -** expression argument once and reused the compiled code for multiple -** invocations. -*/ -struct VdbeFunc { - FuncDef *pFunc; /* The definition of the function */ - int nAux; /* Number of entries allocated for apAux[] */ - struct AuxData { - void *pAux; /* Aux data for the i-th argument */ - void (*xDelete)(void *); /* Destructor for the aux data */ - } apAux[1]; /* One slot for each function argument */ -}; - -/* -** The "context" argument for a installable function. A pointer to an -** instance of this structure is the first argument to the routines used -** implement the SQL functions. -** -** There is a typedef for this structure in sqlite.h. So all routines, -** even the public interface to SQLite, can use a pointer to this structure. -** But this file is the only place where the internal details of this -** structure are known. -** -** This structure is defined inside of vdbeInt.h because it uses substructures -** (Mem) which are only defined there. -*/ -struct sqlite3_context { - FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ - VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ - Mem s; /* The return value is stored here */ - Mem *pMem; /* Memory cell used to store aggregate context */ - CollSeq *pColl; /* Collating sequence */ - int isError; /* Error code returned by the function. */ - int skipFlag; /* Skip skip accumulator loading if true */ -}; - -/* -** An Explain object accumulates indented output which is helpful -** in describing recursive data structures. -*/ -struct Explain { - Vdbe *pVdbe; /* Attach the explanation to this Vdbe */ - StrAccum str; /* The string being accumulated */ - int nIndent; /* Number of elements in aIndent */ - u16 aIndent[100]; /* Levels of indentation */ - char zBase[100]; /* Initial space */ -}; - -/* A bitfield type for use inside of structures. Always follow with :N where -** N is the number of bits. -*/ -typedef unsigned bft; /* Bit Field Type */ - -/* -** An instance of the virtual machine. This structure contains the complete -** state of the virtual machine. -** -** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() -** is really a pointer to an instance of this structure. -** -** The Vdbe.inVtabMethod variable is set to non-zero for the duration of -** any virtual table method invocations made by the vdbe program. It is -** set to 2 for xDestroy method calls and 1 for all other methods. This -** variable is used for two purposes: to allow xDestroy methods to execute -** "DROP TABLE" statements and to prevent some nasty side effects of -** malloc failure when SQLite is invoked recursively by a virtual table -** method function. -*/ -struct Vdbe { - sqlite3 *db; /* The database connection that owns this statement */ - Op *aOp; /* Space to hold the virtual machine's program */ - Mem *aMem; /* The memory locations */ - Mem **apArg; /* Arguments to currently executing user function */ - Mem *aColName; /* Column names to return */ - Mem *pResultSet; /* Pointer to an array of results */ - int nMem; /* Number of memory locations currently allocated */ - int nOp; /* Number of instructions in the program */ - int nOpAlloc; /* Number of slots allocated for aOp[] */ - int nLabel; /* Number of labels used */ - int *aLabel; /* Space to hold the labels */ - u16 nResColumn; /* Number of columns in one row of the result set */ - int nCursor; /* Number of slots in apCsr[] */ - u32 magic; /* Magic number for sanity checking */ - char *zErrMsg; /* Error message written here */ - Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */ - VdbeCursor **apCsr; /* One element of this array for each open cursor */ - Mem *aVar; /* Values for the OP_Variable opcode. */ - char **azVar; /* Name of variables */ - ynVar nVar; /* Number of entries in aVar[] */ - ynVar nzVar; /* Number of entries in azVar[] */ - u32 cacheCtr; /* VdbeCursor row cache generation counter */ - int pc; /* The program counter */ - int rc; /* Value to return */ - u8 errorAction; /* Recovery action to do in case of an error */ - u8 minWriteFileFormat; /* Minimum file format for writable database files */ - bft explain:2; /* True if EXPLAIN present on SQL command */ - bft inVtabMethod:2; /* See comments above */ - bft changeCntOn:1; /* True to update the change-counter */ - bft expired:1; /* True if the VM needs to be recompiled */ - bft runOnlyOnce:1; /* Automatically expire on reset */ - bft usesStmtJournal:1; /* True if uses a statement journal */ - bft readOnly:1; /* True for read-only statements */ - bft isPrepareV2:1; /* True if prepared with prepare_v2() */ - bft doingRerun:1; /* True if rerunning after an auto-reprepare */ - int nChange; /* Number of db changes made since last reset */ - yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ - yDbMask lockMask; /* Subset of btreeMask that requires a lock */ - int iStatement; /* Statement number (or 0 if has not opened stmt) */ - int aCounter[3]; /* Counters used by sqlite3_stmt_status() */ -#ifndef SQLITE_OMIT_TRACE - i64 startTime; /* Time when query started - used for profiling */ -#endif - i64 nFkConstraint; /* Number of imm. FK constraints this VM */ - i64 nStmtDefCons; /* Number of def. constraints when stmt started */ - char *zSql; /* Text of the SQL statement that generated this */ - void *pFree; /* Free this when deleting the vdbe */ -#ifdef SQLITE_DEBUG - FILE *trace; /* Write an execution trace here, if not NULL */ -#endif -#ifdef SQLITE_ENABLE_TREE_EXPLAIN - Explain *pExplain; /* The explainer */ - char *zExplain; /* Explanation of data structures */ -#endif - VdbeFrame *pFrame; /* Parent frame */ - VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ - int nFrame; /* Number of frames in pFrame list */ - u32 expmask; /* Binding to these vars invalidates VM */ - SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ - int nOnceFlag; /* Size of array aOnceFlag[] */ - u8 *aOnceFlag; /* Flags for OP_Once */ -}; - -/* -** The following are allowed values for Vdbe.magic -*/ -#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ -#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ -#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ -#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ - -/* -** Function prototypes -*/ -SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*); -void sqliteVdbePopStack(Vdbe*,int); -SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*); -#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) -SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*); -#endif -SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); -SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); -SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); -SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); -SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); - -int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); -SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*); -SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *); -SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); -SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); -SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); -SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); -SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); -SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); -SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); -SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*)); -SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64); -#ifdef SQLITE_OMIT_FLOATING_POINT -# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64 -#else -SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double); -#endif -SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*); -SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int); -SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int); -SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); -SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); -SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); -SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); -SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); -SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); -#define VdbeMemRelease(X) \ - if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \ - sqlite3VdbeMemReleaseExternal(X); -SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); -SQLITE_PRIVATE const char *sqlite3OpcodeName(int); -SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); -SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); -SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); -SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); -SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem); -SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p); - -SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *); -SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); -SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); -SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *); -SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *); -SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *); -SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int *); - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 -SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); -#else -# define sqlite3VdbeEnter(X) -# define sqlite3VdbeLeave(X) -#endif - -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); -#endif - -#ifndef SQLITE_OMIT_FOREIGN_KEY -SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); -#else -# define sqlite3VdbeCheckFk(p,i) 0 -#endif - -SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8); -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf); -#endif -SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem); - -#ifndef SQLITE_OMIT_INCRBLOB -SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *); - #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) -#else - #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK - #define ExpandBlob(P) SQLITE_OK -#endif - -#endif /* !defined(_VDBEINT_H_) */ - -/************** End of vdbeInt.h *********************************************/ -/************** Continuing where we left off in status.c *********************/ - -/* -** Variables in which to record status information. -*/ -typedef struct sqlite3StatType sqlite3StatType; -static SQLITE_WSD struct sqlite3StatType { - int nowValue[10]; /* Current value */ - int mxValue[10]; /* Maximum value */ -} sqlite3Stat = { {0,}, {0,} }; - - -/* The "wsdStat" macro will resolve to the status information -** state vector. If writable static data is unsupported on the target, -** we have to locate the state vector at run-time. In the more common -** case where writable static data is supported, wsdStat can refer directly -** to the "sqlite3Stat" state vector declared above. -*/ -#ifdef SQLITE_OMIT_WSD -# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat) -# define wsdStat x[0] -#else -# define wsdStatInit -# define wsdStat sqlite3Stat -#endif - -/* -** Return the current value of a status parameter. -*/ -SQLITE_PRIVATE int sqlite3StatusValue(int op){ - wsdStatInit; - assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); - return wsdStat.nowValue[op]; -} - -/* -** Add N to the value of a status record. It is assumed that the -** caller holds appropriate locks. -*/ -SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){ - wsdStatInit; - assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); - wsdStat.nowValue[op] += N; - if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){ - wsdStat.mxValue[op] = wsdStat.nowValue[op]; - } -} - -/* -** Set the value of a status to X. -*/ -SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){ - wsdStatInit; - assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); - wsdStat.nowValue[op] = X; - if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){ - wsdStat.mxValue[op] = wsdStat.nowValue[op]; - } -} - -/* -** Query status information. -** -** This implementation assumes that reading or writing an aligned -** 32-bit integer is an atomic operation. If that assumption is not true, -** then this routine is not threadsafe. -*/ -SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ - wsdStatInit; - if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ - return SQLITE_MISUSE_BKPT; - } - *pCurrent = wsdStat.nowValue[op]; - *pHighwater = wsdStat.mxValue[op]; - if( resetFlag ){ - wsdStat.mxValue[op] = wsdStat.nowValue[op]; - } - return SQLITE_OK; -} - -/* -** Query status information for a single database connection -*/ -SQLITE_API int sqlite3_db_status( - sqlite3 *db, /* The database connection whose status is desired */ - int op, /* Status verb */ - int *pCurrent, /* Write current value here */ - int *pHighwater, /* Write high-water mark here */ - int resetFlag /* Reset high-water mark if true */ -){ - int rc = SQLITE_OK; /* Return code */ - sqlite3_mutex_enter(db->mutex); - switch( op ){ - case SQLITE_DBSTATUS_LOOKASIDE_USED: { - *pCurrent = db->lookaside.nOut; - *pHighwater = db->lookaside.mxOut; - if( resetFlag ){ - db->lookaside.mxOut = db->lookaside.nOut; - } - break; - } - - case SQLITE_DBSTATUS_LOOKASIDE_HIT: - case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: - case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: { - testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT ); - testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE ); - testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL ); - assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 ); - assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 ); - *pCurrent = 0; - *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT]; - if( resetFlag ){ - db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0; - } - break; - } - - /* - ** Return an approximation for the amount of memory currently used - ** by all pagers associated with the given database connection. The - ** highwater mark is meaningless and is returned as zero. - */ - case SQLITE_DBSTATUS_CACHE_USED: { - int totalUsed = 0; - int i; - sqlite3BtreeEnterAll(db); - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - Pager *pPager = sqlite3BtreePager(pBt); - totalUsed += sqlite3PagerMemUsed(pPager); - } - } - sqlite3BtreeLeaveAll(db); - *pCurrent = totalUsed; - *pHighwater = 0; - break; - } - - /* - ** *pCurrent gets an accurate estimate of the amount of memory used - ** to store the schema for all databases (main, temp, and any ATTACHed - ** databases. *pHighwater is set to zero. - */ - case SQLITE_DBSTATUS_SCHEMA_USED: { - int i; /* Used to iterate through schemas */ - int nByte = 0; /* Used to accumulate return value */ - - sqlite3BtreeEnterAll(db); - db->pnBytesFreed = &nByte; - for(i=0; i<db->nDb; i++){ - Schema *pSchema = db->aDb[i].pSchema; - if( ALWAYS(pSchema!=0) ){ - HashElem *p; - - nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( - pSchema->tblHash.count - + pSchema->trigHash.count - + pSchema->idxHash.count - + pSchema->fkeyHash.count - ); - nByte += sqlite3MallocSize(pSchema->tblHash.ht); - nByte += sqlite3MallocSize(pSchema->trigHash.ht); - nByte += sqlite3MallocSize(pSchema->idxHash.ht); - nByte += sqlite3MallocSize(pSchema->fkeyHash.ht); - - for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){ - sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p)); - } - for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ - sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); - } - } - } - db->pnBytesFreed = 0; - sqlite3BtreeLeaveAll(db); - - *pHighwater = 0; - *pCurrent = nByte; - break; - } - - /* - ** *pCurrent gets an accurate estimate of the amount of memory used - ** to store all prepared statements. - ** *pHighwater is set to zero. - */ - case SQLITE_DBSTATUS_STMT_USED: { - struct Vdbe *pVdbe; /* Used to iterate through VMs */ - int nByte = 0; /* Used to accumulate return value */ - - db->pnBytesFreed = &nByte; - for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ - sqlite3VdbeClearObject(db, pVdbe); - sqlite3DbFree(db, pVdbe); - } - db->pnBytesFreed = 0; - - *pHighwater = 0; - *pCurrent = nByte; - - break; - } - - /* - ** Set *pCurrent to the total cache hits or misses encountered by all - ** pagers the database handle is connected to. *pHighwater is always set - ** to zero. - */ - case SQLITE_DBSTATUS_CACHE_HIT: - case SQLITE_DBSTATUS_CACHE_MISS: - case SQLITE_DBSTATUS_CACHE_WRITE:{ - int i; - int nRet = 0; - assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 ); - assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 ); - - for(i=0; i<db->nDb; i++){ - if( db->aDb[i].pBt ){ - Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt); - sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet); - } - } - *pHighwater = 0; - *pCurrent = nRet; - break; - } - - default: { - rc = SQLITE_ERROR; - } - } - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/************** End of status.c **********************************************/ -/************** Begin file date.c ********************************************/ -/* -** 2003 October 31 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement date and time -** functions for SQLite. -** -** There is only one exported symbol in this file - the function -** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. -** All other code has file scope. -** -** SQLite processes all times and dates as Julian Day numbers. The -** dates and times are stored as the number of days since noon -** in Greenwich on November 24, 4714 B.C. according to the Gregorian -** calendar system. -** -** 1970-01-01 00:00:00 is JD 2440587.5 -** 2000-01-01 00:00:00 is JD 2451544.5 -** -** This implemention requires years to be expressed as a 4-digit number -** which means that only dates between 0000-01-01 and 9999-12-31 can -** be represented, even though julian day numbers allow a much wider -** range of dates. -** -** The Gregorian calendar system is used for all dates and times, -** even those that predate the Gregorian calendar. Historians usually -** use the Julian calendar for dates prior to 1582-10-15 and for some -** dates afterwards, depending on locale. Beware of this difference. -** -** The conversion algorithms are implemented based on descriptions -** in the following text: -** -** Jean Meeus -** Astronomical Algorithms, 2nd Edition, 1998 -** ISBM 0-943396-61-1 -** Willmann-Bell, Inc -** Richmond, Virginia (USA) -*/ -/* #include <stdlib.h> */ -/* #include <assert.h> */ -#include <time.h> - -#ifndef SQLITE_OMIT_DATETIME_FUNCS - - -/* -** A structure for holding a single date and time. -*/ -typedef struct DateTime DateTime; -struct DateTime { - sqlite3_int64 iJD; /* The julian day number times 86400000 */ - int Y, M, D; /* Year, month, and day */ - int h, m; /* Hour and minutes */ - int tz; /* Timezone offset in minutes */ - double s; /* Seconds */ - char validYMD; /* True (1) if Y,M,D are valid */ - char validHMS; /* True (1) if h,m,s are valid */ - char validJD; /* True (1) if iJD is valid */ - char validTZ; /* True (1) if tz is valid */ -}; - - -/* -** Convert zDate into one or more integers. Additional arguments -** come in groups of 5 as follows: -** -** N number of digits in the integer -** min minimum allowed value of the integer -** max maximum allowed value of the integer -** nextC first character after the integer -** pVal where to write the integers value. -** -** Conversions continue until one with nextC==0 is encountered. -** The function returns the number of successful conversions. -*/ -static int getDigits(const char *zDate, ...){ - va_list ap; - int val; - int N; - int min; - int max; - int nextC; - int *pVal; - int cnt = 0; - va_start(ap, zDate); - do{ - N = va_arg(ap, int); - min = va_arg(ap, int); - max = va_arg(ap, int); - nextC = va_arg(ap, int); - pVal = va_arg(ap, int*); - val = 0; - while( N-- ){ - if( !sqlite3Isdigit(*zDate) ){ - goto end_getDigits; - } - val = val*10 + *zDate - '0'; - zDate++; - } - if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ - goto end_getDigits; - } - *pVal = val; - zDate++; - cnt++; - }while( nextC ); -end_getDigits: - va_end(ap); - return cnt; -} - -/* -** Parse a timezone extension on the end of a date-time. -** The extension is of the form: -** -** (+/-)HH:MM -** -** Or the "zulu" notation: -** -** Z -** -** If the parse is successful, write the number of minutes -** of change in p->tz and return 0. If a parser error occurs, -** return non-zero. -** -** A missing specifier is not considered an error. -*/ -static int parseTimezone(const char *zDate, DateTime *p){ - int sgn = 0; - int nHr, nMn; - int c; - while( sqlite3Isspace(*zDate) ){ zDate++; } - p->tz = 0; - c = *zDate; - if( c=='-' ){ - sgn = -1; - }else if( c=='+' ){ - sgn = +1; - }else if( c=='Z' || c=='z' ){ - zDate++; - goto zulu_time; - }else{ - return c!=0; - } - zDate++; - if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ - return 1; - } - zDate += 5; - p->tz = sgn*(nMn + nHr*60); -zulu_time: - while( sqlite3Isspace(*zDate) ){ zDate++; } - return *zDate!=0; -} - -/* -** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. -** The HH, MM, and SS must each be exactly 2 digits. The -** fractional seconds FFFF can be one or more digits. -** -** Return 1 if there is a parsing error and 0 on success. -*/ -static int parseHhMmSs(const char *zDate, DateTime *p){ - int h, m, s; - double ms = 0.0; - if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ - return 1; - } - zDate += 5; - if( *zDate==':' ){ - zDate++; - if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ - return 1; - } - zDate += 2; - if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ - double rScale = 1.0; - zDate++; - while( sqlite3Isdigit(*zDate) ){ - ms = ms*10.0 + *zDate - '0'; - rScale *= 10.0; - zDate++; - } - ms /= rScale; - } - }else{ - s = 0; - } - p->validJD = 0; - p->validHMS = 1; - p->h = h; - p->m = m; - p->s = s + ms; - if( parseTimezone(zDate, p) ) return 1; - p->validTZ = (p->tz!=0)?1:0; - return 0; -} - -/* -** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume -** that the YYYY-MM-DD is according to the Gregorian calendar. -** -** Reference: Meeus page 61 -*/ -static void computeJD(DateTime *p){ - int Y, M, D, A, B, X1, X2; - - if( p->validJD ) return; - if( p->validYMD ){ - Y = p->Y; - M = p->M; - D = p->D; - }else{ - Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ - M = 1; - D = 1; - } - if( M<=2 ){ - Y--; - M += 12; - } - A = Y/100; - B = 2 - A + (A/4); - X1 = 36525*(Y+4716)/100; - X2 = 306001*(M+1)/10000; - p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); - p->validJD = 1; - if( p->validHMS ){ - p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); - if( p->validTZ ){ - p->iJD -= p->tz*60000; - p->validYMD = 0; - p->validHMS = 0; - p->validTZ = 0; - } - } -} - -/* -** Parse dates of the form -** -** YYYY-MM-DD HH:MM:SS.FFF -** YYYY-MM-DD HH:MM:SS -** YYYY-MM-DD HH:MM -** YYYY-MM-DD -** -** Write the result into the DateTime structure and return 0 -** on success and 1 if the input string is not a well-formed -** date. -*/ -static int parseYyyyMmDd(const char *zDate, DateTime *p){ - int Y, M, D, neg; - - if( zDate[0]=='-' ){ - zDate++; - neg = 1; - }else{ - neg = 0; - } - if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ - return 1; - } - zDate += 10; - while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } - if( parseHhMmSs(zDate, p)==0 ){ - /* We got the time */ - }else if( *zDate==0 ){ - p->validHMS = 0; - }else{ - return 1; - } - p->validJD = 0; - p->validYMD = 1; - p->Y = neg ? -Y : Y; - p->M = M; - p->D = D; - if( p->validTZ ){ - computeJD(p); - } - return 0; -} - -/* -** Set the time to the current time reported by the VFS. -** -** Return the number of errors. -*/ -static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ - sqlite3 *db = sqlite3_context_db_handle(context); - if( sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD)==SQLITE_OK ){ - p->validJD = 1; - return 0; - }else{ - return 1; - } -} - -/* -** Attempt to parse the given string into a Julian Day Number. Return -** the number of errors. -** -** The following are acceptable forms for the input string: -** -** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM -** DDDD.DD -** now -** -** In the first form, the +/-HH:MM is always optional. The fractional -** seconds extension (the ".FFF") is optional. The seconds portion -** (":SS.FFF") is option. The year and date can be omitted as long -** as there is a time string. The time string can be omitted as long -** as there is a year and date. -*/ -static int parseDateOrTime( - sqlite3_context *context, - const char *zDate, - DateTime *p -){ - double r; - if( parseYyyyMmDd(zDate,p)==0 ){ - return 0; - }else if( parseHhMmSs(zDate, p)==0 ){ - return 0; - }else if( sqlite3StrICmp(zDate,"now")==0){ - return setDateTimeToCurrent(context, p); - }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ - p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); - p->validJD = 1; - return 0; - } - return 1; -} - -/* -** Compute the Year, Month, and Day from the julian day number. -*/ -static void computeYMD(DateTime *p){ - int Z, A, B, C, D, E, X1; - if( p->validYMD ) return; - if( !p->validJD ){ - p->Y = 2000; - p->M = 1; - p->D = 1; - }else{ - Z = (int)((p->iJD + 43200000)/86400000); - A = (int)((Z - 1867216.25)/36524.25); - A = Z + 1 + A - (A/4); - B = A + 1524; - C = (int)((B - 122.1)/365.25); - D = (36525*C)/100; - E = (int)((B-D)/30.6001); - X1 = (int)(30.6001*E); - p->D = B - D - X1; - p->M = E<14 ? E-1 : E-13; - p->Y = p->M>2 ? C - 4716 : C - 4715; - } - p->validYMD = 1; -} - -/* -** Compute the Hour, Minute, and Seconds from the julian day number. -*/ -static void computeHMS(DateTime *p){ - int s; - if( p->validHMS ) return; - computeJD(p); - s = (int)((p->iJD + 43200000) % 86400000); - p->s = s/1000.0; - s = (int)p->s; - p->s -= s; - p->h = s/3600; - s -= p->h*3600; - p->m = s/60; - p->s += s - p->m*60; - p->validHMS = 1; -} - -/* -** Compute both YMD and HMS -*/ -static void computeYMD_HMS(DateTime *p){ - computeYMD(p); - computeHMS(p); -} - -/* -** Clear the YMD and HMS and the TZ -*/ -static void clearYMD_HMS_TZ(DateTime *p){ - p->validYMD = 0; - p->validHMS = 0; - p->validTZ = 0; -} - -/* -** On recent Windows platforms, the localtime_s() function is available -** as part of the "Secure CRT". It is essentially equivalent to -** localtime_r() available under most POSIX platforms, except that the -** order of the parameters is reversed. -** -** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. -** -** If the user has not indicated to use localtime_r() or localtime_s() -** already, check for an MSVC build environment that provides -** localtime_s(). -*/ -#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ - defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) -#define HAVE_LOCALTIME_S 1 -#endif - -#ifndef SQLITE_OMIT_LOCALTIME -/* -** The following routine implements the rough equivalent of localtime_r() -** using whatever operating-system specific localtime facility that -** is available. This routine returns 0 on success and -** non-zero on any kind of error. -** -** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this -** routine will always fail. -*/ -static int osLocaltime(time_t *t, struct tm *pTm){ - int rc; -#if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ - && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) - struct tm *pX; -#if SQLITE_THREADSAFE>0 - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - sqlite3_mutex_enter(mutex); - pX = localtime(t); -#ifndef SQLITE_OMIT_BUILTIN_TEST - if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; -#endif - if( pX ) *pTm = *pX; - sqlite3_mutex_leave(mutex); - rc = pX==0; -#else -#ifndef SQLITE_OMIT_BUILTIN_TEST - if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; -#endif -#if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R - rc = localtime_r(t, pTm)==0; -#else - rc = localtime_s(pTm, t); -#endif /* HAVE_LOCALTIME_R */ -#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ - return rc; -} -#endif /* SQLITE_OMIT_LOCALTIME */ - - -#ifndef SQLITE_OMIT_LOCALTIME -/* -** Compute the difference (in milliseconds) between localtime and UTC -** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, -** return this value and set *pRc to SQLITE_OK. -** -** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value -** is undefined in this case. -*/ -static sqlite3_int64 localtimeOffset( - DateTime *p, /* Date at which to calculate offset */ - sqlite3_context *pCtx, /* Write error here if one occurs */ - int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ -){ - DateTime x, y; - time_t t; - struct tm sLocal; - - /* Initialize the contents of sLocal to avoid a compiler warning. */ - memset(&sLocal, 0, sizeof(sLocal)); - - x = *p; - computeYMD_HMS(&x); - if( x.Y<1971 || x.Y>=2038 ){ - x.Y = 2000; - x.M = 1; - x.D = 1; - x.h = 0; - x.m = 0; - x.s = 0.0; - } else { - int s = (int)(x.s + 0.5); - x.s = s; - } - x.tz = 0; - x.validJD = 0; - computeJD(&x); - t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); - if( osLocaltime(&t, &sLocal) ){ - sqlite3_result_error(pCtx, "local time unavailable", -1); - *pRc = SQLITE_ERROR; - return 0; - } - y.Y = sLocal.tm_year + 1900; - y.M = sLocal.tm_mon + 1; - y.D = sLocal.tm_mday; - y.h = sLocal.tm_hour; - y.m = sLocal.tm_min; - y.s = sLocal.tm_sec; - y.validYMD = 1; - y.validHMS = 1; - y.validJD = 0; - y.validTZ = 0; - computeJD(&y); - *pRc = SQLITE_OK; - return y.iJD - x.iJD; -} -#endif /* SQLITE_OMIT_LOCALTIME */ - -/* -** Process a modifier to a date-time stamp. The modifiers are -** as follows: -** -** NNN days -** NNN hours -** NNN minutes -** NNN.NNNN seconds -** NNN months -** NNN years -** start of month -** start of year -** start of week -** start of day -** weekday N -** unixepoch -** localtime -** utc -** -** Return 0 on success and 1 if there is any kind of error. If the error -** is in a system call (i.e. localtime()), then an error message is written -** to context pCtx. If the error is an unrecognized modifier, no error is -** written to pCtx. -*/ -static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ - int rc = 1; - int n; - double r; - char *z, zBuf[30]; - z = zBuf; - for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ - z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; - } - z[n] = 0; - switch( z[0] ){ -#ifndef SQLITE_OMIT_LOCALTIME - case 'l': { - /* localtime - ** - ** Assuming the current time value is UTC (a.k.a. GMT), shift it to - ** show local time. - */ - if( strcmp(z, "localtime")==0 ){ - computeJD(p); - p->iJD += localtimeOffset(p, pCtx, &rc); - clearYMD_HMS_TZ(p); - } - break; - } -#endif - case 'u': { - /* - ** unixepoch - ** - ** Treat the current value of p->iJD as the number of - ** seconds since 1970. Convert to a real julian day number. - */ - if( strcmp(z, "unixepoch")==0 && p->validJD ){ - p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; - clearYMD_HMS_TZ(p); - rc = 0; - } -#ifndef SQLITE_OMIT_LOCALTIME - else if( strcmp(z, "utc")==0 ){ - sqlite3_int64 c1; - computeJD(p); - c1 = localtimeOffset(p, pCtx, &rc); - if( rc==SQLITE_OK ){ - p->iJD -= c1; - clearYMD_HMS_TZ(p); - p->iJD += c1 - localtimeOffset(p, pCtx, &rc); - } - } -#endif - break; - } - case 'w': { - /* - ** weekday N - ** - ** Move the date to the same time on the next occurrence of - ** weekday N where 0==Sunday, 1==Monday, and so forth. If the - ** date is already on the appropriate weekday, this is a no-op. - */ - if( strncmp(z, "weekday ", 8)==0 - && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) - && (n=(int)r)==r && n>=0 && r<7 ){ - sqlite3_int64 Z; - computeYMD_HMS(p); - p->validTZ = 0; - p->validJD = 0; - computeJD(p); - Z = ((p->iJD + 129600000)/86400000) % 7; - if( Z>n ) Z -= 7; - p->iJD += (n - Z)*86400000; - clearYMD_HMS_TZ(p); - rc = 0; - } - break; - } - case 's': { - /* - ** start of TTTTT - ** - ** Move the date backwards to the beginning of the current day, - ** or month or year. - */ - if( strncmp(z, "start of ", 9)!=0 ) break; - z += 9; - computeYMD(p); - p->validHMS = 1; - p->h = p->m = 0; - p->s = 0.0; - p->validTZ = 0; - p->validJD = 0; - if( strcmp(z,"month")==0 ){ - p->D = 1; - rc = 0; - }else if( strcmp(z,"year")==0 ){ - computeYMD(p); - p->M = 1; - p->D = 1; - rc = 0; - }else if( strcmp(z,"day")==0 ){ - rc = 0; - } - break; - } - case '+': - case '-': - case '0': - case '1': - case '2': - case '3': - case '4': - case '5': - case '6': - case '7': - case '8': - case '9': { - double rRounder; - for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} - if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ - rc = 1; - break; - } - if( z[n]==':' ){ - /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the - ** specified number of hours, minutes, seconds, and fractional seconds - ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be - ** omitted. - */ - const char *z2 = z; - DateTime tx; - sqlite3_int64 day; - if( !sqlite3Isdigit(*z2) ) z2++; - memset(&tx, 0, sizeof(tx)); - if( parseHhMmSs(z2, &tx) ) break; - computeJD(&tx); - tx.iJD -= 43200000; - day = tx.iJD/86400000; - tx.iJD -= day*86400000; - if( z[0]=='-' ) tx.iJD = -tx.iJD; - computeJD(p); - clearYMD_HMS_TZ(p); - p->iJD += tx.iJD; - rc = 0; - break; - } - z += n; - while( sqlite3Isspace(*z) ) z++; - n = sqlite3Strlen30(z); - if( n>10 || n<3 ) break; - if( z[n-1]=='s' ){ z[n-1] = 0; n--; } - computeJD(p); - rc = 0; - rRounder = r<0 ? -0.5 : +0.5; - if( n==3 && strcmp(z,"day")==0 ){ - p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); - }else if( n==4 && strcmp(z,"hour")==0 ){ - p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); - }else if( n==6 && strcmp(z,"minute")==0 ){ - p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); - }else if( n==6 && strcmp(z,"second")==0 ){ - p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); - }else if( n==5 && strcmp(z,"month")==0 ){ - int x, y; - computeYMD_HMS(p); - p->M += (int)r; - x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; - p->Y += x; - p->M -= x*12; - p->validJD = 0; - computeJD(p); - y = (int)r; - if( y!=r ){ - p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); - } - }else if( n==4 && strcmp(z,"year")==0 ){ - int y = (int)r; - computeYMD_HMS(p); - p->Y += y; - p->validJD = 0; - computeJD(p); - if( y!=r ){ - p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); - } - }else{ - rc = 1; - } - clearYMD_HMS_TZ(p); - break; - } - default: { - break; - } - } - return rc; -} - -/* -** Process time function arguments. argv[0] is a date-time stamp. -** argv[1] and following are modifiers. Parse them all and write -** the resulting time into the DateTime structure p. Return 0 -** on success and 1 if there are any errors. -** -** If there are zero parameters (if even argv[0] is undefined) -** then assume a default value of "now" for argv[0]. -*/ -static int isDate( - sqlite3_context *context, - int argc, - sqlite3_value **argv, - DateTime *p -){ - int i; - const unsigned char *z; - int eType; - memset(p, 0, sizeof(*p)); - if( argc==0 ){ - return setDateTimeToCurrent(context, p); - } - if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT - || eType==SQLITE_INTEGER ){ - p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); - p->validJD = 1; - }else{ - z = sqlite3_value_text(argv[0]); - if( !z || parseDateOrTime(context, (char*)z, p) ){ - return 1; - } - } - for(i=1; i<argc; i++){ - z = sqlite3_value_text(argv[i]); - if( z==0 || parseModifier(context, (char*)z, p) ) return 1; - } - return 0; -} - - -/* -** The following routines implement the various date and time functions -** of SQLite. -*/ - -/* -** julianday( TIMESTRING, MOD, MOD, ...) -** -** Return the julian day number of the date specified in the arguments -*/ -static void juliandayFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - DateTime x; - if( isDate(context, argc, argv, &x)==0 ){ - computeJD(&x); - sqlite3_result_double(context, x.iJD/86400000.0); - } -} - -/* -** datetime( TIMESTRING, MOD, MOD, ...) -** -** Return YYYY-MM-DD HH:MM:SS -*/ -static void datetimeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - DateTime x; - if( isDate(context, argc, argv, &x)==0 ){ - char zBuf[100]; - computeYMD_HMS(&x); - sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", - x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - } -} - -/* -** time( TIMESTRING, MOD, MOD, ...) -** -** Return HH:MM:SS -*/ -static void timeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - DateTime x; - if( isDate(context, argc, argv, &x)==0 ){ - char zBuf[100]; - computeHMS(&x); - sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - } -} - -/* -** date( TIMESTRING, MOD, MOD, ...) -** -** Return YYYY-MM-DD -*/ -static void dateFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - DateTime x; - if( isDate(context, argc, argv, &x)==0 ){ - char zBuf[100]; - computeYMD(&x); - sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - } -} - -/* -** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) -** -** Return a string described by FORMAT. Conversions as follows: -** -** %d day of month -** %f ** fractional seconds SS.SSS -** %H hour 00-24 -** %j day of year 000-366 -** %J ** Julian day number -** %m month 01-12 -** %M minute 00-59 -** %s seconds since 1970-01-01 -** %S seconds 00-59 -** %w day of week 0-6 sunday==0 -** %W week of year 00-53 -** %Y year 0000-9999 -** %% % -*/ -static void strftimeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - DateTime x; - u64 n; - size_t i,j; - char *z; - sqlite3 *db; - const char *zFmt = (const char*)sqlite3_value_text(argv[0]); - char zBuf[100]; - if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; - db = sqlite3_context_db_handle(context); - for(i=0, n=1; zFmt[i]; i++, n++){ - if( zFmt[i]=='%' ){ - switch( zFmt[i+1] ){ - case 'd': - case 'H': - case 'm': - case 'M': - case 'S': - case 'W': - n++; - /* fall thru */ - case 'w': - case '%': - break; - case 'f': - n += 8; - break; - case 'j': - n += 3; - break; - case 'Y': - n += 8; - break; - case 's': - case 'J': - n += 50; - break; - default: - return; /* ERROR. return a NULL */ - } - i++; - } - } - testcase( n==sizeof(zBuf)-1 ); - testcase( n==sizeof(zBuf) ); - testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); - testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); - if( n<sizeof(zBuf) ){ - z = zBuf; - }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ - sqlite3_result_error_toobig(context); - return; - }else{ - z = sqlite3DbMallocRaw(db, (int)n); - if( z==0 ){ - sqlite3_result_error_nomem(context); - return; - } - } - computeJD(&x); - computeYMD_HMS(&x); - for(i=j=0; zFmt[i]; i++){ - if( zFmt[i]!='%' ){ - z[j++] = zFmt[i]; - }else{ - i++; - switch( zFmt[i] ){ - case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; - case 'f': { - double s = x.s; - if( s>59.999 ) s = 59.999; - sqlite3_snprintf(7, &z[j],"%06.3f", s); - j += sqlite3Strlen30(&z[j]); - break; - } - case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; - case 'W': /* Fall thru */ - case 'j': { - int nDay; /* Number of days since 1st day of year */ - DateTime y = x; - y.validJD = 0; - y.M = 1; - y.D = 1; - computeJD(&y); - nDay = (int)((x.iJD-y.iJD+43200000)/86400000); - if( zFmt[i]=='W' ){ - int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ - wd = (int)(((x.iJD+43200000)/86400000)%7); - sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); - j += 2; - }else{ - sqlite3_snprintf(4, &z[j],"%03d",nDay+1); - j += 3; - } - break; - } - case 'J': { - sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); - j+=sqlite3Strlen30(&z[j]); - break; - } - case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; - case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; - case 's': { - sqlite3_snprintf(30,&z[j],"%lld", - (i64)(x.iJD/1000 - 21086676*(i64)10000)); - j += sqlite3Strlen30(&z[j]); - break; - } - case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; - case 'w': { - z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; - break; - } - case 'Y': { - sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); - break; - } - default: z[j++] = '%'; break; - } - } - } - z[j] = 0; - sqlite3_result_text(context, z, -1, - z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); -} - -/* -** current_time() -** -** This function returns the same value as time('now'). -*/ -static void ctimeFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - timeFunc(context, 0, 0); -} - -/* -** current_date() -** -** This function returns the same value as date('now'). -*/ -static void cdateFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - dateFunc(context, 0, 0); -} - -/* -** current_timestamp() -** -** This function returns the same value as datetime('now'). -*/ -static void ctimestampFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - datetimeFunc(context, 0, 0); -} -#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ - -#ifdef SQLITE_OMIT_DATETIME_FUNCS -/* -** If the library is compiled to omit the full-scale date and time -** handling (to get a smaller binary), the following minimal version -** of the functions current_time(), current_date() and current_timestamp() -** are included instead. This is to support column declarations that -** include "DEFAULT CURRENT_TIME" etc. -** -** This function uses the C-library functions time(), gmtime() -** and strftime(). The format string to pass to strftime() is supplied -** as the user-data for the function. -*/ -static void currentTimeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - time_t t; - char *zFormat = (char *)sqlite3_user_data(context); - sqlite3 *db; - sqlite3_int64 iT; - struct tm *pTm; - struct tm sNow; - char zBuf[20]; - - UNUSED_PARAMETER(argc); - UNUSED_PARAMETER(argv); - - db = sqlite3_context_db_handle(context); - if( sqlite3OsCurrentTimeInt64(db->pVfs, &iT) ) return; - t = iT/1000 - 10000*(sqlite3_int64)21086676; -#ifdef HAVE_GMTIME_R - pTm = gmtime_r(&t, &sNow); -#else - sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); - pTm = gmtime(&t); - if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); - sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -#endif - if( pTm ){ - strftime(zBuf, 20, zFormat, &sNow); - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - } -} -#endif - -/* -** This function registered all of the above C functions as SQL -** functions. This should be the only routine in this file with -** external linkage. -*/ -SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){ - static SQLITE_WSD FuncDef aDateTimeFuncs[] = { -#ifndef SQLITE_OMIT_DATETIME_FUNCS - FUNCTION(julianday, -1, 0, 0, juliandayFunc ), - FUNCTION(date, -1, 0, 0, dateFunc ), - FUNCTION(time, -1, 0, 0, timeFunc ), - FUNCTION(datetime, -1, 0, 0, datetimeFunc ), - FUNCTION(strftime, -1, 0, 0, strftimeFunc ), - FUNCTION(current_time, 0, 0, 0, ctimeFunc ), - FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), - FUNCTION(current_date, 0, 0, 0, cdateFunc ), -#else - STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), - STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), - STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), -#endif - }; - int i; - FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); - FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); - - for(i=0; i<ArraySize(aDateTimeFuncs); i++){ - sqlite3FuncDefInsert(pHash, &aFunc[i]); - } -} - -/************** End of date.c ************************************************/ -/************** Begin file os.c **********************************************/ -/* -** 2005 November 29 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains OS interface code that is common to all -** architectures. -*/ -#define _SQLITE_OS_C_ 1 -#undef _SQLITE_OS_C_ - -/* -** The default SQLite sqlite3_vfs implementations do not allocate -** memory (actually, os_unix.c allocates a small amount of memory -** from within OsOpen()), but some third-party implementations may. -** So we test the effects of a malloc() failing and the sqlite3OsXXX() -** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. -** -** The following functions are instrumented for malloc() failure -** testing: -** -** sqlite3OsRead() -** sqlite3OsWrite() -** sqlite3OsSync() -** sqlite3OsFileSize() -** sqlite3OsLock() -** sqlite3OsCheckReservedLock() -** sqlite3OsFileControl() -** sqlite3OsShmMap() -** sqlite3OsOpen() -** sqlite3OsDelete() -** sqlite3OsAccess() -** sqlite3OsFullPathname() -** -*/ -#if defined(SQLITE_TEST) -SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1; - #define DO_OS_MALLOC_TEST(x) \ - if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3IsMemJournal(x))) { \ - void *pTstAlloc = sqlite3Malloc(10); \ - if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \ - sqlite3_free(pTstAlloc); \ - } -#else - #define DO_OS_MALLOC_TEST(x) -#endif - -/* -** The following routines are convenience wrappers around methods -** of the sqlite3_file object. This is mostly just syntactic sugar. All -** of this would be completely automatic if SQLite were coded using -** C++ instead of plain old C. -*/ -SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){ - int rc = SQLITE_OK; - if( pId->pMethods ){ - rc = pId->pMethods->xClose(pId); - pId->pMethods = 0; - } - return rc; -} -SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xRead(id, pBuf, amt, offset); -} -SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xWrite(id, pBuf, amt, offset); -} -SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){ - return id->pMethods->xTruncate(id, size); -} -SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xSync(id, flags); -} -SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xFileSize(id, pSize); -} -SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xLock(id, lockType); -} -SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){ - return id->pMethods->xUnlock(id, lockType); -} -SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xCheckReservedLock(id, pResOut); -} - -/* -** Use sqlite3OsFileControl() when we are doing something that might fail -** and we need to know about the failures. Use sqlite3OsFileControlHint() -** when simply tossing information over the wall to the VFS and we do not -** really care if the VFS receives and understands the information since it -** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() -** routine has no return value since the return value would be meaningless. -*/ -SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xFileControl(id, op, pArg); -} -SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ - (void)id->pMethods->xFileControl(id, op, pArg); -} - -SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){ - int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; - return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); -} -SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ - return id->pMethods->xDeviceCharacteristics(id); -} -SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ - return id->pMethods->xShmLock(id, offset, n, flags); -} -SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){ - id->pMethods->xShmBarrier(id); -} -SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ - return id->pMethods->xShmUnmap(id, deleteFlag); -} -SQLITE_PRIVATE int sqlite3OsShmMap( - sqlite3_file *id, /* Database file handle */ - int iPage, - int pgsz, - int bExtend, /* True to extend file if necessary */ - void volatile **pp /* OUT: Pointer to mapping */ -){ - DO_OS_MALLOC_TEST(id); - return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); -} - -/* -** The next group of routines are convenience wrappers around the -** VFS methods. -*/ -SQLITE_PRIVATE int sqlite3OsOpen( - sqlite3_vfs *pVfs, - const char *zPath, - sqlite3_file *pFile, - int flags, - int *pFlagsOut -){ - int rc; - DO_OS_MALLOC_TEST(0); - /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed - ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, - ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before - ** reaching the VFS. */ - rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut); - assert( rc==SQLITE_OK || pFile->pMethods==0 ); - return rc; -} -SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ - DO_OS_MALLOC_TEST(0); - assert( dirSync==0 || dirSync==1 ); - return pVfs->xDelete(pVfs, zPath, dirSync); -} -SQLITE_PRIVATE int sqlite3OsAccess( - sqlite3_vfs *pVfs, - const char *zPath, - int flags, - int *pResOut -){ - DO_OS_MALLOC_TEST(0); - return pVfs->xAccess(pVfs, zPath, flags, pResOut); -} -SQLITE_PRIVATE int sqlite3OsFullPathname( - sqlite3_vfs *pVfs, - const char *zPath, - int nPathOut, - char *zPathOut -){ - DO_OS_MALLOC_TEST(0); - zPathOut[0] = 0; - return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); -} -#ifndef SQLITE_OMIT_LOAD_EXTENSION -SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ - return pVfs->xDlOpen(pVfs, zPath); -} -SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ - pVfs->xDlError(pVfs, nByte, zBufOut); -} -SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ - return pVfs->xDlSym(pVfs, pHdle, zSym); -} -SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ - pVfs->xDlClose(pVfs, pHandle); -} -#endif /* SQLITE_OMIT_LOAD_EXTENSION */ -SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ - return pVfs->xRandomness(pVfs, nByte, zBufOut); -} -SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ - return pVfs->xSleep(pVfs, nMicro); -} -SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ - int rc; - /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() - ** method to get the current date and time if that method is available - ** (if iVersion is 2 or greater and the function pointer is not NULL) and - ** will fall back to xCurrentTime() if xCurrentTimeInt64() is - ** unavailable. - */ - if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ - rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); - }else{ - double r; - rc = pVfs->xCurrentTime(pVfs, &r); - *pTimeOut = (sqlite3_int64)(r*86400000.0); - } - return rc; -} - -SQLITE_PRIVATE int sqlite3OsOpenMalloc( - sqlite3_vfs *pVfs, - const char *zFile, - sqlite3_file **ppFile, - int flags, - int *pOutFlags -){ - int rc = SQLITE_NOMEM; - sqlite3_file *pFile; - pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); - if( pFile ){ - rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); - if( rc!=SQLITE_OK ){ - sqlite3_free(pFile); - }else{ - *ppFile = pFile; - } - } - return rc; -} -SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){ - int rc = SQLITE_OK; - assert( pFile ); - rc = sqlite3OsClose(pFile); - sqlite3_free(pFile); - return rc; -} - -/* -** This function is a wrapper around the OS specific implementation of -** sqlite3_os_init(). The purpose of the wrapper is to provide the -** ability to simulate a malloc failure, so that the handling of an -** error in sqlite3_os_init() by the upper layers can be tested. -*/ -SQLITE_PRIVATE int sqlite3OsInit(void){ - void *p = sqlite3_malloc(10); - if( p==0 ) return SQLITE_NOMEM; - sqlite3_free(p); - return sqlite3_os_init(); -} - -/* -** The list of all registered VFS implementations. -*/ -static sqlite3_vfs * SQLITE_WSD vfsList = 0; -#define vfsList GLOBAL(sqlite3_vfs *, vfsList) - -/* -** Locate a VFS by name. If no name is given, simply return the -** first VFS on the list. -*/ -SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ - sqlite3_vfs *pVfs = 0; -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex; -#endif -#ifndef SQLITE_OMIT_AUTOINIT - int rc = sqlite3_initialize(); - if( rc ) return 0; -#endif -#if SQLITE_THREADSAFE - mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - sqlite3_mutex_enter(mutex); - for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ - if( zVfs==0 ) break; - if( strcmp(zVfs, pVfs->zName)==0 ) break; - } - sqlite3_mutex_leave(mutex); - return pVfs; -} - -/* -** Unlink a VFS from the linked list -*/ -static void vfsUnlink(sqlite3_vfs *pVfs){ - assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ); - if( pVfs==0 ){ - /* No-op */ - }else if( vfsList==pVfs ){ - vfsList = pVfs->pNext; - }else if( vfsList ){ - sqlite3_vfs *p = vfsList; - while( p->pNext && p->pNext!=pVfs ){ - p = p->pNext; - } - if( p->pNext==pVfs ){ - p->pNext = pVfs->pNext; - } - } -} - -/* -** Register a VFS with the system. It is harmless to register the same -** VFS multiple times. The new VFS becomes the default if makeDflt is -** true. -*/ -SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ - MUTEX_LOGIC(sqlite3_mutex *mutex;) -#ifndef SQLITE_OMIT_AUTOINIT - int rc = sqlite3_initialize(); - if( rc ) return rc; -#endif - MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) - sqlite3_mutex_enter(mutex); - vfsUnlink(pVfs); - if( makeDflt || vfsList==0 ){ - pVfs->pNext = vfsList; - vfsList = pVfs; - }else{ - pVfs->pNext = vfsList->pNext; - vfsList->pNext = pVfs; - } - assert(vfsList); - sqlite3_mutex_leave(mutex); - return SQLITE_OK; -} - -/* -** Unregister a VFS so that it is no longer accessible. -*/ -SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - sqlite3_mutex_enter(mutex); - vfsUnlink(pVfs); - sqlite3_mutex_leave(mutex); - return SQLITE_OK; -} - -/************** End of os.c **************************************************/ -/************** Begin file fault.c *******************************************/ -/* -** 2008 Jan 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code to support the concept of "benign" -** malloc failures (when the xMalloc() or xRealloc() method of the -** sqlite3_mem_methods structure fails to allocate a block of memory -** and returns 0). -** -** Most malloc failures are non-benign. After they occur, SQLite -** abandons the current operation and returns an error code (usually -** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily -** fatal. For example, if a malloc fails while resizing a hash table, this -** is completely recoverable simply by not carrying out the resize. The -** hash table will continue to function normally. So a malloc failure -** during a hash table resize is a benign fault. -*/ - - -#ifndef SQLITE_OMIT_BUILTIN_TEST - -/* -** Global variables. -*/ -typedef struct BenignMallocHooks BenignMallocHooks; -static SQLITE_WSD struct BenignMallocHooks { - void (*xBenignBegin)(void); - void (*xBenignEnd)(void); -} sqlite3Hooks = { 0, 0 }; - -/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks -** structure. If writable static data is unsupported on the target, -** we have to locate the state vector at run-time. In the more common -** case where writable static data is supported, wsdHooks can refer directly -** to the "sqlite3Hooks" state vector declared above. -*/ -#ifdef SQLITE_OMIT_WSD -# define wsdHooksInit \ - BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks) -# define wsdHooks x[0] -#else -# define wsdHooksInit -# define wsdHooks sqlite3Hooks -#endif - - -/* -** Register hooks to call when sqlite3BeginBenignMalloc() and -** sqlite3EndBenignMalloc() are called, respectively. -*/ -SQLITE_PRIVATE void sqlite3BenignMallocHooks( - void (*xBenignBegin)(void), - void (*xBenignEnd)(void) -){ - wsdHooksInit; - wsdHooks.xBenignBegin = xBenignBegin; - wsdHooks.xBenignEnd = xBenignEnd; -} - -/* -** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that -** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc() -** indicates that subsequent malloc failures are non-benign. -*/ -SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){ - wsdHooksInit; - if( wsdHooks.xBenignBegin ){ - wsdHooks.xBenignBegin(); - } -} -SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){ - wsdHooksInit; - if( wsdHooks.xBenignEnd ){ - wsdHooks.xBenignEnd(); - } -} - -#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */ - -/************** End of fault.c ***********************************************/ -/************** Begin file mem0.c ********************************************/ -/* -** 2008 October 28 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains a no-op memory allocation drivers for use when -** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented -** here always fail. SQLite will not operate with these drivers. These -** are merely placeholders. Real drivers must be substituted using -** sqlite3_config() before SQLite will operate. -*/ - -/* -** This version of the memory allocator is the default. It is -** used when no other memory allocator is specified using compile-time -** macros. -*/ -#ifdef SQLITE_ZERO_MALLOC - -/* -** No-op versions of all memory allocation routines -*/ -static void *sqlite3MemMalloc(int nByte){ return 0; } -static void sqlite3MemFree(void *pPrior){ return; } -static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; } -static int sqlite3MemSize(void *pPrior){ return 0; } -static int sqlite3MemRoundup(int n){ return n; } -static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; } -static void sqlite3MemShutdown(void *NotUsed){ return; } - -/* -** This routine is the only routine in this file with external linkage. -** -** Populate the low-level memory allocation function pointers in -** sqlite3GlobalConfig.m with pointers to the routines in this file. -*/ -SQLITE_PRIVATE void sqlite3MemSetDefault(void){ - static const sqlite3_mem_methods defaultMethods = { - sqlite3MemMalloc, - sqlite3MemFree, - sqlite3MemRealloc, - sqlite3MemSize, - sqlite3MemRoundup, - sqlite3MemInit, - sqlite3MemShutdown, - 0 - }; - sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); -} - -#endif /* SQLITE_ZERO_MALLOC */ - -/************** End of mem0.c ************************************************/ -/************** Begin file mem1.c ********************************************/ -/* -** 2007 August 14 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains low-level memory allocation drivers for when -** SQLite will use the standard C-library malloc/realloc/free interface -** to obtain the memory it needs. -** -** This file contains implementations of the low-level memory allocation -** routines specified in the sqlite3_mem_methods object. The content of -** this file is only used if SQLITE_SYSTEM_MALLOC is defined. The -** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the -** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined. The -** default configuration is to use memory allocation routines in this -** file. -** -** C-preprocessor macro summary: -** -** HAVE_MALLOC_USABLE_SIZE The configure script sets this symbol if -** the malloc_usable_size() interface exists -** on the target platform. Or, this symbol -** can be set manually, if desired. -** If an equivalent interface exists by -** a different name, using a separate -D -** option to rename it. -** -** SQLITE_WITHOUT_ZONEMALLOC Some older macs lack support for the zone -** memory allocator. Set this symbol to enable -** building on older macs. -** -** SQLITE_WITHOUT_MSIZE Set this symbol to disable the use of -** _msize() on windows systems. This might -** be necessary when compiling for Delphi, -** for example. -*/ - -/* -** This version of the memory allocator is the default. It is -** used when no other memory allocator is specified using compile-time -** macros. -*/ -#ifdef SQLITE_SYSTEM_MALLOC - -/* -** The MSVCRT has malloc_usable_size() but it is called _msize(). -** The use of _msize() is automatic, but can be disabled by compiling -** with -DSQLITE_WITHOUT_MSIZE -*/ -#if defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE) -# define SQLITE_MALLOCSIZE _msize -#endif - -#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) - -/* -** Use the zone allocator available on apple products unless the -** SQLITE_WITHOUT_ZONEMALLOC symbol is defined. -*/ -#include <sys/sysctl.h> -#include <malloc/malloc.h> -#include <libkern/OSAtomic.h> -static malloc_zone_t* _sqliteZone_; -#define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x)) -#define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x)); -#define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y)) -#define SQLITE_MALLOCSIZE(x) \ - (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x)) - -#else /* if not __APPLE__ */ - -/* -** Use standard C library malloc and free on non-Apple systems. -** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined. -*/ -#define SQLITE_MALLOC(x) malloc(x) -#define SQLITE_FREE(x) free(x) -#define SQLITE_REALLOC(x,y) realloc((x),(y)) - -#if (defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE)) \ - || (defined(HAVE_MALLOC_H) && defined(HAVE_MALLOC_USABLE_SIZE)) -# include <malloc.h> /* Needed for malloc_usable_size on linux */ -#endif -#ifdef HAVE_MALLOC_USABLE_SIZE -# ifndef SQLITE_MALLOCSIZE -# define SQLITE_MALLOCSIZE(x) malloc_usable_size(x) -# endif -#else -# undef SQLITE_MALLOCSIZE -#endif - -#endif /* __APPLE__ or not __APPLE__ */ - -/* -** Like malloc(), but remember the size of the allocation -** so that we can find it later using sqlite3MemSize(). -** -** For this low-level routine, we are guaranteed that nByte>0 because -** cases of nByte<=0 will be intercepted and dealt with by higher level -** routines. -*/ -static void *sqlite3MemMalloc(int nByte){ -#ifdef SQLITE_MALLOCSIZE - void *p = SQLITE_MALLOC( nByte ); - if( p==0 ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); - } - return p; -#else - sqlite3_int64 *p; - assert( nByte>0 ); - nByte = ROUND8(nByte); - p = SQLITE_MALLOC( nByte+8 ); - if( p ){ - p[0] = nByte; - p++; - }else{ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); - } - return (void *)p; -#endif -} - -/* -** Like free() but works for allocations obtained from sqlite3MemMalloc() -** or sqlite3MemRealloc(). -** -** For this low-level routine, we already know that pPrior!=0 since -** cases where pPrior==0 will have been intecepted and dealt with -** by higher-level routines. -*/ -static void sqlite3MemFree(void *pPrior){ -#ifdef SQLITE_MALLOCSIZE - SQLITE_FREE(pPrior); -#else - sqlite3_int64 *p = (sqlite3_int64*)pPrior; - assert( pPrior!=0 ); - p--; - SQLITE_FREE(p); -#endif -} - -/* -** Report the allocated size of a prior return from xMalloc() -** or xRealloc(). -*/ -static int sqlite3MemSize(void *pPrior){ -#ifdef SQLITE_MALLOCSIZE - return pPrior ? (int)SQLITE_MALLOCSIZE(pPrior) : 0; -#else - sqlite3_int64 *p; - if( pPrior==0 ) return 0; - p = (sqlite3_int64*)pPrior; - p--; - return (int)p[0]; -#endif -} - -/* -** Like realloc(). Resize an allocation previously obtained from -** sqlite3MemMalloc(). -** -** For this low-level interface, we know that pPrior!=0. Cases where -** pPrior==0 while have been intercepted by higher-level routine and -** redirected to xMalloc. Similarly, we know that nByte>0 becauses -** cases where nByte<=0 will have been intercepted by higher-level -** routines and redirected to xFree. -*/ -static void *sqlite3MemRealloc(void *pPrior, int nByte){ -#ifdef SQLITE_MALLOCSIZE - void *p = SQLITE_REALLOC(pPrior, nByte); - if( p==0 ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_NOMEM, - "failed memory resize %u to %u bytes", - SQLITE_MALLOCSIZE(pPrior), nByte); - } - return p; -#else - sqlite3_int64 *p = (sqlite3_int64*)pPrior; - assert( pPrior!=0 && nByte>0 ); - assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */ - p--; - p = SQLITE_REALLOC(p, nByte+8 ); - if( p ){ - p[0] = nByte; - p++; - }else{ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_NOMEM, - "failed memory resize %u to %u bytes", - sqlite3MemSize(pPrior), nByte); - } - return (void*)p; -#endif -} - -/* -** Round up a request size to the next valid allocation size. -*/ -static int sqlite3MemRoundup(int n){ - return ROUND8(n); -} - -/* -** Initialize this module. -*/ -static int sqlite3MemInit(void *NotUsed){ -#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) - int cpuCount; - size_t len; - if( _sqliteZone_ ){ - return SQLITE_OK; - } - len = sizeof(cpuCount); - /* One usually wants to use hw.acctivecpu for MT decisions, but not here */ - sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0); - if( cpuCount>1 ){ - /* defer MT decisions to system malloc */ - _sqliteZone_ = malloc_default_zone(); - }else{ - /* only 1 core, use our own zone to contention over global locks, - ** e.g. we have our own dedicated locks */ - bool success; - malloc_zone_t* newzone = malloc_create_zone(4096, 0); - malloc_set_zone_name(newzone, "Sqlite_Heap"); - do{ - success = OSAtomicCompareAndSwapPtrBarrier(NULL, newzone, - (void * volatile *)&_sqliteZone_); - }while(!_sqliteZone_); - if( !success ){ - /* somebody registered a zone first */ - malloc_destroy_zone(newzone); - } - } -#endif - UNUSED_PARAMETER(NotUsed); - return SQLITE_OK; -} - -/* -** Deinitialize this module. -*/ -static void sqlite3MemShutdown(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - return; -} - -/* -** This routine is the only routine in this file with external linkage. -** -** Populate the low-level memory allocation function pointers in -** sqlite3GlobalConfig.m with pointers to the routines in this file. -*/ -SQLITE_PRIVATE void sqlite3MemSetDefault(void){ - static const sqlite3_mem_methods defaultMethods = { - sqlite3MemMalloc, - sqlite3MemFree, - sqlite3MemRealloc, - sqlite3MemSize, - sqlite3MemRoundup, - sqlite3MemInit, - sqlite3MemShutdown, - 0 - }; - sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); -} - -#endif /* SQLITE_SYSTEM_MALLOC */ - -/************** End of mem1.c ************************************************/ -/************** Begin file mem2.c ********************************************/ -/* -** 2007 August 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains low-level memory allocation drivers for when -** SQLite will use the standard C-library malloc/realloc/free interface -** to obtain the memory it needs while adding lots of additional debugging -** information to each allocation in order to help detect and fix memory -** leaks and memory usage errors. -** -** This file contains implementations of the low-level memory allocation -** routines specified in the sqlite3_mem_methods object. -*/ - -/* -** This version of the memory allocator is used only if the -** SQLITE_MEMDEBUG macro is defined -*/ -#ifdef SQLITE_MEMDEBUG - -/* -** The backtrace functionality is only available with GLIBC -*/ -#ifdef __GLIBC__ - extern int backtrace(void**,int); - extern void backtrace_symbols_fd(void*const*,int,int); -#else -# define backtrace(A,B) 1 -# define backtrace_symbols_fd(A,B,C) -#endif -/* #include <stdio.h> */ - -/* -** Each memory allocation looks like this: -** -** ------------------------------------------------------------------------ -** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard | -** ------------------------------------------------------------------------ -** -** The application code sees only a pointer to the allocation. We have -** to back up from the allocation pointer to find the MemBlockHdr. The -** MemBlockHdr tells us the size of the allocation and the number of -** backtrace pointers. There is also a guard word at the end of the -** MemBlockHdr. -*/ -struct MemBlockHdr { - i64 iSize; /* Size of this allocation */ - struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */ - char nBacktrace; /* Number of backtraces on this alloc */ - char nBacktraceSlots; /* Available backtrace slots */ - u8 nTitle; /* Bytes of title; includes '\0' */ - u8 eType; /* Allocation type code */ - int iForeGuard; /* Guard word for sanity */ -}; - -/* -** Guard words -*/ -#define FOREGUARD 0x80F5E153 -#define REARGUARD 0xE4676B53 - -/* -** Number of malloc size increments to track. -*/ -#define NCSIZE 1000 - -/* -** All of the static variables used by this module are collected -** into a single structure named "mem". This is to keep the -** static variables organized and to reduce namespace pollution -** when this module is combined with other in the amalgamation. -*/ -static struct { - - /* - ** Mutex to control access to the memory allocation subsystem. - */ - sqlite3_mutex *mutex; - - /* - ** Head and tail of a linked list of all outstanding allocations - */ - struct MemBlockHdr *pFirst; - struct MemBlockHdr *pLast; - - /* - ** The number of levels of backtrace to save in new allocations. - */ - int nBacktrace; - void (*xBacktrace)(int, int, void **); - - /* - ** Title text to insert in front of each block - */ - int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */ - char zTitle[100]; /* The title text */ - - /* - ** sqlite3MallocDisallow() increments the following counter. - ** sqlite3MallocAllow() decrements it. - */ - int disallow; /* Do not allow memory allocation */ - - /* - ** Gather statistics on the sizes of memory allocations. - ** nAlloc[i] is the number of allocation attempts of i*8 - ** bytes. i==NCSIZE is the number of allocation attempts for - ** sizes more than NCSIZE*8 bytes. - */ - int nAlloc[NCSIZE]; /* Total number of allocations */ - int nCurrent[NCSIZE]; /* Current number of allocations */ - int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */ - -} mem; - - -/* -** Adjust memory usage statistics -*/ -static void adjustStats(int iSize, int increment){ - int i = ROUND8(iSize)/8; - if( i>NCSIZE-1 ){ - i = NCSIZE - 1; - } - if( increment>0 ){ - mem.nAlloc[i]++; - mem.nCurrent[i]++; - if( mem.nCurrent[i]>mem.mxCurrent[i] ){ - mem.mxCurrent[i] = mem.nCurrent[i]; - } - }else{ - mem.nCurrent[i]--; - assert( mem.nCurrent[i]>=0 ); - } -} - -/* -** Given an allocation, find the MemBlockHdr for that allocation. -** -** This routine checks the guards at either end of the allocation and -** if they are incorrect it asserts. -*/ -static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){ - struct MemBlockHdr *p; - int *pInt; - u8 *pU8; - int nReserve; - - p = (struct MemBlockHdr*)pAllocation; - p--; - assert( p->iForeGuard==(int)FOREGUARD ); - nReserve = ROUND8(p->iSize); - pInt = (int*)pAllocation; - pU8 = (u8*)pAllocation; - assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD ); - /* This checks any of the "extra" bytes allocated due - ** to rounding up to an 8 byte boundary to ensure - ** they haven't been overwritten. - */ - while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 ); - return p; -} - -/* -** Return the number of bytes currently allocated at address p. -*/ -static int sqlite3MemSize(void *p){ - struct MemBlockHdr *pHdr; - if( !p ){ - return 0; - } - pHdr = sqlite3MemsysGetHeader(p); - return pHdr->iSize; -} - -/* -** Initialize the memory allocation subsystem. -*/ -static int sqlite3MemInit(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - assert( (sizeof(struct MemBlockHdr)&7) == 0 ); - if( !sqlite3GlobalConfig.bMemstat ){ - /* If memory status is enabled, then the malloc.c wrapper will already - ** hold the STATIC_MEM mutex when the routines here are invoked. */ - mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); - } - return SQLITE_OK; -} - -/* -** Deinitialize the memory allocation subsystem. -*/ -static void sqlite3MemShutdown(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - mem.mutex = 0; -} - -/* -** Round up a request size to the next valid allocation size. -*/ -static int sqlite3MemRoundup(int n){ - return ROUND8(n); -} - -/* -** Fill a buffer with pseudo-random bytes. This is used to preset -** the content of a new memory allocation to unpredictable values and -** to clear the content of a freed allocation to unpredictable values. -*/ -static void randomFill(char *pBuf, int nByte){ - unsigned int x, y, r; - x = SQLITE_PTR_TO_INT(pBuf); - y = nByte | 1; - while( nByte >= 4 ){ - x = (x>>1) ^ (-(x&1) & 0xd0000001); - y = y*1103515245 + 12345; - r = x ^ y; - *(int*)pBuf = r; - pBuf += 4; - nByte -= 4; - } - while( nByte-- > 0 ){ - x = (x>>1) ^ (-(x&1) & 0xd0000001); - y = y*1103515245 + 12345; - r = x ^ y; - *(pBuf++) = r & 0xff; - } -} - -/* -** Allocate nByte bytes of memory. -*/ -static void *sqlite3MemMalloc(int nByte){ - struct MemBlockHdr *pHdr; - void **pBt; - char *z; - int *pInt; - void *p = 0; - int totalSize; - int nReserve; - sqlite3_mutex_enter(mem.mutex); - assert( mem.disallow==0 ); - nReserve = ROUND8(nByte); - totalSize = nReserve + sizeof(*pHdr) + sizeof(int) + - mem.nBacktrace*sizeof(void*) + mem.nTitle; - p = malloc(totalSize); - if( p ){ - z = p; - pBt = (void**)&z[mem.nTitle]; - pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; - pHdr->pNext = 0; - pHdr->pPrev = mem.pLast; - if( mem.pLast ){ - mem.pLast->pNext = pHdr; - }else{ - mem.pFirst = pHdr; - } - mem.pLast = pHdr; - pHdr->iForeGuard = FOREGUARD; - pHdr->eType = MEMTYPE_HEAP; - pHdr->nBacktraceSlots = mem.nBacktrace; - pHdr->nTitle = mem.nTitle; - if( mem.nBacktrace ){ - void *aAddr[40]; - pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; - memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); - assert(pBt[0]); - if( mem.xBacktrace ){ - mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]); - } - }else{ - pHdr->nBacktrace = 0; - } - if( mem.nTitle ){ - memcpy(z, mem.zTitle, mem.nTitle); - } - pHdr->iSize = nByte; - adjustStats(nByte, +1); - pInt = (int*)&pHdr[1]; - pInt[nReserve/sizeof(int)] = REARGUARD; - randomFill((char*)pInt, nByte); - memset(((char*)pInt)+nByte, 0x65, nReserve-nByte); - p = (void*)pInt; - } - sqlite3_mutex_leave(mem.mutex); - return p; -} - -/* -** Free memory. -*/ -static void sqlite3MemFree(void *pPrior){ - struct MemBlockHdr *pHdr; - void **pBt; - char *z; - assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0 - || mem.mutex!=0 ); - pHdr = sqlite3MemsysGetHeader(pPrior); - pBt = (void**)pHdr; - pBt -= pHdr->nBacktraceSlots; - sqlite3_mutex_enter(mem.mutex); - if( pHdr->pPrev ){ - assert( pHdr->pPrev->pNext==pHdr ); - pHdr->pPrev->pNext = pHdr->pNext; - }else{ - assert( mem.pFirst==pHdr ); - mem.pFirst = pHdr->pNext; - } - if( pHdr->pNext ){ - assert( pHdr->pNext->pPrev==pHdr ); - pHdr->pNext->pPrev = pHdr->pPrev; - }else{ - assert( mem.pLast==pHdr ); - mem.pLast = pHdr->pPrev; - } - z = (char*)pBt; - z -= pHdr->nTitle; - adjustStats(pHdr->iSize, -1); - randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + - pHdr->iSize + sizeof(int) + pHdr->nTitle); - free(z); - sqlite3_mutex_leave(mem.mutex); -} - -/* -** Change the size of an existing memory allocation. -** -** For this debugging implementation, we *always* make a copy of the -** allocation into a new place in memory. In this way, if the -** higher level code is using pointer to the old allocation, it is -** much more likely to break and we are much more liking to find -** the error. -*/ -static void *sqlite3MemRealloc(void *pPrior, int nByte){ - struct MemBlockHdr *pOldHdr; - void *pNew; - assert( mem.disallow==0 ); - assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */ - pOldHdr = sqlite3MemsysGetHeader(pPrior); - pNew = sqlite3MemMalloc(nByte); - if( pNew ){ - memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize); - if( nByte>pOldHdr->iSize ){ - randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - pOldHdr->iSize); - } - sqlite3MemFree(pPrior); - } - return pNew; -} - -/* -** Populate the low-level memory allocation function pointers in -** sqlite3GlobalConfig.m with pointers to the routines in this file. -*/ -SQLITE_PRIVATE void sqlite3MemSetDefault(void){ - static const sqlite3_mem_methods defaultMethods = { - sqlite3MemMalloc, - sqlite3MemFree, - sqlite3MemRealloc, - sqlite3MemSize, - sqlite3MemRoundup, - sqlite3MemInit, - sqlite3MemShutdown, - 0 - }; - sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); -} - -/* -** Set the "type" of an allocation. -*/ -SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){ - if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ - struct MemBlockHdr *pHdr; - pHdr = sqlite3MemsysGetHeader(p); - assert( pHdr->iForeGuard==FOREGUARD ); - pHdr->eType = eType; - } -} - -/* -** Return TRUE if the mask of type in eType matches the type of the -** allocation p. Also return true if p==NULL. -** -** This routine is designed for use within an assert() statement, to -** verify the type of an allocation. For example: -** -** assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); -*/ -SQLITE_PRIVATE int sqlite3MemdebugHasType(void *p, u8 eType){ - int rc = 1; - if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ - struct MemBlockHdr *pHdr; - pHdr = sqlite3MemsysGetHeader(p); - assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ - if( (pHdr->eType&eType)==0 ){ - rc = 0; - } - } - return rc; -} - -/* -** Return TRUE if the mask of type in eType matches no bits of the type of the -** allocation p. Also return true if p==NULL. -** -** This routine is designed for use within an assert() statement, to -** verify the type of an allocation. For example: -** -** assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); -*/ -SQLITE_PRIVATE int sqlite3MemdebugNoType(void *p, u8 eType){ - int rc = 1; - if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ - struct MemBlockHdr *pHdr; - pHdr = sqlite3MemsysGetHeader(p); - assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ - if( (pHdr->eType&eType)!=0 ){ - rc = 0; - } - } - return rc; -} - -/* -** Set the number of backtrace levels kept for each allocation. -** A value of zero turns off backtracing. The number is always rounded -** up to a multiple of 2. -*/ -SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){ - if( depth<0 ){ depth = 0; } - if( depth>20 ){ depth = 20; } - depth = (depth+1)&0xfe; - mem.nBacktrace = depth; -} - -SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){ - mem.xBacktrace = xBacktrace; -} - -/* -** Set the title string for subsequent allocations. -*/ -SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){ - unsigned int n = sqlite3Strlen30(zTitle) + 1; - sqlite3_mutex_enter(mem.mutex); - if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1; - memcpy(mem.zTitle, zTitle, n); - mem.zTitle[n] = 0; - mem.nTitle = ROUND8(n); - sqlite3_mutex_leave(mem.mutex); -} - -SQLITE_PRIVATE void sqlite3MemdebugSync(){ - struct MemBlockHdr *pHdr; - for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ - void **pBt = (void**)pHdr; - pBt -= pHdr->nBacktraceSlots; - mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]); - } -} - -/* -** Open the file indicated and write a log of all unfreed memory -** allocations into that log. -*/ -SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ - FILE *out; - struct MemBlockHdr *pHdr; - void **pBt; - int i; - out = fopen(zFilename, "w"); - if( out==0 ){ - fprintf(stderr, "** Unable to output memory debug output log: %s **\n", - zFilename); - return; - } - for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ - char *z = (char*)pHdr; - z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle; - fprintf(out, "**** %lld bytes at %p from %s ****\n", - pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???"); - if( pHdr->nBacktrace ){ - fflush(out); - pBt = (void**)pHdr; - pBt -= pHdr->nBacktraceSlots; - backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); - fprintf(out, "\n"); - } - } - fprintf(out, "COUNTS:\n"); - for(i=0; i<NCSIZE-1; i++){ - if( mem.nAlloc[i] ){ - fprintf(out, " %5d: %10d %10d %10d\n", - i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]); - } - } - if( mem.nAlloc[NCSIZE-1] ){ - fprintf(out, " %5d: %10d %10d %10d\n", - NCSIZE*8-8, mem.nAlloc[NCSIZE-1], - mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]); - } - fclose(out); -} - -/* -** Return the number of times sqlite3MemMalloc() has been called. -*/ -SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){ - int i; - int nTotal = 0; - for(i=0; i<NCSIZE; i++){ - nTotal += mem.nAlloc[i]; - } - return nTotal; -} - - -#endif /* SQLITE_MEMDEBUG */ - -/************** End of mem2.c ************************************************/ -/************** Begin file mem3.c ********************************************/ -/* -** 2007 October 14 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement a memory -** allocation subsystem for use by SQLite. -** -** This version of the memory allocation subsystem omits all -** use of malloc(). The SQLite user supplies a block of memory -** before calling sqlite3_initialize() from which allocations -** are made and returned by the xMalloc() and xRealloc() -** implementations. Once sqlite3_initialize() has been called, -** the amount of memory available to SQLite is fixed and cannot -** be changed. -** -** This version of the memory allocation subsystem is included -** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. -*/ - -/* -** This version of the memory allocator is only built into the library -** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not -** mean that the library will use a memory-pool by default, just that -** it is available. The mempool allocator is activated by calling -** sqlite3_config(). -*/ -#ifdef SQLITE_ENABLE_MEMSYS3 - -/* -** Maximum size (in Mem3Blocks) of a "small" chunk. -*/ -#define MX_SMALL 10 - - -/* -** Number of freelist hash slots -*/ -#define N_HASH 61 - -/* -** A memory allocation (also called a "chunk") consists of two or -** more blocks where each block is 8 bytes. The first 8 bytes are -** a header that is not returned to the user. -** -** A chunk is two or more blocks that is either checked out or -** free. The first block has format u.hdr. u.hdr.size4x is 4 times the -** size of the allocation in blocks if the allocation is free. -** The u.hdr.size4x&1 bit is true if the chunk is checked out and -** false if the chunk is on the freelist. The u.hdr.size4x&2 bit -** is true if the previous chunk is checked out and false if the -** previous chunk is free. The u.hdr.prevSize field is the size of -** the previous chunk in blocks if the previous chunk is on the -** freelist. If the previous chunk is checked out, then -** u.hdr.prevSize can be part of the data for that chunk and should -** not be read or written. -** -** We often identify a chunk by its index in mem3.aPool[]. When -** this is done, the chunk index refers to the second block of -** the chunk. In this way, the first chunk has an index of 1. -** A chunk index of 0 means "no such chunk" and is the equivalent -** of a NULL pointer. -** -** The second block of free chunks is of the form u.list. The -** two fields form a double-linked list of chunks of related sizes. -** Pointers to the head of the list are stored in mem3.aiSmall[] -** for smaller chunks and mem3.aiHash[] for larger chunks. -** -** The second block of a chunk is user data if the chunk is checked -** out. If a chunk is checked out, the user data may extend into -** the u.hdr.prevSize value of the following chunk. -*/ -typedef struct Mem3Block Mem3Block; -struct Mem3Block { - union { - struct { - u32 prevSize; /* Size of previous chunk in Mem3Block elements */ - u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ - } hdr; - struct { - u32 next; /* Index in mem3.aPool[] of next free chunk */ - u32 prev; /* Index in mem3.aPool[] of previous free chunk */ - } list; - } u; -}; - -/* -** All of the static variables used by this module are collected -** into a single structure named "mem3". This is to keep the -** static variables organized and to reduce namespace pollution -** when this module is combined with other in the amalgamation. -*/ -static SQLITE_WSD struct Mem3Global { - /* - ** Memory available for allocation. nPool is the size of the array - ** (in Mem3Blocks) pointed to by aPool less 2. - */ - u32 nPool; - Mem3Block *aPool; - - /* - ** True if we are evaluating an out-of-memory callback. - */ - int alarmBusy; - - /* - ** Mutex to control access to the memory allocation subsystem. - */ - sqlite3_mutex *mutex; - - /* - ** The minimum amount of free space that we have seen. - */ - u32 mnMaster; - - /* - ** iMaster is the index of the master chunk. Most new allocations - ** occur off of this chunk. szMaster is the size (in Mem3Blocks) - ** of the current master. iMaster is 0 if there is not master chunk. - ** The master chunk is not in either the aiHash[] or aiSmall[]. - */ - u32 iMaster; - u32 szMaster; - - /* - ** Array of lists of free blocks according to the block size - ** for smaller chunks, or a hash on the block size for larger - ** chunks. - */ - u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ - u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ -} mem3 = { 97535575 }; - -#define mem3 GLOBAL(struct Mem3Global, mem3) - -/* -** Unlink the chunk at mem3.aPool[i] from list it is currently -** on. *pRoot is the list that i is a member of. -*/ -static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ - u32 next = mem3.aPool[i].u.list.next; - u32 prev = mem3.aPool[i].u.list.prev; - assert( sqlite3_mutex_held(mem3.mutex) ); - if( prev==0 ){ - *pRoot = next; - }else{ - mem3.aPool[prev].u.list.next = next; - } - if( next ){ - mem3.aPool[next].u.list.prev = prev; - } - mem3.aPool[i].u.list.next = 0; - mem3.aPool[i].u.list.prev = 0; -} - -/* -** Unlink the chunk at index i from -** whatever list is currently a member of. -*/ -static void memsys3Unlink(u32 i){ - u32 size, hash; - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); - assert( i>=1 ); - size = mem3.aPool[i-1].u.hdr.size4x/4; - assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); - assert( size>=2 ); - if( size <= MX_SMALL ){ - memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); - }else{ - hash = size % N_HASH; - memsys3UnlinkFromList(i, &mem3.aiHash[hash]); - } -} - -/* -** Link the chunk at mem3.aPool[i] so that is on the list rooted -** at *pRoot. -*/ -static void memsys3LinkIntoList(u32 i, u32 *pRoot){ - assert( sqlite3_mutex_held(mem3.mutex) ); - mem3.aPool[i].u.list.next = *pRoot; - mem3.aPool[i].u.list.prev = 0; - if( *pRoot ){ - mem3.aPool[*pRoot].u.list.prev = i; - } - *pRoot = i; -} - -/* -** Link the chunk at index i into either the appropriate -** small chunk list, or into the large chunk hash table. -*/ -static void memsys3Link(u32 i){ - u32 size, hash; - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( i>=1 ); - assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); - size = mem3.aPool[i-1].u.hdr.size4x/4; - assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); - assert( size>=2 ); - if( size <= MX_SMALL ){ - memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); - }else{ - hash = size % N_HASH; - memsys3LinkIntoList(i, &mem3.aiHash[hash]); - } -} - -/* -** If the STATIC_MEM mutex is not already held, obtain it now. The mutex -** will already be held (obtained by code in malloc.c) if -** sqlite3GlobalConfig.bMemStat is true. -*/ -static void memsys3Enter(void){ - if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ - mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); - } - sqlite3_mutex_enter(mem3.mutex); -} -static void memsys3Leave(void){ - sqlite3_mutex_leave(mem3.mutex); -} - -/* -** Called when we are unable to satisfy an allocation of nBytes. -*/ -static void memsys3OutOfMemory(int nByte){ - if( !mem3.alarmBusy ){ - mem3.alarmBusy = 1; - assert( sqlite3_mutex_held(mem3.mutex) ); - sqlite3_mutex_leave(mem3.mutex); - sqlite3_release_memory(nByte); - sqlite3_mutex_enter(mem3.mutex); - mem3.alarmBusy = 0; - } -} - - -/* -** Chunk i is a free chunk that has been unlinked. Adjust its -** size parameters for check-out and return a pointer to the -** user portion of the chunk. -*/ -static void *memsys3Checkout(u32 i, u32 nBlock){ - u32 x; - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( i>=1 ); - assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); - assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); - x = mem3.aPool[i-1].u.hdr.size4x; - mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); - mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; - mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; - return &mem3.aPool[i]; -} - -/* -** Carve a piece off of the end of the mem3.iMaster free chunk. -** Return a pointer to the new allocation. Or, if the master chunk -** is not large enough, return 0. -*/ -static void *memsys3FromMaster(u32 nBlock){ - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( mem3.szMaster>=nBlock ); - if( nBlock>=mem3.szMaster-1 ){ - /* Use the entire master */ - void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); - mem3.iMaster = 0; - mem3.szMaster = 0; - mem3.mnMaster = 0; - return p; - }else{ - /* Split the master block. Return the tail. */ - u32 newi, x; - newi = mem3.iMaster + mem3.szMaster - nBlock; - assert( newi > mem3.iMaster+1 ); - mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; - mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; - mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; - mem3.szMaster -= nBlock; - mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; - x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; - mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; - if( mem3.szMaster < mem3.mnMaster ){ - mem3.mnMaster = mem3.szMaster; - } - return (void*)&mem3.aPool[newi]; - } -} - -/* -** *pRoot is the head of a list of free chunks of the same size -** or same size hash. In other words, *pRoot is an entry in either -** mem3.aiSmall[] or mem3.aiHash[]. -** -** This routine examines all entries on the given list and tries -** to coalesce each entries with adjacent free chunks. -** -** If it sees a chunk that is larger than mem3.iMaster, it replaces -** the current mem3.iMaster with the new larger chunk. In order for -** this mem3.iMaster replacement to work, the master chunk must be -** linked into the hash tables. That is not the normal state of -** affairs, of course. The calling routine must link the master -** chunk before invoking this routine, then must unlink the (possibly -** changed) master chunk once this routine has finished. -*/ -static void memsys3Merge(u32 *pRoot){ - u32 iNext, prev, size, i, x; - - assert( sqlite3_mutex_held(mem3.mutex) ); - for(i=*pRoot; i>0; i=iNext){ - iNext = mem3.aPool[i].u.list.next; - size = mem3.aPool[i-1].u.hdr.size4x; - assert( (size&1)==0 ); - if( (size&2)==0 ){ - memsys3UnlinkFromList(i, pRoot); - assert( i > mem3.aPool[i-1].u.hdr.prevSize ); - prev = i - mem3.aPool[i-1].u.hdr.prevSize; - if( prev==iNext ){ - iNext = mem3.aPool[prev].u.list.next; - } - memsys3Unlink(prev); - size = i + size/4 - prev; - x = mem3.aPool[prev-1].u.hdr.size4x & 2; - mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; - mem3.aPool[prev+size-1].u.hdr.prevSize = size; - memsys3Link(prev); - i = prev; - }else{ - size /= 4; - } - if( size>mem3.szMaster ){ - mem3.iMaster = i; - mem3.szMaster = size; - } - } -} - -/* -** Return a block of memory of at least nBytes in size. -** Return NULL if unable. -** -** This function assumes that the necessary mutexes, if any, are -** already held by the caller. Hence "Unsafe". -*/ -static void *memsys3MallocUnsafe(int nByte){ - u32 i; - u32 nBlock; - u32 toFree; - - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( sizeof(Mem3Block)==8 ); - if( nByte<=12 ){ - nBlock = 2; - }else{ - nBlock = (nByte + 11)/8; - } - assert( nBlock>=2 ); - - /* STEP 1: - ** Look for an entry of the correct size in either the small - ** chunk table or in the large chunk hash table. This is - ** successful most of the time (about 9 times out of 10). - */ - if( nBlock <= MX_SMALL ){ - i = mem3.aiSmall[nBlock-2]; - if( i>0 ){ - memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); - return memsys3Checkout(i, nBlock); - } - }else{ - int hash = nBlock % N_HASH; - for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ - if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ - memsys3UnlinkFromList(i, &mem3.aiHash[hash]); - return memsys3Checkout(i, nBlock); - } - } - } - - /* STEP 2: - ** Try to satisfy the allocation by carving a piece off of the end - ** of the master chunk. This step usually works if step 1 fails. - */ - if( mem3.szMaster>=nBlock ){ - return memsys3FromMaster(nBlock); - } - - - /* STEP 3: - ** Loop through the entire memory pool. Coalesce adjacent free - ** chunks. Recompute the master chunk as the largest free chunk. - ** Then try again to satisfy the allocation by carving a piece off - ** of the end of the master chunk. This step happens very - ** rarely (we hope!) - */ - for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ - memsys3OutOfMemory(toFree); - if( mem3.iMaster ){ - memsys3Link(mem3.iMaster); - mem3.iMaster = 0; - mem3.szMaster = 0; - } - for(i=0; i<N_HASH; i++){ - memsys3Merge(&mem3.aiHash[i]); - } - for(i=0; i<MX_SMALL-1; i++){ - memsys3Merge(&mem3.aiSmall[i]); - } - if( mem3.szMaster ){ - memsys3Unlink(mem3.iMaster); - if( mem3.szMaster>=nBlock ){ - return memsys3FromMaster(nBlock); - } - } - } - - /* If none of the above worked, then we fail. */ - return 0; -} - -/* -** Free an outstanding memory allocation. -** -** This function assumes that the necessary mutexes, if any, are -** already held by the caller. Hence "Unsafe". -*/ -static void memsys3FreeUnsafe(void *pOld){ - Mem3Block *p = (Mem3Block*)pOld; - int i; - u32 size, x; - assert( sqlite3_mutex_held(mem3.mutex) ); - assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); - i = p - mem3.aPool; - assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); - size = mem3.aPool[i-1].u.hdr.size4x/4; - assert( i+size<=mem3.nPool+1 ); - mem3.aPool[i-1].u.hdr.size4x &= ~1; - mem3.aPool[i+size-1].u.hdr.prevSize = size; - mem3.aPool[i+size-1].u.hdr.size4x &= ~2; - memsys3Link(i); - - /* Try to expand the master using the newly freed chunk */ - if( mem3.iMaster ){ - while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ - size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; - mem3.iMaster -= size; - mem3.szMaster += size; - memsys3Unlink(mem3.iMaster); - x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; - mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; - mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; - } - x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; - while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ - memsys3Unlink(mem3.iMaster+mem3.szMaster); - mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; - mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; - mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; - } - } -} - -/* -** Return the size of an outstanding allocation, in bytes. The -** size returned omits the 8-byte header overhead. This only -** works for chunks that are currently checked out. -*/ -static int memsys3Size(void *p){ - Mem3Block *pBlock; - if( p==0 ) return 0; - pBlock = (Mem3Block*)p; - assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); - return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; -} - -/* -** Round up a request size to the next valid allocation size. -*/ -static int memsys3Roundup(int n){ - if( n<=12 ){ - return 12; - }else{ - return ((n+11)&~7) - 4; - } -} - -/* -** Allocate nBytes of memory. -*/ -static void *memsys3Malloc(int nBytes){ - sqlite3_int64 *p; - assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ - memsys3Enter(); - p = memsys3MallocUnsafe(nBytes); - memsys3Leave(); - return (void*)p; -} - -/* -** Free memory. -*/ -static void memsys3Free(void *pPrior){ - assert( pPrior ); - memsys3Enter(); - memsys3FreeUnsafe(pPrior); - memsys3Leave(); -} - -/* -** Change the size of an existing memory allocation -*/ -static void *memsys3Realloc(void *pPrior, int nBytes){ - int nOld; - void *p; - if( pPrior==0 ){ - return sqlite3_malloc(nBytes); - } - if( nBytes<=0 ){ - sqlite3_free(pPrior); - return 0; - } - nOld = memsys3Size(pPrior); - if( nBytes<=nOld && nBytes>=nOld-128 ){ - return pPrior; - } - memsys3Enter(); - p = memsys3MallocUnsafe(nBytes); - if( p ){ - if( nOld<nBytes ){ - memcpy(p, pPrior, nOld); - }else{ - memcpy(p, pPrior, nBytes); - } - memsys3FreeUnsafe(pPrior); - } - memsys3Leave(); - return p; -} - -/* -** Initialize this module. -*/ -static int memsys3Init(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - if( !sqlite3GlobalConfig.pHeap ){ - return SQLITE_ERROR; - } - - /* Store a pointer to the memory block in global structure mem3. */ - assert( sizeof(Mem3Block)==8 ); - mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; - mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; - - /* Initialize the master block. */ - mem3.szMaster = mem3.nPool; - mem3.mnMaster = mem3.szMaster; - mem3.iMaster = 1; - mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; - mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; - mem3.aPool[mem3.nPool].u.hdr.size4x = 1; - - return SQLITE_OK; -} - -/* -** Deinitialize this module. -*/ -static void memsys3Shutdown(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - mem3.mutex = 0; - return; -} - - - -/* -** Open the file indicated and write a log of all unfreed memory -** allocations into that log. -*/ -SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){ -#ifdef SQLITE_DEBUG - FILE *out; - u32 i, j; - u32 size; - if( zFilename==0 || zFilename[0]==0 ){ - out = stdout; - }else{ - out = fopen(zFilename, "w"); - if( out==0 ){ - fprintf(stderr, "** Unable to output memory debug output log: %s **\n", - zFilename); - return; - } - } - memsys3Enter(); - fprintf(out, "CHUNKS:\n"); - for(i=1; i<=mem3.nPool; i+=size/4){ - size = mem3.aPool[i-1].u.hdr.size4x; - if( size/4<=1 ){ - fprintf(out, "%p size error\n", &mem3.aPool[i]); - assert( 0 ); - break; - } - if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ - fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); - assert( 0 ); - break; - } - if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ - fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); - assert( 0 ); - break; - } - if( size&1 ){ - fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); - }else{ - fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, - i==mem3.iMaster ? " **master**" : ""); - } - } - for(i=0; i<MX_SMALL-1; i++){ - if( mem3.aiSmall[i]==0 ) continue; - fprintf(out, "small(%2d):", i); - for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ - fprintf(out, " %p(%d)", &mem3.aPool[j], - (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); - } - fprintf(out, "\n"); - } - for(i=0; i<N_HASH; i++){ - if( mem3.aiHash[i]==0 ) continue; - fprintf(out, "hash(%2d):", i); - for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ - fprintf(out, " %p(%d)", &mem3.aPool[j], - (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); - } - fprintf(out, "\n"); - } - fprintf(out, "master=%d\n", mem3.iMaster); - fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); - fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); - sqlite3_mutex_leave(mem3.mutex); - if( out==stdout ){ - fflush(stdout); - }else{ - fclose(out); - } -#else - UNUSED_PARAMETER(zFilename); -#endif -} - -/* -** This routine is the only routine in this file with external -** linkage. -** -** Populate the low-level memory allocation function pointers in -** sqlite3GlobalConfig.m with pointers to the routines in this file. The -** arguments specify the block of memory to manage. -** -** This routine is only called by sqlite3_config(), and therefore -** is not required to be threadsafe (it is not). -*/ -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ - static const sqlite3_mem_methods mempoolMethods = { - memsys3Malloc, - memsys3Free, - memsys3Realloc, - memsys3Size, - memsys3Roundup, - memsys3Init, - memsys3Shutdown, - 0 - }; - return &mempoolMethods; -} - -#endif /* SQLITE_ENABLE_MEMSYS3 */ - -/************** End of mem3.c ************************************************/ -/************** Begin file mem5.c ********************************************/ -/* -** 2007 October 14 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement a memory -** allocation subsystem for use by SQLite. -** -** This version of the memory allocation subsystem omits all -** use of malloc(). The application gives SQLite a block of memory -** before calling sqlite3_initialize() from which allocations -** are made and returned by the xMalloc() and xRealloc() -** implementations. Once sqlite3_initialize() has been called, -** the amount of memory available to SQLite is fixed and cannot -** be changed. -** -** This version of the memory allocation subsystem is included -** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. -** -** This memory allocator uses the following algorithm: -** -** 1. All memory allocations sizes are rounded up to a power of 2. -** -** 2. If two adjacent free blocks are the halves of a larger block, -** then the two blocks are coalesed into the single larger block. -** -** 3. New memory is allocated from the first available free block. -** -** This algorithm is described in: J. M. Robson. "Bounds for Some Functions -** Concerning Dynamic Storage Allocation". Journal of the Association for -** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. -** -** Let n be the size of the largest allocation divided by the minimum -** allocation size (after rounding all sizes up to a power of 2.) Let M -** be the maximum amount of memory ever outstanding at one time. Let -** N be the total amount of memory available for allocation. Robson -** proved that this memory allocator will never breakdown due to -** fragmentation as long as the following constraint holds: -** -** N >= M*(1 + log2(n)/2) - n + 1 -** -** The sqlite3_status() logic tracks the maximum values of n and M so -** that an application can, at any time, verify this constraint. -*/ - -/* -** This version of the memory allocator is used only when -** SQLITE_ENABLE_MEMSYS5 is defined. -*/ -#ifdef SQLITE_ENABLE_MEMSYS5 - -/* -** A minimum allocation is an instance of the following structure. -** Larger allocations are an array of these structures where the -** size of the array is a power of 2. -** -** The size of this object must be a power of two. That fact is -** verified in memsys5Init(). -*/ -typedef struct Mem5Link Mem5Link; -struct Mem5Link { - int next; /* Index of next free chunk */ - int prev; /* Index of previous free chunk */ -}; - -/* -** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since -** mem5.szAtom is always at least 8 and 32-bit integers are used, -** it is not actually possible to reach this limit. -*/ -#define LOGMAX 30 - -/* -** Masks used for mem5.aCtrl[] elements. -*/ -#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ -#define CTRL_FREE 0x20 /* True if not checked out */ - -/* -** All of the static variables used by this module are collected -** into a single structure named "mem5". This is to keep the -** static variables organized and to reduce namespace pollution -** when this module is combined with other in the amalgamation. -*/ -static SQLITE_WSD struct Mem5Global { - /* - ** Memory available for allocation - */ - int szAtom; /* Smallest possible allocation in bytes */ - int nBlock; /* Number of szAtom sized blocks in zPool */ - u8 *zPool; /* Memory available to be allocated */ - - /* - ** Mutex to control access to the memory allocation subsystem. - */ - sqlite3_mutex *mutex; - - /* - ** Performance statistics - */ - u64 nAlloc; /* Total number of calls to malloc */ - u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ - u64 totalExcess; /* Total internal fragmentation */ - u32 currentOut; /* Current checkout, including internal fragmentation */ - u32 currentCount; /* Current number of distinct checkouts */ - u32 maxOut; /* Maximum instantaneous currentOut */ - u32 maxCount; /* Maximum instantaneous currentCount */ - u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ - - /* - ** Lists of free blocks. aiFreelist[0] is a list of free blocks of - ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. - ** and so forth. - */ - int aiFreelist[LOGMAX+1]; - - /* - ** Space for tracking which blocks are checked out and the size - ** of each block. One byte per block. - */ - u8 *aCtrl; - -} mem5; - -/* -** Access the static variable through a macro for SQLITE_OMIT_WSD -*/ -#define mem5 GLOBAL(struct Mem5Global, mem5) - -/* -** Assuming mem5.zPool is divided up into an array of Mem5Link -** structures, return a pointer to the idx-th such lik. -*/ -#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) - -/* -** Unlink the chunk at mem5.aPool[i] from list it is currently -** on. It should be found on mem5.aiFreelist[iLogsize]. -*/ -static void memsys5Unlink(int i, int iLogsize){ - int next, prev; - assert( i>=0 && i<mem5.nBlock ); - assert( iLogsize>=0 && iLogsize<=LOGMAX ); - assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); - - next = MEM5LINK(i)->next; - prev = MEM5LINK(i)->prev; - if( prev<0 ){ - mem5.aiFreelist[iLogsize] = next; - }else{ - MEM5LINK(prev)->next = next; - } - if( next>=0 ){ - MEM5LINK(next)->prev = prev; - } -} - -/* -** Link the chunk at mem5.aPool[i] so that is on the iLogsize -** free list. -*/ -static void memsys5Link(int i, int iLogsize){ - int x; - assert( sqlite3_mutex_held(mem5.mutex) ); - assert( i>=0 && i<mem5.nBlock ); - assert( iLogsize>=0 && iLogsize<=LOGMAX ); - assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); - - x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; - MEM5LINK(i)->prev = -1; - if( x>=0 ){ - assert( x<mem5.nBlock ); - MEM5LINK(x)->prev = i; - } - mem5.aiFreelist[iLogsize] = i; -} - -/* -** If the STATIC_MEM mutex is not already held, obtain it now. The mutex -** will already be held (obtained by code in malloc.c) if -** sqlite3GlobalConfig.bMemStat is true. -*/ -static void memsys5Enter(void){ - sqlite3_mutex_enter(mem5.mutex); -} -static void memsys5Leave(void){ - sqlite3_mutex_leave(mem5.mutex); -} - -/* -** Return the size of an outstanding allocation, in bytes. The -** size returned omits the 8-byte header overhead. This only -** works for chunks that are currently checked out. -*/ -static int memsys5Size(void *p){ - int iSize = 0; - if( p ){ - int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; - assert( i>=0 && i<mem5.nBlock ); - iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); - } - return iSize; -} - -/* -** Find the first entry on the freelist iLogsize. Unlink that -** entry and return its index. -*/ -static int memsys5UnlinkFirst(int iLogsize){ - int i; - int iFirst; - - assert( iLogsize>=0 && iLogsize<=LOGMAX ); - i = iFirst = mem5.aiFreelist[iLogsize]; - assert( iFirst>=0 ); - while( i>0 ){ - if( i<iFirst ) iFirst = i; - i = MEM5LINK(i)->next; - } - memsys5Unlink(iFirst, iLogsize); - return iFirst; -} - -/* -** Return a block of memory of at least nBytes in size. -** Return NULL if unable. Return NULL if nBytes==0. -** -** The caller guarantees that nByte positive. -** -** The caller has obtained a mutex prior to invoking this -** routine so there is never any chance that two or more -** threads can be in this routine at the same time. -*/ -static void *memsys5MallocUnsafe(int nByte){ - int i; /* Index of a mem5.aPool[] slot */ - int iBin; /* Index into mem5.aiFreelist[] */ - int iFullSz; /* Size of allocation rounded up to power of 2 */ - int iLogsize; /* Log2 of iFullSz/POW2_MIN */ - - /* nByte must be a positive */ - assert( nByte>0 ); - - /* Keep track of the maximum allocation request. Even unfulfilled - ** requests are counted */ - if( (u32)nByte>mem5.maxRequest ){ - mem5.maxRequest = nByte; - } - - /* Abort if the requested allocation size is larger than the largest - ** power of two that we can represent using 32-bit signed integers. - */ - if( nByte > 0x40000000 ){ - return 0; - } - - /* Round nByte up to the next valid power of two */ - for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} - - /* Make sure mem5.aiFreelist[iLogsize] contains at least one free - ** block. If not, then split a block of the next larger power of - ** two in order to create a new free block of size iLogsize. - */ - for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} - if( iBin>LOGMAX ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); - return 0; - } - i = memsys5UnlinkFirst(iBin); - while( iBin>iLogsize ){ - int newSize; - - iBin--; - newSize = 1 << iBin; - mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; - memsys5Link(i+newSize, iBin); - } - mem5.aCtrl[i] = iLogsize; - - /* Update allocator performance statistics. */ - mem5.nAlloc++; - mem5.totalAlloc += iFullSz; - mem5.totalExcess += iFullSz - nByte; - mem5.currentCount++; - mem5.currentOut += iFullSz; - if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; - if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; - - /* Return a pointer to the allocated memory. */ - return (void*)&mem5.zPool[i*mem5.szAtom]; -} - -/* -** Free an outstanding memory allocation. -*/ -static void memsys5FreeUnsafe(void *pOld){ - u32 size, iLogsize; - int iBlock; - - /* Set iBlock to the index of the block pointed to by pOld in - ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. - */ - iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom; - - /* Check that the pointer pOld points to a valid, non-free block. */ - assert( iBlock>=0 && iBlock<mem5.nBlock ); - assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); - assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); - - iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; - size = 1<<iLogsize; - assert( iBlock+size-1<(u32)mem5.nBlock ); - - mem5.aCtrl[iBlock] |= CTRL_FREE; - mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; - assert( mem5.currentCount>0 ); - assert( mem5.currentOut>=(size*mem5.szAtom) ); - mem5.currentCount--; - mem5.currentOut -= size*mem5.szAtom; - assert( mem5.currentOut>0 || mem5.currentCount==0 ); - assert( mem5.currentCount>0 || mem5.currentOut==0 ); - - mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; - while( ALWAYS(iLogsize<LOGMAX) ){ - int iBuddy; - if( (iBlock>>iLogsize) & 1 ){ - iBuddy = iBlock - size; - }else{ - iBuddy = iBlock + size; - } - assert( iBuddy>=0 ); - if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; - if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; - memsys5Unlink(iBuddy, iLogsize); - iLogsize++; - if( iBuddy<iBlock ){ - mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; - mem5.aCtrl[iBlock] = 0; - iBlock = iBuddy; - }else{ - mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; - mem5.aCtrl[iBuddy] = 0; - } - size *= 2; - } - memsys5Link(iBlock, iLogsize); -} - -/* -** Allocate nBytes of memory -*/ -static void *memsys5Malloc(int nBytes){ - sqlite3_int64 *p = 0; - if( nBytes>0 ){ - memsys5Enter(); - p = memsys5MallocUnsafe(nBytes); - memsys5Leave(); - } - return (void*)p; -} - -/* -** Free memory. -** -** The outer layer memory allocator prevents this routine from -** being called with pPrior==0. -*/ -static void memsys5Free(void *pPrior){ - assert( pPrior!=0 ); - memsys5Enter(); - memsys5FreeUnsafe(pPrior); - memsys5Leave(); -} - -/* -** Change the size of an existing memory allocation. -** -** The outer layer memory allocator prevents this routine from -** being called with pPrior==0. -** -** nBytes is always a value obtained from a prior call to -** memsys5Round(). Hence nBytes is always a non-negative power -** of two. If nBytes==0 that means that an oversize allocation -** (an allocation larger than 0x40000000) was requested and this -** routine should return 0 without freeing pPrior. -*/ -static void *memsys5Realloc(void *pPrior, int nBytes){ - int nOld; - void *p; - assert( pPrior!=0 ); - assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ - assert( nBytes>=0 ); - if( nBytes==0 ){ - return 0; - } - nOld = memsys5Size(pPrior); - if( nBytes<=nOld ){ - return pPrior; - } - memsys5Enter(); - p = memsys5MallocUnsafe(nBytes); - if( p ){ - memcpy(p, pPrior, nOld); - memsys5FreeUnsafe(pPrior); - } - memsys5Leave(); - return p; -} - -/* -** Round up a request size to the next valid allocation size. If -** the allocation is too large to be handled by this allocation system, -** return 0. -** -** All allocations must be a power of two and must be expressed by a -** 32-bit signed integer. Hence the largest allocation is 0x40000000 -** or 1073741824 bytes. -*/ -static int memsys5Roundup(int n){ - int iFullSz; - if( n > 0x40000000 ) return 0; - for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); - return iFullSz; -} - -/* -** Return the ceiling of the logarithm base 2 of iValue. -** -** Examples: memsys5Log(1) -> 0 -** memsys5Log(2) -> 1 -** memsys5Log(4) -> 2 -** memsys5Log(5) -> 3 -** memsys5Log(8) -> 3 -** memsys5Log(9) -> 4 -*/ -static int memsys5Log(int iValue){ - int iLog; - for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); - return iLog; -} - -/* -** Initialize the memory allocator. -** -** This routine is not threadsafe. The caller must be holding a mutex -** to prevent multiple threads from entering at the same time. -*/ -static int memsys5Init(void *NotUsed){ - int ii; /* Loop counter */ - int nByte; /* Number of bytes of memory available to this allocator */ - u8 *zByte; /* Memory usable by this allocator */ - int nMinLog; /* Log base 2 of minimum allocation size in bytes */ - int iOffset; /* An offset into mem5.aCtrl[] */ - - UNUSED_PARAMETER(NotUsed); - - /* For the purposes of this routine, disable the mutex */ - mem5.mutex = 0; - - /* The size of a Mem5Link object must be a power of two. Verify that - ** this is case. - */ - assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); - - nByte = sqlite3GlobalConfig.nHeap; - zByte = (u8*)sqlite3GlobalConfig.pHeap; - assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ - - /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ - nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); - mem5.szAtom = (1<<nMinLog); - while( (int)sizeof(Mem5Link)>mem5.szAtom ){ - mem5.szAtom = mem5.szAtom << 1; - } - - mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); - mem5.zPool = zByte; - mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; - - for(ii=0; ii<=LOGMAX; ii++){ - mem5.aiFreelist[ii] = -1; - } - - iOffset = 0; - for(ii=LOGMAX; ii>=0; ii--){ - int nAlloc = (1<<ii); - if( (iOffset+nAlloc)<=mem5.nBlock ){ - mem5.aCtrl[iOffset] = ii | CTRL_FREE; - memsys5Link(iOffset, ii); - iOffset += nAlloc; - } - assert((iOffset+nAlloc)>mem5.nBlock); - } - - /* If a mutex is required for normal operation, allocate one */ - if( sqlite3GlobalConfig.bMemstat==0 ){ - mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); - } - - return SQLITE_OK; -} - -/* -** Deinitialize this module. -*/ -static void memsys5Shutdown(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - mem5.mutex = 0; - return; -} - -#ifdef SQLITE_TEST -/* -** Open the file indicated and write a log of all unfreed memory -** allocations into that log. -*/ -SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){ - FILE *out; - int i, j, n; - int nMinLog; - - if( zFilename==0 || zFilename[0]==0 ){ - out = stdout; - }else{ - out = fopen(zFilename, "w"); - if( out==0 ){ - fprintf(stderr, "** Unable to output memory debug output log: %s **\n", - zFilename); - return; - } - } - memsys5Enter(); - nMinLog = memsys5Log(mem5.szAtom); - for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ - for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} - fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); - } - fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); - fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); - fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); - fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); - fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); - fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); - fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); - fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); - memsys5Leave(); - if( out==stdout ){ - fflush(stdout); - }else{ - fclose(out); - } -} -#endif - -/* -** This routine is the only routine in this file with external -** linkage. It returns a pointer to a static sqlite3_mem_methods -** struct populated with the memsys5 methods. -*/ -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ - static const sqlite3_mem_methods memsys5Methods = { - memsys5Malloc, - memsys5Free, - memsys5Realloc, - memsys5Size, - memsys5Roundup, - memsys5Init, - memsys5Shutdown, - 0 - }; - return &memsys5Methods; -} - -#endif /* SQLITE_ENABLE_MEMSYS5 */ - -/************** End of mem5.c ************************************************/ -/************** Begin file mutex.c *******************************************/ -/* -** 2007 August 14 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement mutexes. -** -** This file contains code that is common across all mutex implementations. -*/ - -#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT) -/* -** For debugging purposes, record when the mutex subsystem is initialized -** and uninitialized so that we can assert() if there is an attempt to -** allocate a mutex while the system is uninitialized. -*/ -static SQLITE_WSD int mutexIsInit = 0; -#endif /* SQLITE_DEBUG */ - - -#ifndef SQLITE_MUTEX_OMIT -/* -** Initialize the mutex system. -*/ -SQLITE_PRIVATE int sqlite3MutexInit(void){ - int rc = SQLITE_OK; - if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ - /* If the xMutexAlloc method has not been set, then the user did not - ** install a mutex implementation via sqlite3_config() prior to - ** sqlite3_initialize() being called. This block copies pointers to - ** the default implementation into the sqlite3GlobalConfig structure. - */ - sqlite3_mutex_methods const *pFrom; - sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; - - if( sqlite3GlobalConfig.bCoreMutex ){ - pFrom = sqlite3DefaultMutex(); - }else{ - pFrom = sqlite3NoopMutex(); - } - memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc)); - memcpy(&pTo->xMutexFree, &pFrom->xMutexFree, - sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree)); - pTo->xMutexAlloc = pFrom->xMutexAlloc; - } - rc = sqlite3GlobalConfig.mutex.xMutexInit(); - -#ifdef SQLITE_DEBUG - GLOBAL(int, mutexIsInit) = 1; -#endif - - return rc; -} - -/* -** Shutdown the mutex system. This call frees resources allocated by -** sqlite3MutexInit(). -*/ -SQLITE_PRIVATE int sqlite3MutexEnd(void){ - int rc = SQLITE_OK; - if( sqlite3GlobalConfig.mutex.xMutexEnd ){ - rc = sqlite3GlobalConfig.mutex.xMutexEnd(); - } - -#ifdef SQLITE_DEBUG - GLOBAL(int, mutexIsInit) = 0; -#endif - - return rc; -} - -/* -** Retrieve a pointer to a static mutex or allocate a new dynamic one. -*/ -SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize() ) return 0; -#endif - return sqlite3GlobalConfig.mutex.xMutexAlloc(id); -} - -SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){ - if( !sqlite3GlobalConfig.bCoreMutex ){ - return 0; - } - assert( GLOBAL(int, mutexIsInit) ); - return sqlite3GlobalConfig.mutex.xMutexAlloc(id); -} - -/* -** Free a dynamic mutex. -*/ -SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ - if( p ){ - sqlite3GlobalConfig.mutex.xMutexFree(p); - } -} - -/* -** Obtain the mutex p. If some other thread already has the mutex, block -** until it can be obtained. -*/ -SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ - if( p ){ - sqlite3GlobalConfig.mutex.xMutexEnter(p); - } -} - -/* -** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another -** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY. -*/ -SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ - int rc = SQLITE_OK; - if( p ){ - return sqlite3GlobalConfig.mutex.xMutexTry(p); - } - return rc; -} - -/* -** The sqlite3_mutex_leave() routine exits a mutex that was previously -** entered by the same thread. The behavior is undefined if the mutex -** is not currently entered. If a NULL pointer is passed as an argument -** this function is a no-op. -*/ -SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ - if( p ){ - sqlite3GlobalConfig.mutex.xMutexLeave(p); - } -} - -#ifndef NDEBUG -/* -** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are -** intended for use inside assert() statements. -*/ -SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ - return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p); -} -SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ - return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); -} -#endif - -#endif /* !defined(SQLITE_MUTEX_OMIT) */ - -/************** End of mutex.c ***********************************************/ -/************** Begin file mutex_noop.c **************************************/ -/* -** 2008 October 07 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement mutexes. -** -** This implementation in this file does not provide any mutual -** exclusion and is thus suitable for use only in applications -** that use SQLite in a single thread. The routines defined -** here are place-holders. Applications can substitute working -** mutex routines at start-time using the -** -** sqlite3_config(SQLITE_CONFIG_MUTEX,...) -** -** interface. -** -** If compiled with SQLITE_DEBUG, then additional logic is inserted -** that does error checking on mutexes to make sure they are being -** called correctly. -*/ - -#ifndef SQLITE_MUTEX_OMIT - -#ifndef SQLITE_DEBUG -/* -** Stub routines for all mutex methods. -** -** This routines provide no mutual exclusion or error checking. -*/ -static int noopMutexInit(void){ return SQLITE_OK; } -static int noopMutexEnd(void){ return SQLITE_OK; } -static sqlite3_mutex *noopMutexAlloc(int id){ - UNUSED_PARAMETER(id); - return (sqlite3_mutex*)8; -} -static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } -static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } -static int noopMutexTry(sqlite3_mutex *p){ - UNUSED_PARAMETER(p); - return SQLITE_OK; -} -static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } - -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ - static const sqlite3_mutex_methods sMutex = { - noopMutexInit, - noopMutexEnd, - noopMutexAlloc, - noopMutexFree, - noopMutexEnter, - noopMutexTry, - noopMutexLeave, - - 0, - 0, - }; - - return &sMutex; -} -#endif /* !SQLITE_DEBUG */ - -#ifdef SQLITE_DEBUG -/* -** In this implementation, error checking is provided for testing -** and debugging purposes. The mutexes still do not provide any -** mutual exclusion. -*/ - -/* -** The mutex object -*/ -typedef struct sqlite3_debug_mutex { - int id; /* The mutex type */ - int cnt; /* Number of entries without a matching leave */ -} sqlite3_debug_mutex; - -/* -** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are -** intended for use inside assert() statements. -*/ -static int debugMutexHeld(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - return p==0 || p->cnt>0; -} -static int debugMutexNotheld(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - return p==0 || p->cnt==0; -} - -/* -** Initialize and deinitialize the mutex subsystem. -*/ -static int debugMutexInit(void){ return SQLITE_OK; } -static int debugMutexEnd(void){ return SQLITE_OK; } - -/* -** The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. If it returns NULL -** that means that a mutex could not be allocated. -*/ -static sqlite3_mutex *debugMutexAlloc(int id){ - static sqlite3_debug_mutex aStatic[6]; - sqlite3_debug_mutex *pNew = 0; - switch( id ){ - case SQLITE_MUTEX_FAST: - case SQLITE_MUTEX_RECURSIVE: { - pNew = sqlite3Malloc(sizeof(*pNew)); - if( pNew ){ - pNew->id = id; - pNew->cnt = 0; - } - break; - } - default: { - assert( id-2 >= 0 ); - assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) ); - pNew = &aStatic[id-2]; - pNew->id = id; - break; - } - } - return (sqlite3_mutex*)pNew; -} - -/* -** This routine deallocates a previously allocated mutex. -*/ -static void debugMutexFree(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - assert( p->cnt==0 ); - assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); - sqlite3_free(p); -} - -/* -** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. If another thread is already within the mutex, -** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK -** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can -** be entered multiple times by the same thread. In such cases the, -** mutex must be exited an equal number of times before another thread -** can enter. If the same thread tries to enter any other kind of mutex -** more than once, the behavior is undefined. -*/ -static void debugMutexEnter(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); - p->cnt++; -} -static int debugMutexTry(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); - p->cnt++; - return SQLITE_OK; -} - -/* -** The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. The behavior -** is undefined if the mutex is not currently entered or -** is not currently allocated. SQLite will never do either. -*/ -static void debugMutexLeave(sqlite3_mutex *pX){ - sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; - assert( debugMutexHeld(pX) ); - p->cnt--; - assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); -} - -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ - static const sqlite3_mutex_methods sMutex = { - debugMutexInit, - debugMutexEnd, - debugMutexAlloc, - debugMutexFree, - debugMutexEnter, - debugMutexTry, - debugMutexLeave, - - debugMutexHeld, - debugMutexNotheld - }; - - return &sMutex; -} -#endif /* SQLITE_DEBUG */ - -/* -** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation -** is used regardless of the run-time threadsafety setting. -*/ -#ifdef SQLITE_MUTEX_NOOP -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ - return sqlite3NoopMutex(); -} -#endif /* defined(SQLITE_MUTEX_NOOP) */ -#endif /* !defined(SQLITE_MUTEX_OMIT) */ - -/************** End of mutex_noop.c ******************************************/ -/************** Begin file mutex_unix.c **************************************/ -/* -** 2007 August 28 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement mutexes for pthreads -*/ - -/* -** The code in this file is only used if we are compiling threadsafe -** under unix with pthreads. -** -** Note that this implementation requires a version of pthreads that -** supports recursive mutexes. -*/ -#ifdef SQLITE_MUTEX_PTHREADS - -#include <pthread.h> - -/* -** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields -** are necessary under two condidtions: (1) Debug builds and (2) using -** home-grown mutexes. Encapsulate these conditions into a single #define. -*/ -#if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) -# define SQLITE_MUTEX_NREF 1 -#else -# define SQLITE_MUTEX_NREF 0 -#endif - -/* -** Each recursive mutex is an instance of the following structure. -*/ -struct sqlite3_mutex { - pthread_mutex_t mutex; /* Mutex controlling the lock */ -#if SQLITE_MUTEX_NREF - int id; /* Mutex type */ - volatile int nRef; /* Number of entrances */ - volatile pthread_t owner; /* Thread that is within this mutex */ - int trace; /* True to trace changes */ -#endif -}; -#if SQLITE_MUTEX_NREF -#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 } -#else -#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER } -#endif - -/* -** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are -** intended for use only inside assert() statements. On some platforms, -** there might be race conditions that can cause these routines to -** deliver incorrect results. In particular, if pthread_equal() is -** not an atomic operation, then these routines might delivery -** incorrect results. On most platforms, pthread_equal() is a -** comparison of two integers and is therefore atomic. But we are -** told that HPUX is not such a platform. If so, then these routines -** will not always work correctly on HPUX. -** -** On those platforms where pthread_equal() is not atomic, SQLite -** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to -** make sure no assert() statements are evaluated and hence these -** routines are never called. -*/ -#if !defined(NDEBUG) || defined(SQLITE_DEBUG) -static int pthreadMutexHeld(sqlite3_mutex *p){ - return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); -} -static int pthreadMutexNotheld(sqlite3_mutex *p){ - return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; -} -#endif - -/* -** Initialize and deinitialize the mutex subsystem. -*/ -static int pthreadMutexInit(void){ return SQLITE_OK; } -static int pthreadMutexEnd(void){ return SQLITE_OK; } - -/* -** The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. If it returns NULL -** that means that a mutex could not be allocated. SQLite -** will unwind its stack and return an error. The argument -** to sqlite3_mutex_alloc() is one of these integer constants: -** -** <ul> -** <li> SQLITE_MUTEX_FAST -** <li> SQLITE_MUTEX_RECURSIVE -** <li> SQLITE_MUTEX_STATIC_MASTER -** <li> SQLITE_MUTEX_STATIC_MEM -** <li> SQLITE_MUTEX_STATIC_MEM2 -** <li> SQLITE_MUTEX_STATIC_PRNG -** <li> SQLITE_MUTEX_STATIC_LRU -** <li> SQLITE_MUTEX_STATIC_PMEM -** </ul> -** -** The first two constants cause sqlite3_mutex_alloc() to create -** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE -** is used but not necessarily so when SQLITE_MUTEX_FAST is used. -** The mutex implementation does not need to make a distinction -** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. But SQLite will only request a recursive mutex in -** cases where it really needs one. If a faster non-recursive mutex -** implementation is available on the host platform, the mutex subsystem -** might return such a mutex in response to SQLITE_MUTEX_FAST. -** -** The other allowed parameters to sqlite3_mutex_alloc() each return -** a pointer to a static preexisting mutex. Six static mutexes are -** used by the current version of SQLite. Future versions of SQLite -** may add additional static mutexes. Static mutexes are for internal -** use by SQLite only. Applications that use SQLite mutexes should -** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or -** SQLITE_MUTEX_RECURSIVE. -** -** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST -** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. But for the static -** mutex types, the same mutex is returned on every call that has -** the same type number. -*/ -static sqlite3_mutex *pthreadMutexAlloc(int iType){ - static sqlite3_mutex staticMutexes[] = { - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER - }; - sqlite3_mutex *p; - switch( iType ){ - case SQLITE_MUTEX_RECURSIVE: { - p = sqlite3MallocZero( sizeof(*p) ); - if( p ){ -#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX - /* If recursive mutexes are not available, we will have to - ** build our own. See below. */ - pthread_mutex_init(&p->mutex, 0); -#else - /* Use a recursive mutex if it is available */ - pthread_mutexattr_t recursiveAttr; - pthread_mutexattr_init(&recursiveAttr); - pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); - pthread_mutex_init(&p->mutex, &recursiveAttr); - pthread_mutexattr_destroy(&recursiveAttr); -#endif -#if SQLITE_MUTEX_NREF - p->id = iType; -#endif - } - break; - } - case SQLITE_MUTEX_FAST: { - p = sqlite3MallocZero( sizeof(*p) ); - if( p ){ -#if SQLITE_MUTEX_NREF - p->id = iType; -#endif - pthread_mutex_init(&p->mutex, 0); - } - break; - } - default: { - assert( iType-2 >= 0 ); - assert( iType-2 < ArraySize(staticMutexes) ); - p = &staticMutexes[iType-2]; -#if SQLITE_MUTEX_NREF - p->id = iType; -#endif - break; - } - } - return p; -} - - -/* -** This routine deallocates a previously -** allocated mutex. SQLite is careful to deallocate every -** mutex that it allocates. -*/ -static void pthreadMutexFree(sqlite3_mutex *p){ - assert( p->nRef==0 ); - assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); - pthread_mutex_destroy(&p->mutex); - sqlite3_free(p); -} - -/* -** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. If another thread is already within the mutex, -** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK -** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can -** be entered multiple times by the same thread. In such cases the, -** mutex must be exited an equal number of times before another thread -** can enter. If the same thread tries to enter any other kind of mutex -** more than once, the behavior is undefined. -*/ -static void pthreadMutexEnter(sqlite3_mutex *p){ - assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); - -#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX - /* If recursive mutexes are not available, then we have to grow - ** our own. This implementation assumes that pthread_equal() - ** is atomic - that it cannot be deceived into thinking self - ** and p->owner are equal if p->owner changes between two values - ** that are not equal to self while the comparison is taking place. - ** This implementation also assumes a coherent cache - that - ** separate processes cannot read different values from the same - ** address at the same time. If either of these two conditions - ** are not met, then the mutexes will fail and problems will result. - */ - { - pthread_t self = pthread_self(); - if( p->nRef>0 && pthread_equal(p->owner, self) ){ - p->nRef++; - }else{ - pthread_mutex_lock(&p->mutex); - assert( p->nRef==0 ); - p->owner = self; - p->nRef = 1; - } - } -#else - /* Use the built-in recursive mutexes if they are available. - */ - pthread_mutex_lock(&p->mutex); -#if SQLITE_MUTEX_NREF - assert( p->nRef>0 || p->owner==0 ); - p->owner = pthread_self(); - p->nRef++; -#endif -#endif - -#ifdef SQLITE_DEBUG - if( p->trace ){ - printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif -} -static int pthreadMutexTry(sqlite3_mutex *p){ - int rc; - assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); - -#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX - /* If recursive mutexes are not available, then we have to grow - ** our own. This implementation assumes that pthread_equal() - ** is atomic - that it cannot be deceived into thinking self - ** and p->owner are equal if p->owner changes between two values - ** that are not equal to self while the comparison is taking place. - ** This implementation also assumes a coherent cache - that - ** separate processes cannot read different values from the same - ** address at the same time. If either of these two conditions - ** are not met, then the mutexes will fail and problems will result. - */ - { - pthread_t self = pthread_self(); - if( p->nRef>0 && pthread_equal(p->owner, self) ){ - p->nRef++; - rc = SQLITE_OK; - }else if( pthread_mutex_trylock(&p->mutex)==0 ){ - assert( p->nRef==0 ); - p->owner = self; - p->nRef = 1; - rc = SQLITE_OK; - }else{ - rc = SQLITE_BUSY; - } - } -#else - /* Use the built-in recursive mutexes if they are available. - */ - if( pthread_mutex_trylock(&p->mutex)==0 ){ -#if SQLITE_MUTEX_NREF - p->owner = pthread_self(); - p->nRef++; -#endif - rc = SQLITE_OK; - }else{ - rc = SQLITE_BUSY; - } -#endif - -#ifdef SQLITE_DEBUG - if( rc==SQLITE_OK && p->trace ){ - printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif - return rc; -} - -/* -** The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. The behavior -** is undefined if the mutex is not currently entered or -** is not currently allocated. SQLite will never do either. -*/ -static void pthreadMutexLeave(sqlite3_mutex *p){ - assert( pthreadMutexHeld(p) ); -#if SQLITE_MUTEX_NREF - p->nRef--; - if( p->nRef==0 ) p->owner = 0; -#endif - assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); - -#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX - if( p->nRef==0 ){ - pthread_mutex_unlock(&p->mutex); - } -#else - pthread_mutex_unlock(&p->mutex); -#endif - -#ifdef SQLITE_DEBUG - if( p->trace ){ - printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif -} - -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ - static const sqlite3_mutex_methods sMutex = { - pthreadMutexInit, - pthreadMutexEnd, - pthreadMutexAlloc, - pthreadMutexFree, - pthreadMutexEnter, - pthreadMutexTry, - pthreadMutexLeave, -#ifdef SQLITE_DEBUG - pthreadMutexHeld, - pthreadMutexNotheld -#else - 0, - 0 -#endif - }; - - return &sMutex; -} - -#endif /* SQLITE_MUTEX_PTHREADS */ - -/************** End of mutex_unix.c ******************************************/ -/************** Begin file mutex_w32.c ***************************************/ -/* -** 2007 August 14 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement mutexes for win32 -*/ - -/* -** The code in this file is only used if we are compiling multithreaded -** on a win32 system. -*/ -#ifdef SQLITE_MUTEX_W32 - -/* -** Each recursive mutex is an instance of the following structure. -*/ -struct sqlite3_mutex { - CRITICAL_SECTION mutex; /* Mutex controlling the lock */ - int id; /* Mutex type */ -#ifdef SQLITE_DEBUG - volatile int nRef; /* Number of enterances */ - volatile DWORD owner; /* Thread holding this mutex */ - int trace; /* True to trace changes */ -#endif -}; -#define SQLITE_W32_MUTEX_INITIALIZER { 0 } -#ifdef SQLITE_DEBUG -#define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0, 0L, (DWORD)0, 0 } -#else -#define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0 } -#endif - -/* -** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, -** or WinCE. Return false (zero) for Win95, Win98, or WinME. -** -** Here is an interesting observation: Win95, Win98, and WinME lack -** the LockFileEx() API. But we can still statically link against that -** API as long as we don't call it win running Win95/98/ME. A call to -** this routine is used to determine if the host is Win95/98/ME or -** WinNT/2K/XP so that we will know whether or not we can safely call -** the LockFileEx() API. -** -** mutexIsNT() is only used for the TryEnterCriticalSection() API call, -** which is only available if your application was compiled with -** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only -** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef -** this out as well. -*/ -#if 0 -#if SQLITE_OS_WINCE || SQLITE_OS_WINRT -# define mutexIsNT() (1) -#else - static int mutexIsNT(void){ - static int osType = 0; - if( osType==0 ){ - OSVERSIONINFO sInfo; - sInfo.dwOSVersionInfoSize = sizeof(sInfo); - GetVersionEx(&sInfo); - osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; - } - return osType==2; - } -#endif /* SQLITE_OS_WINCE */ -#endif - -#ifdef SQLITE_DEBUG -/* -** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are -** intended for use only inside assert() statements. -*/ -static int winMutexHeld(sqlite3_mutex *p){ - return p->nRef!=0 && p->owner==GetCurrentThreadId(); -} -static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){ - return p->nRef==0 || p->owner!=tid; -} -static int winMutexNotheld(sqlite3_mutex *p){ - DWORD tid = GetCurrentThreadId(); - return winMutexNotheld2(p, tid); -} -#endif - - -/* -** Initialize and deinitialize the mutex subsystem. -*/ -static sqlite3_mutex winMutex_staticMutexes[6] = { - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER, - SQLITE3_MUTEX_INITIALIZER -}; -static int winMutex_isInit = 0; -/* As winMutexInit() and winMutexEnd() are called as part -** of the sqlite3_initialize and sqlite3_shutdown() -** processing, the "interlocked" magic is probably not -** strictly necessary. -*/ -static long winMutex_lock = 0; - -SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */ - -static int winMutexInit(void){ - /* The first to increment to 1 does actual initialization */ - if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ - int i; - for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ -#if SQLITE_OS_WINRT - InitializeCriticalSectionEx(&winMutex_staticMutexes[i].mutex, 0, 0); -#else - InitializeCriticalSection(&winMutex_staticMutexes[i].mutex); -#endif - } - winMutex_isInit = 1; - }else{ - /* Someone else is in the process of initing the static mutexes */ - while( !winMutex_isInit ){ - sqlite3_win32_sleep(1); - } - } - return SQLITE_OK; -} - -static int winMutexEnd(void){ - /* The first to decrement to 0 does actual shutdown - ** (which should be the last to shutdown.) */ - if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){ - if( winMutex_isInit==1 ){ - int i; - for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ - DeleteCriticalSection(&winMutex_staticMutexes[i].mutex); - } - winMutex_isInit = 0; - } - } - return SQLITE_OK; -} - -/* -** The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. If it returns NULL -** that means that a mutex could not be allocated. SQLite -** will unwind its stack and return an error. The argument -** to sqlite3_mutex_alloc() is one of these integer constants: -** -** <ul> -** <li> SQLITE_MUTEX_FAST -** <li> SQLITE_MUTEX_RECURSIVE -** <li> SQLITE_MUTEX_STATIC_MASTER -** <li> SQLITE_MUTEX_STATIC_MEM -** <li> SQLITE_MUTEX_STATIC_MEM2 -** <li> SQLITE_MUTEX_STATIC_PRNG -** <li> SQLITE_MUTEX_STATIC_LRU -** <li> SQLITE_MUTEX_STATIC_PMEM -** </ul> -** -** The first two constants cause sqlite3_mutex_alloc() to create -** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE -** is used but not necessarily so when SQLITE_MUTEX_FAST is used. -** The mutex implementation does not need to make a distinction -** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. But SQLite will only request a recursive mutex in -** cases where it really needs one. If a faster non-recursive mutex -** implementation is available on the host platform, the mutex subsystem -** might return such a mutex in response to SQLITE_MUTEX_FAST. -** -** The other allowed parameters to sqlite3_mutex_alloc() each return -** a pointer to a static preexisting mutex. Six static mutexes are -** used by the current version of SQLite. Future versions of SQLite -** may add additional static mutexes. Static mutexes are for internal -** use by SQLite only. Applications that use SQLite mutexes should -** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or -** SQLITE_MUTEX_RECURSIVE. -** -** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST -** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. But for the static -** mutex types, the same mutex is returned on every call that has -** the same type number. -*/ -static sqlite3_mutex *winMutexAlloc(int iType){ - sqlite3_mutex *p; - - switch( iType ){ - case SQLITE_MUTEX_FAST: - case SQLITE_MUTEX_RECURSIVE: { - p = sqlite3MallocZero( sizeof(*p) ); - if( p ){ -#ifdef SQLITE_DEBUG - p->id = iType; -#endif -#if SQLITE_OS_WINRT - InitializeCriticalSectionEx(&p->mutex, 0, 0); -#else - InitializeCriticalSection(&p->mutex); -#endif - } - break; - } - default: { - assert( winMutex_isInit==1 ); - assert( iType-2 >= 0 ); - assert( iType-2 < ArraySize(winMutex_staticMutexes) ); - p = &winMutex_staticMutexes[iType-2]; -#ifdef SQLITE_DEBUG - p->id = iType; -#endif - break; - } - } - return p; -} - - -/* -** This routine deallocates a previously -** allocated mutex. SQLite is careful to deallocate every -** mutex that it allocates. -*/ -static void winMutexFree(sqlite3_mutex *p){ - assert( p ); - assert( p->nRef==0 && p->owner==0 ); - assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); - DeleteCriticalSection(&p->mutex); - sqlite3_free(p); -} - -/* -** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. If another thread is already within the mutex, -** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK -** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can -** be entered multiple times by the same thread. In such cases the, -** mutex must be exited an equal number of times before another thread -** can enter. If the same thread tries to enter any other kind of mutex -** more than once, the behavior is undefined. -*/ -static void winMutexEnter(sqlite3_mutex *p){ -#ifdef SQLITE_DEBUG - DWORD tid = GetCurrentThreadId(); - assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); -#endif - EnterCriticalSection(&p->mutex); -#ifdef SQLITE_DEBUG - assert( p->nRef>0 || p->owner==0 ); - p->owner = tid; - p->nRef++; - if( p->trace ){ - printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif -} -static int winMutexTry(sqlite3_mutex *p){ -#ifndef NDEBUG - DWORD tid = GetCurrentThreadId(); -#endif - int rc = SQLITE_BUSY; - assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); - /* - ** The sqlite3_mutex_try() routine is very rarely used, and when it - ** is used it is merely an optimization. So it is OK for it to always - ** fail. - ** - ** The TryEnterCriticalSection() interface is only available on WinNT. - ** And some windows compilers complain if you try to use it without - ** first doing some #defines that prevent SQLite from building on Win98. - ** For that reason, we will omit this optimization for now. See - ** ticket #2685. - */ -#if 0 - if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){ - p->owner = tid; - p->nRef++; - rc = SQLITE_OK; - } -#else - UNUSED_PARAMETER(p); -#endif -#ifdef SQLITE_DEBUG - if( rc==SQLITE_OK && p->trace ){ - printf("try mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif - return rc; -} - -/* -** The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. The behavior -** is undefined if the mutex is not currently entered or -** is not currently allocated. SQLite will never do either. -*/ -static void winMutexLeave(sqlite3_mutex *p){ -#ifndef NDEBUG - DWORD tid = GetCurrentThreadId(); - assert( p->nRef>0 ); - assert( p->owner==tid ); - p->nRef--; - if( p->nRef==0 ) p->owner = 0; - assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); -#endif - LeaveCriticalSection(&p->mutex); -#ifdef SQLITE_DEBUG - if( p->trace ){ - printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); - } -#endif -} - -SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ - static const sqlite3_mutex_methods sMutex = { - winMutexInit, - winMutexEnd, - winMutexAlloc, - winMutexFree, - winMutexEnter, - winMutexTry, - winMutexLeave, -#ifdef SQLITE_DEBUG - winMutexHeld, - winMutexNotheld -#else - 0, - 0 -#endif - }; - - return &sMutex; -} -#endif /* SQLITE_MUTEX_W32 */ - -/************** End of mutex_w32.c *******************************************/ -/************** Begin file malloc.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** Memory allocation functions used throughout sqlite. -*/ -/* #include <stdarg.h> */ - -/* -** Attempt to release up to n bytes of non-essential memory currently -** held by SQLite. An example of non-essential memory is memory used to -** cache database pages that are not currently in use. -*/ -SQLITE_API int sqlite3_release_memory(int n){ -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT - return sqlite3PcacheReleaseMemory(n); -#else - /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine - ** is a no-op returning zero if SQLite is not compiled with - ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ - UNUSED_PARAMETER(n); - return 0; -#endif -} - -/* -** An instance of the following object records the location of -** each unused scratch buffer. -*/ -typedef struct ScratchFreeslot { - struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ -} ScratchFreeslot; - -/* -** State information local to the memory allocation subsystem. -*/ -static SQLITE_WSD struct Mem0Global { - sqlite3_mutex *mutex; /* Mutex to serialize access */ - - /* - ** The alarm callback and its arguments. The mem0.mutex lock will - ** be held while the callback is running. Recursive calls into - ** the memory subsystem are allowed, but no new callbacks will be - ** issued. - */ - sqlite3_int64 alarmThreshold; - void (*alarmCallback)(void*, sqlite3_int64,int); - void *alarmArg; - - /* - ** Pointers to the end of sqlite3GlobalConfig.pScratch memory - ** (so that a range test can be used to determine if an allocation - ** being freed came from pScratch) and a pointer to the list of - ** unused scratch allocations. - */ - void *pScratchEnd; - ScratchFreeslot *pScratchFree; - u32 nScratchFree; - - /* - ** True if heap is nearly "full" where "full" is defined by the - ** sqlite3_soft_heap_limit() setting. - */ - int nearlyFull; -} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; - -#define mem0 GLOBAL(struct Mem0Global, mem0) - -/* -** This routine runs when the memory allocator sees that the -** total memory allocation is about to exceed the soft heap -** limit. -*/ -static void softHeapLimitEnforcer( - void *NotUsed, - sqlite3_int64 NotUsed2, - int allocSize -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - sqlite3_release_memory(allocSize); -} - -/* -** Change the alarm callback -*/ -static int sqlite3MemoryAlarm( - void(*xCallback)(void *pArg, sqlite3_int64 used,int N), - void *pArg, - sqlite3_int64 iThreshold -){ - int nUsed; - sqlite3_mutex_enter(mem0.mutex); - mem0.alarmCallback = xCallback; - mem0.alarmArg = pArg; - mem0.alarmThreshold = iThreshold; - nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); - mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); - sqlite3_mutex_leave(mem0.mutex); - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** Deprecated external interface. Internal/core SQLite code -** should call sqlite3MemoryAlarm. -*/ -SQLITE_API int sqlite3_memory_alarm( - void(*xCallback)(void *pArg, sqlite3_int64 used,int N), - void *pArg, - sqlite3_int64 iThreshold -){ - return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); -} -#endif - -/* -** Set the soft heap-size limit for the library. Passing a zero or -** negative value indicates no limit. -*/ -SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ - sqlite3_int64 priorLimit; - sqlite3_int64 excess; -#ifndef SQLITE_OMIT_AUTOINIT - int rc = sqlite3_initialize(); - if( rc ) return -1; -#endif - sqlite3_mutex_enter(mem0.mutex); - priorLimit = mem0.alarmThreshold; - sqlite3_mutex_leave(mem0.mutex); - if( n<0 ) return priorLimit; - if( n>0 ){ - sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); - }else{ - sqlite3MemoryAlarm(0, 0, 0); - } - excess = sqlite3_memory_used() - n; - if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); - return priorLimit; -} -SQLITE_API void sqlite3_soft_heap_limit(int n){ - if( n<0 ) n = 0; - sqlite3_soft_heap_limit64(n); -} - -/* -** Initialize the memory allocation subsystem. -*/ -SQLITE_PRIVATE int sqlite3MallocInit(void){ - if( sqlite3GlobalConfig.m.xMalloc==0 ){ - sqlite3MemSetDefault(); - } - memset(&mem0, 0, sizeof(mem0)); - if( sqlite3GlobalConfig.bCoreMutex ){ - mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); - } - if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 - && sqlite3GlobalConfig.nScratch>0 ){ - int i, n, sz; - ScratchFreeslot *pSlot; - sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); - sqlite3GlobalConfig.szScratch = sz; - pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; - n = sqlite3GlobalConfig.nScratch; - mem0.pScratchFree = pSlot; - mem0.nScratchFree = n; - for(i=0; i<n-1; i++){ - pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); - pSlot = pSlot->pNext; - } - pSlot->pNext = 0; - mem0.pScratchEnd = (void*)&pSlot[1]; - }else{ - mem0.pScratchEnd = 0; - sqlite3GlobalConfig.pScratch = 0; - sqlite3GlobalConfig.szScratch = 0; - sqlite3GlobalConfig.nScratch = 0; - } - if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 - || sqlite3GlobalConfig.nPage<1 ){ - sqlite3GlobalConfig.pPage = 0; - sqlite3GlobalConfig.szPage = 0; - sqlite3GlobalConfig.nPage = 0; - } - return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); -} - -/* -** Return true if the heap is currently under memory pressure - in other -** words if the amount of heap used is close to the limit set by -** sqlite3_soft_heap_limit(). -*/ -SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){ - return mem0.nearlyFull; -} - -/* -** Deinitialize the memory allocation subsystem. -*/ -SQLITE_PRIVATE void sqlite3MallocEnd(void){ - if( sqlite3GlobalConfig.m.xShutdown ){ - sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); - } - memset(&mem0, 0, sizeof(mem0)); -} - -/* -** Return the amount of memory currently checked out. -*/ -SQLITE_API sqlite3_int64 sqlite3_memory_used(void){ - int n, mx; - sqlite3_int64 res; - sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); - res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ - return res; -} - -/* -** Return the maximum amount of memory that has ever been -** checked out since either the beginning of this process -** or since the most recent reset. -*/ -SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ - int n, mx; - sqlite3_int64 res; - sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); - res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ - return res; -} - -/* -** Trigger the alarm -*/ -static void sqlite3MallocAlarm(int nByte){ - void (*xCallback)(void*,sqlite3_int64,int); - sqlite3_int64 nowUsed; - void *pArg; - if( mem0.alarmCallback==0 ) return; - xCallback = mem0.alarmCallback; - nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); - pArg = mem0.alarmArg; - mem0.alarmCallback = 0; - sqlite3_mutex_leave(mem0.mutex); - xCallback(pArg, nowUsed, nByte); - sqlite3_mutex_enter(mem0.mutex); - mem0.alarmCallback = xCallback; - mem0.alarmArg = pArg; -} - -/* -** Do a memory allocation with statistics and alarms. Assume the -** lock is already held. -*/ -static int mallocWithAlarm(int n, void **pp){ - int nFull; - void *p; - assert( sqlite3_mutex_held(mem0.mutex) ); - nFull = sqlite3GlobalConfig.m.xRoundup(n); - sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); - if( mem0.alarmCallback!=0 ){ - int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); - if( nUsed >= mem0.alarmThreshold - nFull ){ - mem0.nearlyFull = 1; - sqlite3MallocAlarm(nFull); - }else{ - mem0.nearlyFull = 0; - } - } - p = sqlite3GlobalConfig.m.xMalloc(nFull); -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT - if( p==0 && mem0.alarmCallback ){ - sqlite3MallocAlarm(nFull); - p = sqlite3GlobalConfig.m.xMalloc(nFull); - } -#endif - if( p ){ - nFull = sqlite3MallocSize(p); - sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); - sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); - } - *pp = p; - return nFull; -} - -/* -** Allocate memory. This routine is like sqlite3_malloc() except that it -** assumes the memory subsystem has already been initialized. -*/ -SQLITE_PRIVATE void *sqlite3Malloc(int n){ - void *p; - if( n<=0 /* IMP: R-65312-04917 */ - || n>=0x7fffff00 - ){ - /* A memory allocation of a number of bytes which is near the maximum - ** signed integer value might cause an integer overflow inside of the - ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving - ** 255 bytes of overhead. SQLite itself will never use anything near - ** this amount. The only way to reach the limit is with sqlite3_malloc() */ - p = 0; - }else if( sqlite3GlobalConfig.bMemstat ){ - sqlite3_mutex_enter(mem0.mutex); - mallocWithAlarm(n, &p); - sqlite3_mutex_leave(mem0.mutex); - }else{ - p = sqlite3GlobalConfig.m.xMalloc(n); - } - assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ - return p; -} - -/* -** This version of the memory allocation is for use by the application. -** First make sure the memory subsystem is initialized, then do the -** allocation. -*/ -SQLITE_API void *sqlite3_malloc(int n){ -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize() ) return 0; -#endif - return sqlite3Malloc(n); -} - -/* -** Each thread may only have a single outstanding allocation from -** xScratchMalloc(). We verify this constraint in the single-threaded -** case by setting scratchAllocOut to 1 when an allocation -** is outstanding clearing it when the allocation is freed. -*/ -#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) -static int scratchAllocOut = 0; -#endif - - -/* -** Allocate memory that is to be used and released right away. -** This routine is similar to alloca() in that it is not intended -** for situations where the memory might be held long-term. This -** routine is intended to get memory to old large transient data -** structures that would not normally fit on the stack of an -** embedded processor. -*/ -SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){ - void *p; - assert( n>0 ); - - sqlite3_mutex_enter(mem0.mutex); - if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ - p = mem0.pScratchFree; - mem0.pScratchFree = mem0.pScratchFree->pNext; - mem0.nScratchFree--; - sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); - sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); - sqlite3_mutex_leave(mem0.mutex); - }else{ - if( sqlite3GlobalConfig.bMemstat ){ - sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); - n = mallocWithAlarm(n, &p); - if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); - sqlite3_mutex_leave(mem0.mutex); - }else{ - sqlite3_mutex_leave(mem0.mutex); - p = sqlite3GlobalConfig.m.xMalloc(n); - } - sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); - } - assert( sqlite3_mutex_notheld(mem0.mutex) ); - - -#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) - /* Verify that no more than two scratch allocations per thread - ** are outstanding at one time. (This is only checked in the - ** single-threaded case since checking in the multi-threaded case - ** would be much more complicated.) */ - assert( scratchAllocOut<=1 ); - if( p ) scratchAllocOut++; -#endif - - return p; -} -SQLITE_PRIVATE void sqlite3ScratchFree(void *p){ - if( p ){ - -#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) - /* Verify that no more than two scratch allocation per thread - ** is outstanding at one time. (This is only checked in the - ** single-threaded case since checking in the multi-threaded case - ** would be much more complicated.) */ - assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); - scratchAllocOut--; -#endif - - if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ - /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ - ScratchFreeslot *pSlot; - pSlot = (ScratchFreeslot*)p; - sqlite3_mutex_enter(mem0.mutex); - pSlot->pNext = mem0.pScratchFree; - mem0.pScratchFree = pSlot; - mem0.nScratchFree++; - assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); - sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); - sqlite3_mutex_leave(mem0.mutex); - }else{ - /* Release memory back to the heap */ - assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); - assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); - sqlite3MemdebugSetType(p, MEMTYPE_HEAP); - if( sqlite3GlobalConfig.bMemstat ){ - int iSize = sqlite3MallocSize(p); - sqlite3_mutex_enter(mem0.mutex); - sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); - sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); - sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); - sqlite3GlobalConfig.m.xFree(p); - sqlite3_mutex_leave(mem0.mutex); - }else{ - sqlite3GlobalConfig.m.xFree(p); - } - } - } -} - -/* -** TRUE if p is a lookaside memory allocation from db -*/ -#ifndef SQLITE_OMIT_LOOKASIDE -static int isLookaside(sqlite3 *db, void *p){ - return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; -} -#else -#define isLookaside(A,B) 0 -#endif - -/* -** Return the size of a memory allocation previously obtained from -** sqlite3Malloc() or sqlite3_malloc(). -*/ -SQLITE_PRIVATE int sqlite3MallocSize(void *p){ - assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); - assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); - return sqlite3GlobalConfig.m.xSize(p); -} -SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){ - assert( db==0 || sqlite3_mutex_held(db->mutex) ); - if( db && isLookaside(db, p) ){ - return db->lookaside.sz; - }else{ - assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); - assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); - assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); - return sqlite3GlobalConfig.m.xSize(p); - } -} - -/* -** Free memory previously obtained from sqlite3Malloc(). -*/ -SQLITE_API void sqlite3_free(void *p){ - if( p==0 ) return; /* IMP: R-49053-54554 */ - assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); - assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); - if( sqlite3GlobalConfig.bMemstat ){ - sqlite3_mutex_enter(mem0.mutex); - sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); - sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); - sqlite3GlobalConfig.m.xFree(p); - sqlite3_mutex_leave(mem0.mutex); - }else{ - sqlite3GlobalConfig.m.xFree(p); - } -} - -/* -** Free memory that might be associated with a particular database -** connection. -*/ -SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){ - assert( db==0 || sqlite3_mutex_held(db->mutex) ); - if( db ){ - if( db->pnBytesFreed ){ - *db->pnBytesFreed += sqlite3DbMallocSize(db, p); - return; - } - if( isLookaside(db, p) ){ - LookasideSlot *pBuf = (LookasideSlot*)p; -#if SQLITE_DEBUG - /* Trash all content in the buffer being freed */ - memset(p, 0xaa, db->lookaside.sz); -#endif - pBuf->pNext = db->lookaside.pFree; - db->lookaside.pFree = pBuf; - db->lookaside.nOut--; - return; - } - } - assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); - assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); - assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); - sqlite3MemdebugSetType(p, MEMTYPE_HEAP); - sqlite3_free(p); -} - -/* -** Change the size of an existing memory allocation -*/ -SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, int nBytes){ - int nOld, nNew, nDiff; - void *pNew; - if( pOld==0 ){ - return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ - } - if( nBytes<=0 ){ - sqlite3_free(pOld); /* IMP: R-31593-10574 */ - return 0; - } - if( nBytes>=0x7fffff00 ){ - /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ - return 0; - } - nOld = sqlite3MallocSize(pOld); - /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second - ** argument to xRealloc is always a value returned by a prior call to - ** xRoundup. */ - nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); - if( nOld==nNew ){ - pNew = pOld; - }else if( sqlite3GlobalConfig.bMemstat ){ - sqlite3_mutex_enter(mem0.mutex); - sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); - nDiff = nNew - nOld; - if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= - mem0.alarmThreshold-nDiff ){ - sqlite3MallocAlarm(nDiff); - } - assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); - assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); - pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); - if( pNew==0 && mem0.alarmCallback ){ - sqlite3MallocAlarm(nBytes); - pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); - } - if( pNew ){ - nNew = sqlite3MallocSize(pNew); - sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); - } - sqlite3_mutex_leave(mem0.mutex); - }else{ - pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); - } - assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ - return pNew; -} - -/* -** The public interface to sqlite3Realloc. Make sure that the memory -** subsystem is initialized prior to invoking sqliteRealloc. -*/ -SQLITE_API void *sqlite3_realloc(void *pOld, int n){ -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize() ) return 0; -#endif - return sqlite3Realloc(pOld, n); -} - - -/* -** Allocate and zero memory. -*/ -SQLITE_PRIVATE void *sqlite3MallocZero(int n){ - void *p = sqlite3Malloc(n); - if( p ){ - memset(p, 0, n); - } - return p; -} - -/* -** Allocate and zero memory. If the allocation fails, make -** the mallocFailed flag in the connection pointer. -*/ -SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, int n){ - void *p = sqlite3DbMallocRaw(db, n); - if( p ){ - memset(p, 0, n); - } - return p; -} - -/* -** Allocate and zero memory. If the allocation fails, make -** the mallocFailed flag in the connection pointer. -** -** If db!=0 and db->mallocFailed is true (indicating a prior malloc -** failure on the same database connection) then always return 0. -** Hence for a particular database connection, once malloc starts -** failing, it fails consistently until mallocFailed is reset. -** This is an important assumption. There are many places in the -** code that do things like this: -** -** int *a = (int*)sqlite3DbMallocRaw(db, 100); -** int *b = (int*)sqlite3DbMallocRaw(db, 200); -** if( b ) a[10] = 9; -** -** In other words, if a subsequent malloc (ex: "b") worked, it is assumed -** that all prior mallocs (ex: "a") worked too. -*/ -SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){ - void *p; - assert( db==0 || sqlite3_mutex_held(db->mutex) ); - assert( db==0 || db->pnBytesFreed==0 ); -#ifndef SQLITE_OMIT_LOOKASIDE - if( db ){ - LookasideSlot *pBuf; - if( db->mallocFailed ){ - return 0; - } - if( db->lookaside.bEnabled ){ - if( n>db->lookaside.sz ){ - db->lookaside.anStat[1]++; - }else if( (pBuf = db->lookaside.pFree)==0 ){ - db->lookaside.anStat[2]++; - }else{ - db->lookaside.pFree = pBuf->pNext; - db->lookaside.nOut++; - db->lookaside.anStat[0]++; - if( db->lookaside.nOut>db->lookaside.mxOut ){ - db->lookaside.mxOut = db->lookaside.nOut; - } - return (void*)pBuf; - } - } - } -#else - if( db && db->mallocFailed ){ - return 0; - } -#endif - p = sqlite3Malloc(n); - if( !p && db ){ - db->mallocFailed = 1; - } - sqlite3MemdebugSetType(p, MEMTYPE_DB | - ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); - return p; -} - -/* -** Resize the block of memory pointed to by p to n bytes. If the -** resize fails, set the mallocFailed flag in the connection object. -*/ -SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ - void *pNew = 0; - assert( db!=0 ); - assert( sqlite3_mutex_held(db->mutex) ); - if( db->mallocFailed==0 ){ - if( p==0 ){ - return sqlite3DbMallocRaw(db, n); - } - if( isLookaside(db, p) ){ - if( n<=db->lookaside.sz ){ - return p; - } - pNew = sqlite3DbMallocRaw(db, n); - if( pNew ){ - memcpy(pNew, p, db->lookaside.sz); - sqlite3DbFree(db, p); - } - }else{ - assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); - assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); - sqlite3MemdebugSetType(p, MEMTYPE_HEAP); - pNew = sqlite3_realloc(p, n); - if( !pNew ){ - sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); - db->mallocFailed = 1; - } - sqlite3MemdebugSetType(pNew, MEMTYPE_DB | - (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); - } - } - return pNew; -} - -/* -** Attempt to reallocate p. If the reallocation fails, then free p -** and set the mallocFailed flag in the database connection. -*/ -SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ - void *pNew; - pNew = sqlite3DbRealloc(db, p, n); - if( !pNew ){ - sqlite3DbFree(db, p); - } - return pNew; -} - -/* -** Make a copy of a string in memory obtained from sqliteMalloc(). These -** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This -** is because when memory debugging is turned on, these two functions are -** called via macros that record the current file and line number in the -** ThreadData structure. -*/ -SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){ - char *zNew; - size_t n; - if( z==0 ){ - return 0; - } - n = sqlite3Strlen30(z) + 1; - assert( (n&0x7fffffff)==n ); - zNew = sqlite3DbMallocRaw(db, (int)n); - if( zNew ){ - memcpy(zNew, z, n); - } - return zNew; -} -SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ - char *zNew; - if( z==0 ){ - return 0; - } - assert( (n&0x7fffffff)==n ); - zNew = sqlite3DbMallocRaw(db, n+1); - if( zNew ){ - memcpy(zNew, z, n); - zNew[n] = 0; - } - return zNew; -} - -/* -** Create a string from the zFromat argument and the va_list that follows. -** Store the string in memory obtained from sqliteMalloc() and make *pz -** point to that string. -*/ -SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ - va_list ap; - char *z; - - va_start(ap, zFormat); - z = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - sqlite3DbFree(db, *pz); - *pz = z; -} - - -/* -** This function must be called before exiting any API function (i.e. -** returning control to the user) that has called sqlite3_malloc or -** sqlite3_realloc. -** -** The returned value is normally a copy of the second argument to this -** function. However, if a malloc() failure has occurred since the previous -** invocation SQLITE_NOMEM is returned instead. -** -** If the first argument, db, is not NULL and a malloc() error has occurred, -** then the connection error-code (the value returned by sqlite3_errcode()) -** is set to SQLITE_NOMEM. -*/ -SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ - /* If the db handle is not NULL, then we must hold the connection handle - ** mutex here. Otherwise the read (and possible write) of db->mallocFailed - ** is unsafe, as is the call to sqlite3Error(). - */ - assert( !db || sqlite3_mutex_held(db->mutex) ); - if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ - sqlite3Error(db, SQLITE_NOMEM, 0); - db->mallocFailed = 0; - rc = SQLITE_NOMEM; - } - return rc & (db ? db->errMask : 0xff); -} - -/************** End of malloc.c **********************************************/ -/************** Begin file printf.c ******************************************/ -/* -** The "printf" code that follows dates from the 1980's. It is in -** the public domain. The original comments are included here for -** completeness. They are very out-of-date but might be useful as -** an historical reference. Most of the "enhancements" have been backed -** out so that the functionality is now the same as standard printf(). -** -************************************************************************** -** -** This file contains code for a set of "printf"-like routines. These -** routines format strings much like the printf() from the standard C -** library, though the implementation here has enhancements to support -** SQLlite. -*/ - -/* -** Conversion types fall into various categories as defined by the -** following enumeration. -*/ -#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ -#define etFLOAT 2 /* Floating point. %f */ -#define etEXP 3 /* Exponentional notation. %e and %E */ -#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ -#define etSIZE 5 /* Return number of characters processed so far. %n */ -#define etSTRING 6 /* Strings. %s */ -#define etDYNSTRING 7 /* Dynamically allocated strings. %z */ -#define etPERCENT 8 /* Percent symbol. %% */ -#define etCHARX 9 /* Characters. %c */ -/* The rest are extensions, not normally found in printf() */ -#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ -#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', - NULL pointers replaced by SQL NULL. %Q */ -#define etTOKEN 12 /* a pointer to a Token structure */ -#define etSRCLIST 13 /* a pointer to a SrcList */ -#define etPOINTER 14 /* The %p conversion */ -#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ -#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ - -#define etINVALID 0 /* Any unrecognized conversion type */ - - -/* -** An "etByte" is an 8-bit unsigned value. -*/ -typedef unsigned char etByte; - -/* -** Each builtin conversion character (ex: the 'd' in "%d") is described -** by an instance of the following structure -*/ -typedef struct et_info { /* Information about each format field */ - char fmttype; /* The format field code letter */ - etByte base; /* The base for radix conversion */ - etByte flags; /* One or more of FLAG_ constants below */ - etByte type; /* Conversion paradigm */ - etByte charset; /* Offset into aDigits[] of the digits string */ - etByte prefix; /* Offset into aPrefix[] of the prefix string */ -} et_info; - -/* -** Allowed values for et_info.flags -*/ -#define FLAG_SIGNED 1 /* True if the value to convert is signed */ -#define FLAG_INTERN 2 /* True if for internal use only */ -#define FLAG_STRING 4 /* Allow infinity precision */ - - -/* -** The following table is searched linearly, so it is good to put the -** most frequently used conversion types first. -*/ -static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; -static const char aPrefix[] = "-x0\000X0"; -static const et_info fmtinfo[] = { - { 'd', 10, 1, etRADIX, 0, 0 }, - { 's', 0, 4, etSTRING, 0, 0 }, - { 'g', 0, 1, etGENERIC, 30, 0 }, - { 'z', 0, 4, etDYNSTRING, 0, 0 }, - { 'q', 0, 4, etSQLESCAPE, 0, 0 }, - { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, - { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, - { 'c', 0, 0, etCHARX, 0, 0 }, - { 'o', 8, 0, etRADIX, 0, 2 }, - { 'u', 10, 0, etRADIX, 0, 0 }, - { 'x', 16, 0, etRADIX, 16, 1 }, - { 'X', 16, 0, etRADIX, 0, 4 }, -#ifndef SQLITE_OMIT_FLOATING_POINT - { 'f', 0, 1, etFLOAT, 0, 0 }, - { 'e', 0, 1, etEXP, 30, 0 }, - { 'E', 0, 1, etEXP, 14, 0 }, - { 'G', 0, 1, etGENERIC, 14, 0 }, -#endif - { 'i', 10, 1, etRADIX, 0, 0 }, - { 'n', 0, 0, etSIZE, 0, 0 }, - { '%', 0, 0, etPERCENT, 0, 0 }, - { 'p', 16, 0, etPOINTER, 0, 1 }, - -/* All the rest have the FLAG_INTERN bit set and are thus for internal -** use only */ - { 'T', 0, 2, etTOKEN, 0, 0 }, - { 'S', 0, 2, etSRCLIST, 0, 0 }, - { 'r', 10, 3, etORDINAL, 0, 0 }, -}; - -/* -** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point -** conversions will work. -*/ -#ifndef SQLITE_OMIT_FLOATING_POINT -/* -** "*val" is a double such that 0.1 <= *val < 10.0 -** Return the ascii code for the leading digit of *val, then -** multiply "*val" by 10.0 to renormalize. -** -** Example: -** input: *val = 3.14159 -** output: *val = 1.4159 function return = '3' -** -** The counter *cnt is incremented each time. After counter exceeds -** 16 (the number of significant digits in a 64-bit float) '0' is -** always returned. -*/ -static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ - int digit; - LONGDOUBLE_TYPE d; - if( (*cnt)<=0 ) return '0'; - (*cnt)--; - digit = (int)*val; - d = digit; - digit += '0'; - *val = (*val - d)*10.0; - return (char)digit; -} -#endif /* SQLITE_OMIT_FLOATING_POINT */ - -/* -** Append N space characters to the given string buffer. -*/ -SQLITE_PRIVATE void sqlite3AppendSpace(StrAccum *pAccum, int N){ - static const char zSpaces[] = " "; - while( N>=(int)sizeof(zSpaces)-1 ){ - sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); - N -= sizeof(zSpaces)-1; - } - if( N>0 ){ - sqlite3StrAccumAppend(pAccum, zSpaces, N); - } -} - -/* -** On machines with a small stack size, you can redefine the -** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. -*/ -#ifndef SQLITE_PRINT_BUF_SIZE -# define SQLITE_PRINT_BUF_SIZE 70 -#endif -#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ - -/* -** Render a string given by "fmt" into the StrAccum object. -*/ -SQLITE_PRIVATE void sqlite3VXPrintf( - StrAccum *pAccum, /* Accumulate results here */ - int useExtended, /* Allow extended %-conversions */ - const char *fmt, /* Format string */ - va_list ap /* arguments */ -){ - int c; /* Next character in the format string */ - char *bufpt; /* Pointer to the conversion buffer */ - int precision; /* Precision of the current field */ - int length; /* Length of the field */ - int idx; /* A general purpose loop counter */ - int width; /* Width of the current field */ - etByte flag_leftjustify; /* True if "-" flag is present */ - etByte flag_plussign; /* True if "+" flag is present */ - etByte flag_blanksign; /* True if " " flag is present */ - etByte flag_alternateform; /* True if "#" flag is present */ - etByte flag_altform2; /* True if "!" flag is present */ - etByte flag_zeropad; /* True if field width constant starts with zero */ - etByte flag_long; /* True if "l" flag is present */ - etByte flag_longlong; /* True if the "ll" flag is present */ - etByte done; /* Loop termination flag */ - etByte xtype = 0; /* Conversion paradigm */ - char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ - sqlite_uint64 longvalue; /* Value for integer types */ - LONGDOUBLE_TYPE realvalue; /* Value for real types */ - const et_info *infop; /* Pointer to the appropriate info structure */ - char *zOut; /* Rendering buffer */ - int nOut; /* Size of the rendering buffer */ - char *zExtra; /* Malloced memory used by some conversion */ -#ifndef SQLITE_OMIT_FLOATING_POINT - int exp, e2; /* exponent of real numbers */ - int nsd; /* Number of significant digits returned */ - double rounder; /* Used for rounding floating point values */ - etByte flag_dp; /* True if decimal point should be shown */ - etByte flag_rtz; /* True if trailing zeros should be removed */ -#endif - char buf[etBUFSIZE]; /* Conversion buffer */ - - bufpt = 0; - for(; (c=(*fmt))!=0; ++fmt){ - if( c!='%' ){ - int amt; - bufpt = (char *)fmt; - amt = 1; - while( (c=(*++fmt))!='%' && c!=0 ) amt++; - sqlite3StrAccumAppend(pAccum, bufpt, amt); - if( c==0 ) break; - } - if( (c=(*++fmt))==0 ){ - sqlite3StrAccumAppend(pAccum, "%", 1); - break; - } - /* Find out what flags are present */ - flag_leftjustify = flag_plussign = flag_blanksign = - flag_alternateform = flag_altform2 = flag_zeropad = 0; - done = 0; - do{ - switch( c ){ - case '-': flag_leftjustify = 1; break; - case '+': flag_plussign = 1; break; - case ' ': flag_blanksign = 1; break; - case '#': flag_alternateform = 1; break; - case '!': flag_altform2 = 1; break; - case '0': flag_zeropad = 1; break; - default: done = 1; break; - } - }while( !done && (c=(*++fmt))!=0 ); - /* Get the field width */ - width = 0; - if( c=='*' ){ - width = va_arg(ap,int); - if( width<0 ){ - flag_leftjustify = 1; - width = -width; - } - c = *++fmt; - }else{ - while( c>='0' && c<='9' ){ - width = width*10 + c - '0'; - c = *++fmt; - } - } - /* Get the precision */ - if( c=='.' ){ - precision = 0; - c = *++fmt; - if( c=='*' ){ - precision = va_arg(ap,int); - if( precision<0 ) precision = -precision; - c = *++fmt; - }else{ - while( c>='0' && c<='9' ){ - precision = precision*10 + c - '0'; - c = *++fmt; - } - } - }else{ - precision = -1; - } - /* Get the conversion type modifier */ - if( c=='l' ){ - flag_long = 1; - c = *++fmt; - if( c=='l' ){ - flag_longlong = 1; - c = *++fmt; - }else{ - flag_longlong = 0; - } - }else{ - flag_long = flag_longlong = 0; - } - /* Fetch the info entry for the field */ - infop = &fmtinfo[0]; - xtype = etINVALID; - for(idx=0; idx<ArraySize(fmtinfo); idx++){ - if( c==fmtinfo[idx].fmttype ){ - infop = &fmtinfo[idx]; - if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ - xtype = infop->type; - }else{ - return; - } - break; - } - } - zExtra = 0; - - /* - ** At this point, variables are initialized as follows: - ** - ** flag_alternateform TRUE if a '#' is present. - ** flag_altform2 TRUE if a '!' is present. - ** flag_plussign TRUE if a '+' is present. - ** flag_leftjustify TRUE if a '-' is present or if the - ** field width was negative. - ** flag_zeropad TRUE if the width began with 0. - ** flag_long TRUE if the letter 'l' (ell) prefixed - ** the conversion character. - ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed - ** the conversion character. - ** flag_blanksign TRUE if a ' ' is present. - ** width The specified field width. This is - ** always non-negative. Zero is the default. - ** precision The specified precision. The default - ** is -1. - ** xtype The class of the conversion. - ** infop Pointer to the appropriate info struct. - */ - switch( xtype ){ - case etPOINTER: - flag_longlong = sizeof(char*)==sizeof(i64); - flag_long = sizeof(char*)==sizeof(long int); - /* Fall through into the next case */ - case etORDINAL: - case etRADIX: - if( infop->flags & FLAG_SIGNED ){ - i64 v; - if( flag_longlong ){ - v = va_arg(ap,i64); - }else if( flag_long ){ - v = va_arg(ap,long int); - }else{ - v = va_arg(ap,int); - } - if( v<0 ){ - if( v==SMALLEST_INT64 ){ - longvalue = ((u64)1)<<63; - }else{ - longvalue = -v; - } - prefix = '-'; - }else{ - longvalue = v; - if( flag_plussign ) prefix = '+'; - else if( flag_blanksign ) prefix = ' '; - else prefix = 0; - } - }else{ - if( flag_longlong ){ - longvalue = va_arg(ap,u64); - }else if( flag_long ){ - longvalue = va_arg(ap,unsigned long int); - }else{ - longvalue = va_arg(ap,unsigned int); - } - prefix = 0; - } - if( longvalue==0 ) flag_alternateform = 0; - if( flag_zeropad && precision<width-(prefix!=0) ){ - precision = width-(prefix!=0); - } - if( precision<etBUFSIZE-10 ){ - nOut = etBUFSIZE; - zOut = buf; - }else{ - nOut = precision + 10; - zOut = zExtra = sqlite3Malloc( nOut ); - if( zOut==0 ){ - pAccum->mallocFailed = 1; - return; - } - } - bufpt = &zOut[nOut-1]; - if( xtype==etORDINAL ){ - static const char zOrd[] = "thstndrd"; - int x = (int)(longvalue % 10); - if( x>=4 || (longvalue/10)%10==1 ){ - x = 0; - } - *(--bufpt) = zOrd[x*2+1]; - *(--bufpt) = zOrd[x*2]; - } - { - register const char *cset; /* Use registers for speed */ - register int base; - cset = &aDigits[infop->charset]; - base = infop->base; - do{ /* Convert to ascii */ - *(--bufpt) = cset[longvalue%base]; - longvalue = longvalue/base; - }while( longvalue>0 ); - } - length = (int)(&zOut[nOut-1]-bufpt); - for(idx=precision-length; idx>0; idx--){ - *(--bufpt) = '0'; /* Zero pad */ - } - if( prefix ) *(--bufpt) = prefix; /* Add sign */ - if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ - const char *pre; - char x; - pre = &aPrefix[infop->prefix]; - for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; - } - length = (int)(&zOut[nOut-1]-bufpt); - break; - case etFLOAT: - case etEXP: - case etGENERIC: - realvalue = va_arg(ap,double); -#ifdef SQLITE_OMIT_FLOATING_POINT - length = 0; -#else - if( precision<0 ) precision = 6; /* Set default precision */ - if( realvalue<0.0 ){ - realvalue = -realvalue; - prefix = '-'; - }else{ - if( flag_plussign ) prefix = '+'; - else if( flag_blanksign ) prefix = ' '; - else prefix = 0; - } - if( xtype==etGENERIC && precision>0 ) precision--; -#if 0 - /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ - for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); -#else - /* It makes more sense to use 0.5 */ - for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} -#endif - if( xtype==etFLOAT ) realvalue += rounder; - /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ - exp = 0; - if( sqlite3IsNaN((double)realvalue) ){ - bufpt = "NaN"; - length = 3; - break; - } - if( realvalue>0.0 ){ - LONGDOUBLE_TYPE scale = 1.0; - while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} - while( realvalue>=1e64*scale && exp<=350 ){ scale *= 1e64; exp+=64; } - while( realvalue>=1e8*scale && exp<=350 ){ scale *= 1e8; exp+=8; } - while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } - realvalue /= scale; - while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } - while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } - if( exp>350 ){ - if( prefix=='-' ){ - bufpt = "-Inf"; - }else if( prefix=='+' ){ - bufpt = "+Inf"; - }else{ - bufpt = "Inf"; - } - length = sqlite3Strlen30(bufpt); - break; - } - } - bufpt = buf; - /* - ** If the field type is etGENERIC, then convert to either etEXP - ** or etFLOAT, as appropriate. - */ - if( xtype!=etFLOAT ){ - realvalue += rounder; - if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } - } - if( xtype==etGENERIC ){ - flag_rtz = !flag_alternateform; - if( exp<-4 || exp>precision ){ - xtype = etEXP; - }else{ - precision = precision - exp; - xtype = etFLOAT; - } - }else{ - flag_rtz = flag_altform2; - } - if( xtype==etEXP ){ - e2 = 0; - }else{ - e2 = exp; - } - if( e2+precision+width > etBUFSIZE - 15 ){ - bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 ); - if( bufpt==0 ){ - pAccum->mallocFailed = 1; - return; - } - } - zOut = bufpt; - nsd = 16 + flag_altform2*10; - flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; - /* The sign in front of the number */ - if( prefix ){ - *(bufpt++) = prefix; - } - /* Digits prior to the decimal point */ - if( e2<0 ){ - *(bufpt++) = '0'; - }else{ - for(; e2>=0; e2--){ - *(bufpt++) = et_getdigit(&realvalue,&nsd); - } - } - /* The decimal point */ - if( flag_dp ){ - *(bufpt++) = '.'; - } - /* "0" digits after the decimal point but before the first - ** significant digit of the number */ - for(e2++; e2<0; precision--, e2++){ - assert( precision>0 ); - *(bufpt++) = '0'; - } - /* Significant digits after the decimal point */ - while( (precision--)>0 ){ - *(bufpt++) = et_getdigit(&realvalue,&nsd); - } - /* Remove trailing zeros and the "." if no digits follow the "." */ - if( flag_rtz && flag_dp ){ - while( bufpt[-1]=='0' ) *(--bufpt) = 0; - assert( bufpt>zOut ); - if( bufpt[-1]=='.' ){ - if( flag_altform2 ){ - *(bufpt++) = '0'; - }else{ - *(--bufpt) = 0; - } - } - } - /* Add the "eNNN" suffix */ - if( xtype==etEXP ){ - *(bufpt++) = aDigits[infop->charset]; - if( exp<0 ){ - *(bufpt++) = '-'; exp = -exp; - }else{ - *(bufpt++) = '+'; - } - if( exp>=100 ){ - *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ - exp %= 100; - } - *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ - *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ - } - *bufpt = 0; - - /* The converted number is in buf[] and zero terminated. Output it. - ** Note that the number is in the usual order, not reversed as with - ** integer conversions. */ - length = (int)(bufpt-zOut); - bufpt = zOut; - - /* Special case: Add leading zeros if the flag_zeropad flag is - ** set and we are not left justified */ - if( flag_zeropad && !flag_leftjustify && length < width){ - int i; - int nPad = width - length; - for(i=width; i>=nPad; i--){ - bufpt[i] = bufpt[i-nPad]; - } - i = prefix!=0; - while( nPad-- ) bufpt[i++] = '0'; - length = width; - } -#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ - break; - case etSIZE: - *(va_arg(ap,int*)) = pAccum->nChar; - length = width = 0; - break; - case etPERCENT: - buf[0] = '%'; - bufpt = buf; - length = 1; - break; - case etCHARX: - c = va_arg(ap,int); - buf[0] = (char)c; - if( precision>=0 ){ - for(idx=1; idx<precision; idx++) buf[idx] = (char)c; - length = precision; - }else{ - length =1; - } - bufpt = buf; - break; - case etSTRING: - case etDYNSTRING: - bufpt = va_arg(ap,char*); - if( bufpt==0 ){ - bufpt = ""; - }else if( xtype==etDYNSTRING ){ - zExtra = bufpt; - } - if( precision>=0 ){ - for(length=0; length<precision && bufpt[length]; length++){} - }else{ - length = sqlite3Strlen30(bufpt); - } - break; - case etSQLESCAPE: - case etSQLESCAPE2: - case etSQLESCAPE3: { - int i, j, k, n, isnull; - int needQuote; - char ch; - char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ - char *escarg = va_arg(ap,char*); - isnull = escarg==0; - if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); - k = precision; - for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ - if( ch==q ) n++; - } - needQuote = !isnull && xtype==etSQLESCAPE2; - n += i + 1 + needQuote*2; - if( n>etBUFSIZE ){ - bufpt = zExtra = sqlite3Malloc( n ); - if( bufpt==0 ){ - pAccum->mallocFailed = 1; - return; - } - }else{ - bufpt = buf; - } - j = 0; - if( needQuote ) bufpt[j++] = q; - k = i; - for(i=0; i<k; i++){ - bufpt[j++] = ch = escarg[i]; - if( ch==q ) bufpt[j++] = ch; - } - if( needQuote ) bufpt[j++] = q; - bufpt[j] = 0; - length = j; - /* The precision in %q and %Q means how many input characters to - ** consume, not the length of the output... - ** if( precision>=0 && precision<length ) length = precision; */ - break; - } - case etTOKEN: { - Token *pToken = va_arg(ap, Token*); - if( pToken ){ - sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); - } - length = width = 0; - break; - } - case etSRCLIST: { - SrcList *pSrc = va_arg(ap, SrcList*); - int k = va_arg(ap, int); - struct SrcList_item *pItem = &pSrc->a[k]; - assert( k>=0 && k<pSrc->nSrc ); - if( pItem->zDatabase ){ - sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); - sqlite3StrAccumAppend(pAccum, ".", 1); - } - sqlite3StrAccumAppend(pAccum, pItem->zName, -1); - length = width = 0; - break; - } - default: { - assert( xtype==etINVALID ); - return; - } - }/* End switch over the format type */ - /* - ** The text of the conversion is pointed to by "bufpt" and is - ** "length" characters long. The field width is "width". Do - ** the output. - */ - if( !flag_leftjustify ){ - register int nspace; - nspace = width-length; - if( nspace>0 ){ - sqlite3AppendSpace(pAccum, nspace); - } - } - if( length>0 ){ - sqlite3StrAccumAppend(pAccum, bufpt, length); - } - if( flag_leftjustify ){ - register int nspace; - nspace = width-length; - if( nspace>0 ){ - sqlite3AppendSpace(pAccum, nspace); - } - } - sqlite3_free(zExtra); - }/* End for loop over the format string */ -} /* End of function */ - -/* -** Append N bytes of text from z to the StrAccum object. -*/ -SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ - assert( z!=0 || N==0 ); - if( p->tooBig | p->mallocFailed ){ - testcase(p->tooBig); - testcase(p->mallocFailed); - return; - } - assert( p->zText!=0 || p->nChar==0 ); - if( N<0 ){ - N = sqlite3Strlen30(z); - } - if( N==0 || NEVER(z==0) ){ - return; - } - if( p->nChar+N >= p->nAlloc ){ - char *zNew; - if( !p->useMalloc ){ - p->tooBig = 1; - N = p->nAlloc - p->nChar - 1; - if( N<=0 ){ - return; - } - }else{ - char *zOld = (p->zText==p->zBase ? 0 : p->zText); - i64 szNew = p->nChar; - szNew += N + 1; - if( szNew > p->mxAlloc ){ - sqlite3StrAccumReset(p); - p->tooBig = 1; - return; - }else{ - p->nAlloc = (int)szNew; - } - if( p->useMalloc==1 ){ - zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); - }else{ - zNew = sqlite3_realloc(zOld, p->nAlloc); - } - if( zNew ){ - if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); - p->zText = zNew; - }else{ - p->mallocFailed = 1; - sqlite3StrAccumReset(p); - return; - } - } - } - assert( p->zText ); - memcpy(&p->zText[p->nChar], z, N); - p->nChar += N; -} - -/* -** Finish off a string by making sure it is zero-terminated. -** Return a pointer to the resulting string. Return a NULL -** pointer if any kind of error was encountered. -*/ -SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ - if( p->zText ){ - p->zText[p->nChar] = 0; - if( p->useMalloc && p->zText==p->zBase ){ - if( p->useMalloc==1 ){ - p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); - }else{ - p->zText = sqlite3_malloc(p->nChar+1); - } - if( p->zText ){ - memcpy(p->zText, p->zBase, p->nChar+1); - }else{ - p->mallocFailed = 1; - } - } - } - return p->zText; -} - -/* -** Reset an StrAccum string. Reclaim all malloced memory. -*/ -SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){ - if( p->zText!=p->zBase ){ - if( p->useMalloc==1 ){ - sqlite3DbFree(p->db, p->zText); - }else{ - sqlite3_free(p->zText); - } - } - p->zText = 0; -} - -/* -** Initialize a string accumulator -*/ -SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ - p->zText = p->zBase = zBase; - p->db = 0; - p->nChar = 0; - p->nAlloc = n; - p->mxAlloc = mx; - p->useMalloc = 1; - p->tooBig = 0; - p->mallocFailed = 0; -} - -/* -** Print into memory obtained from sqliteMalloc(). Use the internal -** %-conversion extensions. -*/ -SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ - char *z; - char zBase[SQLITE_PRINT_BUF_SIZE]; - StrAccum acc; - assert( db!=0 ); - sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), - db->aLimit[SQLITE_LIMIT_LENGTH]); - acc.db = db; - sqlite3VXPrintf(&acc, 1, zFormat, ap); - z = sqlite3StrAccumFinish(&acc); - if( acc.mallocFailed ){ - db->mallocFailed = 1; - } - return z; -} - -/* -** Print into memory obtained from sqliteMalloc(). Use the internal -** %-conversion extensions. -*/ -SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ - va_list ap; - char *z; - va_start(ap, zFormat); - z = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - return z; -} - -/* -** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting -** the string and before returnning. This routine is intended to be used -** to modify an existing string. For example: -** -** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); -** -*/ -SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ - va_list ap; - char *z; - va_start(ap, zFormat); - z = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - sqlite3DbFree(db, zStr); - return z; -} - -/* -** Print into memory obtained from sqlite3_malloc(). Omit the internal -** %-conversion extensions. -*/ -SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){ - char *z; - char zBase[SQLITE_PRINT_BUF_SIZE]; - StrAccum acc; -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize() ) return 0; -#endif - sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); - acc.useMalloc = 2; - sqlite3VXPrintf(&acc, 0, zFormat, ap); - z = sqlite3StrAccumFinish(&acc); - return z; -} - -/* -** Print into memory obtained from sqlite3_malloc()(). Omit the internal -** %-conversion extensions. -*/ -SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){ - va_list ap; - char *z; -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize() ) return 0; -#endif - va_start(ap, zFormat); - z = sqlite3_vmprintf(zFormat, ap); - va_end(ap); - return z; -} - -/* -** sqlite3_snprintf() works like snprintf() except that it ignores the -** current locale settings. This is important for SQLite because we -** are not able to use a "," as the decimal point in place of "." as -** specified by some locales. -** -** Oops: The first two arguments of sqlite3_snprintf() are backwards -** from the snprintf() standard. Unfortunately, it is too late to change -** this without breaking compatibility, so we just have to live with the -** mistake. -** -** sqlite3_vsnprintf() is the varargs version. -*/ -SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ - StrAccum acc; - if( n<=0 ) return zBuf; - sqlite3StrAccumInit(&acc, zBuf, n, 0); - acc.useMalloc = 0; - sqlite3VXPrintf(&acc, 0, zFormat, ap); - return sqlite3StrAccumFinish(&acc); -} -SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ - char *z; - va_list ap; - va_start(ap,zFormat); - z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); - va_end(ap); - return z; -} - -/* -** This is the routine that actually formats the sqlite3_log() message. -** We house it in a separate routine from sqlite3_log() to avoid using -** stack space on small-stack systems when logging is disabled. -** -** sqlite3_log() must render into a static buffer. It cannot dynamically -** allocate memory because it might be called while the memory allocator -** mutex is held. -*/ -static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ - StrAccum acc; /* String accumulator */ - char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ - - sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0); - acc.useMalloc = 0; - sqlite3VXPrintf(&acc, 0, zFormat, ap); - sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, - sqlite3StrAccumFinish(&acc)); -} - -/* -** Format and write a message to the log if logging is enabled. -*/ -SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){ - va_list ap; /* Vararg list */ - if( sqlite3GlobalConfig.xLog ){ - va_start(ap, zFormat); - renderLogMsg(iErrCode, zFormat, ap); - va_end(ap); - } -} - -#if defined(SQLITE_DEBUG) -/* -** A version of printf() that understands %lld. Used for debugging. -** The printf() built into some versions of windows does not understand %lld -** and segfaults if you give it a long long int. -*/ -SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ - va_list ap; - StrAccum acc; - char zBuf[500]; - sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); - acc.useMalloc = 0; - va_start(ap,zFormat); - sqlite3VXPrintf(&acc, 0, zFormat, ap); - va_end(ap); - sqlite3StrAccumFinish(&acc); - fprintf(stdout,"%s", zBuf); - fflush(stdout); -} -#endif - -#ifndef SQLITE_OMIT_TRACE -/* -** variable-argument wrapper around sqlite3VXPrintf(). -*/ -SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ - va_list ap; - va_start(ap,zFormat); - sqlite3VXPrintf(p, 1, zFormat, ap); - va_end(ap); -} -#endif - -/************** End of printf.c **********************************************/ -/************** Begin file random.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code to implement a pseudo-random number -** generator (PRNG) for SQLite. -** -** Random numbers are used by some of the database backends in order -** to generate random integer keys for tables or random filenames. -*/ - - -/* All threads share a single random number generator. -** This structure is the current state of the generator. -*/ -static SQLITE_WSD struct sqlite3PrngType { - unsigned char isInit; /* True if initialized */ - unsigned char i, j; /* State variables */ - unsigned char s[256]; /* State variables */ -} sqlite3Prng; - -/* -** Get a single 8-bit random value from the RC4 PRNG. The Mutex -** must be held while executing this routine. -** -** Why not just use a library random generator like lrand48() for this? -** Because the OP_NewRowid opcode in the VDBE depends on having a very -** good source of random numbers. The lrand48() library function may -** well be good enough. But maybe not. Or maybe lrand48() has some -** subtle problems on some systems that could cause problems. It is hard -** to know. To minimize the risk of problems due to bad lrand48() -** implementations, SQLite uses this random number generator based -** on RC4, which we know works very well. -** -** (Later): Actually, OP_NewRowid does not depend on a good source of -** randomness any more. But we will leave this code in all the same. -*/ -static u8 randomByte(void){ - unsigned char t; - - - /* The "wsdPrng" macro will resolve to the pseudo-random number generator - ** state vector. If writable static data is unsupported on the target, - ** we have to locate the state vector at run-time. In the more common - ** case where writable static data is supported, wsdPrng can refer directly - ** to the "sqlite3Prng" state vector declared above. - */ -#ifdef SQLITE_OMIT_WSD - struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); -# define wsdPrng p[0] -#else -# define wsdPrng sqlite3Prng -#endif - - - /* Initialize the state of the random number generator once, - ** the first time this routine is called. The seed value does - ** not need to contain a lot of randomness since we are not - ** trying to do secure encryption or anything like that... - ** - ** Nothing in this file or anywhere else in SQLite does any kind of - ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random - ** number generator) not as an encryption device. - */ - if( !wsdPrng.isInit ){ - int i; - char k[256]; - wsdPrng.j = 0; - wsdPrng.i = 0; - sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k); - for(i=0; i<256; i++){ - wsdPrng.s[i] = (u8)i; - } - for(i=0; i<256; i++){ - wsdPrng.j += wsdPrng.s[i] + k[i]; - t = wsdPrng.s[wsdPrng.j]; - wsdPrng.s[wsdPrng.j] = wsdPrng.s[i]; - wsdPrng.s[i] = t; - } - wsdPrng.isInit = 1; - } - - /* Generate and return single random byte - */ - wsdPrng.i++; - t = wsdPrng.s[wsdPrng.i]; - wsdPrng.j += t; - wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j]; - wsdPrng.s[wsdPrng.j] = t; - t += wsdPrng.s[wsdPrng.i]; - return wsdPrng.s[t]; -} - -/* -** Return N random bytes. -*/ -SQLITE_API void sqlite3_randomness(int N, void *pBuf){ - unsigned char *zBuf = pBuf; -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); -#endif - sqlite3_mutex_enter(mutex); - while( N-- ){ - *(zBuf++) = randomByte(); - } - sqlite3_mutex_leave(mutex); -} - -#ifndef SQLITE_OMIT_BUILTIN_TEST -/* -** For testing purposes, we sometimes want to preserve the state of -** PRNG and restore the PRNG to its saved state at a later time, or -** to reset the PRNG to its initial state. These routines accomplish -** those tasks. -** -** The sqlite3_test_control() interface calls these routines to -** control the PRNG. -*/ -static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng; -SQLITE_PRIVATE void sqlite3PrngSaveState(void){ - memcpy( - &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), - &GLOBAL(struct sqlite3PrngType, sqlite3Prng), - sizeof(sqlite3Prng) - ); -} -SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ - memcpy( - &GLOBAL(struct sqlite3PrngType, sqlite3Prng), - &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), - sizeof(sqlite3Prng) - ); -} -SQLITE_PRIVATE void sqlite3PrngResetState(void){ - GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0; -} -#endif /* SQLITE_OMIT_BUILTIN_TEST */ - -/************** End of random.c **********************************************/ -/************** Begin file utf.c *********************************************/ -/* -** 2004 April 13 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains routines used to translate between UTF-8, -** UTF-16, UTF-16BE, and UTF-16LE. -** -** Notes on UTF-8: -** -** Byte-0 Byte-1 Byte-2 Byte-3 Value -** 0xxxxxxx 00000000 00000000 0xxxxxxx -** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx -** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx -** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx -** -** -** Notes on UTF-16: (with wwww+1==uuuuu) -** -** Word-0 Word-1 Value -** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx -** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx -** -** -** BOM or Byte Order Mark: -** 0xff 0xfe little-endian utf-16 follows -** 0xfe 0xff big-endian utf-16 follows -** -*/ -/* #include <assert.h> */ - -#ifndef SQLITE_AMALGAMATION -/* -** The following constant value is used by the SQLITE_BIGENDIAN and -** SQLITE_LITTLEENDIAN macros. -*/ -SQLITE_PRIVATE const int sqlite3one = 1; -#endif /* SQLITE_AMALGAMATION */ - -/* -** This lookup table is used to help decode the first byte of -** a multi-byte UTF8 character. -*/ -static const unsigned char sqlite3Utf8Trans1[] = { - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, - 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, - 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, -}; - - -#define WRITE_UTF8(zOut, c) { \ - if( c<0x00080 ){ \ - *zOut++ = (u8)(c&0xFF); \ - } \ - else if( c<0x00800 ){ \ - *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - } \ - else if( c<0x10000 ){ \ - *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - }else{ \ - *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ - *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - } \ -} - -#define WRITE_UTF16LE(zOut, c) { \ - if( c<=0xFFFF ){ \ - *zOut++ = (u8)(c&0x00FF); \ - *zOut++ = (u8)((c>>8)&0x00FF); \ - }else{ \ - *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ - *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ - *zOut++ = (u8)(c&0x00FF); \ - *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ - } \ -} - -#define WRITE_UTF16BE(zOut, c) { \ - if( c<=0xFFFF ){ \ - *zOut++ = (u8)((c>>8)&0x00FF); \ - *zOut++ = (u8)(c&0x00FF); \ - }else{ \ - *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ - *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ - *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ - *zOut++ = (u8)(c&0x00FF); \ - } \ -} - -#define READ_UTF16LE(zIn, TERM, c){ \ - c = (*zIn++); \ - c += ((*zIn++)<<8); \ - if( c>=0xD800 && c<0xE000 && TERM ){ \ - int c2 = (*zIn++); \ - c2 += ((*zIn++)<<8); \ - c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ - } \ -} - -#define READ_UTF16BE(zIn, TERM, c){ \ - c = ((*zIn++)<<8); \ - c += (*zIn++); \ - if( c>=0xD800 && c<0xE000 && TERM ){ \ - int c2 = ((*zIn++)<<8); \ - c2 += (*zIn++); \ - c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ - } \ -} - -/* -** Translate a single UTF-8 character. Return the unicode value. -** -** During translation, assume that the byte that zTerm points -** is a 0x00. -** -** Write a pointer to the next unread byte back into *pzNext. -** -** Notes On Invalid UTF-8: -** -** * This routine never allows a 7-bit character (0x00 through 0x7f) to -** be encoded as a multi-byte character. Any multi-byte character that -** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. -** -** * This routine never allows a UTF16 surrogate value to be encoded. -** If a multi-byte character attempts to encode a value between -** 0xd800 and 0xe000 then it is rendered as 0xfffd. -** -** * Bytes in the range of 0x80 through 0xbf which occur as the first -** byte of a character are interpreted as single-byte characters -** and rendered as themselves even though they are technically -** invalid characters. -** -** * This routine accepts an infinite number of different UTF8 encodings -** for unicode values 0x80 and greater. It do not change over-length -** encodings to 0xfffd as some systems recommend. -*/ -#define READ_UTF8(zIn, zTerm, c) \ - c = *(zIn++); \ - if( c>=0xc0 ){ \ - c = sqlite3Utf8Trans1[c-0xc0]; \ - while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ - c = (c<<6) + (0x3f & *(zIn++)); \ - } \ - if( c<0x80 \ - || (c&0xFFFFF800)==0xD800 \ - || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ - } -SQLITE_PRIVATE u32 sqlite3Utf8Read( - const unsigned char **pz /* Pointer to string from which to read char */ -){ - unsigned int c; - - /* Same as READ_UTF8() above but without the zTerm parameter. - ** For this routine, we assume the UTF8 string is always zero-terminated. - */ - c = *((*pz)++); - if( c>=0xc0 ){ - c = sqlite3Utf8Trans1[c-0xc0]; - while( (*(*pz) & 0xc0)==0x80 ){ - c = (c<<6) + (0x3f & *((*pz)++)); - } - if( c<0x80 - || (c&0xFFFFF800)==0xD800 - || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } - } - return c; -} - - - - -/* -** If the TRANSLATE_TRACE macro is defined, the value of each Mem is -** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). -*/ -/* #define TRANSLATE_TRACE 1 */ - -#ifndef SQLITE_OMIT_UTF16 -/* -** This routine transforms the internal text encoding used by pMem to -** desiredEnc. It is an error if the string is already of the desired -** encoding, or if *pMem does not contain a string value. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ - int len; /* Maximum length of output string in bytes */ - unsigned char *zOut; /* Output buffer */ - unsigned char *zIn; /* Input iterator */ - unsigned char *zTerm; /* End of input */ - unsigned char *z; /* Output iterator */ - unsigned int c; - - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( pMem->flags&MEM_Str ); - assert( pMem->enc!=desiredEnc ); - assert( pMem->enc!=0 ); - assert( pMem->n>=0 ); - -#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) - { - char zBuf[100]; - sqlite3VdbeMemPrettyPrint(pMem, zBuf); - fprintf(stderr, "INPUT: %s\n", zBuf); - } -#endif - - /* If the translation is between UTF-16 little and big endian, then - ** all that is required is to swap the byte order. This case is handled - ** differently from the others. - */ - if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ - u8 temp; - int rc; - rc = sqlite3VdbeMemMakeWriteable(pMem); - if( rc!=SQLITE_OK ){ - assert( rc==SQLITE_NOMEM ); - return SQLITE_NOMEM; - } - zIn = (u8*)pMem->z; - zTerm = &zIn[pMem->n&~1]; - while( zIn<zTerm ){ - temp = *zIn; - *zIn = *(zIn+1); - zIn++; - *zIn++ = temp; - } - pMem->enc = desiredEnc; - goto translate_out; - } - - /* Set len to the maximum number of bytes required in the output buffer. */ - if( desiredEnc==SQLITE_UTF8 ){ - /* When converting from UTF-16, the maximum growth results from - ** translating a 2-byte character to a 4-byte UTF-8 character. - ** A single byte is required for the output string - ** nul-terminator. - */ - pMem->n &= ~1; - len = pMem->n * 2 + 1; - }else{ - /* When converting from UTF-8 to UTF-16 the maximum growth is caused - ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 - ** character. Two bytes are required in the output buffer for the - ** nul-terminator. - */ - len = pMem->n * 2 + 2; - } - - /* Set zIn to point at the start of the input buffer and zTerm to point 1 - ** byte past the end. - ** - ** Variable zOut is set to point at the output buffer, space obtained - ** from sqlite3_malloc(). - */ - zIn = (u8*)pMem->z; - zTerm = &zIn[pMem->n]; - zOut = sqlite3DbMallocRaw(pMem->db, len); - if( !zOut ){ - return SQLITE_NOMEM; - } - z = zOut; - - if( pMem->enc==SQLITE_UTF8 ){ - if( desiredEnc==SQLITE_UTF16LE ){ - /* UTF-8 -> UTF-16 Little-endian */ - while( zIn<zTerm ){ - READ_UTF8(zIn, zTerm, c); - WRITE_UTF16LE(z, c); - } - }else{ - assert( desiredEnc==SQLITE_UTF16BE ); - /* UTF-8 -> UTF-16 Big-endian */ - while( zIn<zTerm ){ - READ_UTF8(zIn, zTerm, c); - WRITE_UTF16BE(z, c); - } - } - pMem->n = (int)(z - zOut); - *z++ = 0; - }else{ - assert( desiredEnc==SQLITE_UTF8 ); - if( pMem->enc==SQLITE_UTF16LE ){ - /* UTF-16 Little-endian -> UTF-8 */ - while( zIn<zTerm ){ - READ_UTF16LE(zIn, zIn<zTerm, c); - WRITE_UTF8(z, c); - } - }else{ - /* UTF-16 Big-endian -> UTF-8 */ - while( zIn<zTerm ){ - READ_UTF16BE(zIn, zIn<zTerm, c); - WRITE_UTF8(z, c); - } - } - pMem->n = (int)(z - zOut); - } - *z = 0; - assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); - - sqlite3VdbeMemRelease(pMem); - pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); - pMem->enc = desiredEnc; - pMem->flags |= (MEM_Term|MEM_Dyn); - pMem->z = (char*)zOut; - pMem->zMalloc = pMem->z; - -translate_out: -#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) - { - char zBuf[100]; - sqlite3VdbeMemPrettyPrint(pMem, zBuf); - fprintf(stderr, "OUTPUT: %s\n", zBuf); - } -#endif - return SQLITE_OK; -} - -/* -** This routine checks for a byte-order mark at the beginning of the -** UTF-16 string stored in *pMem. If one is present, it is removed and -** the encoding of the Mem adjusted. This routine does not do any -** byte-swapping, it just sets Mem.enc appropriately. -** -** The allocation (static, dynamic etc.) and encoding of the Mem may be -** changed by this function. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){ - int rc = SQLITE_OK; - u8 bom = 0; - - assert( pMem->n>=0 ); - if( pMem->n>1 ){ - u8 b1 = *(u8 *)pMem->z; - u8 b2 = *(((u8 *)pMem->z) + 1); - if( b1==0xFE && b2==0xFF ){ - bom = SQLITE_UTF16BE; - } - if( b1==0xFF && b2==0xFE ){ - bom = SQLITE_UTF16LE; - } - } - - if( bom ){ - rc = sqlite3VdbeMemMakeWriteable(pMem); - if( rc==SQLITE_OK ){ - pMem->n -= 2; - memmove(pMem->z, &pMem->z[2], pMem->n); - pMem->z[pMem->n] = '\0'; - pMem->z[pMem->n+1] = '\0'; - pMem->flags |= MEM_Term; - pMem->enc = bom; - } - } - return rc; -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, -** return the number of unicode characters in pZ up to (but not including) -** the first 0x00 byte. If nByte is not less than zero, return the -** number of unicode characters in the first nByte of pZ (or up to -** the first 0x00, whichever comes first). -*/ -SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){ - int r = 0; - const u8 *z = (const u8*)zIn; - const u8 *zTerm; - if( nByte>=0 ){ - zTerm = &z[nByte]; - }else{ - zTerm = (const u8*)(-1); - } - assert( z<=zTerm ); - while( *z!=0 && z<zTerm ){ - SQLITE_SKIP_UTF8(z); - r++; - } - return r; -} - -/* This test function is not currently used by the automated test-suite. -** Hence it is only available in debug builds. -*/ -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -/* -** Translate UTF-8 to UTF-8. -** -** This has the effect of making sure that the string is well-formed -** UTF-8. Miscoded characters are removed. -** -** The translation is done in-place and aborted if the output -** overruns the input. -*/ -SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){ - unsigned char *zOut = zIn; - unsigned char *zStart = zIn; - u32 c; - - while( zIn[0] && zOut<=zIn ){ - c = sqlite3Utf8Read((const u8**)&zIn); - if( c!=0xfffd ){ - WRITE_UTF8(zOut, c); - } - } - *zOut = 0; - return (int)(zOut - zStart); -} -#endif - -#ifndef SQLITE_OMIT_UTF16 -/* -** Convert a UTF-16 string in the native encoding into a UTF-8 string. -** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must -** be freed by the calling function. -** -** NULL is returned if there is an allocation error. -*/ -SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){ - Mem m; - memset(&m, 0, sizeof(m)); - m.db = db; - sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC); - sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); - if( db->mallocFailed ){ - sqlite3VdbeMemRelease(&m); - m.z = 0; - } - assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); - assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); - assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed ); - assert( m.z || db->mallocFailed ); - return m.z; -} - -/* -** Convert a UTF-8 string to the UTF-16 encoding specified by parameter -** enc. A pointer to the new string is returned, and the value of *pnOut -** is set to the length of the returned string in bytes. The call should -** arrange to call sqlite3DbFree() on the returned pointer when it is -** no longer required. -** -** If a malloc failure occurs, NULL is returned and the db.mallocFailed -** flag set. -*/ -#ifdef SQLITE_ENABLE_STAT3 -SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){ - Mem m; - memset(&m, 0, sizeof(m)); - m.db = db; - sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC); - if( sqlite3VdbeMemTranslate(&m, enc) ){ - assert( db->mallocFailed ); - return 0; - } - assert( m.z==m.zMalloc ); - *pnOut = m.n; - return m.z; -} -#endif - -/* -** zIn is a UTF-16 encoded unicode string at least nChar characters long. -** Return the number of bytes in the first nChar unicode characters -** in pZ. nChar must be non-negative. -*/ -SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ - int c; - unsigned char const *z = zIn; - int n = 0; - - if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ - while( n<nChar ){ - READ_UTF16BE(z, 1, c); - n++; - } - }else{ - while( n<nChar ){ - READ_UTF16LE(z, 1, c); - n++; - } - } - return (int)(z-(unsigned char const *)zIn); -} - -#if defined(SQLITE_TEST) -/* -** This routine is called from the TCL test function "translate_selftest". -** It checks that the primitives for serializing and deserializing -** characters in each encoding are inverses of each other. -*/ -SQLITE_PRIVATE void sqlite3UtfSelfTest(void){ - unsigned int i, t; - unsigned char zBuf[20]; - unsigned char *z; - int n; - unsigned int c; - - for(i=0; i<0x00110000; i++){ - z = zBuf; - WRITE_UTF8(z, i); - n = (int)(z-zBuf); - assert( n>0 && n<=4 ); - z[0] = 0; - z = zBuf; - c = sqlite3Utf8Read((const u8**)&z); - t = i; - if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; - if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; - assert( c==t ); - assert( (z-zBuf)==n ); - } - for(i=0; i<0x00110000; i++){ - if( i>=0xD800 && i<0xE000 ) continue; - z = zBuf; - WRITE_UTF16LE(z, i); - n = (int)(z-zBuf); - assert( n>0 && n<=4 ); - z[0] = 0; - z = zBuf; - READ_UTF16LE(z, 1, c); - assert( c==i ); - assert( (z-zBuf)==n ); - } - for(i=0; i<0x00110000; i++){ - if( i>=0xD800 && i<0xE000 ) continue; - z = zBuf; - WRITE_UTF16BE(z, i); - n = (int)(z-zBuf); - assert( n>0 && n<=4 ); - z[0] = 0; - z = zBuf; - READ_UTF16BE(z, 1, c); - assert( c==i ); - assert( (z-zBuf)==n ); - } -} -#endif /* SQLITE_TEST */ -#endif /* SQLITE_OMIT_UTF16 */ - -/************** End of utf.c *************************************************/ -/************** Begin file util.c ********************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Utility functions used throughout sqlite. -** -** This file contains functions for allocating memory, comparing -** strings, and stuff like that. -** -*/ -/* #include <stdarg.h> */ -#ifdef SQLITE_HAVE_ISNAN -# include <math.h> -#endif - -/* -** Routine needed to support the testcase() macro. -*/ -#ifdef SQLITE_COVERAGE_TEST -SQLITE_PRIVATE void sqlite3Coverage(int x){ - static unsigned dummy = 0; - dummy += (unsigned)x; -} -#endif - -#ifndef SQLITE_OMIT_FLOATING_POINT -/* -** Return true if the floating point value is Not a Number (NaN). -** -** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. -** Otherwise, we have our own implementation that works on most systems. -*/ -SQLITE_PRIVATE int sqlite3IsNaN(double x){ - int rc; /* The value return */ -#if !defined(SQLITE_HAVE_ISNAN) - /* - ** Systems that support the isnan() library function should probably - ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have - ** found that many systems do not have a working isnan() function so - ** this implementation is provided as an alternative. - ** - ** This NaN test sometimes fails if compiled on GCC with -ffast-math. - ** On the other hand, the use of -ffast-math comes with the following - ** warning: - ** - ** This option [-ffast-math] should never be turned on by any - ** -O option since it can result in incorrect output for programs - ** which depend on an exact implementation of IEEE or ISO - ** rules/specifications for math functions. - ** - ** Under MSVC, this NaN test may fail if compiled with a floating- - ** point precision mode other than /fp:precise. From the MSDN - ** documentation: - ** - ** The compiler [with /fp:precise] will properly handle comparisons - ** involving NaN. For example, x != x evaluates to true if x is NaN - ** ... - */ -#ifdef __FAST_MATH__ -# error SQLite will not work correctly with the -ffast-math option of GCC. -#endif - volatile double y = x; - volatile double z = y; - rc = (y!=z); -#else /* if defined(SQLITE_HAVE_ISNAN) */ - rc = isnan(x); -#endif /* SQLITE_HAVE_ISNAN */ - testcase( rc ); - return rc; -} -#endif /* SQLITE_OMIT_FLOATING_POINT */ - -/* -** Compute a string length that is limited to what can be stored in -** lower 30 bits of a 32-bit signed integer. -** -** The value returned will never be negative. Nor will it ever be greater -** than the actual length of the string. For very long strings (greater -** than 1GiB) the value returned might be less than the true string length. -*/ -SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ - const char *z2 = z; - if( z==0 ) return 0; - while( *z2 ){ z2++; } - return 0x3fffffff & (int)(z2 - z); -} - -/* -** Set the most recent error code and error string for the sqlite -** handle "db". The error code is set to "err_code". -** -** If it is not NULL, string zFormat specifies the format of the -** error string in the style of the printf functions: The following -** format characters are allowed: -** -** %s Insert a string -** %z A string that should be freed after use -** %d Insert an integer -** %T Insert a token -** %S Insert the first element of a SrcList -** -** zFormat and any string tokens that follow it are assumed to be -** encoded in UTF-8. -** -** To clear the most recent error for sqlite handle "db", sqlite3Error -** should be called with err_code set to SQLITE_OK and zFormat set -** to NULL. -*/ -SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ - if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ - db->errCode = err_code; - if( zFormat ){ - char *z; - va_list ap; - va_start(ap, zFormat); - z = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); - }else{ - sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); - } - } -} - -/* -** Add an error message to pParse->zErrMsg and increment pParse->nErr. -** The following formatting characters are allowed: -** -** %s Insert a string -** %z A string that should be freed after use -** %d Insert an integer -** %T Insert a token -** %S Insert the first element of a SrcList -** -** This function should be used to report any error that occurs whilst -** compiling an SQL statement (i.e. within sqlite3_prepare()). The -** last thing the sqlite3_prepare() function does is copy the error -** stored by this function into the database handle using sqlite3Error(). -** Function sqlite3Error() should be used during statement execution -** (sqlite3_step() etc.). -*/ -SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ - char *zMsg; - va_list ap; - sqlite3 *db = pParse->db; - va_start(ap, zFormat); - zMsg = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - if( db->suppressErr ){ - sqlite3DbFree(db, zMsg); - }else{ - pParse->nErr++; - sqlite3DbFree(db, pParse->zErrMsg); - pParse->zErrMsg = zMsg; - pParse->rc = SQLITE_ERROR; - } -} - -/* -** Convert an SQL-style quoted string into a normal string by removing -** the quote characters. The conversion is done in-place. If the -** input does not begin with a quote character, then this routine -** is a no-op. -** -** The input string must be zero-terminated. A new zero-terminator -** is added to the dequoted string. -** -** The return value is -1 if no dequoting occurs or the length of the -** dequoted string, exclusive of the zero terminator, if dequoting does -** occur. -** -** 2002-Feb-14: This routine is extended to remove MS-Access style -** brackets from around identifers. For example: "[a-b-c]" becomes -** "a-b-c". -*/ -SQLITE_PRIVATE int sqlite3Dequote(char *z){ - char quote; - int i, j; - if( z==0 ) return -1; - quote = z[0]; - switch( quote ){ - case '\'': break; - case '"': break; - case '`': break; /* For MySQL compatibility */ - case '[': quote = ']'; break; /* For MS SqlServer compatibility */ - default: return -1; - } - for(i=1, j=0; ALWAYS(z[i]); i++){ - if( z[i]==quote ){ - if( z[i+1]==quote ){ - z[j++] = quote; - i++; - }else{ - break; - } - }else{ - z[j++] = z[i]; - } - } - z[j] = 0; - return j; -} - -/* Convenient short-hand */ -#define UpperToLower sqlite3UpperToLower - -/* -** Some systems have stricmp(). Others have strcasecmp(). Because -** there is no consistency, we will define our own. -** -** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and -** sqlite3_strnicmp() APIs allow applications and extensions to compare -** the contents of two buffers containing UTF-8 strings in a -** case-independent fashion, using the same definition of "case -** independence" that SQLite uses internally when comparing identifiers. -*/ -SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){ - register unsigned char *a, *b; - a = (unsigned char *)zLeft; - b = (unsigned char *)zRight; - while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } - return UpperToLower[*a] - UpperToLower[*b]; -} -SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ - register unsigned char *a, *b; - a = (unsigned char *)zLeft; - b = (unsigned char *)zRight; - while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } - return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; -} - -/* -** The string z[] is an text representation of a real number. -** Convert this string to a double and write it into *pResult. -** -** The string z[] is length bytes in length (bytes, not characters) and -** uses the encoding enc. The string is not necessarily zero-terminated. -** -** Return TRUE if the result is a valid real number (or integer) and FALSE -** if the string is empty or contains extraneous text. Valid numbers -** are in one of these formats: -** -** [+-]digits[E[+-]digits] -** [+-]digits.[digits][E[+-]digits] -** [+-].digits[E[+-]digits] -** -** Leading and trailing whitespace is ignored for the purpose of determining -** validity. -** -** If some prefix of the input string is a valid number, this routine -** returns FALSE but it still converts the prefix and writes the result -** into *pResult. -*/ -SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ -#ifndef SQLITE_OMIT_FLOATING_POINT - int incr; - const char *zEnd = z + length; - /* sign * significand * (10 ^ (esign * exponent)) */ - int sign = 1; /* sign of significand */ - i64 s = 0; /* significand */ - int d = 0; /* adjust exponent for shifting decimal point */ - int esign = 1; /* sign of exponent */ - int e = 0; /* exponent */ - int eValid = 1; /* True exponent is either not used or is well-formed */ - double result; - int nDigits = 0; - int nonNum = 0; - - assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); - *pResult = 0.0; /* Default return value, in case of an error */ - - if( enc==SQLITE_UTF8 ){ - incr = 1; - }else{ - int i; - incr = 2; - assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); - for(i=3-enc; i<length && z[i]==0; i+=2){} - nonNum = i<length; - zEnd = z+i+enc-3; - z += (enc&1); - } - - /* skip leading spaces */ - while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; - if( z>=zEnd ) return 0; - - /* get sign of significand */ - if( *z=='-' ){ - sign = -1; - z+=incr; - }else if( *z=='+' ){ - z+=incr; - } - - /* skip leading zeroes */ - while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; - - /* copy max significant digits to significand */ - while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ - s = s*10 + (*z - '0'); - z+=incr, nDigits++; - } - - /* skip non-significant significand digits - ** (increase exponent by d to shift decimal left) */ - while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; - if( z>=zEnd ) goto do_atof_calc; - - /* if decimal point is present */ - if( *z=='.' ){ - z+=incr; - /* copy digits from after decimal to significand - ** (decrease exponent by d to shift decimal right) */ - while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ - s = s*10 + (*z - '0'); - z+=incr, nDigits++, d--; - } - /* skip non-significant digits */ - while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; - } - if( z>=zEnd ) goto do_atof_calc; - - /* if exponent is present */ - if( *z=='e' || *z=='E' ){ - z+=incr; - eValid = 0; - if( z>=zEnd ) goto do_atof_calc; - /* get sign of exponent */ - if( *z=='-' ){ - esign = -1; - z+=incr; - }else if( *z=='+' ){ - z+=incr; - } - /* copy digits to exponent */ - while( z<zEnd && sqlite3Isdigit(*z) ){ - e = e<10000 ? (e*10 + (*z - '0')) : 10000; - z+=incr; - eValid = 1; - } - } - - /* skip trailing spaces */ - if( nDigits && eValid ){ - while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; - } - -do_atof_calc: - /* adjust exponent by d, and update sign */ - e = (e*esign) + d; - if( e<0 ) { - esign = -1; - e *= -1; - } else { - esign = 1; - } - - /* if 0 significand */ - if( !s ) { - /* In the IEEE 754 standard, zero is signed. - ** Add the sign if we've seen at least one digit */ - result = (sign<0 && nDigits) ? -(double)0 : (double)0; - } else { - /* attempt to reduce exponent */ - if( esign>0 ){ - while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; - }else{ - while( !(s%10) && e>0 ) e--,s/=10; - } - - /* adjust the sign of significand */ - s = sign<0 ? -s : s; - - /* if exponent, scale significand as appropriate - ** and store in result. */ - if( e ){ - LONGDOUBLE_TYPE scale = 1.0; - /* attempt to handle extremely small/large numbers better */ - if( e>307 && e<342 ){ - while( e%308 ) { scale *= 1.0e+1; e -= 1; } - if( esign<0 ){ - result = s / scale; - result /= 1.0e+308; - }else{ - result = s * scale; - result *= 1.0e+308; - } - }else if( e>=342 ){ - if( esign<0 ){ - result = 0.0*s; - }else{ - result = 1e308*1e308*s; /* Infinity */ - } - }else{ - /* 1.0e+22 is the largest power of 10 than can be - ** represented exactly. */ - while( e%22 ) { scale *= 1.0e+1; e -= 1; } - while( e>0 ) { scale *= 1.0e+22; e -= 22; } - if( esign<0 ){ - result = s / scale; - }else{ - result = s * scale; - } - } - } else { - result = (double)s; - } - } - - /* store the result */ - *pResult = result; - - /* return true if number and no extra non-whitespace chracters after */ - return z>=zEnd && nDigits>0 && eValid && nonNum==0; -#else - return !sqlite3Atoi64(z, pResult, length, enc); -#endif /* SQLITE_OMIT_FLOATING_POINT */ -} - -/* -** Compare the 19-character string zNum against the text representation -** value 2^63: 9223372036854775808. Return negative, zero, or positive -** if zNum is less than, equal to, or greater than the string. -** Note that zNum must contain exactly 19 characters. -** -** Unlike memcmp() this routine is guaranteed to return the difference -** in the values of the last digit if the only difference is in the -** last digit. So, for example, -** -** compare2pow63("9223372036854775800", 1) -** -** will return -8. -*/ -static int compare2pow63(const char *zNum, int incr){ - int c = 0; - int i; - /* 012345678901234567 */ - const char *pow63 = "922337203685477580"; - for(i=0; c==0 && i<18; i++){ - c = (zNum[i*incr]-pow63[i])*10; - } - if( c==0 ){ - c = zNum[18*incr] - '8'; - testcase( c==(-1) ); - testcase( c==0 ); - testcase( c==(+1) ); - } - return c; -} - - -/* -** Convert zNum to a 64-bit signed integer. -** -** If the zNum value is representable as a 64-bit twos-complement -** integer, then write that value into *pNum and return 0. -** -** If zNum is exactly 9223372036854665808, return 2. This special -** case is broken out because while 9223372036854665808 cannot be a -** signed 64-bit integer, its negative -9223372036854665808 can be. -** -** If zNum is too big for a 64-bit integer and is not -** 9223372036854665808 or if zNum contains any non-numeric text, -** then return 1. -** -** length is the number of bytes in the string (bytes, not characters). -** The string is not necessarily zero-terminated. The encoding is -** given by enc. -*/ -SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ - int incr; - u64 u = 0; - int neg = 0; /* assume positive */ - int i; - int c = 0; - int nonNum = 0; - const char *zStart; - const char *zEnd = zNum + length; - assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); - if( enc==SQLITE_UTF8 ){ - incr = 1; - }else{ - incr = 2; - assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); - for(i=3-enc; i<length && zNum[i]==0; i+=2){} - nonNum = i<length; - zEnd = zNum+i+enc-3; - zNum += (enc&1); - } - while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; - if( zNum<zEnd ){ - if( *zNum=='-' ){ - neg = 1; - zNum+=incr; - }else if( *zNum=='+' ){ - zNum+=incr; - } - } - zStart = zNum; - while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ - for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ - u = u*10 + c - '0'; - } - if( u>LARGEST_INT64 ){ - *pNum = SMALLEST_INT64; - }else if( neg ){ - *pNum = -(i64)u; - }else{ - *pNum = (i64)u; - } - testcase( i==18 ); - testcase( i==19 ); - testcase( i==20 ); - if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ - /* zNum is empty or contains non-numeric text or is longer - ** than 19 digits (thus guaranteeing that it is too large) */ - return 1; - }else if( i<19*incr ){ - /* Less than 19 digits, so we know that it fits in 64 bits */ - assert( u<=LARGEST_INT64 ); - return 0; - }else{ - /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ - c = compare2pow63(zNum, incr); - if( c<0 ){ - /* zNum is less than 9223372036854775808 so it fits */ - assert( u<=LARGEST_INT64 ); - return 0; - }else if( c>0 ){ - /* zNum is greater than 9223372036854775808 so it overflows */ - return 1; - }else{ - /* zNum is exactly 9223372036854775808. Fits if negative. The - ** special case 2 overflow if positive */ - assert( u-1==LARGEST_INT64 ); - assert( (*pNum)==SMALLEST_INT64 ); - return neg ? 0 : 2; - } - } -} - -/* -** If zNum represents an integer that will fit in 32-bits, then set -** *pValue to that integer and return true. Otherwise return false. -** -** Any non-numeric characters that following zNum are ignored. -** This is different from sqlite3Atoi64() which requires the -** input number to be zero-terminated. -*/ -SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){ - sqlite_int64 v = 0; - int i, c; - int neg = 0; - if( zNum[0]=='-' ){ - neg = 1; - zNum++; - }else if( zNum[0]=='+' ){ - zNum++; - } - while( zNum[0]=='0' ) zNum++; - for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ - v = v*10 + c; - } - - /* The longest decimal representation of a 32 bit integer is 10 digits: - ** - ** 1234567890 - ** 2^31 -> 2147483648 - */ - testcase( i==10 ); - if( i>10 ){ - return 0; - } - testcase( v-neg==2147483647 ); - if( v-neg>2147483647 ){ - return 0; - } - if( neg ){ - v = -v; - } - *pValue = (int)v; - return 1; -} - -/* -** Return a 32-bit integer value extracted from a string. If the -** string is not an integer, just return 0. -*/ -SQLITE_PRIVATE int sqlite3Atoi(const char *z){ - int x = 0; - if( z ) sqlite3GetInt32(z, &x); - return x; -} - -/* -** The variable-length integer encoding is as follows: -** -** KEY: -** A = 0xxxxxxx 7 bits of data and one flag bit -** B = 1xxxxxxx 7 bits of data and one flag bit -** C = xxxxxxxx 8 bits of data -** -** 7 bits - A -** 14 bits - BA -** 21 bits - BBA -** 28 bits - BBBA -** 35 bits - BBBBA -** 42 bits - BBBBBA -** 49 bits - BBBBBBA -** 56 bits - BBBBBBBA -** 64 bits - BBBBBBBBC -*/ - -/* -** Write a 64-bit variable-length integer to memory starting at p[0]. -** The length of data write will be between 1 and 9 bytes. The number -** of bytes written is returned. -** -** A variable-length integer consists of the lower 7 bits of each byte -** for all bytes that have the 8th bit set and one byte with the 8th -** bit clear. Except, if we get to the 9th byte, it stores the full -** 8 bits and is the last byte. -*/ -SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){ - int i, j, n; - u8 buf[10]; - if( v & (((u64)0xff000000)<<32) ){ - p[8] = (u8)v; - v >>= 8; - for(i=7; i>=0; i--){ - p[i] = (u8)((v & 0x7f) | 0x80); - v >>= 7; - } - return 9; - } - n = 0; - do{ - buf[n++] = (u8)((v & 0x7f) | 0x80); - v >>= 7; - }while( v!=0 ); - buf[0] &= 0x7f; - assert( n<=9 ); - for(i=0, j=n-1; j>=0; j--, i++){ - p[i] = buf[j]; - } - return n; -} - -/* -** This routine is a faster version of sqlite3PutVarint() that only -** works for 32-bit positive integers and which is optimized for -** the common case of small integers. A MACRO version, putVarint32, -** is provided which inlines the single-byte case. All code should use -** the MACRO version as this function assumes the single-byte case has -** already been handled. -*/ -SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){ -#ifndef putVarint32 - if( (v & ~0x7f)==0 ){ - p[0] = v; - return 1; - } -#endif - if( (v & ~0x3fff)==0 ){ - p[0] = (u8)((v>>7) | 0x80); - p[1] = (u8)(v & 0x7f); - return 2; - } - return sqlite3PutVarint(p, v); -} - -/* -** Bitmasks used by sqlite3GetVarint(). These precomputed constants -** are defined here rather than simply putting the constant expressions -** inline in order to work around bugs in the RVT compiler. -** -** SLOT_2_0 A mask for (0x7f<<14) | 0x7f -** -** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 -*/ -#define SLOT_2_0 0x001fc07f -#define SLOT_4_2_0 0xf01fc07f - - -/* -** Read a 64-bit variable-length integer from memory starting at p[0]. -** Return the number of bytes read. The value is stored in *v. -*/ -SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ - u32 a,b,s; - - a = *p; - /* a: p0 (unmasked) */ - if (!(a&0x80)) - { - *v = a; - return 1; - } - - p++; - b = *p; - /* b: p1 (unmasked) */ - if (!(b&0x80)) - { - a &= 0x7f; - a = a<<7; - a |= b; - *v = a; - return 2; - } - - /* Verify that constants are precomputed correctly */ - assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); - assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); - - p++; - a = a<<14; - a |= *p; - /* a: p0<<14 | p2 (unmasked) */ - if (!(a&0x80)) - { - a &= SLOT_2_0; - b &= 0x7f; - b = b<<7; - a |= b; - *v = a; - return 3; - } - - /* CSE1 from below */ - a &= SLOT_2_0; - p++; - b = b<<14; - b |= *p; - /* b: p1<<14 | p3 (unmasked) */ - if (!(b&0x80)) - { - b &= SLOT_2_0; - /* moved CSE1 up */ - /* a &= (0x7f<<14)|(0x7f); */ - a = a<<7; - a |= b; - *v = a; - return 4; - } - - /* a: p0<<14 | p2 (masked) */ - /* b: p1<<14 | p3 (unmasked) */ - /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ - /* moved CSE1 up */ - /* a &= (0x7f<<14)|(0x7f); */ - b &= SLOT_2_0; - s = a; - /* s: p0<<14 | p2 (masked) */ - - p++; - a = a<<14; - a |= *p; - /* a: p0<<28 | p2<<14 | p4 (unmasked) */ - if (!(a&0x80)) - { - /* we can skip these cause they were (effectively) done above in calc'ing s */ - /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ - /* b &= (0x7f<<14)|(0x7f); */ - b = b<<7; - a |= b; - s = s>>18; - *v = ((u64)s)<<32 | a; - return 5; - } - - /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ - s = s<<7; - s |= b; - /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ - - p++; - b = b<<14; - b |= *p; - /* b: p1<<28 | p3<<14 | p5 (unmasked) */ - if (!(b&0x80)) - { - /* we can skip this cause it was (effectively) done above in calc'ing s */ - /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ - a &= SLOT_2_0; - a = a<<7; - a |= b; - s = s>>18; - *v = ((u64)s)<<32 | a; - return 6; - } - - p++; - a = a<<14; - a |= *p; - /* a: p2<<28 | p4<<14 | p6 (unmasked) */ - if (!(a&0x80)) - { - a &= SLOT_4_2_0; - b &= SLOT_2_0; - b = b<<7; - a |= b; - s = s>>11; - *v = ((u64)s)<<32 | a; - return 7; - } - - /* CSE2 from below */ - a &= SLOT_2_0; - p++; - b = b<<14; - b |= *p; - /* b: p3<<28 | p5<<14 | p7 (unmasked) */ - if (!(b&0x80)) - { - b &= SLOT_4_2_0; - /* moved CSE2 up */ - /* a &= (0x7f<<14)|(0x7f); */ - a = a<<7; - a |= b; - s = s>>4; - *v = ((u64)s)<<32 | a; - return 8; - } - - p++; - a = a<<15; - a |= *p; - /* a: p4<<29 | p6<<15 | p8 (unmasked) */ - - /* moved CSE2 up */ - /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ - b &= SLOT_2_0; - b = b<<8; - a |= b; - - s = s<<4; - b = p[-4]; - b &= 0x7f; - b = b>>3; - s |= b; - - *v = ((u64)s)<<32 | a; - - return 9; -} - -/* -** Read a 32-bit variable-length integer from memory starting at p[0]. -** Return the number of bytes read. The value is stored in *v. -** -** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned -** integer, then set *v to 0xffffffff. -** -** A MACRO version, getVarint32, is provided which inlines the -** single-byte case. All code should use the MACRO version as -** this function assumes the single-byte case has already been handled. -*/ -SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ - u32 a,b; - - /* The 1-byte case. Overwhelmingly the most common. Handled inline - ** by the getVarin32() macro */ - a = *p; - /* a: p0 (unmasked) */ -#ifndef getVarint32 - if (!(a&0x80)) - { - /* Values between 0 and 127 */ - *v = a; - return 1; - } -#endif - - /* The 2-byte case */ - p++; - b = *p; - /* b: p1 (unmasked) */ - if (!(b&0x80)) - { - /* Values between 128 and 16383 */ - a &= 0x7f; - a = a<<7; - *v = a | b; - return 2; - } - - /* The 3-byte case */ - p++; - a = a<<14; - a |= *p; - /* a: p0<<14 | p2 (unmasked) */ - if (!(a&0x80)) - { - /* Values between 16384 and 2097151 */ - a &= (0x7f<<14)|(0x7f); - b &= 0x7f; - b = b<<7; - *v = a | b; - return 3; - } - - /* A 32-bit varint is used to store size information in btrees. - ** Objects are rarely larger than 2MiB limit of a 3-byte varint. - ** A 3-byte varint is sufficient, for example, to record the size - ** of a 1048569-byte BLOB or string. - ** - ** We only unroll the first 1-, 2-, and 3- byte cases. The very - ** rare larger cases can be handled by the slower 64-bit varint - ** routine. - */ -#if 1 - { - u64 v64; - u8 n; - - p -= 2; - n = sqlite3GetVarint(p, &v64); - assert( n>3 && n<=9 ); - if( (v64 & SQLITE_MAX_U32)!=v64 ){ - *v = 0xffffffff; - }else{ - *v = (u32)v64; - } - return n; - } - -#else - /* For following code (kept for historical record only) shows an - ** unrolling for the 3- and 4-byte varint cases. This code is - ** slightly faster, but it is also larger and much harder to test. - */ - p++; - b = b<<14; - b |= *p; - /* b: p1<<14 | p3 (unmasked) */ - if (!(b&0x80)) - { - /* Values between 2097152 and 268435455 */ - b &= (0x7f<<14)|(0x7f); - a &= (0x7f<<14)|(0x7f); - a = a<<7; - *v = a | b; - return 4; - } - - p++; - a = a<<14; - a |= *p; - /* a: p0<<28 | p2<<14 | p4 (unmasked) */ - if (!(a&0x80)) - { - /* Values between 268435456 and 34359738367 */ - a &= SLOT_4_2_0; - b &= SLOT_4_2_0; - b = b<<7; - *v = a | b; - return 5; - } - - /* We can only reach this point when reading a corrupt database - ** file. In that case we are not in any hurry. Use the (relatively - ** slow) general-purpose sqlite3GetVarint() routine to extract the - ** value. */ - { - u64 v64; - u8 n; - - p -= 4; - n = sqlite3GetVarint(p, &v64); - assert( n>5 && n<=9 ); - *v = (u32)v64; - return n; - } -#endif -} - -/* -** Return the number of bytes that will be needed to store the given -** 64-bit integer. -*/ -SQLITE_PRIVATE int sqlite3VarintLen(u64 v){ - int i = 0; - do{ - i++; - v >>= 7; - }while( v!=0 && ALWAYS(i<9) ); - return i; -} - - -/* -** Read or write a four-byte big-endian integer value. -*/ -SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ - return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; -} -SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ - p[0] = (u8)(v>>24); - p[1] = (u8)(v>>16); - p[2] = (u8)(v>>8); - p[3] = (u8)v; -} - - - -/* -** Translate a single byte of Hex into an integer. -** This routine only works if h really is a valid hexadecimal -** character: 0..9a..fA..F -*/ -SQLITE_PRIVATE u8 sqlite3HexToInt(int h){ - assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); -#ifdef SQLITE_ASCII - h += 9*(1&(h>>6)); -#endif -#ifdef SQLITE_EBCDIC - h += 9*(1&~(h>>4)); -#endif - return (u8)(h & 0xf); -} - -#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) -/* -** Convert a BLOB literal of the form "x'hhhhhh'" into its binary -** value. Return a pointer to its binary value. Space to hold the -** binary value has been obtained from malloc and must be freed by -** the calling routine. -*/ -SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ - char *zBlob; - int i; - - zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); - n--; - if( zBlob ){ - for(i=0; i<n; i+=2){ - zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); - } - zBlob[i/2] = 0; - } - return zBlob; -} -#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ - -/* -** Log an error that is an API call on a connection pointer that should -** not have been used. The "type" of connection pointer is given as the -** argument. The zType is a word like "NULL" or "closed" or "invalid". -*/ -static void logBadConnection(const char *zType){ - sqlite3_log(SQLITE_MISUSE, - "API call with %s database connection pointer", - zType - ); -} - -/* -** Check to make sure we have a valid db pointer. This test is not -** foolproof but it does provide some measure of protection against -** misuse of the interface such as passing in db pointers that are -** NULL or which have been previously closed. If this routine returns -** 1 it means that the db pointer is valid and 0 if it should not be -** dereferenced for any reason. The calling function should invoke -** SQLITE_MISUSE immediately. -** -** sqlite3SafetyCheckOk() requires that the db pointer be valid for -** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to -** open properly and is not fit for general use but which can be -** used as an argument to sqlite3_errmsg() or sqlite3_close(). -*/ -SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){ - u32 magic; - if( db==0 ){ - logBadConnection("NULL"); - return 0; - } - magic = db->magic; - if( magic!=SQLITE_MAGIC_OPEN ){ - if( sqlite3SafetyCheckSickOrOk(db) ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - logBadConnection("unopened"); - } - return 0; - }else{ - return 1; - } -} -SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ - u32 magic; - magic = db->magic; - if( magic!=SQLITE_MAGIC_SICK && - magic!=SQLITE_MAGIC_OPEN && - magic!=SQLITE_MAGIC_BUSY ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - logBadConnection("invalid"); - return 0; - }else{ - return 1; - } -} - -/* -** Attempt to add, substract, or multiply the 64-bit signed value iB against -** the other 64-bit signed integer at *pA and store the result in *pA. -** Return 0 on success. Or if the operation would have resulted in an -** overflow, leave *pA unchanged and return 1. -*/ -SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){ - i64 iA = *pA; - testcase( iA==0 ); testcase( iA==1 ); - testcase( iB==-1 ); testcase( iB==0 ); - if( iB>=0 ){ - testcase( iA>0 && LARGEST_INT64 - iA == iB ); - testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); - if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; - *pA += iB; - }else{ - testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); - testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); - if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; - *pA += iB; - } - return 0; -} -SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){ - testcase( iB==SMALLEST_INT64+1 ); - if( iB==SMALLEST_INT64 ){ - testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); - if( (*pA)>=0 ) return 1; - *pA -= iB; - return 0; - }else{ - return sqlite3AddInt64(pA, -iB); - } -} -#define TWOPOWER32 (((i64)1)<<32) -#define TWOPOWER31 (((i64)1)<<31) -SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){ - i64 iA = *pA; - i64 iA1, iA0, iB1, iB0, r; - - iA1 = iA/TWOPOWER32; - iA0 = iA % TWOPOWER32; - iB1 = iB/TWOPOWER32; - iB0 = iB % TWOPOWER32; - if( iA1*iB1 != 0 ) return 1; - assert( iA1*iB0==0 || iA0*iB1==0 ); - r = iA1*iB0 + iA0*iB1; - testcase( r==(-TWOPOWER31)-1 ); - testcase( r==(-TWOPOWER31) ); - testcase( r==TWOPOWER31 ); - testcase( r==TWOPOWER31-1 ); - if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; - r *= TWOPOWER32; - if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; - *pA = r; - return 0; -} - -/* -** Compute the absolute value of a 32-bit signed integer, of possible. Or -** if the integer has a value of -2147483648, return +2147483647 -*/ -SQLITE_PRIVATE int sqlite3AbsInt32(int x){ - if( x>=0 ) return x; - if( x==(int)0x80000000 ) return 0x7fffffff; - return -x; -} - -#ifdef SQLITE_ENABLE_8_3_NAMES -/* -** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database -** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and -** if filename in z[] has a suffix (a.k.a. "extension") that is longer than -** three characters, then shorten the suffix on z[] to be the last three -** characters of the original suffix. -** -** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always -** do the suffix shortening regardless of URI parameter. -** -** Examples: -** -** test.db-journal => test.nal -** test.db-wal => test.wal -** test.db-shm => test.shm -** test.db-mj7f3319fa => test.9fa -*/ -SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ -#if SQLITE_ENABLE_8_3_NAMES<2 - if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) -#endif - { - int i, sz; - sz = sqlite3Strlen30(z); - for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} - if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); - } -} -#endif - -/************** End of util.c ************************************************/ -/************** Begin file hash.c ********************************************/ -/* -** 2001 September 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the implementation of generic hash-tables -** used in SQLite. -*/ -/* #include <assert.h> */ - -/* Turn bulk memory into a hash table object by initializing the -** fields of the Hash structure. -** -** "pNew" is a pointer to the hash table that is to be initialized. -*/ -SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){ - assert( pNew!=0 ); - pNew->first = 0; - pNew->count = 0; - pNew->htsize = 0; - pNew->ht = 0; -} - -/* Remove all entries from a hash table. Reclaim all memory. -** Call this routine to delete a hash table or to reset a hash table -** to the empty state. -*/ -SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){ - HashElem *elem; /* For looping over all elements of the table */ - - assert( pH!=0 ); - elem = pH->first; - pH->first = 0; - sqlite3_free(pH->ht); - pH->ht = 0; - pH->htsize = 0; - while( elem ){ - HashElem *next_elem = elem->next; - sqlite3_free(elem); - elem = next_elem; - } - pH->count = 0; -} - -/* -** The hashing function. -*/ -static unsigned int strHash(const char *z, int nKey){ - int h = 0; - assert( nKey>=0 ); - while( nKey > 0 ){ - h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; - nKey--; - } - return h; -} - - -/* Link pNew element into the hash table pH. If pEntry!=0 then also -** insert pNew into the pEntry hash bucket. -*/ -static void insertElement( - Hash *pH, /* The complete hash table */ - struct _ht *pEntry, /* The entry into which pNew is inserted */ - HashElem *pNew /* The element to be inserted */ -){ - HashElem *pHead; /* First element already in pEntry */ - if( pEntry ){ - pHead = pEntry->count ? pEntry->chain : 0; - pEntry->count++; - pEntry->chain = pNew; - }else{ - pHead = 0; - } - if( pHead ){ - pNew->next = pHead; - pNew->prev = pHead->prev; - if( pHead->prev ){ pHead->prev->next = pNew; } - else { pH->first = pNew; } - pHead->prev = pNew; - }else{ - pNew->next = pH->first; - if( pH->first ){ pH->first->prev = pNew; } - pNew->prev = 0; - pH->first = pNew; - } -} - - -/* Resize the hash table so that it cantains "new_size" buckets. -** -** The hash table might fail to resize if sqlite3_malloc() fails or -** if the new size is the same as the prior size. -** Return TRUE if the resize occurs and false if not. -*/ -static int rehash(Hash *pH, unsigned int new_size){ - struct _ht *new_ht; /* The new hash table */ - HashElem *elem, *next_elem; /* For looping over existing elements */ - -#if SQLITE_MALLOC_SOFT_LIMIT>0 - if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ - new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); - } - if( new_size==pH->htsize ) return 0; -#endif - - /* The inability to allocates space for a larger hash table is - ** a performance hit but it is not a fatal error. So mark the - ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of - ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() - ** only zeroes the requested number of bytes whereas this module will - ** use the actual amount of space allocated for the hash table (which - ** may be larger than the requested amount). - */ - sqlite3BeginBenignMalloc(); - new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); - sqlite3EndBenignMalloc(); - - if( new_ht==0 ) return 0; - sqlite3_free(pH->ht); - pH->ht = new_ht; - pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); - memset(new_ht, 0, new_size*sizeof(struct _ht)); - for(elem=pH->first, pH->first=0; elem; elem = next_elem){ - unsigned int h = strHash(elem->pKey, elem->nKey) % new_size; - next_elem = elem->next; - insertElement(pH, &new_ht[h], elem); - } - return 1; -} - -/* This function (for internal use only) locates an element in an -** hash table that matches the given key. The hash for this key has -** already been computed and is passed as the 4th parameter. -*/ -static HashElem *findElementGivenHash( - const Hash *pH, /* The pH to be searched */ - const char *pKey, /* The key we are searching for */ - int nKey, /* Bytes in key (not counting zero terminator) */ - unsigned int h /* The hash for this key. */ -){ - HashElem *elem; /* Used to loop thru the element list */ - int count; /* Number of elements left to test */ - - if( pH->ht ){ - struct _ht *pEntry = &pH->ht[h]; - elem = pEntry->chain; - count = pEntry->count; - }else{ - elem = pH->first; - count = pH->count; - } - while( count-- && ALWAYS(elem) ){ - if( elem->nKey==nKey && sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){ - return elem; - } - elem = elem->next; - } - return 0; -} - -/* Remove a single entry from the hash table given a pointer to that -** element and a hash on the element's key. -*/ -static void removeElementGivenHash( - Hash *pH, /* The pH containing "elem" */ - HashElem* elem, /* The element to be removed from the pH */ - unsigned int h /* Hash value for the element */ -){ - struct _ht *pEntry; - if( elem->prev ){ - elem->prev->next = elem->next; - }else{ - pH->first = elem->next; - } - if( elem->next ){ - elem->next->prev = elem->prev; - } - if( pH->ht ){ - pEntry = &pH->ht[h]; - if( pEntry->chain==elem ){ - pEntry->chain = elem->next; - } - pEntry->count--; - assert( pEntry->count>=0 ); - } - sqlite3_free( elem ); - pH->count--; - if( pH->count==0 ){ - assert( pH->first==0 ); - assert( pH->count==0 ); - sqlite3HashClear(pH); - } -} - -/* Attempt to locate an element of the hash table pH with a key -** that matches pKey,nKey. Return the data for this element if it is -** found, or NULL if there is no match. -*/ -SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey, int nKey){ - HashElem *elem; /* The element that matches key */ - unsigned int h; /* A hash on key */ - - assert( pH!=0 ); - assert( pKey!=0 ); - assert( nKey>=0 ); - if( pH->ht ){ - h = strHash(pKey, nKey) % pH->htsize; - }else{ - h = 0; - } - elem = findElementGivenHash(pH, pKey, nKey, h); - return elem ? elem->data : 0; -} - -/* Insert an element into the hash table pH. The key is pKey,nKey -** and the data is "data". -** -** If no element exists with a matching key, then a new -** element is created and NULL is returned. -** -** If another element already exists with the same key, then the -** new data replaces the old data and the old data is returned. -** The key is not copied in this instance. If a malloc fails, then -** the new data is returned and the hash table is unchanged. -** -** If the "data" parameter to this function is NULL, then the -** element corresponding to "key" is removed from the hash table. -*/ -SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, int nKey, void *data){ - unsigned int h; /* the hash of the key modulo hash table size */ - HashElem *elem; /* Used to loop thru the element list */ - HashElem *new_elem; /* New element added to the pH */ - - assert( pH!=0 ); - assert( pKey!=0 ); - assert( nKey>=0 ); - if( pH->htsize ){ - h = strHash(pKey, nKey) % pH->htsize; - }else{ - h = 0; - } - elem = findElementGivenHash(pH,pKey,nKey,h); - if( elem ){ - void *old_data = elem->data; - if( data==0 ){ - removeElementGivenHash(pH,elem,h); - }else{ - elem->data = data; - elem->pKey = pKey; - assert(nKey==elem->nKey); - } - return old_data; - } - if( data==0 ) return 0; - new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); - if( new_elem==0 ) return data; - new_elem->pKey = pKey; - new_elem->nKey = nKey; - new_elem->data = data; - pH->count++; - if( pH->count>=10 && pH->count > 2*pH->htsize ){ - if( rehash(pH, pH->count*2) ){ - assert( pH->htsize>0 ); - h = strHash(pKey, nKey) % pH->htsize; - } - } - if( pH->ht ){ - insertElement(pH, &pH->ht[h], new_elem); - }else{ - insertElement(pH, 0, new_elem); - } - return 0; -} - -/************** End of hash.c ************************************************/ -/************** Begin file opcodes.c *****************************************/ -/* Automatically generated. Do not edit */ -/* See the mkopcodec.awk script for details. */ -#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ - static const char *const azName[] = { "?", - /* 1 */ "Goto", - /* 2 */ "Gosub", - /* 3 */ "Return", - /* 4 */ "Yield", - /* 5 */ "HaltIfNull", - /* 6 */ "Halt", - /* 7 */ "Integer", - /* 8 */ "Int64", - /* 9 */ "String", - /* 10 */ "Null", - /* 11 */ "Blob", - /* 12 */ "Variable", - /* 13 */ "Move", - /* 14 */ "Copy", - /* 15 */ "SCopy", - /* 16 */ "ResultRow", - /* 17 */ "CollSeq", - /* 18 */ "Function", - /* 19 */ "Not", - /* 20 */ "AddImm", - /* 21 */ "MustBeInt", - /* 22 */ "RealAffinity", - /* 23 */ "Permutation", - /* 24 */ "Compare", - /* 25 */ "Jump", - /* 26 */ "Once", - /* 27 */ "If", - /* 28 */ "IfNot", - /* 29 */ "Column", - /* 30 */ "Affinity", - /* 31 */ "MakeRecord", - /* 32 */ "Count", - /* 33 */ "Savepoint", - /* 34 */ "AutoCommit", - /* 35 */ "Transaction", - /* 36 */ "ReadCookie", - /* 37 */ "SetCookie", - /* 38 */ "VerifyCookie", - /* 39 */ "OpenRead", - /* 40 */ "OpenWrite", - /* 41 */ "OpenAutoindex", - /* 42 */ "OpenEphemeral", - /* 43 */ "SorterOpen", - /* 44 */ "OpenPseudo", - /* 45 */ "Close", - /* 46 */ "SeekLt", - /* 47 */ "SeekLe", - /* 48 */ "SeekGe", - /* 49 */ "SeekGt", - /* 50 */ "Seek", - /* 51 */ "NotFound", - /* 52 */ "Found", - /* 53 */ "IsUnique", - /* 54 */ "NotExists", - /* 55 */ "Sequence", - /* 56 */ "NewRowid", - /* 57 */ "Insert", - /* 58 */ "InsertInt", - /* 59 */ "Delete", - /* 60 */ "ResetCount", - /* 61 */ "SorterCompare", - /* 62 */ "SorterData", - /* 63 */ "RowKey", - /* 64 */ "RowData", - /* 65 */ "Rowid", - /* 66 */ "NullRow", - /* 67 */ "Last", - /* 68 */ "Or", - /* 69 */ "And", - /* 70 */ "SorterSort", - /* 71 */ "Sort", - /* 72 */ "Rewind", - /* 73 */ "IsNull", - /* 74 */ "NotNull", - /* 75 */ "Ne", - /* 76 */ "Eq", - /* 77 */ "Gt", - /* 78 */ "Le", - /* 79 */ "Lt", - /* 80 */ "Ge", - /* 81 */ "SorterNext", - /* 82 */ "BitAnd", - /* 83 */ "BitOr", - /* 84 */ "ShiftLeft", - /* 85 */ "ShiftRight", - /* 86 */ "Add", - /* 87 */ "Subtract", - /* 88 */ "Multiply", - /* 89 */ "Divide", - /* 90 */ "Remainder", - /* 91 */ "Concat", - /* 92 */ "Prev", - /* 93 */ "BitNot", - /* 94 */ "String8", - /* 95 */ "Next", - /* 96 */ "SorterInsert", - /* 97 */ "IdxInsert", - /* 98 */ "IdxDelete", - /* 99 */ "IdxRowid", - /* 100 */ "IdxLT", - /* 101 */ "IdxGE", - /* 102 */ "Destroy", - /* 103 */ "Clear", - /* 104 */ "CreateIndex", - /* 105 */ "CreateTable", - /* 106 */ "ParseSchema", - /* 107 */ "LoadAnalysis", - /* 108 */ "DropTable", - /* 109 */ "DropIndex", - /* 110 */ "DropTrigger", - /* 111 */ "IntegrityCk", - /* 112 */ "RowSetAdd", - /* 113 */ "RowSetRead", - /* 114 */ "RowSetTest", - /* 115 */ "Program", - /* 116 */ "Param", - /* 117 */ "FkCounter", - /* 118 */ "FkIfZero", - /* 119 */ "MemMax", - /* 120 */ "IfPos", - /* 121 */ "IfNeg", - /* 122 */ "IfZero", - /* 123 */ "AggStep", - /* 124 */ "AggFinal", - /* 125 */ "Checkpoint", - /* 126 */ "JournalMode", - /* 127 */ "Vacuum", - /* 128 */ "IncrVacuum", - /* 129 */ "Expire", - /* 130 */ "Real", - /* 131 */ "TableLock", - /* 132 */ "VBegin", - /* 133 */ "VCreate", - /* 134 */ "VDestroy", - /* 135 */ "VOpen", - /* 136 */ "VFilter", - /* 137 */ "VColumn", - /* 138 */ "VNext", - /* 139 */ "VRename", - /* 140 */ "VUpdate", - /* 141 */ "ToText", - /* 142 */ "ToBlob", - /* 143 */ "ToNumeric", - /* 144 */ "ToInt", - /* 145 */ "ToReal", - /* 146 */ "Pagecount", - /* 147 */ "MaxPgcnt", - /* 148 */ "Trace", - /* 149 */ "Noop", - /* 150 */ "Explain", - }; - return azName[i]; -} -#endif - -/************** End of opcodes.c *********************************************/ -/************** Begin file os_unix.c *****************************************/ -/* -** 2004 May 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains the VFS implementation for unix-like operating systems -** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. -** -** There are actually several different VFS implementations in this file. -** The differences are in the way that file locking is done. The default -** implementation uses Posix Advisory Locks. Alternative implementations -** use flock(), dot-files, various proprietary locking schemas, or simply -** skip locking all together. -** -** This source file is organized into divisions where the logic for various -** subfunctions is contained within the appropriate division. PLEASE -** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed -** in the correct division and should be clearly labeled. -** -** The layout of divisions is as follows: -** -** * General-purpose declarations and utility functions. -** * Unique file ID logic used by VxWorks. -** * Various locking primitive implementations (all except proxy locking): -** + for Posix Advisory Locks -** + for no-op locks -** + for dot-file locks -** + for flock() locking -** + for named semaphore locks (VxWorks only) -** + for AFP filesystem locks (MacOSX only) -** * sqlite3_file methods not associated with locking. -** * Definitions of sqlite3_io_methods objects for all locking -** methods plus "finder" functions for each locking method. -** * sqlite3_vfs method implementations. -** * Locking primitives for the proxy uber-locking-method. (MacOSX only) -** * Definitions of sqlite3_vfs objects for all locking methods -** plus implementations of sqlite3_os_init() and sqlite3_os_end(). -*/ -#if SQLITE_OS_UNIX /* This file is used on unix only */ - -/* Use posix_fallocate() if it is available -*/ -#if !defined(HAVE_POSIX_FALLOCATE) \ - && (_XOPEN_SOURCE >= 600 || _POSIX_C_SOURCE >= 200112L) -# define HAVE_POSIX_FALLOCATE 1 -#endif - -/* -** There are various methods for file locking used for concurrency -** control: -** -** 1. POSIX locking (the default), -** 2. No locking, -** 3. Dot-file locking, -** 4. flock() locking, -** 5. AFP locking (OSX only), -** 6. Named POSIX semaphores (VXWorks only), -** 7. proxy locking. (OSX only) -** -** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE -** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic -** selection of the appropriate locking style based on the filesystem -** where the database is located. -*/ -#if !defined(SQLITE_ENABLE_LOCKING_STYLE) -# if defined(__APPLE__) -# define SQLITE_ENABLE_LOCKING_STYLE 1 -# else -# define SQLITE_ENABLE_LOCKING_STYLE 0 -# endif -#endif - -/* -** Define the OS_VXWORKS pre-processor macro to 1 if building on -** vxworks, or 0 otherwise. -*/ -#ifndef OS_VXWORKS -# if defined(__RTP__) || defined(_WRS_KERNEL) -# define OS_VXWORKS 1 -# else -# define OS_VXWORKS 0 -# endif -#endif - -/* -** These #defines should enable >2GB file support on Posix if the -** underlying operating system supports it. If the OS lacks -** large file support, these should be no-ops. -** -** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch -** on the compiler command line. This is necessary if you are compiling -** on a recent machine (ex: RedHat 7.2) but you want your code to work -** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 -** without this option, LFS is enable. But LFS does not exist in the kernel -** in RedHat 6.0, so the code won't work. Hence, for maximum binary -** portability you should omit LFS. -** -** The previous paragraph was written in 2005. (This paragraph is written -** on 2008-11-28.) These days, all Linux kernels support large files, so -** you should probably leave LFS enabled. But some embedded platforms might -** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. -*/ -#ifndef SQLITE_DISABLE_LFS -# define _LARGE_FILE 1 -# ifndef _FILE_OFFSET_BITS -# define _FILE_OFFSET_BITS 64 -# endif -# define _LARGEFILE_SOURCE 1 -#endif - -/* -** standard include files. -*/ -#include <sys/types.h> -#include <sys/stat.h> -#include <fcntl.h> -#include <unistd.h> -/* #include <time.h> */ -#include <sys/time.h> -#include <errno.h> -#ifndef SQLITE_OMIT_WAL -#include <sys/mman.h> -#endif - - -#if SQLITE_ENABLE_LOCKING_STYLE -# include <sys/ioctl.h> -# if OS_VXWORKS -# include <semaphore.h> -# include <limits.h> -# else -# include <sys/file.h> -# include <sys/param.h> -# endif -#endif /* SQLITE_ENABLE_LOCKING_STYLE */ - -#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) -# include <sys/mount.h> -#endif - -#ifdef HAVE_UTIME -# include <utime.h> -#endif - -/* -** Allowed values of unixFile.fsFlags -*/ -#define SQLITE_FSFLAGS_IS_MSDOS 0x1 - -/* -** If we are to be thread-safe, include the pthreads header and define -** the SQLITE_UNIX_THREADS macro. -*/ -#if SQLITE_THREADSAFE -/* # include <pthread.h> */ -# define SQLITE_UNIX_THREADS 1 -#endif - -/* -** Default permissions when creating a new file -*/ -#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS -# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 -#endif - -/* -** Default permissions when creating auto proxy dir -*/ -#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS -# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 -#endif - -/* -** Maximum supported path-length. -*/ -#define MAX_PATHNAME 512 - -/* -** Only set the lastErrno if the error code is a real error and not -** a normal expected return code of SQLITE_BUSY or SQLITE_OK -*/ -#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) - -/* Forward references */ -typedef struct unixShm unixShm; /* Connection shared memory */ -typedef struct unixShmNode unixShmNode; /* Shared memory instance */ -typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ -typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ - -/* -** Sometimes, after a file handle is closed by SQLite, the file descriptor -** cannot be closed immediately. In these cases, instances of the following -** structure are used to store the file descriptor while waiting for an -** opportunity to either close or reuse it. -*/ -struct UnixUnusedFd { - int fd; /* File descriptor to close */ - int flags; /* Flags this file descriptor was opened with */ - UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ -}; - -/* -** The unixFile structure is subclass of sqlite3_file specific to the unix -** VFS implementations. -*/ -typedef struct unixFile unixFile; -struct unixFile { - sqlite3_io_methods const *pMethod; /* Always the first entry */ - sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ - unixInodeInfo *pInode; /* Info about locks on this inode */ - int h; /* The file descriptor */ - unsigned char eFileLock; /* The type of lock held on this fd */ - unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ - int lastErrno; /* The unix errno from last I/O error */ - void *lockingContext; /* Locking style specific state */ - UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ - const char *zPath; /* Name of the file */ - unixShm *pShm; /* Shared memory segment information */ - int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ -#ifdef __QNXNTO__ - int sectorSize; /* Device sector size */ - int deviceCharacteristics; /* Precomputed device characteristics */ -#endif -#if SQLITE_ENABLE_LOCKING_STYLE - int openFlags; /* The flags specified at open() */ -#endif -#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) - unsigned fsFlags; /* cached details from statfs() */ -#endif -#if OS_VXWORKS - struct vxworksFileId *pId; /* Unique file ID */ -#endif -#ifdef SQLITE_DEBUG - /* The next group of variables are used to track whether or not the - ** transaction counter in bytes 24-27 of database files are updated - ** whenever any part of the database changes. An assertion fault will - ** occur if a file is updated without also updating the transaction - ** counter. This test is made to avoid new problems similar to the - ** one described by ticket #3584. - */ - unsigned char transCntrChng; /* True if the transaction counter changed */ - unsigned char dbUpdate; /* True if any part of database file changed */ - unsigned char inNormalWrite; /* True if in a normal write operation */ -#endif -#ifdef SQLITE_TEST - /* In test mode, increase the size of this structure a bit so that - ** it is larger than the struct CrashFile defined in test6.c. - */ - char aPadding[32]; -#endif -}; - -/* -** Allowed values for the unixFile.ctrlFlags bitmask: -*/ -#define UNIXFILE_EXCL 0x01 /* Connections from one process only */ -#define UNIXFILE_RDONLY 0x02 /* Connection is read only */ -#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ -#ifndef SQLITE_DISABLE_DIRSYNC -# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ -#else -# define UNIXFILE_DIRSYNC 0x00 -#endif -#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ -#define UNIXFILE_DELETE 0x20 /* Delete on close */ -#define UNIXFILE_URI 0x40 /* Filename might have query parameters */ -#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ - -/* -** Include code that is common to all os_*.c files -*/ -/************** Include os_common.h in the middle of os_unix.c ***************/ -/************** Begin file os_common.h ***************************************/ -/* -** 2004 May 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains macros and a little bit of code that is common to -** all of the platform-specific files (os_*.c) and is #included into those -** files. -** -** This file should be #included by the os_*.c files only. It is not a -** general purpose header file. -*/ -#ifndef _OS_COMMON_H_ -#define _OS_COMMON_H_ - -/* -** At least two bugs have slipped in because we changed the MEMORY_DEBUG -** macro to SQLITE_DEBUG and some older makefiles have not yet made the -** switch. The following code should catch this problem at compile-time. -*/ -#ifdef MEMORY_DEBUG -# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." -#endif - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -# ifndef SQLITE_DEBUG_OS_TRACE -# define SQLITE_DEBUG_OS_TRACE 0 -# endif - int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; -# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X -#else -# define OSTRACE(X) -#endif - -/* -** Macros for performance tracing. Normally turned off. Only works -** on i486 hardware. -*/ -#ifdef SQLITE_PERFORMANCE_TRACE - -/* -** hwtime.h contains inline assembler code for implementing -** high-performance timing routines. -*/ -/************** Include hwtime.h in the middle of os_common.h ****************/ -/************** Begin file hwtime.h ******************************************/ -/* -** 2008 May 27 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains inline asm code for retrieving "high-performance" -** counters for x86 class CPUs. -*/ -#ifndef _HWTIME_H_ -#define _HWTIME_H_ - -/* -** The following routine only works on pentium-class (or newer) processors. -** It uses the RDTSC opcode to read the cycle count value out of the -** processor and returns that value. This can be used for high-res -** profiling. -*/ -#if (defined(__GNUC__) || defined(_MSC_VER)) && \ - (defined(i386) || defined(__i386__) || defined(_M_IX86)) - - #if defined(__GNUC__) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned int lo, hi; - __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); - return (sqlite_uint64)hi << 32 | lo; - } - - #elif defined(_MSC_VER) - - __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){ - __asm { - rdtsc - ret ; return value at EDX:EAX - } - } - - #endif - -#elif (defined(__GNUC__) && defined(__x86_64__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long val; - __asm__ __volatile__ ("rdtsc" : "=A" (val)); - return val; - } - -#elif (defined(__GNUC__) && defined(__ppc__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long long retval; - unsigned long junk; - __asm__ __volatile__ ("\n\ - 1: mftbu %1\n\ - mftb %L0\n\ - mftbu %0\n\ - cmpw %0,%1\n\ - bne 1b" - : "=r" (retval), "=r" (junk)); - return retval; - } - -#else - - #error Need implementation of sqlite3Hwtime() for your platform. - - /* - ** To compile without implementing sqlite3Hwtime() for your platform, - ** you can remove the above #error and use the following - ** stub function. You will lose timing support for many - ** of the debugging and testing utilities, but it should at - ** least compile and run. - */ -SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); } - -#endif - -#endif /* !defined(_HWTIME_H_) */ - -/************** End of hwtime.h **********************************************/ -/************** Continuing where we left off in os_common.h ******************/ - -static sqlite_uint64 g_start; -static sqlite_uint64 g_elapsed; -#define TIMER_START g_start=sqlite3Hwtime() -#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start -#define TIMER_ELAPSED g_elapsed -#else -#define TIMER_START -#define TIMER_END -#define TIMER_ELAPSED ((sqlite_uint64)0) -#endif - -/* -** If we compile with the SQLITE_TEST macro set, then the following block -** of code will give us the ability to simulate a disk I/O error. This -** is used for testing the I/O recovery logic. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ -SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ -SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ -SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ -SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ -SQLITE_API int sqlite3_diskfull_pending = 0; -SQLITE_API int sqlite3_diskfull = 0; -#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) -#define SimulateIOError(CODE) \ - if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ - || sqlite3_io_error_pending-- == 1 ) \ - { local_ioerr(); CODE; } -static void local_ioerr(){ - IOTRACE(("IOERR\n")); - sqlite3_io_error_hit++; - if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; -} -#define SimulateDiskfullError(CODE) \ - if( sqlite3_diskfull_pending ){ \ - if( sqlite3_diskfull_pending == 1 ){ \ - local_ioerr(); \ - sqlite3_diskfull = 1; \ - sqlite3_io_error_hit = 1; \ - CODE; \ - }else{ \ - sqlite3_diskfull_pending--; \ - } \ - } -#else -#define SimulateIOErrorBenign(X) -#define SimulateIOError(A) -#define SimulateDiskfullError(A) -#endif - -/* -** When testing, keep a count of the number of open files. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_open_file_count = 0; -#define OpenCounter(X) sqlite3_open_file_count+=(X) -#else -#define OpenCounter(X) -#endif - -#endif /* !defined(_OS_COMMON_H_) */ - -/************** End of os_common.h *******************************************/ -/************** Continuing where we left off in os_unix.c ********************/ - -/* -** Define various macros that are missing from some systems. -*/ -#ifndef O_LARGEFILE -# define O_LARGEFILE 0 -#endif -#ifdef SQLITE_DISABLE_LFS -# undef O_LARGEFILE -# define O_LARGEFILE 0 -#endif -#ifndef O_NOFOLLOW -# define O_NOFOLLOW 0 -#endif -#ifndef O_BINARY -# define O_BINARY 0 -#endif - -/* -** The threadid macro resolves to the thread-id or to 0. Used for -** testing and debugging only. -*/ -#if SQLITE_THREADSAFE -#define threadid pthread_self() -#else -#define threadid 0 -#endif - -/* -** Different Unix systems declare open() in different ways. Same use -** open(const char*,int,mode_t). Others use open(const char*,int,...). -** The difference is important when using a pointer to the function. -** -** The safest way to deal with the problem is to always use this wrapper -** which always has the same well-defined interface. -*/ -static int posixOpen(const char *zFile, int flags, int mode){ - return open(zFile, flags, mode); -} - -/* -** On some systems, calls to fchown() will trigger a message in a security -** log if they come from non-root processes. So avoid calling fchown() if -** we are not running as root. -*/ -static int posixFchown(int fd, uid_t uid, gid_t gid){ - return geteuid() ? 0 : fchown(fd,uid,gid); -} - -/* Forward reference */ -static int openDirectory(const char*, int*); - -/* -** Many system calls are accessed through pointer-to-functions so that -** they may be overridden at runtime to facilitate fault injection during -** testing and sandboxing. The following array holds the names and pointers -** to all overrideable system calls. -*/ -static struct unix_syscall { - const char *zName; /* Name of the system call */ - sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ - sqlite3_syscall_ptr pDefault; /* Default value */ -} aSyscall[] = { - { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, -#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) - - { "close", (sqlite3_syscall_ptr)close, 0 }, -#define osClose ((int(*)(int))aSyscall[1].pCurrent) - - { "access", (sqlite3_syscall_ptr)access, 0 }, -#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) - - { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, -#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) - - { "stat", (sqlite3_syscall_ptr)stat, 0 }, -#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) - -/* -** The DJGPP compiler environment looks mostly like Unix, but it -** lacks the fcntl() system call. So redefine fcntl() to be something -** that always succeeds. This means that locking does not occur under -** DJGPP. But it is DOS - what did you expect? -*/ -#ifdef __DJGPP__ - { "fstat", 0, 0 }, -#define osFstat(a,b,c) 0 -#else - { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, -#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) -#endif - - { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, -#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) - - { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, -#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) - - { "read", (sqlite3_syscall_ptr)read, 0 }, -#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) - -#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE - { "pread", (sqlite3_syscall_ptr)pread, 0 }, -#else - { "pread", (sqlite3_syscall_ptr)0, 0 }, -#endif -#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) - -#if defined(USE_PREAD64) - { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, -#else - { "pread64", (sqlite3_syscall_ptr)0, 0 }, -#endif -#define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) - - { "write", (sqlite3_syscall_ptr)write, 0 }, -#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) - -#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE - { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, -#else - { "pwrite", (sqlite3_syscall_ptr)0, 0 }, -#endif -#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ - aSyscall[12].pCurrent) - -#if defined(USE_PREAD64) - { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, -#else - { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, -#endif -#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ - aSyscall[13].pCurrent) - - { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, -#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) - -#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE - { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, -#else - { "fallocate", (sqlite3_syscall_ptr)0, 0 }, -#endif -#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) - - { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, -#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) - - { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, -#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) - - { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, -#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) - - { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, -#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) - - { "fchown", (sqlite3_syscall_ptr)posixFchown, 0 }, -#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) - -}; /* End of the overrideable system calls */ - -/* -** This is the xSetSystemCall() method of sqlite3_vfs for all of the -** "unix" VFSes. Return SQLITE_OK opon successfully updating the -** system call pointer, or SQLITE_NOTFOUND if there is no configurable -** system call named zName. -*/ -static int unixSetSystemCall( - sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ - const char *zName, /* Name of system call to override */ - sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ -){ - unsigned int i; - int rc = SQLITE_NOTFOUND; - - UNUSED_PARAMETER(pNotUsed); - if( zName==0 ){ - /* If no zName is given, restore all system calls to their default - ** settings and return NULL - */ - rc = SQLITE_OK; - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( aSyscall[i].pDefault ){ - aSyscall[i].pCurrent = aSyscall[i].pDefault; - } - } - }else{ - /* If zName is specified, operate on only the one system call - ** specified. - */ - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ){ - if( aSyscall[i].pDefault==0 ){ - aSyscall[i].pDefault = aSyscall[i].pCurrent; - } - rc = SQLITE_OK; - if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; - aSyscall[i].pCurrent = pNewFunc; - break; - } - } - } - return rc; -} - -/* -** Return the value of a system call. Return NULL if zName is not a -** recognized system call name. NULL is also returned if the system call -** is currently undefined. -*/ -static sqlite3_syscall_ptr unixGetSystemCall( - sqlite3_vfs *pNotUsed, - const char *zName -){ - unsigned int i; - - UNUSED_PARAMETER(pNotUsed); - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; - } - return 0; -} - -/* -** Return the name of the first system call after zName. If zName==NULL -** then return the name of the first system call. Return NULL if zName -** is the last system call or if zName is not the name of a valid -** system call. -*/ -static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ - int i = -1; - - UNUSED_PARAMETER(p); - if( zName ){ - for(i=0; i<ArraySize(aSyscall)-1; i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ) break; - } - } - for(i++; i<ArraySize(aSyscall); i++){ - if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; - } - return 0; -} - -/* -** Invoke open(). Do so multiple times, until it either succeeds or -** fails for some reason other than EINTR. -** -** If the file creation mode "m" is 0 then set it to the default for -** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally -** 0644) as modified by the system umask. If m is not 0, then -** make the file creation mode be exactly m ignoring the umask. -** -** The m parameter will be non-zero only when creating -wal, -journal, -** and -shm files. We want those files to have *exactly* the same -** permissions as their original database, unadulterated by the umask. -** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a -** transaction crashes and leaves behind hot journals, then any -** process that is able to write to the database will also be able to -** recover the hot journals. -*/ -static int robust_open(const char *z, int f, mode_t m){ - int fd; - mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS; - do{ -#if defined(O_CLOEXEC) - fd = osOpen(z,f|O_CLOEXEC,m2); -#else - fd = osOpen(z,f,m2); -#endif - }while( fd<0 && errno==EINTR ); - if( fd>=0 ){ - if( m!=0 ){ - struct stat statbuf; - if( osFstat(fd, &statbuf)==0 - && statbuf.st_size==0 - && (statbuf.st_mode&0777)!=m - ){ - osFchmod(fd, m); - } - } -#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) - osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); -#endif - } - return fd; -} - -/* -** Helper functions to obtain and relinquish the global mutex. The -** global mutex is used to protect the unixInodeInfo and -** vxworksFileId objects used by this file, all of which may be -** shared by multiple threads. -** -** Function unixMutexHeld() is used to assert() that the global mutex -** is held when required. This function is only used as part of assert() -** statements. e.g. -** -** unixEnterMutex() -** assert( unixMutexHeld() ); -** unixEnterLeave() -*/ -static void unixEnterMutex(void){ - sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -static void unixLeaveMutex(void){ - sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -#ifdef SQLITE_DEBUG -static int unixMutexHeld(void) { - return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -#endif - - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -/* -** Helper function for printing out trace information from debugging -** binaries. This returns the string represetation of the supplied -** integer lock-type. -*/ -static const char *azFileLock(int eFileLock){ - switch( eFileLock ){ - case NO_LOCK: return "NONE"; - case SHARED_LOCK: return "SHARED"; - case RESERVED_LOCK: return "RESERVED"; - case PENDING_LOCK: return "PENDING"; - case EXCLUSIVE_LOCK: return "EXCLUSIVE"; - } - return "ERROR"; -} -#endif - -#ifdef SQLITE_LOCK_TRACE -/* -** Print out information about all locking operations. -** -** This routine is used for troubleshooting locks on multithreaded -** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE -** command-line option on the compiler. This code is normally -** turned off. -*/ -static int lockTrace(int fd, int op, struct flock *p){ - char *zOpName, *zType; - int s; - int savedErrno; - if( op==F_GETLK ){ - zOpName = "GETLK"; - }else if( op==F_SETLK ){ - zOpName = "SETLK"; - }else{ - s = osFcntl(fd, op, p); - sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); - return s; - } - if( p->l_type==F_RDLCK ){ - zType = "RDLCK"; - }else if( p->l_type==F_WRLCK ){ - zType = "WRLCK"; - }else if( p->l_type==F_UNLCK ){ - zType = "UNLCK"; - }else{ - assert( 0 ); - } - assert( p->l_whence==SEEK_SET ); - s = osFcntl(fd, op, p); - savedErrno = errno; - sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", - threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, - (int)p->l_pid, s); - if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ - struct flock l2; - l2 = *p; - osFcntl(fd, F_GETLK, &l2); - if( l2.l_type==F_RDLCK ){ - zType = "RDLCK"; - }else if( l2.l_type==F_WRLCK ){ - zType = "WRLCK"; - }else if( l2.l_type==F_UNLCK ){ - zType = "UNLCK"; - }else{ - assert( 0 ); - } - sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", - zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); - } - errno = savedErrno; - return s; -} -#undef osFcntl -#define osFcntl lockTrace -#endif /* SQLITE_LOCK_TRACE */ - -/* -** Retry ftruncate() calls that fail due to EINTR -*/ -static int robust_ftruncate(int h, sqlite3_int64 sz){ - int rc; - do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); - return rc; -} - -/* -** This routine translates a standard POSIX errno code into something -** useful to the clients of the sqlite3 functions. Specifically, it is -** intended to translate a variety of "try again" errors into SQLITE_BUSY -** and a variety of "please close the file descriptor NOW" errors into -** SQLITE_IOERR -** -** Errors during initialization of locks, or file system support for locks, -** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. -*/ -static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { - switch (posixError) { -#if 0 - /* At one point this code was not commented out. In theory, this branch - ** should never be hit, as this function should only be called after - ** a locking-related function (i.e. fcntl()) has returned non-zero with - ** the value of errno as the first argument. Since a system call has failed, - ** errno should be non-zero. - ** - ** Despite this, if errno really is zero, we still don't want to return - ** SQLITE_OK. The system call failed, and *some* SQLite error should be - ** propagated back to the caller. Commenting this branch out means errno==0 - ** will be handled by the "default:" case below. - */ - case 0: - return SQLITE_OK; -#endif - - case EAGAIN: - case ETIMEDOUT: - case EBUSY: - case EINTR: - case ENOLCK: - /* random NFS retry error, unless during file system support - * introspection, in which it actually means what it says */ - return SQLITE_BUSY; - - case EACCES: - /* EACCES is like EAGAIN during locking operations, but not any other time*/ - if( (sqliteIOErr == SQLITE_IOERR_LOCK) || - (sqliteIOErr == SQLITE_IOERR_UNLOCK) || - (sqliteIOErr == SQLITE_IOERR_RDLOCK) || - (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ - return SQLITE_BUSY; - } - /* else fall through */ - case EPERM: - return SQLITE_PERM; - - /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And - ** this module never makes such a call. And the code in SQLite itself - ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons - ** this case is also commented out. If the system does set errno to EDEADLK, - ** the default SQLITE_IOERR_XXX code will be returned. */ -#if 0 - case EDEADLK: - return SQLITE_IOERR_BLOCKED; -#endif - -#if EOPNOTSUPP!=ENOTSUP - case EOPNOTSUPP: - /* something went terribly awry, unless during file system support - * introspection, in which it actually means what it says */ -#endif -#ifdef ENOTSUP - case ENOTSUP: - /* invalid fd, unless during file system support introspection, in which - * it actually means what it says */ -#endif - case EIO: - case EBADF: - case EINVAL: - case ENOTCONN: - case ENODEV: - case ENXIO: - case ENOENT: -#ifdef ESTALE /* ESTALE is not defined on Interix systems */ - case ESTALE: -#endif - case ENOSYS: - /* these should force the client to close the file and reconnect */ - - default: - return sqliteIOErr; - } -} - - - -/****************************************************************************** -****************** Begin Unique File ID Utility Used By VxWorks *************** -** -** On most versions of unix, we can get a unique ID for a file by concatenating -** the device number and the inode number. But this does not work on VxWorks. -** On VxWorks, a unique file id must be based on the canonical filename. -** -** A pointer to an instance of the following structure can be used as a -** unique file ID in VxWorks. Each instance of this structure contains -** a copy of the canonical filename. There is also a reference count. -** The structure is reclaimed when the number of pointers to it drops to -** zero. -** -** There are never very many files open at one time and lookups are not -** a performance-critical path, so it is sufficient to put these -** structures on a linked list. -*/ -struct vxworksFileId { - struct vxworksFileId *pNext; /* Next in a list of them all */ - int nRef; /* Number of references to this one */ - int nName; /* Length of the zCanonicalName[] string */ - char *zCanonicalName; /* Canonical filename */ -}; - -#if OS_VXWORKS -/* -** All unique filenames are held on a linked list headed by this -** variable: -*/ -static struct vxworksFileId *vxworksFileList = 0; - -/* -** Simplify a filename into its canonical form -** by making the following changes: -** -** * removing any trailing and duplicate / -** * convert /./ into just / -** * convert /A/../ where A is any simple name into just / -** -** Changes are made in-place. Return the new name length. -** -** The original filename is in z[0..n-1]. Return the number of -** characters in the simplified name. -*/ -static int vxworksSimplifyName(char *z, int n){ - int i, j; - while( n>1 && z[n-1]=='/' ){ n--; } - for(i=j=0; i<n; i++){ - if( z[i]=='/' ){ - if( z[i+1]=='/' ) continue; - if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ - i += 1; - continue; - } - if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ - while( j>0 && z[j-1]!='/' ){ j--; } - if( j>0 ){ j--; } - i += 2; - continue; - } - } - z[j++] = z[i]; - } - z[j] = 0; - return j; -} - -/* -** Find a unique file ID for the given absolute pathname. Return -** a pointer to the vxworksFileId object. This pointer is the unique -** file ID. -** -** The nRef field of the vxworksFileId object is incremented before -** the object is returned. A new vxworksFileId object is created -** and added to the global list if necessary. -** -** If a memory allocation error occurs, return NULL. -*/ -static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ - struct vxworksFileId *pNew; /* search key and new file ID */ - struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ - int n; /* Length of zAbsoluteName string */ - - assert( zAbsoluteName[0]=='/' ); - n = (int)strlen(zAbsoluteName); - pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); - if( pNew==0 ) return 0; - pNew->zCanonicalName = (char*)&pNew[1]; - memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); - n = vxworksSimplifyName(pNew->zCanonicalName, n); - - /* Search for an existing entry that matching the canonical name. - ** If found, increment the reference count and return a pointer to - ** the existing file ID. - */ - unixEnterMutex(); - for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ - if( pCandidate->nName==n - && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 - ){ - sqlite3_free(pNew); - pCandidate->nRef++; - unixLeaveMutex(); - return pCandidate; - } - } - - /* No match was found. We will make a new file ID */ - pNew->nRef = 1; - pNew->nName = n; - pNew->pNext = vxworksFileList; - vxworksFileList = pNew; - unixLeaveMutex(); - return pNew; -} - -/* -** Decrement the reference count on a vxworksFileId object. Free -** the object when the reference count reaches zero. -*/ -static void vxworksReleaseFileId(struct vxworksFileId *pId){ - unixEnterMutex(); - assert( pId->nRef>0 ); - pId->nRef--; - if( pId->nRef==0 ){ - struct vxworksFileId **pp; - for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} - assert( *pp==pId ); - *pp = pId->pNext; - sqlite3_free(pId); - } - unixLeaveMutex(); -} -#endif /* OS_VXWORKS */ -/*************** End of Unique File ID Utility Used By VxWorks **************** -******************************************************************************/ - - -/****************************************************************************** -*************************** Posix Advisory Locking **************************** -** -** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) -** section 6.5.2.2 lines 483 through 490 specify that when a process -** sets or clears a lock, that operation overrides any prior locks set -** by the same process. It does not explicitly say so, but this implies -** that it overrides locks set by the same process using a different -** file descriptor. Consider this test case: -** -** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); -** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); -** -** Suppose ./file1 and ./file2 are really the same file (because -** one is a hard or symbolic link to the other) then if you set -** an exclusive lock on fd1, then try to get an exclusive lock -** on fd2, it works. I would have expected the second lock to -** fail since there was already a lock on the file due to fd1. -** But not so. Since both locks came from the same process, the -** second overrides the first, even though they were on different -** file descriptors opened on different file names. -** -** This means that we cannot use POSIX locks to synchronize file access -** among competing threads of the same process. POSIX locks will work fine -** to synchronize access for threads in separate processes, but not -** threads within the same process. -** -** To work around the problem, SQLite has to manage file locks internally -** on its own. Whenever a new database is opened, we have to find the -** specific inode of the database file (the inode is determined by the -** st_dev and st_ino fields of the stat structure that fstat() fills in) -** and check for locks already existing on that inode. When locks are -** created or removed, we have to look at our own internal record of the -** locks to see if another thread has previously set a lock on that same -** inode. -** -** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. -** For VxWorks, we have to use the alternative unique ID system based on -** canonical filename and implemented in the previous division.) -** -** The sqlite3_file structure for POSIX is no longer just an integer file -** descriptor. It is now a structure that holds the integer file -** descriptor and a pointer to a structure that describes the internal -** locks on the corresponding inode. There is one locking structure -** per inode, so if the same inode is opened twice, both unixFile structures -** point to the same locking structure. The locking structure keeps -** a reference count (so we will know when to delete it) and a "cnt" -** field that tells us its internal lock status. cnt==0 means the -** file is unlocked. cnt==-1 means the file has an exclusive lock. -** cnt>0 means there are cnt shared locks on the file. -** -** Any attempt to lock or unlock a file first checks the locking -** structure. The fcntl() system call is only invoked to set a -** POSIX lock if the internal lock structure transitions between -** a locked and an unlocked state. -** -** But wait: there are yet more problems with POSIX advisory locks. -** -** If you close a file descriptor that points to a file that has locks, -** all locks on that file that are owned by the current process are -** released. To work around this problem, each unixInodeInfo object -** maintains a count of the number of pending locks on tha inode. -** When an attempt is made to close an unixFile, if there are -** other unixFile open on the same inode that are holding locks, the call -** to close() the file descriptor is deferred until all of the locks clear. -** The unixInodeInfo structure keeps a list of file descriptors that need to -** be closed and that list is walked (and cleared) when the last lock -** clears. -** -** Yet another problem: LinuxThreads do not play well with posix locks. -** -** Many older versions of linux use the LinuxThreads library which is -** not posix compliant. Under LinuxThreads, a lock created by thread -** A cannot be modified or overridden by a different thread B. -** Only thread A can modify the lock. Locking behavior is correct -** if the appliation uses the newer Native Posix Thread Library (NPTL) -** on linux - with NPTL a lock created by thread A can override locks -** in thread B. But there is no way to know at compile-time which -** threading library is being used. So there is no way to know at -** compile-time whether or not thread A can override locks on thread B. -** One has to do a run-time check to discover the behavior of the -** current process. -** -** SQLite used to support LinuxThreads. But support for LinuxThreads -** was dropped beginning with version 3.7.0. SQLite will still work with -** LinuxThreads provided that (1) there is no more than one connection -** per database file in the same process and (2) database connections -** do not move across threads. -*/ - -/* -** An instance of the following structure serves as the key used -** to locate a particular unixInodeInfo object. -*/ -struct unixFileId { - dev_t dev; /* Device number */ -#if OS_VXWORKS - struct vxworksFileId *pId; /* Unique file ID for vxworks. */ -#else - ino_t ino; /* Inode number */ -#endif -}; - -/* -** An instance of the following structure is allocated for each open -** inode. Or, on LinuxThreads, there is one of these structures for -** each inode opened by each thread. -** -** A single inode can have multiple file descriptors, so each unixFile -** structure contains a pointer to an instance of this object and this -** object keeps a count of the number of unixFile pointing to it. -*/ -struct unixInodeInfo { - struct unixFileId fileId; /* The lookup key */ - int nShared; /* Number of SHARED locks held */ - unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ - unsigned char bProcessLock; /* An exclusive process lock is held */ - int nRef; /* Number of pointers to this structure */ - unixShmNode *pShmNode; /* Shared memory associated with this inode */ - int nLock; /* Number of outstanding file locks */ - UnixUnusedFd *pUnused; /* Unused file descriptors to close */ - unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ - unixInodeInfo *pPrev; /* .... doubly linked */ -#if SQLITE_ENABLE_LOCKING_STYLE - unsigned long long sharedByte; /* for AFP simulated shared lock */ -#endif -#if OS_VXWORKS - sem_t *pSem; /* Named POSIX semaphore */ - char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ -#endif -}; - -/* -** A lists of all unixInodeInfo objects. -*/ -static unixInodeInfo *inodeList = 0; - -/* -** -** This function - unixLogError_x(), is only ever called via the macro -** unixLogError(). -** -** It is invoked after an error occurs in an OS function and errno has been -** set. It logs a message using sqlite3_log() containing the current value of -** errno and, if possible, the human-readable equivalent from strerror() or -** strerror_r(). -** -** The first argument passed to the macro should be the error code that -** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). -** The two subsequent arguments should be the name of the OS function that -** failed (e.g. "unlink", "open") and the associated file-system path, -** if any. -*/ -#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) -static int unixLogErrorAtLine( - int errcode, /* SQLite error code */ - const char *zFunc, /* Name of OS function that failed */ - const char *zPath, /* File path associated with error */ - int iLine /* Source line number where error occurred */ -){ - char *zErr; /* Message from strerror() or equivalent */ - int iErrno = errno; /* Saved syscall error number */ - - /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use - ** the strerror() function to obtain the human-readable error message - ** equivalent to errno. Otherwise, use strerror_r(). - */ -#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) - char aErr[80]; - memset(aErr, 0, sizeof(aErr)); - zErr = aErr; - - /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, - ** assume that the system provides the GNU version of strerror_r() that - ** returns a pointer to a buffer containing the error message. That pointer - ** may point to aErr[], or it may point to some static storage somewhere. - ** Otherwise, assume that the system provides the POSIX version of - ** strerror_r(), which always writes an error message into aErr[]. - ** - ** If the code incorrectly assumes that it is the POSIX version that is - ** available, the error message will often be an empty string. Not a - ** huge problem. Incorrectly concluding that the GNU version is available - ** could lead to a segfault though. - */ -#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) - zErr = -# endif - strerror_r(iErrno, aErr, sizeof(aErr)-1); - -#elif SQLITE_THREADSAFE - /* This is a threadsafe build, but strerror_r() is not available. */ - zErr = ""; -#else - /* Non-threadsafe build, use strerror(). */ - zErr = strerror(iErrno); -#endif - - assert( errcode!=SQLITE_OK ); - if( zPath==0 ) zPath = ""; - sqlite3_log(errcode, - "os_unix.c:%d: (%d) %s(%s) - %s", - iLine, iErrno, zFunc, zPath, zErr - ); - - return errcode; -} - -/* -** Close a file descriptor. -** -** We assume that close() almost always works, since it is only in a -** very sick application or on a very sick platform that it might fail. -** If it does fail, simply leak the file descriptor, but do log the -** error. -** -** Note that it is not safe to retry close() after EINTR since the -** file descriptor might have already been reused by another thread. -** So we don't even try to recover from an EINTR. Just log the error -** and move on. -*/ -static void robust_close(unixFile *pFile, int h, int lineno){ - if( osClose(h) ){ - unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", - pFile ? pFile->zPath : 0, lineno); - } -} - -/* -** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. -*/ -static void closePendingFds(unixFile *pFile){ - unixInodeInfo *pInode = pFile->pInode; - UnixUnusedFd *p; - UnixUnusedFd *pNext; - for(p=pInode->pUnused; p; p=pNext){ - pNext = p->pNext; - robust_close(pFile, p->fd, __LINE__); - sqlite3_free(p); - } - pInode->pUnused = 0; -} - -/* -** Release a unixInodeInfo structure previously allocated by findInodeInfo(). -** -** The mutex entered using the unixEnterMutex() function must be held -** when this function is called. -*/ -static void releaseInodeInfo(unixFile *pFile){ - unixInodeInfo *pInode = pFile->pInode; - assert( unixMutexHeld() ); - if( ALWAYS(pInode) ){ - pInode->nRef--; - if( pInode->nRef==0 ){ - assert( pInode->pShmNode==0 ); - closePendingFds(pFile); - if( pInode->pPrev ){ - assert( pInode->pPrev->pNext==pInode ); - pInode->pPrev->pNext = pInode->pNext; - }else{ - assert( inodeList==pInode ); - inodeList = pInode->pNext; - } - if( pInode->pNext ){ - assert( pInode->pNext->pPrev==pInode ); - pInode->pNext->pPrev = pInode->pPrev; - } - sqlite3_free(pInode); - } - } -} - -/* -** Given a file descriptor, locate the unixInodeInfo object that -** describes that file descriptor. Create a new one if necessary. The -** return value might be uninitialized if an error occurs. -** -** The mutex entered using the unixEnterMutex() function must be held -** when this function is called. -** -** Return an appropriate error code. -*/ -static int findInodeInfo( - unixFile *pFile, /* Unix file with file desc used in the key */ - unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ -){ - int rc; /* System call return code */ - int fd; /* The file descriptor for pFile */ - struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ - struct stat statbuf; /* Low-level file information */ - unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ - - assert( unixMutexHeld() ); - - /* Get low-level information about the file that we can used to - ** create a unique name for the file. - */ - fd = pFile->h; - rc = osFstat(fd, &statbuf); - if( rc!=0 ){ - pFile->lastErrno = errno; -#ifdef EOVERFLOW - if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; -#endif - return SQLITE_IOERR; - } - -#ifdef __APPLE__ - /* On OS X on an msdos filesystem, the inode number is reported - ** incorrectly for zero-size files. See ticket #3260. To work - ** around this problem (we consider it a bug in OS X, not SQLite) - ** we always increase the file size to 1 by writing a single byte - ** prior to accessing the inode number. The one byte written is - ** an ASCII 'S' character which also happens to be the first byte - ** in the header of every SQLite database. In this way, if there - ** is a race condition such that another thread has already populated - ** the first page of the database, no damage is done. - */ - if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ - do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); - if( rc!=1 ){ - pFile->lastErrno = errno; - return SQLITE_IOERR; - } - rc = osFstat(fd, &statbuf); - if( rc!=0 ){ - pFile->lastErrno = errno; - return SQLITE_IOERR; - } - } -#endif - - memset(&fileId, 0, sizeof(fileId)); - fileId.dev = statbuf.st_dev; -#if OS_VXWORKS - fileId.pId = pFile->pId; -#else - fileId.ino = statbuf.st_ino; -#endif - pInode = inodeList; - while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ - pInode = pInode->pNext; - } - if( pInode==0 ){ - pInode = sqlite3_malloc( sizeof(*pInode) ); - if( pInode==0 ){ - return SQLITE_NOMEM; - } - memset(pInode, 0, sizeof(*pInode)); - memcpy(&pInode->fileId, &fileId, sizeof(fileId)); - pInode->nRef = 1; - pInode->pNext = inodeList; - pInode->pPrev = 0; - if( inodeList ) inodeList->pPrev = pInode; - inodeList = pInode; - }else{ - pInode->nRef++; - } - *ppInode = pInode; - return SQLITE_OK; -} - - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -*/ -static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ - int rc = SQLITE_OK; - int reserved = 0; - unixFile *pFile = (unixFile*)id; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( pFile ); - unixEnterMutex(); /* Because pFile->pInode is shared across threads */ - - /* Check if a thread in this process holds such a lock */ - if( pFile->pInode->eFileLock>SHARED_LOCK ){ - reserved = 1; - } - - /* Otherwise see if some other process holds it. - */ -#ifndef __DJGPP__ - if( !reserved && !pFile->pInode->bProcessLock ){ - struct flock lock; - lock.l_whence = SEEK_SET; - lock.l_start = RESERVED_BYTE; - lock.l_len = 1; - lock.l_type = F_WRLCK; - if( osFcntl(pFile->h, F_GETLK, &lock) ){ - rc = SQLITE_IOERR_CHECKRESERVEDLOCK; - pFile->lastErrno = errno; - } else if( lock.l_type!=F_UNLCK ){ - reserved = 1; - } - } -#endif - - unixLeaveMutex(); - OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); - - *pResOut = reserved; - return rc; -} - -/* -** Attempt to set a system-lock on the file pFile. The lock is -** described by pLock. -** -** If the pFile was opened read/write from unix-excl, then the only lock -** ever obtained is an exclusive lock, and it is obtained exactly once -** the first time any lock is attempted. All subsequent system locking -** operations become no-ops. Locking operations still happen internally, -** in order to coordinate access between separate database connections -** within this process, but all of that is handled in memory and the -** operating system does not participate. -** -** This function is a pass-through to fcntl(F_SETLK) if pFile is using -** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" -** and is read-only. -** -** Zero is returned if the call completes successfully, or -1 if a call -** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). -*/ -static int unixFileLock(unixFile *pFile, struct flock *pLock){ - int rc; - unixInodeInfo *pInode = pFile->pInode; - assert( unixMutexHeld() ); - assert( pInode!=0 ); - if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) - && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) - ){ - if( pInode->bProcessLock==0 ){ - struct flock lock; - assert( pInode->nLock==0 ); - lock.l_whence = SEEK_SET; - lock.l_start = SHARED_FIRST; - lock.l_len = SHARED_SIZE; - lock.l_type = F_WRLCK; - rc = osFcntl(pFile->h, F_SETLK, &lock); - if( rc<0 ) return rc; - pInode->bProcessLock = 1; - pInode->nLock++; - }else{ - rc = 0; - } - }else{ - rc = osFcntl(pFile->h, F_SETLK, pLock); - } - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -*/ -static int unixLock(sqlite3_file *id, int eFileLock){ - /* The following describes the implementation of the various locks and - ** lock transitions in terms of the POSIX advisory shared and exclusive - ** lock primitives (called read-locks and write-locks below, to avoid - ** confusion with SQLite lock names). The algorithms are complicated - ** slightly in order to be compatible with windows systems simultaneously - ** accessing the same database file, in case that is ever required. - ** - ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved - ** byte', each single bytes at well known offsets, and the 'shared byte - ** range', a range of 510 bytes at a well known offset. - ** - ** To obtain a SHARED lock, a read-lock is obtained on the 'pending - ** byte'. If this is successful, a random byte from the 'shared byte - ** range' is read-locked and the lock on the 'pending byte' released. - ** - ** A process may only obtain a RESERVED lock after it has a SHARED lock. - ** A RESERVED lock is implemented by grabbing a write-lock on the - ** 'reserved byte'. - ** - ** A process may only obtain a PENDING lock after it has obtained a - ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock - ** on the 'pending byte'. This ensures that no new SHARED locks can be - ** obtained, but existing SHARED locks are allowed to persist. A process - ** does not have to obtain a RESERVED lock on the way to a PENDING lock. - ** This property is used by the algorithm for rolling back a journal file - ** after a crash. - ** - ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is - ** implemented by obtaining a write-lock on the entire 'shared byte - ** range'. Since all other locks require a read-lock on one of the bytes - ** within this range, this ensures that no other locks are held on the - ** database. - ** - ** The reason a single byte cannot be used instead of the 'shared byte - ** range' is that some versions of windows do not support read-locks. By - ** locking a random byte from a range, concurrent SHARED locks may exist - ** even if the locking primitive used is always a write-lock. - */ - int rc = SQLITE_OK; - unixFile *pFile = (unixFile*)id; - unixInodeInfo *pInode; - struct flock lock; - int tErrno = 0; - - assert( pFile ); - OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, - azFileLock(eFileLock), azFileLock(pFile->eFileLock), - azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid())); - - /* If there is already a lock of this type or more restrictive on the - ** unixFile, do nothing. Don't use the end_lock: exit path, as - ** unixEnterMutex() hasn't been called yet. - */ - if( pFile->eFileLock>=eFileLock ){ - OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, - azFileLock(eFileLock))); - return SQLITE_OK; - } - - /* Make sure the locking sequence is correct. - ** (1) We never move from unlocked to anything higher than shared lock. - ** (2) SQLite never explicitly requests a pendig lock. - ** (3) A shared lock is always held when a reserve lock is requested. - */ - assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); - assert( eFileLock!=PENDING_LOCK ); - assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); - - /* This mutex is needed because pFile->pInode is shared across threads - */ - unixEnterMutex(); - pInode = pFile->pInode; - - /* If some thread using this PID has a lock via a different unixFile* - ** handle that precludes the requested lock, return BUSY. - */ - if( (pFile->eFileLock!=pInode->eFileLock && - (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) - ){ - rc = SQLITE_BUSY; - goto end_lock; - } - - /* If a SHARED lock is requested, and some thread using this PID already - ** has a SHARED or RESERVED lock, then increment reference counts and - ** return SQLITE_OK. - */ - if( eFileLock==SHARED_LOCK && - (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ - assert( eFileLock==SHARED_LOCK ); - assert( pFile->eFileLock==0 ); - assert( pInode->nShared>0 ); - pFile->eFileLock = SHARED_LOCK; - pInode->nShared++; - pInode->nLock++; - goto end_lock; - } - - - /* A PENDING lock is needed before acquiring a SHARED lock and before - ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will - ** be released. - */ - lock.l_len = 1L; - lock.l_whence = SEEK_SET; - if( eFileLock==SHARED_LOCK - || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) - ){ - lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); - lock.l_start = PENDING_BYTE; - if( unixFileLock(pFile, &lock) ){ - tErrno = errno; - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - if( rc!=SQLITE_BUSY ){ - pFile->lastErrno = tErrno; - } - goto end_lock; - } - } - - - /* If control gets to this point, then actually go ahead and make - ** operating system calls for the specified lock. - */ - if( eFileLock==SHARED_LOCK ){ - assert( pInode->nShared==0 ); - assert( pInode->eFileLock==0 ); - assert( rc==SQLITE_OK ); - - /* Now get the read-lock */ - lock.l_start = SHARED_FIRST; - lock.l_len = SHARED_SIZE; - if( unixFileLock(pFile, &lock) ){ - tErrno = errno; - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - } - - /* Drop the temporary PENDING lock */ - lock.l_start = PENDING_BYTE; - lock.l_len = 1L; - lock.l_type = F_UNLCK; - if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ - /* This could happen with a network mount */ - tErrno = errno; - rc = SQLITE_IOERR_UNLOCK; - } - - if( rc ){ - if( rc!=SQLITE_BUSY ){ - pFile->lastErrno = tErrno; - } - goto end_lock; - }else{ - pFile->eFileLock = SHARED_LOCK; - pInode->nLock++; - pInode->nShared = 1; - } - }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ - /* We are trying for an exclusive lock but another thread in this - ** same process is still holding a shared lock. */ - rc = SQLITE_BUSY; - }else{ - /* The request was for a RESERVED or EXCLUSIVE lock. It is - ** assumed that there is a SHARED or greater lock on the file - ** already. - */ - assert( 0!=pFile->eFileLock ); - lock.l_type = F_WRLCK; - - assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); - if( eFileLock==RESERVED_LOCK ){ - lock.l_start = RESERVED_BYTE; - lock.l_len = 1L; - }else{ - lock.l_start = SHARED_FIRST; - lock.l_len = SHARED_SIZE; - } - - if( unixFileLock(pFile, &lock) ){ - tErrno = errno; - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - if( rc!=SQLITE_BUSY ){ - pFile->lastErrno = tErrno; - } - } - } - - -#ifdef SQLITE_DEBUG - /* Set up the transaction-counter change checking flags when - ** transitioning from a SHARED to a RESERVED lock. The change - ** from SHARED to RESERVED marks the beginning of a normal - ** write operation (not a hot journal rollback). - */ - if( rc==SQLITE_OK - && pFile->eFileLock<=SHARED_LOCK - && eFileLock==RESERVED_LOCK - ){ - pFile->transCntrChng = 0; - pFile->dbUpdate = 0; - pFile->inNormalWrite = 1; - } -#endif - - - if( rc==SQLITE_OK ){ - pFile->eFileLock = eFileLock; - pInode->eFileLock = eFileLock; - }else if( eFileLock==EXCLUSIVE_LOCK ){ - pFile->eFileLock = PENDING_LOCK; - pInode->eFileLock = PENDING_LOCK; - } - -end_lock: - unixLeaveMutex(); - OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), - rc==SQLITE_OK ? "ok" : "failed")); - return rc; -} - -/* -** Add the file descriptor used by file handle pFile to the corresponding -** pUnused list. -*/ -static void setPendingFd(unixFile *pFile){ - unixInodeInfo *pInode = pFile->pInode; - UnixUnusedFd *p = pFile->pUnused; - p->pNext = pInode->pUnused; - pInode->pUnused = p; - pFile->h = -1; - pFile->pUnused = 0; -} - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -** -** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED -** the byte range is divided into 2 parts and the first part is unlocked then -** set to a read lock, then the other part is simply unlocked. This works -** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to -** remove the write lock on a region when a read lock is set. -*/ -static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ - unixFile *pFile = (unixFile*)id; - unixInodeInfo *pInode; - struct flock lock; - int rc = SQLITE_OK; - - assert( pFile ); - OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, - pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, - getpid())); - - assert( eFileLock<=SHARED_LOCK ); - if( pFile->eFileLock<=eFileLock ){ - return SQLITE_OK; - } - unixEnterMutex(); - pInode = pFile->pInode; - assert( pInode->nShared!=0 ); - if( pFile->eFileLock>SHARED_LOCK ){ - assert( pInode->eFileLock==pFile->eFileLock ); - -#ifdef SQLITE_DEBUG - /* When reducing a lock such that other processes can start - ** reading the database file again, make sure that the - ** transaction counter was updated if any part of the database - ** file changed. If the transaction counter is not updated, - ** other connections to the same file might not realize that - ** the file has changed and hence might not know to flush their - ** cache. The use of a stale cache can lead to database corruption. - */ - pFile->inNormalWrite = 0; -#endif - - /* downgrading to a shared lock on NFS involves clearing the write lock - ** before establishing the readlock - to avoid a race condition we downgrade - ** the lock in 2 blocks, so that part of the range will be covered by a - ** write lock until the rest is covered by a read lock: - ** 1: [WWWWW] - ** 2: [....W] - ** 3: [RRRRW] - ** 4: [RRRR.] - */ - if( eFileLock==SHARED_LOCK ){ - -#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE - (void)handleNFSUnlock; - assert( handleNFSUnlock==0 ); -#endif -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE - if( handleNFSUnlock ){ - int tErrno; /* Error code from system call errors */ - off_t divSize = SHARED_SIZE - 1; - - lock.l_type = F_UNLCK; - lock.l_whence = SEEK_SET; - lock.l_start = SHARED_FIRST; - lock.l_len = divSize; - if( unixFileLock(pFile, &lock)==(-1) ){ - tErrno = errno; - rc = SQLITE_IOERR_UNLOCK; - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - goto end_unlock; - } - lock.l_type = F_RDLCK; - lock.l_whence = SEEK_SET; - lock.l_start = SHARED_FIRST; - lock.l_len = divSize; - if( unixFileLock(pFile, &lock)==(-1) ){ - tErrno = errno; - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - goto end_unlock; - } - lock.l_type = F_UNLCK; - lock.l_whence = SEEK_SET; - lock.l_start = SHARED_FIRST+divSize; - lock.l_len = SHARED_SIZE-divSize; - if( unixFileLock(pFile, &lock)==(-1) ){ - tErrno = errno; - rc = SQLITE_IOERR_UNLOCK; - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - goto end_unlock; - } - }else -#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ - { - lock.l_type = F_RDLCK; - lock.l_whence = SEEK_SET; - lock.l_start = SHARED_FIRST; - lock.l_len = SHARED_SIZE; - if( unixFileLock(pFile, &lock) ){ - /* In theory, the call to unixFileLock() cannot fail because another - ** process is holding an incompatible lock. If it does, this - ** indicates that the other process is not following the locking - ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning - ** SQLITE_BUSY would confuse the upper layer (in practice it causes - ** an assert to fail). */ - rc = SQLITE_IOERR_RDLOCK; - pFile->lastErrno = errno; - goto end_unlock; - } - } - } - lock.l_type = F_UNLCK; - lock.l_whence = SEEK_SET; - lock.l_start = PENDING_BYTE; - lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); - if( unixFileLock(pFile, &lock)==0 ){ - pInode->eFileLock = SHARED_LOCK; - }else{ - rc = SQLITE_IOERR_UNLOCK; - pFile->lastErrno = errno; - goto end_unlock; - } - } - if( eFileLock==NO_LOCK ){ - /* Decrement the shared lock counter. Release the lock using an - ** OS call only when all threads in this same process have released - ** the lock. - */ - pInode->nShared--; - if( pInode->nShared==0 ){ - lock.l_type = F_UNLCK; - lock.l_whence = SEEK_SET; - lock.l_start = lock.l_len = 0L; - if( unixFileLock(pFile, &lock)==0 ){ - pInode->eFileLock = NO_LOCK; - }else{ - rc = SQLITE_IOERR_UNLOCK; - pFile->lastErrno = errno; - pInode->eFileLock = NO_LOCK; - pFile->eFileLock = NO_LOCK; - } - } - - /* Decrement the count of locks against this same file. When the - ** count reaches zero, close any other file descriptors whose close - ** was deferred because of outstanding locks. - */ - pInode->nLock--; - assert( pInode->nLock>=0 ); - if( pInode->nLock==0 ){ - closePendingFds(pFile); - } - } - -end_unlock: - unixLeaveMutex(); - if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; - return rc; -} - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -*/ -static int unixUnlock(sqlite3_file *id, int eFileLock){ - return posixUnlock(id, eFileLock, 0); -} - -/* -** This function performs the parts of the "close file" operation -** common to all locking schemes. It closes the directory and file -** handles, if they are valid, and sets all fields of the unixFile -** structure to 0. -** -** It is *not* necessary to hold the mutex when this routine is called, -** even on VxWorks. A mutex will be acquired on VxWorks by the -** vxworksReleaseFileId() routine. -*/ -static int closeUnixFile(sqlite3_file *id){ - unixFile *pFile = (unixFile*)id; - if( pFile->h>=0 ){ - robust_close(pFile, pFile->h, __LINE__); - pFile->h = -1; - } -#if OS_VXWORKS - if( pFile->pId ){ - if( pFile->ctrlFlags & UNIXFILE_DELETE ){ - osUnlink(pFile->pId->zCanonicalName); - } - vxworksReleaseFileId(pFile->pId); - pFile->pId = 0; - } -#endif - OSTRACE(("CLOSE %-3d\n", pFile->h)); - OpenCounter(-1); - sqlite3_free(pFile->pUnused); - memset(pFile, 0, sizeof(unixFile)); - return SQLITE_OK; -} - -/* -** Close a file. -*/ -static int unixClose(sqlite3_file *id){ - int rc = SQLITE_OK; - unixFile *pFile = (unixFile *)id; - unixUnlock(id, NO_LOCK); - unixEnterMutex(); - - /* unixFile.pInode is always valid here. Otherwise, a different close - ** routine (e.g. nolockClose()) would be called instead. - */ - assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); - if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ - /* If there are outstanding locks, do not actually close the file just - ** yet because that would clear those locks. Instead, add the file - ** descriptor to pInode->pUnused list. It will be automatically closed - ** when the last lock is cleared. - */ - setPendingFd(pFile); - } - releaseInodeInfo(pFile); - rc = closeUnixFile(id); - unixLeaveMutex(); - return rc; -} - -/************** End of the posix advisory lock implementation ***************** -******************************************************************************/ - -/****************************************************************************** -****************************** No-op Locking ********************************** -** -** Of the various locking implementations available, this is by far the -** simplest: locking is ignored. No attempt is made to lock the database -** file for reading or writing. -** -** This locking mode is appropriate for use on read-only databases -** (ex: databases that are burned into CD-ROM, for example.) It can -** also be used if the application employs some external mechanism to -** prevent simultaneous access of the same database by two or more -** database connections. But there is a serious risk of database -** corruption if this locking mode is used in situations where multiple -** database connections are accessing the same database file at the same -** time and one or more of those connections are writing. -*/ - -static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ - UNUSED_PARAMETER(NotUsed); - *pResOut = 0; - return SQLITE_OK; -} -static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - return SQLITE_OK; -} -static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - return SQLITE_OK; -} - -/* -** Close the file. -*/ -static int nolockClose(sqlite3_file *id) { - return closeUnixFile(id); -} - -/******************* End of the no-op lock implementation ********************* -******************************************************************************/ - -/****************************************************************************** -************************* Begin dot-file Locking ****************************** -** -** The dotfile locking implementation uses the existence of separate lock -** files (really a directory) to control access to the database. This works -** on just about every filesystem imaginable. But there are serious downsides: -** -** (1) There is zero concurrency. A single reader blocks all other -** connections from reading or writing the database. -** -** (2) An application crash or power loss can leave stale lock files -** sitting around that need to be cleared manually. -** -** Nevertheless, a dotlock is an appropriate locking mode for use if no -** other locking strategy is available. -** -** Dotfile locking works by creating a subdirectory in the same directory as -** the database and with the same name but with a ".lock" extension added. -** The existence of a lock directory implies an EXCLUSIVE lock. All other -** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. -*/ - -/* -** The file suffix added to the data base filename in order to create the -** lock directory. -*/ -#define DOTLOCK_SUFFIX ".lock" - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -** -** In dotfile locking, either a lock exists or it does not. So in this -** variation of CheckReservedLock(), *pResOut is set to true if any lock -** is held on the file and false if the file is unlocked. -*/ -static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { - int rc = SQLITE_OK; - int reserved = 0; - unixFile *pFile = (unixFile*)id; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( pFile ); - - /* Check if a thread in this process holds such a lock */ - if( pFile->eFileLock>SHARED_LOCK ){ - /* Either this connection or some other connection in the same process - ** holds a lock on the file. No need to check further. */ - reserved = 1; - }else{ - /* The lock is held if and only if the lockfile exists */ - const char *zLockFile = (const char*)pFile->lockingContext; - reserved = osAccess(zLockFile, 0)==0; - } - OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); - *pResOut = reserved; - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -** -** With dotfile locking, we really only support state (4): EXCLUSIVE. -** But we track the other locking levels internally. -*/ -static int dotlockLock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - char *zLockFile = (char *)pFile->lockingContext; - int rc = SQLITE_OK; - - - /* If we have any lock, then the lock file already exists. All we have - ** to do is adjust our internal record of the lock level. - */ - if( pFile->eFileLock > NO_LOCK ){ - pFile->eFileLock = eFileLock; - /* Always update the timestamp on the old file */ -#ifdef HAVE_UTIME - utime(zLockFile, NULL); -#else - utimes(zLockFile, NULL); -#endif - return SQLITE_OK; - } - - /* grab an exclusive lock */ - rc = osMkdir(zLockFile, 0777); - if( rc<0 ){ - /* failed to open/create the lock directory */ - int tErrno = errno; - if( EEXIST == tErrno ){ - rc = SQLITE_BUSY; - } else { - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - } - return rc; - } - - /* got it, set the type and return ok */ - pFile->eFileLock = eFileLock; - return rc; -} - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -** -** When the locking level reaches NO_LOCK, delete the lock file. -*/ -static int dotlockUnlock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - char *zLockFile = (char *)pFile->lockingContext; - int rc; - - assert( pFile ); - OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, - pFile->eFileLock, getpid())); - assert( eFileLock<=SHARED_LOCK ); - - /* no-op if possible */ - if( pFile->eFileLock==eFileLock ){ - return SQLITE_OK; - } - - /* To downgrade to shared, simply update our internal notion of the - ** lock state. No need to mess with the file on disk. - */ - if( eFileLock==SHARED_LOCK ){ - pFile->eFileLock = SHARED_LOCK; - return SQLITE_OK; - } - - /* To fully unlock the database, delete the lock file */ - assert( eFileLock==NO_LOCK ); - rc = osRmdir(zLockFile); - if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile); - if( rc<0 ){ - int tErrno = errno; - rc = 0; - if( ENOENT != tErrno ){ - rc = SQLITE_IOERR_UNLOCK; - } - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - return rc; - } - pFile->eFileLock = NO_LOCK; - return SQLITE_OK; -} - -/* -** Close a file. Make sure the lock has been released before closing. -*/ -static int dotlockClose(sqlite3_file *id) { - int rc = SQLITE_OK; - if( id ){ - unixFile *pFile = (unixFile*)id; - dotlockUnlock(id, NO_LOCK); - sqlite3_free(pFile->lockingContext); - rc = closeUnixFile(id); - } - return rc; -} -/****************** End of the dot-file lock implementation ******************* -******************************************************************************/ - -/****************************************************************************** -************************** Begin flock Locking ******************************** -** -** Use the flock() system call to do file locking. -** -** flock() locking is like dot-file locking in that the various -** fine-grain locking levels supported by SQLite are collapsed into -** a single exclusive lock. In other words, SHARED, RESERVED, and -** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite -** still works when you do this, but concurrency is reduced since -** only a single process can be reading the database at a time. -** -** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if -** compiling for VXWORKS. -*/ -#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS - -/* -** Retry flock() calls that fail with EINTR -*/ -#ifdef EINTR -static int robust_flock(int fd, int op){ - int rc; - do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); - return rc; -} -#else -# define robust_flock(a,b) flock(a,b) -#endif - - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -*/ -static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ - int rc = SQLITE_OK; - int reserved = 0; - unixFile *pFile = (unixFile*)id; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( pFile ); - - /* Check if a thread in this process holds such a lock */ - if( pFile->eFileLock>SHARED_LOCK ){ - reserved = 1; - } - - /* Otherwise see if some other process holds it. */ - if( !reserved ){ - /* attempt to get the lock */ - int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); - if( !lrc ){ - /* got the lock, unlock it */ - lrc = robust_flock(pFile->h, LOCK_UN); - if ( lrc ) { - int tErrno = errno; - /* unlock failed with an error */ - lrc = SQLITE_IOERR_UNLOCK; - if( IS_LOCK_ERROR(lrc) ){ - pFile->lastErrno = tErrno; - rc = lrc; - } - } - } else { - int tErrno = errno; - reserved = 1; - /* someone else might have it reserved */ - lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - if( IS_LOCK_ERROR(lrc) ){ - pFile->lastErrno = tErrno; - rc = lrc; - } - } - } - OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); - -#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS - if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ - rc = SQLITE_OK; - reserved=1; - } -#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ - *pResOut = reserved; - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** flock() only really support EXCLUSIVE locks. We track intermediate -** lock states in the sqlite3_file structure, but all locks SHARED or -** above are really EXCLUSIVE locks and exclude all other processes from -** access the file. -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -*/ -static int flockLock(sqlite3_file *id, int eFileLock) { - int rc = SQLITE_OK; - unixFile *pFile = (unixFile*)id; - - assert( pFile ); - - /* if we already have a lock, it is exclusive. - ** Just adjust level and punt on outta here. */ - if (pFile->eFileLock > NO_LOCK) { - pFile->eFileLock = eFileLock; - return SQLITE_OK; - } - - /* grab an exclusive lock */ - - if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { - int tErrno = errno; - /* didn't get, must be busy */ - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - } else { - /* got it, set the type and return ok */ - pFile->eFileLock = eFileLock; - } - OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), - rc==SQLITE_OK ? "ok" : "failed")); -#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS - if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ - rc = SQLITE_BUSY; - } -#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ - return rc; -} - - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -*/ -static int flockUnlock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - - assert( pFile ); - OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, - pFile->eFileLock, getpid())); - assert( eFileLock<=SHARED_LOCK ); - - /* no-op if possible */ - if( pFile->eFileLock==eFileLock ){ - return SQLITE_OK; - } - - /* shared can just be set because we always have an exclusive */ - if (eFileLock==SHARED_LOCK) { - pFile->eFileLock = eFileLock; - return SQLITE_OK; - } - - /* no, really, unlock. */ - if( robust_flock(pFile->h, LOCK_UN) ){ -#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS - return SQLITE_OK; -#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ - return SQLITE_IOERR_UNLOCK; - }else{ - pFile->eFileLock = NO_LOCK; - return SQLITE_OK; - } -} - -/* -** Close a file. -*/ -static int flockClose(sqlite3_file *id) { - int rc = SQLITE_OK; - if( id ){ - flockUnlock(id, NO_LOCK); - rc = closeUnixFile(id); - } - return rc; -} - -#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ - -/******************* End of the flock lock implementation ********************* -******************************************************************************/ - -/****************************************************************************** -************************ Begin Named Semaphore Locking ************************ -** -** Named semaphore locking is only supported on VxWorks. -** -** Semaphore locking is like dot-lock and flock in that it really only -** supports EXCLUSIVE locking. Only a single process can read or write -** the database file at a time. This reduces potential concurrency, but -** makes the lock implementation much easier. -*/ -#if OS_VXWORKS - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -*/ -static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { - int rc = SQLITE_OK; - int reserved = 0; - unixFile *pFile = (unixFile*)id; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( pFile ); - - /* Check if a thread in this process holds such a lock */ - if( pFile->eFileLock>SHARED_LOCK ){ - reserved = 1; - } - - /* Otherwise see if some other process holds it. */ - if( !reserved ){ - sem_t *pSem = pFile->pInode->pSem; - struct stat statBuf; - - if( sem_trywait(pSem)==-1 ){ - int tErrno = errno; - if( EAGAIN != tErrno ){ - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); - pFile->lastErrno = tErrno; - } else { - /* someone else has the lock when we are in NO_LOCK */ - reserved = (pFile->eFileLock < SHARED_LOCK); - } - }else{ - /* we could have it if we want it */ - sem_post(pSem); - } - } - OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); - - *pResOut = reserved; - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** Semaphore locks only really support EXCLUSIVE locks. We track intermediate -** lock states in the sqlite3_file structure, but all locks SHARED or -** above are really EXCLUSIVE locks and exclude all other processes from -** access the file. -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -*/ -static int semLock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - int fd; - sem_t *pSem = pFile->pInode->pSem; - int rc = SQLITE_OK; - - /* if we already have a lock, it is exclusive. - ** Just adjust level and punt on outta here. */ - if (pFile->eFileLock > NO_LOCK) { - pFile->eFileLock = eFileLock; - rc = SQLITE_OK; - goto sem_end_lock; - } - - /* lock semaphore now but bail out when already locked. */ - if( sem_trywait(pSem)==-1 ){ - rc = SQLITE_BUSY; - goto sem_end_lock; - } - - /* got it, set the type and return ok */ - pFile->eFileLock = eFileLock; - - sem_end_lock: - return rc; -} - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -*/ -static int semUnlock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - sem_t *pSem = pFile->pInode->pSem; - - assert( pFile ); - assert( pSem ); - OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, - pFile->eFileLock, getpid())); - assert( eFileLock<=SHARED_LOCK ); - - /* no-op if possible */ - if( pFile->eFileLock==eFileLock ){ - return SQLITE_OK; - } - - /* shared can just be set because we always have an exclusive */ - if (eFileLock==SHARED_LOCK) { - pFile->eFileLock = eFileLock; - return SQLITE_OK; - } - - /* no, really unlock. */ - if ( sem_post(pSem)==-1 ) { - int rc, tErrno = errno; - rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - return rc; - } - pFile->eFileLock = NO_LOCK; - return SQLITE_OK; -} - -/* - ** Close a file. - */ -static int semClose(sqlite3_file *id) { - if( id ){ - unixFile *pFile = (unixFile*)id; - semUnlock(id, NO_LOCK); - assert( pFile ); - unixEnterMutex(); - releaseInodeInfo(pFile); - unixLeaveMutex(); - closeUnixFile(id); - } - return SQLITE_OK; -} - -#endif /* OS_VXWORKS */ -/* -** Named semaphore locking is only available on VxWorks. -** -*************** End of the named semaphore lock implementation **************** -******************************************************************************/ - - -/****************************************************************************** -*************************** Begin AFP Locking ********************************* -** -** AFP is the Apple Filing Protocol. AFP is a network filesystem found -** on Apple Macintosh computers - both OS9 and OSX. -** -** Third-party implementations of AFP are available. But this code here -** only works on OSX. -*/ - -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -/* -** The afpLockingContext structure contains all afp lock specific state -*/ -typedef struct afpLockingContext afpLockingContext; -struct afpLockingContext { - int reserved; - const char *dbPath; /* Name of the open file */ -}; - -struct ByteRangeLockPB2 -{ - unsigned long long offset; /* offset to first byte to lock */ - unsigned long long length; /* nbr of bytes to lock */ - unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ - unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ - unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ - int fd; /* file desc to assoc this lock with */ -}; - -#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) - -/* -** This is a utility for setting or clearing a bit-range lock on an -** AFP filesystem. -** -** Return SQLITE_OK on success, SQLITE_BUSY on failure. -*/ -static int afpSetLock( - const char *path, /* Name of the file to be locked or unlocked */ - unixFile *pFile, /* Open file descriptor on path */ - unsigned long long offset, /* First byte to be locked */ - unsigned long long length, /* Number of bytes to lock */ - int setLockFlag /* True to set lock. False to clear lock */ -){ - struct ByteRangeLockPB2 pb; - int err; - - pb.unLockFlag = setLockFlag ? 0 : 1; - pb.startEndFlag = 0; - pb.offset = offset; - pb.length = length; - pb.fd = pFile->h; - - OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", - (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), - offset, length)); - err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); - if ( err==-1 ) { - int rc; - int tErrno = errno; - OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", - path, tErrno, strerror(tErrno))); -#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS - rc = SQLITE_BUSY; -#else - rc = sqliteErrorFromPosixError(tErrno, - setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); -#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ - if( IS_LOCK_ERROR(rc) ){ - pFile->lastErrno = tErrno; - } - return rc; - } else { - return SQLITE_OK; - } -} - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -*/ -static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ - int rc = SQLITE_OK; - int reserved = 0; - unixFile *pFile = (unixFile*)id; - afpLockingContext *context; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( pFile ); - context = (afpLockingContext *) pFile->lockingContext; - if( context->reserved ){ - *pResOut = 1; - return SQLITE_OK; - } - unixEnterMutex(); /* Because pFile->pInode is shared across threads */ - - /* Check if a thread in this process holds such a lock */ - if( pFile->pInode->eFileLock>SHARED_LOCK ){ - reserved = 1; - } - - /* Otherwise see if some other process holds it. - */ - if( !reserved ){ - /* lock the RESERVED byte */ - int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); - if( SQLITE_OK==lrc ){ - /* if we succeeded in taking the reserved lock, unlock it to restore - ** the original state */ - lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); - } else { - /* if we failed to get the lock then someone else must have it */ - reserved = 1; - } - if( IS_LOCK_ERROR(lrc) ){ - rc=lrc; - } - } - - unixLeaveMutex(); - OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); - - *pResOut = reserved; - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -*/ -static int afpLock(sqlite3_file *id, int eFileLock){ - int rc = SQLITE_OK; - unixFile *pFile = (unixFile*)id; - unixInodeInfo *pInode = pFile->pInode; - afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; - - assert( pFile ); - OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, - azFileLock(eFileLock), azFileLock(pFile->eFileLock), - azFileLock(pInode->eFileLock), pInode->nShared , getpid())); - - /* If there is already a lock of this type or more restrictive on the - ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as - ** unixEnterMutex() hasn't been called yet. - */ - if( pFile->eFileLock>=eFileLock ){ - OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, - azFileLock(eFileLock))); - return SQLITE_OK; - } - - /* Make sure the locking sequence is correct - ** (1) We never move from unlocked to anything higher than shared lock. - ** (2) SQLite never explicitly requests a pendig lock. - ** (3) A shared lock is always held when a reserve lock is requested. - */ - assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); - assert( eFileLock!=PENDING_LOCK ); - assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); - - /* This mutex is needed because pFile->pInode is shared across threads - */ - unixEnterMutex(); - pInode = pFile->pInode; - - /* If some thread using this PID has a lock via a different unixFile* - ** handle that precludes the requested lock, return BUSY. - */ - if( (pFile->eFileLock!=pInode->eFileLock && - (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) - ){ - rc = SQLITE_BUSY; - goto afp_end_lock; - } - - /* If a SHARED lock is requested, and some thread using this PID already - ** has a SHARED or RESERVED lock, then increment reference counts and - ** return SQLITE_OK. - */ - if( eFileLock==SHARED_LOCK && - (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ - assert( eFileLock==SHARED_LOCK ); - assert( pFile->eFileLock==0 ); - assert( pInode->nShared>0 ); - pFile->eFileLock = SHARED_LOCK; - pInode->nShared++; - pInode->nLock++; - goto afp_end_lock; - } - - /* A PENDING lock is needed before acquiring a SHARED lock and before - ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will - ** be released. - */ - if( eFileLock==SHARED_LOCK - || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) - ){ - int failed; - failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); - if (failed) { - rc = failed; - goto afp_end_lock; - } - } - - /* If control gets to this point, then actually go ahead and make - ** operating system calls for the specified lock. - */ - if( eFileLock==SHARED_LOCK ){ - int lrc1, lrc2, lrc1Errno = 0; - long lk, mask; - - assert( pInode->nShared==0 ); - assert( pInode->eFileLock==0 ); - - mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; - /* Now get the read-lock SHARED_LOCK */ - /* note that the quality of the randomness doesn't matter that much */ - lk = random(); - pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); - lrc1 = afpSetLock(context->dbPath, pFile, - SHARED_FIRST+pInode->sharedByte, 1, 1); - if( IS_LOCK_ERROR(lrc1) ){ - lrc1Errno = pFile->lastErrno; - } - /* Drop the temporary PENDING lock */ - lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); - - if( IS_LOCK_ERROR(lrc1) ) { - pFile->lastErrno = lrc1Errno; - rc = lrc1; - goto afp_end_lock; - } else if( IS_LOCK_ERROR(lrc2) ){ - rc = lrc2; - goto afp_end_lock; - } else if( lrc1 != SQLITE_OK ) { - rc = lrc1; - } else { - pFile->eFileLock = SHARED_LOCK; - pInode->nLock++; - pInode->nShared = 1; - } - }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ - /* We are trying for an exclusive lock but another thread in this - ** same process is still holding a shared lock. */ - rc = SQLITE_BUSY; - }else{ - /* The request was for a RESERVED or EXCLUSIVE lock. It is - ** assumed that there is a SHARED or greater lock on the file - ** already. - */ - int failed = 0; - assert( 0!=pFile->eFileLock ); - if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { - /* Acquire a RESERVED lock */ - failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); - if( !failed ){ - context->reserved = 1; - } - } - if (!failed && eFileLock == EXCLUSIVE_LOCK) { - /* Acquire an EXCLUSIVE lock */ - - /* Remove the shared lock before trying the range. we'll need to - ** reestablish the shared lock if we can't get the afpUnlock - */ - if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + - pInode->sharedByte, 1, 0)) ){ - int failed2 = SQLITE_OK; - /* now attemmpt to get the exclusive lock range */ - failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, - SHARED_SIZE, 1); - if( failed && (failed2 = afpSetLock(context->dbPath, pFile, - SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ - /* Can't reestablish the shared lock. Sqlite can't deal, this is - ** a critical I/O error - */ - rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : - SQLITE_IOERR_LOCK; - goto afp_end_lock; - } - }else{ - rc = failed; - } - } - if( failed ){ - rc = failed; - } - } - - if( rc==SQLITE_OK ){ - pFile->eFileLock = eFileLock; - pInode->eFileLock = eFileLock; - }else if( eFileLock==EXCLUSIVE_LOCK ){ - pFile->eFileLock = PENDING_LOCK; - pInode->eFileLock = PENDING_LOCK; - } - -afp_end_lock: - unixLeaveMutex(); - OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), - rc==SQLITE_OK ? "ok" : "failed")); - return rc; -} - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -*/ -static int afpUnlock(sqlite3_file *id, int eFileLock) { - int rc = SQLITE_OK; - unixFile *pFile = (unixFile*)id; - unixInodeInfo *pInode; - afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; - int skipShared = 0; -#ifdef SQLITE_TEST - int h = pFile->h; -#endif - - assert( pFile ); - OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, - pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, - getpid())); - - assert( eFileLock<=SHARED_LOCK ); - if( pFile->eFileLock<=eFileLock ){ - return SQLITE_OK; - } - unixEnterMutex(); - pInode = pFile->pInode; - assert( pInode->nShared!=0 ); - if( pFile->eFileLock>SHARED_LOCK ){ - assert( pInode->eFileLock==pFile->eFileLock ); - SimulateIOErrorBenign(1); - SimulateIOError( h=(-1) ) - SimulateIOErrorBenign(0); - -#ifdef SQLITE_DEBUG - /* When reducing a lock such that other processes can start - ** reading the database file again, make sure that the - ** transaction counter was updated if any part of the database - ** file changed. If the transaction counter is not updated, - ** other connections to the same file might not realize that - ** the file has changed and hence might not know to flush their - ** cache. The use of a stale cache can lead to database corruption. - */ - assert( pFile->inNormalWrite==0 - || pFile->dbUpdate==0 - || pFile->transCntrChng==1 ); - pFile->inNormalWrite = 0; -#endif - - if( pFile->eFileLock==EXCLUSIVE_LOCK ){ - rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); - if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ - /* only re-establish the shared lock if necessary */ - int sharedLockByte = SHARED_FIRST+pInode->sharedByte; - rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); - } else { - skipShared = 1; - } - } - if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ - rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); - } - if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ - rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); - if( !rc ){ - context->reserved = 0; - } - } - if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ - pInode->eFileLock = SHARED_LOCK; - } - } - if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ - - /* Decrement the shared lock counter. Release the lock using an - ** OS call only when all threads in this same process have released - ** the lock. - */ - unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; - pInode->nShared--; - if( pInode->nShared==0 ){ - SimulateIOErrorBenign(1); - SimulateIOError( h=(-1) ) - SimulateIOErrorBenign(0); - if( !skipShared ){ - rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); - } - if( !rc ){ - pInode->eFileLock = NO_LOCK; - pFile->eFileLock = NO_LOCK; - } - } - if( rc==SQLITE_OK ){ - pInode->nLock--; - assert( pInode->nLock>=0 ); - if( pInode->nLock==0 ){ - closePendingFds(pFile); - } - } - } - - unixLeaveMutex(); - if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; - return rc; -} - -/* -** Close a file & cleanup AFP specific locking context -*/ -static int afpClose(sqlite3_file *id) { - int rc = SQLITE_OK; - if( id ){ - unixFile *pFile = (unixFile*)id; - afpUnlock(id, NO_LOCK); - unixEnterMutex(); - if( pFile->pInode && pFile->pInode->nLock ){ - /* If there are outstanding locks, do not actually close the file just - ** yet because that would clear those locks. Instead, add the file - ** descriptor to pInode->aPending. It will be automatically closed when - ** the last lock is cleared. - */ - setPendingFd(pFile); - } - releaseInodeInfo(pFile); - sqlite3_free(pFile->lockingContext); - rc = closeUnixFile(id); - unixLeaveMutex(); - } - return rc; -} - -#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ -/* -** The code above is the AFP lock implementation. The code is specific -** to MacOSX and does not work on other unix platforms. No alternative -** is available. If you don't compile for a mac, then the "unix-afp" -** VFS is not available. -** -********************* End of the AFP lock implementation ********************** -******************************************************************************/ - -/****************************************************************************** -*************************** Begin NFS Locking ********************************/ - -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -/* - ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock - ** must be either NO_LOCK or SHARED_LOCK. - ** - ** If the locking level of the file descriptor is already at or below - ** the requested locking level, this routine is a no-op. - */ -static int nfsUnlock(sqlite3_file *id, int eFileLock){ - return posixUnlock(id, eFileLock, 1); -} - -#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ -/* -** The code above is the NFS lock implementation. The code is specific -** to MacOSX and does not work on other unix platforms. No alternative -** is available. -** -********************* End of the NFS lock implementation ********************** -******************************************************************************/ - -/****************************************************************************** -**************** Non-locking sqlite3_file methods ***************************** -** -** The next division contains implementations for all methods of the -** sqlite3_file object other than the locking methods. The locking -** methods were defined in divisions above (one locking method per -** division). Those methods that are common to all locking modes -** are gather together into this division. -*/ - -/* -** Seek to the offset passed as the second argument, then read cnt -** bytes into pBuf. Return the number of bytes actually read. -** -** NB: If you define USE_PREAD or USE_PREAD64, then it might also -** be necessary to define _XOPEN_SOURCE to be 500. This varies from -** one system to another. Since SQLite does not define USE_PREAD -** any any form by default, we will not attempt to define _XOPEN_SOURCE. -** See tickets #2741 and #2681. -** -** To avoid stomping the errno value on a failed read the lastErrno value -** is set before returning. -*/ -static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ - int got; - int prior = 0; -#if (!defined(USE_PREAD) && !defined(USE_PREAD64)) - i64 newOffset; -#endif - TIMER_START; - assert( cnt==(cnt&0x1ffff) ); - cnt &= 0x1ffff; - do{ -#if defined(USE_PREAD) - got = osPread(id->h, pBuf, cnt, offset); - SimulateIOError( got = -1 ); -#elif defined(USE_PREAD64) - got = osPread64(id->h, pBuf, cnt, offset); - SimulateIOError( got = -1 ); -#else - newOffset = lseek(id->h, offset, SEEK_SET); - SimulateIOError( newOffset-- ); - if( newOffset!=offset ){ - if( newOffset == -1 ){ - ((unixFile*)id)->lastErrno = errno; - }else{ - ((unixFile*)id)->lastErrno = 0; - } - return -1; - } - got = osRead(id->h, pBuf, cnt); -#endif - if( got==cnt ) break; - if( got<0 ){ - if( errno==EINTR ){ got = 1; continue; } - prior = 0; - ((unixFile*)id)->lastErrno = errno; - break; - }else if( got>0 ){ - cnt -= got; - offset += got; - prior += got; - pBuf = (void*)(got + (char*)pBuf); - } - }while( got>0 ); - TIMER_END; - OSTRACE(("READ %-3d %5d %7lld %llu\n", - id->h, got+prior, offset-prior, TIMER_ELAPSED)); - return got+prior; -} - -/* -** Read data from a file into a buffer. Return SQLITE_OK if all -** bytes were read successfully and SQLITE_IOERR if anything goes -** wrong. -*/ -static int unixRead( - sqlite3_file *id, - void *pBuf, - int amt, - sqlite3_int64 offset -){ - unixFile *pFile = (unixFile *)id; - int got; - assert( id ); - - /* If this is a database file (not a journal, master-journal or temp - ** file), the bytes in the locking range should never be read or written. */ -#if 0 - assert( pFile->pUnused==0 - || offset>=PENDING_BYTE+512 - || offset+amt<=PENDING_BYTE - ); -#endif - - got = seekAndRead(pFile, offset, pBuf, amt); - if( got==amt ){ - return SQLITE_OK; - }else if( got<0 ){ - /* lastErrno set by seekAndRead */ - return SQLITE_IOERR_READ; - }else{ - pFile->lastErrno = 0; /* not a system error */ - /* Unread parts of the buffer must be zero-filled */ - memset(&((char*)pBuf)[got], 0, amt-got); - return SQLITE_IOERR_SHORT_READ; - } -} - -/* -** Seek to the offset in id->offset then read cnt bytes into pBuf. -** Return the number of bytes actually read. Update the offset. -** -** To avoid stomping the errno value on a failed write the lastErrno value -** is set before returning. -*/ -static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ - int got; -#if (!defined(USE_PREAD) && !defined(USE_PREAD64)) - i64 newOffset; -#endif - assert( cnt==(cnt&0x1ffff) ); - cnt &= 0x1ffff; - TIMER_START; -#if defined(USE_PREAD) - do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); -#elif defined(USE_PREAD64) - do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR); -#else - do{ - newOffset = lseek(id->h, offset, SEEK_SET); - SimulateIOError( newOffset-- ); - if( newOffset!=offset ){ - if( newOffset == -1 ){ - ((unixFile*)id)->lastErrno = errno; - }else{ - ((unixFile*)id)->lastErrno = 0; - } - return -1; - } - got = osWrite(id->h, pBuf, cnt); - }while( got<0 && errno==EINTR ); -#endif - TIMER_END; - if( got<0 ){ - ((unixFile*)id)->lastErrno = errno; - } - - OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); - return got; -} - - -/* -** Write data from a buffer into a file. Return SQLITE_OK on success -** or some other error code on failure. -*/ -static int unixWrite( - sqlite3_file *id, - const void *pBuf, - int amt, - sqlite3_int64 offset -){ - unixFile *pFile = (unixFile*)id; - int wrote = 0; - assert( id ); - assert( amt>0 ); - - /* If this is a database file (not a journal, master-journal or temp - ** file), the bytes in the locking range should never be read or written. */ -#if 0 - assert( pFile->pUnused==0 - || offset>=PENDING_BYTE+512 - || offset+amt<=PENDING_BYTE - ); -#endif - -#ifdef SQLITE_DEBUG - /* If we are doing a normal write to a database file (as opposed to - ** doing a hot-journal rollback or a write to some file other than a - ** normal database file) then record the fact that the database - ** has changed. If the transaction counter is modified, record that - ** fact too. - */ - if( pFile->inNormalWrite ){ - pFile->dbUpdate = 1; /* The database has been modified */ - if( offset<=24 && offset+amt>=27 ){ - int rc; - char oldCntr[4]; - SimulateIOErrorBenign(1); - rc = seekAndRead(pFile, 24, oldCntr, 4); - SimulateIOErrorBenign(0); - if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ - pFile->transCntrChng = 1; /* The transaction counter has changed */ - } - } - } -#endif - - while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ - amt -= wrote; - offset += wrote; - pBuf = &((char*)pBuf)[wrote]; - } - SimulateIOError(( wrote=(-1), amt=1 )); - SimulateDiskfullError(( wrote=0, amt=1 )); - - if( amt>0 ){ - if( wrote<0 && pFile->lastErrno!=ENOSPC ){ - /* lastErrno set by seekAndWrite */ - return SQLITE_IOERR_WRITE; - }else{ - pFile->lastErrno = 0; /* not a system error */ - return SQLITE_FULL; - } - } - - return SQLITE_OK; -} - -#ifdef SQLITE_TEST -/* -** Count the number of fullsyncs and normal syncs. This is used to test -** that syncs and fullsyncs are occurring at the right times. -*/ -SQLITE_API int sqlite3_sync_count = 0; -SQLITE_API int sqlite3_fullsync_count = 0; -#endif - -/* -** We do not trust systems to provide a working fdatasync(). Some do. -** Others do no. To be safe, we will stick with the (slightly slower) -** fsync(). If you know that your system does support fdatasync() correctly, -** then simply compile with -Dfdatasync=fdatasync -*/ -#if !defined(fdatasync) -# define fdatasync fsync -#endif - -/* -** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not -** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently -** only available on Mac OS X. But that could change. -*/ -#ifdef F_FULLFSYNC -# define HAVE_FULLFSYNC 1 -#else -# define HAVE_FULLFSYNC 0 -#endif - - -/* -** The fsync() system call does not work as advertised on many -** unix systems. The following procedure is an attempt to make -** it work better. -** -** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful -** for testing when we want to run through the test suite quickly. -** You are strongly advised *not* to deploy with SQLITE_NO_SYNC -** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash -** or power failure will likely corrupt the database file. -** -** SQLite sets the dataOnly flag if the size of the file is unchanged. -** The idea behind dataOnly is that it should only write the file content -** to disk, not the inode. We only set dataOnly if the file size is -** unchanged since the file size is part of the inode. However, -** Ted Ts'o tells us that fdatasync() will also write the inode if the -** file size has changed. The only real difference between fdatasync() -** and fsync(), Ted tells us, is that fdatasync() will not flush the -** inode if the mtime or owner or other inode attributes have changed. -** We only care about the file size, not the other file attributes, so -** as far as SQLite is concerned, an fdatasync() is always adequate. -** So, we always use fdatasync() if it is available, regardless of -** the value of the dataOnly flag. -*/ -static int full_fsync(int fd, int fullSync, int dataOnly){ - int rc; - - /* The following "ifdef/elif/else/" block has the same structure as - ** the one below. It is replicated here solely to avoid cluttering - ** up the real code with the UNUSED_PARAMETER() macros. - */ -#ifdef SQLITE_NO_SYNC - UNUSED_PARAMETER(fd); - UNUSED_PARAMETER(fullSync); - UNUSED_PARAMETER(dataOnly); -#elif HAVE_FULLFSYNC - UNUSED_PARAMETER(dataOnly); -#else - UNUSED_PARAMETER(fullSync); - UNUSED_PARAMETER(dataOnly); -#endif - - /* Record the number of times that we do a normal fsync() and - ** FULLSYNC. This is used during testing to verify that this procedure - ** gets called with the correct arguments. - */ -#ifdef SQLITE_TEST - if( fullSync ) sqlite3_fullsync_count++; - sqlite3_sync_count++; -#endif - - /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a - ** no-op - */ -#ifdef SQLITE_NO_SYNC - rc = SQLITE_OK; -#elif HAVE_FULLFSYNC - if( fullSync ){ - rc = osFcntl(fd, F_FULLFSYNC, 0); - }else{ - rc = 1; - } - /* If the FULLFSYNC failed, fall back to attempting an fsync(). - ** It shouldn't be possible for fullfsync to fail on the local - ** file system (on OSX), so failure indicates that FULLFSYNC - ** isn't supported for this file system. So, attempt an fsync - ** and (for now) ignore the overhead of a superfluous fcntl call. - ** It'd be better to detect fullfsync support once and avoid - ** the fcntl call every time sync is called. - */ - if( rc ) rc = fsync(fd); - -#elif defined(__APPLE__) - /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly - ** so currently we default to the macro that redefines fdatasync to fsync - */ - rc = fsync(fd); -#else - rc = fdatasync(fd); -#if OS_VXWORKS - if( rc==-1 && errno==ENOTSUP ){ - rc = fsync(fd); - } -#endif /* OS_VXWORKS */ -#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ - - if( OS_VXWORKS && rc!= -1 ){ - rc = 0; - } - return rc; -} - -/* -** Open a file descriptor to the directory containing file zFilename. -** If successful, *pFd is set to the opened file descriptor and -** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM -** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined -** value. -** -** The directory file descriptor is used for only one thing - to -** fsync() a directory to make sure file creation and deletion events -** are flushed to disk. Such fsyncs are not needed on newer -** journaling filesystems, but are required on older filesystems. -** -** This routine can be overridden using the xSetSysCall interface. -** The ability to override this routine was added in support of the -** chromium sandbox. Opening a directory is a security risk (we are -** told) so making it overrideable allows the chromium sandbox to -** replace this routine with a harmless no-op. To make this routine -** a no-op, replace it with a stub that returns SQLITE_OK but leaves -** *pFd set to a negative number. -** -** If SQLITE_OK is returned, the caller is responsible for closing -** the file descriptor *pFd using close(). -*/ -static int openDirectory(const char *zFilename, int *pFd){ - int ii; - int fd = -1; - char zDirname[MAX_PATHNAME+1]; - - sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); - for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); - if( ii>0 ){ - zDirname[ii] = '\0'; - fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); - if( fd>=0 ){ - OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); - } - } - *pFd = fd; - return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); -} - -/* -** Make sure all writes to a particular file are committed to disk. -** -** If dataOnly==0 then both the file itself and its metadata (file -** size, access time, etc) are synced. If dataOnly!=0 then only the -** file data is synced. -** -** Under Unix, also make sure that the directory entry for the file -** has been created by fsync-ing the directory that contains the file. -** If we do not do this and we encounter a power failure, the directory -** entry for the journal might not exist after we reboot. The next -** SQLite to access the file will not know that the journal exists (because -** the directory entry for the journal was never created) and the transaction -** will not roll back - possibly leading to database corruption. -*/ -static int unixSync(sqlite3_file *id, int flags){ - int rc; - unixFile *pFile = (unixFile*)id; - - int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); - int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; - - /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ - assert((flags&0x0F)==SQLITE_SYNC_NORMAL - || (flags&0x0F)==SQLITE_SYNC_FULL - ); - - /* Unix cannot, but some systems may return SQLITE_FULL from here. This - ** line is to test that doing so does not cause any problems. - */ - SimulateDiskfullError( return SQLITE_FULL ); - - assert( pFile ); - OSTRACE(("SYNC %-3d\n", pFile->h)); - rc = full_fsync(pFile->h, isFullsync, isDataOnly); - SimulateIOError( rc=1 ); - if( rc ){ - pFile->lastErrno = errno; - return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); - } - - /* Also fsync the directory containing the file if the DIRSYNC flag - ** is set. This is a one-time occurrence. Many systems (examples: AIX) - ** are unable to fsync a directory, so ignore errors on the fsync. - */ - if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ - int dirfd; - OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, - HAVE_FULLFSYNC, isFullsync)); - rc = osOpenDirectory(pFile->zPath, &dirfd); - if( rc==SQLITE_OK && dirfd>=0 ){ - full_fsync(dirfd, 0, 0); - robust_close(pFile, dirfd, __LINE__); - }else if( rc==SQLITE_CANTOPEN ){ - rc = SQLITE_OK; - } - pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; - } - return rc; -} - -/* -** Truncate an open file to a specified size -*/ -static int unixTruncate(sqlite3_file *id, i64 nByte){ - unixFile *pFile = (unixFile *)id; - int rc; - assert( pFile ); - SimulateIOError( return SQLITE_IOERR_TRUNCATE ); - - /* If the user has configured a chunk-size for this file, truncate the - ** file so that it consists of an integer number of chunks (i.e. the - ** actual file size after the operation may be larger than the requested - ** size). - */ - if( pFile->szChunk>0 ){ - nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; - } - - rc = robust_ftruncate(pFile->h, (off_t)nByte); - if( rc ){ - pFile->lastErrno = errno; - return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); - }else{ -#ifdef SQLITE_DEBUG - /* If we are doing a normal write to a database file (as opposed to - ** doing a hot-journal rollback or a write to some file other than a - ** normal database file) and we truncate the file to zero length, - ** that effectively updates the change counter. This might happen - ** when restoring a database using the backup API from a zero-length - ** source. - */ - if( pFile->inNormalWrite && nByte==0 ){ - pFile->transCntrChng = 1; - } -#endif - - return SQLITE_OK; - } -} - -/* -** Determine the current size of a file in bytes -*/ -static int unixFileSize(sqlite3_file *id, i64 *pSize){ - int rc; - struct stat buf; - assert( id ); - rc = osFstat(((unixFile*)id)->h, &buf); - SimulateIOError( rc=1 ); - if( rc!=0 ){ - ((unixFile*)id)->lastErrno = errno; - return SQLITE_IOERR_FSTAT; - } - *pSize = buf.st_size; - - /* When opening a zero-size database, the findInodeInfo() procedure - ** writes a single byte into that file in order to work around a bug - ** in the OS-X msdos filesystem. In order to avoid problems with upper - ** layers, we need to report this file size as zero even though it is - ** really 1. Ticket #3260. - */ - if( *pSize==1 ) *pSize = 0; - - - return SQLITE_OK; -} - -#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) -/* -** Handler for proxy-locking file-control verbs. Defined below in the -** proxying locking division. -*/ -static int proxyFileControl(sqlite3_file*,int,void*); -#endif - -/* -** This function is called to handle the SQLITE_FCNTL_SIZE_HINT -** file-control operation. Enlarge the database to nBytes in size -** (rounded up to the next chunk-size). If the database is already -** nBytes or larger, this routine is a no-op. -*/ -static int fcntlSizeHint(unixFile *pFile, i64 nByte){ - if( pFile->szChunk>0 ){ - i64 nSize; /* Required file size */ - struct stat buf; /* Used to hold return values of fstat() */ - - if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; - - nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; - if( nSize>(i64)buf.st_size ){ - -#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE - /* The code below is handling the return value of osFallocate() - ** correctly. posix_fallocate() is defined to "returns zero on success, - ** or an error number on failure". See the manpage for details. */ - int err; - do{ - err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); - }while( err==EINTR ); - if( err ) return SQLITE_IOERR_WRITE; -#else - /* If the OS does not have posix_fallocate(), fake it. First use - ** ftruncate() to set the file size, then write a single byte to - ** the last byte in each block within the extended region. This - ** is the same technique used by glibc to implement posix_fallocate() - ** on systems that do not have a real fallocate() system call. - */ - int nBlk = buf.st_blksize; /* File-system block size */ - i64 iWrite; /* Next offset to write to */ - - if( robust_ftruncate(pFile->h, nSize) ){ - pFile->lastErrno = errno; - return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); - } - iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; - while( iWrite<nSize ){ - int nWrite = seekAndWrite(pFile, iWrite, "", 1); - if( nWrite!=1 ) return SQLITE_IOERR_WRITE; - iWrite += nBlk; - } -#endif - } - } - - return SQLITE_OK; -} - -/* -** If *pArg is inititially negative then this is a query. Set *pArg to -** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. -** -** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. -*/ -static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ - if( *pArg<0 ){ - *pArg = (pFile->ctrlFlags & mask)!=0; - }else if( (*pArg)==0 ){ - pFile->ctrlFlags &= ~mask; - }else{ - pFile->ctrlFlags |= mask; - } -} - -/* Forward declaration */ -static int unixGetTempname(int nBuf, char *zBuf); - -/* -** Information and control of an open file handle. -*/ -static int unixFileControl(sqlite3_file *id, int op, void *pArg){ - unixFile *pFile = (unixFile*)id; - switch( op ){ - case SQLITE_FCNTL_LOCKSTATE: { - *(int*)pArg = pFile->eFileLock; - return SQLITE_OK; - } - case SQLITE_LAST_ERRNO: { - *(int*)pArg = pFile->lastErrno; - return SQLITE_OK; - } - case SQLITE_FCNTL_CHUNK_SIZE: { - pFile->szChunk = *(int *)pArg; - return SQLITE_OK; - } - case SQLITE_FCNTL_SIZE_HINT: { - int rc; - SimulateIOErrorBenign(1); - rc = fcntlSizeHint(pFile, *(i64 *)pArg); - SimulateIOErrorBenign(0); - return rc; - } - case SQLITE_FCNTL_PERSIST_WAL: { - unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); - return SQLITE_OK; - } - case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { - unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); - return SQLITE_OK; - } - case SQLITE_FCNTL_VFSNAME: { - *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); - return SQLITE_OK; - } - case SQLITE_FCNTL_TEMPFILENAME: { - char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname ); - if( zTFile ){ - unixGetTempname(pFile->pVfs->mxPathname, zTFile); - *(char**)pArg = zTFile; - } - return SQLITE_OK; - } -#ifdef SQLITE_DEBUG - /* The pager calls this method to signal that it has done - ** a rollback and that the database is therefore unchanged and - ** it hence it is OK for the transaction change counter to be - ** unchanged. - */ - case SQLITE_FCNTL_DB_UNCHANGED: { - ((unixFile*)id)->dbUpdate = 0; - return SQLITE_OK; - } -#endif -#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) - case SQLITE_SET_LOCKPROXYFILE: - case SQLITE_GET_LOCKPROXYFILE: { - return proxyFileControl(id,op,pArg); - } -#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ - } - return SQLITE_NOTFOUND; -} - -/* -** Return the sector size in bytes of the underlying block device for -** the specified file. This is almost always 512 bytes, but may be -** larger for some devices. -** -** SQLite code assumes this function cannot fail. It also assumes that -** if two files are created in the same file-system directory (i.e. -** a database and its journal file) that the sector size will be the -** same for both. -*/ -#ifndef __QNXNTO__ -static int unixSectorSize(sqlite3_file *NotUsed){ - UNUSED_PARAMETER(NotUsed); - return SQLITE_DEFAULT_SECTOR_SIZE; -} -#endif - -/* -** The following version of unixSectorSize() is optimized for QNX. -*/ -#ifdef __QNXNTO__ -#include <sys/dcmd_blk.h> -#include <sys/statvfs.h> -static int unixSectorSize(sqlite3_file *id){ - unixFile *pFile = (unixFile*)id; - if( pFile->sectorSize == 0 ){ - struct statvfs fsInfo; - - /* Set defaults for non-supported filesystems */ - pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; - pFile->deviceCharacteristics = 0; - if( fstatvfs(pFile->h, &fsInfo) == -1 ) { - return pFile->sectorSize; - } - - if( !strcmp(fsInfo.f_basetype, "tmp") ) { - pFile->sectorSize = fsInfo.f_bsize; - pFile->deviceCharacteristics = - SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ - SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until - ** the write succeeds */ - SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind - ** so it is ordered */ - 0; - }else if( strstr(fsInfo.f_basetype, "etfs") ){ - pFile->sectorSize = fsInfo.f_bsize; - pFile->deviceCharacteristics = - /* etfs cluster size writes are atomic */ - (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | - SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until - ** the write succeeds */ - SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind - ** so it is ordered */ - 0; - }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ - pFile->sectorSize = fsInfo.f_bsize; - pFile->deviceCharacteristics = - SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ - SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until - ** the write succeeds */ - SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind - ** so it is ordered */ - 0; - }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ - pFile->sectorSize = fsInfo.f_bsize; - pFile->deviceCharacteristics = - /* full bitset of atomics from max sector size and smaller */ - ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | - SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind - ** so it is ordered */ - 0; - }else if( strstr(fsInfo.f_basetype, "dos") ){ - pFile->sectorSize = fsInfo.f_bsize; - pFile->deviceCharacteristics = - /* full bitset of atomics from max sector size and smaller */ - ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | - SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind - ** so it is ordered */ - 0; - }else{ - pFile->deviceCharacteristics = - SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ - SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until - ** the write succeeds */ - 0; - } - } - /* Last chance verification. If the sector size isn't a multiple of 512 - ** then it isn't valid.*/ - if( pFile->sectorSize % 512 != 0 ){ - pFile->deviceCharacteristics = 0; - pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; - } - return pFile->sectorSize; -} -#endif /* __QNXNTO__ */ - -/* -** Return the device characteristics for the file. -** -** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. -** However, that choice is contraversial since technically the underlying -** file system does not always provide powersafe overwrites. (In other -** words, after a power-loss event, parts of the file that were never -** written might end up being altered.) However, non-PSOW behavior is very, -** very rare. And asserting PSOW makes a large reduction in the amount -** of required I/O for journaling, since a lot of padding is eliminated. -** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control -** available to turn it off and URI query parameter available to turn it off. -*/ -static int unixDeviceCharacteristics(sqlite3_file *id){ - unixFile *p = (unixFile*)id; - int rc = 0; -#ifdef __QNXNTO__ - if( p->sectorSize==0 ) unixSectorSize(id); - rc = p->deviceCharacteristics; -#endif - if( p->ctrlFlags & UNIXFILE_PSOW ){ - rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; - } - return rc; -} - -#ifndef SQLITE_OMIT_WAL - - -/* -** Object used to represent an shared memory buffer. -** -** When multiple threads all reference the same wal-index, each thread -** has its own unixShm object, but they all point to a single instance -** of this unixShmNode object. In other words, each wal-index is opened -** only once per process. -** -** Each unixShmNode object is connected to a single unixInodeInfo object. -** We could coalesce this object into unixInodeInfo, but that would mean -** every open file that does not use shared memory (in other words, most -** open files) would have to carry around this extra information. So -** the unixInodeInfo object contains a pointer to this unixShmNode object -** and the unixShmNode object is created only when needed. -** -** unixMutexHeld() must be true when creating or destroying -** this object or while reading or writing the following fields: -** -** nRef -** -** The following fields are read-only after the object is created: -** -** fid -** zFilename -** -** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and -** unixMutexHeld() is true when reading or writing any other field -** in this structure. -*/ -struct unixShmNode { - unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ - sqlite3_mutex *mutex; /* Mutex to access this object */ - char *zFilename; /* Name of the mmapped file */ - int h; /* Open file descriptor */ - int szRegion; /* Size of shared-memory regions */ - u16 nRegion; /* Size of array apRegion */ - u8 isReadonly; /* True if read-only */ - char **apRegion; /* Array of mapped shared-memory regions */ - int nRef; /* Number of unixShm objects pointing to this */ - unixShm *pFirst; /* All unixShm objects pointing to this */ -#ifdef SQLITE_DEBUG - u8 exclMask; /* Mask of exclusive locks held */ - u8 sharedMask; /* Mask of shared locks held */ - u8 nextShmId; /* Next available unixShm.id value */ -#endif -}; - -/* -** Structure used internally by this VFS to record the state of an -** open shared memory connection. -** -** The following fields are initialized when this object is created and -** are read-only thereafter: -** -** unixShm.pFile -** unixShm.id -** -** All other fields are read/write. The unixShm.pFile->mutex must be held -** while accessing any read/write fields. -*/ -struct unixShm { - unixShmNode *pShmNode; /* The underlying unixShmNode object */ - unixShm *pNext; /* Next unixShm with the same unixShmNode */ - u8 hasMutex; /* True if holding the unixShmNode mutex */ - u8 id; /* Id of this connection within its unixShmNode */ - u16 sharedMask; /* Mask of shared locks held */ - u16 exclMask; /* Mask of exclusive locks held */ -}; - -/* -** Constants used for locking -*/ -#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ -#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ - -/* -** Apply posix advisory locks for all bytes from ofst through ofst+n-1. -** -** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking -** otherwise. -*/ -static int unixShmSystemLock( - unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ - int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ - int ofst, /* First byte of the locking range */ - int n /* Number of bytes to lock */ -){ - struct flock f; /* The posix advisory locking structure */ - int rc = SQLITE_OK; /* Result code form fcntl() */ - - /* Access to the unixShmNode object is serialized by the caller */ - assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); - - /* Shared locks never span more than one byte */ - assert( n==1 || lockType!=F_RDLCK ); - - /* Locks are within range */ - assert( n>=1 && n<SQLITE_SHM_NLOCK ); - - if( pShmNode->h>=0 ){ - /* Initialize the locking parameters */ - memset(&f, 0, sizeof(f)); - f.l_type = lockType; - f.l_whence = SEEK_SET; - f.l_start = ofst; - f.l_len = n; - - rc = osFcntl(pShmNode->h, F_SETLK, &f); - rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; - } - - /* Update the global lock state and do debug tracing */ -#ifdef SQLITE_DEBUG - { u16 mask; - OSTRACE(("SHM-LOCK ")); - mask = (1<<(ofst+n)) - (1<<ofst); - if( rc==SQLITE_OK ){ - if( lockType==F_UNLCK ){ - OSTRACE(("unlock %d ok", ofst)); - pShmNode->exclMask &= ~mask; - pShmNode->sharedMask &= ~mask; - }else if( lockType==F_RDLCK ){ - OSTRACE(("read-lock %d ok", ofst)); - pShmNode->exclMask &= ~mask; - pShmNode->sharedMask |= mask; - }else{ - assert( lockType==F_WRLCK ); - OSTRACE(("write-lock %d ok", ofst)); - pShmNode->exclMask |= mask; - pShmNode->sharedMask &= ~mask; - } - }else{ - if( lockType==F_UNLCK ){ - OSTRACE(("unlock %d failed", ofst)); - }else if( lockType==F_RDLCK ){ - OSTRACE(("read-lock failed")); - }else{ - assert( lockType==F_WRLCK ); - OSTRACE(("write-lock %d failed", ofst)); - } - } - OSTRACE((" - afterwards %03x,%03x\n", - pShmNode->sharedMask, pShmNode->exclMask)); - } -#endif - - return rc; -} - - -/* -** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. -** -** This is not a VFS shared-memory method; it is a utility function called -** by VFS shared-memory methods. -*/ -static void unixShmPurge(unixFile *pFd){ - unixShmNode *p = pFd->pInode->pShmNode; - assert( unixMutexHeld() ); - if( p && p->nRef==0 ){ - int i; - assert( p->pInode==pFd->pInode ); - sqlite3_mutex_free(p->mutex); - for(i=0; i<p->nRegion; i++){ - if( p->h>=0 ){ - munmap(p->apRegion[i], p->szRegion); - }else{ - sqlite3_free(p->apRegion[i]); - } - } - sqlite3_free(p->apRegion); - if( p->h>=0 ){ - robust_close(pFd, p->h, __LINE__); - p->h = -1; - } - p->pInode->pShmNode = 0; - sqlite3_free(p); - } -} - -/* -** Open a shared-memory area associated with open database file pDbFd. -** This particular implementation uses mmapped files. -** -** The file used to implement shared-memory is in the same directory -** as the open database file and has the same name as the open database -** file with the "-shm" suffix added. For example, if the database file -** is "/home/user1/config.db" then the file that is created and mmapped -** for shared memory will be called "/home/user1/config.db-shm". -** -** Another approach to is to use files in /dev/shm or /dev/tmp or an -** some other tmpfs mount. But if a file in a different directory -** from the database file is used, then differing access permissions -** or a chroot() might cause two different processes on the same -** database to end up using different files for shared memory - -** meaning that their memory would not really be shared - resulting -** in database corruption. Nevertheless, this tmpfs file usage -** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" -** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time -** option results in an incompatible build of SQLite; builds of SQLite -** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the -** same database file at the same time, database corruption will likely -** result. The SQLITE_SHM_DIRECTORY compile-time option is considered -** "unsupported" and may go away in a future SQLite release. -** -** When opening a new shared-memory file, if no other instances of that -** file are currently open, in this process or in other processes, then -** the file must be truncated to zero length or have its header cleared. -** -** If the original database file (pDbFd) is using the "unix-excl" VFS -** that means that an exclusive lock is held on the database file and -** that no other processes are able to read or write the database. In -** that case, we do not really need shared memory. No shared memory -** file is created. The shared memory will be simulated with heap memory. -*/ -static int unixOpenSharedMemory(unixFile *pDbFd){ - struct unixShm *p = 0; /* The connection to be opened */ - struct unixShmNode *pShmNode; /* The underlying mmapped file */ - int rc; /* Result code */ - unixInodeInfo *pInode; /* The inode of fd */ - char *zShmFilename; /* Name of the file used for SHM */ - int nShmFilename; /* Size of the SHM filename in bytes */ - - /* Allocate space for the new unixShm object. */ - p = sqlite3_malloc( sizeof(*p) ); - if( p==0 ) return SQLITE_NOMEM; - memset(p, 0, sizeof(*p)); - assert( pDbFd->pShm==0 ); - - /* Check to see if a unixShmNode object already exists. Reuse an existing - ** one if present. Create a new one if necessary. - */ - unixEnterMutex(); - pInode = pDbFd->pInode; - pShmNode = pInode->pShmNode; - if( pShmNode==0 ){ - struct stat sStat; /* fstat() info for database file */ - - /* Call fstat() to figure out the permissions on the database file. If - ** a new *-shm file is created, an attempt will be made to create it - ** with the same permissions. - */ - if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ - rc = SQLITE_IOERR_FSTAT; - goto shm_open_err; - } - -#ifdef SQLITE_SHM_DIRECTORY - nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; -#else - nShmFilename = 6 + (int)strlen(pDbFd->zPath); -#endif - pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); - if( pShmNode==0 ){ - rc = SQLITE_NOMEM; - goto shm_open_err; - } - memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); - zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; -#ifdef SQLITE_SHM_DIRECTORY - sqlite3_snprintf(nShmFilename, zShmFilename, - SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", - (u32)sStat.st_ino, (u32)sStat.st_dev); -#else - sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); - sqlite3FileSuffix3(pDbFd->zPath, zShmFilename); -#endif - pShmNode->h = -1; - pDbFd->pInode->pShmNode = pShmNode; - pShmNode->pInode = pDbFd->pInode; - pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); - if( pShmNode->mutex==0 ){ - rc = SQLITE_NOMEM; - goto shm_open_err; - } - - if( pInode->bProcessLock==0 ){ - int openFlags = O_RDWR | O_CREAT; - if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ - openFlags = O_RDONLY; - pShmNode->isReadonly = 1; - } - pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); - if( pShmNode->h<0 ){ - rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); - goto shm_open_err; - } - - /* If this process is running as root, make sure that the SHM file - ** is owned by the same user that owns the original database. Otherwise, - ** the original owner will not be able to connect. - */ - osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); - - /* Check to see if another process is holding the dead-man switch. - ** If not, truncate the file to zero length. - */ - rc = SQLITE_OK; - if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ - if( robust_ftruncate(pShmNode->h, 0) ){ - rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); - } - } - if( rc==SQLITE_OK ){ - rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); - } - if( rc ) goto shm_open_err; - } - } - - /* Make the new connection a child of the unixShmNode */ - p->pShmNode = pShmNode; -#ifdef SQLITE_DEBUG - p->id = pShmNode->nextShmId++; -#endif - pShmNode->nRef++; - pDbFd->pShm = p; - unixLeaveMutex(); - - /* The reference count on pShmNode has already been incremented under - ** the cover of the unixEnterMutex() mutex and the pointer from the - ** new (struct unixShm) object to the pShmNode has been set. All that is - ** left to do is to link the new object into the linked list starting - ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex - ** mutex. - */ - sqlite3_mutex_enter(pShmNode->mutex); - p->pNext = pShmNode->pFirst; - pShmNode->pFirst = p; - sqlite3_mutex_leave(pShmNode->mutex); - return SQLITE_OK; - - /* Jump here on any error */ -shm_open_err: - unixShmPurge(pDbFd); /* This call frees pShmNode if required */ - sqlite3_free(p); - unixLeaveMutex(); - return rc; -} - -/* -** This function is called to obtain a pointer to region iRegion of the -** shared-memory associated with the database file fd. Shared-memory regions -** are numbered starting from zero. Each shared-memory region is szRegion -** bytes in size. -** -** If an error occurs, an error code is returned and *pp is set to NULL. -** -** Otherwise, if the bExtend parameter is 0 and the requested shared-memory -** region has not been allocated (by any client, including one running in a -** separate process), then *pp is set to NULL and SQLITE_OK returned. If -** bExtend is non-zero and the requested shared-memory region has not yet -** been allocated, it is allocated by this function. -** -** If the shared-memory region has already been allocated or is allocated by -** this call as described above, then it is mapped into this processes -** address space (if it is not already), *pp is set to point to the mapped -** memory and SQLITE_OK returned. -*/ -static int unixShmMap( - sqlite3_file *fd, /* Handle open on database file */ - int iRegion, /* Region to retrieve */ - int szRegion, /* Size of regions */ - int bExtend, /* True to extend file if necessary */ - void volatile **pp /* OUT: Mapped memory */ -){ - unixFile *pDbFd = (unixFile*)fd; - unixShm *p; - unixShmNode *pShmNode; - int rc = SQLITE_OK; - - /* If the shared-memory file has not yet been opened, open it now. */ - if( pDbFd->pShm==0 ){ - rc = unixOpenSharedMemory(pDbFd); - if( rc!=SQLITE_OK ) return rc; - } - - p = pDbFd->pShm; - pShmNode = p->pShmNode; - sqlite3_mutex_enter(pShmNode->mutex); - assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); - assert( pShmNode->pInode==pDbFd->pInode ); - assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); - assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); - - if( pShmNode->nRegion<=iRegion ){ - char **apNew; /* New apRegion[] array */ - int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ - struct stat sStat; /* Used by fstat() */ - - pShmNode->szRegion = szRegion; - - if( pShmNode->h>=0 ){ - /* The requested region is not mapped into this processes address space. - ** Check to see if it has been allocated (i.e. if the wal-index file is - ** large enough to contain the requested region). - */ - if( osFstat(pShmNode->h, &sStat) ){ - rc = SQLITE_IOERR_SHMSIZE; - goto shmpage_out; - } - - if( sStat.st_size<nByte ){ - /* The requested memory region does not exist. If bExtend is set to - ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. - ** - ** Alternatively, if bExtend is true, use ftruncate() to allocate - ** the requested memory region. - */ - if( !bExtend ) goto shmpage_out; -#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE - if( osFallocate(pShmNode->h, sStat.st_size, nByte)!=0 ){ - rc = unixLogError(SQLITE_IOERR_SHMSIZE, "fallocate", - pShmNode->zFilename); - goto shmpage_out; - } -#else - if( robust_ftruncate(pShmNode->h, nByte) ){ - rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate", - pShmNode->zFilename); - goto shmpage_out; - } -#endif - } - } - - /* Map the requested memory region into this processes address space. */ - apNew = (char **)sqlite3_realloc( - pShmNode->apRegion, (iRegion+1)*sizeof(char *) - ); - if( !apNew ){ - rc = SQLITE_IOERR_NOMEM; - goto shmpage_out; - } - pShmNode->apRegion = apNew; - while(pShmNode->nRegion<=iRegion){ - void *pMem; - if( pShmNode->h>=0 ){ - pMem = mmap(0, szRegion, - pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, - MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion - ); - if( pMem==MAP_FAILED ){ - rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); - goto shmpage_out; - } - }else{ - pMem = sqlite3_malloc(szRegion); - if( pMem==0 ){ - rc = SQLITE_NOMEM; - goto shmpage_out; - } - memset(pMem, 0, szRegion); - } - pShmNode->apRegion[pShmNode->nRegion] = pMem; - pShmNode->nRegion++; - } - } - -shmpage_out: - if( pShmNode->nRegion>iRegion ){ - *pp = pShmNode->apRegion[iRegion]; - }else{ - *pp = 0; - } - if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; - sqlite3_mutex_leave(pShmNode->mutex); - return rc; -} - -/* -** Change the lock state for a shared-memory segment. -** -** Note that the relationship between SHAREd and EXCLUSIVE locks is a little -** different here than in posix. In xShmLock(), one can go from unlocked -** to shared and back or from unlocked to exclusive and back. But one may -** not go from shared to exclusive or from exclusive to shared. -*/ -static int unixShmLock( - sqlite3_file *fd, /* Database file holding the shared memory */ - int ofst, /* First lock to acquire or release */ - int n, /* Number of locks to acquire or release */ - int flags /* What to do with the lock */ -){ - unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ - unixShm *p = pDbFd->pShm; /* The shared memory being locked */ - unixShm *pX; /* For looping over all siblings */ - unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ - int rc = SQLITE_OK; /* Result code */ - u16 mask; /* Mask of locks to take or release */ - - assert( pShmNode==pDbFd->pInode->pShmNode ); - assert( pShmNode->pInode==pDbFd->pInode ); - assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); - assert( n>=1 ); - assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) - || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) - || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) - || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); - assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); - assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); - assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); - - mask = (1<<(ofst+n)) - (1<<ofst); - assert( n>1 || mask==(1<<ofst) ); - sqlite3_mutex_enter(pShmNode->mutex); - if( flags & SQLITE_SHM_UNLOCK ){ - u16 allMask = 0; /* Mask of locks held by siblings */ - - /* See if any siblings hold this same lock */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( pX==p ) continue; - assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); - allMask |= pX->sharedMask; - } - - /* Unlock the system-level locks */ - if( (mask & allMask)==0 ){ - rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); - }else{ - rc = SQLITE_OK; - } - - /* Undo the local locks */ - if( rc==SQLITE_OK ){ - p->exclMask &= ~mask; - p->sharedMask &= ~mask; - } - }else if( flags & SQLITE_SHM_SHARED ){ - u16 allShared = 0; /* Union of locks held by connections other than "p" */ - - /* Find out which shared locks are already held by sibling connections. - ** If any sibling already holds an exclusive lock, go ahead and return - ** SQLITE_BUSY. - */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( (pX->exclMask & mask)!=0 ){ - rc = SQLITE_BUSY; - break; - } - allShared |= pX->sharedMask; - } - - /* Get shared locks at the system level, if necessary */ - if( rc==SQLITE_OK ){ - if( (allShared & mask)==0 ){ - rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); - }else{ - rc = SQLITE_OK; - } - } - - /* Get the local shared locks */ - if( rc==SQLITE_OK ){ - p->sharedMask |= mask; - } - }else{ - /* Make sure no sibling connections hold locks that will block this - ** lock. If any do, return SQLITE_BUSY right away. - */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ - rc = SQLITE_BUSY; - break; - } - } - - /* Get the exclusive locks at the system level. Then if successful - ** also mark the local connection as being locked. - */ - if( rc==SQLITE_OK ){ - rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); - if( rc==SQLITE_OK ){ - assert( (p->sharedMask & mask)==0 ); - p->exclMask |= mask; - } - } - } - sqlite3_mutex_leave(pShmNode->mutex); - OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", - p->id, getpid(), p->sharedMask, p->exclMask)); - return rc; -} - -/* -** Implement a memory barrier or memory fence on shared memory. -** -** All loads and stores begun before the barrier must complete before -** any load or store begun after the barrier. -*/ -static void unixShmBarrier( - sqlite3_file *fd /* Database file holding the shared memory */ -){ - UNUSED_PARAMETER(fd); - unixEnterMutex(); - unixLeaveMutex(); -} - -/* -** Close a connection to shared-memory. Delete the underlying -** storage if deleteFlag is true. -** -** If there is no shared memory associated with the connection then this -** routine is a harmless no-op. -*/ -static int unixShmUnmap( - sqlite3_file *fd, /* The underlying database file */ - int deleteFlag /* Delete shared-memory if true */ -){ - unixShm *p; /* The connection to be closed */ - unixShmNode *pShmNode; /* The underlying shared-memory file */ - unixShm **pp; /* For looping over sibling connections */ - unixFile *pDbFd; /* The underlying database file */ - - pDbFd = (unixFile*)fd; - p = pDbFd->pShm; - if( p==0 ) return SQLITE_OK; - pShmNode = p->pShmNode; - - assert( pShmNode==pDbFd->pInode->pShmNode ); - assert( pShmNode->pInode==pDbFd->pInode ); - - /* Remove connection p from the set of connections associated - ** with pShmNode */ - sqlite3_mutex_enter(pShmNode->mutex); - for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} - *pp = p->pNext; - - /* Free the connection p */ - sqlite3_free(p); - pDbFd->pShm = 0; - sqlite3_mutex_leave(pShmNode->mutex); - - /* If pShmNode->nRef has reached 0, then close the underlying - ** shared-memory file, too */ - unixEnterMutex(); - assert( pShmNode->nRef>0 ); - pShmNode->nRef--; - if( pShmNode->nRef==0 ){ - if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); - unixShmPurge(pDbFd); - } - unixLeaveMutex(); - - return SQLITE_OK; -} - - -#else -# define unixShmMap 0 -# define unixShmLock 0 -# define unixShmBarrier 0 -# define unixShmUnmap 0 -#endif /* #ifndef SQLITE_OMIT_WAL */ - -/* -** Here ends the implementation of all sqlite3_file methods. -** -********************** End sqlite3_file Methods ******************************* -******************************************************************************/ - -/* -** This division contains definitions of sqlite3_io_methods objects that -** implement various file locking strategies. It also contains definitions -** of "finder" functions. A finder-function is used to locate the appropriate -** sqlite3_io_methods object for a particular database file. The pAppData -** field of the sqlite3_vfs VFS objects are initialized to be pointers to -** the correct finder-function for that VFS. -** -** Most finder functions return a pointer to a fixed sqlite3_io_methods -** object. The only interesting finder-function is autolockIoFinder, which -** looks at the filesystem type and tries to guess the best locking -** strategy from that. -** -** For finder-funtion F, two objects are created: -** -** (1) The real finder-function named "FImpt()". -** -** (2) A constant pointer to this function named just "F". -** -** -** A pointer to the F pointer is used as the pAppData value for VFS -** objects. We have to do this instead of letting pAppData point -** directly at the finder-function since C90 rules prevent a void* -** from be cast into a function pointer. -** -** -** Each instance of this macro generates two objects: -** -** * A constant sqlite3_io_methods object call METHOD that has locking -** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. -** -** * An I/O method finder function called FINDER that returns a pointer -** to the METHOD object in the previous bullet. -*/ -#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \ -static const sqlite3_io_methods METHOD = { \ - VERSION, /* iVersion */ \ - CLOSE, /* xClose */ \ - unixRead, /* xRead */ \ - unixWrite, /* xWrite */ \ - unixTruncate, /* xTruncate */ \ - unixSync, /* xSync */ \ - unixFileSize, /* xFileSize */ \ - LOCK, /* xLock */ \ - UNLOCK, /* xUnlock */ \ - CKLOCK, /* xCheckReservedLock */ \ - unixFileControl, /* xFileControl */ \ - unixSectorSize, /* xSectorSize */ \ - unixDeviceCharacteristics, /* xDeviceCapabilities */ \ - unixShmMap, /* xShmMap */ \ - unixShmLock, /* xShmLock */ \ - unixShmBarrier, /* xShmBarrier */ \ - unixShmUnmap /* xShmUnmap */ \ -}; \ -static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ - UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ - return &METHOD; \ -} \ -static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ - = FINDER##Impl; - -/* -** Here are all of the sqlite3_io_methods objects for each of the -** locking strategies. Functions that return pointers to these methods -** are also created. -*/ -IOMETHODS( - posixIoFinder, /* Finder function name */ - posixIoMethods, /* sqlite3_io_methods object name */ - 2, /* shared memory is enabled */ - unixClose, /* xClose method */ - unixLock, /* xLock method */ - unixUnlock, /* xUnlock method */ - unixCheckReservedLock /* xCheckReservedLock method */ -) -IOMETHODS( - nolockIoFinder, /* Finder function name */ - nolockIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - nolockClose, /* xClose method */ - nolockLock, /* xLock method */ - nolockUnlock, /* xUnlock method */ - nolockCheckReservedLock /* xCheckReservedLock method */ -) -IOMETHODS( - dotlockIoFinder, /* Finder function name */ - dotlockIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - dotlockClose, /* xClose method */ - dotlockLock, /* xLock method */ - dotlockUnlock, /* xUnlock method */ - dotlockCheckReservedLock /* xCheckReservedLock method */ -) - -#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS -IOMETHODS( - flockIoFinder, /* Finder function name */ - flockIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - flockClose, /* xClose method */ - flockLock, /* xLock method */ - flockUnlock, /* xUnlock method */ - flockCheckReservedLock /* xCheckReservedLock method */ -) -#endif - -#if OS_VXWORKS -IOMETHODS( - semIoFinder, /* Finder function name */ - semIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - semClose, /* xClose method */ - semLock, /* xLock method */ - semUnlock, /* xUnlock method */ - semCheckReservedLock /* xCheckReservedLock method */ -) -#endif - -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -IOMETHODS( - afpIoFinder, /* Finder function name */ - afpIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - afpClose, /* xClose method */ - afpLock, /* xLock method */ - afpUnlock, /* xUnlock method */ - afpCheckReservedLock /* xCheckReservedLock method */ -) -#endif - -/* -** The proxy locking method is a "super-method" in the sense that it -** opens secondary file descriptors for the conch and lock files and -** it uses proxy, dot-file, AFP, and flock() locking methods on those -** secondary files. For this reason, the division that implements -** proxy locking is located much further down in the file. But we need -** to go ahead and define the sqlite3_io_methods and finder function -** for proxy locking here. So we forward declare the I/O methods. -*/ -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -static int proxyClose(sqlite3_file*); -static int proxyLock(sqlite3_file*, int); -static int proxyUnlock(sqlite3_file*, int); -static int proxyCheckReservedLock(sqlite3_file*, int*); -IOMETHODS( - proxyIoFinder, /* Finder function name */ - proxyIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - proxyClose, /* xClose method */ - proxyLock, /* xLock method */ - proxyUnlock, /* xUnlock method */ - proxyCheckReservedLock /* xCheckReservedLock method */ -) -#endif - -/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -IOMETHODS( - nfsIoFinder, /* Finder function name */ - nfsIoMethods, /* sqlite3_io_methods object name */ - 1, /* shared memory is disabled */ - unixClose, /* xClose method */ - unixLock, /* xLock method */ - nfsUnlock, /* xUnlock method */ - unixCheckReservedLock /* xCheckReservedLock method */ -) -#endif - -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE -/* -** This "finder" function attempts to determine the best locking strategy -** for the database file "filePath". It then returns the sqlite3_io_methods -** object that implements that strategy. -** -** This is for MacOSX only. -*/ -static const sqlite3_io_methods *autolockIoFinderImpl( - const char *filePath, /* name of the database file */ - unixFile *pNew /* open file object for the database file */ -){ - static const struct Mapping { - const char *zFilesystem; /* Filesystem type name */ - const sqlite3_io_methods *pMethods; /* Appropriate locking method */ - } aMap[] = { - { "hfs", &posixIoMethods }, - { "ufs", &posixIoMethods }, - { "afpfs", &afpIoMethods }, - { "smbfs", &afpIoMethods }, - { "webdav", &nolockIoMethods }, - { 0, 0 } - }; - int i; - struct statfs fsInfo; - struct flock lockInfo; - - if( !filePath ){ - /* If filePath==NULL that means we are dealing with a transient file - ** that does not need to be locked. */ - return &nolockIoMethods; - } - if( statfs(filePath, &fsInfo) != -1 ){ - if( fsInfo.f_flags & MNT_RDONLY ){ - return &nolockIoMethods; - } - for(i=0; aMap[i].zFilesystem; i++){ - if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ - return aMap[i].pMethods; - } - } - } - - /* Default case. Handles, amongst others, "nfs". - ** Test byte-range lock using fcntl(). If the call succeeds, - ** assume that the file-system supports POSIX style locks. - */ - lockInfo.l_len = 1; - lockInfo.l_start = 0; - lockInfo.l_whence = SEEK_SET; - lockInfo.l_type = F_RDLCK; - if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { - if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ - return &nfsIoMethods; - } else { - return &posixIoMethods; - } - }else{ - return &dotlockIoMethods; - } -} -static const sqlite3_io_methods - *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; - -#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ - -#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE -/* -** This "finder" function attempts to determine the best locking strategy -** for the database file "filePath". It then returns the sqlite3_io_methods -** object that implements that strategy. -** -** This is for VXWorks only. -*/ -static const sqlite3_io_methods *autolockIoFinderImpl( - const char *filePath, /* name of the database file */ - unixFile *pNew /* the open file object */ -){ - struct flock lockInfo; - - if( !filePath ){ - /* If filePath==NULL that means we are dealing with a transient file - ** that does not need to be locked. */ - return &nolockIoMethods; - } - - /* Test if fcntl() is supported and use POSIX style locks. - ** Otherwise fall back to the named semaphore method. - */ - lockInfo.l_len = 1; - lockInfo.l_start = 0; - lockInfo.l_whence = SEEK_SET; - lockInfo.l_type = F_RDLCK; - if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { - return &posixIoMethods; - }else{ - return &semIoMethods; - } -} -static const sqlite3_io_methods - *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; - -#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ - -/* -** An abstract type for a pointer to a IO method finder function: -*/ -typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); - - -/**************************************************************************** -**************************** sqlite3_vfs methods **************************** -** -** This division contains the implementation of methods on the -** sqlite3_vfs object. -*/ - -/* -** Initialize the contents of the unixFile structure pointed to by pId. -*/ -static int fillInUnixFile( - sqlite3_vfs *pVfs, /* Pointer to vfs object */ - int h, /* Open file descriptor of file being opened */ - sqlite3_file *pId, /* Write to the unixFile structure here */ - const char *zFilename, /* Name of the file being opened */ - int ctrlFlags /* Zero or more UNIXFILE_* values */ -){ - const sqlite3_io_methods *pLockingStyle; - unixFile *pNew = (unixFile *)pId; - int rc = SQLITE_OK; - - assert( pNew->pInode==NULL ); - - /* Usually the path zFilename should not be a relative pathname. The - ** exception is when opening the proxy "conch" file in builds that - ** include the special Apple locking styles. - */ -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE - assert( zFilename==0 || zFilename[0]=='/' - || pVfs->pAppData==(void*)&autolockIoFinder ); -#else - assert( zFilename==0 || zFilename[0]=='/' ); -#endif - - /* No locking occurs in temporary files */ - assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); - - OSTRACE(("OPEN %-3d %s\n", h, zFilename)); - pNew->h = h; - pNew->pVfs = pVfs; - pNew->zPath = zFilename; - pNew->ctrlFlags = (u8)ctrlFlags; - if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), - "psow", SQLITE_POWERSAFE_OVERWRITE) ){ - pNew->ctrlFlags |= UNIXFILE_PSOW; - } - if( strcmp(pVfs->zName,"unix-excl")==0 ){ - pNew->ctrlFlags |= UNIXFILE_EXCL; - } - -#if OS_VXWORKS - pNew->pId = vxworksFindFileId(zFilename); - if( pNew->pId==0 ){ - ctrlFlags |= UNIXFILE_NOLOCK; - rc = SQLITE_NOMEM; - } -#endif - - if( ctrlFlags & UNIXFILE_NOLOCK ){ - pLockingStyle = &nolockIoMethods; - }else{ - pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); -#if SQLITE_ENABLE_LOCKING_STYLE - /* Cache zFilename in the locking context (AFP and dotlock override) for - ** proxyLock activation is possible (remote proxy is based on db name) - ** zFilename remains valid until file is closed, to support */ - pNew->lockingContext = (void*)zFilename; -#endif - } - - if( pLockingStyle == &posixIoMethods -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE - || pLockingStyle == &nfsIoMethods -#endif - ){ - unixEnterMutex(); - rc = findInodeInfo(pNew, &pNew->pInode); - if( rc!=SQLITE_OK ){ - /* If an error occurred in findInodeInfo(), close the file descriptor - ** immediately, before releasing the mutex. findInodeInfo() may fail - ** in two scenarios: - ** - ** (a) A call to fstat() failed. - ** (b) A malloc failed. - ** - ** Scenario (b) may only occur if the process is holding no other - ** file descriptors open on the same file. If there were other file - ** descriptors on this file, then no malloc would be required by - ** findInodeInfo(). If this is the case, it is quite safe to close - ** handle h - as it is guaranteed that no posix locks will be released - ** by doing so. - ** - ** If scenario (a) caused the error then things are not so safe. The - ** implicit assumption here is that if fstat() fails, things are in - ** such bad shape that dropping a lock or two doesn't matter much. - */ - robust_close(pNew, h, __LINE__); - h = -1; - } - unixLeaveMutex(); - } - -#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) - else if( pLockingStyle == &afpIoMethods ){ - /* AFP locking uses the file path so it needs to be included in - ** the afpLockingContext. - */ - afpLockingContext *pCtx; - pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); - if( pCtx==0 ){ - rc = SQLITE_NOMEM; - }else{ - /* NB: zFilename exists and remains valid until the file is closed - ** according to requirement F11141. So we do not need to make a - ** copy of the filename. */ - pCtx->dbPath = zFilename; - pCtx->reserved = 0; - srandomdev(); - unixEnterMutex(); - rc = findInodeInfo(pNew, &pNew->pInode); - if( rc!=SQLITE_OK ){ - sqlite3_free(pNew->lockingContext); - robust_close(pNew, h, __LINE__); - h = -1; - } - unixLeaveMutex(); - } - } -#endif - - else if( pLockingStyle == &dotlockIoMethods ){ - /* Dotfile locking uses the file path so it needs to be included in - ** the dotlockLockingContext - */ - char *zLockFile; - int nFilename; - assert( zFilename!=0 ); - nFilename = (int)strlen(zFilename) + 6; - zLockFile = (char *)sqlite3_malloc(nFilename); - if( zLockFile==0 ){ - rc = SQLITE_NOMEM; - }else{ - sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); - } - pNew->lockingContext = zLockFile; - } - -#if OS_VXWORKS - else if( pLockingStyle == &semIoMethods ){ - /* Named semaphore locking uses the file path so it needs to be - ** included in the semLockingContext - */ - unixEnterMutex(); - rc = findInodeInfo(pNew, &pNew->pInode); - if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ - char *zSemName = pNew->pInode->aSemName; - int n; - sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", - pNew->pId->zCanonicalName); - for( n=1; zSemName[n]; n++ ) - if( zSemName[n]=='/' ) zSemName[n] = '_'; - pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); - if( pNew->pInode->pSem == SEM_FAILED ){ - rc = SQLITE_NOMEM; - pNew->pInode->aSemName[0] = '\0'; - } - } - unixLeaveMutex(); - } -#endif - - pNew->lastErrno = 0; -#if OS_VXWORKS - if( rc!=SQLITE_OK ){ - if( h>=0 ) robust_close(pNew, h, __LINE__); - h = -1; - osUnlink(zFilename); - isDelete = 0; - } - if( isDelete ) pNew->ctrlFlags |= UNIXFILE_DELETE; -#endif - if( rc!=SQLITE_OK ){ - if( h>=0 ) robust_close(pNew, h, __LINE__); - }else{ - pNew->pMethod = pLockingStyle; - OpenCounter(+1); - } - return rc; -} - -/* -** Return the name of a directory in which to put temporary files. -** If no suitable temporary file directory can be found, return NULL. -*/ -static const char *unixTempFileDir(void){ - static const char *azDirs[] = { - 0, - 0, - "/var/tmp", - "/usr/tmp", - "/tmp", - 0 /* List terminator */ - }; - unsigned int i; - struct stat buf; - const char *zDir = 0; - - azDirs[0] = sqlite3_temp_directory; - if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); - for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ - if( zDir==0 ) continue; - if( osStat(zDir, &buf) ) continue; - if( !S_ISDIR(buf.st_mode) ) continue; - if( osAccess(zDir, 07) ) continue; - break; - } - return zDir; -} - -/* -** Create a temporary file name in zBuf. zBuf must be allocated -** by the calling process and must be big enough to hold at least -** pVfs->mxPathname bytes. -*/ -static int unixGetTempname(int nBuf, char *zBuf){ - static const unsigned char zChars[] = - "abcdefghijklmnopqrstuvwxyz" - "ABCDEFGHIJKLMNOPQRSTUVWXYZ" - "0123456789"; - unsigned int i, j; - const char *zDir; - - /* It's odd to simulate an io-error here, but really this is just - ** using the io-error infrastructure to test that SQLite handles this - ** function failing. - */ - SimulateIOError( return SQLITE_IOERR ); - - zDir = unixTempFileDir(); - if( zDir==0 ) zDir = "."; - - /* Check that the output buffer is large enough for the temporary file - ** name. If it is not, return SQLITE_ERROR. - */ - if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){ - return SQLITE_ERROR; - } - - do{ - sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); - j = (int)strlen(zBuf); - sqlite3_randomness(15, &zBuf[j]); - for(i=0; i<15; i++, j++){ - zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; - } - zBuf[j] = 0; - zBuf[j+1] = 0; - }while( osAccess(zBuf,0)==0 ); - return SQLITE_OK; -} - -#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) -/* -** Routine to transform a unixFile into a proxy-locking unixFile. -** Implementation in the proxy-lock division, but used by unixOpen() -** if SQLITE_PREFER_PROXY_LOCKING is defined. -*/ -static int proxyTransformUnixFile(unixFile*, const char*); -#endif - -/* -** Search for an unused file descriptor that was opened on the database -** file (not a journal or master-journal file) identified by pathname -** zPath with SQLITE_OPEN_XXX flags matching those passed as the second -** argument to this function. -** -** Such a file descriptor may exist if a database connection was closed -** but the associated file descriptor could not be closed because some -** other file descriptor open on the same file is holding a file-lock. -** Refer to comments in the unixClose() function and the lengthy comment -** describing "Posix Advisory Locking" at the start of this file for -** further details. Also, ticket #4018. -** -** If a suitable file descriptor is found, then it is returned. If no -** such file descriptor is located, -1 is returned. -*/ -static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ - UnixUnusedFd *pUnused = 0; - - /* Do not search for an unused file descriptor on vxworks. Not because - ** vxworks would not benefit from the change (it might, we're not sure), - ** but because no way to test it is currently available. It is better - ** not to risk breaking vxworks support for the sake of such an obscure - ** feature. */ -#if !OS_VXWORKS - struct stat sStat; /* Results of stat() call */ - - /* A stat() call may fail for various reasons. If this happens, it is - ** almost certain that an open() call on the same path will also fail. - ** For this reason, if an error occurs in the stat() call here, it is - ** ignored and -1 is returned. The caller will try to open a new file - ** descriptor on the same path, fail, and return an error to SQLite. - ** - ** Even if a subsequent open() call does succeed, the consequences of - ** not searching for a resusable file descriptor are not dire. */ - if( 0==osStat(zPath, &sStat) ){ - unixInodeInfo *pInode; - - unixEnterMutex(); - pInode = inodeList; - while( pInode && (pInode->fileId.dev!=sStat.st_dev - || pInode->fileId.ino!=sStat.st_ino) ){ - pInode = pInode->pNext; - } - if( pInode ){ - UnixUnusedFd **pp; - for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); - pUnused = *pp; - if( pUnused ){ - *pp = pUnused->pNext; - } - } - unixLeaveMutex(); - } -#endif /* if !OS_VXWORKS */ - return pUnused; -} - -/* -** This function is called by unixOpen() to determine the unix permissions -** to create new files with. If no error occurs, then SQLITE_OK is returned -** and a value suitable for passing as the third argument to open(2) is -** written to *pMode. If an IO error occurs, an SQLite error code is -** returned and the value of *pMode is not modified. -** -** In most cases cases, this routine sets *pMode to 0, which will become -** an indication to robust_open() to create the file using -** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. -** But if the file being opened is a WAL or regular journal file, then -** this function queries the file-system for the permissions on the -** corresponding database file and sets *pMode to this value. Whenever -** possible, WAL and journal files are created using the same permissions -** as the associated database file. -** -** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the -** original filename is unavailable. But 8_3_NAMES is only used for -** FAT filesystems and permissions do not matter there, so just use -** the default permissions. -*/ -static int findCreateFileMode( - const char *zPath, /* Path of file (possibly) being created */ - int flags, /* Flags passed as 4th argument to xOpen() */ - mode_t *pMode, /* OUT: Permissions to open file with */ - uid_t *pUid, /* OUT: uid to set on the file */ - gid_t *pGid /* OUT: gid to set on the file */ -){ - int rc = SQLITE_OK; /* Return Code */ - *pMode = 0; - *pUid = 0; - *pGid = 0; - if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ - char zDb[MAX_PATHNAME+1]; /* Database file path */ - int nDb; /* Number of valid bytes in zDb */ - struct stat sStat; /* Output of stat() on database file */ - - /* zPath is a path to a WAL or journal file. The following block derives - ** the path to the associated database file from zPath. This block handles - ** the following naming conventions: - ** - ** "<path to db>-journal" - ** "<path to db>-wal" - ** "<path to db>-journalNN" - ** "<path to db>-walNN" - ** - ** where NN is a decimal number. The NN naming schemes are - ** used by the test_multiplex.c module. - */ - nDb = sqlite3Strlen30(zPath) - 1; -#ifdef SQLITE_ENABLE_8_3_NAMES - while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--; - if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK; -#else - while( zPath[nDb]!='-' ){ - assert( nDb>0 ); - assert( zPath[nDb]!='\n' ); - nDb--; - } -#endif - memcpy(zDb, zPath, nDb); - zDb[nDb] = '\0'; - - if( 0==osStat(zDb, &sStat) ){ - *pMode = sStat.st_mode & 0777; - *pUid = sStat.st_uid; - *pGid = sStat.st_gid; - }else{ - rc = SQLITE_IOERR_FSTAT; - } - }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ - *pMode = 0600; - } - return rc; -} - -/* -** Open the file zPath. -** -** Previously, the SQLite OS layer used three functions in place of this -** one: -** -** sqlite3OsOpenReadWrite(); -** sqlite3OsOpenReadOnly(); -** sqlite3OsOpenExclusive(); -** -** These calls correspond to the following combinations of flags: -** -** ReadWrite() -> (READWRITE | CREATE) -** ReadOnly() -> (READONLY) -** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) -** -** The old OpenExclusive() accepted a boolean argument - "delFlag". If -** true, the file was configured to be automatically deleted when the -** file handle closed. To achieve the same effect using this new -** interface, add the DELETEONCLOSE flag to those specified above for -** OpenExclusive(). -*/ -static int unixOpen( - sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ - const char *zPath, /* Pathname of file to be opened */ - sqlite3_file *pFile, /* The file descriptor to be filled in */ - int flags, /* Input flags to control the opening */ - int *pOutFlags /* Output flags returned to SQLite core */ -){ - unixFile *p = (unixFile *)pFile; - int fd = -1; /* File descriptor returned by open() */ - int openFlags = 0; /* Flags to pass to open() */ - int eType = flags&0xFFFFFF00; /* Type of file to open */ - int noLock; /* True to omit locking primitives */ - int rc = SQLITE_OK; /* Function Return Code */ - int ctrlFlags = 0; /* UNIXFILE_* flags */ - - int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); - int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); - int isCreate = (flags & SQLITE_OPEN_CREATE); - int isReadonly = (flags & SQLITE_OPEN_READONLY); - int isReadWrite = (flags & SQLITE_OPEN_READWRITE); -#if SQLITE_ENABLE_LOCKING_STYLE - int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); -#endif -#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE - struct statfs fsInfo; -#endif - - /* If creating a master or main-file journal, this function will open - ** a file-descriptor on the directory too. The first time unixSync() - ** is called the directory file descriptor will be fsync()ed and close()d. - */ - int syncDir = (isCreate && ( - eType==SQLITE_OPEN_MASTER_JOURNAL - || eType==SQLITE_OPEN_MAIN_JOURNAL - || eType==SQLITE_OPEN_WAL - )); - - /* If argument zPath is a NULL pointer, this function is required to open - ** a temporary file. Use this buffer to store the file name in. - */ - char zTmpname[MAX_PATHNAME+2]; - const char *zName = zPath; - - /* Check the following statements are true: - ** - ** (a) Exactly one of the READWRITE and READONLY flags must be set, and - ** (b) if CREATE is set, then READWRITE must also be set, and - ** (c) if EXCLUSIVE is set, then CREATE must also be set. - ** (d) if DELETEONCLOSE is set, then CREATE must also be set. - */ - assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); - assert(isCreate==0 || isReadWrite); - assert(isExclusive==0 || isCreate); - assert(isDelete==0 || isCreate); - - /* The main DB, main journal, WAL file and master journal are never - ** automatically deleted. Nor are they ever temporary files. */ - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); - - /* Assert that the upper layer has set one of the "file-type" flags. */ - assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB - || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL - || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL - || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL - ); - - memset(p, 0, sizeof(unixFile)); - - if( eType==SQLITE_OPEN_MAIN_DB ){ - UnixUnusedFd *pUnused; - pUnused = findReusableFd(zName, flags); - if( pUnused ){ - fd = pUnused->fd; - }else{ - pUnused = sqlite3_malloc(sizeof(*pUnused)); - if( !pUnused ){ - return SQLITE_NOMEM; - } - } - p->pUnused = pUnused; - - /* Database filenames are double-zero terminated if they are not - ** URIs with parameters. Hence, they can always be passed into - ** sqlite3_uri_parameter(). */ - assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); - - }else if( !zName ){ - /* If zName is NULL, the upper layer is requesting a temp file. */ - assert(isDelete && !syncDir); - rc = unixGetTempname(MAX_PATHNAME+2, zTmpname); - if( rc!=SQLITE_OK ){ - return rc; - } - zName = zTmpname; - - /* Generated temporary filenames are always double-zero terminated - ** for use by sqlite3_uri_parameter(). */ - assert( zName[strlen(zName)+1]==0 ); - } - - /* Determine the value of the flags parameter passed to POSIX function - ** open(). These must be calculated even if open() is not called, as - ** they may be stored as part of the file handle and used by the - ** 'conch file' locking functions later on. */ - if( isReadonly ) openFlags |= O_RDONLY; - if( isReadWrite ) openFlags |= O_RDWR; - if( isCreate ) openFlags |= O_CREAT; - if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); - openFlags |= (O_LARGEFILE|O_BINARY); - - if( fd<0 ){ - mode_t openMode; /* Permissions to create file with */ - uid_t uid; /* Userid for the file */ - gid_t gid; /* Groupid for the file */ - rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); - if( rc!=SQLITE_OK ){ - assert( !p->pUnused ); - assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); - return rc; - } - fd = robust_open(zName, openFlags, openMode); - OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); - if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ - /* Failed to open the file for read/write access. Try read-only. */ - flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); - openFlags &= ~(O_RDWR|O_CREAT); - flags |= SQLITE_OPEN_READONLY; - openFlags |= O_RDONLY; - isReadonly = 1; - fd = robust_open(zName, openFlags, openMode); - } - if( fd<0 ){ - rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); - goto open_finished; - } - - /* If this process is running as root and if creating a new rollback - ** journal or WAL file, set the ownership of the journal or WAL to be - ** the same as the original database. - */ - if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ - osFchown(fd, uid, gid); - } - } - assert( fd>=0 ); - if( pOutFlags ){ - *pOutFlags = flags; - } - - if( p->pUnused ){ - p->pUnused->fd = fd; - p->pUnused->flags = flags; - } - - if( isDelete ){ -#if OS_VXWORKS - zPath = zName; -#else - osUnlink(zName); -#endif - } -#if SQLITE_ENABLE_LOCKING_STYLE - else{ - p->openFlags = openFlags; - } -#endif - - noLock = eType!=SQLITE_OPEN_MAIN_DB; - - -#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE - if( fstatfs(fd, &fsInfo) == -1 ){ - ((unixFile*)pFile)->lastErrno = errno; - robust_close(p, fd, __LINE__); - return SQLITE_IOERR_ACCESS; - } - if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { - ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; - } -#endif - - /* Set up appropriate ctrlFlags */ - if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; - if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; - if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; - if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC; - if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; - -#if SQLITE_ENABLE_LOCKING_STYLE -#if SQLITE_PREFER_PROXY_LOCKING - isAutoProxy = 1; -#endif - if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ - char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); - int useProxy = 0; - - /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means - ** never use proxy, NULL means use proxy for non-local files only. */ - if( envforce!=NULL ){ - useProxy = atoi(envforce)>0; - }else{ - if( statfs(zPath, &fsInfo) == -1 ){ - /* In theory, the close(fd) call is sub-optimal. If the file opened - ** with fd is a database file, and there are other connections open - ** on that file that are currently holding advisory locks on it, - ** then the call to close() will cancel those locks. In practice, - ** we're assuming that statfs() doesn't fail very often. At least - ** not while other file descriptors opened by the same process on - ** the same file are working. */ - p->lastErrno = errno; - robust_close(p, fd, __LINE__); - rc = SQLITE_IOERR_ACCESS; - goto open_finished; - } - useProxy = !(fsInfo.f_flags&MNT_LOCAL); - } - if( useProxy ){ - rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); - if( rc==SQLITE_OK ){ - rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); - if( rc!=SQLITE_OK ){ - /* Use unixClose to clean up the resources added in fillInUnixFile - ** and clear all the structure's references. Specifically, - ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op - */ - unixClose(pFile); - return rc; - } - } - goto open_finished; - } - } -#endif - - rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); - -open_finished: - if( rc!=SQLITE_OK ){ - sqlite3_free(p->pUnused); - } - return rc; -} - - -/* -** Delete the file at zPath. If the dirSync argument is true, fsync() -** the directory after deleting the file. -*/ -static int unixDelete( - sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ - const char *zPath, /* Name of file to be deleted */ - int dirSync /* If true, fsync() directory after deleting file */ -){ - int rc = SQLITE_OK; - UNUSED_PARAMETER(NotUsed); - SimulateIOError(return SQLITE_IOERR_DELETE); - if( osUnlink(zPath)==(-1) ){ - if( errno==ENOENT ){ - rc = SQLITE_IOERR_DELETE_NOENT; - }else{ - rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); - } - return rc; - } -#ifndef SQLITE_DISABLE_DIRSYNC - if( (dirSync & 1)!=0 ){ - int fd; - rc = osOpenDirectory(zPath, &fd); - if( rc==SQLITE_OK ){ -#if OS_VXWORKS - if( fsync(fd)==-1 ) -#else - if( fsync(fd) ) -#endif - { - rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); - } - robust_close(0, fd, __LINE__); - }else if( rc==SQLITE_CANTOPEN ){ - rc = SQLITE_OK; - } - } -#endif - return rc; -} - -/* -** Test the existence of or access permissions of file zPath. The -** test performed depends on the value of flags: -** -** SQLITE_ACCESS_EXISTS: Return 1 if the file exists -** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. -** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. -** -** Otherwise return 0. -*/ -static int unixAccess( - sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ - const char *zPath, /* Path of the file to examine */ - int flags, /* What do we want to learn about the zPath file? */ - int *pResOut /* Write result boolean here */ -){ - int amode = 0; - UNUSED_PARAMETER(NotUsed); - SimulateIOError( return SQLITE_IOERR_ACCESS; ); - switch( flags ){ - case SQLITE_ACCESS_EXISTS: - amode = F_OK; - break; - case SQLITE_ACCESS_READWRITE: - amode = W_OK|R_OK; - break; - case SQLITE_ACCESS_READ: - amode = R_OK; - break; - - default: - assert(!"Invalid flags argument"); - } - *pResOut = (osAccess(zPath, amode)==0); - if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ - struct stat buf; - if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ - *pResOut = 0; - } - } - return SQLITE_OK; -} - - -/* -** Turn a relative pathname into a full pathname. The relative path -** is stored as a nul-terminated string in the buffer pointed to by -** zPath. -** -** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes -** (in this case, MAX_PATHNAME bytes). The full-path is written to -** this buffer before returning. -*/ -static int unixFullPathname( - sqlite3_vfs *pVfs, /* Pointer to vfs object */ - const char *zPath, /* Possibly relative input path */ - int nOut, /* Size of output buffer in bytes */ - char *zOut /* Output buffer */ -){ - - /* It's odd to simulate an io-error here, but really this is just - ** using the io-error infrastructure to test that SQLite handles this - ** function failing. This function could fail if, for example, the - ** current working directory has been unlinked. - */ - SimulateIOError( return SQLITE_ERROR ); - - assert( pVfs->mxPathname==MAX_PATHNAME ); - UNUSED_PARAMETER(pVfs); - - zOut[nOut-1] = '\0'; - if( zPath[0]=='/' ){ - sqlite3_snprintf(nOut, zOut, "%s", zPath); - }else{ - int nCwd; - if( osGetcwd(zOut, nOut-1)==0 ){ - return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); - } - nCwd = (int)strlen(zOut); - sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); - } - return SQLITE_OK; -} - - -#ifndef SQLITE_OMIT_LOAD_EXTENSION -/* -** Interfaces for opening a shared library, finding entry points -** within the shared library, and closing the shared library. -*/ -#include <dlfcn.h> -static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ - UNUSED_PARAMETER(NotUsed); - return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); -} - -/* -** SQLite calls this function immediately after a call to unixDlSym() or -** unixDlOpen() fails (returns a null pointer). If a more detailed error -** message is available, it is written to zBufOut. If no error message -** is available, zBufOut is left unmodified and SQLite uses a default -** error message. -*/ -static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ - const char *zErr; - UNUSED_PARAMETER(NotUsed); - unixEnterMutex(); - zErr = dlerror(); - if( zErr ){ - sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); - } - unixLeaveMutex(); -} -static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ - /* - ** GCC with -pedantic-errors says that C90 does not allow a void* to be - ** cast into a pointer to a function. And yet the library dlsym() routine - ** returns a void* which is really a pointer to a function. So how do we - ** use dlsym() with -pedantic-errors? - ** - ** Variable x below is defined to be a pointer to a function taking - ** parameters void* and const char* and returning a pointer to a function. - ** We initialize x by assigning it a pointer to the dlsym() function. - ** (That assignment requires a cast.) Then we call the function that - ** x points to. - ** - ** This work-around is unlikely to work correctly on any system where - ** you really cannot cast a function pointer into void*. But then, on the - ** other hand, dlsym() will not work on such a system either, so we have - ** not really lost anything. - */ - void (*(*x)(void*,const char*))(void); - UNUSED_PARAMETER(NotUsed); - x = (void(*(*)(void*,const char*))(void))dlsym; - return (*x)(p, zSym); -} -static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ - UNUSED_PARAMETER(NotUsed); - dlclose(pHandle); -} -#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ - #define unixDlOpen 0 - #define unixDlError 0 - #define unixDlSym 0 - #define unixDlClose 0 -#endif - -/* -** Write nBuf bytes of random data to the supplied buffer zBuf. -*/ -static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ - UNUSED_PARAMETER(NotUsed); - assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); - - /* We have to initialize zBuf to prevent valgrind from reporting - ** errors. The reports issued by valgrind are incorrect - we would - ** prefer that the randomness be increased by making use of the - ** uninitialized space in zBuf - but valgrind errors tend to worry - ** some users. Rather than argue, it seems easier just to initialize - ** the whole array and silence valgrind, even if that means less randomness - ** in the random seed. - ** - ** When testing, initializing zBuf[] to zero is all we do. That means - ** that we always use the same random number sequence. This makes the - ** tests repeatable. - */ - memset(zBuf, 0, nBuf); -#if !defined(SQLITE_TEST) - { - int pid, fd, got; - fd = robust_open("/dev/urandom", O_RDONLY, 0); - if( fd<0 ){ - time_t t; - time(&t); - memcpy(zBuf, &t, sizeof(t)); - pid = getpid(); - memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); - assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); - nBuf = sizeof(t) + sizeof(pid); - }else{ - do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); - robust_close(0, fd, __LINE__); - } - } -#endif - return nBuf; -} - - -/* -** Sleep for a little while. Return the amount of time slept. -** The argument is the number of microseconds we want to sleep. -** The return value is the number of microseconds of sleep actually -** requested from the underlying operating system, a number which -** might be greater than or equal to the argument, but not less -** than the argument. -*/ -static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ -#if OS_VXWORKS - struct timespec sp; - - sp.tv_sec = microseconds / 1000000; - sp.tv_nsec = (microseconds % 1000000) * 1000; - nanosleep(&sp, NULL); - UNUSED_PARAMETER(NotUsed); - return microseconds; -#elif defined(HAVE_USLEEP) && HAVE_USLEEP - usleep(microseconds); - UNUSED_PARAMETER(NotUsed); - return microseconds; -#else - int seconds = (microseconds+999999)/1000000; - sleep(seconds); - UNUSED_PARAMETER(NotUsed); - return seconds*1000000; -#endif -} - -/* -** The following variable, if set to a non-zero value, is interpreted as -** the number of seconds since 1970 and is used to set the result of -** sqlite3OsCurrentTime() during testing. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ -#endif - -/* -** Find the current time (in Universal Coordinated Time). Write into *piNow -** the current time and date as a Julian Day number times 86_400_000. In -** other words, write into *piNow the number of milliseconds since the Julian -** epoch of noon in Greenwich on November 24, 4714 B.C according to the -** proleptic Gregorian calendar. -** -** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date -** cannot be found. -*/ -static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ - static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; - int rc = SQLITE_OK; -#if defined(NO_GETTOD) - time_t t; - time(&t); - *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; -#elif OS_VXWORKS - struct timespec sNow; - clock_gettime(CLOCK_REALTIME, &sNow); - *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; -#else - struct timeval sNow; - if( gettimeofday(&sNow, 0)==0 ){ - *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; - }else{ - rc = SQLITE_ERROR; - } -#endif - -#ifdef SQLITE_TEST - if( sqlite3_current_time ){ - *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; - } -#endif - UNUSED_PARAMETER(NotUsed); - return rc; -} - -/* -** Find the current time (in Universal Coordinated Time). Write the -** current time and date as a Julian Day number into *prNow and -** return 0. Return 1 if the time and date cannot be found. -*/ -static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ - sqlite3_int64 i = 0; - int rc; - UNUSED_PARAMETER(NotUsed); - rc = unixCurrentTimeInt64(0, &i); - *prNow = i/86400000.0; - return rc; -} - -/* -** We added the xGetLastError() method with the intention of providing -** better low-level error messages when operating-system problems come up -** during SQLite operation. But so far, none of that has been implemented -** in the core. So this routine is never called. For now, it is merely -** a place-holder. -*/ -static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ - UNUSED_PARAMETER(NotUsed); - UNUSED_PARAMETER(NotUsed2); - UNUSED_PARAMETER(NotUsed3); - return 0; -} - - -/* -************************ End of sqlite3_vfs methods *************************** -******************************************************************************/ - -/****************************************************************************** -************************** Begin Proxy Locking ******************************** -** -** Proxy locking is a "uber-locking-method" in this sense: It uses the -** other locking methods on secondary lock files. Proxy locking is a -** meta-layer over top of the primitive locking implemented above. For -** this reason, the division that implements of proxy locking is deferred -** until late in the file (here) after all of the other I/O methods have -** been defined - so that the primitive locking methods are available -** as services to help with the implementation of proxy locking. -** -**** -** -** The default locking schemes in SQLite use byte-range locks on the -** database file to coordinate safe, concurrent access by multiple readers -** and writers [http://sqlite.org/lockingv3.html]. The five file locking -** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented -** as POSIX read & write locks over fixed set of locations (via fsctl), -** on AFP and SMB only exclusive byte-range locks are available via fsctl -** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. -** To simulate a F_RDLCK on the shared range, on AFP a randomly selected -** address in the shared range is taken for a SHARED lock, the entire -** shared range is taken for an EXCLUSIVE lock): -** -** PENDING_BYTE 0x40000000 -** RESERVED_BYTE 0x40000001 -** SHARED_RANGE 0x40000002 -> 0x40000200 -** -** This works well on the local file system, but shows a nearly 100x -** slowdown in read performance on AFP because the AFP client disables -** the read cache when byte-range locks are present. Enabling the read -** cache exposes a cache coherency problem that is present on all OS X -** supported network file systems. NFS and AFP both observe the -** close-to-open semantics for ensuring cache coherency -** [http://nfs.sourceforge.net/#faq_a8], which does not effectively -** address the requirements for concurrent database access by multiple -** readers and writers -** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. -** -** To address the performance and cache coherency issues, proxy file locking -** changes the way database access is controlled by limiting access to a -** single host at a time and moving file locks off of the database file -** and onto a proxy file on the local file system. -** -** -** Using proxy locks -** ----------------- -** -** C APIs -** -** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, -** <proxy_path> | ":auto:"); -** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); -** -** -** SQL pragmas -** -** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: -** PRAGMA [database.]lock_proxy_file -** -** Specifying ":auto:" means that if there is a conch file with a matching -** host ID in it, the proxy path in the conch file will be used, otherwise -** a proxy path based on the user's temp dir -** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the -** actual proxy file name is generated from the name and path of the -** database file. For example: -** -** For database path "/Users/me/foo.db" -** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") -** -** Once a lock proxy is configured for a database connection, it can not -** be removed, however it may be switched to a different proxy path via -** the above APIs (assuming the conch file is not being held by another -** connection or process). -** -** -** How proxy locking works -** ----------------------- -** -** Proxy file locking relies primarily on two new supporting files: -** -** * conch file to limit access to the database file to a single host -** at a time -** -** * proxy file to act as a proxy for the advisory locks normally -** taken on the database -** -** The conch file - to use a proxy file, sqlite must first "hold the conch" -** by taking an sqlite-style shared lock on the conch file, reading the -** contents and comparing the host's unique host ID (see below) and lock -** proxy path against the values stored in the conch. The conch file is -** stored in the same directory as the database file and the file name -** is patterned after the database file name as ".<databasename>-conch". -** If the conch file does not exist, or it's contents do not match the -** host ID and/or proxy path, then the lock is escalated to an exclusive -** lock and the conch file contents is updated with the host ID and proxy -** path and the lock is downgraded to a shared lock again. If the conch -** is held by another process (with a shared lock), the exclusive lock -** will fail and SQLITE_BUSY is returned. -** -** The proxy file - a single-byte file used for all advisory file locks -** normally taken on the database file. This allows for safe sharing -** of the database file for multiple readers and writers on the same -** host (the conch ensures that they all use the same local lock file). -** -** Requesting the lock proxy does not immediately take the conch, it is -** only taken when the first request to lock database file is made. -** This matches the semantics of the traditional locking behavior, where -** opening a connection to a database file does not take a lock on it. -** The shared lock and an open file descriptor are maintained until -** the connection to the database is closed. -** -** The proxy file and the lock file are never deleted so they only need -** to be created the first time they are used. -** -** Configuration options -** --------------------- -** -** SQLITE_PREFER_PROXY_LOCKING -** -** Database files accessed on non-local file systems are -** automatically configured for proxy locking, lock files are -** named automatically using the same logic as -** PRAGMA lock_proxy_file=":auto:" -** -** SQLITE_PROXY_DEBUG -** -** Enables the logging of error messages during host id file -** retrieval and creation -** -** LOCKPROXYDIR -** -** Overrides the default directory used for lock proxy files that -** are named automatically via the ":auto:" setting -** -** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS -** -** Permissions to use when creating a directory for storing the -** lock proxy files, only used when LOCKPROXYDIR is not set. -** -** -** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, -** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will -** force proxy locking to be used for every database file opened, and 0 -** will force automatic proxy locking to be disabled for all database -** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or -** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). -*/ - -/* -** Proxy locking is only available on MacOSX -*/ -#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE - -/* -** The proxyLockingContext has the path and file structures for the remote -** and local proxy files in it -*/ -typedef struct proxyLockingContext proxyLockingContext; -struct proxyLockingContext { - unixFile *conchFile; /* Open conch file */ - char *conchFilePath; /* Name of the conch file */ - unixFile *lockProxy; /* Open proxy lock file */ - char *lockProxyPath; /* Name of the proxy lock file */ - char *dbPath; /* Name of the open file */ - int conchHeld; /* 1 if the conch is held, -1 if lockless */ - void *oldLockingContext; /* Original lockingcontext to restore on close */ - sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ -}; - -/* -** The proxy lock file path for the database at dbPath is written into lPath, -** which must point to valid, writable memory large enough for a maxLen length -** file path. -*/ -static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ - int len; - int dbLen; - int i; - -#ifdef LOCKPROXYDIR - len = strlcpy(lPath, LOCKPROXYDIR, maxLen); -#else -# ifdef _CS_DARWIN_USER_TEMP_DIR - { - if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ - OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", - lPath, errno, getpid())); - return SQLITE_IOERR_LOCK; - } - len = strlcat(lPath, "sqliteplocks", maxLen); - } -# else - len = strlcpy(lPath, "/tmp/", maxLen); -# endif -#endif - - if( lPath[len-1]!='/' ){ - len = strlcat(lPath, "/", maxLen); - } - - /* transform the db path to a unique cache name */ - dbLen = (int)strlen(dbPath); - for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ - char c = dbPath[i]; - lPath[i+len] = (c=='/')?'_':c; - } - lPath[i+len]='\0'; - strlcat(lPath, ":auto:", maxLen); - OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); - return SQLITE_OK; -} - -/* - ** Creates the lock file and any missing directories in lockPath - */ -static int proxyCreateLockPath(const char *lockPath){ - int i, len; - char buf[MAXPATHLEN]; - int start = 0; - - assert(lockPath!=NULL); - /* try to create all the intermediate directories */ - len = (int)strlen(lockPath); - buf[0] = lockPath[0]; - for( i=1; i<len; i++ ){ - if( lockPath[i] == '/' && (i - start > 0) ){ - /* only mkdir if leaf dir != "." or "/" or ".." */ - if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') - || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ - buf[i]='\0'; - if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ - int err=errno; - if( err!=EEXIST ) { - OSTRACE(("CREATELOCKPATH FAILED creating %s, " - "'%s' proxy lock path=%s pid=%d\n", - buf, strerror(err), lockPath, getpid())); - return err; - } - } - } - start=i+1; - } - buf[i] = lockPath[i]; - } - OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); - return 0; -} - -/* -** Create a new VFS file descriptor (stored in memory obtained from -** sqlite3_malloc) and open the file named "path" in the file descriptor. -** -** The caller is responsible not only for closing the file descriptor -** but also for freeing the memory associated with the file descriptor. -*/ -static int proxyCreateUnixFile( - const char *path, /* path for the new unixFile */ - unixFile **ppFile, /* unixFile created and returned by ref */ - int islockfile /* if non zero missing dirs will be created */ -) { - int fd = -1; - unixFile *pNew; - int rc = SQLITE_OK; - int openFlags = O_RDWR | O_CREAT; - sqlite3_vfs dummyVfs; - int terrno = 0; - UnixUnusedFd *pUnused = NULL; - - /* 1. first try to open/create the file - ** 2. if that fails, and this is a lock file (not-conch), try creating - ** the parent directories and then try again. - ** 3. if that fails, try to open the file read-only - ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file - */ - pUnused = findReusableFd(path, openFlags); - if( pUnused ){ - fd = pUnused->fd; - }else{ - pUnused = sqlite3_malloc(sizeof(*pUnused)); - if( !pUnused ){ - return SQLITE_NOMEM; - } - } - if( fd<0 ){ - fd = robust_open(path, openFlags, 0); - terrno = errno; - if( fd<0 && errno==ENOENT && islockfile ){ - if( proxyCreateLockPath(path) == SQLITE_OK ){ - fd = robust_open(path, openFlags, 0); - } - } - } - if( fd<0 ){ - openFlags = O_RDONLY; - fd = robust_open(path, openFlags, 0); - terrno = errno; - } - if( fd<0 ){ - if( islockfile ){ - return SQLITE_BUSY; - } - switch (terrno) { - case EACCES: - return SQLITE_PERM; - case EIO: - return SQLITE_IOERR_LOCK; /* even though it is the conch */ - default: - return SQLITE_CANTOPEN_BKPT; - } - } - - pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); - if( pNew==NULL ){ - rc = SQLITE_NOMEM; - goto end_create_proxy; - } - memset(pNew, 0, sizeof(unixFile)); - pNew->openFlags = openFlags; - memset(&dummyVfs, 0, sizeof(dummyVfs)); - dummyVfs.pAppData = (void*)&autolockIoFinder; - dummyVfs.zName = "dummy"; - pUnused->fd = fd; - pUnused->flags = openFlags; - pNew->pUnused = pUnused; - - rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); - if( rc==SQLITE_OK ){ - *ppFile = pNew; - return SQLITE_OK; - } -end_create_proxy: - robust_close(pNew, fd, __LINE__); - sqlite3_free(pNew); - sqlite3_free(pUnused); - return rc; -} - -#ifdef SQLITE_TEST -/* simulate multiple hosts by creating unique hostid file paths */ -SQLITE_API int sqlite3_hostid_num = 0; -#endif - -#define PROXY_HOSTIDLEN 16 /* conch file host id length */ - -/* Not always defined in the headers as it ought to be */ -extern int gethostuuid(uuid_t id, const struct timespec *wait); - -/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN -** bytes of writable memory. -*/ -static int proxyGetHostID(unsigned char *pHostID, int *pError){ - assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); - memset(pHostID, 0, PROXY_HOSTIDLEN); -#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ - && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 - { - static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ - if( gethostuuid(pHostID, &timeout) ){ - int err = errno; - if( pError ){ - *pError = err; - } - return SQLITE_IOERR; - } - } -#else - UNUSED_PARAMETER(pError); -#endif -#ifdef SQLITE_TEST - /* simulate multiple hosts by creating unique hostid file paths */ - if( sqlite3_hostid_num != 0){ - pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); - } -#endif - - return SQLITE_OK; -} - -/* The conch file contains the header, host id and lock file path - */ -#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ -#define PROXY_HEADERLEN 1 /* conch file header length */ -#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) -#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) - -/* -** Takes an open conch file, copies the contents to a new path and then moves -** it back. The newly created file's file descriptor is assigned to the -** conch file structure and finally the original conch file descriptor is -** closed. Returns zero if successful. -*/ -static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - unixFile *conchFile = pCtx->conchFile; - char tPath[MAXPATHLEN]; - char buf[PROXY_MAXCONCHLEN]; - char *cPath = pCtx->conchFilePath; - size_t readLen = 0; - size_t pathLen = 0; - char errmsg[64] = ""; - int fd = -1; - int rc = -1; - UNUSED_PARAMETER(myHostID); - - /* create a new path by replace the trailing '-conch' with '-break' */ - pathLen = strlcpy(tPath, cPath, MAXPATHLEN); - if( pathLen>MAXPATHLEN || pathLen<6 || - (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ - sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); - goto end_breaklock; - } - /* read the conch content */ - readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); - if( readLen<PROXY_PATHINDEX ){ - sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); - goto end_breaklock; - } - /* write it out to the temporary break file */ - fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0); - if( fd<0 ){ - sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); - goto end_breaklock; - } - if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ - sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); - goto end_breaklock; - } - if( rename(tPath, cPath) ){ - sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); - goto end_breaklock; - } - rc = 0; - fprintf(stderr, "broke stale lock on %s\n", cPath); - robust_close(pFile, conchFile->h, __LINE__); - conchFile->h = fd; - conchFile->openFlags = O_RDWR | O_CREAT; - -end_breaklock: - if( rc ){ - if( fd>=0 ){ - osUnlink(tPath); - robust_close(pFile, fd, __LINE__); - } - fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); - } - return rc; -} - -/* Take the requested lock on the conch file and break a stale lock if the -** host id matches. -*/ -static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - unixFile *conchFile = pCtx->conchFile; - int rc = SQLITE_OK; - int nTries = 0; - struct timespec conchModTime; - - memset(&conchModTime, 0, sizeof(conchModTime)); - do { - rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); - nTries ++; - if( rc==SQLITE_BUSY ){ - /* If the lock failed (busy): - * 1st try: get the mod time of the conch, wait 0.5s and try again. - * 2nd try: fail if the mod time changed or host id is different, wait - * 10 sec and try again - * 3rd try: break the lock unless the mod time has changed. - */ - struct stat buf; - if( osFstat(conchFile->h, &buf) ){ - pFile->lastErrno = errno; - return SQLITE_IOERR_LOCK; - } - - if( nTries==1 ){ - conchModTime = buf.st_mtimespec; - usleep(500000); /* wait 0.5 sec and try the lock again*/ - continue; - } - - assert( nTries>1 ); - if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || - conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ - return SQLITE_BUSY; - } - - if( nTries==2 ){ - char tBuf[PROXY_MAXCONCHLEN]; - int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); - if( len<0 ){ - pFile->lastErrno = errno; - return SQLITE_IOERR_LOCK; - } - if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ - /* don't break the lock if the host id doesn't match */ - if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ - return SQLITE_BUSY; - } - }else{ - /* don't break the lock on short read or a version mismatch */ - return SQLITE_BUSY; - } - usleep(10000000); /* wait 10 sec and try the lock again */ - continue; - } - - assert( nTries==3 ); - if( 0==proxyBreakConchLock(pFile, myHostID) ){ - rc = SQLITE_OK; - if( lockType==EXCLUSIVE_LOCK ){ - rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); - } - if( !rc ){ - rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); - } - } - } - } while( rc==SQLITE_BUSY && nTries<3 ); - - return rc; -} - -/* Takes the conch by taking a shared lock and read the contents conch, if -** lockPath is non-NULL, the host ID and lock file path must match. A NULL -** lockPath means that the lockPath in the conch file will be used if the -** host IDs match, or a new lock path will be generated automatically -** and written to the conch file. -*/ -static int proxyTakeConch(unixFile *pFile){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - - if( pCtx->conchHeld!=0 ){ - return SQLITE_OK; - }else{ - unixFile *conchFile = pCtx->conchFile; - uuid_t myHostID; - int pError = 0; - char readBuf[PROXY_MAXCONCHLEN]; - char lockPath[MAXPATHLEN]; - char *tempLockPath = NULL; - int rc = SQLITE_OK; - int createConch = 0; - int hostIdMatch = 0; - int readLen = 0; - int tryOldLockPath = 0; - int forceNewLockPath = 0; - - OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, - (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); - - rc = proxyGetHostID(myHostID, &pError); - if( (rc&0xff)==SQLITE_IOERR ){ - pFile->lastErrno = pError; - goto end_takeconch; - } - rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); - if( rc!=SQLITE_OK ){ - goto end_takeconch; - } - /* read the existing conch file */ - readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); - if( readLen<0 ){ - /* I/O error: lastErrno set by seekAndRead */ - pFile->lastErrno = conchFile->lastErrno; - rc = SQLITE_IOERR_READ; - goto end_takeconch; - }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || - readBuf[0]!=(char)PROXY_CONCHVERSION ){ - /* a short read or version format mismatch means we need to create a new - ** conch file. - */ - createConch = 1; - } - /* if the host id matches and the lock path already exists in the conch - ** we'll try to use the path there, if we can't open that path, we'll - ** retry with a new auto-generated path - */ - do { /* in case we need to try again for an :auto: named lock file */ - - if( !createConch && !forceNewLockPath ){ - hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, - PROXY_HOSTIDLEN); - /* if the conch has data compare the contents */ - if( !pCtx->lockProxyPath ){ - /* for auto-named local lock file, just check the host ID and we'll - ** use the local lock file path that's already in there - */ - if( hostIdMatch ){ - size_t pathLen = (readLen - PROXY_PATHINDEX); - - if( pathLen>=MAXPATHLEN ){ - pathLen=MAXPATHLEN-1; - } - memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); - lockPath[pathLen] = 0; - tempLockPath = lockPath; - tryOldLockPath = 1; - /* create a copy of the lock path if the conch is taken */ - goto end_takeconch; - } - }else if( hostIdMatch - && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], - readLen-PROXY_PATHINDEX) - ){ - /* conch host and lock path match */ - goto end_takeconch; - } - } - - /* if the conch isn't writable and doesn't match, we can't take it */ - if( (conchFile->openFlags&O_RDWR) == 0 ){ - rc = SQLITE_BUSY; - goto end_takeconch; - } - - /* either the conch didn't match or we need to create a new one */ - if( !pCtx->lockProxyPath ){ - proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); - tempLockPath = lockPath; - /* create a copy of the lock path _only_ if the conch is taken */ - } - - /* update conch with host and path (this will fail if other process - ** has a shared lock already), if the host id matches, use the big - ** stick. - */ - futimes(conchFile->h, NULL); - if( hostIdMatch && !createConch ){ - if( conchFile->pInode && conchFile->pInode->nShared>1 ){ - /* We are trying for an exclusive lock but another thread in this - ** same process is still holding a shared lock. */ - rc = SQLITE_BUSY; - } else { - rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); - } - }else{ - rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK); - } - if( rc==SQLITE_OK ){ - char writeBuffer[PROXY_MAXCONCHLEN]; - int writeSize = 0; - - writeBuffer[0] = (char)PROXY_CONCHVERSION; - memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); - if( pCtx->lockProxyPath!=NULL ){ - strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); - }else{ - strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); - } - writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); - robust_ftruncate(conchFile->h, writeSize); - rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); - fsync(conchFile->h); - /* If we created a new conch file (not just updated the contents of a - ** valid conch file), try to match the permissions of the database - */ - if( rc==SQLITE_OK && createConch ){ - struct stat buf; - int err = osFstat(pFile->h, &buf); - if( err==0 ){ - mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | - S_IROTH|S_IWOTH); - /* try to match the database file R/W permissions, ignore failure */ -#ifndef SQLITE_PROXY_DEBUG - osFchmod(conchFile->h, cmode); -#else - do{ - rc = osFchmod(conchFile->h, cmode); - }while( rc==(-1) && errno==EINTR ); - if( rc!=0 ){ - int code = errno; - fprintf(stderr, "fchmod %o FAILED with %d %s\n", - cmode, code, strerror(code)); - } else { - fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); - } - }else{ - int code = errno; - fprintf(stderr, "STAT FAILED[%d] with %d %s\n", - err, code, strerror(code)); -#endif - } - } - } - conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); - - end_takeconch: - OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); - if( rc==SQLITE_OK && pFile->openFlags ){ - int fd; - if( pFile->h>=0 ){ - robust_close(pFile, pFile->h, __LINE__); - } - pFile->h = -1; - fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); - OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); - if( fd>=0 ){ - pFile->h = fd; - }else{ - rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called - during locking */ - } - } - if( rc==SQLITE_OK && !pCtx->lockProxy ){ - char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; - rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); - if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ - /* we couldn't create the proxy lock file with the old lock file path - ** so try again via auto-naming - */ - forceNewLockPath = 1; - tryOldLockPath = 0; - continue; /* go back to the do {} while start point, try again */ - } - } - if( rc==SQLITE_OK ){ - /* Need to make a copy of path if we extracted the value - ** from the conch file or the path was allocated on the stack - */ - if( tempLockPath ){ - pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); - if( !pCtx->lockProxyPath ){ - rc = SQLITE_NOMEM; - } - } - } - if( rc==SQLITE_OK ){ - pCtx->conchHeld = 1; - - if( pCtx->lockProxy->pMethod == &afpIoMethods ){ - afpLockingContext *afpCtx; - afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; - afpCtx->dbPath = pCtx->lockProxyPath; - } - } else { - conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); - } - OSTRACE(("TAKECONCH %d %s\n", conchFile->h, - rc==SQLITE_OK?"ok":"failed")); - return rc; - } while (1); /* in case we need to retry the :auto: lock file - - ** we should never get here except via the 'continue' call. */ - } -} - -/* -** If pFile holds a lock on a conch file, then release that lock. -*/ -static int proxyReleaseConch(unixFile *pFile){ - int rc = SQLITE_OK; /* Subroutine return code */ - proxyLockingContext *pCtx; /* The locking context for the proxy lock */ - unixFile *conchFile; /* Name of the conch file */ - - pCtx = (proxyLockingContext *)pFile->lockingContext; - conchFile = pCtx->conchFile; - OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, - (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), - getpid())); - if( pCtx->conchHeld>0 ){ - rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); - } - pCtx->conchHeld = 0; - OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, - (rc==SQLITE_OK ? "ok" : "failed"))); - return rc; -} - -/* -** Given the name of a database file, compute the name of its conch file. -** Store the conch filename in memory obtained from sqlite3_malloc(). -** Make *pConchPath point to the new name. Return SQLITE_OK on success -** or SQLITE_NOMEM if unable to obtain memory. -** -** The caller is responsible for ensuring that the allocated memory -** space is eventually freed. -** -** *pConchPath is set to NULL if a memory allocation error occurs. -*/ -static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ - int i; /* Loop counter */ - int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ - char *conchPath; /* buffer in which to construct conch name */ - - /* Allocate space for the conch filename and initialize the name to - ** the name of the original database file. */ - *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); - if( conchPath==0 ){ - return SQLITE_NOMEM; - } - memcpy(conchPath, dbPath, len+1); - - /* now insert a "." before the last / character */ - for( i=(len-1); i>=0; i-- ){ - if( conchPath[i]=='/' ){ - i++; - break; - } - } - conchPath[i]='.'; - while ( i<len ){ - conchPath[i+1]=dbPath[i]; - i++; - } - - /* append the "-conch" suffix to the file */ - memcpy(&conchPath[i+1], "-conch", 7); - assert( (int)strlen(conchPath) == len+7 ); - - return SQLITE_OK; -} - - -/* Takes a fully configured proxy locking-style unix file and switches -** the local lock file path -*/ -static int switchLockProxyPath(unixFile *pFile, const char *path) { - proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; - char *oldPath = pCtx->lockProxyPath; - int rc = SQLITE_OK; - - if( pFile->eFileLock!=NO_LOCK ){ - return SQLITE_BUSY; - } - - /* nothing to do if the path is NULL, :auto: or matches the existing path */ - if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || - (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ - return SQLITE_OK; - }else{ - unixFile *lockProxy = pCtx->lockProxy; - pCtx->lockProxy=NULL; - pCtx->conchHeld = 0; - if( lockProxy!=NULL ){ - rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); - if( rc ) return rc; - sqlite3_free(lockProxy); - } - sqlite3_free(oldPath); - pCtx->lockProxyPath = sqlite3DbStrDup(0, path); - } - - return rc; -} - -/* -** pFile is a file that has been opened by a prior xOpen call. dbPath -** is a string buffer at least MAXPATHLEN+1 characters in size. -** -** This routine find the filename associated with pFile and writes it -** int dbPath. -*/ -static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ -#if defined(__APPLE__) - if( pFile->pMethod == &afpIoMethods ){ - /* afp style keeps a reference to the db path in the filePath field - ** of the struct */ - assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); - strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); - } else -#endif - if( pFile->pMethod == &dotlockIoMethods ){ - /* dot lock style uses the locking context to store the dot lock - ** file path */ - int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); - memcpy(dbPath, (char *)pFile->lockingContext, len + 1); - }else{ - /* all other styles use the locking context to store the db file path */ - assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); - strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); - } - return SQLITE_OK; -} - -/* -** Takes an already filled in unix file and alters it so all file locking -** will be performed on the local proxy lock file. The following fields -** are preserved in the locking context so that they can be restored and -** the unix structure properly cleaned up at close time: -** ->lockingContext -** ->pMethod -*/ -static int proxyTransformUnixFile(unixFile *pFile, const char *path) { - proxyLockingContext *pCtx; - char dbPath[MAXPATHLEN+1]; /* Name of the database file */ - char *lockPath=NULL; - int rc = SQLITE_OK; - - if( pFile->eFileLock!=NO_LOCK ){ - return SQLITE_BUSY; - } - proxyGetDbPathForUnixFile(pFile, dbPath); - if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ - lockPath=NULL; - }else{ - lockPath=(char *)path; - } - - OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, - (lockPath ? lockPath : ":auto:"), getpid())); - - pCtx = sqlite3_malloc( sizeof(*pCtx) ); - if( pCtx==0 ){ - return SQLITE_NOMEM; - } - memset(pCtx, 0, sizeof(*pCtx)); - - rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); - if( rc==SQLITE_OK ){ - rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); - if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ - /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and - ** (c) the file system is read-only, then enable no-locking access. - ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts - ** that openFlags will have only one of O_RDONLY or O_RDWR. - */ - struct statfs fsInfo; - struct stat conchInfo; - int goLockless = 0; - - if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { - int err = errno; - if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ - goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; - } - } - if( goLockless ){ - pCtx->conchHeld = -1; /* read only FS/ lockless */ - rc = SQLITE_OK; - } - } - } - if( rc==SQLITE_OK && lockPath ){ - pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); - } - - if( rc==SQLITE_OK ){ - pCtx->dbPath = sqlite3DbStrDup(0, dbPath); - if( pCtx->dbPath==NULL ){ - rc = SQLITE_NOMEM; - } - } - if( rc==SQLITE_OK ){ - /* all memory is allocated, proxys are created and assigned, - ** switch the locking context and pMethod then return. - */ - pCtx->oldLockingContext = pFile->lockingContext; - pFile->lockingContext = pCtx; - pCtx->pOldMethod = pFile->pMethod; - pFile->pMethod = &proxyIoMethods; - }else{ - if( pCtx->conchFile ){ - pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); - sqlite3_free(pCtx->conchFile); - } - sqlite3DbFree(0, pCtx->lockProxyPath); - sqlite3_free(pCtx->conchFilePath); - sqlite3_free(pCtx); - } - OSTRACE(("TRANSPROXY %d %s\n", pFile->h, - (rc==SQLITE_OK ? "ok" : "failed"))); - return rc; -} - - -/* -** This routine handles sqlite3_file_control() calls that are specific -** to proxy locking. -*/ -static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ - switch( op ){ - case SQLITE_GET_LOCKPROXYFILE: { - unixFile *pFile = (unixFile*)id; - if( pFile->pMethod == &proxyIoMethods ){ - proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; - proxyTakeConch(pFile); - if( pCtx->lockProxyPath ){ - *(const char **)pArg = pCtx->lockProxyPath; - }else{ - *(const char **)pArg = ":auto: (not held)"; - } - } else { - *(const char **)pArg = NULL; - } - return SQLITE_OK; - } - case SQLITE_SET_LOCKPROXYFILE: { - unixFile *pFile = (unixFile*)id; - int rc = SQLITE_OK; - int isProxyStyle = (pFile->pMethod == &proxyIoMethods); - if( pArg==NULL || (const char *)pArg==0 ){ - if( isProxyStyle ){ - /* turn off proxy locking - not supported */ - rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; - }else{ - /* turn off proxy locking - already off - NOOP */ - rc = SQLITE_OK; - } - }else{ - const char *proxyPath = (const char *)pArg; - if( isProxyStyle ){ - proxyLockingContext *pCtx = - (proxyLockingContext*)pFile->lockingContext; - if( !strcmp(pArg, ":auto:") - || (pCtx->lockProxyPath && - !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) - ){ - rc = SQLITE_OK; - }else{ - rc = switchLockProxyPath(pFile, proxyPath); - } - }else{ - /* turn on proxy file locking */ - rc = proxyTransformUnixFile(pFile, proxyPath); - } - } - return rc; - } - default: { - assert( 0 ); /* The call assures that only valid opcodes are sent */ - } - } - /*NOTREACHED*/ - return SQLITE_ERROR; -} - -/* -** Within this division (the proxying locking implementation) the procedures -** above this point are all utilities. The lock-related methods of the -** proxy-locking sqlite3_io_method object follow. -*/ - - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, set *pResOut -** to a non-zero value otherwise *pResOut is set to zero. The return value -** is set to SQLITE_OK unless an I/O error occurs during lock checking. -*/ -static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { - unixFile *pFile = (unixFile*)id; - int rc = proxyTakeConch(pFile); - if( rc==SQLITE_OK ){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - if( pCtx->conchHeld>0 ){ - unixFile *proxy = pCtx->lockProxy; - return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); - }else{ /* conchHeld < 0 is lockless */ - pResOut=0; - } - } - return rc; -} - -/* -** Lock the file with the lock specified by parameter eFileLock - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** This routine will only increase a lock. Use the sqlite3OsUnlock() -** routine to lower a locking level. -*/ -static int proxyLock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - int rc = proxyTakeConch(pFile); - if( rc==SQLITE_OK ){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - if( pCtx->conchHeld>0 ){ - unixFile *proxy = pCtx->lockProxy; - rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); - pFile->eFileLock = proxy->eFileLock; - }else{ - /* conchHeld < 0 is lockless */ - } - } - return rc; -} - - -/* -** Lower the locking level on file descriptor pFile to eFileLock. eFileLock -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -*/ -static int proxyUnlock(sqlite3_file *id, int eFileLock) { - unixFile *pFile = (unixFile*)id; - int rc = proxyTakeConch(pFile); - if( rc==SQLITE_OK ){ - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - if( pCtx->conchHeld>0 ){ - unixFile *proxy = pCtx->lockProxy; - rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); - pFile->eFileLock = proxy->eFileLock; - }else{ - /* conchHeld < 0 is lockless */ - } - } - return rc; -} - -/* -** Close a file that uses proxy locks. -*/ -static int proxyClose(sqlite3_file *id) { - if( id ){ - unixFile *pFile = (unixFile*)id; - proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; - unixFile *lockProxy = pCtx->lockProxy; - unixFile *conchFile = pCtx->conchFile; - int rc = SQLITE_OK; - - if( lockProxy ){ - rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); - if( rc ) return rc; - rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); - if( rc ) return rc; - sqlite3_free(lockProxy); - pCtx->lockProxy = 0; - } - if( conchFile ){ - if( pCtx->conchHeld ){ - rc = proxyReleaseConch(pFile); - if( rc ) return rc; - } - rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); - if( rc ) return rc; - sqlite3_free(conchFile); - } - sqlite3DbFree(0, pCtx->lockProxyPath); - sqlite3_free(pCtx->conchFilePath); - sqlite3DbFree(0, pCtx->dbPath); - /* restore the original locking context and pMethod then close it */ - pFile->lockingContext = pCtx->oldLockingContext; - pFile->pMethod = pCtx->pOldMethod; - sqlite3_free(pCtx); - return pFile->pMethod->xClose(id); - } - return SQLITE_OK; -} - - - -#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ -/* -** The proxy locking style is intended for use with AFP filesystems. -** And since AFP is only supported on MacOSX, the proxy locking is also -** restricted to MacOSX. -** -** -******************* End of the proxy lock implementation ********************** -******************************************************************************/ - -/* -** Initialize the operating system interface. -** -** This routine registers all VFS implementations for unix-like operating -** systems. This routine, and the sqlite3_os_end() routine that follows, -** should be the only routines in this file that are visible from other -** files. -** -** This routine is called once during SQLite initialization and by a -** single thread. The memory allocation and mutex subsystems have not -** necessarily been initialized when this routine is called, and so they -** should not be used. -*/ -SQLITE_API int sqlite3_os_init(void){ - /* - ** The following macro defines an initializer for an sqlite3_vfs object. - ** The name of the VFS is NAME. The pAppData is a pointer to a pointer - ** to the "finder" function. (pAppData is a pointer to a pointer because - ** silly C90 rules prohibit a void* from being cast to a function pointer - ** and so we have to go through the intermediate pointer to avoid problems - ** when compiling with -pedantic-errors on GCC.) - ** - ** The FINDER parameter to this macro is the name of the pointer to the - ** finder-function. The finder-function returns a pointer to the - ** sqlite_io_methods object that implements the desired locking - ** behaviors. See the division above that contains the IOMETHODS - ** macro for addition information on finder-functions. - ** - ** Most finders simply return a pointer to a fixed sqlite3_io_methods - ** object. But the "autolockIoFinder" available on MacOSX does a little - ** more than that; it looks at the filesystem type that hosts the - ** database file and tries to choose an locking method appropriate for - ** that filesystem time. - */ - #define UNIXVFS(VFSNAME, FINDER) { \ - 3, /* iVersion */ \ - sizeof(unixFile), /* szOsFile */ \ - MAX_PATHNAME, /* mxPathname */ \ - 0, /* pNext */ \ - VFSNAME, /* zName */ \ - (void*)&FINDER, /* pAppData */ \ - unixOpen, /* xOpen */ \ - unixDelete, /* xDelete */ \ - unixAccess, /* xAccess */ \ - unixFullPathname, /* xFullPathname */ \ - unixDlOpen, /* xDlOpen */ \ - unixDlError, /* xDlError */ \ - unixDlSym, /* xDlSym */ \ - unixDlClose, /* xDlClose */ \ - unixRandomness, /* xRandomness */ \ - unixSleep, /* xSleep */ \ - unixCurrentTime, /* xCurrentTime */ \ - unixGetLastError, /* xGetLastError */ \ - unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ - unixSetSystemCall, /* xSetSystemCall */ \ - unixGetSystemCall, /* xGetSystemCall */ \ - unixNextSystemCall, /* xNextSystemCall */ \ - } - - /* - ** All default VFSes for unix are contained in the following array. - ** - ** Note that the sqlite3_vfs.pNext field of the VFS object is modified - ** by the SQLite core when the VFS is registered. So the following - ** array cannot be const. - */ - static sqlite3_vfs aVfs[] = { -#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) - UNIXVFS("unix", autolockIoFinder ), -#else - UNIXVFS("unix", posixIoFinder ), -#endif - UNIXVFS("unix-none", nolockIoFinder ), - UNIXVFS("unix-dotfile", dotlockIoFinder ), - UNIXVFS("unix-excl", posixIoFinder ), -#if OS_VXWORKS - UNIXVFS("unix-namedsem", semIoFinder ), -#endif -#if SQLITE_ENABLE_LOCKING_STYLE - UNIXVFS("unix-posix", posixIoFinder ), -#if !OS_VXWORKS - UNIXVFS("unix-flock", flockIoFinder ), -#endif -#endif -#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) - UNIXVFS("unix-afp", afpIoFinder ), - UNIXVFS("unix-nfs", nfsIoFinder ), - UNIXVFS("unix-proxy", proxyIoFinder ), -#endif - }; - unsigned int i; /* Loop counter */ - - /* Double-check that the aSyscall[] array has been constructed - ** correctly. See ticket [bb3a86e890c8e96ab] */ - assert( ArraySize(aSyscall)==21 ); - - /* Register all VFSes defined in the aVfs[] array */ - for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ - sqlite3_vfs_register(&aVfs[i], i==0); - } - return SQLITE_OK; -} - -/* -** Shutdown the operating system interface. -** -** Some operating systems might need to do some cleanup in this routine, -** to release dynamically allocated objects. But not on unix. -** This routine is a no-op for unix. -*/ -SQLITE_API int sqlite3_os_end(void){ - return SQLITE_OK; -} - -#endif /* SQLITE_OS_UNIX */ - -/************** End of os_unix.c *********************************************/ -/************** Begin file os_win.c ******************************************/ -/* -** 2004 May 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains code that is specific to Windows. -*/ -#if SQLITE_OS_WIN /* This file is used for Windows only */ - -#ifdef __CYGWIN__ -# include <sys/cygwin.h> -#endif - -/* -** Include code that is common to all os_*.c files -*/ -/************** Include os_common.h in the middle of os_win.c ****************/ -/************** Begin file os_common.h ***************************************/ -/* -** 2004 May 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains macros and a little bit of code that is common to -** all of the platform-specific files (os_*.c) and is #included into those -** files. -** -** This file should be #included by the os_*.c files only. It is not a -** general purpose header file. -*/ -#ifndef _OS_COMMON_H_ -#define _OS_COMMON_H_ - -/* -** At least two bugs have slipped in because we changed the MEMORY_DEBUG -** macro to SQLITE_DEBUG and some older makefiles have not yet made the -** switch. The following code should catch this problem at compile-time. -*/ -#ifdef MEMORY_DEBUG -# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." -#endif - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -# ifndef SQLITE_DEBUG_OS_TRACE -# define SQLITE_DEBUG_OS_TRACE 0 -# endif - int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; -# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X -#else -# define OSTRACE(X) -#endif - -/* -** Macros for performance tracing. Normally turned off. Only works -** on i486 hardware. -*/ -#ifdef SQLITE_PERFORMANCE_TRACE - -/* -** hwtime.h contains inline assembler code for implementing -** high-performance timing routines. -*/ -/************** Include hwtime.h in the middle of os_common.h ****************/ -/************** Begin file hwtime.h ******************************************/ -/* -** 2008 May 27 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains inline asm code for retrieving "high-performance" -** counters for x86 class CPUs. -*/ -#ifndef _HWTIME_H_ -#define _HWTIME_H_ - -/* -** The following routine only works on pentium-class (or newer) processors. -** It uses the RDTSC opcode to read the cycle count value out of the -** processor and returns that value. This can be used for high-res -** profiling. -*/ -#if (defined(__GNUC__) || defined(_MSC_VER)) && \ - (defined(i386) || defined(__i386__) || defined(_M_IX86)) - - #if defined(__GNUC__) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned int lo, hi; - __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); - return (sqlite_uint64)hi << 32 | lo; - } - - #elif defined(_MSC_VER) - - __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){ - __asm { - rdtsc - ret ; return value at EDX:EAX - } - } - - #endif - -#elif (defined(__GNUC__) && defined(__x86_64__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long val; - __asm__ __volatile__ ("rdtsc" : "=A" (val)); - return val; - } - -#elif (defined(__GNUC__) && defined(__ppc__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long long retval; - unsigned long junk; - __asm__ __volatile__ ("\n\ - 1: mftbu %1\n\ - mftb %L0\n\ - mftbu %0\n\ - cmpw %0,%1\n\ - bne 1b" - : "=r" (retval), "=r" (junk)); - return retval; - } - -#else - - #error Need implementation of sqlite3Hwtime() for your platform. - - /* - ** To compile without implementing sqlite3Hwtime() for your platform, - ** you can remove the above #error and use the following - ** stub function. You will lose timing support for many - ** of the debugging and testing utilities, but it should at - ** least compile and run. - */ -SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); } - -#endif - -#endif /* !defined(_HWTIME_H_) */ - -/************** End of hwtime.h **********************************************/ -/************** Continuing where we left off in os_common.h ******************/ - -static sqlite_uint64 g_start; -static sqlite_uint64 g_elapsed; -#define TIMER_START g_start=sqlite3Hwtime() -#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start -#define TIMER_ELAPSED g_elapsed -#else -#define TIMER_START -#define TIMER_END -#define TIMER_ELAPSED ((sqlite_uint64)0) -#endif - -/* -** If we compile with the SQLITE_TEST macro set, then the following block -** of code will give us the ability to simulate a disk I/O error. This -** is used for testing the I/O recovery logic. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ -SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ -SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ -SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ -SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ -SQLITE_API int sqlite3_diskfull_pending = 0; -SQLITE_API int sqlite3_diskfull = 0; -#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) -#define SimulateIOError(CODE) \ - if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ - || sqlite3_io_error_pending-- == 1 ) \ - { local_ioerr(); CODE; } -static void local_ioerr(){ - IOTRACE(("IOERR\n")); - sqlite3_io_error_hit++; - if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; -} -#define SimulateDiskfullError(CODE) \ - if( sqlite3_diskfull_pending ){ \ - if( sqlite3_diskfull_pending == 1 ){ \ - local_ioerr(); \ - sqlite3_diskfull = 1; \ - sqlite3_io_error_hit = 1; \ - CODE; \ - }else{ \ - sqlite3_diskfull_pending--; \ - } \ - } -#else -#define SimulateIOErrorBenign(X) -#define SimulateIOError(A) -#define SimulateDiskfullError(A) -#endif - -/* -** When testing, keep a count of the number of open files. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_open_file_count = 0; -#define OpenCounter(X) sqlite3_open_file_count+=(X) -#else -#define OpenCounter(X) -#endif - -#endif /* !defined(_OS_COMMON_H_) */ - -/************** End of os_common.h *******************************************/ -/************** Continuing where we left off in os_win.c *********************/ - -/* -** Compiling and using WAL mode requires several APIs that are only -** available in Windows platforms based on the NT kernel. -*/ -#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL) -# error "WAL mode requires support from the Windows NT kernel, compile\ - with SQLITE_OMIT_WAL." -#endif - -/* -** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions -** based on the sub-platform)? -*/ -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT -# define SQLITE_WIN32_HAS_ANSI -#endif - -/* -** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions -** based on the sub-platform)? -*/ -#if SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT -# define SQLITE_WIN32_HAS_WIDE -#endif - -/* -** Do we need to manually define the Win32 file mapping APIs for use with WAL -** mode (e.g. these APIs are available in the Windows CE SDK; however, they -** are not present in the header file)? -*/ -#if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) -/* -** Two of the file mapping APIs are different under WinRT. Figure out which -** set we need. -*/ -#if SQLITE_OS_WINRT -WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \ - LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR); - -WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T); -#else -#if defined(SQLITE_WIN32_HAS_ANSI) -WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \ - DWORD, DWORD, DWORD, LPCSTR); -#endif /* defined(SQLITE_WIN32_HAS_ANSI) */ - -#if defined(SQLITE_WIN32_HAS_WIDE) -WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \ - DWORD, DWORD, DWORD, LPCWSTR); -#endif /* defined(SQLITE_WIN32_HAS_WIDE) */ - -WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); -#endif /* SQLITE_OS_WINRT */ - -/* -** This file mapping API is common to both Win32 and WinRT. -*/ -WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); -#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */ - -/* -** Macro to find the minimum of two numeric values. -*/ -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -/* -** Some Microsoft compilers lack this definition. -*/ -#ifndef INVALID_FILE_ATTRIBUTES -# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) -#endif - -#ifndef FILE_FLAG_MASK -# define FILE_FLAG_MASK (0xFF3C0000) -#endif - -#ifndef FILE_ATTRIBUTE_MASK -# define FILE_ATTRIBUTE_MASK (0x0003FFF7) -#endif - -#ifndef SQLITE_OMIT_WAL -/* Forward references */ -typedef struct winShm winShm; /* A connection to shared-memory */ -typedef struct winShmNode winShmNode; /* A region of shared-memory */ -#endif - -/* -** WinCE lacks native support for file locking so we have to fake it -** with some code of our own. -*/ -#if SQLITE_OS_WINCE -typedef struct winceLock { - int nReaders; /* Number of reader locks obtained */ - BOOL bPending; /* Indicates a pending lock has been obtained */ - BOOL bReserved; /* Indicates a reserved lock has been obtained */ - BOOL bExclusive; /* Indicates an exclusive lock has been obtained */ -} winceLock; -#endif - -/* -** The winFile structure is a subclass of sqlite3_file* specific to the win32 -** portability layer. -*/ -typedef struct winFile winFile; -struct winFile { - const sqlite3_io_methods *pMethod; /*** Must be first ***/ - sqlite3_vfs *pVfs; /* The VFS used to open this file */ - HANDLE h; /* Handle for accessing the file */ - u8 locktype; /* Type of lock currently held on this file */ - short sharedLockByte; /* Randomly chosen byte used as a shared lock */ - u8 ctrlFlags; /* Flags. See WINFILE_* below */ - DWORD lastErrno; /* The Windows errno from the last I/O error */ -#ifndef SQLITE_OMIT_WAL - winShm *pShm; /* Instance of shared memory on this file */ -#endif - const char *zPath; /* Full pathname of this file */ - int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ -#if SQLITE_OS_WINCE - LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ - HANDLE hMutex; /* Mutex used to control access to shared lock */ - HANDLE hShared; /* Shared memory segment used for locking */ - winceLock local; /* Locks obtained by this instance of winFile */ - winceLock *shared; /* Global shared lock memory for the file */ -#endif -}; - -/* -** Allowed values for winFile.ctrlFlags -*/ -#define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ -#define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ - -/* - * The size of the buffer used by sqlite3_win32_write_debug(). - */ -#ifndef SQLITE_WIN32_DBG_BUF_SIZE -# define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD))) -#endif - -/* - * The value used with sqlite3_win32_set_directory() to specify that - * the data directory should be changed. - */ -#ifndef SQLITE_WIN32_DATA_DIRECTORY_TYPE -# define SQLITE_WIN32_DATA_DIRECTORY_TYPE (1) -#endif - -/* - * The value used with sqlite3_win32_set_directory() to specify that - * the temporary directory should be changed. - */ -#ifndef SQLITE_WIN32_TEMP_DIRECTORY_TYPE -# define SQLITE_WIN32_TEMP_DIRECTORY_TYPE (2) -#endif - -/* - * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the - * various Win32 API heap functions instead of our own. - */ -#ifdef SQLITE_WIN32_MALLOC - -/* - * If this is non-zero, an isolated heap will be created by the native Win32 - * allocator subsystem; otherwise, the default process heap will be used. This - * setting has no effect when compiling for WinRT. By default, this is enabled - * and an isolated heap will be created to store all allocated data. - * - ****************************************************************************** - * WARNING: It is important to note that when this setting is non-zero and the - * winMemShutdown function is called (e.g. by the sqlite3_shutdown - * function), all data that was allocated using the isolated heap will - * be freed immediately and any attempt to access any of that freed - * data will almost certainly result in an immediate access violation. - ****************************************************************************** - */ -#ifndef SQLITE_WIN32_HEAP_CREATE -# define SQLITE_WIN32_HEAP_CREATE (TRUE) -#endif - -/* - * The initial size of the Win32-specific heap. This value may be zero. - */ -#ifndef SQLITE_WIN32_HEAP_INIT_SIZE -# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_DEFAULT_CACHE_SIZE) * \ - (SQLITE_DEFAULT_PAGE_SIZE) + 4194304) -#endif - -/* - * The maximum size of the Win32-specific heap. This value may be zero. - */ -#ifndef SQLITE_WIN32_HEAP_MAX_SIZE -# define SQLITE_WIN32_HEAP_MAX_SIZE (0) -#endif - -/* - * The extra flags to use in calls to the Win32 heap APIs. This value may be - * zero for the default behavior. - */ -#ifndef SQLITE_WIN32_HEAP_FLAGS -# define SQLITE_WIN32_HEAP_FLAGS (0) -#endif - -/* -** The winMemData structure stores information required by the Win32-specific -** sqlite3_mem_methods implementation. -*/ -typedef struct winMemData winMemData; -struct winMemData { -#ifndef NDEBUG - u32 magic; /* Magic number to detect structure corruption. */ -#endif - HANDLE hHeap; /* The handle to our heap. */ - BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */ -}; - -#ifndef NDEBUG -#define WINMEM_MAGIC 0x42b2830b -#endif - -static struct winMemData win_mem_data = { -#ifndef NDEBUG - WINMEM_MAGIC, -#endif - NULL, FALSE -}; - -#ifndef NDEBUG -#define winMemAssertMagic() assert( win_mem_data.magic==WINMEM_MAGIC ) -#else -#define winMemAssertMagic() -#endif - -#define winMemGetHeap() win_mem_data.hHeap - -static void *winMemMalloc(int nBytes); -static void winMemFree(void *pPrior); -static void *winMemRealloc(void *pPrior, int nBytes); -static int winMemSize(void *p); -static int winMemRoundup(int n); -static int winMemInit(void *pAppData); -static void winMemShutdown(void *pAppData); - -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void); -#endif /* SQLITE_WIN32_MALLOC */ - -/* -** The following variable is (normally) set once and never changes -** thereafter. It records whether the operating system is Win9x -** or WinNT. -** -** 0: Operating system unknown. -** 1: Operating system is Win9x. -** 2: Operating system is WinNT. -** -** In order to facilitate testing on a WinNT system, the test fixture -** can manually set this value to 1 to emulate Win98 behavior. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_os_type = 0; -#else -static int sqlite3_os_type = 0; -#endif - -#ifndef SYSCALL -# define SYSCALL sqlite3_syscall_ptr -#endif - -/* -** This function is not available on Windows CE or WinRT. - */ - -#if SQLITE_OS_WINCE || SQLITE_OS_WINRT -# define osAreFileApisANSI() 1 -#endif - -/* -** Many system calls are accessed through pointer-to-functions so that -** they may be overridden at runtime to facilitate fault injection during -** testing and sandboxing. The following array holds the names and pointers -** to all overrideable system calls. -*/ -static struct win_syscall { - const char *zName; /* Name of the system call */ - sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ - sqlite3_syscall_ptr pDefault; /* Default value */ -} aSyscall[] = { -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT - { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 }, -#else - { "AreFileApisANSI", (SYSCALL)0, 0 }, -#endif - -#ifndef osAreFileApisANSI -#define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent) -#endif - -#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) - { "CharLowerW", (SYSCALL)CharLowerW, 0 }, -#else - { "CharLowerW", (SYSCALL)0, 0 }, -#endif - -#define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent) - -#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) - { "CharUpperW", (SYSCALL)CharUpperW, 0 }, -#else - { "CharUpperW", (SYSCALL)0, 0 }, -#endif - -#define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent) - - { "CloseHandle", (SYSCALL)CloseHandle, 0 }, - -#define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "CreateFileA", (SYSCALL)CreateFileA, 0 }, -#else - { "CreateFileA", (SYSCALL)0, 0 }, -#endif - -#define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \ - LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent) - -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "CreateFileW", (SYSCALL)CreateFileW, 0 }, -#else - { "CreateFileW", (SYSCALL)0, 0 }, -#endif - -#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ - LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) - -#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \ - !defined(SQLITE_OMIT_WAL)) - { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 }, -#else - { "CreateFileMappingA", (SYSCALL)0, 0 }, -#endif - -#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ - DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent) - -#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ - !defined(SQLITE_OMIT_WAL)) - { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 }, -#else - { "CreateFileMappingW", (SYSCALL)0, 0 }, -#endif - -#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ - DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent) - -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "CreateMutexW", (SYSCALL)CreateMutexW, 0 }, -#else - { "CreateMutexW", (SYSCALL)0, 0 }, -#endif - -#define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \ - LPCWSTR))aSyscall[8].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "DeleteFileA", (SYSCALL)DeleteFileA, 0 }, -#else - { "DeleteFileA", (SYSCALL)0, 0 }, -#endif - -#define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent) - -#if defined(SQLITE_WIN32_HAS_WIDE) - { "DeleteFileW", (SYSCALL)DeleteFileW, 0 }, -#else - { "DeleteFileW", (SYSCALL)0, 0 }, -#endif - -#define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent) - -#if SQLITE_OS_WINCE - { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 }, -#else - { "FileTimeToLocalFileTime", (SYSCALL)0, 0 }, -#endif - -#define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \ - LPFILETIME))aSyscall[11].pCurrent) - -#if SQLITE_OS_WINCE - { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 }, -#else - { "FileTimeToSystemTime", (SYSCALL)0, 0 }, -#endif - -#define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \ - LPSYSTEMTIME))aSyscall[12].pCurrent) - - { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 }, - -#define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "FormatMessageA", (SYSCALL)FormatMessageA, 0 }, -#else - { "FormatMessageA", (SYSCALL)0, 0 }, -#endif - -#define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \ - DWORD,va_list*))aSyscall[14].pCurrent) - -#if defined(SQLITE_WIN32_HAS_WIDE) - { "FormatMessageW", (SYSCALL)FormatMessageW, 0 }, -#else - { "FormatMessageW", (SYSCALL)0, 0 }, -#endif - -#define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \ - DWORD,va_list*))aSyscall[15].pCurrent) - -#if !defined(SQLITE_OMIT_LOAD_EXTENSION) - { "FreeLibrary", (SYSCALL)FreeLibrary, 0 }, -#else - { "FreeLibrary", (SYSCALL)0, 0 }, -#endif - -#define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent) - - { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 }, - -#define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent) - -#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) - { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 }, -#else - { "GetDiskFreeSpaceA", (SYSCALL)0, 0 }, -#endif - -#define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \ - LPDWORD))aSyscall[18].pCurrent) - -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 }, -#else - { "GetDiskFreeSpaceW", (SYSCALL)0, 0 }, -#endif - -#define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \ - LPDWORD))aSyscall[19].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 }, -#else - { "GetFileAttributesA", (SYSCALL)0, 0 }, -#endif - -#define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent) - -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 }, -#else - { "GetFileAttributesW", (SYSCALL)0, 0 }, -#endif - -#define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent) - -#if defined(SQLITE_WIN32_HAS_WIDE) - { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 }, -#else - { "GetFileAttributesExW", (SYSCALL)0, 0 }, -#endif - -#define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \ - LPVOID))aSyscall[22].pCurrent) - -#if !SQLITE_OS_WINRT - { "GetFileSize", (SYSCALL)GetFileSize, 0 }, -#else - { "GetFileSize", (SYSCALL)0, 0 }, -#endif - -#define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent) - -#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) - { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 }, -#else - { "GetFullPathNameA", (SYSCALL)0, 0 }, -#endif - -#define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \ - LPSTR*))aSyscall[24].pCurrent) - -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 }, -#else - { "GetFullPathNameW", (SYSCALL)0, 0 }, -#endif - -#define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \ - LPWSTR*))aSyscall[25].pCurrent) - - { "GetLastError", (SYSCALL)GetLastError, 0 }, - -#define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent) - -#if !defined(SQLITE_OMIT_LOAD_EXTENSION) -#if SQLITE_OS_WINCE - /* The GetProcAddressA() routine is only available on Windows CE. */ - { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 }, -#else - /* All other Windows platforms expect GetProcAddress() to take - ** an ANSI string regardless of the _UNICODE setting */ - { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 }, -#endif -#else - { "GetProcAddressA", (SYSCALL)0, 0 }, -#endif - -#define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \ - LPCSTR))aSyscall[27].pCurrent) - -#if !SQLITE_OS_WINRT - { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 }, -#else - { "GetSystemInfo", (SYSCALL)0, 0 }, -#endif - -#define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent) - - { "GetSystemTime", (SYSCALL)GetSystemTime, 0 }, - -#define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent) - -#if !SQLITE_OS_WINCE - { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 }, -#else - { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 }, -#endif - -#define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \ - LPFILETIME))aSyscall[30].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "GetTempPathA", (SYSCALL)GetTempPathA, 0 }, -#else - { "GetTempPathA", (SYSCALL)0, 0 }, -#endif - -#define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent) - -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) - { "GetTempPathW", (SYSCALL)GetTempPathW, 0 }, -#else - { "GetTempPathW", (SYSCALL)0, 0 }, -#endif - -#define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent) - -#if !SQLITE_OS_WINRT - { "GetTickCount", (SYSCALL)GetTickCount, 0 }, -#else - { "GetTickCount", (SYSCALL)0, 0 }, -#endif - -#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "GetVersionExA", (SYSCALL)GetVersionExA, 0 }, -#else - { "GetVersionExA", (SYSCALL)0, 0 }, -#endif - -#define osGetVersionExA ((BOOL(WINAPI*)( \ - LPOSVERSIONINFOA))aSyscall[34].pCurrent) - - { "HeapAlloc", (SYSCALL)HeapAlloc, 0 }, - -#define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \ - SIZE_T))aSyscall[35].pCurrent) - -#if !SQLITE_OS_WINRT - { "HeapCreate", (SYSCALL)HeapCreate, 0 }, -#else - { "HeapCreate", (SYSCALL)0, 0 }, -#endif - -#define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \ - SIZE_T))aSyscall[36].pCurrent) - -#if !SQLITE_OS_WINRT - { "HeapDestroy", (SYSCALL)HeapDestroy, 0 }, -#else - { "HeapDestroy", (SYSCALL)0, 0 }, -#endif - -#define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[37].pCurrent) - - { "HeapFree", (SYSCALL)HeapFree, 0 }, - -#define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[38].pCurrent) - - { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 }, - -#define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \ - SIZE_T))aSyscall[39].pCurrent) - - { "HeapSize", (SYSCALL)HeapSize, 0 }, - -#define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \ - LPCVOID))aSyscall[40].pCurrent) - -#if !SQLITE_OS_WINRT - { "HeapValidate", (SYSCALL)HeapValidate, 0 }, -#else - { "HeapValidate", (SYSCALL)0, 0 }, -#endif - -#define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \ - LPCVOID))aSyscall[41].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION) - { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 }, -#else - { "LoadLibraryA", (SYSCALL)0, 0 }, -#endif - -#define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[42].pCurrent) - -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ - !defined(SQLITE_OMIT_LOAD_EXTENSION) - { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 }, -#else - { "LoadLibraryW", (SYSCALL)0, 0 }, -#endif - -#define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[43].pCurrent) - -#if !SQLITE_OS_WINRT - { "LocalFree", (SYSCALL)LocalFree, 0 }, -#else - { "LocalFree", (SYSCALL)0, 0 }, -#endif - -#define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[44].pCurrent) - -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT - { "LockFile", (SYSCALL)LockFile, 0 }, -#else - { "LockFile", (SYSCALL)0, 0 }, -#endif - -#ifndef osLockFile -#define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ - DWORD))aSyscall[45].pCurrent) -#endif - -#if !SQLITE_OS_WINCE - { "LockFileEx", (SYSCALL)LockFileEx, 0 }, -#else - { "LockFileEx", (SYSCALL)0, 0 }, -#endif - -#ifndef osLockFileEx -#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ - LPOVERLAPPED))aSyscall[46].pCurrent) -#endif - -#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)) - { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 }, -#else - { "MapViewOfFile", (SYSCALL)0, 0 }, -#endif - -#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ - SIZE_T))aSyscall[47].pCurrent) - - { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 }, - -#define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \ - int))aSyscall[48].pCurrent) - - { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 }, - -#define osQueryPerformanceCounter ((BOOL(WINAPI*)( \ - LARGE_INTEGER*))aSyscall[49].pCurrent) - - { "ReadFile", (SYSCALL)ReadFile, 0 }, - -#define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \ - LPOVERLAPPED))aSyscall[50].pCurrent) - - { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 }, - -#define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[51].pCurrent) - -#if !SQLITE_OS_WINRT - { "SetFilePointer", (SYSCALL)SetFilePointer, 0 }, -#else - { "SetFilePointer", (SYSCALL)0, 0 }, -#endif - -#define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \ - DWORD))aSyscall[52].pCurrent) - -#if !SQLITE_OS_WINRT - { "Sleep", (SYSCALL)Sleep, 0 }, -#else - { "Sleep", (SYSCALL)0, 0 }, -#endif - -#define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[53].pCurrent) - - { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 }, - -#define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \ - LPFILETIME))aSyscall[54].pCurrent) - -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT - { "UnlockFile", (SYSCALL)UnlockFile, 0 }, -#else - { "UnlockFile", (SYSCALL)0, 0 }, -#endif - -#ifndef osUnlockFile -#define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ - DWORD))aSyscall[55].pCurrent) -#endif - -#if !SQLITE_OS_WINCE - { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 }, -#else - { "UnlockFileEx", (SYSCALL)0, 0 }, -#endif - -#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ - LPOVERLAPPED))aSyscall[56].pCurrent) - -#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) - { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, -#else - { "UnmapViewOfFile", (SYSCALL)0, 0 }, -#endif - -#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[57].pCurrent) - - { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 }, - -#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \ - LPCSTR,LPBOOL))aSyscall[58].pCurrent) - - { "WriteFile", (SYSCALL)WriteFile, 0 }, - -#define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \ - LPOVERLAPPED))aSyscall[59].pCurrent) - -#if SQLITE_OS_WINRT - { "CreateEventExW", (SYSCALL)CreateEventExW, 0 }, -#else - { "CreateEventExW", (SYSCALL)0, 0 }, -#endif - -#define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \ - DWORD,DWORD))aSyscall[60].pCurrent) - -#if !SQLITE_OS_WINRT - { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 }, -#else - { "WaitForSingleObject", (SYSCALL)0, 0 }, -#endif - -#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \ - DWORD))aSyscall[61].pCurrent) - -#if SQLITE_OS_WINRT - { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 }, -#else - { "WaitForSingleObjectEx", (SYSCALL)0, 0 }, -#endif - -#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \ - BOOL))aSyscall[62].pCurrent) - -#if SQLITE_OS_WINRT - { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 }, -#else - { "SetFilePointerEx", (SYSCALL)0, 0 }, -#endif - -#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \ - PLARGE_INTEGER,DWORD))aSyscall[63].pCurrent) - -#if SQLITE_OS_WINRT - { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 }, -#else - { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, -#endif - -#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ - FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[64].pCurrent) - -#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL) - { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 }, -#else - { "MapViewOfFileFromApp", (SYSCALL)0, 0 }, -#endif - -#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \ - SIZE_T))aSyscall[65].pCurrent) - -#if SQLITE_OS_WINRT - { "CreateFile2", (SYSCALL)CreateFile2, 0 }, -#else - { "CreateFile2", (SYSCALL)0, 0 }, -#endif - -#define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \ - LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[66].pCurrent) - -#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION) - { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 }, -#else - { "LoadPackagedLibrary", (SYSCALL)0, 0 }, -#endif - -#define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \ - DWORD))aSyscall[67].pCurrent) - -#if SQLITE_OS_WINRT - { "GetTickCount64", (SYSCALL)GetTickCount64, 0 }, -#else - { "GetTickCount64", (SYSCALL)0, 0 }, -#endif - -#define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[68].pCurrent) - -#if SQLITE_OS_WINRT - { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 }, -#else - { "GetNativeSystemInfo", (SYSCALL)0, 0 }, -#endif - -#define osGetNativeSystemInfo ((VOID(WINAPI*)( \ - LPSYSTEM_INFO))aSyscall[69].pCurrent) - -#if defined(SQLITE_WIN32_HAS_ANSI) - { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 }, -#else - { "OutputDebugStringA", (SYSCALL)0, 0 }, -#endif - -#define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[70].pCurrent) - -#if defined(SQLITE_WIN32_HAS_WIDE) - { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 }, -#else - { "OutputDebugStringW", (SYSCALL)0, 0 }, -#endif - -#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[71].pCurrent) - - { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, - -#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[72].pCurrent) - -#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL) - { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, -#else - { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, -#endif - -#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ - LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[73].pCurrent) - -}; /* End of the overrideable system calls */ - -/* -** This is the xSetSystemCall() method of sqlite3_vfs for all of the -** "win32" VFSes. Return SQLITE_OK opon successfully updating the -** system call pointer, or SQLITE_NOTFOUND if there is no configurable -** system call named zName. -*/ -static int winSetSystemCall( - sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ - const char *zName, /* Name of system call to override */ - sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ -){ - unsigned int i; - int rc = SQLITE_NOTFOUND; - - UNUSED_PARAMETER(pNotUsed); - if( zName==0 ){ - /* If no zName is given, restore all system calls to their default - ** settings and return NULL - */ - rc = SQLITE_OK; - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( aSyscall[i].pDefault ){ - aSyscall[i].pCurrent = aSyscall[i].pDefault; - } - } - }else{ - /* If zName is specified, operate on only the one system call - ** specified. - */ - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ){ - if( aSyscall[i].pDefault==0 ){ - aSyscall[i].pDefault = aSyscall[i].pCurrent; - } - rc = SQLITE_OK; - if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; - aSyscall[i].pCurrent = pNewFunc; - break; - } - } - } - return rc; -} - -/* -** Return the value of a system call. Return NULL if zName is not a -** recognized system call name. NULL is also returned if the system call -** is currently undefined. -*/ -static sqlite3_syscall_ptr winGetSystemCall( - sqlite3_vfs *pNotUsed, - const char *zName -){ - unsigned int i; - - UNUSED_PARAMETER(pNotUsed); - for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; - } - return 0; -} - -/* -** Return the name of the first system call after zName. If zName==NULL -** then return the name of the first system call. Return NULL if zName -** is the last system call or if zName is not the name of a valid -** system call. -*/ -static const char *winNextSystemCall(sqlite3_vfs *p, const char *zName){ - int i = -1; - - UNUSED_PARAMETER(p); - if( zName ){ - for(i=0; i<ArraySize(aSyscall)-1; i++){ - if( strcmp(zName, aSyscall[i].zName)==0 ) break; - } - } - for(i++; i<ArraySize(aSyscall); i++){ - if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; - } - return 0; -} - -/* -** This function outputs the specified (ANSI) string to the Win32 debugger -** (if available). -*/ - -SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){ - char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE]; - int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */ - if( nMin<-1 ) nMin = -1; /* all negative values become -1. */ - assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE ); -#if defined(SQLITE_WIN32_HAS_ANSI) - if( nMin>0 ){ - memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); - memcpy(zDbgBuf, zBuf, nMin); - osOutputDebugStringA(zDbgBuf); - }else{ - osOutputDebugStringA(zBuf); - } -#elif defined(SQLITE_WIN32_HAS_WIDE) - memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); - if ( osMultiByteToWideChar( - osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf, - nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){ - return; - } - osOutputDebugStringW((LPCWSTR)zDbgBuf); -#else - if( nMin>0 ){ - memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); - memcpy(zDbgBuf, zBuf, nMin); - fprintf(stderr, "%s", zDbgBuf); - }else{ - fprintf(stderr, "%s", zBuf); - } -#endif -} - -/* -** The following routine suspends the current thread for at least ms -** milliseconds. This is equivalent to the Win32 Sleep() interface. -*/ -#if SQLITE_OS_WINRT -static HANDLE sleepObj = NULL; -#endif - -SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){ -#if SQLITE_OS_WINRT - if ( sleepObj==NULL ){ - sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET, - SYNCHRONIZE); - } - assert( sleepObj!=NULL ); - osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE); -#else - osSleep(milliseconds); -#endif -} - -/* -** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, -** or WinCE. Return false (zero) for Win95, Win98, or WinME. -** -** Here is an interesting observation: Win95, Win98, and WinME lack -** the LockFileEx() API. But we can still statically link against that -** API as long as we don't call it when running Win95/98/ME. A call to -** this routine is used to determine if the host is Win95/98/ME or -** WinNT/2K/XP so that we will know whether or not we can safely call -** the LockFileEx() API. -*/ -#if SQLITE_OS_WINCE || SQLITE_OS_WINRT -# define isNT() (1) -#elif !defined(SQLITE_WIN32_HAS_WIDE) -# define isNT() (0) -#else - static int isNT(void){ - if( sqlite3_os_type==0 ){ - OSVERSIONINFOA sInfo; - sInfo.dwOSVersionInfoSize = sizeof(sInfo); - osGetVersionExA(&sInfo); - sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; - } - return sqlite3_os_type==2; - } -#endif - -#ifdef SQLITE_WIN32_MALLOC -/* -** Allocate nBytes of memory. -*/ -static void *winMemMalloc(int nBytes){ - HANDLE hHeap; - void *p; - - winMemAssertMagic(); - hHeap = winMemGetHeap(); - assert( hHeap!=0 ); - assert( hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert ( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); -#endif - assert( nBytes>=0 ); - p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); - if( !p ){ - sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%d), heap=%p", - nBytes, osGetLastError(), (void*)hHeap); - } - return p; -} - -/* -** Free memory. -*/ -static void winMemFree(void *pPrior){ - HANDLE hHeap; - - winMemAssertMagic(); - hHeap = winMemGetHeap(); - assert( hHeap!=0 ); - assert( hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert ( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); -#endif - if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */ - if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){ - sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%d), heap=%p", - pPrior, osGetLastError(), (void*)hHeap); - } -} - -/* -** Change the size of an existing memory allocation -*/ -static void *winMemRealloc(void *pPrior, int nBytes){ - HANDLE hHeap; - void *p; - - winMemAssertMagic(); - hHeap = winMemGetHeap(); - assert( hHeap!=0 ); - assert( hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert ( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); -#endif - assert( nBytes>=0 ); - if( !pPrior ){ - p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); - }else{ - p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes); - } - if( !p ){ - sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%d), heap=%p", - pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(), - (void*)hHeap); - } - return p; -} - -/* -** Return the size of an outstanding allocation, in bytes. -*/ -static int winMemSize(void *p){ - HANDLE hHeap; - SIZE_T n; - - winMemAssertMagic(); - hHeap = winMemGetHeap(); - assert( hHeap!=0 ); - assert( hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert ( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); -#endif - if( !p ) return 0; - n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p); - if( n==(SIZE_T)-1 ){ - sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%d), heap=%p", - p, osGetLastError(), (void*)hHeap); - return 0; - } - return (int)n; -} - -/* -** Round up a request size to the next valid allocation size. -*/ -static int winMemRoundup(int n){ - return n; -} - -/* -** Initialize this module. -*/ -static int winMemInit(void *pAppData){ - winMemData *pWinMemData = (winMemData *)pAppData; - - if( !pWinMemData ) return SQLITE_ERROR; - assert( pWinMemData->magic==WINMEM_MAGIC ); - -#if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE - if( !pWinMemData->hHeap ){ - pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS, - SQLITE_WIN32_HEAP_INIT_SIZE, - SQLITE_WIN32_HEAP_MAX_SIZE); - if( !pWinMemData->hHeap ){ - sqlite3_log(SQLITE_NOMEM, - "failed to HeapCreate (%d), flags=%u, initSize=%u, maxSize=%u", - osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, - SQLITE_WIN32_HEAP_INIT_SIZE, SQLITE_WIN32_HEAP_MAX_SIZE); - return SQLITE_NOMEM; - } - pWinMemData->bOwned = TRUE; - assert( pWinMemData->bOwned ); - } -#else - pWinMemData->hHeap = osGetProcessHeap(); - if( !pWinMemData->hHeap ){ - sqlite3_log(SQLITE_NOMEM, - "failed to GetProcessHeap (%d)", osGetLastError()); - return SQLITE_NOMEM; - } - pWinMemData->bOwned = FALSE; - assert( !pWinMemData->bOwned ); -#endif - assert( pWinMemData->hHeap!=0 ); - assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); -#endif - return SQLITE_OK; -} - -/* -** Deinitialize this module. -*/ -static void winMemShutdown(void *pAppData){ - winMemData *pWinMemData = (winMemData *)pAppData; - - if( !pWinMemData ) return; - if( pWinMemData->hHeap ){ - assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); -#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) - assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); -#endif - if( pWinMemData->bOwned ){ - if( !osHeapDestroy(pWinMemData->hHeap) ){ - sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%d), heap=%p", - osGetLastError(), (void*)pWinMemData->hHeap); - } - pWinMemData->bOwned = FALSE; - } - pWinMemData->hHeap = NULL; - } -} - -/* -** Populate the low-level memory allocation function pointers in -** sqlite3GlobalConfig.m with pointers to the routines in this file. The -** arguments specify the block of memory to manage. -** -** This routine is only called by sqlite3_config(), and therefore -** is not required to be threadsafe (it is not). -*/ -SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){ - static const sqlite3_mem_methods winMemMethods = { - winMemMalloc, - winMemFree, - winMemRealloc, - winMemSize, - winMemRoundup, - winMemInit, - winMemShutdown, - &win_mem_data - }; - return &winMemMethods; -} - -SQLITE_PRIVATE void sqlite3MemSetDefault(void){ - sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32()); -} -#endif /* SQLITE_WIN32_MALLOC */ - -/* -** Convert a UTF-8 string to Microsoft Unicode (UTF-16?). -** -** Space to hold the returned string is obtained from malloc. -*/ -static LPWSTR utf8ToUnicode(const char *zFilename){ - int nChar; - LPWSTR zWideFilename; - - nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); - if( nChar==0 ){ - return 0; - } - zWideFilename = sqlite3MallocZero( nChar*sizeof(zWideFilename[0]) ); - if( zWideFilename==0 ){ - return 0; - } - nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, - nChar); - if( nChar==0 ){ - sqlite3_free(zWideFilename); - zWideFilename = 0; - } - return zWideFilename; -} - -/* -** Convert Microsoft Unicode to UTF-8. Space to hold the returned string is -** obtained from sqlite3_malloc(). -*/ -static char *unicodeToUtf8(LPCWSTR zWideFilename){ - int nByte; - char *zFilename; - - nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0); - if( nByte == 0 ){ - return 0; - } - zFilename = sqlite3MallocZero( nByte ); - if( zFilename==0 ){ - return 0; - } - nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, - 0, 0); - if( nByte == 0 ){ - sqlite3_free(zFilename); - zFilename = 0; - } - return zFilename; -} - -/* -** Convert an ANSI string to Microsoft Unicode, based on the -** current codepage settings for file apis. -** -** Space to hold the returned string is obtained -** from sqlite3_malloc. -*/ -static LPWSTR mbcsToUnicode(const char *zFilename){ - int nByte; - LPWSTR zMbcsFilename; - int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; - - nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL, - 0)*sizeof(WCHAR); - if( nByte==0 ){ - return 0; - } - zMbcsFilename = sqlite3MallocZero( nByte*sizeof(zMbcsFilename[0]) ); - if( zMbcsFilename==0 ){ - return 0; - } - nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, - nByte); - if( nByte==0 ){ - sqlite3_free(zMbcsFilename); - zMbcsFilename = 0; - } - return zMbcsFilename; -} - -/* -** Convert Microsoft Unicode to multi-byte character string, based on the -** user's ANSI codepage. -** -** Space to hold the returned string is obtained from -** sqlite3_malloc(). -*/ -static char *unicodeToMbcs(LPCWSTR zWideFilename){ - int nByte; - char *zFilename; - int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; - - nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0); - if( nByte == 0 ){ - return 0; - } - zFilename = sqlite3MallocZero( nByte ); - if( zFilename==0 ){ - return 0; - } - nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, - nByte, 0, 0); - if( nByte == 0 ){ - sqlite3_free(zFilename); - zFilename = 0; - } - return zFilename; -} - -/* -** Convert multibyte character string to UTF-8. Space to hold the -** returned string is obtained from sqlite3_malloc(). -*/ -SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){ - char *zFilenameUtf8; - LPWSTR zTmpWide; - - zTmpWide = mbcsToUnicode(zFilename); - if( zTmpWide==0 ){ - return 0; - } - zFilenameUtf8 = unicodeToUtf8(zTmpWide); - sqlite3_free(zTmpWide); - return zFilenameUtf8; -} - -/* -** Convert UTF-8 to multibyte character string. Space to hold the -** returned string is obtained from sqlite3_malloc(). -*/ -SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){ - char *zFilenameMbcs; - LPWSTR zTmpWide; - - zTmpWide = utf8ToUnicode(zFilename); - if( zTmpWide==0 ){ - return 0; - } - zFilenameMbcs = unicodeToMbcs(zTmpWide); - sqlite3_free(zTmpWide); - return zFilenameMbcs; -} - -/* -** This function sets the data directory or the temporary directory based on -** the provided arguments. The type argument must be 1 in order to set the -** data directory or 2 in order to set the temporary directory. The zValue -** argument is the name of the directory to use. The return value will be -** SQLITE_OK if successful. -*/ -SQLITE_API int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){ - char **ppDirectory = 0; -#ifndef SQLITE_OMIT_AUTOINIT - int rc = sqlite3_initialize(); - if( rc ) return rc; -#endif - if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){ - ppDirectory = &sqlite3_data_directory; - }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){ - ppDirectory = &sqlite3_temp_directory; - } - assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE - || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE - ); - assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) ); - if( ppDirectory ){ - char *zValueUtf8 = 0; - if( zValue && zValue[0] ){ - zValueUtf8 = unicodeToUtf8(zValue); - if ( zValueUtf8==0 ){ - return SQLITE_NOMEM; - } - } - sqlite3_free(*ppDirectory); - *ppDirectory = zValueUtf8; - return SQLITE_OK; - } - return SQLITE_ERROR; -} - -/* -** The return value of getLastErrorMsg -** is zero if the error message fits in the buffer, or non-zero -** otherwise (if the message was truncated). -*/ -static int getLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){ - /* FormatMessage returns 0 on failure. Otherwise it - ** returns the number of TCHARs written to the output - ** buffer, excluding the terminating null char. - */ - DWORD dwLen = 0; - char *zOut = 0; - - if( isNT() ){ -#if SQLITE_OS_WINRT - WCHAR zTempWide[MAX_PATH+1]; /* NOTE: Somewhat arbitrary. */ - dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | - FORMAT_MESSAGE_IGNORE_INSERTS, - NULL, - lastErrno, - 0, - zTempWide, - MAX_PATH, - 0); -#else - LPWSTR zTempWide = NULL; - dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | - FORMAT_MESSAGE_FROM_SYSTEM | - FORMAT_MESSAGE_IGNORE_INSERTS, - NULL, - lastErrno, - 0, - (LPWSTR) &zTempWide, - 0, - 0); -#endif - if( dwLen > 0 ){ - /* allocate a buffer and convert to UTF8 */ - sqlite3BeginBenignMalloc(); - zOut = unicodeToUtf8(zTempWide); - sqlite3EndBenignMalloc(); -#if !SQLITE_OS_WINRT - /* free the system buffer allocated by FormatMessage */ - osLocalFree(zTempWide); -#endif - } - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - char *zTemp = NULL; - dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | - FORMAT_MESSAGE_FROM_SYSTEM | - FORMAT_MESSAGE_IGNORE_INSERTS, - NULL, - lastErrno, - 0, - (LPSTR) &zTemp, - 0, - 0); - if( dwLen > 0 ){ - /* allocate a buffer and convert to UTF8 */ - sqlite3BeginBenignMalloc(); - zOut = sqlite3_win32_mbcs_to_utf8(zTemp); - sqlite3EndBenignMalloc(); - /* free the system buffer allocated by FormatMessage */ - osLocalFree(zTemp); - } - } -#endif - if( 0 == dwLen ){ - sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", lastErrno, lastErrno); - }else{ - /* copy a maximum of nBuf chars to output buffer */ - sqlite3_snprintf(nBuf, zBuf, "%s", zOut); - /* free the UTF8 buffer */ - sqlite3_free(zOut); - } - return 0; -} - -/* -** -** This function - winLogErrorAtLine() - is only ever called via the macro -** winLogError(). -** -** This routine is invoked after an error occurs in an OS function. -** It logs a message using sqlite3_log() containing the current value of -** error code and, if possible, the human-readable equivalent from -** FormatMessage. -** -** The first argument passed to the macro should be the error code that -** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). -** The two subsequent arguments should be the name of the OS function that -** failed and the associated file-system path, if any. -*/ -#define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__) -static int winLogErrorAtLine( - int errcode, /* SQLite error code */ - DWORD lastErrno, /* Win32 last error */ - const char *zFunc, /* Name of OS function that failed */ - const char *zPath, /* File path associated with error */ - int iLine /* Source line number where error occurred */ -){ - char zMsg[500]; /* Human readable error text */ - int i; /* Loop counter */ - - zMsg[0] = 0; - getLastErrorMsg(lastErrno, sizeof(zMsg), zMsg); - assert( errcode!=SQLITE_OK ); - if( zPath==0 ) zPath = ""; - for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){} - zMsg[i] = 0; - sqlite3_log(errcode, - "os_win.c:%d: (%d) %s(%s) - %s", - iLine, lastErrno, zFunc, zPath, zMsg - ); - - return errcode; -} - -/* -** The number of times that a ReadFile(), WriteFile(), and DeleteFile() -** will be retried following a locking error - probably caused by -** antivirus software. Also the initial delay before the first retry. -** The delay increases linearly with each retry. -*/ -#ifndef SQLITE_WIN32_IOERR_RETRY -# define SQLITE_WIN32_IOERR_RETRY 10 -#endif -#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY -# define SQLITE_WIN32_IOERR_RETRY_DELAY 25 -#endif -static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY; -static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY; - -/* -** If a ReadFile() or WriteFile() error occurs, invoke this routine -** to see if it should be retried. Return TRUE to retry. Return FALSE -** to give up with an error. -*/ -static int retryIoerr(int *pnRetry, DWORD *pError){ - DWORD e = osGetLastError(); - if( *pnRetry>=win32IoerrRetry ){ - if( pError ){ - *pError = e; - } - return 0; - } - if( e==ERROR_ACCESS_DENIED || - e==ERROR_LOCK_VIOLATION || - e==ERROR_SHARING_VIOLATION ){ - sqlite3_win32_sleep(win32IoerrRetryDelay*(1+*pnRetry)); - ++*pnRetry; - return 1; - } - if( pError ){ - *pError = e; - } - return 0; -} - -/* -** Log a I/O error retry episode. -*/ -static void logIoerr(int nRetry){ - if( nRetry ){ - sqlite3_log(SQLITE_IOERR, - "delayed %dms for lock/sharing conflict", - win32IoerrRetryDelay*nRetry*(nRetry+1)/2 - ); - } -} - -#if SQLITE_OS_WINCE -/************************************************************************* -** This section contains code for WinCE only. -*/ -#if !defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API -/* -** The MSVC CRT on Windows CE may not have a localtime() function. So -** create a substitute. -*/ -/* #include <time.h> */ -struct tm *__cdecl localtime(const time_t *t) -{ - static struct tm y; - FILETIME uTm, lTm; - SYSTEMTIME pTm; - sqlite3_int64 t64; - t64 = *t; - t64 = (t64 + 11644473600)*10000000; - uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF); - uTm.dwHighDateTime= (DWORD)(t64 >> 32); - osFileTimeToLocalFileTime(&uTm,&lTm); - osFileTimeToSystemTime(&lTm,&pTm); - y.tm_year = pTm.wYear - 1900; - y.tm_mon = pTm.wMonth - 1; - y.tm_wday = pTm.wDayOfWeek; - y.tm_mday = pTm.wDay; - y.tm_hour = pTm.wHour; - y.tm_min = pTm.wMinute; - y.tm_sec = pTm.wSecond; - return &y; -} -#endif - -#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)] - -/* -** Acquire a lock on the handle h -*/ -static void winceMutexAcquire(HANDLE h){ - DWORD dwErr; - do { - dwErr = osWaitForSingleObject(h, INFINITE); - } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED); -} -/* -** Release a lock acquired by winceMutexAcquire() -*/ -#define winceMutexRelease(h) ReleaseMutex(h) - -/* -** Create the mutex and shared memory used for locking in the file -** descriptor pFile -*/ -static int winceCreateLock(const char *zFilename, winFile *pFile){ - LPWSTR zTok; - LPWSTR zName; - DWORD lastErrno; - BOOL bLogged = FALSE; - BOOL bInit = TRUE; - - zName = utf8ToUnicode(zFilename); - if( zName==0 ){ - /* out of memory */ - return SQLITE_IOERR_NOMEM; - } - - /* Initialize the local lockdata */ - memset(&pFile->local, 0, sizeof(pFile->local)); - - /* Replace the backslashes from the filename and lowercase it - ** to derive a mutex name. */ - zTok = osCharLowerW(zName); - for (;*zTok;zTok++){ - if (*zTok == '\\') *zTok = '_'; - } - - /* Create/open the named mutex */ - pFile->hMutex = osCreateMutexW(NULL, FALSE, zName); - if (!pFile->hMutex){ - pFile->lastErrno = osGetLastError(); - winLogError(SQLITE_IOERR, pFile->lastErrno, - "winceCreateLock1", zFilename); - sqlite3_free(zName); - return SQLITE_IOERR; - } - - /* Acquire the mutex before continuing */ - winceMutexAcquire(pFile->hMutex); - - /* Since the names of named mutexes, semaphores, file mappings etc are - ** case-sensitive, take advantage of that by uppercasing the mutex name - ** and using that as the shared filemapping name. - */ - osCharUpperW(zName); - pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL, - PAGE_READWRITE, 0, sizeof(winceLock), - zName); - - /* Set a flag that indicates we're the first to create the memory so it - ** must be zero-initialized */ - lastErrno = osGetLastError(); - if (lastErrno == ERROR_ALREADY_EXISTS){ - bInit = FALSE; - } - - sqlite3_free(zName); - - /* If we succeeded in making the shared memory handle, map it. */ - if( pFile->hShared ){ - pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, - FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); - /* If mapping failed, close the shared memory handle and erase it */ - if( !pFile->shared ){ - pFile->lastErrno = osGetLastError(); - winLogError(SQLITE_IOERR, pFile->lastErrno, - "winceCreateLock2", zFilename); - bLogged = TRUE; - osCloseHandle(pFile->hShared); - pFile->hShared = NULL; - } - } - - /* If shared memory could not be created, then close the mutex and fail */ - if( pFile->hShared==NULL ){ - if( !bLogged ){ - pFile->lastErrno = lastErrno; - winLogError(SQLITE_IOERR, pFile->lastErrno, - "winceCreateLock3", zFilename); - bLogged = TRUE; - } - winceMutexRelease(pFile->hMutex); - osCloseHandle(pFile->hMutex); - pFile->hMutex = NULL; - return SQLITE_IOERR; - } - - /* Initialize the shared memory if we're supposed to */ - if( bInit ){ - memset(pFile->shared, 0, sizeof(winceLock)); - } - - winceMutexRelease(pFile->hMutex); - return SQLITE_OK; -} - -/* -** Destroy the part of winFile that deals with wince locks -*/ -static void winceDestroyLock(winFile *pFile){ - if (pFile->hMutex){ - /* Acquire the mutex */ - winceMutexAcquire(pFile->hMutex); - - /* The following blocks should probably assert in debug mode, but they - are to cleanup in case any locks remained open */ - if (pFile->local.nReaders){ - pFile->shared->nReaders --; - } - if (pFile->local.bReserved){ - pFile->shared->bReserved = FALSE; - } - if (pFile->local.bPending){ - pFile->shared->bPending = FALSE; - } - if (pFile->local.bExclusive){ - pFile->shared->bExclusive = FALSE; - } - - /* De-reference and close our copy of the shared memory handle */ - osUnmapViewOfFile(pFile->shared); - osCloseHandle(pFile->hShared); - - /* Done with the mutex */ - winceMutexRelease(pFile->hMutex); - osCloseHandle(pFile->hMutex); - pFile->hMutex = NULL; - } -} - -/* -** An implementation of the LockFile() API of Windows for CE -*/ -static BOOL winceLockFile( - LPHANDLE phFile, - DWORD dwFileOffsetLow, - DWORD dwFileOffsetHigh, - DWORD nNumberOfBytesToLockLow, - DWORD nNumberOfBytesToLockHigh -){ - winFile *pFile = HANDLE_TO_WINFILE(phFile); - BOOL bReturn = FALSE; - - UNUSED_PARAMETER(dwFileOffsetHigh); - UNUSED_PARAMETER(nNumberOfBytesToLockHigh); - - if (!pFile->hMutex) return TRUE; - winceMutexAcquire(pFile->hMutex); - - /* Wanting an exclusive lock? */ - if (dwFileOffsetLow == (DWORD)SHARED_FIRST - && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ - if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ - pFile->shared->bExclusive = TRUE; - pFile->local.bExclusive = TRUE; - bReturn = TRUE; - } - } - - /* Want a read-only lock? */ - else if (dwFileOffsetLow == (DWORD)SHARED_FIRST && - nNumberOfBytesToLockLow == 1){ - if (pFile->shared->bExclusive == 0){ - pFile->local.nReaders ++; - if (pFile->local.nReaders == 1){ - pFile->shared->nReaders ++; - } - bReturn = TRUE; - } - } - - /* Want a pending lock? */ - else if (dwFileOffsetLow == (DWORD)PENDING_BYTE - && nNumberOfBytesToLockLow == 1){ - /* If no pending lock has been acquired, then acquire it */ - if (pFile->shared->bPending == 0) { - pFile->shared->bPending = TRUE; - pFile->local.bPending = TRUE; - bReturn = TRUE; - } - } - - /* Want a reserved lock? */ - else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE - && nNumberOfBytesToLockLow == 1){ - if (pFile->shared->bReserved == 0) { - pFile->shared->bReserved = TRUE; - pFile->local.bReserved = TRUE; - bReturn = TRUE; - } - } - - winceMutexRelease(pFile->hMutex); - return bReturn; -} - -/* -** An implementation of the UnlockFile API of Windows for CE -*/ -static BOOL winceUnlockFile( - LPHANDLE phFile, - DWORD dwFileOffsetLow, - DWORD dwFileOffsetHigh, - DWORD nNumberOfBytesToUnlockLow, - DWORD nNumberOfBytesToUnlockHigh -){ - winFile *pFile = HANDLE_TO_WINFILE(phFile); - BOOL bReturn = FALSE; - - UNUSED_PARAMETER(dwFileOffsetHigh); - UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh); - - if (!pFile->hMutex) return TRUE; - winceMutexAcquire(pFile->hMutex); - - /* Releasing a reader lock or an exclusive lock */ - if (dwFileOffsetLow == (DWORD)SHARED_FIRST){ - /* Did we have an exclusive lock? */ - if (pFile->local.bExclusive){ - assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE); - pFile->local.bExclusive = FALSE; - pFile->shared->bExclusive = FALSE; - bReturn = TRUE; - } - - /* Did we just have a reader lock? */ - else if (pFile->local.nReaders){ - assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE - || nNumberOfBytesToUnlockLow == 1); - pFile->local.nReaders --; - if (pFile->local.nReaders == 0) - { - pFile->shared->nReaders --; - } - bReturn = TRUE; - } - } - - /* Releasing a pending lock */ - else if (dwFileOffsetLow == (DWORD)PENDING_BYTE - && nNumberOfBytesToUnlockLow == 1){ - if (pFile->local.bPending){ - pFile->local.bPending = FALSE; - pFile->shared->bPending = FALSE; - bReturn = TRUE; - } - } - /* Releasing a reserved lock */ - else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE - && nNumberOfBytesToUnlockLow == 1){ - if (pFile->local.bReserved) { - pFile->local.bReserved = FALSE; - pFile->shared->bReserved = FALSE; - bReturn = TRUE; - } - } - - winceMutexRelease(pFile->hMutex); - return bReturn; -} -/* -** End of the special code for wince -*****************************************************************************/ -#endif /* SQLITE_OS_WINCE */ - -/* -** Lock a file region. -*/ -static BOOL winLockFile( - LPHANDLE phFile, - DWORD flags, - DWORD offsetLow, - DWORD offsetHigh, - DWORD numBytesLow, - DWORD numBytesHigh -){ -#if SQLITE_OS_WINCE - /* - ** NOTE: Windows CE is handled differently here due its lack of the Win32 - ** API LockFile. - */ - return winceLockFile(phFile, offsetLow, offsetHigh, - numBytesLow, numBytesHigh); -#else - if( isNT() ){ - OVERLAPPED ovlp; - memset(&ovlp, 0, sizeof(OVERLAPPED)); - ovlp.Offset = offsetLow; - ovlp.OffsetHigh = offsetHigh; - return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp); - }else{ - return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow, - numBytesHigh); - } -#endif -} - -/* -** Unlock a file region. - */ -static BOOL winUnlockFile( - LPHANDLE phFile, - DWORD offsetLow, - DWORD offsetHigh, - DWORD numBytesLow, - DWORD numBytesHigh -){ -#if SQLITE_OS_WINCE - /* - ** NOTE: Windows CE is handled differently here due its lack of the Win32 - ** API UnlockFile. - */ - return winceUnlockFile(phFile, offsetLow, offsetHigh, - numBytesLow, numBytesHigh); -#else - if( isNT() ){ - OVERLAPPED ovlp; - memset(&ovlp, 0, sizeof(OVERLAPPED)); - ovlp.Offset = offsetLow; - ovlp.OffsetHigh = offsetHigh; - return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp); - }else{ - return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow, - numBytesHigh); - } -#endif -} - -/***************************************************************************** -** The next group of routines implement the I/O methods specified -** by the sqlite3_io_methods object. -******************************************************************************/ - -/* -** Some Microsoft compilers lack this definition. -*/ -#ifndef INVALID_SET_FILE_POINTER -# define INVALID_SET_FILE_POINTER ((DWORD)-1) -#endif - -/* -** Move the current position of the file handle passed as the first -** argument to offset iOffset within the file. If successful, return 0. -** Otherwise, set pFile->lastErrno and return non-zero. -*/ -static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){ -#if !SQLITE_OS_WINRT - LONG upperBits; /* Most sig. 32 bits of new offset */ - LONG lowerBits; /* Least sig. 32 bits of new offset */ - DWORD dwRet; /* Value returned by SetFilePointer() */ - DWORD lastErrno; /* Value returned by GetLastError() */ - - upperBits = (LONG)((iOffset>>32) & 0x7fffffff); - lowerBits = (LONG)(iOffset & 0xffffffff); - - /* API oddity: If successful, SetFilePointer() returns a dword - ** containing the lower 32-bits of the new file-offset. Or, if it fails, - ** it returns INVALID_SET_FILE_POINTER. However according to MSDN, - ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine - ** whether an error has actually occurred, it is also necessary to call - ** GetLastError(). - */ - dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); - - if( (dwRet==INVALID_SET_FILE_POINTER - && ((lastErrno = osGetLastError())!=NO_ERROR)) ){ - pFile->lastErrno = lastErrno; - winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, - "seekWinFile", pFile->zPath); - return 1; - } - - return 0; -#else - /* - ** Same as above, except that this implementation works for WinRT. - */ - - LARGE_INTEGER x; /* The new offset */ - BOOL bRet; /* Value returned by SetFilePointerEx() */ - - x.QuadPart = iOffset; - bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN); - - if(!bRet){ - pFile->lastErrno = osGetLastError(); - winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, - "seekWinFile", pFile->zPath); - return 1; - } - - return 0; -#endif -} - -/* -** Close a file. -** -** It is reported that an attempt to close a handle might sometimes -** fail. This is a very unreasonable result, but Windows is notorious -** for being unreasonable so I do not doubt that it might happen. If -** the close fails, we pause for 100 milliseconds and try again. As -** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before -** giving up and returning an error. -*/ -#define MX_CLOSE_ATTEMPT 3 -static int winClose(sqlite3_file *id){ - int rc, cnt = 0; - winFile *pFile = (winFile*)id; - - assert( id!=0 ); -#ifndef SQLITE_OMIT_WAL - assert( pFile->pShm==0 ); -#endif - OSTRACE(("CLOSE %d\n", pFile->h)); - assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE ); - do{ - rc = osCloseHandle(pFile->h); - /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ - }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) ); -#if SQLITE_OS_WINCE -#define WINCE_DELETION_ATTEMPTS 3 - winceDestroyLock(pFile); - if( pFile->zDeleteOnClose ){ - int cnt = 0; - while( - osDeleteFileW(pFile->zDeleteOnClose)==0 - && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff - && cnt++ < WINCE_DELETION_ATTEMPTS - ){ - sqlite3_win32_sleep(100); /* Wait a little before trying again */ - } - sqlite3_free(pFile->zDeleteOnClose); - } -#endif - OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); - if( rc ){ - pFile->h = NULL; - } - OpenCounter(-1); - return rc ? SQLITE_OK - : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(), - "winClose", pFile->zPath); -} - -/* -** Read data from a file into a buffer. Return SQLITE_OK if all -** bytes were read successfully and SQLITE_IOERR if anything goes -** wrong. -*/ -static int winRead( - sqlite3_file *id, /* File to read from */ - void *pBuf, /* Write content into this buffer */ - int amt, /* Number of bytes to read */ - sqlite3_int64 offset /* Begin reading at this offset */ -){ -#if !SQLITE_OS_WINCE - OVERLAPPED overlapped; /* The offset for ReadFile. */ -#endif - winFile *pFile = (winFile*)id; /* file handle */ - DWORD nRead; /* Number of bytes actually read from file */ - int nRetry = 0; /* Number of retrys */ - - assert( id!=0 ); - SimulateIOError(return SQLITE_IOERR_READ); - OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); - -#if SQLITE_OS_WINCE - if( seekWinFile(pFile, offset) ){ - return SQLITE_FULL; - } - while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ -#else - memset(&overlapped, 0, sizeof(OVERLAPPED)); - overlapped.Offset = (LONG)(offset & 0xffffffff); - overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); - while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) && - osGetLastError()!=ERROR_HANDLE_EOF ){ -#endif - DWORD lastErrno; - if( retryIoerr(&nRetry, &lastErrno) ) continue; - pFile->lastErrno = lastErrno; - return winLogError(SQLITE_IOERR_READ, pFile->lastErrno, - "winRead", pFile->zPath); - } - logIoerr(nRetry); - if( nRead<(DWORD)amt ){ - /* Unread parts of the buffer must be zero-filled */ - memset(&((char*)pBuf)[nRead], 0, amt-nRead); - return SQLITE_IOERR_SHORT_READ; - } - - return SQLITE_OK; -} - -/* -** Write data from a buffer into a file. Return SQLITE_OK on success -** or some other error code on failure. -*/ -static int winWrite( - sqlite3_file *id, /* File to write into */ - const void *pBuf, /* The bytes to be written */ - int amt, /* Number of bytes to write */ - sqlite3_int64 offset /* Offset into the file to begin writing at */ -){ - int rc = 0; /* True if error has occurred, else false */ - winFile *pFile = (winFile*)id; /* File handle */ - int nRetry = 0; /* Number of retries */ - - assert( amt>0 ); - assert( pFile ); - SimulateIOError(return SQLITE_IOERR_WRITE); - SimulateDiskfullError(return SQLITE_FULL); - - OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype)); - -#if SQLITE_OS_WINCE - rc = seekWinFile(pFile, offset); - if( rc==0 ){ -#else - { -#endif -#if !SQLITE_OS_WINCE - OVERLAPPED overlapped; /* The offset for WriteFile. */ -#endif - u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ - int nRem = amt; /* Number of bytes yet to be written */ - DWORD nWrite; /* Bytes written by each WriteFile() call */ - DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */ - -#if !SQLITE_OS_WINCE - memset(&overlapped, 0, sizeof(OVERLAPPED)); - overlapped.Offset = (LONG)(offset & 0xffffffff); - overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); -#endif - - while( nRem>0 ){ -#if SQLITE_OS_WINCE - if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){ -#else - if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){ -#endif - if( retryIoerr(&nRetry, &lastErrno) ) continue; - break; - } - assert( nWrite==0 || nWrite<=(DWORD)nRem ); - if( nWrite==0 || nWrite>(DWORD)nRem ){ - lastErrno = osGetLastError(); - break; - } -#if !SQLITE_OS_WINCE - offset += nWrite; - overlapped.Offset = (LONG)(offset & 0xffffffff); - overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); -#endif - aRem += nWrite; - nRem -= nWrite; - } - if( nRem>0 ){ - pFile->lastErrno = lastErrno; - rc = 1; - } - } - - if( rc ){ - if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) - || ( pFile->lastErrno==ERROR_DISK_FULL )){ - return SQLITE_FULL; - } - return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno, - "winWrite", pFile->zPath); - }else{ - logIoerr(nRetry); - } - return SQLITE_OK; -} - -/* -** Truncate an open file to a specified size -*/ -static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ - winFile *pFile = (winFile*)id; /* File handle object */ - int rc = SQLITE_OK; /* Return code for this function */ - - assert( pFile ); - - OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte)); - SimulateIOError(return SQLITE_IOERR_TRUNCATE); - - /* If the user has configured a chunk-size for this file, truncate the - ** file so that it consists of an integer number of chunks (i.e. the - ** actual file size after the operation may be larger than the requested - ** size). - */ - if( pFile->szChunk>0 ){ - nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; - } - - /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ - if( seekWinFile(pFile, nByte) ){ - rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, - "winTruncate1", pFile->zPath); - }else if( 0==osSetEndOfFile(pFile->h) ){ - pFile->lastErrno = osGetLastError(); - rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, - "winTruncate2", pFile->zPath); - } - - OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok")); - return rc; -} - -#ifdef SQLITE_TEST -/* -** Count the number of fullsyncs and normal syncs. This is used to test -** that syncs and fullsyncs are occuring at the right times. -*/ -SQLITE_API int sqlite3_sync_count = 0; -SQLITE_API int sqlite3_fullsync_count = 0; -#endif - -/* -** Make sure all writes to a particular file are committed to disk. -*/ -static int winSync(sqlite3_file *id, int flags){ -#ifndef SQLITE_NO_SYNC - /* - ** Used only when SQLITE_NO_SYNC is not defined. - */ - BOOL rc; -#endif -#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \ - (defined(SQLITE_TEST) && defined(SQLITE_DEBUG)) - /* - ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or - ** OSTRACE() macros. - */ - winFile *pFile = (winFile*)id; -#else - UNUSED_PARAMETER(id); -#endif - - assert( pFile ); - /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ - assert((flags&0x0F)==SQLITE_SYNC_NORMAL - || (flags&0x0F)==SQLITE_SYNC_FULL - ); - - OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype)); - - /* Unix cannot, but some systems may return SQLITE_FULL from here. This - ** line is to test that doing so does not cause any problems. - */ - SimulateDiskfullError( return SQLITE_FULL ); - -#ifndef SQLITE_TEST - UNUSED_PARAMETER(flags); -#else - if( (flags&0x0F)==SQLITE_SYNC_FULL ){ - sqlite3_fullsync_count++; - } - sqlite3_sync_count++; -#endif - - /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a - ** no-op - */ -#ifdef SQLITE_NO_SYNC - return SQLITE_OK; -#else - rc = osFlushFileBuffers(pFile->h); - SimulateIOError( rc=FALSE ); - if( rc ){ - return SQLITE_OK; - }else{ - pFile->lastErrno = osGetLastError(); - return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno, - "winSync", pFile->zPath); - } -#endif -} - -/* -** Determine the current size of a file in bytes -*/ -static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ - winFile *pFile = (winFile*)id; - int rc = SQLITE_OK; - - assert( id!=0 ); - SimulateIOError(return SQLITE_IOERR_FSTAT); -#if SQLITE_OS_WINRT - { - FILE_STANDARD_INFO info; - if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo, - &info, sizeof(info)) ){ - *pSize = info.EndOfFile.QuadPart; - }else{ - pFile->lastErrno = osGetLastError(); - rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, - "winFileSize", pFile->zPath); - } - } -#else - { - DWORD upperBits; - DWORD lowerBits; - DWORD lastErrno; - - lowerBits = osGetFileSize(pFile->h, &upperBits); - *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; - if( (lowerBits == INVALID_FILE_SIZE) - && ((lastErrno = osGetLastError())!=NO_ERROR) ){ - pFile->lastErrno = lastErrno; - rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, - "winFileSize", pFile->zPath); - } - } -#endif - return rc; -} - -/* -** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. -*/ -#ifndef LOCKFILE_FAIL_IMMEDIATELY -# define LOCKFILE_FAIL_IMMEDIATELY 1 -#endif - -#ifndef LOCKFILE_EXCLUSIVE_LOCK -# define LOCKFILE_EXCLUSIVE_LOCK 2 -#endif - -/* -** Historically, SQLite has used both the LockFile and LockFileEx functions. -** When the LockFile function was used, it was always expected to fail -** immediately if the lock could not be obtained. Also, it always expected to -** obtain an exclusive lock. These flags are used with the LockFileEx function -** and reflect those expectations; therefore, they should not be changed. -*/ -#ifndef SQLITE_LOCKFILE_FLAGS -# define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \ - LOCKFILE_EXCLUSIVE_LOCK) -#endif - -/* -** Currently, SQLite never calls the LockFileEx function without wanting the -** call to fail immediately if the lock cannot be obtained. -*/ -#ifndef SQLITE_LOCKFILEEX_FLAGS -# define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY) -#endif - -/* -** Acquire a reader lock. -** Different API routines are called depending on whether or not this -** is Win9x or WinNT. -*/ -static int getReadLock(winFile *pFile){ - int res; - if( isNT() ){ -#if SQLITE_OS_WINCE - /* - ** NOTE: Windows CE is handled differently here due its lack of the Win32 - ** API LockFileEx. - */ - res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0); -#else - res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0, - SHARED_SIZE, 0); -#endif - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - int lk; - sqlite3_randomness(sizeof(lk), &lk); - pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); - res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, - SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); - } -#endif - if( res == 0 ){ - pFile->lastErrno = osGetLastError(); - /* No need to log a failure to lock */ - } - return res; -} - -/* -** Undo a readlock -*/ -static int unlockReadLock(winFile *pFile){ - int res; - DWORD lastErrno; - if( isNT() ){ - res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); - } -#endif - if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){ - pFile->lastErrno = lastErrno; - winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno, - "unlockReadLock", pFile->zPath); - } - return res; -} - -/* -** Lock the file with the lock specified by parameter locktype - one -** of the following: -** -** (1) SHARED_LOCK -** (2) RESERVED_LOCK -** (3) PENDING_LOCK -** (4) EXCLUSIVE_LOCK -** -** Sometimes when requesting one lock state, additional lock states -** are inserted in between. The locking might fail on one of the later -** transitions leaving the lock state different from what it started but -** still short of its goal. The following chart shows the allowed -** transitions and the inserted intermediate states: -** -** UNLOCKED -> SHARED -** SHARED -> RESERVED -** SHARED -> (PENDING) -> EXCLUSIVE -** RESERVED -> (PENDING) -> EXCLUSIVE -** PENDING -> EXCLUSIVE -** -** This routine will only increase a lock. The winUnlock() routine -** erases all locks at once and returns us immediately to locking level 0. -** It is not possible to lower the locking level one step at a time. You -** must go straight to locking level 0. -*/ -static int winLock(sqlite3_file *id, int locktype){ - int rc = SQLITE_OK; /* Return code from subroutines */ - int res = 1; /* Result of a Windows lock call */ - int newLocktype; /* Set pFile->locktype to this value before exiting */ - int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ - winFile *pFile = (winFile*)id; - DWORD lastErrno = NO_ERROR; - - assert( id!=0 ); - OSTRACE(("LOCK %d %d was %d(%d)\n", - pFile->h, locktype, pFile->locktype, pFile->sharedLockByte)); - - /* If there is already a lock of this type or more restrictive on the - ** OsFile, do nothing. Don't use the end_lock: exit path, as - ** sqlite3OsEnterMutex() hasn't been called yet. - */ - if( pFile->locktype>=locktype ){ - return SQLITE_OK; - } - - /* Make sure the locking sequence is correct - */ - assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); - assert( locktype!=PENDING_LOCK ); - assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); - - /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or - ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of - ** the PENDING_LOCK byte is temporary. - */ - newLocktype = pFile->locktype; - if( (pFile->locktype==NO_LOCK) - || ( (locktype==EXCLUSIVE_LOCK) - && (pFile->locktype==RESERVED_LOCK)) - ){ - int cnt = 3; - while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, - PENDING_BYTE, 0, 1, 0))==0 ){ - /* Try 3 times to get the pending lock. This is needed to work - ** around problems caused by indexing and/or anti-virus software on - ** Windows systems. - ** If you are using this code as a model for alternative VFSes, do not - ** copy this retry logic. It is a hack intended for Windows only. - */ - OSTRACE(("could not get a PENDING lock. cnt=%d\n", cnt)); - if( cnt ) sqlite3_win32_sleep(1); - } - gotPendingLock = res; - if( !res ){ - lastErrno = osGetLastError(); - } - } - - /* Acquire a shared lock - */ - if( locktype==SHARED_LOCK && res ){ - assert( pFile->locktype==NO_LOCK ); - res = getReadLock(pFile); - if( res ){ - newLocktype = SHARED_LOCK; - }else{ - lastErrno = osGetLastError(); - } - } - - /* Acquire a RESERVED lock - */ - if( locktype==RESERVED_LOCK && res ){ - assert( pFile->locktype==SHARED_LOCK ); - res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0); - if( res ){ - newLocktype = RESERVED_LOCK; - }else{ - lastErrno = osGetLastError(); - } - } - - /* Acquire a PENDING lock - */ - if( locktype==EXCLUSIVE_LOCK && res ){ - newLocktype = PENDING_LOCK; - gotPendingLock = 0; - } - - /* Acquire an EXCLUSIVE lock - */ - if( locktype==EXCLUSIVE_LOCK && res ){ - assert( pFile->locktype>=SHARED_LOCK ); - res = unlockReadLock(pFile); - OSTRACE(("unreadlock = %d\n", res)); - res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0, - SHARED_SIZE, 0); - if( res ){ - newLocktype = EXCLUSIVE_LOCK; - }else{ - lastErrno = osGetLastError(); - OSTRACE(("error-code = %d\n", lastErrno)); - getReadLock(pFile); - } - } - - /* If we are holding a PENDING lock that ought to be released, then - ** release it now. - */ - if( gotPendingLock && locktype==SHARED_LOCK ){ - winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); - } - - /* Update the state of the lock has held in the file descriptor then - ** return the appropriate result code. - */ - if( res ){ - rc = SQLITE_OK; - }else{ - OSTRACE(("LOCK FAILED %d trying for %d but got %d\n", pFile->h, - locktype, newLocktype)); - pFile->lastErrno = lastErrno; - rc = SQLITE_BUSY; - } - pFile->locktype = (u8)newLocktype; - return rc; -} - -/* -** This routine checks if there is a RESERVED lock held on the specified -** file by this or any other process. If such a lock is held, return -** non-zero, otherwise zero. -*/ -static int winCheckReservedLock(sqlite3_file *id, int *pResOut){ - int rc; - winFile *pFile = (winFile*)id; - - SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); - - assert( id!=0 ); - if( pFile->locktype>=RESERVED_LOCK ){ - rc = 1; - OSTRACE(("TEST WR-LOCK %d %d (local)\n", pFile->h, rc)); - }else{ - rc = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0); - if( rc ){ - winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); - } - rc = !rc; - OSTRACE(("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc)); - } - *pResOut = rc; - return SQLITE_OK; -} - -/* -** Lower the locking level on file descriptor id to locktype. locktype -** must be either NO_LOCK or SHARED_LOCK. -** -** If the locking level of the file descriptor is already at or below -** the requested locking level, this routine is a no-op. -** -** It is not possible for this routine to fail if the second argument -** is NO_LOCK. If the second argument is SHARED_LOCK then this routine -** might return SQLITE_IOERR; -*/ -static int winUnlock(sqlite3_file *id, int locktype){ - int type; - winFile *pFile = (winFile*)id; - int rc = SQLITE_OK; - assert( pFile!=0 ); - assert( locktype<=SHARED_LOCK ); - OSTRACE(("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype, - pFile->locktype, pFile->sharedLockByte)); - type = pFile->locktype; - if( type>=EXCLUSIVE_LOCK ){ - winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); - if( locktype==SHARED_LOCK && !getReadLock(pFile) ){ - /* This should never happen. We should always be able to - ** reacquire the read lock */ - rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(), - "winUnlock", pFile->zPath); - } - } - if( type>=RESERVED_LOCK ){ - winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); - } - if( locktype==NO_LOCK && type>=SHARED_LOCK ){ - unlockReadLock(pFile); - } - if( type>=PENDING_LOCK ){ - winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); - } - pFile->locktype = (u8)locktype; - return rc; -} - -/* -** If *pArg is inititially negative then this is a query. Set *pArg to -** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. -** -** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. -*/ -static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){ - if( *pArg<0 ){ - *pArg = (pFile->ctrlFlags & mask)!=0; - }else if( (*pArg)==0 ){ - pFile->ctrlFlags &= ~mask; - }else{ - pFile->ctrlFlags |= mask; - } -} - -/* Forward declaration */ -static int getTempname(int nBuf, char *zBuf); - -/* -** Control and query of the open file handle. -*/ -static int winFileControl(sqlite3_file *id, int op, void *pArg){ - winFile *pFile = (winFile*)id; - switch( op ){ - case SQLITE_FCNTL_LOCKSTATE: { - *(int*)pArg = pFile->locktype; - return SQLITE_OK; - } - case SQLITE_LAST_ERRNO: { - *(int*)pArg = (int)pFile->lastErrno; - return SQLITE_OK; - } - case SQLITE_FCNTL_CHUNK_SIZE: { - pFile->szChunk = *(int *)pArg; - return SQLITE_OK; - } - case SQLITE_FCNTL_SIZE_HINT: { - if( pFile->szChunk>0 ){ - sqlite3_int64 oldSz; - int rc = winFileSize(id, &oldSz); - if( rc==SQLITE_OK ){ - sqlite3_int64 newSz = *(sqlite3_int64*)pArg; - if( newSz>oldSz ){ - SimulateIOErrorBenign(1); - rc = winTruncate(id, newSz); - SimulateIOErrorBenign(0); - } - } - return rc; - } - return SQLITE_OK; - } - case SQLITE_FCNTL_PERSIST_WAL: { - winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg); - return SQLITE_OK; - } - case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { - winModeBit(pFile, WINFILE_PSOW, (int*)pArg); - return SQLITE_OK; - } - case SQLITE_FCNTL_VFSNAME: { - *(char**)pArg = sqlite3_mprintf("win32"); - return SQLITE_OK; - } - case SQLITE_FCNTL_WIN32_AV_RETRY: { - int *a = (int*)pArg; - if( a[0]>0 ){ - win32IoerrRetry = a[0]; - }else{ - a[0] = win32IoerrRetry; - } - if( a[1]>0 ){ - win32IoerrRetryDelay = a[1]; - }else{ - a[1] = win32IoerrRetryDelay; - } - return SQLITE_OK; - } - case SQLITE_FCNTL_TEMPFILENAME: { - char *zTFile = sqlite3MallocZero( pFile->pVfs->mxPathname ); - if( zTFile ){ - getTempname(pFile->pVfs->mxPathname, zTFile); - *(char**)pArg = zTFile; - } - return SQLITE_OK; - } - } - return SQLITE_NOTFOUND; -} - -/* -** Return the sector size in bytes of the underlying block device for -** the specified file. This is almost always 512 bytes, but may be -** larger for some devices. -** -** SQLite code assumes this function cannot fail. It also assumes that -** if two files are created in the same file-system directory (i.e. -** a database and its journal file) that the sector size will be the -** same for both. -*/ -static int winSectorSize(sqlite3_file *id){ - (void)id; - return SQLITE_DEFAULT_SECTOR_SIZE; -} - -/* -** Return a vector of device characteristics. -*/ -static int winDeviceCharacteristics(sqlite3_file *id){ - winFile *p = (winFile*)id; - return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | - ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); -} - -#ifndef SQLITE_OMIT_WAL - -/* -** Windows will only let you create file view mappings -** on allocation size granularity boundaries. -** During sqlite3_os_init() we do a GetSystemInfo() -** to get the granularity size. -*/ -SYSTEM_INFO winSysInfo; - -/* -** Helper functions to obtain and relinquish the global mutex. The -** global mutex is used to protect the winLockInfo objects used by -** this file, all of which may be shared by multiple threads. -** -** Function winShmMutexHeld() is used to assert() that the global mutex -** is held when required. This function is only used as part of assert() -** statements. e.g. -** -** winShmEnterMutex() -** assert( winShmMutexHeld() ); -** winShmLeaveMutex() -*/ -static void winShmEnterMutex(void){ - sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -static void winShmLeaveMutex(void){ - sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -#ifdef SQLITE_DEBUG -static int winShmMutexHeld(void) { - return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} -#endif - -/* -** Object used to represent a single file opened and mmapped to provide -** shared memory. When multiple threads all reference the same -** log-summary, each thread has its own winFile object, but they all -** point to a single instance of this object. In other words, each -** log-summary is opened only once per process. -** -** winShmMutexHeld() must be true when creating or destroying -** this object or while reading or writing the following fields: -** -** nRef -** pNext -** -** The following fields are read-only after the object is created: -** -** fid -** zFilename -** -** Either winShmNode.mutex must be held or winShmNode.nRef==0 and -** winShmMutexHeld() is true when reading or writing any other field -** in this structure. -** -*/ -struct winShmNode { - sqlite3_mutex *mutex; /* Mutex to access this object */ - char *zFilename; /* Name of the file */ - winFile hFile; /* File handle from winOpen */ - - int szRegion; /* Size of shared-memory regions */ - int nRegion; /* Size of array apRegion */ - struct ShmRegion { - HANDLE hMap; /* File handle from CreateFileMapping */ - void *pMap; - } *aRegion; - DWORD lastErrno; /* The Windows errno from the last I/O error */ - - int nRef; /* Number of winShm objects pointing to this */ - winShm *pFirst; /* All winShm objects pointing to this */ - winShmNode *pNext; /* Next in list of all winShmNode objects */ -#ifdef SQLITE_DEBUG - u8 nextShmId; /* Next available winShm.id value */ -#endif -}; - -/* -** A global array of all winShmNode objects. -** -** The winShmMutexHeld() must be true while reading or writing this list. -*/ -static winShmNode *winShmNodeList = 0; - -/* -** Structure used internally by this VFS to record the state of an -** open shared memory connection. -** -** The following fields are initialized when this object is created and -** are read-only thereafter: -** -** winShm.pShmNode -** winShm.id -** -** All other fields are read/write. The winShm.pShmNode->mutex must be held -** while accessing any read/write fields. -*/ -struct winShm { - winShmNode *pShmNode; /* The underlying winShmNode object */ - winShm *pNext; /* Next winShm with the same winShmNode */ - u8 hasMutex; /* True if holding the winShmNode mutex */ - u16 sharedMask; /* Mask of shared locks held */ - u16 exclMask; /* Mask of exclusive locks held */ -#ifdef SQLITE_DEBUG - u8 id; /* Id of this connection with its winShmNode */ -#endif -}; - -/* -** Constants used for locking -*/ -#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ -#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ - -/* -** Apply advisory locks for all n bytes beginning at ofst. -*/ -#define _SHM_UNLCK 1 -#define _SHM_RDLCK 2 -#define _SHM_WRLCK 3 -static int winShmSystemLock( - winShmNode *pFile, /* Apply locks to this open shared-memory segment */ - int lockType, /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */ - int ofst, /* Offset to first byte to be locked/unlocked */ - int nByte /* Number of bytes to lock or unlock */ -){ - int rc = 0; /* Result code form Lock/UnlockFileEx() */ - - /* Access to the winShmNode object is serialized by the caller */ - assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 ); - - /* Release/Acquire the system-level lock */ - if( lockType==_SHM_UNLCK ){ - rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0); - }else{ - /* Initialize the locking parameters */ - DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY; - if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK; - rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0); - } - - if( rc!= 0 ){ - rc = SQLITE_OK; - }else{ - pFile->lastErrno = osGetLastError(); - rc = SQLITE_BUSY; - } - - OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n", - pFile->hFile.h, - rc==SQLITE_OK ? "ok" : "failed", - lockType==_SHM_UNLCK ? "UnlockFileEx" : "LockFileEx", - pFile->lastErrno)); - - return rc; -} - -/* Forward references to VFS methods */ -static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*); -static int winDelete(sqlite3_vfs *,const char*,int); - -/* -** Purge the winShmNodeList list of all entries with winShmNode.nRef==0. -** -** This is not a VFS shared-memory method; it is a utility function called -** by VFS shared-memory methods. -*/ -static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ - winShmNode **pp; - winShmNode *p; - BOOL bRc; - assert( winShmMutexHeld() ); - pp = &winShmNodeList; - while( (p = *pp)!=0 ){ - if( p->nRef==0 ){ - int i; - if( p->mutex ) sqlite3_mutex_free(p->mutex); - for(i=0; i<p->nRegion; i++){ - bRc = osUnmapViewOfFile(p->aRegion[i].pMap); - OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n", - (int)osGetCurrentProcessId(), i, - bRc ? "ok" : "failed")); - bRc = osCloseHandle(p->aRegion[i].hMap); - OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n", - (int)osGetCurrentProcessId(), i, - bRc ? "ok" : "failed")); - } - if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){ - SimulateIOErrorBenign(1); - winClose((sqlite3_file *)&p->hFile); - SimulateIOErrorBenign(0); - } - if( deleteFlag ){ - SimulateIOErrorBenign(1); - sqlite3BeginBenignMalloc(); - winDelete(pVfs, p->zFilename, 0); - sqlite3EndBenignMalloc(); - SimulateIOErrorBenign(0); - } - *pp = p->pNext; - sqlite3_free(p->aRegion); - sqlite3_free(p); - }else{ - pp = &p->pNext; - } - } -} - -/* -** Open the shared-memory area associated with database file pDbFd. -** -** When opening a new shared-memory file, if no other instances of that -** file are currently open, in this process or in other processes, then -** the file must be truncated to zero length or have its header cleared. -*/ -static int winOpenSharedMemory(winFile *pDbFd){ - struct winShm *p; /* The connection to be opened */ - struct winShmNode *pShmNode = 0; /* The underlying mmapped file */ - int rc; /* Result code */ - struct winShmNode *pNew; /* Newly allocated winShmNode */ - int nName; /* Size of zName in bytes */ - - assert( pDbFd->pShm==0 ); /* Not previously opened */ - - /* Allocate space for the new sqlite3_shm object. Also speculatively - ** allocate space for a new winShmNode and filename. - */ - p = sqlite3MallocZero( sizeof(*p) ); - if( p==0 ) return SQLITE_IOERR_NOMEM; - nName = sqlite3Strlen30(pDbFd->zPath); - pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 ); - if( pNew==0 ){ - sqlite3_free(p); - return SQLITE_IOERR_NOMEM; - } - pNew->zFilename = (char*)&pNew[1]; - sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath); - sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename); - - /* Look to see if there is an existing winShmNode that can be used. - ** If no matching winShmNode currently exists, create a new one. - */ - winShmEnterMutex(); - for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){ - /* TBD need to come up with better match here. Perhaps - ** use FILE_ID_BOTH_DIR_INFO Structure. - */ - if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; - } - if( pShmNode ){ - sqlite3_free(pNew); - }else{ - pShmNode = pNew; - pNew = 0; - ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE; - pShmNode->pNext = winShmNodeList; - winShmNodeList = pShmNode; - - pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); - if( pShmNode->mutex==0 ){ - rc = SQLITE_IOERR_NOMEM; - goto shm_open_err; - } - - rc = winOpen(pDbFd->pVfs, - pShmNode->zFilename, /* Name of the file (UTF-8) */ - (sqlite3_file*)&pShmNode->hFile, /* File handle here */ - SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, - 0); - if( SQLITE_OK!=rc ){ - goto shm_open_err; - } - - /* Check to see if another process is holding the dead-man switch. - ** If not, truncate the file to zero length. - */ - if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){ - rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0); - if( rc!=SQLITE_OK ){ - rc = winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(), - "winOpenShm", pDbFd->zPath); - } - } - if( rc==SQLITE_OK ){ - winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1); - rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1); - } - if( rc ) goto shm_open_err; - } - - /* Make the new connection a child of the winShmNode */ - p->pShmNode = pShmNode; -#ifdef SQLITE_DEBUG - p->id = pShmNode->nextShmId++; -#endif - pShmNode->nRef++; - pDbFd->pShm = p; - winShmLeaveMutex(); - - /* The reference count on pShmNode has already been incremented under - ** the cover of the winShmEnterMutex() mutex and the pointer from the - ** new (struct winShm) object to the pShmNode has been set. All that is - ** left to do is to link the new object into the linked list starting - ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex - ** mutex. - */ - sqlite3_mutex_enter(pShmNode->mutex); - p->pNext = pShmNode->pFirst; - pShmNode->pFirst = p; - sqlite3_mutex_leave(pShmNode->mutex); - return SQLITE_OK; - - /* Jump here on any error */ -shm_open_err: - winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1); - winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */ - sqlite3_free(p); - sqlite3_free(pNew); - winShmLeaveMutex(); - return rc; -} - -/* -** Close a connection to shared-memory. Delete the underlying -** storage if deleteFlag is true. -*/ -static int winShmUnmap( - sqlite3_file *fd, /* Database holding shared memory */ - int deleteFlag /* Delete after closing if true */ -){ - winFile *pDbFd; /* Database holding shared-memory */ - winShm *p; /* The connection to be closed */ - winShmNode *pShmNode; /* The underlying shared-memory file */ - winShm **pp; /* For looping over sibling connections */ - - pDbFd = (winFile*)fd; - p = pDbFd->pShm; - if( p==0 ) return SQLITE_OK; - pShmNode = p->pShmNode; - - /* Remove connection p from the set of connections associated - ** with pShmNode */ - sqlite3_mutex_enter(pShmNode->mutex); - for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} - *pp = p->pNext; - - /* Free the connection p */ - sqlite3_free(p); - pDbFd->pShm = 0; - sqlite3_mutex_leave(pShmNode->mutex); - - /* If pShmNode->nRef has reached 0, then close the underlying - ** shared-memory file, too */ - winShmEnterMutex(); - assert( pShmNode->nRef>0 ); - pShmNode->nRef--; - if( pShmNode->nRef==0 ){ - winShmPurge(pDbFd->pVfs, deleteFlag); - } - winShmLeaveMutex(); - - return SQLITE_OK; -} - -/* -** Change the lock state for a shared-memory segment. -*/ -static int winShmLock( - sqlite3_file *fd, /* Database file holding the shared memory */ - int ofst, /* First lock to acquire or release */ - int n, /* Number of locks to acquire or release */ - int flags /* What to do with the lock */ -){ - winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */ - winShm *p = pDbFd->pShm; /* The shared memory being locked */ - winShm *pX; /* For looping over all siblings */ - winShmNode *pShmNode = p->pShmNode; - int rc = SQLITE_OK; /* Result code */ - u16 mask; /* Mask of locks to take or release */ - - assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); - assert( n>=1 ); - assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) - || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) - || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) - || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); - assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); - - mask = (u16)((1U<<(ofst+n)) - (1U<<ofst)); - assert( n>1 || mask==(1<<ofst) ); - sqlite3_mutex_enter(pShmNode->mutex); - if( flags & SQLITE_SHM_UNLOCK ){ - u16 allMask = 0; /* Mask of locks held by siblings */ - - /* See if any siblings hold this same lock */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( pX==p ) continue; - assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); - allMask |= pX->sharedMask; - } - - /* Unlock the system-level locks */ - if( (mask & allMask)==0 ){ - rc = winShmSystemLock(pShmNode, _SHM_UNLCK, ofst+WIN_SHM_BASE, n); - }else{ - rc = SQLITE_OK; - } - - /* Undo the local locks */ - if( rc==SQLITE_OK ){ - p->exclMask &= ~mask; - p->sharedMask &= ~mask; - } - }else if( flags & SQLITE_SHM_SHARED ){ - u16 allShared = 0; /* Union of locks held by connections other than "p" */ - - /* Find out which shared locks are already held by sibling connections. - ** If any sibling already holds an exclusive lock, go ahead and return - ** SQLITE_BUSY. - */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( (pX->exclMask & mask)!=0 ){ - rc = SQLITE_BUSY; - break; - } - allShared |= pX->sharedMask; - } - - /* Get shared locks at the system level, if necessary */ - if( rc==SQLITE_OK ){ - if( (allShared & mask)==0 ){ - rc = winShmSystemLock(pShmNode, _SHM_RDLCK, ofst+WIN_SHM_BASE, n); - }else{ - rc = SQLITE_OK; - } - } - - /* Get the local shared locks */ - if( rc==SQLITE_OK ){ - p->sharedMask |= mask; - } - }else{ - /* Make sure no sibling connections hold locks that will block this - ** lock. If any do, return SQLITE_BUSY right away. - */ - for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ - if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ - rc = SQLITE_BUSY; - break; - } - } - - /* Get the exclusive locks at the system level. Then if successful - ** also mark the local connection as being locked. - */ - if( rc==SQLITE_OK ){ - rc = winShmSystemLock(pShmNode, _SHM_WRLCK, ofst+WIN_SHM_BASE, n); - if( rc==SQLITE_OK ){ - assert( (p->sharedMask & mask)==0 ); - p->exclMask |= mask; - } - } - } - sqlite3_mutex_leave(pShmNode->mutex); - OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n", - p->id, (int)osGetCurrentProcessId(), p->sharedMask, p->exclMask, - rc ? "failed" : "ok")); - return rc; -} - -/* -** Implement a memory barrier or memory fence on shared memory. -** -** All loads and stores begun before the barrier must complete before -** any load or store begun after the barrier. -*/ -static void winShmBarrier( - sqlite3_file *fd /* Database holding the shared memory */ -){ - UNUSED_PARAMETER(fd); - /* MemoryBarrier(); // does not work -- do not know why not */ - winShmEnterMutex(); - winShmLeaveMutex(); -} - -/* -** This function is called to obtain a pointer to region iRegion of the -** shared-memory associated with the database file fd. Shared-memory regions -** are numbered starting from zero. Each shared-memory region is szRegion -** bytes in size. -** -** If an error occurs, an error code is returned and *pp is set to NULL. -** -** Otherwise, if the isWrite parameter is 0 and the requested shared-memory -** region has not been allocated (by any client, including one running in a -** separate process), then *pp is set to NULL and SQLITE_OK returned. If -** isWrite is non-zero and the requested shared-memory region has not yet -** been allocated, it is allocated by this function. -** -** If the shared-memory region has already been allocated or is allocated by -** this call as described above, then it is mapped into this processes -** address space (if it is not already), *pp is set to point to the mapped -** memory and SQLITE_OK returned. -*/ -static int winShmMap( - sqlite3_file *fd, /* Handle open on database file */ - int iRegion, /* Region to retrieve */ - int szRegion, /* Size of regions */ - int isWrite, /* True to extend file if necessary */ - void volatile **pp /* OUT: Mapped memory */ -){ - winFile *pDbFd = (winFile*)fd; - winShm *p = pDbFd->pShm; - winShmNode *pShmNode; - int rc = SQLITE_OK; - - if( !p ){ - rc = winOpenSharedMemory(pDbFd); - if( rc!=SQLITE_OK ) return rc; - p = pDbFd->pShm; - } - pShmNode = p->pShmNode; - - sqlite3_mutex_enter(pShmNode->mutex); - assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); - - if( pShmNode->nRegion<=iRegion ){ - struct ShmRegion *apNew; /* New aRegion[] array */ - int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ - sqlite3_int64 sz; /* Current size of wal-index file */ - - pShmNode->szRegion = szRegion; - - /* The requested region is not mapped into this processes address space. - ** Check to see if it has been allocated (i.e. if the wal-index file is - ** large enough to contain the requested region). - */ - rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); - if( rc!=SQLITE_OK ){ - rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), - "winShmMap1", pDbFd->zPath); - goto shmpage_out; - } - - if( sz<nByte ){ - /* The requested memory region does not exist. If isWrite is set to - ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned. - ** - ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate - ** the requested memory region. - */ - if( !isWrite ) goto shmpage_out; - rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte); - if( rc!=SQLITE_OK ){ - rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), - "winShmMap2", pDbFd->zPath); - goto shmpage_out; - } - } - - /* Map the requested memory region into this processes address space. */ - apNew = (struct ShmRegion *)sqlite3_realloc( - pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) - ); - if( !apNew ){ - rc = SQLITE_IOERR_NOMEM; - goto shmpage_out; - } - pShmNode->aRegion = apNew; - - while( pShmNode->nRegion<=iRegion ){ - HANDLE hMap = NULL; /* file-mapping handle */ - void *pMap = 0; /* Mapped memory region */ - -#if SQLITE_OS_WINRT - hMap = osCreateFileMappingFromApp(pShmNode->hFile.h, - NULL, PAGE_READWRITE, nByte, NULL - ); -#elif defined(SQLITE_WIN32_HAS_WIDE) - hMap = osCreateFileMappingW(pShmNode->hFile.h, - NULL, PAGE_READWRITE, 0, nByte, NULL - ); -#elif defined(SQLITE_WIN32_HAS_ANSI) - hMap = osCreateFileMappingA(pShmNode->hFile.h, - NULL, PAGE_READWRITE, 0, nByte, NULL - ); -#endif - OSTRACE(("SHM-MAP pid-%d create region=%d nbyte=%d %s\n", - (int)osGetCurrentProcessId(), pShmNode->nRegion, nByte, - hMap ? "ok" : "failed")); - if( hMap ){ - int iOffset = pShmNode->nRegion*szRegion; - int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; -#if SQLITE_OS_WINRT - pMap = osMapViewOfFileFromApp(hMap, FILE_MAP_WRITE | FILE_MAP_READ, - iOffset - iOffsetShift, szRegion + iOffsetShift - ); -#else - pMap = osMapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ, - 0, iOffset - iOffsetShift, szRegion + iOffsetShift - ); -#endif - OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n", - (int)osGetCurrentProcessId(), pShmNode->nRegion, iOffset, - szRegion, pMap ? "ok" : "failed")); - } - if( !pMap ){ - pShmNode->lastErrno = osGetLastError(); - rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno, - "winShmMap3", pDbFd->zPath); - if( hMap ) osCloseHandle(hMap); - goto shmpage_out; - } - - pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; - pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; - pShmNode->nRegion++; - } - } - -shmpage_out: - if( pShmNode->nRegion>iRegion ){ - int iOffset = iRegion*szRegion; - int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; - char *p = (char *)pShmNode->aRegion[iRegion].pMap; - *pp = (void *)&p[iOffsetShift]; - }else{ - *pp = 0; - } - sqlite3_mutex_leave(pShmNode->mutex); - return rc; -} - -#else -# define winShmMap 0 -# define winShmLock 0 -# define winShmBarrier 0 -# define winShmUnmap 0 -#endif /* #ifndef SQLITE_OMIT_WAL */ - -/* -** Here ends the implementation of all sqlite3_file methods. -** -********************** End sqlite3_file Methods ******************************* -******************************************************************************/ - -/* -** This vector defines all the methods that can operate on an -** sqlite3_file for win32. -*/ -static const sqlite3_io_methods winIoMethod = { - 2, /* iVersion */ - winClose, /* xClose */ - winRead, /* xRead */ - winWrite, /* xWrite */ - winTruncate, /* xTruncate */ - winSync, /* xSync */ - winFileSize, /* xFileSize */ - winLock, /* xLock */ - winUnlock, /* xUnlock */ - winCheckReservedLock, /* xCheckReservedLock */ - winFileControl, /* xFileControl */ - winSectorSize, /* xSectorSize */ - winDeviceCharacteristics, /* xDeviceCharacteristics */ - winShmMap, /* xShmMap */ - winShmLock, /* xShmLock */ - winShmBarrier, /* xShmBarrier */ - winShmUnmap /* xShmUnmap */ -}; - -/**************************************************************************** -**************************** sqlite3_vfs methods **************************** -** -** This division contains the implementation of methods on the -** sqlite3_vfs object. -*/ - -/* -** Convert a UTF-8 filename into whatever form the underlying -** operating system wants filenames in. Space to hold the result -** is obtained from malloc and must be freed by the calling -** function. -*/ -static void *convertUtf8Filename(const char *zFilename){ - void *zConverted = 0; - if( isNT() ){ - zConverted = utf8ToUnicode(zFilename); - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - zConverted = sqlite3_win32_utf8_to_mbcs(zFilename); - } -#endif - /* caller will handle out of memory */ - return zConverted; -} - -/* -** Create a temporary file name in zBuf. zBuf must be big enough to -** hold at pVfs->mxPathname characters. -*/ -static int getTempname(int nBuf, char *zBuf){ - static char zChars[] = - "abcdefghijklmnopqrstuvwxyz" - "ABCDEFGHIJKLMNOPQRSTUVWXYZ" - "0123456789"; - size_t i, j; - int nTempPath; - char zTempPath[MAX_PATH+2]; - - /* It's odd to simulate an io-error here, but really this is just - ** using the io-error infrastructure to test that SQLite handles this - ** function failing. - */ - SimulateIOError( return SQLITE_IOERR ); - - memset(zTempPath, 0, MAX_PATH+2); - - if( sqlite3_temp_directory ){ - sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory); - } -#if !SQLITE_OS_WINRT - else if( isNT() ){ - char *zMulti; - WCHAR zWidePath[MAX_PATH]; - osGetTempPathW(MAX_PATH-30, zWidePath); - zMulti = unicodeToUtf8(zWidePath); - if( zMulti ){ - sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti); - sqlite3_free(zMulti); - }else{ - return SQLITE_IOERR_NOMEM; - } - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - char *zUtf8; - char zMbcsPath[MAX_PATH]; - osGetTempPathA(MAX_PATH-30, zMbcsPath); - zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath); - if( zUtf8 ){ - sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8); - sqlite3_free(zUtf8); - }else{ - return SQLITE_IOERR_NOMEM; - } - } -#endif -#endif - - /* Check that the output buffer is large enough for the temporary file - ** name. If it is not, return SQLITE_ERROR. - */ - nTempPath = sqlite3Strlen30(zTempPath); - - if( (nTempPath + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 18) >= nBuf ){ - return SQLITE_ERROR; - } - - for(i=nTempPath; i>0 && zTempPath[i-1]=='\\'; i--){} - zTempPath[i] = 0; - - sqlite3_snprintf(nBuf-18, zBuf, (nTempPath > 0) ? - "%s\\"SQLITE_TEMP_FILE_PREFIX : SQLITE_TEMP_FILE_PREFIX, - zTempPath); - j = sqlite3Strlen30(zBuf); - sqlite3_randomness(15, &zBuf[j]); - for(i=0; i<15; i++, j++){ - zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; - } - zBuf[j] = 0; - zBuf[j+1] = 0; - - OSTRACE(("TEMP FILENAME: %s\n", zBuf)); - return SQLITE_OK; -} - -/* -** Return TRUE if the named file is really a directory. Return false if -** it is something other than a directory, or if there is any kind of memory -** allocation failure. -*/ -static int winIsDir(const void *zConverted){ - DWORD attr; - int rc = 0; - DWORD lastErrno; - - if( isNT() ){ - int cnt = 0; - WIN32_FILE_ATTRIBUTE_DATA sAttrData; - memset(&sAttrData, 0, sizeof(sAttrData)); - while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, - GetFileExInfoStandard, - &sAttrData)) && retryIoerr(&cnt, &lastErrno) ){} - if( !rc ){ - return 0; /* Invalid name? */ - } - attr = sAttrData.dwFileAttributes; -#if SQLITE_OS_WINCE==0 - }else{ - attr = osGetFileAttributesA((char*)zConverted); -#endif - } - return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY); -} - -/* -** Open a file. -*/ -static int winOpen( - sqlite3_vfs *pVfs, /* Not used */ - const char *zName, /* Name of the file (UTF-8) */ - sqlite3_file *id, /* Write the SQLite file handle here */ - int flags, /* Open mode flags */ - int *pOutFlags /* Status return flags */ -){ - HANDLE h; - DWORD lastErrno; - DWORD dwDesiredAccess; - DWORD dwShareMode; - DWORD dwCreationDisposition; - DWORD dwFlagsAndAttributes = 0; -#if SQLITE_OS_WINCE - int isTemp = 0; -#endif - winFile *pFile = (winFile*)id; - void *zConverted; /* Filename in OS encoding */ - const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ - int cnt = 0; - - /* If argument zPath is a NULL pointer, this function is required to open - ** a temporary file. Use this buffer to store the file name in. - */ - char zTmpname[MAX_PATH+2]; /* Buffer used to create temp filename */ - - int rc = SQLITE_OK; /* Function Return Code */ -#if !defined(NDEBUG) || SQLITE_OS_WINCE - int eType = flags&0xFFFFFF00; /* Type of file to open */ -#endif - - int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); - int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); - int isCreate = (flags & SQLITE_OPEN_CREATE); -#ifndef NDEBUG - int isReadonly = (flags & SQLITE_OPEN_READONLY); -#endif - int isReadWrite = (flags & SQLITE_OPEN_READWRITE); - -#ifndef NDEBUG - int isOpenJournal = (isCreate && ( - eType==SQLITE_OPEN_MASTER_JOURNAL - || eType==SQLITE_OPEN_MAIN_JOURNAL - || eType==SQLITE_OPEN_WAL - )); -#endif - - /* Check the following statements are true: - ** - ** (a) Exactly one of the READWRITE and READONLY flags must be set, and - ** (b) if CREATE is set, then READWRITE must also be set, and - ** (c) if EXCLUSIVE is set, then CREATE must also be set. - ** (d) if DELETEONCLOSE is set, then CREATE must also be set. - */ - assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); - assert(isCreate==0 || isReadWrite); - assert(isExclusive==0 || isCreate); - assert(isDelete==0 || isCreate); - - /* The main DB, main journal, WAL file and master journal are never - ** automatically deleted. Nor are they ever temporary files. */ - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); - assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); - - /* Assert that the upper layer has set one of the "file-type" flags. */ - assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB - || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL - || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL - || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL - ); - - assert( pFile!=0 ); - memset(pFile, 0, sizeof(winFile)); - pFile->h = INVALID_HANDLE_VALUE; - -#if SQLITE_OS_WINRT - if( !sqlite3_temp_directory ){ - sqlite3_log(SQLITE_ERROR, - "sqlite3_temp_directory variable should be set for WinRT"); - } -#endif - - /* If the second argument to this function is NULL, generate a - ** temporary file name to use - */ - if( !zUtf8Name ){ - assert(isDelete && !isOpenJournal); - memset(zTmpname, 0, MAX_PATH+2); - rc = getTempname(MAX_PATH+2, zTmpname); - if( rc!=SQLITE_OK ){ - return rc; - } - zUtf8Name = zTmpname; - } - - /* Database filenames are double-zero terminated if they are not - ** URIs with parameters. Hence, they can always be passed into - ** sqlite3_uri_parameter(). - */ - assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) || - zUtf8Name[strlen(zUtf8Name)+1]==0 ); - - /* Convert the filename to the system encoding. */ - zConverted = convertUtf8Filename(zUtf8Name); - if( zConverted==0 ){ - return SQLITE_IOERR_NOMEM; - } - - if( winIsDir(zConverted) ){ - sqlite3_free(zConverted); - return SQLITE_CANTOPEN_ISDIR; - } - - if( isReadWrite ){ - dwDesiredAccess = GENERIC_READ | GENERIC_WRITE; - }else{ - dwDesiredAccess = GENERIC_READ; - } - - /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is - ** created. SQLite doesn't use it to indicate "exclusive access" - ** as it is usually understood. - */ - if( isExclusive ){ - /* Creates a new file, only if it does not already exist. */ - /* If the file exists, it fails. */ - dwCreationDisposition = CREATE_NEW; - }else if( isCreate ){ - /* Open existing file, or create if it doesn't exist */ - dwCreationDisposition = OPEN_ALWAYS; - }else{ - /* Opens a file, only if it exists. */ - dwCreationDisposition = OPEN_EXISTING; - } - - dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; - - if( isDelete ){ -#if SQLITE_OS_WINCE - dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN; - isTemp = 1; -#else - dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY - | FILE_ATTRIBUTE_HIDDEN - | FILE_FLAG_DELETE_ON_CLOSE; -#endif - }else{ - dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL; - } - /* Reports from the internet are that performance is always - ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */ -#if SQLITE_OS_WINCE - dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS; -#endif - - if( isNT() ){ -#if SQLITE_OS_WINRT - CREATEFILE2_EXTENDED_PARAMETERS extendedParameters; - extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS); - extendedParameters.dwFileAttributes = - dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK; - extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK; - extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS; - extendedParameters.lpSecurityAttributes = NULL; - extendedParameters.hTemplateFile = NULL; - while( (h = osCreateFile2((LPCWSTR)zConverted, - dwDesiredAccess, - dwShareMode, - dwCreationDisposition, - &extendedParameters))==INVALID_HANDLE_VALUE && - retryIoerr(&cnt, &lastErrno) ){ - /* Noop */ - } -#else - while( (h = osCreateFileW((LPCWSTR)zConverted, - dwDesiredAccess, - dwShareMode, NULL, - dwCreationDisposition, - dwFlagsAndAttributes, - NULL))==INVALID_HANDLE_VALUE && - retryIoerr(&cnt, &lastErrno) ){ - /* Noop */ - } -#endif - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - while( (h = osCreateFileA((LPCSTR)zConverted, - dwDesiredAccess, - dwShareMode, NULL, - dwCreationDisposition, - dwFlagsAndAttributes, - NULL))==INVALID_HANDLE_VALUE && - retryIoerr(&cnt, &lastErrno) ){ - /* Noop */ - } - } -#endif - logIoerr(cnt); - - OSTRACE(("OPEN %d %s 0x%lx %s\n", - h, zName, dwDesiredAccess, - h==INVALID_HANDLE_VALUE ? "failed" : "ok")); - - if( h==INVALID_HANDLE_VALUE ){ - pFile->lastErrno = lastErrno; - winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name); - sqlite3_free(zConverted); - if( isReadWrite && !isExclusive ){ - return winOpen(pVfs, zName, id, - ((flags|SQLITE_OPEN_READONLY) & - ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), - pOutFlags); - }else{ - return SQLITE_CANTOPEN_BKPT; - } - } - - if( pOutFlags ){ - if( isReadWrite ){ - *pOutFlags = SQLITE_OPEN_READWRITE; - }else{ - *pOutFlags = SQLITE_OPEN_READONLY; - } - } - -#if SQLITE_OS_WINCE - if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB - && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK - ){ - osCloseHandle(h); - sqlite3_free(zConverted); - return rc; - } - if( isTemp ){ - pFile->zDeleteOnClose = zConverted; - }else -#endif - { - sqlite3_free(zConverted); - } - - pFile->pMethod = &winIoMethod; - pFile->pVfs = pVfs; - pFile->h = h; - if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ - pFile->ctrlFlags |= WINFILE_PSOW; - } - pFile->lastErrno = NO_ERROR; - pFile->zPath = zName; - - OpenCounter(+1); - return rc; -} - -/* -** Delete the named file. -** -** Note that Windows does not allow a file to be deleted if some other -** process has it open. Sometimes a virus scanner or indexing program -** will open a journal file shortly after it is created in order to do -** whatever it does. While this other process is holding the -** file open, we will be unable to delete it. To work around this -** problem, we delay 100 milliseconds and try to delete again. Up -** to MX_DELETION_ATTEMPTs deletion attempts are run before giving -** up and returning an error. -*/ -static int winDelete( - sqlite3_vfs *pVfs, /* Not used on win32 */ - const char *zFilename, /* Name of file to delete */ - int syncDir /* Not used on win32 */ -){ - int cnt = 0; - int rc; - DWORD attr; - DWORD lastErrno; - void *zConverted; - UNUSED_PARAMETER(pVfs); - UNUSED_PARAMETER(syncDir); - - SimulateIOError(return SQLITE_IOERR_DELETE); - zConverted = convertUtf8Filename(zFilename); - if( zConverted==0 ){ - return SQLITE_IOERR_NOMEM; - } - if( isNT() ){ - do { -#if SQLITE_OS_WINRT - WIN32_FILE_ATTRIBUTE_DATA sAttrData; - memset(&sAttrData, 0, sizeof(sAttrData)); - if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard, - &sAttrData) ){ - attr = sAttrData.dwFileAttributes; - }else{ - lastErrno = osGetLastError(); - if( lastErrno==ERROR_FILE_NOT_FOUND - || lastErrno==ERROR_PATH_NOT_FOUND ){ - rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ - }else{ - rc = SQLITE_ERROR; - } - break; - } -#else - attr = osGetFileAttributesW(zConverted); -#endif - if ( attr==INVALID_FILE_ATTRIBUTES ){ - lastErrno = osGetLastError(); - if( lastErrno==ERROR_FILE_NOT_FOUND - || lastErrno==ERROR_PATH_NOT_FOUND ){ - rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ - }else{ - rc = SQLITE_ERROR; - } - break; - } - if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ - rc = SQLITE_ERROR; /* Files only. */ - break; - } - if ( osDeleteFileW(zConverted) ){ - rc = SQLITE_OK; /* Deleted OK. */ - break; - } - if ( !retryIoerr(&cnt, &lastErrno) ){ - rc = SQLITE_ERROR; /* No more retries. */ - break; - } - } while(1); - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - do { - attr = osGetFileAttributesA(zConverted); - if ( attr==INVALID_FILE_ATTRIBUTES ){ - lastErrno = osGetLastError(); - if( lastErrno==ERROR_FILE_NOT_FOUND - || lastErrno==ERROR_PATH_NOT_FOUND ){ - rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ - }else{ - rc = SQLITE_ERROR; - } - break; - } - if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ - rc = SQLITE_ERROR; /* Files only. */ - break; - } - if ( osDeleteFileA(zConverted) ){ - rc = SQLITE_OK; /* Deleted OK. */ - break; - } - if ( !retryIoerr(&cnt, &lastErrno) ){ - rc = SQLITE_ERROR; /* No more retries. */ - break; - } - } while(1); - } -#endif - if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){ - rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, - "winDelete", zFilename); - }else{ - logIoerr(cnt); - } - sqlite3_free(zConverted); - OSTRACE(("DELETE \"%s\" %s\n", zFilename, (rc ? "failed" : "ok" ))); - return rc; -} - -/* -** Check the existence and status of a file. -*/ -static int winAccess( - sqlite3_vfs *pVfs, /* Not used on win32 */ - const char *zFilename, /* Name of file to check */ - int flags, /* Type of test to make on this file */ - int *pResOut /* OUT: Result */ -){ - DWORD attr; - int rc = 0; - DWORD lastErrno; - void *zConverted; - UNUSED_PARAMETER(pVfs); - - SimulateIOError( return SQLITE_IOERR_ACCESS; ); - zConverted = convertUtf8Filename(zFilename); - if( zConverted==0 ){ - return SQLITE_IOERR_NOMEM; - } - if( isNT() ){ - int cnt = 0; - WIN32_FILE_ATTRIBUTE_DATA sAttrData; - memset(&sAttrData, 0, sizeof(sAttrData)); - while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, - GetFileExInfoStandard, - &sAttrData)) && retryIoerr(&cnt, &lastErrno) ){} - if( rc ){ - /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file - ** as if it does not exist. - */ - if( flags==SQLITE_ACCESS_EXISTS - && sAttrData.nFileSizeHigh==0 - && sAttrData.nFileSizeLow==0 ){ - attr = INVALID_FILE_ATTRIBUTES; - }else{ - attr = sAttrData.dwFileAttributes; - } - }else{ - logIoerr(cnt); - if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){ - winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess", zFilename); - sqlite3_free(zConverted); - return SQLITE_IOERR_ACCESS; - }else{ - attr = INVALID_FILE_ATTRIBUTES; - } - } - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - attr = osGetFileAttributesA((char*)zConverted); - } -#endif - sqlite3_free(zConverted); - switch( flags ){ - case SQLITE_ACCESS_READ: - case SQLITE_ACCESS_EXISTS: - rc = attr!=INVALID_FILE_ATTRIBUTES; - break; - case SQLITE_ACCESS_READWRITE: - rc = attr!=INVALID_FILE_ATTRIBUTES && - (attr & FILE_ATTRIBUTE_READONLY)==0; - break; - default: - assert(!"Invalid flags argument"); - } - *pResOut = rc; - return SQLITE_OK; -} - - -/* -** Returns non-zero if the specified path name should be used verbatim. If -** non-zero is returned from this function, the calling function must simply -** use the provided path name verbatim -OR- resolve it into a full path name -** using the GetFullPathName Win32 API function (if available). -*/ -static BOOL winIsVerbatimPathname( - const char *zPathname -){ - /* - ** If the path name starts with a forward slash or a backslash, it is either - ** a legal UNC name, a volume relative path, or an absolute path name in the - ** "Unix" format on Windows. There is no easy way to differentiate between - ** the final two cases; therefore, we return the safer return value of TRUE - ** so that callers of this function will simply use it verbatim. - */ - if ( zPathname[0]=='/' || zPathname[0]=='\\' ){ - return TRUE; - } - - /* - ** If the path name starts with a letter and a colon it is either a volume - ** relative path or an absolute path. Callers of this function must not - ** attempt to treat it as a relative path name (i.e. they should simply use - ** it verbatim). - */ - if ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' ){ - return TRUE; - } - - /* - ** If we get to this point, the path name should almost certainly be a purely - ** relative one (i.e. not a UNC name, not absolute, and not volume relative). - */ - return FALSE; -} - -/* -** Turn a relative pathname into a full pathname. Write the full -** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname -** bytes in size. -*/ -static int winFullPathname( - sqlite3_vfs *pVfs, /* Pointer to vfs object */ - const char *zRelative, /* Possibly relative input path */ - int nFull, /* Size of output buffer in bytes */ - char *zFull /* Output buffer */ -){ - -#if defined(__CYGWIN__) - SimulateIOError( return SQLITE_ERROR ); - UNUSED_PARAMETER(nFull); - assert( pVfs->mxPathname>=MAX_PATH ); - assert( nFull>=pVfs->mxPathname ); - if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ - /* - ** NOTE: We are dealing with a relative path name and the data - ** directory has been set. Therefore, use it as the basis - ** for converting the relative path name to an absolute - ** one by prepending the data directory and a slash. - */ - char zOut[MAX_PATH+1]; - memset(zOut, 0, MAX_PATH+1); - cygwin_conv_path(CCP_POSIX_TO_WIN_A|CCP_RELATIVE, zRelative, zOut, - MAX_PATH+1); - sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s", - sqlite3_data_directory, zOut); - }else{ - cygwin_conv_path(CCP_POSIX_TO_WIN_A, zRelative, zFull, nFull); - } - return SQLITE_OK; -#endif - -#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__) - SimulateIOError( return SQLITE_ERROR ); - /* WinCE has no concept of a relative pathname, or so I am told. */ - /* WinRT has no way to convert a relative path to an absolute one. */ - if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ - /* - ** NOTE: We are dealing with a relative path name and the data - ** directory has been set. Therefore, use it as the basis - ** for converting the relative path name to an absolute - ** one by prepending the data directory and a backslash. - */ - sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s", - sqlite3_data_directory, zRelative); - }else{ - sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative); - } - return SQLITE_OK; -#endif - -#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__) - DWORD nByte; - void *zConverted; - char *zOut; - - /* If this path name begins with "/X:", where "X" is any alphabetic - ** character, discard the initial "/" from the pathname. - */ - if( zRelative[0]=='/' && sqlite3Isalpha(zRelative[1]) && zRelative[2]==':' ){ - zRelative++; - } - - /* It's odd to simulate an io-error here, but really this is just - ** using the io-error infrastructure to test that SQLite handles this - ** function failing. This function could fail if, for example, the - ** current working directory has been unlinked. - */ - SimulateIOError( return SQLITE_ERROR ); - if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ - /* - ** NOTE: We are dealing with a relative path name and the data - ** directory has been set. Therefore, use it as the basis - ** for converting the relative path name to an absolute - ** one by prepending the data directory and a backslash. - */ - sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s", - sqlite3_data_directory, zRelative); - return SQLITE_OK; - } - zConverted = convertUtf8Filename(zRelative); - if( zConverted==0 ){ - return SQLITE_IOERR_NOMEM; - } - if( isNT() ){ - LPWSTR zTemp; - nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0); - if( nByte==0 ){ - winLogError(SQLITE_ERROR, osGetLastError(), - "GetFullPathNameW1", zConverted); - sqlite3_free(zConverted); - return SQLITE_CANTOPEN_FULLPATH; - } - nByte += 3; - zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); - if( zTemp==0 ){ - sqlite3_free(zConverted); - return SQLITE_IOERR_NOMEM; - } - nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0); - if( nByte==0 ){ - winLogError(SQLITE_ERROR, osGetLastError(), - "GetFullPathNameW2", zConverted); - sqlite3_free(zConverted); - sqlite3_free(zTemp); - return SQLITE_CANTOPEN_FULLPATH; - } - sqlite3_free(zConverted); - zOut = unicodeToUtf8(zTemp); - sqlite3_free(zTemp); - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - char *zTemp; - nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0); - if( nByte==0 ){ - winLogError(SQLITE_ERROR, osGetLastError(), - "GetFullPathNameA1", zConverted); - sqlite3_free(zConverted); - return SQLITE_CANTOPEN_FULLPATH; - } - nByte += 3; - zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); - if( zTemp==0 ){ - sqlite3_free(zConverted); - return SQLITE_IOERR_NOMEM; - } - nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0); - if( nByte==0 ){ - winLogError(SQLITE_ERROR, osGetLastError(), - "GetFullPathNameA2", zConverted); - sqlite3_free(zConverted); - sqlite3_free(zTemp); - return SQLITE_CANTOPEN_FULLPATH; - } - sqlite3_free(zConverted); - zOut = sqlite3_win32_mbcs_to_utf8(zTemp); - sqlite3_free(zTemp); - } -#endif - if( zOut ){ - sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut); - sqlite3_free(zOut); - return SQLITE_OK; - }else{ - return SQLITE_IOERR_NOMEM; - } -#endif -} - -#ifndef SQLITE_OMIT_LOAD_EXTENSION -/* -** Interfaces for opening a shared library, finding entry points -** within the shared library, and closing the shared library. -*/ -/* -** Interfaces for opening a shared library, finding entry points -** within the shared library, and closing the shared library. -*/ -static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ - HANDLE h; - void *zConverted = convertUtf8Filename(zFilename); - UNUSED_PARAMETER(pVfs); - if( zConverted==0 ){ - return 0; - } - if( isNT() ){ -#if SQLITE_OS_WINRT - h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); -#else - h = osLoadLibraryW((LPCWSTR)zConverted); -#endif - } -#ifdef SQLITE_WIN32_HAS_ANSI - else{ - h = osLoadLibraryA((char*)zConverted); - } -#endif - sqlite3_free(zConverted); - return (void*)h; -} -static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ - UNUSED_PARAMETER(pVfs); - getLastErrorMsg(osGetLastError(), nBuf, zBufOut); -} -static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){ - UNUSED_PARAMETER(pVfs); - return (void(*)(void))osGetProcAddressA((HANDLE)pH, zSym); -} -static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ - UNUSED_PARAMETER(pVfs); - osFreeLibrary((HANDLE)pHandle); -} -#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ - #define winDlOpen 0 - #define winDlError 0 - #define winDlSym 0 - #define winDlClose 0 -#endif - - -/* -** Write up to nBuf bytes of randomness into zBuf. -*/ -static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ - int n = 0; - UNUSED_PARAMETER(pVfs); -#if defined(SQLITE_TEST) - n = nBuf; - memset(zBuf, 0, nBuf); -#else - if( sizeof(SYSTEMTIME)<=nBuf-n ){ - SYSTEMTIME x; - osGetSystemTime(&x); - memcpy(&zBuf[n], &x, sizeof(x)); - n += sizeof(x); - } - if( sizeof(DWORD)<=nBuf-n ){ - DWORD pid = osGetCurrentProcessId(); - memcpy(&zBuf[n], &pid, sizeof(pid)); - n += sizeof(pid); - } -#if SQLITE_OS_WINRT - if( sizeof(ULONGLONG)<=nBuf-n ){ - ULONGLONG cnt = osGetTickCount64(); - memcpy(&zBuf[n], &cnt, sizeof(cnt)); - n += sizeof(cnt); - } -#else - if( sizeof(DWORD)<=nBuf-n ){ - DWORD cnt = osGetTickCount(); - memcpy(&zBuf[n], &cnt, sizeof(cnt)); - n += sizeof(cnt); - } -#endif - if( sizeof(LARGE_INTEGER)<=nBuf-n ){ - LARGE_INTEGER i; - osQueryPerformanceCounter(&i); - memcpy(&zBuf[n], &i, sizeof(i)); - n += sizeof(i); - } -#endif - return n; -} - - -/* -** Sleep for a little while. Return the amount of time slept. -*/ -static int winSleep(sqlite3_vfs *pVfs, int microsec){ - sqlite3_win32_sleep((microsec+999)/1000); - UNUSED_PARAMETER(pVfs); - return ((microsec+999)/1000)*1000; -} - -/* -** The following variable, if set to a non-zero value, is interpreted as -** the number of seconds since 1970 and is used to set the result of -** sqlite3OsCurrentTime() during testing. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ -#endif - -/* -** Find the current time (in Universal Coordinated Time). Write into *piNow -** the current time and date as a Julian Day number times 86_400_000. In -** other words, write into *piNow the number of milliseconds since the Julian -** epoch of noon in Greenwich on November 24, 4714 B.C according to the -** proleptic Gregorian calendar. -** -** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date -** cannot be found. -*/ -static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ - /* FILETIME structure is a 64-bit value representing the number of - 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). - */ - FILETIME ft; - static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000; -#ifdef SQLITE_TEST - static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; -#endif - /* 2^32 - to avoid use of LL and warnings in gcc */ - static const sqlite3_int64 max32BitValue = - (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + - (sqlite3_int64)294967296; - -#if SQLITE_OS_WINCE - SYSTEMTIME time; - osGetSystemTime(&time); - /* if SystemTimeToFileTime() fails, it returns zero. */ - if (!osSystemTimeToFileTime(&time,&ft)){ - return SQLITE_ERROR; - } -#else - osGetSystemTimeAsFileTime( &ft ); -#endif - - *piNow = winFiletimeEpoch + - ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) + - (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000; - -#ifdef SQLITE_TEST - if( sqlite3_current_time ){ - *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; - } -#endif - UNUSED_PARAMETER(pVfs); - return SQLITE_OK; -} - -/* -** Find the current time (in Universal Coordinated Time). Write the -** current time and date as a Julian Day number into *prNow and -** return 0. Return 1 if the time and date cannot be found. -*/ -static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){ - int rc; - sqlite3_int64 i; - rc = winCurrentTimeInt64(pVfs, &i); - if( !rc ){ - *prNow = i/86400000.0; - } - return rc; -} - -/* -** The idea is that this function works like a combination of -** GetLastError() and FormatMessage() on Windows (or errno and -** strerror_r() on Unix). After an error is returned by an OS -** function, SQLite calls this function with zBuf pointing to -** a buffer of nBuf bytes. The OS layer should populate the -** buffer with a nul-terminated UTF-8 encoded error message -** describing the last IO error to have occurred within the calling -** thread. -** -** If the error message is too large for the supplied buffer, -** it should be truncated. The return value of xGetLastError -** is zero if the error message fits in the buffer, or non-zero -** otherwise (if the message was truncated). If non-zero is returned, -** then it is not necessary to include the nul-terminator character -** in the output buffer. -** -** Not supplying an error message will have no adverse effect -** on SQLite. It is fine to have an implementation that never -** returns an error message: -** -** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ -** assert(zBuf[0]=='\0'); -** return 0; -** } -** -** However if an error message is supplied, it will be incorporated -** by sqlite into the error message available to the user using -** sqlite3_errmsg(), possibly making IO errors easier to debug. -*/ -static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ - UNUSED_PARAMETER(pVfs); - return getLastErrorMsg(osGetLastError(), nBuf, zBuf); -} - -/* -** Initialize and deinitialize the operating system interface. -*/ -SQLITE_API int sqlite3_os_init(void){ - static sqlite3_vfs winVfs = { - 3, /* iVersion */ - sizeof(winFile), /* szOsFile */ - MAX_PATH, /* mxPathname */ - 0, /* pNext */ - "win32", /* zName */ - 0, /* pAppData */ - winOpen, /* xOpen */ - winDelete, /* xDelete */ - winAccess, /* xAccess */ - winFullPathname, /* xFullPathname */ - winDlOpen, /* xDlOpen */ - winDlError, /* xDlError */ - winDlSym, /* xDlSym */ - winDlClose, /* xDlClose */ - winRandomness, /* xRandomness */ - winSleep, /* xSleep */ - winCurrentTime, /* xCurrentTime */ - winGetLastError, /* xGetLastError */ - winCurrentTimeInt64, /* xCurrentTimeInt64 */ - winSetSystemCall, /* xSetSystemCall */ - winGetSystemCall, /* xGetSystemCall */ - winNextSystemCall, /* xNextSystemCall */ - }; - - /* Double-check that the aSyscall[] array has been constructed - ** correctly. See ticket [bb3a86e890c8e96ab] */ - assert( ArraySize(aSyscall)==74 ); - -#ifndef SQLITE_OMIT_WAL - /* get memory map allocation granularity */ - memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); -#if SQLITE_OS_WINRT - osGetNativeSystemInfo(&winSysInfo); -#else - osGetSystemInfo(&winSysInfo); -#endif - assert(winSysInfo.dwAllocationGranularity > 0); -#endif - - sqlite3_vfs_register(&winVfs, 1); - return SQLITE_OK; -} - -SQLITE_API int sqlite3_os_end(void){ -#if SQLITE_OS_WINRT - if( sleepObj!=NULL ){ - osCloseHandle(sleepObj); - sleepObj = NULL; - } -#endif - return SQLITE_OK; -} - -#endif /* SQLITE_OS_WIN */ - -/************** End of os_win.c **********************************************/ -/************** Begin file bitvec.c ******************************************/ -/* -** 2008 February 16 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file implements an object that represents a fixed-length -** bitmap. Bits are numbered starting with 1. -** -** A bitmap is used to record which pages of a database file have been -** journalled during a transaction, or which pages have the "dont-write" -** property. Usually only a few pages are meet either condition. -** So the bitmap is usually sparse and has low cardinality. -** But sometimes (for example when during a DROP of a large table) most -** or all of the pages in a database can get journalled. In those cases, -** the bitmap becomes dense with high cardinality. The algorithm needs -** to handle both cases well. -** -** The size of the bitmap is fixed when the object is created. -** -** All bits are clear when the bitmap is created. Individual bits -** may be set or cleared one at a time. -** -** Test operations are about 100 times more common that set operations. -** Clear operations are exceedingly rare. There are usually between -** 5 and 500 set operations per Bitvec object, though the number of sets can -** sometimes grow into tens of thousands or larger. The size of the -** Bitvec object is the number of pages in the database file at the -** start of a transaction, and is thus usually less than a few thousand, -** but can be as large as 2 billion for a really big database. -*/ - -/* Size of the Bitvec structure in bytes. */ -#define BITVEC_SZ 512 - -/* Round the union size down to the nearest pointer boundary, since that's how -** it will be aligned within the Bitvec struct. */ -#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) - -/* Type of the array "element" for the bitmap representation. -** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. -** Setting this to the "natural word" size of your CPU may improve -** performance. */ -#define BITVEC_TELEM u8 -/* Size, in bits, of the bitmap element. */ -#define BITVEC_SZELEM 8 -/* Number of elements in a bitmap array. */ -#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) -/* Number of bits in the bitmap array. */ -#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) - -/* Number of u32 values in hash table. */ -#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) -/* Maximum number of entries in hash table before -** sub-dividing and re-hashing. */ -#define BITVEC_MXHASH (BITVEC_NINT/2) -/* Hashing function for the aHash representation. -** Empirical testing showed that the *37 multiplier -** (an arbitrary prime)in the hash function provided -** no fewer collisions than the no-op *1. */ -#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) - -#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) - - -/* -** A bitmap is an instance of the following structure. -** -** This bitmap records the existence of zero or more bits -** with values between 1 and iSize, inclusive. -** -** There are three possible representations of the bitmap. -** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight -** bitmap. The least significant bit is bit 1. -** -** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is -** a hash table that will hold up to BITVEC_MXHASH distinct values. -** -** Otherwise, the value i is redirected into one of BITVEC_NPTR -** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap -** handles up to iDivisor separate values of i. apSub[0] holds -** values between 1 and iDivisor. apSub[1] holds values between -** iDivisor+1 and 2*iDivisor. apSub[N] holds values between -** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized -** to hold deal with values between 1 and iDivisor. -*/ -struct Bitvec { - u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ - u32 nSet; /* Number of bits that are set - only valid for aHash - ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, - ** this would be 125. */ - u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ - /* Should >=0 for apSub element. */ - /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ - /* For a BITVEC_SZ of 512, this would be 34,359,739. */ - union { - BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ - u32 aHash[BITVEC_NINT]; /* Hash table representation */ - Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ - } u; -}; - -/* -** Create a new bitmap object able to handle bits between 0 and iSize, -** inclusive. Return a pointer to the new object. Return NULL if -** malloc fails. -*/ -SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){ - Bitvec *p; - assert( sizeof(*p)==BITVEC_SZ ); - p = sqlite3MallocZero( sizeof(*p) ); - if( p ){ - p->iSize = iSize; - } - return p; -} - -/* -** Check to see if the i-th bit is set. Return true or false. -** If p is NULL (if the bitmap has not been created) or if -** i is out of range, then return false. -*/ -SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ - if( p==0 ) return 0; - if( i>p->iSize || i==0 ) return 0; - i--; - while( p->iDivisor ){ - u32 bin = i/p->iDivisor; - i = i%p->iDivisor; - p = p->u.apSub[bin]; - if (!p) { - return 0; - } - } - if( p->iSize<=BITVEC_NBIT ){ - return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; - } else{ - u32 h = BITVEC_HASH(i++); - while( p->u.aHash[h] ){ - if( p->u.aHash[h]==i ) return 1; - h = (h+1) % BITVEC_NINT; - } - return 0; - } -} - -/* -** Set the i-th bit. Return 0 on success and an error code if -** anything goes wrong. -** -** This routine might cause sub-bitmaps to be allocated. Failing -** to get the memory needed to hold the sub-bitmap is the only -** that can go wrong with an insert, assuming p and i are valid. -** -** The calling function must ensure that p is a valid Bitvec object -** and that the value for "i" is within range of the Bitvec object. -** Otherwise the behavior is undefined. -*/ -SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){ - u32 h; - if( p==0 ) return SQLITE_OK; - assert( i>0 ); - assert( i<=p->iSize ); - i--; - while((p->iSize > BITVEC_NBIT) && p->iDivisor) { - u32 bin = i/p->iDivisor; - i = i%p->iDivisor; - if( p->u.apSub[bin]==0 ){ - p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); - if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; - } - p = p->u.apSub[bin]; - } - if( p->iSize<=BITVEC_NBIT ){ - p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); - return SQLITE_OK; - } - h = BITVEC_HASH(i++); - /* if there wasn't a hash collision, and this doesn't */ - /* completely fill the hash, then just add it without */ - /* worring about sub-dividing and re-hashing. */ - if( !p->u.aHash[h] ){ - if (p->nSet<(BITVEC_NINT-1)) { - goto bitvec_set_end; - } else { - goto bitvec_set_rehash; - } - } - /* there was a collision, check to see if it's already */ - /* in hash, if not, try to find a spot for it */ - do { - if( p->u.aHash[h]==i ) return SQLITE_OK; - h++; - if( h>=BITVEC_NINT ) h = 0; - } while( p->u.aHash[h] ); - /* we didn't find it in the hash. h points to the first */ - /* available free spot. check to see if this is going to */ - /* make our hash too "full". */ -bitvec_set_rehash: - if( p->nSet>=BITVEC_MXHASH ){ - unsigned int j; - int rc; - u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); - if( aiValues==0 ){ - return SQLITE_NOMEM; - }else{ - memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); - memset(p->u.apSub, 0, sizeof(p->u.apSub)); - p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; - rc = sqlite3BitvecSet(p, i); - for(j=0; j<BITVEC_NINT; j++){ - if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); - } - sqlite3StackFree(0, aiValues); - return rc; - } - } -bitvec_set_end: - p->nSet++; - p->u.aHash[h] = i; - return SQLITE_OK; -} - -/* -** Clear the i-th bit. -** -** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage -** that BitvecClear can use to rebuilt its hash table. -*/ -SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ - if( p==0 ) return; - assert( i>0 ); - i--; - while( p->iDivisor ){ - u32 bin = i/p->iDivisor; - i = i%p->iDivisor; - p = p->u.apSub[bin]; - if (!p) { - return; - } - } - if( p->iSize<=BITVEC_NBIT ){ - p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); - }else{ - unsigned int j; - u32 *aiValues = pBuf; - memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); - memset(p->u.aHash, 0, sizeof(p->u.aHash)); - p->nSet = 0; - for(j=0; j<BITVEC_NINT; j++){ - if( aiValues[j] && aiValues[j]!=(i+1) ){ - u32 h = BITVEC_HASH(aiValues[j]-1); - p->nSet++; - while( p->u.aHash[h] ){ - h++; - if( h>=BITVEC_NINT ) h = 0; - } - p->u.aHash[h] = aiValues[j]; - } - } - } -} - -/* -** Destroy a bitmap object. Reclaim all memory used. -*/ -SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){ - if( p==0 ) return; - if( p->iDivisor ){ - unsigned int i; - for(i=0; i<BITVEC_NPTR; i++){ - sqlite3BitvecDestroy(p->u.apSub[i]); - } - } - sqlite3_free(p); -} - -/* -** Return the value of the iSize parameter specified when Bitvec *p -** was created. -*/ -SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){ - return p->iSize; -} - -#ifndef SQLITE_OMIT_BUILTIN_TEST -/* -** Let V[] be an array of unsigned characters sufficient to hold -** up to N bits. Let I be an integer between 0 and N. 0<=I<N. -** Then the following macros can be used to set, clear, or test -** individual bits within V. -*/ -#define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) -#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) -#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 - -/* -** This routine runs an extensive test of the Bitvec code. -** -** The input is an array of integers that acts as a program -** to test the Bitvec. The integers are opcodes followed -** by 0, 1, or 3 operands, depending on the opcode. Another -** opcode follows immediately after the last operand. -** -** There are 6 opcodes numbered from 0 through 5. 0 is the -** "halt" opcode and causes the test to end. -** -** 0 Halt and return the number of errors -** 1 N S X Set N bits beginning with S and incrementing by X -** 2 N S X Clear N bits beginning with S and incrementing by X -** 3 N Set N randomly chosen bits -** 4 N Clear N randomly chosen bits -** 5 N S X Set N bits from S increment X in array only, not in bitvec -** -** The opcodes 1 through 4 perform set and clear operations are performed -** on both a Bitvec object and on a linear array of bits obtained from malloc. -** Opcode 5 works on the linear array only, not on the Bitvec. -** Opcode 5 is used to deliberately induce a fault in order to -** confirm that error detection works. -** -** At the conclusion of the test the linear array is compared -** against the Bitvec object. If there are any differences, -** an error is returned. If they are the same, zero is returned. -** -** If a memory allocation error occurs, return -1. -*/ -SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){ - Bitvec *pBitvec = 0; - unsigned char *pV = 0; - int rc = -1; - int i, nx, pc, op; - void *pTmpSpace; - - /* Allocate the Bitvec to be tested and a linear array of - ** bits to act as the reference */ - pBitvec = sqlite3BitvecCreate( sz ); - pV = sqlite3MallocZero( (sz+7)/8 + 1 ); - pTmpSpace = sqlite3_malloc(BITVEC_SZ); - if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; - - /* NULL pBitvec tests */ - sqlite3BitvecSet(0, 1); - sqlite3BitvecClear(0, 1, pTmpSpace); - - /* Run the program */ - pc = 0; - while( (op = aOp[pc])!=0 ){ - switch( op ){ - case 1: - case 2: - case 5: { - nx = 4; - i = aOp[pc+2] - 1; - aOp[pc+2] += aOp[pc+3]; - break; - } - case 3: - case 4: - default: { - nx = 2; - sqlite3_randomness(sizeof(i), &i); - break; - } - } - if( (--aOp[pc+1]) > 0 ) nx = 0; - pc += nx; - i = (i & 0x7fffffff)%sz; - if( (op & 1)!=0 ){ - SETBIT(pV, (i+1)); - if( op!=5 ){ - if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; - } - }else{ - CLEARBIT(pV, (i+1)); - sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); - } - } - - /* Test to make sure the linear array exactly matches the - ** Bitvec object. Start with the assumption that they do - ** match (rc==0). Change rc to non-zero if a discrepancy - ** is found. - */ - rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) - + sqlite3BitvecTest(pBitvec, 0) - + (sqlite3BitvecSize(pBitvec) - sz); - for(i=1; i<=sz; i++){ - if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ - rc = i; - break; - } - } - - /* Free allocated structure */ -bitvec_end: - sqlite3_free(pTmpSpace); - sqlite3_free(pV); - sqlite3BitvecDestroy(pBitvec); - return rc; -} -#endif /* SQLITE_OMIT_BUILTIN_TEST */ - -/************** End of bitvec.c **********************************************/ -/************** Begin file pcache.c ******************************************/ -/* -** 2008 August 05 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file implements that page cache. -*/ - -/* -** A complete page cache is an instance of this structure. -*/ -struct PCache { - PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ - PgHdr *pSynced; /* Last synced page in dirty page list */ - int nRef; /* Number of referenced pages */ - int szCache; /* Configured cache size */ - int szPage; /* Size of every page in this cache */ - int szExtra; /* Size of extra space for each page */ - int bPurgeable; /* True if pages are on backing store */ - int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ - void *pStress; /* Argument to xStress */ - sqlite3_pcache *pCache; /* Pluggable cache module */ - PgHdr *pPage1; /* Reference to page 1 */ -}; - -/* -** Some of the assert() macros in this code are too expensive to run -** even during normal debugging. Use them only rarely on long-running -** tests. Enable the expensive asserts using the -** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option. -*/ -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT -# define expensive_assert(X) assert(X) -#else -# define expensive_assert(X) -#endif - -/********************************** Linked List Management ********************/ - -#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) -/* -** Check that the pCache->pSynced variable is set correctly. If it -** is not, either fail an assert or return zero. Otherwise, return -** non-zero. This is only used in debugging builds, as follows: -** -** expensive_assert( pcacheCheckSynced(pCache) ); -*/ -static int pcacheCheckSynced(PCache *pCache){ - PgHdr *p; - for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){ - assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) ); - } - return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0); -} -#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */ - -/* -** Remove page pPage from the list of dirty pages. -*/ -static void pcacheRemoveFromDirtyList(PgHdr *pPage){ - PCache *p = pPage->pCache; - - assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); - assert( pPage->pDirtyPrev || pPage==p->pDirty ); - - /* Update the PCache1.pSynced variable if necessary. */ - if( p->pSynced==pPage ){ - PgHdr *pSynced = pPage->pDirtyPrev; - while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ - pSynced = pSynced->pDirtyPrev; - } - p->pSynced = pSynced; - } - - if( pPage->pDirtyNext ){ - pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; - }else{ - assert( pPage==p->pDirtyTail ); - p->pDirtyTail = pPage->pDirtyPrev; - } - if( pPage->pDirtyPrev ){ - pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; - }else{ - assert( pPage==p->pDirty ); - p->pDirty = pPage->pDirtyNext; - } - pPage->pDirtyNext = 0; - pPage->pDirtyPrev = 0; - - expensive_assert( pcacheCheckSynced(p) ); -} - -/* -** Add page pPage to the head of the dirty list (PCache1.pDirty is set to -** pPage). -*/ -static void pcacheAddToDirtyList(PgHdr *pPage){ - PCache *p = pPage->pCache; - - assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); - - pPage->pDirtyNext = p->pDirty; - if( pPage->pDirtyNext ){ - assert( pPage->pDirtyNext->pDirtyPrev==0 ); - pPage->pDirtyNext->pDirtyPrev = pPage; - } - p->pDirty = pPage; - if( !p->pDirtyTail ){ - p->pDirtyTail = pPage; - } - if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ - p->pSynced = pPage; - } - expensive_assert( pcacheCheckSynced(p) ); -} - -/* -** Wrapper around the pluggable caches xUnpin method. If the cache is -** being used for an in-memory database, this function is a no-op. -*/ -static void pcacheUnpin(PgHdr *p){ - PCache *pCache = p->pCache; - if( pCache->bPurgeable ){ - if( p->pgno==1 ){ - pCache->pPage1 = 0; - } - sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 0); - } -} - -/*************************************************** General Interfaces ****** -** -** Initialize and shutdown the page cache subsystem. Neither of these -** functions are threadsafe. -*/ -SQLITE_PRIVATE int sqlite3PcacheInitialize(void){ - if( sqlite3GlobalConfig.pcache2.xInit==0 ){ - /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the - ** built-in default page cache is used instead of the application defined - ** page cache. */ - sqlite3PCacheSetDefault(); - } - return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); -} -SQLITE_PRIVATE void sqlite3PcacheShutdown(void){ - if( sqlite3GlobalConfig.pcache2.xShutdown ){ - /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ - sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); - } -} - -/* -** Return the size in bytes of a PCache object. -*/ -SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); } - -/* -** Create a new PCache object. Storage space to hold the object -** has already been allocated and is passed in as the p pointer. -** The caller discovers how much space needs to be allocated by -** calling sqlite3PcacheSize(). -*/ -SQLITE_PRIVATE void sqlite3PcacheOpen( - int szPage, /* Size of every page */ - int szExtra, /* Extra space associated with each page */ - int bPurgeable, /* True if pages are on backing store */ - int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ - void *pStress, /* Argument to xStress */ - PCache *p /* Preallocated space for the PCache */ -){ - memset(p, 0, sizeof(PCache)); - p->szPage = szPage; - p->szExtra = szExtra; - p->bPurgeable = bPurgeable; - p->xStress = xStress; - p->pStress = pStress; - p->szCache = 100; -} - -/* -** Change the page size for PCache object. The caller must ensure that there -** are no outstanding page references when this function is called. -*/ -SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ - assert( pCache->nRef==0 && pCache->pDirty==0 ); - if( pCache->pCache ){ - sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); - pCache->pCache = 0; - pCache->pPage1 = 0; - } - pCache->szPage = szPage; -} - -/* -** Compute the number of pages of cache requested. -*/ -static int numberOfCachePages(PCache *p){ - if( p->szCache>=0 ){ - return p->szCache; - }else{ - return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); - } -} - -/* -** Try to obtain a page from the cache. -*/ -SQLITE_PRIVATE int sqlite3PcacheFetch( - PCache *pCache, /* Obtain the page from this cache */ - Pgno pgno, /* Page number to obtain */ - int createFlag, /* If true, create page if it does not exist already */ - PgHdr **ppPage /* Write the page here */ -){ - sqlite3_pcache_page *pPage = 0; - PgHdr *pPgHdr = 0; - int eCreate; - - assert( pCache!=0 ); - assert( createFlag==1 || createFlag==0 ); - assert( pgno>0 ); - - /* If the pluggable cache (sqlite3_pcache*) has not been allocated, - ** allocate it now. - */ - if( !pCache->pCache && createFlag ){ - sqlite3_pcache *p; - p = sqlite3GlobalConfig.pcache2.xCreate( - pCache->szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable - ); - if( !p ){ - return SQLITE_NOMEM; - } - sqlite3GlobalConfig.pcache2.xCachesize(p, numberOfCachePages(pCache)); - pCache->pCache = p; - } - - eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty)); - if( pCache->pCache ){ - pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); - } - - if( !pPage && eCreate==1 ){ - PgHdr *pPg; - - /* Find a dirty page to write-out and recycle. First try to find a - ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC - ** cleared), but if that is not possible settle for any other - ** unreferenced dirty page. - */ - expensive_assert( pcacheCheckSynced(pCache) ); - for(pPg=pCache->pSynced; - pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); - pPg=pPg->pDirtyPrev - ); - pCache->pSynced = pPg; - if( !pPg ){ - for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); - } - if( pPg ){ - int rc; -#ifdef SQLITE_LOG_CACHE_SPILL - sqlite3_log(SQLITE_FULL, - "spill page %d making room for %d - cache used: %d/%d", - pPg->pgno, pgno, - sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), - numberOfCachePages(pCache)); -#endif - rc = pCache->xStress(pCache->pStress, pPg); - if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ - return rc; - } - } - - pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); - } - - if( pPage ){ - pPgHdr = (PgHdr *)pPage->pExtra; - - if( !pPgHdr->pPage ){ - memset(pPgHdr, 0, sizeof(PgHdr)); - pPgHdr->pPage = pPage; - pPgHdr->pData = pPage->pBuf; - pPgHdr->pExtra = (void *)&pPgHdr[1]; - memset(pPgHdr->pExtra, 0, pCache->szExtra); - pPgHdr->pCache = pCache; - pPgHdr->pgno = pgno; - } - assert( pPgHdr->pCache==pCache ); - assert( pPgHdr->pgno==pgno ); - assert( pPgHdr->pData==pPage->pBuf ); - assert( pPgHdr->pExtra==(void *)&pPgHdr[1] ); - - if( 0==pPgHdr->nRef ){ - pCache->nRef++; - } - pPgHdr->nRef++; - if( pgno==1 ){ - pCache->pPage1 = pPgHdr; - } - } - *ppPage = pPgHdr; - return (pPgHdr==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK; -} - -/* -** Decrement the reference count on a page. If the page is clean and the -** reference count drops to 0, then it is made elible for recycling. -*/ -SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr *p){ - assert( p->nRef>0 ); - p->nRef--; - if( p->nRef==0 ){ - PCache *pCache = p->pCache; - pCache->nRef--; - if( (p->flags&PGHDR_DIRTY)==0 ){ - pcacheUnpin(p); - }else{ - /* Move the page to the head of the dirty list. */ - pcacheRemoveFromDirtyList(p); - pcacheAddToDirtyList(p); - } - } -} - -/* -** Increase the reference count of a supplied page by 1. -*/ -SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){ - assert(p->nRef>0); - p->nRef++; -} - -/* -** Drop a page from the cache. There must be exactly one reference to the -** page. This function deletes that reference, so after it returns the -** page pointed to by p is invalid. -*/ -SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){ - PCache *pCache; - assert( p->nRef==1 ); - if( p->flags&PGHDR_DIRTY ){ - pcacheRemoveFromDirtyList(p); - } - pCache = p->pCache; - pCache->nRef--; - if( p->pgno==1 ){ - pCache->pPage1 = 0; - } - sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 1); -} - -/* -** Make sure the page is marked as dirty. If it isn't dirty already, -** make it so. -*/ -SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ - p->flags &= ~PGHDR_DONT_WRITE; - assert( p->nRef>0 ); - if( 0==(p->flags & PGHDR_DIRTY) ){ - p->flags |= PGHDR_DIRTY; - pcacheAddToDirtyList( p); - } -} - -/* -** Make sure the page is marked as clean. If it isn't clean already, -** make it so. -*/ -SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){ - if( (p->flags & PGHDR_DIRTY) ){ - pcacheRemoveFromDirtyList(p); - p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); - if( p->nRef==0 ){ - pcacheUnpin(p); - } - } -} - -/* -** Make every page in the cache clean. -*/ -SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){ - PgHdr *p; - while( (p = pCache->pDirty)!=0 ){ - sqlite3PcacheMakeClean(p); - } -} - -/* -** Clear the PGHDR_NEED_SYNC flag from all dirty pages. -*/ -SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){ - PgHdr *p; - for(p=pCache->pDirty; p; p=p->pDirtyNext){ - p->flags &= ~PGHDR_NEED_SYNC; - } - pCache->pSynced = pCache->pDirtyTail; -} - -/* -** Change the page number of page p to newPgno. -*/ -SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ - PCache *pCache = p->pCache; - assert( p->nRef>0 ); - assert( newPgno>0 ); - sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); - p->pgno = newPgno; - if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ - pcacheRemoveFromDirtyList(p); - pcacheAddToDirtyList(p); - } -} - -/* -** Drop every cache entry whose page number is greater than "pgno". The -** caller must ensure that there are no outstanding references to any pages -** other than page 1 with a page number greater than pgno. -** -** If there is a reference to page 1 and the pgno parameter passed to this -** function is 0, then the data area associated with page 1 is zeroed, but -** the page object is not dropped. -*/ -SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ - if( pCache->pCache ){ - PgHdr *p; - PgHdr *pNext; - for(p=pCache->pDirty; p; p=pNext){ - pNext = p->pDirtyNext; - /* This routine never gets call with a positive pgno except right - ** after sqlite3PcacheCleanAll(). So if there are dirty pages, - ** it must be that pgno==0. - */ - assert( p->pgno>0 ); - if( ALWAYS(p->pgno>pgno) ){ - assert( p->flags&PGHDR_DIRTY ); - sqlite3PcacheMakeClean(p); - } - } - if( pgno==0 && pCache->pPage1 ){ - memset(pCache->pPage1->pData, 0, pCache->szPage); - pgno = 1; - } - sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); - } -} - -/* -** Close a cache. -*/ -SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){ - if( pCache->pCache ){ - sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); - } -} - -/* -** Discard the contents of the cache. -*/ -SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){ - sqlite3PcacheTruncate(pCache, 0); -} - -/* -** Merge two lists of pages connected by pDirty and in pgno order. -** Do not both fixing the pDirtyPrev pointers. -*/ -static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ - PgHdr result, *pTail; - pTail = &result; - while( pA && pB ){ - if( pA->pgno<pB->pgno ){ - pTail->pDirty = pA; - pTail = pA; - pA = pA->pDirty; - }else{ - pTail->pDirty = pB; - pTail = pB; - pB = pB->pDirty; - } - } - if( pA ){ - pTail->pDirty = pA; - }else if( pB ){ - pTail->pDirty = pB; - }else{ - pTail->pDirty = 0; - } - return result.pDirty; -} - -/* -** Sort the list of pages in accending order by pgno. Pages are -** connected by pDirty pointers. The pDirtyPrev pointers are -** corrupted by this sort. -** -** Since there cannot be more than 2^31 distinct pages in a database, -** there cannot be more than 31 buckets required by the merge sorter. -** One extra bucket is added to catch overflow in case something -** ever changes to make the previous sentence incorrect. -*/ -#define N_SORT_BUCKET 32 -static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ - PgHdr *a[N_SORT_BUCKET], *p; - int i; - memset(a, 0, sizeof(a)); - while( pIn ){ - p = pIn; - pIn = p->pDirty; - p->pDirty = 0; - for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ - if( a[i]==0 ){ - a[i] = p; - break; - }else{ - p = pcacheMergeDirtyList(a[i], p); - a[i] = 0; - } - } - if( NEVER(i==N_SORT_BUCKET-1) ){ - /* To get here, there need to be 2^(N_SORT_BUCKET) elements in - ** the input list. But that is impossible. - */ - a[i] = pcacheMergeDirtyList(a[i], p); - } - } - p = a[0]; - for(i=1; i<N_SORT_BUCKET; i++){ - p = pcacheMergeDirtyList(p, a[i]); - } - return p; -} - -/* -** Return a list of all dirty pages in the cache, sorted by page number. -*/ -SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ - PgHdr *p; - for(p=pCache->pDirty; p; p=p->pDirtyNext){ - p->pDirty = p->pDirtyNext; - } - return pcacheSortDirtyList(pCache->pDirty); -} - -/* -** Return the total number of referenced pages held by the cache. -*/ -SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache *pCache){ - return pCache->nRef; -} - -/* -** Return the number of references to the page supplied as an argument. -*/ -SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr *p){ - return p->nRef; -} - -/* -** Return the total number of pages in the cache. -*/ -SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){ - int nPage = 0; - if( pCache->pCache ){ - nPage = sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); - } - return nPage; -} - -#ifdef SQLITE_TEST -/* -** Get the suggested cache-size value. -*/ -SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){ - return numberOfCachePages(pCache); -} -#endif - -/* -** Set the suggested cache-size value. -*/ -SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ - pCache->szCache = mxPage; - if( pCache->pCache ){ - sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, - numberOfCachePages(pCache)); - } -} - -/* -** Free up as much memory as possible from the page cache. -*/ -SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){ - if( pCache->pCache ){ - sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); - } -} - -#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) -/* -** For all dirty pages currently in the cache, invoke the specified -** callback. This is only used if the SQLITE_CHECK_PAGES macro is -** defined. -*/ -SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ - PgHdr *pDirty; - for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ - xIter(pDirty); - } -} -#endif - -/************** End of pcache.c **********************************************/ -/************** Begin file pcache1.c *****************************************/ -/* -** 2008 November 05 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file implements the default page cache implementation (the -** sqlite3_pcache interface). It also contains part of the implementation -** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. -** If the default page cache implementation is overriden, then neither of -** these two features are available. -*/ - - -typedef struct PCache1 PCache1; -typedef struct PgHdr1 PgHdr1; -typedef struct PgFreeslot PgFreeslot; -typedef struct PGroup PGroup; - -/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set -** of one or more PCaches that are able to recycle each others unpinned -** pages when they are under memory pressure. A PGroup is an instance of -** the following object. -** -** This page cache implementation works in one of two modes: -** -** (1) Every PCache is the sole member of its own PGroup. There is -** one PGroup per PCache. -** -** (2) There is a single global PGroup that all PCaches are a member -** of. -** -** Mode 1 uses more memory (since PCache instances are not able to rob -** unused pages from other PCaches) but it also operates without a mutex, -** and is therefore often faster. Mode 2 requires a mutex in order to be -** threadsafe, but recycles pages more efficiently. -** -** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single -** PGroup which is the pcache1.grp global variable and its mutex is -** SQLITE_MUTEX_STATIC_LRU. -*/ -struct PGroup { - sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ - unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ - unsigned int nMinPage; /* Sum of nMin for purgeable caches */ - unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ - unsigned int nCurrentPage; /* Number of purgeable pages allocated */ - PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ -}; - -/* Each page cache is an instance of the following object. Every -** open database file (including each in-memory database and each -** temporary or transient database) has a single page cache which -** is an instance of this object. -** -** Pointers to structures of this type are cast and returned as -** opaque sqlite3_pcache* handles. -*/ -struct PCache1 { - /* Cache configuration parameters. Page size (szPage) and the purgeable - ** flag (bPurgeable) are set when the cache is created. nMax may be - ** modified at any time by a call to the pcache1Cachesize() method. - ** The PGroup mutex must be held when accessing nMax. - */ - PGroup *pGroup; /* PGroup this cache belongs to */ - int szPage; /* Size of allocated pages in bytes */ - int szExtra; /* Size of extra space in bytes */ - int bPurgeable; /* True if cache is purgeable */ - unsigned int nMin; /* Minimum number of pages reserved */ - unsigned int nMax; /* Configured "cache_size" value */ - unsigned int n90pct; /* nMax*9/10 */ - unsigned int iMaxKey; /* Largest key seen since xTruncate() */ - - /* Hash table of all pages. The following variables may only be accessed - ** when the accessor is holding the PGroup mutex. - */ - unsigned int nRecyclable; /* Number of pages in the LRU list */ - unsigned int nPage; /* Total number of pages in apHash */ - unsigned int nHash; /* Number of slots in apHash[] */ - PgHdr1 **apHash; /* Hash table for fast lookup by key */ -}; - -/* -** Each cache entry is represented by an instance of the following -** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of -** PgHdr1.pCache->szPage bytes is allocated directly before this structure -** in memory. -*/ -struct PgHdr1 { - sqlite3_pcache_page page; - unsigned int iKey; /* Key value (page number) */ - PgHdr1 *pNext; /* Next in hash table chain */ - PCache1 *pCache; /* Cache that currently owns this page */ - PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ - PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ -}; - -/* -** Free slots in the allocator used to divide up the buffer provided using -** the SQLITE_CONFIG_PAGECACHE mechanism. -*/ -struct PgFreeslot { - PgFreeslot *pNext; /* Next free slot */ -}; - -/* -** Global data used by this cache. -*/ -static SQLITE_WSD struct PCacheGlobal { - PGroup grp; /* The global PGroup for mode (2) */ - - /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The - ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all - ** fixed at sqlite3_initialize() time and do not require mutex protection. - ** The nFreeSlot and pFree values do require mutex protection. - */ - int isInit; /* True if initialized */ - int szSlot; /* Size of each free slot */ - int nSlot; /* The number of pcache slots */ - int nReserve; /* Try to keep nFreeSlot above this */ - void *pStart, *pEnd; /* Bounds of pagecache malloc range */ - /* Above requires no mutex. Use mutex below for variable that follow. */ - sqlite3_mutex *mutex; /* Mutex for accessing the following: */ - PgFreeslot *pFree; /* Free page blocks */ - int nFreeSlot; /* Number of unused pcache slots */ - /* The following value requires a mutex to change. We skip the mutex on - ** reading because (1) most platforms read a 32-bit integer atomically and - ** (2) even if an incorrect value is read, no great harm is done since this - ** is really just an optimization. */ - int bUnderPressure; /* True if low on PAGECACHE memory */ -} pcache1_g; - -/* -** All code in this file should access the global structure above via the -** alias "pcache1". This ensures that the WSD emulation is used when -** compiling for systems that do not support real WSD. -*/ -#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) - -/* -** Macros to enter and leave the PCache LRU mutex. -*/ -#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) -#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) - -/******************************************************************************/ -/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ - -/* -** This function is called during initialization if a static buffer is -** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE -** verb to sqlite3_config(). Parameter pBuf points to an allocation large -** enough to contain 'n' buffers of 'sz' bytes each. -** -** This routine is called from sqlite3_initialize() and so it is guaranteed -** to be serialized already. There is no need for further mutexing. -*/ -SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ - if( pcache1.isInit ){ - PgFreeslot *p; - sz = ROUNDDOWN8(sz); - pcache1.szSlot = sz; - pcache1.nSlot = pcache1.nFreeSlot = n; - pcache1.nReserve = n>90 ? 10 : (n/10 + 1); - pcache1.pStart = pBuf; - pcache1.pFree = 0; - pcache1.bUnderPressure = 0; - while( n-- ){ - p = (PgFreeslot*)pBuf; - p->pNext = pcache1.pFree; - pcache1.pFree = p; - pBuf = (void*)&((char*)pBuf)[sz]; - } - pcache1.pEnd = pBuf; - } -} - -/* -** Malloc function used within this file to allocate space from the buffer -** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no -** such buffer exists or there is no space left in it, this function falls -** back to sqlite3Malloc(). -** -** Multiple threads can run this routine at the same time. Global variables -** in pcache1 need to be protected via mutex. -*/ -static void *pcache1Alloc(int nByte){ - void *p = 0; - assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); - sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); - if( nByte<=pcache1.szSlot ){ - sqlite3_mutex_enter(pcache1.mutex); - p = (PgHdr1 *)pcache1.pFree; - if( p ){ - pcache1.pFree = pcache1.pFree->pNext; - pcache1.nFreeSlot--; - pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; - assert( pcache1.nFreeSlot>=0 ); - sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); - } - sqlite3_mutex_leave(pcache1.mutex); - } - if( p==0 ){ - /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get - ** it from sqlite3Malloc instead. - */ - p = sqlite3Malloc(nByte); -#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS - if( p ){ - int sz = sqlite3MallocSize(p); - sqlite3_mutex_enter(pcache1.mutex); - sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); - sqlite3_mutex_leave(pcache1.mutex); - } -#endif - sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); - } - return p; -} - -/* -** Free an allocated buffer obtained from pcache1Alloc(). -*/ -static int pcache1Free(void *p){ - int nFreed = 0; - if( p==0 ) return 0; - if( p>=pcache1.pStart && p<pcache1.pEnd ){ - PgFreeslot *pSlot; - sqlite3_mutex_enter(pcache1.mutex); - sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1); - pSlot = (PgFreeslot*)p; - pSlot->pNext = pcache1.pFree; - pcache1.pFree = pSlot; - pcache1.nFreeSlot++; - pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; - assert( pcache1.nFreeSlot<=pcache1.nSlot ); - sqlite3_mutex_leave(pcache1.mutex); - }else{ - assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); - sqlite3MemdebugSetType(p, MEMTYPE_HEAP); - nFreed = sqlite3MallocSize(p); -#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS - sqlite3_mutex_enter(pcache1.mutex); - sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed); - sqlite3_mutex_leave(pcache1.mutex); -#endif - sqlite3_free(p); - } - return nFreed; -} - -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT -/* -** Return the size of a pcache allocation -*/ -static int pcache1MemSize(void *p){ - if( p>=pcache1.pStart && p<pcache1.pEnd ){ - return pcache1.szSlot; - }else{ - int iSize; - assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); - sqlite3MemdebugSetType(p, MEMTYPE_HEAP); - iSize = sqlite3MallocSize(p); - sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); - return iSize; - } -} -#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ - -/* -** Allocate a new page object initially associated with cache pCache. -*/ -static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ - PgHdr1 *p = 0; - void *pPg; - - /* The group mutex must be released before pcache1Alloc() is called. This - ** is because it may call sqlite3_release_memory(), which assumes that - ** this mutex is not held. */ - assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); - pcache1LeaveMutex(pCache->pGroup); -#ifdef SQLITE_PCACHE_SEPARATE_HEADER - pPg = pcache1Alloc(pCache->szPage); - p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); - if( !pPg || !p ){ - pcache1Free(pPg); - sqlite3_free(p); - pPg = 0; - } -#else - pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra); - p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; -#endif - pcache1EnterMutex(pCache->pGroup); - - if( pPg ){ - p->page.pBuf = pPg; - p->page.pExtra = &p[1]; - if( pCache->bPurgeable ){ - pCache->pGroup->nCurrentPage++; - } - return p; - } - return 0; -} - -/* -** Free a page object allocated by pcache1AllocPage(). -** -** The pointer is allowed to be NULL, which is prudent. But it turns out -** that the current implementation happens to never call this routine -** with a NULL pointer, so we mark the NULL test with ALWAYS(). -*/ -static void pcache1FreePage(PgHdr1 *p){ - if( ALWAYS(p) ){ - PCache1 *pCache = p->pCache; - assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); - pcache1Free(p->page.pBuf); -#ifdef SQLITE_PCACHE_SEPARATE_HEADER - sqlite3_free(p); -#endif - if( pCache->bPurgeable ){ - pCache->pGroup->nCurrentPage--; - } - } -} - -/* -** Malloc function used by SQLite to obtain space from the buffer configured -** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer -** exists, this function falls back to sqlite3Malloc(). -*/ -SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){ - return pcache1Alloc(sz); -} - -/* -** Free an allocated buffer obtained from sqlite3PageMalloc(). -*/ -SQLITE_PRIVATE void sqlite3PageFree(void *p){ - pcache1Free(p); -} - - -/* -** Return true if it desirable to avoid allocating a new page cache -** entry. -** -** If memory was allocated specifically to the page cache using -** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then -** it is desirable to avoid allocating a new page cache entry because -** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient -** for all page cache needs and we should not need to spill the -** allocation onto the heap. -** -** Or, the heap is used for all page cache memory but the heap is -** under memory pressure, then again it is desirable to avoid -** allocating a new page cache entry in order to avoid stressing -** the heap even further. -*/ -static int pcache1UnderMemoryPressure(PCache1 *pCache){ - if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ - return pcache1.bUnderPressure; - }else{ - return sqlite3HeapNearlyFull(); - } -} - -/******************************************************************************/ -/******** General Implementation Functions ************************************/ - -/* -** This function is used to resize the hash table used by the cache passed -** as the first argument. -** -** The PCache mutex must be held when this function is called. -*/ -static int pcache1ResizeHash(PCache1 *p){ - PgHdr1 **apNew; - unsigned int nNew; - unsigned int i; - - assert( sqlite3_mutex_held(p->pGroup->mutex) ); - - nNew = p->nHash*2; - if( nNew<256 ){ - nNew = 256; - } - - pcache1LeaveMutex(p->pGroup); - if( p->nHash ){ sqlite3BeginBenignMalloc(); } - apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); - if( p->nHash ){ sqlite3EndBenignMalloc(); } - pcache1EnterMutex(p->pGroup); - if( apNew ){ - for(i=0; i<p->nHash; i++){ - PgHdr1 *pPage; - PgHdr1 *pNext = p->apHash[i]; - while( (pPage = pNext)!=0 ){ - unsigned int h = pPage->iKey % nNew; - pNext = pPage->pNext; - pPage->pNext = apNew[h]; - apNew[h] = pPage; - } - } - sqlite3_free(p->apHash); - p->apHash = apNew; - p->nHash = nNew; - } - - return (p->apHash ? SQLITE_OK : SQLITE_NOMEM); -} - -/* -** This function is used internally to remove the page pPage from the -** PGroup LRU list, if is part of it. If pPage is not part of the PGroup -** LRU list, then this function is a no-op. -** -** The PGroup mutex must be held when this function is called. -** -** If pPage is NULL then this routine is a no-op. -*/ -static void pcache1PinPage(PgHdr1 *pPage){ - PCache1 *pCache; - PGroup *pGroup; - - if( pPage==0 ) return; - pCache = pPage->pCache; - pGroup = pCache->pGroup; - assert( sqlite3_mutex_held(pGroup->mutex) ); - if( pPage->pLruNext || pPage==pGroup->pLruTail ){ - if( pPage->pLruPrev ){ - pPage->pLruPrev->pLruNext = pPage->pLruNext; - } - if( pPage->pLruNext ){ - pPage->pLruNext->pLruPrev = pPage->pLruPrev; - } - if( pGroup->pLruHead==pPage ){ - pGroup->pLruHead = pPage->pLruNext; - } - if( pGroup->pLruTail==pPage ){ - pGroup->pLruTail = pPage->pLruPrev; - } - pPage->pLruNext = 0; - pPage->pLruPrev = 0; - pPage->pCache->nRecyclable--; - } -} - - -/* -** Remove the page supplied as an argument from the hash table -** (PCache1.apHash structure) that it is currently stored in. -** -** The PGroup mutex must be held when this function is called. -*/ -static void pcache1RemoveFromHash(PgHdr1 *pPage){ - unsigned int h; - PCache1 *pCache = pPage->pCache; - PgHdr1 **pp; - - assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); - h = pPage->iKey % pCache->nHash; - for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); - *pp = (*pp)->pNext; - - pCache->nPage--; -} - -/* -** If there are currently more than nMaxPage pages allocated, try -** to recycle pages to reduce the number allocated to nMaxPage. -*/ -static void pcache1EnforceMaxPage(PGroup *pGroup){ - assert( sqlite3_mutex_held(pGroup->mutex) ); - while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ - PgHdr1 *p = pGroup->pLruTail; - assert( p->pCache->pGroup==pGroup ); - pcache1PinPage(p); - pcache1RemoveFromHash(p); - pcache1FreePage(p); - } -} - -/* -** Discard all pages from cache pCache with a page number (key value) -** greater than or equal to iLimit. Any pinned pages that meet this -** criteria are unpinned before they are discarded. -** -** The PCache mutex must be held when this function is called. -*/ -static void pcache1TruncateUnsafe( - PCache1 *pCache, /* The cache to truncate */ - unsigned int iLimit /* Drop pages with this pgno or larger */ -){ - TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ - unsigned int h; - assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); - for(h=0; h<pCache->nHash; h++){ - PgHdr1 **pp = &pCache->apHash[h]; - PgHdr1 *pPage; - while( (pPage = *pp)!=0 ){ - if( pPage->iKey>=iLimit ){ - pCache->nPage--; - *pp = pPage->pNext; - pcache1PinPage(pPage); - pcache1FreePage(pPage); - }else{ - pp = &pPage->pNext; - TESTONLY( nPage++; ) - } - } - } - assert( pCache->nPage==nPage ); -} - -/******************************************************************************/ -/******** sqlite3_pcache Methods **********************************************/ - -/* -** Implementation of the sqlite3_pcache.xInit method. -*/ -static int pcache1Init(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - assert( pcache1.isInit==0 ); - memset(&pcache1, 0, sizeof(pcache1)); - if( sqlite3GlobalConfig.bCoreMutex ){ - pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); - pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); - } - pcache1.grp.mxPinned = 10; - pcache1.isInit = 1; - return SQLITE_OK; -} - -/* -** Implementation of the sqlite3_pcache.xShutdown method. -** Note that the static mutex allocated in xInit does -** not need to be freed. -*/ -static void pcache1Shutdown(void *NotUsed){ - UNUSED_PARAMETER(NotUsed); - assert( pcache1.isInit!=0 ); - memset(&pcache1, 0, sizeof(pcache1)); -} - -/* -** Implementation of the sqlite3_pcache.xCreate method. -** -** Allocate a new cache. -*/ -static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ - PCache1 *pCache; /* The newly created page cache */ - PGroup *pGroup; /* The group the new page cache will belong to */ - int sz; /* Bytes of memory required to allocate the new cache */ - - /* - ** The seperateCache variable is true if each PCache has its own private - ** PGroup. In other words, separateCache is true for mode (1) where no - ** mutexing is required. - ** - ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT - ** - ** * Always use a unified cache in single-threaded applications - ** - ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off) - ** use separate caches (mode-1) - */ -#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 - const int separateCache = 0; -#else - int separateCache = sqlite3GlobalConfig.bCoreMutex>0; -#endif - - assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); - assert( szExtra < 300 ); - - sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; - pCache = (PCache1 *)sqlite3MallocZero(sz); - if( pCache ){ - if( separateCache ){ - pGroup = (PGroup*)&pCache[1]; - pGroup->mxPinned = 10; - }else{ - pGroup = &pcache1.grp; - } - pCache->pGroup = pGroup; - pCache->szPage = szPage; - pCache->szExtra = szExtra; - pCache->bPurgeable = (bPurgeable ? 1 : 0); - if( bPurgeable ){ - pCache->nMin = 10; - pcache1EnterMutex(pGroup); - pGroup->nMinPage += pCache->nMin; - pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; - pcache1LeaveMutex(pGroup); - } - } - return (sqlite3_pcache *)pCache; -} - -/* -** Implementation of the sqlite3_pcache.xCachesize method. -** -** Configure the cache_size limit for a cache. -*/ -static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ - PCache1 *pCache = (PCache1 *)p; - if( pCache->bPurgeable ){ - PGroup *pGroup = pCache->pGroup; - pcache1EnterMutex(pGroup); - pGroup->nMaxPage += (nMax - pCache->nMax); - pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; - pCache->nMax = nMax; - pCache->n90pct = pCache->nMax*9/10; - pcache1EnforceMaxPage(pGroup); - pcache1LeaveMutex(pGroup); - } -} - -/* -** Implementation of the sqlite3_pcache.xShrink method. -** -** Free up as much memory as possible. -*/ -static void pcache1Shrink(sqlite3_pcache *p){ - PCache1 *pCache = (PCache1*)p; - if( pCache->bPurgeable ){ - PGroup *pGroup = pCache->pGroup; - int savedMaxPage; - pcache1EnterMutex(pGroup); - savedMaxPage = pGroup->nMaxPage; - pGroup->nMaxPage = 0; - pcache1EnforceMaxPage(pGroup); - pGroup->nMaxPage = savedMaxPage; - pcache1LeaveMutex(pGroup); - } -} - -/* -** Implementation of the sqlite3_pcache.xPagecount method. -*/ -static int pcache1Pagecount(sqlite3_pcache *p){ - int n; - PCache1 *pCache = (PCache1*)p; - pcache1EnterMutex(pCache->pGroup); - n = pCache->nPage; - pcache1LeaveMutex(pCache->pGroup); - return n; -} - -/* -** Implementation of the sqlite3_pcache.xFetch method. -** -** Fetch a page by key value. -** -** Whether or not a new page may be allocated by this function depends on -** the value of the createFlag argument. 0 means do not allocate a new -** page. 1 means allocate a new page if space is easily available. 2 -** means to try really hard to allocate a new page. -** -** For a non-purgeable cache (a cache used as the storage for an in-memory -** database) there is really no difference between createFlag 1 and 2. So -** the calling function (pcache.c) will never have a createFlag of 1 on -** a non-purgeable cache. -** -** There are three different approaches to obtaining space for a page, -** depending on the value of parameter createFlag (which may be 0, 1 or 2). -** -** 1. Regardless of the value of createFlag, the cache is searched for a -** copy of the requested page. If one is found, it is returned. -** -** 2. If createFlag==0 and the page is not already in the cache, NULL is -** returned. -** -** 3. If createFlag is 1, and the page is not already in the cache, then -** return NULL (do not allocate a new page) if any of the following -** conditions are true: -** -** (a) the number of pages pinned by the cache is greater than -** PCache1.nMax, or -** -** (b) the number of pages pinned by the cache is greater than -** the sum of nMax for all purgeable caches, less the sum of -** nMin for all other purgeable caches, or -** -** 4. If none of the first three conditions apply and the cache is marked -** as purgeable, and if one of the following is true: -** -** (a) The number of pages allocated for the cache is already -** PCache1.nMax, or -** -** (b) The number of pages allocated for all purgeable caches is -** already equal to or greater than the sum of nMax for all -** purgeable caches, -** -** (c) The system is under memory pressure and wants to avoid -** unnecessary pages cache entry allocations -** -** then attempt to recycle a page from the LRU list. If it is the right -** size, return the recycled buffer. Otherwise, free the buffer and -** proceed to step 5. -** -** 5. Otherwise, allocate and return a new page buffer. -*/ -static sqlite3_pcache_page *pcache1Fetch( - sqlite3_pcache *p, - unsigned int iKey, - int createFlag -){ - unsigned int nPinned; - PCache1 *pCache = (PCache1 *)p; - PGroup *pGroup; - PgHdr1 *pPage = 0; - - assert( pCache->bPurgeable || createFlag!=1 ); - assert( pCache->bPurgeable || pCache->nMin==0 ); - assert( pCache->bPurgeable==0 || pCache->nMin==10 ); - assert( pCache->nMin==0 || pCache->bPurgeable ); - pcache1EnterMutex(pGroup = pCache->pGroup); - - /* Step 1: Search the hash table for an existing entry. */ - if( pCache->nHash>0 ){ - unsigned int h = iKey % pCache->nHash; - for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext); - } - - /* Step 2: Abort if no existing page is found and createFlag is 0 */ - if( pPage || createFlag==0 ){ - pcache1PinPage(pPage); - goto fetch_out; - } - - /* The pGroup local variable will normally be initialized by the - ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined, - ** then pcache1EnterMutex() is a no-op, so we have to initialize the - ** local variable here. Delaying the initialization of pGroup is an - ** optimization: The common case is to exit the module before reaching - ** this point. - */ -#ifdef SQLITE_MUTEX_OMIT - pGroup = pCache->pGroup; -#endif - - /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ - assert( pCache->nPage >= pCache->nRecyclable ); - nPinned = pCache->nPage - pCache->nRecyclable; - assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); - assert( pCache->n90pct == pCache->nMax*9/10 ); - if( createFlag==1 && ( - nPinned>=pGroup->mxPinned - || nPinned>=pCache->n90pct - || pcache1UnderMemoryPressure(pCache) - )){ - goto fetch_out; - } - - if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ - goto fetch_out; - } - - /* Step 4. Try to recycle a page. */ - if( pCache->bPurgeable && pGroup->pLruTail && ( - (pCache->nPage+1>=pCache->nMax) - || pGroup->nCurrentPage>=pGroup->nMaxPage - || pcache1UnderMemoryPressure(pCache) - )){ - PCache1 *pOther; - pPage = pGroup->pLruTail; - pcache1RemoveFromHash(pPage); - pcache1PinPage(pPage); - pOther = pPage->pCache; - - /* We want to verify that szPage and szExtra are the same for pOther - ** and pCache. Assert that we can verify this by comparing sums. */ - assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); - assert( pCache->szExtra<512 ); - assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 ); - assert( pOther->szExtra<512 ); - - if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){ - pcache1FreePage(pPage); - pPage = 0; - }else{ - pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); - } - } - - /* Step 5. If a usable page buffer has still not been found, - ** attempt to allocate a new one. - */ - if( !pPage ){ - if( createFlag==1 ) sqlite3BeginBenignMalloc(); - pPage = pcache1AllocPage(pCache); - if( createFlag==1 ) sqlite3EndBenignMalloc(); - } - - if( pPage ){ - unsigned int h = iKey % pCache->nHash; - pCache->nPage++; - pPage->iKey = iKey; - pPage->pNext = pCache->apHash[h]; - pPage->pCache = pCache; - pPage->pLruPrev = 0; - pPage->pLruNext = 0; - *(void **)pPage->page.pExtra = 0; - pCache->apHash[h] = pPage; - } - -fetch_out: - if( pPage && iKey>pCache->iMaxKey ){ - pCache->iMaxKey = iKey; - } - pcache1LeaveMutex(pGroup); - return &pPage->page; -} - - -/* -** Implementation of the sqlite3_pcache.xUnpin method. -** -** Mark a page as unpinned (eligible for asynchronous recycling). -*/ -static void pcache1Unpin( - sqlite3_pcache *p, - sqlite3_pcache_page *pPg, - int reuseUnlikely -){ - PCache1 *pCache = (PCache1 *)p; - PgHdr1 *pPage = (PgHdr1 *)pPg; - PGroup *pGroup = pCache->pGroup; - - assert( pPage->pCache==pCache ); - pcache1EnterMutex(pGroup); - - /* It is an error to call this function if the page is already - ** part of the PGroup LRU list. - */ - assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); - assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); - - if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ - pcache1RemoveFromHash(pPage); - pcache1FreePage(pPage); - }else{ - /* Add the page to the PGroup LRU list. */ - if( pGroup->pLruHead ){ - pGroup->pLruHead->pLruPrev = pPage; - pPage->pLruNext = pGroup->pLruHead; - pGroup->pLruHead = pPage; - }else{ - pGroup->pLruTail = pPage; - pGroup->pLruHead = pPage; - } - pCache->nRecyclable++; - } - - pcache1LeaveMutex(pCache->pGroup); -} - -/* -** Implementation of the sqlite3_pcache.xRekey method. -*/ -static void pcache1Rekey( - sqlite3_pcache *p, - sqlite3_pcache_page *pPg, - unsigned int iOld, - unsigned int iNew -){ - PCache1 *pCache = (PCache1 *)p; - PgHdr1 *pPage = (PgHdr1 *)pPg; - PgHdr1 **pp; - unsigned int h; - assert( pPage->iKey==iOld ); - assert( pPage->pCache==pCache ); - - pcache1EnterMutex(pCache->pGroup); - - h = iOld%pCache->nHash; - pp = &pCache->apHash[h]; - while( (*pp)!=pPage ){ - pp = &(*pp)->pNext; - } - *pp = pPage->pNext; - - h = iNew%pCache->nHash; - pPage->iKey = iNew; - pPage->pNext = pCache->apHash[h]; - pCache->apHash[h] = pPage; - if( iNew>pCache->iMaxKey ){ - pCache->iMaxKey = iNew; - } - - pcache1LeaveMutex(pCache->pGroup); -} - -/* -** Implementation of the sqlite3_pcache.xTruncate method. -** -** Discard all unpinned pages in the cache with a page number equal to -** or greater than parameter iLimit. Any pinned pages with a page number -** equal to or greater than iLimit are implicitly unpinned. -*/ -static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ - PCache1 *pCache = (PCache1 *)p; - pcache1EnterMutex(pCache->pGroup); - if( iLimit<=pCache->iMaxKey ){ - pcache1TruncateUnsafe(pCache, iLimit); - pCache->iMaxKey = iLimit-1; - } - pcache1LeaveMutex(pCache->pGroup); -} - -/* -** Implementation of the sqlite3_pcache.xDestroy method. -** -** Destroy a cache allocated using pcache1Create(). -*/ -static void pcache1Destroy(sqlite3_pcache *p){ - PCache1 *pCache = (PCache1 *)p; - PGroup *pGroup = pCache->pGroup; - assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); - pcache1EnterMutex(pGroup); - pcache1TruncateUnsafe(pCache, 0); - assert( pGroup->nMaxPage >= pCache->nMax ); - pGroup->nMaxPage -= pCache->nMax; - assert( pGroup->nMinPage >= pCache->nMin ); - pGroup->nMinPage -= pCache->nMin; - pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; - pcache1EnforceMaxPage(pGroup); - pcache1LeaveMutex(pGroup); - sqlite3_free(pCache->apHash); - sqlite3_free(pCache); -} - -/* -** This function is called during initialization (sqlite3_initialize()) to -** install the default pluggable cache module, assuming the user has not -** already provided an alternative. -*/ -SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){ - static const sqlite3_pcache_methods2 defaultMethods = { - 1, /* iVersion */ - 0, /* pArg */ - pcache1Init, /* xInit */ - pcache1Shutdown, /* xShutdown */ - pcache1Create, /* xCreate */ - pcache1Cachesize, /* xCachesize */ - pcache1Pagecount, /* xPagecount */ - pcache1Fetch, /* xFetch */ - pcache1Unpin, /* xUnpin */ - pcache1Rekey, /* xRekey */ - pcache1Truncate, /* xTruncate */ - pcache1Destroy, /* xDestroy */ - pcache1Shrink /* xShrink */ - }; - sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); -} - -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT -/* -** This function is called to free superfluous dynamically allocated memory -** held by the pager system. Memory in use by any SQLite pager allocated -** by the current thread may be sqlite3_free()ed. -** -** nReq is the number of bytes of memory required. Once this much has -** been released, the function returns. The return value is the total number -** of bytes of memory released. -*/ -SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){ - int nFree = 0; - assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); - assert( sqlite3_mutex_notheld(pcache1.mutex) ); - if( pcache1.pStart==0 ){ - PgHdr1 *p; - pcache1EnterMutex(&pcache1.grp); - while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ - nFree += pcache1MemSize(p->page.pBuf); -#ifdef SQLITE_PCACHE_SEPARATE_HEADER - nFree += sqlite3MemSize(p); -#endif - pcache1PinPage(p); - pcache1RemoveFromHash(p); - pcache1FreePage(p); - } - pcache1LeaveMutex(&pcache1.grp); - } - return nFree; -} -#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ - -#ifdef SQLITE_TEST -/* -** This function is used by test procedures to inspect the internal state -** of the global cache. -*/ -SQLITE_PRIVATE void sqlite3PcacheStats( - int *pnCurrent, /* OUT: Total number of pages cached */ - int *pnMax, /* OUT: Global maximum cache size */ - int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ - int *pnRecyclable /* OUT: Total number of pages available for recycling */ -){ - PgHdr1 *p; - int nRecyclable = 0; - for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ - nRecyclable++; - } - *pnCurrent = pcache1.grp.nCurrentPage; - *pnMax = (int)pcache1.grp.nMaxPage; - *pnMin = (int)pcache1.grp.nMinPage; - *pnRecyclable = nRecyclable; -} -#endif - -/************** End of pcache1.c *********************************************/ -/************** Begin file rowset.c ******************************************/ -/* -** 2008 December 3 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This module implements an object we call a "RowSet". -** -** The RowSet object is a collection of rowids. Rowids -** are inserted into the RowSet in an arbitrary order. Inserts -** can be intermixed with tests to see if a given rowid has been -** previously inserted into the RowSet. -** -** After all inserts are finished, it is possible to extract the -** elements of the RowSet in sorted order. Once this extraction -** process has started, no new elements may be inserted. -** -** Hence, the primitive operations for a RowSet are: -** -** CREATE -** INSERT -** TEST -** SMALLEST -** DESTROY -** -** The CREATE and DESTROY primitives are the constructor and destructor, -** obviously. The INSERT primitive adds a new element to the RowSet. -** TEST checks to see if an element is already in the RowSet. SMALLEST -** extracts the least value from the RowSet. -** -** The INSERT primitive might allocate additional memory. Memory is -** allocated in chunks so most INSERTs do no allocation. There is an -** upper bound on the size of allocated memory. No memory is freed -** until DESTROY. -** -** The TEST primitive includes a "batch" number. The TEST primitive -** will only see elements that were inserted before the last change -** in the batch number. In other words, if an INSERT occurs between -** two TESTs where the TESTs have the same batch nubmer, then the -** value added by the INSERT will not be visible to the second TEST. -** The initial batch number is zero, so if the very first TEST contains -** a non-zero batch number, it will see all prior INSERTs. -** -** No INSERTs may occurs after a SMALLEST. An assertion will fail if -** that is attempted. -** -** The cost of an INSERT is roughly constant. (Sometime new memory -** has to be allocated on an INSERT.) The cost of a TEST with a new -** batch number is O(NlogN) where N is the number of elements in the RowSet. -** The cost of a TEST using the same batch number is O(logN). The cost -** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST -** primitives are constant time. The cost of DESTROY is O(N). -** -** There is an added cost of O(N) when switching between TEST and -** SMALLEST primitives. -*/ - - -/* -** Target size for allocation chunks. -*/ -#define ROWSET_ALLOCATION_SIZE 1024 - -/* -** The number of rowset entries per allocation chunk. -*/ -#define ROWSET_ENTRY_PER_CHUNK \ - ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) - -/* -** Each entry in a RowSet is an instance of the following object. -** -** This same object is reused to store a linked list of trees of RowSetEntry -** objects. In that alternative use, pRight points to the next entry -** in the list, pLeft points to the tree, and v is unused. The -** RowSet.pForest value points to the head of this forest list. -*/ -struct RowSetEntry { - i64 v; /* ROWID value for this entry */ - struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ - struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ -}; - -/* -** RowSetEntry objects are allocated in large chunks (instances of the -** following structure) to reduce memory allocation overhead. The -** chunks are kept on a linked list so that they can be deallocated -** when the RowSet is destroyed. -*/ -struct RowSetChunk { - struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ - struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ -}; - -/* -** A RowSet in an instance of the following structure. -** -** A typedef of this structure if found in sqliteInt.h. -*/ -struct RowSet { - struct RowSetChunk *pChunk; /* List of all chunk allocations */ - sqlite3 *db; /* The database connection */ - struct RowSetEntry *pEntry; /* List of entries using pRight */ - struct RowSetEntry *pLast; /* Last entry on the pEntry list */ - struct RowSetEntry *pFresh; /* Source of new entry objects */ - struct RowSetEntry *pForest; /* List of binary trees of entries */ - u16 nFresh; /* Number of objects on pFresh */ - u8 rsFlags; /* Various flags */ - u8 iBatch; /* Current insert batch */ -}; - -/* -** Allowed values for RowSet.rsFlags -*/ -#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ -#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ - -/* -** Turn bulk memory into a RowSet object. N bytes of memory -** are available at pSpace. The db pointer is used as a memory context -** for any subsequent allocations that need to occur. -** Return a pointer to the new RowSet object. -** -** It must be the case that N is sufficient to make a Rowset. If not -** an assertion fault occurs. -** -** If N is larger than the minimum, use the surplus as an initial -** allocation of entries available to be filled. -*/ -SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){ - RowSet *p; - assert( N >= ROUND8(sizeof(*p)) ); - p = pSpace; - p->pChunk = 0; - p->db = db; - p->pEntry = 0; - p->pLast = 0; - p->pForest = 0; - p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); - p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); - p->rsFlags = ROWSET_SORTED; - p->iBatch = 0; - return p; -} - -/* -** Deallocate all chunks from a RowSet. This frees all memory that -** the RowSet has allocated over its lifetime. This routine is -** the destructor for the RowSet. -*/ -SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){ - struct RowSetChunk *pChunk, *pNextChunk; - for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ - pNextChunk = pChunk->pNextChunk; - sqlite3DbFree(p->db, pChunk); - } - p->pChunk = 0; - p->nFresh = 0; - p->pEntry = 0; - p->pLast = 0; - p->pForest = 0; - p->rsFlags = ROWSET_SORTED; -} - -/* -** Allocate a new RowSetEntry object that is associated with the -** given RowSet. Return a pointer to the new and completely uninitialized -** objected. -** -** In an OOM situation, the RowSet.db->mallocFailed flag is set and this -** routine returns NULL. -*/ -static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ - assert( p!=0 ); - if( p->nFresh==0 ){ - struct RowSetChunk *pNew; - pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); - if( pNew==0 ){ - return 0; - } - pNew->pNextChunk = p->pChunk; - p->pChunk = pNew; - p->pFresh = pNew->aEntry; - p->nFresh = ROWSET_ENTRY_PER_CHUNK; - } - p->nFresh--; - return p->pFresh++; -} - -/* -** Insert a new value into a RowSet. -** -** The mallocFailed flag of the database connection is set if a -** memory allocation fails. -*/ -SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){ - struct RowSetEntry *pEntry; /* The new entry */ - struct RowSetEntry *pLast; /* The last prior entry */ - - /* This routine is never called after sqlite3RowSetNext() */ - assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); - - pEntry = rowSetEntryAlloc(p); - if( pEntry==0 ) return; - pEntry->v = rowid; - pEntry->pRight = 0; - pLast = p->pLast; - if( pLast ){ - if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){ - p->rsFlags &= ~ROWSET_SORTED; - } - pLast->pRight = pEntry; - }else{ - p->pEntry = pEntry; - } - p->pLast = pEntry; -} - -/* -** Merge two lists of RowSetEntry objects. Remove duplicates. -** -** The input lists are connected via pRight pointers and are -** assumed to each already be in sorted order. -*/ -static struct RowSetEntry *rowSetEntryMerge( - struct RowSetEntry *pA, /* First sorted list to be merged */ - struct RowSetEntry *pB /* Second sorted list to be merged */ -){ - struct RowSetEntry head; - struct RowSetEntry *pTail; - - pTail = &head; - while( pA && pB ){ - assert( pA->pRight==0 || pA->v<=pA->pRight->v ); - assert( pB->pRight==0 || pB->v<=pB->pRight->v ); - if( pA->v<pB->v ){ - pTail->pRight = pA; - pA = pA->pRight; - pTail = pTail->pRight; - }else if( pB->v<pA->v ){ - pTail->pRight = pB; - pB = pB->pRight; - pTail = pTail->pRight; - }else{ - pA = pA->pRight; - } - } - if( pA ){ - assert( pA->pRight==0 || pA->v<=pA->pRight->v ); - pTail->pRight = pA; - }else{ - assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v ); - pTail->pRight = pB; - } - return head.pRight; -} - -/* -** Sort all elements on the list of RowSetEntry objects into order of -** increasing v. -*/ -static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ - unsigned int i; - struct RowSetEntry *pNext, *aBucket[40]; - - memset(aBucket, 0, sizeof(aBucket)); - while( pIn ){ - pNext = pIn->pRight; - pIn->pRight = 0; - for(i=0; aBucket[i]; i++){ - pIn = rowSetEntryMerge(aBucket[i], pIn); - aBucket[i] = 0; - } - aBucket[i] = pIn; - pIn = pNext; - } - pIn = 0; - for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){ - pIn = rowSetEntryMerge(pIn, aBucket[i]); - } - return pIn; -} - - -/* -** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. -** Convert this tree into a linked list connected by the pRight pointers -** and return pointers to the first and last elements of the new list. -*/ -static void rowSetTreeToList( - struct RowSetEntry *pIn, /* Root of the input tree */ - struct RowSetEntry **ppFirst, /* Write head of the output list here */ - struct RowSetEntry **ppLast /* Write tail of the output list here */ -){ - assert( pIn!=0 ); - if( pIn->pLeft ){ - struct RowSetEntry *p; - rowSetTreeToList(pIn->pLeft, ppFirst, &p); - p->pRight = pIn; - }else{ - *ppFirst = pIn; - } - if( pIn->pRight ){ - rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); - }else{ - *ppLast = pIn; - } - assert( (*ppLast)->pRight==0 ); -} - - -/* -** Convert a sorted list of elements (connected by pRight) into a binary -** tree with depth of iDepth. A depth of 1 means the tree contains a single -** node taken from the head of *ppList. A depth of 2 means a tree with -** three nodes. And so forth. -** -** Use as many entries from the input list as required and update the -** *ppList to point to the unused elements of the list. If the input -** list contains too few elements, then construct an incomplete tree -** and leave *ppList set to NULL. -** -** Return a pointer to the root of the constructed binary tree. -*/ -static struct RowSetEntry *rowSetNDeepTree( - struct RowSetEntry **ppList, - int iDepth -){ - struct RowSetEntry *p; /* Root of the new tree */ - struct RowSetEntry *pLeft; /* Left subtree */ - if( *ppList==0 ){ - return 0; - } - if( iDepth==1 ){ - p = *ppList; - *ppList = p->pRight; - p->pLeft = p->pRight = 0; - return p; - } - pLeft = rowSetNDeepTree(ppList, iDepth-1); - p = *ppList; - if( p==0 ){ - return pLeft; - } - p->pLeft = pLeft; - *ppList = p->pRight; - p->pRight = rowSetNDeepTree(ppList, iDepth-1); - return p; -} - -/* -** Convert a sorted list of elements into a binary tree. Make the tree -** as deep as it needs to be in order to contain the entire list. -*/ -static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ - int iDepth; /* Depth of the tree so far */ - struct RowSetEntry *p; /* Current tree root */ - struct RowSetEntry *pLeft; /* Left subtree */ - - assert( pList!=0 ); - p = pList; - pList = p->pRight; - p->pLeft = p->pRight = 0; - for(iDepth=1; pList; iDepth++){ - pLeft = p; - p = pList; - pList = p->pRight; - p->pLeft = pLeft; - p->pRight = rowSetNDeepTree(&pList, iDepth); - } - return p; -} - -/* -** Take all the entries on p->pEntry and on the trees in p->pForest and -** sort them all together into one big ordered list on p->pEntry. -** -** This routine should only be called once in the life of a RowSet. -*/ -static void rowSetToList(RowSet *p){ - - /* This routine is called only once */ - assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); - - if( (p->rsFlags & ROWSET_SORTED)==0 ){ - p->pEntry = rowSetEntrySort(p->pEntry); - } - - /* While this module could theoretically support it, sqlite3RowSetNext() - ** is never called after sqlite3RowSetText() for the same RowSet. So - ** there is never a forest to deal with. Should this change, simply - ** remove the assert() and the #if 0. */ - assert( p->pForest==0 ); -#if 0 - while( p->pForest ){ - struct RowSetEntry *pTree = p->pForest->pLeft; - if( pTree ){ - struct RowSetEntry *pHead, *pTail; - rowSetTreeToList(pTree, &pHead, &pTail); - p->pEntry = rowSetEntryMerge(p->pEntry, pHead); - } - p->pForest = p->pForest->pRight; - } -#endif - p->rsFlags |= ROWSET_NEXT; /* Verify this routine is never called again */ -} - -/* -** Extract the smallest element from the RowSet. -** Write the element into *pRowid. Return 1 on success. Return -** 0 if the RowSet is already empty. -** -** After this routine has been called, the sqlite3RowSetInsert() -** routine may not be called again. -*/ -SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ - assert( p!=0 ); - - /* Merge the forest into a single sorted list on first call */ - if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p); - - /* Return the next entry on the list */ - if( p->pEntry ){ - *pRowid = p->pEntry->v; - p->pEntry = p->pEntry->pRight; - if( p->pEntry==0 ){ - sqlite3RowSetClear(p); - } - return 1; - }else{ - return 0; - } -} - -/* -** Check to see if element iRowid was inserted into the rowset as -** part of any insert batch prior to iBatch. Return 1 or 0. -** -** If this is the first test of a new batch and if there exist entires -** on pRowSet->pEntry, then sort those entires into the forest at -** pRowSet->pForest so that they can be tested. -*/ -SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){ - struct RowSetEntry *p, *pTree; - - /* This routine is never called after sqlite3RowSetNext() */ - assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); - - /* Sort entries into the forest on the first test of a new batch - */ - if( iBatch!=pRowSet->iBatch ){ - p = pRowSet->pEntry; - if( p ){ - struct RowSetEntry **ppPrevTree = &pRowSet->pForest; - if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ - p = rowSetEntrySort(p); - } - for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ - ppPrevTree = &pTree->pRight; - if( pTree->pLeft==0 ){ - pTree->pLeft = rowSetListToTree(p); - break; - }else{ - struct RowSetEntry *pAux, *pTail; - rowSetTreeToList(pTree->pLeft, &pAux, &pTail); - pTree->pLeft = 0; - p = rowSetEntryMerge(pAux, p); - } - } - if( pTree==0 ){ - *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); - if( pTree ){ - pTree->v = 0; - pTree->pRight = 0; - pTree->pLeft = rowSetListToTree(p); - } - } - pRowSet->pEntry = 0; - pRowSet->pLast = 0; - pRowSet->rsFlags |= ROWSET_SORTED; - } - pRowSet->iBatch = iBatch; - } - - /* Test to see if the iRowid value appears anywhere in the forest. - ** Return 1 if it does and 0 if not. - */ - for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ - p = pTree->pLeft; - while( p ){ - if( p->v<iRowid ){ - p = p->pRight; - }else if( p->v>iRowid ){ - p = p->pLeft; - }else{ - return 1; - } - } - } - return 0; -} - -/************** End of rowset.c **********************************************/ -/************** Begin file pager.c *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the implementation of the page cache subsystem or "pager". -** -** The pager is used to access a database disk file. It implements -** atomic commit and rollback through the use of a journal file that -** is separate from the database file. The pager also implements file -** locking to prevent two processes from writing the same database -** file simultaneously, or one process from reading the database while -** another is writing. -*/ -#ifndef SQLITE_OMIT_DISKIO -/************** Include wal.h in the middle of pager.c ***********************/ -/************** Begin file wal.h *********************************************/ -/* -** 2010 February 1 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface to the write-ahead logging -** system. Refer to the comments below and the header comment attached to -** the implementation of each function in log.c for further details. -*/ - -#ifndef _WAL_H_ -#define _WAL_H_ - - -/* Additional values that can be added to the sync_flags argument of -** sqlite3WalFrames(): -*/ -#define WAL_SYNC_TRANSACTIONS 0x20 /* Sync at the end of each transaction */ -#define SQLITE_SYNC_MASK 0x13 /* Mask off the SQLITE_SYNC_* values */ - -#ifdef SQLITE_OMIT_WAL -# define sqlite3WalOpen(x,y,z) 0 -# define sqlite3WalLimit(x,y) -# define sqlite3WalClose(w,x,y,z) 0 -# define sqlite3WalBeginReadTransaction(y,z) 0 -# define sqlite3WalEndReadTransaction(z) -# define sqlite3WalRead(v,w,x,y,z) 0 -# define sqlite3WalDbsize(y) 0 -# define sqlite3WalBeginWriteTransaction(y) 0 -# define sqlite3WalEndWriteTransaction(x) 0 -# define sqlite3WalUndo(x,y,z) 0 -# define sqlite3WalSavepoint(y,z) -# define sqlite3WalSavepointUndo(y,z) 0 -# define sqlite3WalFrames(u,v,w,x,y,z) 0 -# define sqlite3WalCheckpoint(r,s,t,u,v,w,x,y,z) 0 -# define sqlite3WalCallback(z) 0 -# define sqlite3WalExclusiveMode(y,z) 0 -# define sqlite3WalHeapMemory(z) 0 -# define sqlite3WalFramesize(z) 0 -#else - -#define WAL_SAVEPOINT_NDATA 4 - -/* Connection to a write-ahead log (WAL) file. -** There is one object of this type for each pager. -*/ -typedef struct Wal Wal; - -/* Open and close a connection to a write-ahead log. */ -SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**); -SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, int sync_flags, int, u8 *); - -/* Set the limiting size of a WAL file. */ -SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64); - -/* Used by readers to open (lock) and close (unlock) a snapshot. A -** snapshot is like a read-transaction. It is the state of the database -** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and -** preserves the current state even if the other threads or processes -** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the -** transaction and releases the lock. -*/ -SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *); -SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal); - -/* Read a page from the write-ahead log, if it is present. */ -SQLITE_PRIVATE int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, int nOut, u8 *pOut); - -/* If the WAL is not empty, return the size of the database. */ -SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal); - -/* Obtain or release the WRITER lock. */ -SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal); -SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal); - -/* Undo any frames written (but not committed) to the log */ -SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx); - -/* Return an integer that records the current (uncommitted) write -** position in the WAL */ -SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData); - -/* Move the write position of the WAL back to iFrame. Called in -** response to a ROLLBACK TO command. */ -SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData); - -/* Write a frame or frames to the log. */ -SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); - -/* Copy pages from the log to the database file */ -SQLITE_PRIVATE int sqlite3WalCheckpoint( - Wal *pWal, /* Write-ahead log connection */ - int eMode, /* One of PASSIVE, FULL and RESTART */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int sync_flags, /* Flags to sync db file with (or 0) */ - int nBuf, /* Size of buffer nBuf */ - u8 *zBuf, /* Temporary buffer to use */ - int *pnLog, /* OUT: Number of frames in WAL */ - int *pnCkpt /* OUT: Number of backfilled frames in WAL */ -); - -/* Return the value to pass to a sqlite3_wal_hook callback, the -** number of frames in the WAL at the point of the last commit since -** sqlite3WalCallback() was called. If no commits have occurred since -** the last call, then return 0. -*/ -SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal); - -/* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released) -** by the pager layer on the database file. -*/ -SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op); - -/* Return true if the argument is non-NULL and the WAL module is using -** heap-memory for the wal-index. Otherwise, if the argument is NULL or the -** WAL module is using shared-memory, return false. -*/ -SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); - -#ifdef SQLITE_ENABLE_ZIPVFS -/* If the WAL file is not empty, return the number of bytes of content -** stored in each frame (i.e. the db page-size when the WAL was created). -*/ -SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); -#endif - -#endif /* ifndef SQLITE_OMIT_WAL */ -#endif /* _WAL_H_ */ - -/************** End of wal.h *************************************************/ -/************** Continuing where we left off in pager.c **********************/ - - -/******************* NOTES ON THE DESIGN OF THE PAGER ************************ -** -** This comment block describes invariants that hold when using a rollback -** journal. These invariants do not apply for journal_mode=WAL, -** journal_mode=MEMORY, or journal_mode=OFF. -** -** Within this comment block, a page is deemed to have been synced -** automatically as soon as it is written when PRAGMA synchronous=OFF. -** Otherwise, the page is not synced until the xSync method of the VFS -** is called successfully on the file containing the page. -** -** Definition: A page of the database file is said to be "overwriteable" if -** one or more of the following are true about the page: -** -** (a) The original content of the page as it was at the beginning of -** the transaction has been written into the rollback journal and -** synced. -** -** (b) The page was a freelist leaf page at the start of the transaction. -** -** (c) The page number is greater than the largest page that existed in -** the database file at the start of the transaction. -** -** (1) A page of the database file is never overwritten unless one of the -** following are true: -** -** (a) The page and all other pages on the same sector are overwriteable. -** -** (b) The atomic page write optimization is enabled, and the entire -** transaction other than the update of the transaction sequence -** number consists of a single page change. -** -** (2) The content of a page written into the rollback journal exactly matches -** both the content in the database when the rollback journal was written -** and the content in the database at the beginning of the current -** transaction. -** -** (3) Writes to the database file are an integer multiple of the page size -** in length and are aligned on a page boundary. -** -** (4) Reads from the database file are either aligned on a page boundary and -** an integer multiple of the page size in length or are taken from the -** first 100 bytes of the database file. -** -** (5) All writes to the database file are synced prior to the rollback journal -** being deleted, truncated, or zeroed. -** -** (6) If a master journal file is used, then all writes to the database file -** are synced prior to the master journal being deleted. -** -** Definition: Two databases (or the same database at two points it time) -** are said to be "logically equivalent" if they give the same answer to -** all queries. Note in particular the content of freelist leaf -** pages can be changed arbitarily without effecting the logical equivalence -** of the database. -** -** (7) At any time, if any subset, including the empty set and the total set, -** of the unsynced changes to a rollback journal are removed and the -** journal is rolled back, the resulting database file will be logical -** equivalent to the database file at the beginning of the transaction. -** -** (8) When a transaction is rolled back, the xTruncate method of the VFS -** is called to restore the database file to the same size it was at -** the beginning of the transaction. (In some VFSes, the xTruncate -** method is a no-op, but that does not change the fact the SQLite will -** invoke it.) -** -** (9) Whenever the database file is modified, at least one bit in the range -** of bytes from 24 through 39 inclusive will be changed prior to releasing -** the EXCLUSIVE lock, thus signaling other connections on the same -** database to flush their caches. -** -** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less -** than one billion transactions. -** -** (11) A database file is well-formed at the beginning and at the conclusion -** of every transaction. -** -** (12) An EXCLUSIVE lock is held on the database file when writing to -** the database file. -** -** (13) A SHARED lock is held on the database file while reading any -** content out of the database file. -** -******************************************************************************/ - -/* -** Macros for troubleshooting. Normally turned off -*/ -#if 0 -int sqlite3PagerTrace=1; /* True to enable tracing */ -#define sqlite3DebugPrintf printf -#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } -#else -#define PAGERTRACE(X) -#endif - -/* -** The following two macros are used within the PAGERTRACE() macros above -** to print out file-descriptors. -** -** PAGERID() takes a pointer to a Pager struct as its argument. The -** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file -** struct as its argument. -*/ -#define PAGERID(p) ((int)(p->fd)) -#define FILEHANDLEID(fd) ((int)fd) - -/* -** The Pager.eState variable stores the current 'state' of a pager. A -** pager may be in any one of the seven states shown in the following -** state diagram. -** -** OPEN <------+------+ -** | | | -** V | | -** +---------> READER-------+ | -** | | | -** | V | -** |<-------WRITER_LOCKED------> ERROR -** | | ^ -** | V | -** |<------WRITER_CACHEMOD-------->| -** | | | -** | V | -** |<-------WRITER_DBMOD---------->| -** | | | -** | V | -** +<------WRITER_FINISHED-------->+ -** -** -** List of state transitions and the C [function] that performs each: -** -** OPEN -> READER [sqlite3PagerSharedLock] -** READER -> OPEN [pager_unlock] -** -** READER -> WRITER_LOCKED [sqlite3PagerBegin] -** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] -** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] -** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] -** WRITER_*** -> READER [pager_end_transaction] -** -** WRITER_*** -> ERROR [pager_error] -** ERROR -> OPEN [pager_unlock] -** -** -** OPEN: -** -** The pager starts up in this state. Nothing is guaranteed in this -** state - the file may or may not be locked and the database size is -** unknown. The database may not be read or written. -** -** * No read or write transaction is active. -** * Any lock, or no lock at all, may be held on the database file. -** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. -** -** READER: -** -** In this state all the requirements for reading the database in -** rollback (non-WAL) mode are met. Unless the pager is (or recently -** was) in exclusive-locking mode, a user-level read transaction is -** open. The database size is known in this state. -** -** A connection running with locking_mode=normal enters this state when -** it opens a read-transaction on the database and returns to state -** OPEN after the read-transaction is completed. However a connection -** running in locking_mode=exclusive (including temp databases) remains in -** this state even after the read-transaction is closed. The only way -** a locking_mode=exclusive connection can transition from READER to OPEN -** is via the ERROR state (see below). -** -** * A read transaction may be active (but a write-transaction cannot). -** * A SHARED or greater lock is held on the database file. -** * The dbSize variable may be trusted (even if a user-level read -** transaction is not active). The dbOrigSize and dbFileSize variables -** may not be trusted at this point. -** * If the database is a WAL database, then the WAL connection is open. -** * Even if a read-transaction is not open, it is guaranteed that -** there is no hot-journal in the file-system. -** -** WRITER_LOCKED: -** -** The pager moves to this state from READER when a write-transaction -** is first opened on the database. In WRITER_LOCKED state, all locks -** required to start a write-transaction are held, but no actual -** modifications to the cache or database have taken place. -** -** In rollback mode, a RESERVED or (if the transaction was opened with -** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when -** moving to this state, but the journal file is not written to or opened -** to in this state. If the transaction is committed or rolled back while -** in WRITER_LOCKED state, all that is required is to unlock the database -** file. -** -** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. -** If the connection is running with locking_mode=exclusive, an attempt -** is made to obtain an EXCLUSIVE lock on the database file. -** -** * A write transaction is active. -** * If the connection is open in rollback-mode, a RESERVED or greater -** lock is held on the database file. -** * If the connection is open in WAL-mode, a WAL write transaction -** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully -** called). -** * The dbSize, dbOrigSize and dbFileSize variables are all valid. -** * The contents of the pager cache have not been modified. -** * The journal file may or may not be open. -** * Nothing (not even the first header) has been written to the journal. -** -** WRITER_CACHEMOD: -** -** A pager moves from WRITER_LOCKED state to this state when a page is -** first modified by the upper layer. In rollback mode the journal file -** is opened (if it is not already open) and a header written to the -** start of it. The database file on disk has not been modified. -** -** * A write transaction is active. -** * A RESERVED or greater lock is held on the database file. -** * The journal file is open and the first header has been written -** to it, but the header has not been synced to disk. -** * The contents of the page cache have been modified. -** -** WRITER_DBMOD: -** -** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state -** when it modifies the contents of the database file. WAL connections -** never enter this state (since they do not modify the database file, -** just the log file). -** -** * A write transaction is active. -** * An EXCLUSIVE or greater lock is held on the database file. -** * The journal file is open and the first header has been written -** and synced to disk. -** * The contents of the page cache have been modified (and possibly -** written to disk). -** -** WRITER_FINISHED: -** -** It is not possible for a WAL connection to enter this state. -** -** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD -** state after the entire transaction has been successfully written into the -** database file. In this state the transaction may be committed simply -** by finalizing the journal file. Once in WRITER_FINISHED state, it is -** not possible to modify the database further. At this point, the upper -** layer must either commit or rollback the transaction. -** -** * A write transaction is active. -** * An EXCLUSIVE or greater lock is held on the database file. -** * All writing and syncing of journal and database data has finished. -** If no error occurred, all that remains is to finalize the journal to -** commit the transaction. If an error did occur, the caller will need -** to rollback the transaction. -** -** ERROR: -** -** The ERROR state is entered when an IO or disk-full error (including -** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it -** difficult to be sure that the in-memory pager state (cache contents, -** db size etc.) are consistent with the contents of the file-system. -** -** Temporary pager files may enter the ERROR state, but in-memory pagers -** cannot. -** -** For example, if an IO error occurs while performing a rollback, -** the contents of the page-cache may be left in an inconsistent state. -** At this point it would be dangerous to change back to READER state -** (as usually happens after a rollback). Any subsequent readers might -** report database corruption (due to the inconsistent cache), and if -** they upgrade to writers, they may inadvertently corrupt the database -** file. To avoid this hazard, the pager switches into the ERROR state -** instead of READER following such an error. -** -** Once it has entered the ERROR state, any attempt to use the pager -** to read or write data returns an error. Eventually, once all -** outstanding transactions have been abandoned, the pager is able to -** transition back to OPEN state, discarding the contents of the -** page-cache and any other in-memory state at the same time. Everything -** is reloaded from disk (and, if necessary, hot-journal rollback peformed) -** when a read-transaction is next opened on the pager (transitioning -** the pager into READER state). At that point the system has recovered -** from the error. -** -** Specifically, the pager jumps into the ERROR state if: -** -** 1. An error occurs while attempting a rollback. This happens in -** function sqlite3PagerRollback(). -** -** 2. An error occurs while attempting to finalize a journal file -** following a commit in function sqlite3PagerCommitPhaseTwo(). -** -** 3. An error occurs while attempting to write to the journal or -** database file in function pagerStress() in order to free up -** memory. -** -** In other cases, the error is returned to the b-tree layer. The b-tree -** layer then attempts a rollback operation. If the error condition -** persists, the pager enters the ERROR state via condition (1) above. -** -** Condition (3) is necessary because it can be triggered by a read-only -** statement executed within a transaction. In this case, if the error -** code were simply returned to the user, the b-tree layer would not -** automatically attempt a rollback, as it assumes that an error in a -** read-only statement cannot leave the pager in an internally inconsistent -** state. -** -** * The Pager.errCode variable is set to something other than SQLITE_OK. -** * There are one or more outstanding references to pages (after the -** last reference is dropped the pager should move back to OPEN state). -** * The pager is not an in-memory pager. -** -** -** Notes: -** -** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the -** connection is open in WAL mode. A WAL connection is always in one -** of the first four states. -** -** * Normally, a connection open in exclusive mode is never in PAGER_OPEN -** state. There are two exceptions: immediately after exclusive-mode has -** been turned on (and before any read or write transactions are -** executed), and when the pager is leaving the "error state". -** -** * See also: assert_pager_state(). -*/ -#define PAGER_OPEN 0 -#define PAGER_READER 1 -#define PAGER_WRITER_LOCKED 2 -#define PAGER_WRITER_CACHEMOD 3 -#define PAGER_WRITER_DBMOD 4 -#define PAGER_WRITER_FINISHED 5 -#define PAGER_ERROR 6 - -/* -** The Pager.eLock variable is almost always set to one of the -** following locking-states, according to the lock currently held on -** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. -** This variable is kept up to date as locks are taken and released by -** the pagerLockDb() and pagerUnlockDb() wrappers. -** -** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY -** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not -** the operation was successful. In these circumstances pagerLockDb() and -** pagerUnlockDb() take a conservative approach - eLock is always updated -** when unlocking the file, and only updated when locking the file if the -** VFS call is successful. This way, the Pager.eLock variable may be set -** to a less exclusive (lower) value than the lock that is actually held -** at the system level, but it is never set to a more exclusive value. -** -** This is usually safe. If an xUnlock fails or appears to fail, there may -** be a few redundant xLock() calls or a lock may be held for longer than -** required, but nothing really goes wrong. -** -** The exception is when the database file is unlocked as the pager moves -** from ERROR to OPEN state. At this point there may be a hot-journal file -** in the file-system that needs to be rolled back (as part of a OPEN->SHARED -** transition, by the same pager or any other). If the call to xUnlock() -** fails at this point and the pager is left holding an EXCLUSIVE lock, this -** can confuse the call to xCheckReservedLock() call made later as part -** of hot-journal detection. -** -** xCheckReservedLock() is defined as returning true "if there is a RESERVED -** lock held by this process or any others". So xCheckReservedLock may -** return true because the caller itself is holding an EXCLUSIVE lock (but -** doesn't know it because of a previous error in xUnlock). If this happens -** a hot-journal may be mistaken for a journal being created by an active -** transaction in another process, causing SQLite to read from the database -** without rolling it back. -** -** To work around this, if a call to xUnlock() fails when unlocking the -** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It -** is only changed back to a real locking state after a successful call -** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition -** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK -** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE -** lock on the database file before attempting to roll it back. See function -** PagerSharedLock() for more detail. -** -** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in -** PAGER_OPEN state. -*/ -#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) - -/* -** A macro used for invoking the codec if there is one -*/ -#ifdef SQLITE_HAS_CODEC -# define CODEC1(P,D,N,X,E) \ - if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } -# define CODEC2(P,D,N,X,E,O) \ - if( P->xCodec==0 ){ O=(char*)D; }else \ - if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } -#else -# define CODEC1(P,D,N,X,E) /* NO-OP */ -# define CODEC2(P,D,N,X,E,O) O=(char*)D -#endif - -/* -** The maximum allowed sector size. 64KiB. If the xSectorsize() method -** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. -** This could conceivably cause corruption following a power failure on -** such a system. This is currently an undocumented limit. -*/ -#define MAX_SECTOR_SIZE 0x10000 - -/* -** An instance of the following structure is allocated for each active -** savepoint and statement transaction in the system. All such structures -** are stored in the Pager.aSavepoint[] array, which is allocated and -** resized using sqlite3Realloc(). -** -** When a savepoint is created, the PagerSavepoint.iHdrOffset field is -** set to 0. If a journal-header is written into the main journal while -** the savepoint is active, then iHdrOffset is set to the byte offset -** immediately following the last journal record written into the main -** journal before the journal-header. This is required during savepoint -** rollback (see pagerPlaybackSavepoint()). -*/ -typedef struct PagerSavepoint PagerSavepoint; -struct PagerSavepoint { - i64 iOffset; /* Starting offset in main journal */ - i64 iHdrOffset; /* See above */ - Bitvec *pInSavepoint; /* Set of pages in this savepoint */ - Pgno nOrig; /* Original number of pages in file */ - Pgno iSubRec; /* Index of first record in sub-journal */ -#ifndef SQLITE_OMIT_WAL - u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ -#endif -}; - -/* -** A open page cache is an instance of struct Pager. A description of -** some of the more important member variables follows: -** -** eState -** -** The current 'state' of the pager object. See the comment and state -** diagram above for a description of the pager state. -** -** eLock -** -** For a real on-disk database, the current lock held on the database file - -** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. -** -** For a temporary or in-memory database (neither of which require any -** locks), this variable is always set to EXCLUSIVE_LOCK. Since such -** databases always have Pager.exclusiveMode==1, this tricks the pager -** logic into thinking that it already has all the locks it will ever -** need (and no reason to release them). -** -** In some (obscure) circumstances, this variable may also be set to -** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for -** details. -** -** changeCountDone -** -** This boolean variable is used to make sure that the change-counter -** (the 4-byte header field at byte offset 24 of the database file) is -** not updated more often than necessary. -** -** It is set to true when the change-counter field is updated, which -** can only happen if an exclusive lock is held on the database file. -** It is cleared (set to false) whenever an exclusive lock is -** relinquished on the database file. Each time a transaction is committed, -** The changeCountDone flag is inspected. If it is true, the work of -** updating the change-counter is omitted for the current transaction. -** -** This mechanism means that when running in exclusive mode, a connection -** need only update the change-counter once, for the first transaction -** committed. -** -** setMaster -** -** When PagerCommitPhaseOne() is called to commit a transaction, it may -** (or may not) specify a master-journal name to be written into the -** journal file before it is synced to disk. -** -** Whether or not a journal file contains a master-journal pointer affects -** the way in which the journal file is finalized after the transaction is -** committed or rolled back when running in "journal_mode=PERSIST" mode. -** If a journal file does not contain a master-journal pointer, it is -** finalized by overwriting the first journal header with zeroes. If -** it does contain a master-journal pointer the journal file is finalized -** by truncating it to zero bytes, just as if the connection were -** running in "journal_mode=truncate" mode. -** -** Journal files that contain master journal pointers cannot be finalized -** simply by overwriting the first journal-header with zeroes, as the -** master journal pointer could interfere with hot-journal rollback of any -** subsequently interrupted transaction that reuses the journal file. -** -** The flag is cleared as soon as the journal file is finalized (either -** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the -** journal file from being successfully finalized, the setMaster flag -** is cleared anyway (and the pager will move to ERROR state). -** -** doNotSpill, doNotSyncSpill -** -** These two boolean variables control the behavior of cache-spills -** (calls made by the pcache module to the pagerStress() routine to -** write cached data to the file-system in order to free up memory). -** -** When doNotSpill is non-zero, writing to the database from pagerStress() -** is disabled altogether. This is done in a very obscure case that -** comes up during savepoint rollback that requires the pcache module -** to allocate a new page to prevent the journal file from being written -** while it is being traversed by code in pager_playback(). -** -** If doNotSyncSpill is non-zero, writing to the database from pagerStress() -** is permitted, but syncing the journal file is not. This flag is set -** by sqlite3PagerWrite() when the file-system sector-size is larger than -** the database page-size in order to prevent a journal sync from happening -** in between the journalling of two pages on the same sector. -** -** subjInMemory -** -** This is a boolean variable. If true, then any required sub-journal -** is opened as an in-memory journal file. If false, then in-memory -** sub-journals are only used for in-memory pager files. -** -** This variable is updated by the upper layer each time a new -** write-transaction is opened. -** -** dbSize, dbOrigSize, dbFileSize -** -** Variable dbSize is set to the number of pages in the database file. -** It is valid in PAGER_READER and higher states (all states except for -** OPEN and ERROR). -** -** dbSize is set based on the size of the database file, which may be -** larger than the size of the database (the value stored at offset -** 28 of the database header by the btree). If the size of the file -** is not an integer multiple of the page-size, the value stored in -** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). -** Except, any file that is greater than 0 bytes in size is considered -** to have at least one page. (i.e. a 1KB file with 2K page-size leads -** to dbSize==1). -** -** During a write-transaction, if pages with page-numbers greater than -** dbSize are modified in the cache, dbSize is updated accordingly. -** Similarly, if the database is truncated using PagerTruncateImage(), -** dbSize is updated. -** -** Variables dbOrigSize and dbFileSize are valid in states -** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize -** variable at the start of the transaction. It is used during rollback, -** and to determine whether or not pages need to be journalled before -** being modified. -** -** Throughout a write-transaction, dbFileSize contains the size of -** the file on disk in pages. It is set to a copy of dbSize when the -** write-transaction is first opened, and updated when VFS calls are made -** to write or truncate the database file on disk. -** -** The only reason the dbFileSize variable is required is to suppress -** unnecessary calls to xTruncate() after committing a transaction. If, -** when a transaction is committed, the dbFileSize variable indicates -** that the database file is larger than the database image (Pager.dbSize), -** pager_truncate() is called. The pager_truncate() call uses xFilesize() -** to measure the database file on disk, and then truncates it if required. -** dbFileSize is not used when rolling back a transaction. In this case -** pager_truncate() is called unconditionally (which means there may be -** a call to xFilesize() that is not strictly required). In either case, -** pager_truncate() may cause the file to become smaller or larger. -** -** dbHintSize -** -** The dbHintSize variable is used to limit the number of calls made to -** the VFS xFileControl(FCNTL_SIZE_HINT) method. -** -** dbHintSize is set to a copy of the dbSize variable when a -** write-transaction is opened (at the same time as dbFileSize and -** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, -** dbHintSize is increased to the number of pages that correspond to the -** size-hint passed to the method call. See pager_write_pagelist() for -** details. -** -** errCode -** -** The Pager.errCode variable is only ever used in PAGER_ERROR state. It -** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode -** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX -** sub-codes. -*/ -struct Pager { - sqlite3_vfs *pVfs; /* OS functions to use for IO */ - u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ - u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ - u8 useJournal; /* Use a rollback journal on this file */ - u8 noSync; /* Do not sync the journal if true */ - u8 fullSync; /* Do extra syncs of the journal for robustness */ - u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ - u8 walSyncFlags; /* SYNC_NORMAL or SYNC_FULL for wal writes */ - u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ - u8 tempFile; /* zFilename is a temporary file */ - u8 readOnly; /* True for a read-only database */ - u8 memDb; /* True to inhibit all file I/O */ - - /************************************************************************** - ** The following block contains those class members that change during - ** routine opertion. Class members not in this block are either fixed - ** when the pager is first created or else only change when there is a - ** significant mode change (such as changing the page_size, locking_mode, - ** or the journal_mode). From another view, these class members describe - ** the "state" of the pager, while other class members describe the - ** "configuration" of the pager. - */ - u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ - u8 eLock; /* Current lock held on database file */ - u8 changeCountDone; /* Set after incrementing the change-counter */ - u8 setMaster; /* True if a m-j name has been written to jrnl */ - u8 doNotSpill; /* Do not spill the cache when non-zero */ - u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */ - u8 subjInMemory; /* True to use in-memory sub-journals */ - Pgno dbSize; /* Number of pages in the database */ - Pgno dbOrigSize; /* dbSize before the current transaction */ - Pgno dbFileSize; /* Number of pages in the database file */ - Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ - int errCode; /* One of several kinds of errors */ - int nRec; /* Pages journalled since last j-header written */ - u32 cksumInit; /* Quasi-random value added to every checksum */ - u32 nSubRec; /* Number of records written to sub-journal */ - Bitvec *pInJournal; /* One bit for each page in the database file */ - sqlite3_file *fd; /* File descriptor for database */ - sqlite3_file *jfd; /* File descriptor for main journal */ - sqlite3_file *sjfd; /* File descriptor for sub-journal */ - i64 journalOff; /* Current write offset in the journal file */ - i64 journalHdr; /* Byte offset to previous journal header */ - sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ - PagerSavepoint *aSavepoint; /* Array of active savepoints */ - int nSavepoint; /* Number of elements in aSavepoint[] */ - char dbFileVers[16]; /* Changes whenever database file changes */ - /* - ** End of the routinely-changing class members - ***************************************************************************/ - - u16 nExtra; /* Add this many bytes to each in-memory page */ - i16 nReserve; /* Number of unused bytes at end of each page */ - u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ - u32 sectorSize; /* Assumed sector size during rollback */ - int pageSize; /* Number of bytes in a page */ - Pgno mxPgno; /* Maximum allowed size of the database */ - i64 journalSizeLimit; /* Size limit for persistent journal files */ - char *zFilename; /* Name of the database file */ - char *zJournal; /* Name of the journal file */ - int (*xBusyHandler)(void*); /* Function to call when busy */ - void *pBusyHandlerArg; /* Context argument for xBusyHandler */ - int aStat[3]; /* Total cache hits, misses and writes */ -#ifdef SQLITE_TEST - int nRead; /* Database pages read */ -#endif - void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ -#ifdef SQLITE_HAS_CODEC - void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ - void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ - void (*xCodecFree)(void*); /* Destructor for the codec */ - void *pCodec; /* First argument to xCodec... methods */ -#endif - char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ - PCache *pPCache; /* Pointer to page cache object */ -#ifndef SQLITE_OMIT_WAL - Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ - char *zWal; /* File name for write-ahead log */ -#endif -}; - -/* -** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains -** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS -** or CACHE_WRITE to sqlite3_db_status(). -*/ -#define PAGER_STAT_HIT 0 -#define PAGER_STAT_MISS 1 -#define PAGER_STAT_WRITE 2 - -/* -** The following global variables hold counters used for -** testing purposes only. These variables do not exist in -** a non-testing build. These variables are not thread-safe. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ -SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ -SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ -# define PAGER_INCR(v) v++ -#else -# define PAGER_INCR(v) -#endif - - - -/* -** Journal files begin with the following magic string. The data -** was obtained from /dev/random. It is used only as a sanity check. -** -** Since version 2.8.0, the journal format contains additional sanity -** checking information. If the power fails while the journal is being -** written, semi-random garbage data might appear in the journal -** file after power is restored. If an attempt is then made -** to roll the journal back, the database could be corrupted. The additional -** sanity checking data is an attempt to discover the garbage in the -** journal and ignore it. -** -** The sanity checking information for the new journal format consists -** of a 32-bit checksum on each page of data. The checksum covers both -** the page number and the pPager->pageSize bytes of data for the page. -** This cksum is initialized to a 32-bit random value that appears in the -** journal file right after the header. The random initializer is important, -** because garbage data that appears at the end of a journal is likely -** data that was once in other files that have now been deleted. If the -** garbage data came from an obsolete journal file, the checksums might -** be correct. But by initializing the checksum to random value which -** is different for every journal, we minimize that risk. -*/ -static const unsigned char aJournalMagic[] = { - 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, -}; - -/* -** The size of the of each page record in the journal is given by -** the following macro. -*/ -#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) - -/* -** The journal header size for this pager. This is usually the same -** size as a single disk sector. See also setSectorSize(). -*/ -#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) - -/* -** The macro MEMDB is true if we are dealing with an in-memory database. -** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, -** the value of MEMDB will be a constant and the compiler will optimize -** out code that would never execute. -*/ -#ifdef SQLITE_OMIT_MEMORYDB -# define MEMDB 0 -#else -# define MEMDB pPager->memDb -#endif - -/* -** The maximum legal page number is (2^31 - 1). -*/ -#define PAGER_MAX_PGNO 2147483647 - -/* -** The argument to this macro is a file descriptor (type sqlite3_file*). -** Return 0 if it is not open, or non-zero (but not 1) if it is. -** -** This is so that expressions can be written as: -** -** if( isOpen(pPager->jfd) ){ ... -** -** instead of -** -** if( pPager->jfd->pMethods ){ ... -*/ -#define isOpen(pFd) ((pFd)->pMethods) - -/* -** Return true if this pager uses a write-ahead log instead of the usual -** rollback journal. Otherwise false. -*/ -#ifndef SQLITE_OMIT_WAL -static int pagerUseWal(Pager *pPager){ - return (pPager->pWal!=0); -} -#else -# define pagerUseWal(x) 0 -# define pagerRollbackWal(x) 0 -# define pagerWalFrames(v,w,x,y) 0 -# define pagerOpenWalIfPresent(z) SQLITE_OK -# define pagerBeginReadTransaction(z) SQLITE_OK -#endif - -#ifndef NDEBUG -/* -** Usage: -** -** assert( assert_pager_state(pPager) ); -** -** This function runs many asserts to try to find inconsistencies in -** the internal state of the Pager object. -*/ -static int assert_pager_state(Pager *p){ - Pager *pPager = p; - - /* State must be valid. */ - assert( p->eState==PAGER_OPEN - || p->eState==PAGER_READER - || p->eState==PAGER_WRITER_LOCKED - || p->eState==PAGER_WRITER_CACHEMOD - || p->eState==PAGER_WRITER_DBMOD - || p->eState==PAGER_WRITER_FINISHED - || p->eState==PAGER_ERROR - ); - - /* Regardless of the current state, a temp-file connection always behaves - ** as if it has an exclusive lock on the database file. It never updates - ** the change-counter field, so the changeCountDone flag is always set. - */ - assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); - assert( p->tempFile==0 || pPager->changeCountDone ); - - /* If the useJournal flag is clear, the journal-mode must be "OFF". - ** And if the journal-mode is "OFF", the journal file must not be open. - */ - assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); - assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); - - /* Check that MEMDB implies noSync. And an in-memory journal. Since - ** this means an in-memory pager performs no IO at all, it cannot encounter - ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing - ** a journal file. (although the in-memory journal implementation may - ** return SQLITE_IOERR_NOMEM while the journal file is being written). It - ** is therefore not possible for an in-memory pager to enter the ERROR - ** state. - */ - if( MEMDB ){ - assert( p->noSync ); - assert( p->journalMode==PAGER_JOURNALMODE_OFF - || p->journalMode==PAGER_JOURNALMODE_MEMORY - ); - assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); - assert( pagerUseWal(p)==0 ); - } - - /* If changeCountDone is set, a RESERVED lock or greater must be held - ** on the file. - */ - assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); - assert( p->eLock!=PENDING_LOCK ); - - switch( p->eState ){ - case PAGER_OPEN: - assert( !MEMDB ); - assert( pPager->errCode==SQLITE_OK ); - assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); - break; - - case PAGER_READER: - assert( pPager->errCode==SQLITE_OK ); - assert( p->eLock!=UNKNOWN_LOCK ); - assert( p->eLock>=SHARED_LOCK ); - break; - - case PAGER_WRITER_LOCKED: - assert( p->eLock!=UNKNOWN_LOCK ); - assert( pPager->errCode==SQLITE_OK ); - if( !pagerUseWal(pPager) ){ - assert( p->eLock>=RESERVED_LOCK ); - } - assert( pPager->dbSize==pPager->dbOrigSize ); - assert( pPager->dbOrigSize==pPager->dbFileSize ); - assert( pPager->dbOrigSize==pPager->dbHintSize ); - assert( pPager->setMaster==0 ); - break; - - case PAGER_WRITER_CACHEMOD: - assert( p->eLock!=UNKNOWN_LOCK ); - assert( pPager->errCode==SQLITE_OK ); - if( !pagerUseWal(pPager) ){ - /* It is possible that if journal_mode=wal here that neither the - ** journal file nor the WAL file are open. This happens during - ** a rollback transaction that switches from journal_mode=off - ** to journal_mode=wal. - */ - assert( p->eLock>=RESERVED_LOCK ); - assert( isOpen(p->jfd) - || p->journalMode==PAGER_JOURNALMODE_OFF - || p->journalMode==PAGER_JOURNALMODE_WAL - ); - } - assert( pPager->dbOrigSize==pPager->dbFileSize ); - assert( pPager->dbOrigSize==pPager->dbHintSize ); - break; - - case PAGER_WRITER_DBMOD: - assert( p->eLock==EXCLUSIVE_LOCK ); - assert( pPager->errCode==SQLITE_OK ); - assert( !pagerUseWal(pPager) ); - assert( p->eLock>=EXCLUSIVE_LOCK ); - assert( isOpen(p->jfd) - || p->journalMode==PAGER_JOURNALMODE_OFF - || p->journalMode==PAGER_JOURNALMODE_WAL - ); - assert( pPager->dbOrigSize<=pPager->dbHintSize ); - break; - - case PAGER_WRITER_FINISHED: - assert( p->eLock==EXCLUSIVE_LOCK ); - assert( pPager->errCode==SQLITE_OK ); - assert( !pagerUseWal(pPager) ); - assert( isOpen(p->jfd) - || p->journalMode==PAGER_JOURNALMODE_OFF - || p->journalMode==PAGER_JOURNALMODE_WAL - ); - break; - - case PAGER_ERROR: - /* There must be at least one outstanding reference to the pager if - ** in ERROR state. Otherwise the pager should have already dropped - ** back to OPEN state. - */ - assert( pPager->errCode!=SQLITE_OK ); - assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); - break; - } - - return 1; -} -#endif /* ifndef NDEBUG */ - -#ifdef SQLITE_DEBUG -/* -** Return a pointer to a human readable string in a static buffer -** containing the state of the Pager object passed as an argument. This -** is intended to be used within debuggers. For example, as an alternative -** to "print *pPager" in gdb: -** -** (gdb) printf "%s", print_pager_state(pPager) -*/ -static char *print_pager_state(Pager *p){ - static char zRet[1024]; - - sqlite3_snprintf(1024, zRet, - "Filename: %s\n" - "State: %s errCode=%d\n" - "Lock: %s\n" - "Locking mode: locking_mode=%s\n" - "Journal mode: journal_mode=%s\n" - "Backing store: tempFile=%d memDb=%d useJournal=%d\n" - "Journal: journalOff=%lld journalHdr=%lld\n" - "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" - , p->zFilename - , p->eState==PAGER_OPEN ? "OPEN" : - p->eState==PAGER_READER ? "READER" : - p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : - p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : - p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : - p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : - p->eState==PAGER_ERROR ? "ERROR" : "?error?" - , (int)p->errCode - , p->eLock==NO_LOCK ? "NO_LOCK" : - p->eLock==RESERVED_LOCK ? "RESERVED" : - p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : - p->eLock==SHARED_LOCK ? "SHARED" : - p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" - , p->exclusiveMode ? "exclusive" : "normal" - , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : - p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : - p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : - p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : - p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : - p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" - , (int)p->tempFile, (int)p->memDb, (int)p->useJournal - , p->journalOff, p->journalHdr - , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize - ); - - return zRet; -} -#endif - -/* -** Return true if it is necessary to write page *pPg into the sub-journal. -** A page needs to be written into the sub-journal if there exists one -** or more open savepoints for which: -** -** * The page-number is less than or equal to PagerSavepoint.nOrig, and -** * The bit corresponding to the page-number is not set in -** PagerSavepoint.pInSavepoint. -*/ -static int subjRequiresPage(PgHdr *pPg){ - Pgno pgno = pPg->pgno; - Pager *pPager = pPg->pPager; - int i; - for(i=0; i<pPager->nSavepoint; i++){ - PagerSavepoint *p = &pPager->aSavepoint[i]; - if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){ - return 1; - } - } - return 0; -} - -/* -** Return true if the page is already in the journal file. -*/ -static int pageInJournal(PgHdr *pPg){ - return sqlite3BitvecTest(pPg->pPager->pInJournal, pPg->pgno); -} - -/* -** Read a 32-bit integer from the given file descriptor. Store the integer -** that is read in *pRes. Return SQLITE_OK if everything worked, or an -** error code is something goes wrong. -** -** All values are stored on disk as big-endian. -*/ -static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ - unsigned char ac[4]; - int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); - if( rc==SQLITE_OK ){ - *pRes = sqlite3Get4byte(ac); - } - return rc; -} - -/* -** Write a 32-bit integer into a string buffer in big-endian byte order. -*/ -#define put32bits(A,B) sqlite3Put4byte((u8*)A,B) - - -/* -** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK -** on success or an error code is something goes wrong. -*/ -static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ - char ac[4]; - put32bits(ac, val); - return sqlite3OsWrite(fd, ac, 4, offset); -} - -/* -** Unlock the database file to level eLock, which must be either NO_LOCK -** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() -** succeeds, set the Pager.eLock variable to match the (attempted) new lock. -** -** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is -** called, do not modify it. See the comment above the #define of -** UNKNOWN_LOCK for an explanation of this. -*/ -static int pagerUnlockDb(Pager *pPager, int eLock){ - int rc = SQLITE_OK; - - assert( !pPager->exclusiveMode || pPager->eLock==eLock ); - assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); - assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); - if( isOpen(pPager->fd) ){ - assert( pPager->eLock>=eLock ); - rc = sqlite3OsUnlock(pPager->fd, eLock); - if( pPager->eLock!=UNKNOWN_LOCK ){ - pPager->eLock = (u8)eLock; - } - IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) - } - return rc; -} - -/* -** Lock the database file to level eLock, which must be either SHARED_LOCK, -** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the -** Pager.eLock variable to the new locking state. -** -** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is -** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. -** See the comment above the #define of UNKNOWN_LOCK for an explanation -** of this. -*/ -static int pagerLockDb(Pager *pPager, int eLock){ - int rc = SQLITE_OK; - - assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); - if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ - rc = sqlite3OsLock(pPager->fd, eLock); - if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ - pPager->eLock = (u8)eLock; - IOTRACE(("LOCK %p %d\n", pPager, eLock)) - } - } - return rc; -} - -/* -** This function determines whether or not the atomic-write optimization -** can be used with this pager. The optimization can be used if: -** -** (a) the value returned by OsDeviceCharacteristics() indicates that -** a database page may be written atomically, and -** (b) the value returned by OsSectorSize() is less than or equal -** to the page size. -** -** The optimization is also always enabled for temporary files. It is -** an error to call this function if pPager is opened on an in-memory -** database. -** -** If the optimization cannot be used, 0 is returned. If it can be used, -** then the value returned is the size of the journal file when it -** contains rollback data for exactly one page. -*/ -#ifdef SQLITE_ENABLE_ATOMIC_WRITE -static int jrnlBufferSize(Pager *pPager){ - assert( !MEMDB ); - if( !pPager->tempFile ){ - int dc; /* Device characteristics */ - int nSector; /* Sector size */ - int szPage; /* Page size */ - - assert( isOpen(pPager->fd) ); - dc = sqlite3OsDeviceCharacteristics(pPager->fd); - nSector = pPager->sectorSize; - szPage = pPager->pageSize; - - assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); - assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); - if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ - return 0; - } - } - - return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); -} -#endif - -/* -** If SQLITE_CHECK_PAGES is defined then we do some sanity checking -** on the cache using a hash function. This is used for testing -** and debugging only. -*/ -#ifdef SQLITE_CHECK_PAGES -/* -** Return a 32-bit hash of the page data for pPage. -*/ -static u32 pager_datahash(int nByte, unsigned char *pData){ - u32 hash = 0; - int i; - for(i=0; i<nByte; i++){ - hash = (hash*1039) + pData[i]; - } - return hash; -} -static u32 pager_pagehash(PgHdr *pPage){ - return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); -} -static void pager_set_pagehash(PgHdr *pPage){ - pPage->pageHash = pager_pagehash(pPage); -} - -/* -** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES -** is defined, and NDEBUG is not defined, an assert() statement checks -** that the page is either dirty or still matches the calculated page-hash. -*/ -#define CHECK_PAGE(x) checkPage(x) -static void checkPage(PgHdr *pPg){ - Pager *pPager = pPg->pPager; - assert( pPager->eState!=PAGER_ERROR ); - assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); -} - -#else -#define pager_datahash(X,Y) 0 -#define pager_pagehash(X) 0 -#define pager_set_pagehash(X) -#define CHECK_PAGE(x) -#endif /* SQLITE_CHECK_PAGES */ - -/* -** When this is called the journal file for pager pPager must be open. -** This function attempts to read a master journal file name from the -** end of the file and, if successful, copies it into memory supplied -** by the caller. See comments above writeMasterJournal() for the format -** used to store a master journal file name at the end of a journal file. -** -** zMaster must point to a buffer of at least nMaster bytes allocated by -** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is -** enough space to write the master journal name). If the master journal -** name in the journal is longer than nMaster bytes (including a -** nul-terminator), then this is handled as if no master journal name -** were present in the journal. -** -** If a master journal file name is present at the end of the journal -** file, then it is copied into the buffer pointed to by zMaster. A -** nul-terminator byte is appended to the buffer following the master -** journal file name. -** -** If it is determined that no master journal file name is present -** zMaster[0] is set to 0 and SQLITE_OK returned. -** -** If an error occurs while reading from the journal file, an SQLite -** error code is returned. -*/ -static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ - int rc; /* Return code */ - u32 len; /* Length in bytes of master journal name */ - i64 szJ; /* Total size in bytes of journal file pJrnl */ - u32 cksum; /* MJ checksum value read from journal */ - u32 u; /* Unsigned loop counter */ - unsigned char aMagic[8]; /* A buffer to hold the magic header */ - zMaster[0] = '\0'; - - if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) - || szJ<16 - || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) - || len>=nMaster - || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) - || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) - || memcmp(aMagic, aJournalMagic, 8) - || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) - ){ - return rc; - } - - /* See if the checksum matches the master journal name */ - for(u=0; u<len; u++){ - cksum -= zMaster[u]; - } - if( cksum ){ - /* If the checksum doesn't add up, then one or more of the disk sectors - ** containing the master journal filename is corrupted. This means - ** definitely roll back, so just return SQLITE_OK and report a (nul) - ** master-journal filename. - */ - len = 0; - } - zMaster[len] = '\0'; - - return SQLITE_OK; -} - -/* -** Return the offset of the sector boundary at or immediately -** following the value in pPager->journalOff, assuming a sector -** size of pPager->sectorSize bytes. -** -** i.e for a sector size of 512: -** -** Pager.journalOff Return value -** --------------------------------------- -** 0 0 -** 512 512 -** 100 512 -** 2000 2048 -** -*/ -static i64 journalHdrOffset(Pager *pPager){ - i64 offset = 0; - i64 c = pPager->journalOff; - if( c ){ - offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); - } - assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); - assert( offset>=c ); - assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); - return offset; -} - -/* -** The journal file must be open when this function is called. -** -** This function is a no-op if the journal file has not been written to -** within the current transaction (i.e. if Pager.journalOff==0). -** -** If doTruncate is non-zero or the Pager.journalSizeLimit variable is -** set to 0, then truncate the journal file to zero bytes in size. Otherwise, -** zero the 28-byte header at the start of the journal file. In either case, -** if the pager is not in no-sync mode, sync the journal file immediately -** after writing or truncating it. -** -** If Pager.journalSizeLimit is set to a positive, non-zero value, and -** following the truncation or zeroing described above the size of the -** journal file in bytes is larger than this value, then truncate the -** journal file to Pager.journalSizeLimit bytes. The journal file does -** not need to be synced following this operation. -** -** If an IO error occurs, abandon processing and return the IO error code. -** Otherwise, return SQLITE_OK. -*/ -static int zeroJournalHdr(Pager *pPager, int doTruncate){ - int rc = SQLITE_OK; /* Return code */ - assert( isOpen(pPager->jfd) ); - if( pPager->journalOff ){ - const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ - - IOTRACE(("JZEROHDR %p\n", pPager)) - if( doTruncate || iLimit==0 ){ - rc = sqlite3OsTruncate(pPager->jfd, 0); - }else{ - static const char zeroHdr[28] = {0}; - rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); - } - if( rc==SQLITE_OK && !pPager->noSync ){ - rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); - } - - /* At this point the transaction is committed but the write lock - ** is still held on the file. If there is a size limit configured for - ** the persistent journal and the journal file currently consumes more - ** space than that limit allows for, truncate it now. There is no need - ** to sync the file following this operation. - */ - if( rc==SQLITE_OK && iLimit>0 ){ - i64 sz; - rc = sqlite3OsFileSize(pPager->jfd, &sz); - if( rc==SQLITE_OK && sz>iLimit ){ - rc = sqlite3OsTruncate(pPager->jfd, iLimit); - } - } - } - return rc; -} - -/* -** The journal file must be open when this routine is called. A journal -** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the -** current location. -** -** The format for the journal header is as follows: -** - 8 bytes: Magic identifying journal format. -** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. -** - 4 bytes: Random number used for page hash. -** - 4 bytes: Initial database page count. -** - 4 bytes: Sector size used by the process that wrote this journal. -** - 4 bytes: Database page size. -** -** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. -*/ -static int writeJournalHdr(Pager *pPager){ - int rc = SQLITE_OK; /* Return code */ - char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ - u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ - u32 nWrite; /* Bytes of header sector written */ - int ii; /* Loop counter */ - - assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ - - if( nHeader>JOURNAL_HDR_SZ(pPager) ){ - nHeader = JOURNAL_HDR_SZ(pPager); - } - - /* If there are active savepoints and any of them were created - ** since the most recent journal header was written, update the - ** PagerSavepoint.iHdrOffset fields now. - */ - for(ii=0; ii<pPager->nSavepoint; ii++){ - if( pPager->aSavepoint[ii].iHdrOffset==0 ){ - pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; - } - } - - pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); - - /* - ** Write the nRec Field - the number of page records that follow this - ** journal header. Normally, zero is written to this value at this time. - ** After the records are added to the journal (and the journal synced, - ** if in full-sync mode), the zero is overwritten with the true number - ** of records (see syncJournal()). - ** - ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When - ** reading the journal this value tells SQLite to assume that the - ** rest of the journal file contains valid page records. This assumption - ** is dangerous, as if a failure occurred whilst writing to the journal - ** file it may contain some garbage data. There are two scenarios - ** where this risk can be ignored: - ** - ** * When the pager is in no-sync mode. Corruption can follow a - ** power failure in this case anyway. - ** - ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees - ** that garbage data is never appended to the journal file. - */ - assert( isOpen(pPager->fd) || pPager->noSync ); - if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) - || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) - ){ - memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); - put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); - }else{ - memset(zHeader, 0, sizeof(aJournalMagic)+4); - } - - /* The random check-hash initializer */ - sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); - put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); - /* The initial database size */ - put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); - /* The assumed sector size for this process */ - put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); - - /* The page size */ - put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); - - /* Initializing the tail of the buffer is not necessary. Everything - ** works find if the following memset() is omitted. But initializing - ** the memory prevents valgrind from complaining, so we are willing to - ** take the performance hit. - */ - memset(&zHeader[sizeof(aJournalMagic)+20], 0, - nHeader-(sizeof(aJournalMagic)+20)); - - /* In theory, it is only necessary to write the 28 bytes that the - ** journal header consumes to the journal file here. Then increment the - ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next - ** record is written to the following sector (leaving a gap in the file - ** that will be implicitly filled in by the OS). - ** - ** However it has been discovered that on some systems this pattern can - ** be significantly slower than contiguously writing data to the file, - ** even if that means explicitly writing data to the block of - ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what - ** is done. - ** - ** The loop is required here in case the sector-size is larger than the - ** database page size. Since the zHeader buffer is only Pager.pageSize - ** bytes in size, more than one call to sqlite3OsWrite() may be required - ** to populate the entire journal header sector. - */ - for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ - IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) - rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); - assert( pPager->journalHdr <= pPager->journalOff ); - pPager->journalOff += nHeader; - } - - return rc; -} - -/* -** The journal file must be open when this is called. A journal header file -** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal -** file. The current location in the journal file is given by -** pPager->journalOff. See comments above function writeJournalHdr() for -** a description of the journal header format. -** -** If the header is read successfully, *pNRec is set to the number of -** page records following this header and *pDbSize is set to the size of the -** database before the transaction began, in pages. Also, pPager->cksumInit -** is set to the value read from the journal header. SQLITE_OK is returned -** in this case. -** -** If the journal header file appears to be corrupted, SQLITE_DONE is -** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes -** cannot be read from the journal file an error code is returned. -*/ -static int readJournalHdr( - Pager *pPager, /* Pager object */ - int isHot, - i64 journalSize, /* Size of the open journal file in bytes */ - u32 *pNRec, /* OUT: Value read from the nRec field */ - u32 *pDbSize /* OUT: Value of original database size field */ -){ - int rc; /* Return code */ - unsigned char aMagic[8]; /* A buffer to hold the magic header */ - i64 iHdrOff; /* Offset of journal header being read */ - - assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ - - /* Advance Pager.journalOff to the start of the next sector. If the - ** journal file is too small for there to be a header stored at this - ** point, return SQLITE_DONE. - */ - pPager->journalOff = journalHdrOffset(pPager); - if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ - return SQLITE_DONE; - } - iHdrOff = pPager->journalOff; - - /* Read in the first 8 bytes of the journal header. If they do not match - ** the magic string found at the start of each journal header, return - ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, - ** proceed. - */ - if( isHot || iHdrOff!=pPager->journalHdr ){ - rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); - if( rc ){ - return rc; - } - if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ - return SQLITE_DONE; - } - } - - /* Read the first three 32-bit fields of the journal header: The nRec - ** field, the checksum-initializer and the database size at the start - ** of the transaction. Return an error code if anything goes wrong. - */ - if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) - || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) - || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) - ){ - return rc; - } - - if( pPager->journalOff==0 ){ - u32 iPageSize; /* Page-size field of journal header */ - u32 iSectorSize; /* Sector-size field of journal header */ - - /* Read the page-size and sector-size journal header fields. */ - if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) - || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) - ){ - return rc; - } - - /* Versions of SQLite prior to 3.5.8 set the page-size field of the - ** journal header to zero. In this case, assume that the Pager.pageSize - ** variable is already set to the correct page size. - */ - if( iPageSize==0 ){ - iPageSize = pPager->pageSize; - } - - /* Check that the values read from the page-size and sector-size fields - ** are within range. To be 'in range', both values need to be a power - ** of two greater than or equal to 512 or 32, and not greater than their - ** respective compile time maximum limits. - */ - if( iPageSize<512 || iSectorSize<32 - || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE - || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 - ){ - /* If the either the page-size or sector-size in the journal-header is - ** invalid, then the process that wrote the journal-header must have - ** crashed before the header was synced. In this case stop reading - ** the journal file here. - */ - return SQLITE_DONE; - } - - /* Update the page-size to match the value read from the journal. - ** Use a testcase() macro to make sure that malloc failure within - ** PagerSetPagesize() is tested. - */ - rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); - testcase( rc!=SQLITE_OK ); - - /* Update the assumed sector-size to match the value used by - ** the process that created this journal. If this journal was - ** created by a process other than this one, then this routine - ** is being called from within pager_playback(). The local value - ** of Pager.sectorSize is restored at the end of that routine. - */ - pPager->sectorSize = iSectorSize; - } - - pPager->journalOff += JOURNAL_HDR_SZ(pPager); - return rc; -} - - -/* -** Write the supplied master journal name into the journal file for pager -** pPager at the current location. The master journal name must be the last -** thing written to a journal file. If the pager is in full-sync mode, the -** journal file descriptor is advanced to the next sector boundary before -** anything is written. The format is: -** -** + 4 bytes: PAGER_MJ_PGNO. -** + N bytes: Master journal filename in utf-8. -** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). -** + 4 bytes: Master journal name checksum. -** + 8 bytes: aJournalMagic[]. -** -** The master journal page checksum is the sum of the bytes in the master -** journal name, where each byte is interpreted as a signed 8-bit integer. -** -** If zMaster is a NULL pointer (occurs for a single database transaction), -** this call is a no-op. -*/ -static int writeMasterJournal(Pager *pPager, const char *zMaster){ - int rc; /* Return code */ - int nMaster; /* Length of string zMaster */ - i64 iHdrOff; /* Offset of header in journal file */ - i64 jrnlSize; /* Size of journal file on disk */ - u32 cksum = 0; /* Checksum of string zMaster */ - - assert( pPager->setMaster==0 ); - assert( !pagerUseWal(pPager) ); - - if( !zMaster - || pPager->journalMode==PAGER_JOURNALMODE_MEMORY - || pPager->journalMode==PAGER_JOURNALMODE_OFF - ){ - return SQLITE_OK; - } - pPager->setMaster = 1; - assert( isOpen(pPager->jfd) ); - assert( pPager->journalHdr <= pPager->journalOff ); - - /* Calculate the length in bytes and the checksum of zMaster */ - for(nMaster=0; zMaster[nMaster]; nMaster++){ - cksum += zMaster[nMaster]; - } - - /* If in full-sync mode, advance to the next disk sector before writing - ** the master journal name. This is in case the previous page written to - ** the journal has already been synced. - */ - if( pPager->fullSync ){ - pPager->journalOff = journalHdrOffset(pPager); - } - iHdrOff = pPager->journalOff; - - /* Write the master journal data to the end of the journal file. If - ** an error occurs, return the error code to the caller. - */ - if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) - || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) - || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) - || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) - || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) - ){ - return rc; - } - pPager->journalOff += (nMaster+20); - - /* If the pager is in peristent-journal mode, then the physical - ** journal-file may extend past the end of the master-journal name - ** and 8 bytes of magic data just written to the file. This is - ** dangerous because the code to rollback a hot-journal file - ** will not be able to find the master-journal name to determine - ** whether or not the journal is hot. - ** - ** Easiest thing to do in this scenario is to truncate the journal - ** file to the required size. - */ - if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) - && jrnlSize>pPager->journalOff - ){ - rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); - } - return rc; -} - -/* -** Find a page in the hash table given its page number. Return -** a pointer to the page or NULL if the requested page is not -** already in memory. -*/ -static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ - PgHdr *p; /* Return value */ - - /* It is not possible for a call to PcacheFetch() with createFlag==0 to - ** fail, since no attempt to allocate dynamic memory will be made. - */ - (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); - return p; -} - -/* -** Discard the entire contents of the in-memory page-cache. -*/ -static void pager_reset(Pager *pPager){ - sqlite3BackupRestart(pPager->pBackup); - sqlite3PcacheClear(pPager->pPCache); -} - -/* -** Free all structures in the Pager.aSavepoint[] array and set both -** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal -** if it is open and the pager is not in exclusive mode. -*/ -static void releaseAllSavepoints(Pager *pPager){ - int ii; /* Iterator for looping through Pager.aSavepoint */ - for(ii=0; ii<pPager->nSavepoint; ii++){ - sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); - } - if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){ - sqlite3OsClose(pPager->sjfd); - } - sqlite3_free(pPager->aSavepoint); - pPager->aSavepoint = 0; - pPager->nSavepoint = 0; - pPager->nSubRec = 0; -} - -/* -** Set the bit number pgno in the PagerSavepoint.pInSavepoint -** bitvecs of all open savepoints. Return SQLITE_OK if successful -** or SQLITE_NOMEM if a malloc failure occurs. -*/ -static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ - int ii; /* Loop counter */ - int rc = SQLITE_OK; /* Result code */ - - for(ii=0; ii<pPager->nSavepoint; ii++){ - PagerSavepoint *p = &pPager->aSavepoint[ii]; - if( pgno<=p->nOrig ){ - rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); - testcase( rc==SQLITE_NOMEM ); - assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); - } - } - return rc; -} - -/* -** This function is a no-op if the pager is in exclusive mode and not -** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN -** state. -** -** If the pager is not in exclusive-access mode, the database file is -** completely unlocked. If the file is unlocked and the file-system does -** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is -** closed (if it is open). -** -** If the pager is in ERROR state when this function is called, the -** contents of the pager cache are discarded before switching back to -** the OPEN state. Regardless of whether the pager is in exclusive-mode -** or not, any journal file left in the file-system will be treated -** as a hot-journal and rolled back the next time a read-transaction -** is opened (by this or by any other connection). -*/ -static void pager_unlock(Pager *pPager){ - - assert( pPager->eState==PAGER_READER - || pPager->eState==PAGER_OPEN - || pPager->eState==PAGER_ERROR - ); - - sqlite3BitvecDestroy(pPager->pInJournal); - pPager->pInJournal = 0; - releaseAllSavepoints(pPager); - - if( pagerUseWal(pPager) ){ - assert( !isOpen(pPager->jfd) ); - sqlite3WalEndReadTransaction(pPager->pWal); - pPager->eState = PAGER_OPEN; - }else if( !pPager->exclusiveMode ){ - int rc; /* Error code returned by pagerUnlockDb() */ - int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; - - /* If the operating system support deletion of open files, then - ** close the journal file when dropping the database lock. Otherwise - ** another connection with journal_mode=delete might delete the file - ** out from under us. - */ - assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); - assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); - assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); - assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); - assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); - assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); - if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) - || 1!=(pPager->journalMode & 5) - ){ - sqlite3OsClose(pPager->jfd); - } - - /* If the pager is in the ERROR state and the call to unlock the database - ** file fails, set the current lock to UNKNOWN_LOCK. See the comment - ** above the #define for UNKNOWN_LOCK for an explanation of why this - ** is necessary. - */ - rc = pagerUnlockDb(pPager, NO_LOCK); - if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ - pPager->eLock = UNKNOWN_LOCK; - } - - /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here - ** without clearing the error code. This is intentional - the error - ** code is cleared and the cache reset in the block below. - */ - assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); - pPager->changeCountDone = 0; - pPager->eState = PAGER_OPEN; - } - - /* If Pager.errCode is set, the contents of the pager cache cannot be - ** trusted. Now that there are no outstanding references to the pager, - ** it can safely move back to PAGER_OPEN state. This happens in both - ** normal and exclusive-locking mode. - */ - if( pPager->errCode ){ - assert( !MEMDB ); - pager_reset(pPager); - pPager->changeCountDone = pPager->tempFile; - pPager->eState = PAGER_OPEN; - pPager->errCode = SQLITE_OK; - } - - pPager->journalOff = 0; - pPager->journalHdr = 0; - pPager->setMaster = 0; -} - -/* -** This function is called whenever an IOERR or FULL error that requires -** the pager to transition into the ERROR state may ahve occurred. -** The first argument is a pointer to the pager structure, the second -** the error-code about to be returned by a pager API function. The -** value returned is a copy of the second argument to this function. -** -** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the -** IOERR sub-codes, the pager enters the ERROR state and the error code -** is stored in Pager.errCode. While the pager remains in the ERROR state, -** all major API calls on the Pager will immediately return Pager.errCode. -** -** The ERROR state indicates that the contents of the pager-cache -** cannot be trusted. This state can be cleared by completely discarding -** the contents of the pager-cache. If a transaction was active when -** the persistent error occurred, then the rollback journal may need -** to be replayed to restore the contents of the database file (as if -** it were a hot-journal). -*/ -static int pager_error(Pager *pPager, int rc){ - int rc2 = rc & 0xff; - assert( rc==SQLITE_OK || !MEMDB ); - assert( - pPager->errCode==SQLITE_FULL || - pPager->errCode==SQLITE_OK || - (pPager->errCode & 0xff)==SQLITE_IOERR - ); - if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ - pPager->errCode = rc; - pPager->eState = PAGER_ERROR; - } - return rc; -} - -static int pager_truncate(Pager *pPager, Pgno nPage); - -/* -** This routine ends a transaction. A transaction is usually ended by -** either a COMMIT or a ROLLBACK operation. This routine may be called -** after rollback of a hot-journal, or if an error occurs while opening -** the journal file or writing the very first journal-header of a -** database transaction. -** -** This routine is never called in PAGER_ERROR state. If it is called -** in PAGER_NONE or PAGER_SHARED state and the lock held is less -** exclusive than a RESERVED lock, it is a no-op. -** -** Otherwise, any active savepoints are released. -** -** If the journal file is open, then it is "finalized". Once a journal -** file has been finalized it is not possible to use it to roll back a -** transaction. Nor will it be considered to be a hot-journal by this -** or any other database connection. Exactly how a journal is finalized -** depends on whether or not the pager is running in exclusive mode and -** the current journal-mode (Pager.journalMode value), as follows: -** -** journalMode==MEMORY -** Journal file descriptor is simply closed. This destroys an -** in-memory journal. -** -** journalMode==TRUNCATE -** Journal file is truncated to zero bytes in size. -** -** journalMode==PERSIST -** The first 28 bytes of the journal file are zeroed. This invalidates -** the first journal header in the file, and hence the entire journal -** file. An invalid journal file cannot be rolled back. -** -** journalMode==DELETE -** The journal file is closed and deleted using sqlite3OsDelete(). -** -** If the pager is running in exclusive mode, this method of finalizing -** the journal file is never used. Instead, if the journalMode is -** DELETE and the pager is in exclusive mode, the method described under -** journalMode==PERSIST is used instead. -** -** After the journal is finalized, the pager moves to PAGER_READER state. -** If running in non-exclusive rollback mode, the lock on the file is -** downgraded to a SHARED_LOCK. -** -** SQLITE_OK is returned if no error occurs. If an error occurs during -** any of the IO operations to finalize the journal file or unlock the -** database then the IO error code is returned to the user. If the -** operation to finalize the journal file fails, then the code still -** tries to unlock the database file if not in exclusive mode. If the -** unlock operation fails as well, then the first error code related -** to the first error encountered (the journal finalization one) is -** returned. -*/ -static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ - int rc = SQLITE_OK; /* Error code from journal finalization operation */ - int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ - - /* Do nothing if the pager does not have an open write transaction - ** or at least a RESERVED lock. This function may be called when there - ** is no write-transaction active but a RESERVED or greater lock is - ** held under two circumstances: - ** - ** 1. After a successful hot-journal rollback, it is called with - ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. - ** - ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE - ** lock switches back to locking_mode=normal and then executes a - ** read-transaction, this function is called with eState==PAGER_READER - ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. - */ - assert( assert_pager_state(pPager) ); - assert( pPager->eState!=PAGER_ERROR ); - if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ - return SQLITE_OK; - } - - releaseAllSavepoints(pPager); - assert( isOpen(pPager->jfd) || pPager->pInJournal==0 ); - if( isOpen(pPager->jfd) ){ - assert( !pagerUseWal(pPager) ); - - /* Finalize the journal file. */ - if( sqlite3IsMemJournal(pPager->jfd) ){ - assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); - sqlite3OsClose(pPager->jfd); - }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ - if( pPager->journalOff==0 ){ - rc = SQLITE_OK; - }else{ - rc = sqlite3OsTruncate(pPager->jfd, 0); - } - pPager->journalOff = 0; - }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST - || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) - ){ - rc = zeroJournalHdr(pPager, hasMaster); - pPager->journalOff = 0; - }else{ - /* This branch may be executed with Pager.journalMode==MEMORY if - ** a hot-journal was just rolled back. In this case the journal - ** file should be closed and deleted. If this connection writes to - ** the database file, it will do so using an in-memory journal. - */ - int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd)); - assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE - || pPager->journalMode==PAGER_JOURNALMODE_MEMORY - || pPager->journalMode==PAGER_JOURNALMODE_WAL - ); - sqlite3OsClose(pPager->jfd); - if( bDelete ){ - rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); - } - } - } - -#ifdef SQLITE_CHECK_PAGES - sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); - if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ - PgHdr *p = pager_lookup(pPager, 1); - if( p ){ - p->pageHash = 0; - sqlite3PagerUnref(p); - } - } -#endif - - sqlite3BitvecDestroy(pPager->pInJournal); - pPager->pInJournal = 0; - pPager->nRec = 0; - sqlite3PcacheCleanAll(pPager->pPCache); - sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); - - if( pagerUseWal(pPager) ){ - /* Drop the WAL write-lock, if any. Also, if the connection was in - ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE - ** lock held on the database file. - */ - rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); - assert( rc2==SQLITE_OK ); - }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ - /* This branch is taken when committing a transaction in rollback-journal - ** mode if the database file on disk is larger than the database image. - ** At this point the journal has been finalized and the transaction - ** successfully committed, but the EXCLUSIVE lock is still held on the - ** file. So it is safe to truncate the database file to its minimum - ** required size. */ - assert( pPager->eLock==EXCLUSIVE_LOCK ); - rc = pager_truncate(pPager, pPager->dbSize); - } - - if( !pPager->exclusiveMode - && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) - ){ - rc2 = pagerUnlockDb(pPager, SHARED_LOCK); - pPager->changeCountDone = 0; - } - pPager->eState = PAGER_READER; - pPager->setMaster = 0; - - return (rc==SQLITE_OK?rc2:rc); -} - -/* -** Execute a rollback if a transaction is active and unlock the -** database file. -** -** If the pager has already entered the ERROR state, do not attempt -** the rollback at this time. Instead, pager_unlock() is called. The -** call to pager_unlock() will discard all in-memory pages, unlock -** the database file and move the pager back to OPEN state. If this -** means that there is a hot-journal left in the file-system, the next -** connection to obtain a shared lock on the pager (which may be this one) -** will roll it back. -** -** If the pager has not already entered the ERROR state, but an IO or -** malloc error occurs during a rollback, then this will itself cause -** the pager to enter the ERROR state. Which will be cleared by the -** call to pager_unlock(), as described above. -*/ -static void pagerUnlockAndRollback(Pager *pPager){ - if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ - assert( assert_pager_state(pPager) ); - if( pPager->eState>=PAGER_WRITER_LOCKED ){ - sqlite3BeginBenignMalloc(); - sqlite3PagerRollback(pPager); - sqlite3EndBenignMalloc(); - }else if( !pPager->exclusiveMode ){ - assert( pPager->eState==PAGER_READER ); - pager_end_transaction(pPager, 0, 0); - } - } - pager_unlock(pPager); -} - -/* -** Parameter aData must point to a buffer of pPager->pageSize bytes -** of data. Compute and return a checksum based ont the contents of the -** page of data and the current value of pPager->cksumInit. -** -** This is not a real checksum. It is really just the sum of the -** random initial value (pPager->cksumInit) and every 200th byte -** of the page data, starting with byte offset (pPager->pageSize%200). -** Each byte is interpreted as an 8-bit unsigned integer. -** -** Changing the formula used to compute this checksum results in an -** incompatible journal file format. -** -** If journal corruption occurs due to a power failure, the most likely -** scenario is that one end or the other of the record will be changed. -** It is much less likely that the two ends of the journal record will be -** correct and the middle be corrupt. Thus, this "checksum" scheme, -** though fast and simple, catches the mostly likely kind of corruption. -*/ -static u32 pager_cksum(Pager *pPager, const u8 *aData){ - u32 cksum = pPager->cksumInit; /* Checksum value to return */ - int i = pPager->pageSize-200; /* Loop counter */ - while( i>0 ){ - cksum += aData[i]; - i -= 200; - } - return cksum; -} - -/* -** Report the current page size and number of reserved bytes back -** to the codec. -*/ -#ifdef SQLITE_HAS_CODEC -static void pagerReportSize(Pager *pPager){ - if( pPager->xCodecSizeChng ){ - pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, - (int)pPager->nReserve); - } -} -#else -# define pagerReportSize(X) /* No-op if we do not support a codec */ -#endif - -/* -** Read a single page from either the journal file (if isMainJrnl==1) or -** from the sub-journal (if isMainJrnl==0) and playback that page. -** The page begins at offset *pOffset into the file. The *pOffset -** value is increased to the start of the next page in the journal. -** -** The main rollback journal uses checksums - the statement journal does -** not. -** -** If the page number of the page record read from the (sub-)journal file -** is greater than the current value of Pager.dbSize, then playback is -** skipped and SQLITE_OK is returned. -** -** If pDone is not NULL, then it is a record of pages that have already -** been played back. If the page at *pOffset has already been played back -** (if the corresponding pDone bit is set) then skip the playback. -** Make sure the pDone bit corresponding to the *pOffset page is set -** prior to returning. -** -** If the page record is successfully read from the (sub-)journal file -** and played back, then SQLITE_OK is returned. If an IO error occurs -** while reading the record from the (sub-)journal file or while writing -** to the database file, then the IO error code is returned. If data -** is successfully read from the (sub-)journal file but appears to be -** corrupted, SQLITE_DONE is returned. Data is considered corrupted in -** two circumstances: -** -** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or -** * If the record is being rolled back from the main journal file -** and the checksum field does not match the record content. -** -** Neither of these two scenarios are possible during a savepoint rollback. -** -** If this is a savepoint rollback, then memory may have to be dynamically -** allocated by this function. If this is the case and an allocation fails, -** SQLITE_NOMEM is returned. -*/ -static int pager_playback_one_page( - Pager *pPager, /* The pager being played back */ - i64 *pOffset, /* Offset of record to playback */ - Bitvec *pDone, /* Bitvec of pages already played back */ - int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ - int isSavepnt /* True for a savepoint rollback */ -){ - int rc; - PgHdr *pPg; /* An existing page in the cache */ - Pgno pgno; /* The page number of a page in journal */ - u32 cksum; /* Checksum used for sanity checking */ - char *aData; /* Temporary storage for the page */ - sqlite3_file *jfd; /* The file descriptor for the journal file */ - int isSynced; /* True if journal page is synced */ - - assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ - assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ - assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ - assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ - - aData = pPager->pTmpSpace; - assert( aData ); /* Temp storage must have already been allocated */ - assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); - - /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction - ** or savepoint rollback done at the request of the caller) or this is - ** a hot-journal rollback. If it is a hot-journal rollback, the pager - ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback - ** only reads from the main journal, not the sub-journal. - */ - assert( pPager->eState>=PAGER_WRITER_CACHEMOD - || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) - ); - assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); - - /* Read the page number and page data from the journal or sub-journal - ** file. Return an error code to the caller if an IO error occurs. - */ - jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; - rc = read32bits(jfd, *pOffset, &pgno); - if( rc!=SQLITE_OK ) return rc; - rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); - if( rc!=SQLITE_OK ) return rc; - *pOffset += pPager->pageSize + 4 + isMainJrnl*4; - - /* Sanity checking on the page. This is more important that I originally - ** thought. If a power failure occurs while the journal is being written, - ** it could cause invalid data to be written into the journal. We need to - ** detect this invalid data (with high probability) and ignore it. - */ - if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ - assert( !isSavepnt ); - return SQLITE_DONE; - } - if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ - return SQLITE_OK; - } - if( isMainJrnl ){ - rc = read32bits(jfd, (*pOffset)-4, &cksum); - if( rc ) return rc; - if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ - return SQLITE_DONE; - } - } - - /* If this page has already been played by before during the current - ** rollback, then don't bother to play it back again. - */ - if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ - return rc; - } - - /* When playing back page 1, restore the nReserve setting - */ - if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ - pPager->nReserve = ((u8*)aData)[20]; - pagerReportSize(pPager); - } - - /* If the pager is in CACHEMOD state, then there must be a copy of this - ** page in the pager cache. In this case just update the pager cache, - ** not the database file. The page is left marked dirty in this case. - ** - ** An exception to the above rule: If the database is in no-sync mode - ** and a page is moved during an incremental vacuum then the page may - ** not be in the pager cache. Later: if a malloc() or IO error occurs - ** during a Movepage() call, then the page may not be in the cache - ** either. So the condition described in the above paragraph is not - ** assert()able. - ** - ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the - ** pager cache if it exists and the main file. The page is then marked - ** not dirty. Since this code is only executed in PAGER_OPEN state for - ** a hot-journal rollback, it is guaranteed that the page-cache is empty - ** if the pager is in OPEN state. - ** - ** Ticket #1171: The statement journal might contain page content that is - ** different from the page content at the start of the transaction. - ** This occurs when a page is changed prior to the start of a statement - ** then changed again within the statement. When rolling back such a - ** statement we must not write to the original database unless we know - ** for certain that original page contents are synced into the main rollback - ** journal. Otherwise, a power loss might leave modified data in the - ** database file without an entry in the rollback journal that can - ** restore the database to its original form. Two conditions must be - ** met before writing to the database files. (1) the database must be - ** locked. (2) we know that the original page content is fully synced - ** in the main journal either because the page is not in cache or else - ** the page is marked as needSync==0. - ** - ** 2008-04-14: When attempting to vacuum a corrupt database file, it - ** is possible to fail a statement on a database that does not yet exist. - ** Do not attempt to write if database file has never been opened. - */ - if( pagerUseWal(pPager) ){ - pPg = 0; - }else{ - pPg = pager_lookup(pPager, pgno); - } - assert( pPg || !MEMDB ); - assert( pPager->eState!=PAGER_OPEN || pPg==0 ); - PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", - PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), - (isMainJrnl?"main-journal":"sub-journal") - )); - if( isMainJrnl ){ - isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); - }else{ - isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); - } - if( isOpen(pPager->fd) - && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) - && isSynced - ){ - i64 ofst = (pgno-1)*(i64)pPager->pageSize; - testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); - assert( !pagerUseWal(pPager) ); - rc = sqlite3OsWrite(pPager->fd, (u8*)aData, pPager->pageSize, ofst); - if( pgno>pPager->dbFileSize ){ - pPager->dbFileSize = pgno; - } - if( pPager->pBackup ){ - CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM); - sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); - CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData); - } - }else if( !isMainJrnl && pPg==0 ){ - /* If this is a rollback of a savepoint and data was not written to - ** the database and the page is not in-memory, there is a potential - ** problem. When the page is next fetched by the b-tree layer, it - ** will be read from the database file, which may or may not be - ** current. - ** - ** There are a couple of different ways this can happen. All are quite - ** obscure. When running in synchronous mode, this can only happen - ** if the page is on the free-list at the start of the transaction, then - ** populated, then moved using sqlite3PagerMovepage(). - ** - ** The solution is to add an in-memory page to the cache containing - ** the data just read from the sub-journal. Mark the page as dirty - ** and if the pager requires a journal-sync, then mark the page as - ** requiring a journal-sync before it is written. - */ - assert( isSavepnt ); - assert( pPager->doNotSpill==0 ); - pPager->doNotSpill++; - rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1); - assert( pPager->doNotSpill==1 ); - pPager->doNotSpill--; - if( rc!=SQLITE_OK ) return rc; - pPg->flags &= ~PGHDR_NEED_READ; - sqlite3PcacheMakeDirty(pPg); - } - if( pPg ){ - /* No page should ever be explicitly rolled back that is in use, except - ** for page 1 which is held in use in order to keep the lock on the - ** database active. However such a page may be rolled back as a result - ** of an internal error resulting in an automatic call to - ** sqlite3PagerRollback(). - */ - void *pData; - pData = pPg->pData; - memcpy(pData, (u8*)aData, pPager->pageSize); - pPager->xReiniter(pPg); - if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){ - /* If the contents of this page were just restored from the main - ** journal file, then its content must be as they were when the - ** transaction was first opened. In this case we can mark the page - ** as clean, since there will be no need to write it out to the - ** database. - ** - ** There is one exception to this rule. If the page is being rolled - ** back as part of a savepoint (or statement) rollback from an - ** unsynced portion of the main journal file, then it is not safe - ** to mark the page as clean. This is because marking the page as - ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is - ** already in the journal file (recorded in Pager.pInJournal) and - ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to - ** again within this transaction, it will be marked as dirty but - ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially - ** be written out into the database file before its journal file - ** segment is synced. If a crash occurs during or following this, - ** database corruption may ensue. - */ - assert( !pagerUseWal(pPager) ); - sqlite3PcacheMakeClean(pPg); - } - pager_set_pagehash(pPg); - - /* If this was page 1, then restore the value of Pager.dbFileVers. - ** Do this before any decoding. */ - if( pgno==1 ){ - memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); - } - - /* Decode the page just read from disk */ - CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM); - sqlite3PcacheRelease(pPg); - } - return rc; -} - -/* -** Parameter zMaster is the name of a master journal file. A single journal -** file that referred to the master journal file has just been rolled back. -** This routine checks if it is possible to delete the master journal file, -** and does so if it is. -** -** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not -** available for use within this function. -** -** When a master journal file is created, it is populated with the names -** of all of its child journals, one after another, formatted as utf-8 -** encoded text. The end of each child journal file is marked with a -** nul-terminator byte (0x00). i.e. the entire contents of a master journal -** file for a transaction involving two databases might be: -** -** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" -** -** A master journal file may only be deleted once all of its child -** journals have been rolled back. -** -** This function reads the contents of the master-journal file into -** memory and loops through each of the child journal names. For -** each child journal, it checks if: -** -** * if the child journal exists, and if so -** * if the child journal contains a reference to master journal -** file zMaster -** -** If a child journal can be found that matches both of the criteria -** above, this function returns without doing anything. Otherwise, if -** no such child journal can be found, file zMaster is deleted from -** the file-system using sqlite3OsDelete(). -** -** If an IO error within this function, an error code is returned. This -** function allocates memory by calling sqlite3Malloc(). If an allocation -** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors -** occur, SQLITE_OK is returned. -** -** TODO: This function allocates a single block of memory to load -** the entire contents of the master journal file. This could be -** a couple of kilobytes or so - potentially larger than the page -** size. -*/ -static int pager_delmaster(Pager *pPager, const char *zMaster){ - sqlite3_vfs *pVfs = pPager->pVfs; - int rc; /* Return code */ - sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ - sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ - char *zMasterJournal = 0; /* Contents of master journal file */ - i64 nMasterJournal; /* Size of master journal file */ - char *zJournal; /* Pointer to one journal within MJ file */ - char *zMasterPtr; /* Space to hold MJ filename from a journal file */ - int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ - - /* Allocate space for both the pJournal and pMaster file descriptors. - ** If successful, open the master journal file for reading. - */ - pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); - pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); - if( !pMaster ){ - rc = SQLITE_NOMEM; - }else{ - const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); - rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); - } - if( rc!=SQLITE_OK ) goto delmaster_out; - - /* Load the entire master journal file into space obtained from - ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain - ** sufficient space (in zMasterPtr) to hold the names of master - ** journal files extracted from regular rollback-journals. - */ - rc = sqlite3OsFileSize(pMaster, &nMasterJournal); - if( rc!=SQLITE_OK ) goto delmaster_out; - nMasterPtr = pVfs->mxPathname+1; - zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1); - if( !zMasterJournal ){ - rc = SQLITE_NOMEM; - goto delmaster_out; - } - zMasterPtr = &zMasterJournal[nMasterJournal+1]; - rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); - if( rc!=SQLITE_OK ) goto delmaster_out; - zMasterJournal[nMasterJournal] = 0; - - zJournal = zMasterJournal; - while( (zJournal-zMasterJournal)<nMasterJournal ){ - int exists; - rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); - if( rc!=SQLITE_OK ){ - goto delmaster_out; - } - if( exists ){ - /* One of the journals pointed to by the master journal exists. - ** Open it and check if it points at the master journal. If - ** so, return without deleting the master journal file. - */ - int c; - int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); - rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); - if( rc!=SQLITE_OK ){ - goto delmaster_out; - } - - rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); - sqlite3OsClose(pJournal); - if( rc!=SQLITE_OK ){ - goto delmaster_out; - } - - c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; - if( c ){ - /* We have a match. Do not delete the master journal file. */ - goto delmaster_out; - } - } - zJournal += (sqlite3Strlen30(zJournal)+1); - } - - sqlite3OsClose(pMaster); - rc = sqlite3OsDelete(pVfs, zMaster, 0); - -delmaster_out: - sqlite3_free(zMasterJournal); - if( pMaster ){ - sqlite3OsClose(pMaster); - assert( !isOpen(pJournal) ); - sqlite3_free(pMaster); - } - return rc; -} - - -/* -** This function is used to change the actual size of the database -** file in the file-system. This only happens when committing a transaction, -** or rolling back a transaction (including rolling back a hot-journal). -** -** If the main database file is not open, or the pager is not in either -** DBMOD or OPEN state, this function is a no-op. Otherwise, the size -** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). -** If the file on disk is currently larger than nPage pages, then use the VFS -** xTruncate() method to truncate it. -** -** Or, it might might be the case that the file on disk is smaller than -** nPage pages. Some operating system implementations can get confused if -** you try to truncate a file to some size that is larger than it -** currently is, so detect this case and write a single zero byte to -** the end of the new file instead. -** -** If successful, return SQLITE_OK. If an IO error occurs while modifying -** the database file, return the error code to the caller. -*/ -static int pager_truncate(Pager *pPager, Pgno nPage){ - int rc = SQLITE_OK; - assert( pPager->eState!=PAGER_ERROR ); - assert( pPager->eState!=PAGER_READER ); - - if( isOpen(pPager->fd) - && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) - ){ - i64 currentSize, newSize; - int szPage = pPager->pageSize; - assert( pPager->eLock==EXCLUSIVE_LOCK ); - /* TODO: Is it safe to use Pager.dbFileSize here? */ - rc = sqlite3OsFileSize(pPager->fd, ¤tSize); - newSize = szPage*(i64)nPage; - if( rc==SQLITE_OK && currentSize!=newSize ){ - if( currentSize>newSize ){ - rc = sqlite3OsTruncate(pPager->fd, newSize); - }else if( (currentSize+szPage)<=newSize ){ - char *pTmp = pPager->pTmpSpace; - memset(pTmp, 0, szPage); - testcase( (newSize-szPage) == currentSize ); - testcase( (newSize-szPage) > currentSize ); - rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); - } - if( rc==SQLITE_OK ){ - pPager->dbFileSize = nPage; - } - } - } - return rc; -} - -/* -** Return a sanitized version of the sector-size of OS file pFile. The -** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. -*/ -SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){ - int iRet = sqlite3OsSectorSize(pFile); - if( iRet<32 ){ - iRet = 512; - }else if( iRet>MAX_SECTOR_SIZE ){ - assert( MAX_SECTOR_SIZE>=512 ); - iRet = MAX_SECTOR_SIZE; - } - return iRet; -} - -/* -** Set the value of the Pager.sectorSize variable for the given -** pager based on the value returned by the xSectorSize method -** of the open database file. The sector size will be used used -** to determine the size and alignment of journal header and -** master journal pointers within created journal files. -** -** For temporary files the effective sector size is always 512 bytes. -** -** Otherwise, for non-temporary files, the effective sector size is -** the value returned by the xSectorSize() method rounded up to 32 if -** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it -** is greater than MAX_SECTOR_SIZE. -** -** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set -** the effective sector size to its minimum value (512). The purpose of -** pPager->sectorSize is to define the "blast radius" of bytes that -** might change if a crash occurs while writing to a single byte in -** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero -** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector -** size. For backwards compatibility of the rollback journal file format, -** we cannot reduce the effective sector size below 512. -*/ -static void setSectorSize(Pager *pPager){ - assert( isOpen(pPager->fd) || pPager->tempFile ); - - if( pPager->tempFile - || (sqlite3OsDeviceCharacteristics(pPager->fd) & - SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 - ){ - /* Sector size doesn't matter for temporary files. Also, the file - ** may not have been opened yet, in which case the OsSectorSize() - ** call will segfault. */ - pPager->sectorSize = 512; - }else{ - pPager->sectorSize = sqlite3SectorSize(pPager->fd); - } -} - -/* -** Playback the journal and thus restore the database file to -** the state it was in before we started making changes. -** -** The journal file format is as follows: -** -** (1) 8 byte prefix. A copy of aJournalMagic[]. -** (2) 4 byte big-endian integer which is the number of valid page records -** in the journal. If this value is 0xffffffff, then compute the -** number of page records from the journal size. -** (3) 4 byte big-endian integer which is the initial value for the -** sanity checksum. -** (4) 4 byte integer which is the number of pages to truncate the -** database to during a rollback. -** (5) 4 byte big-endian integer which is the sector size. The header -** is this many bytes in size. -** (6) 4 byte big-endian integer which is the page size. -** (7) zero padding out to the next sector size. -** (8) Zero or more pages instances, each as follows: -** + 4 byte page number. -** + pPager->pageSize bytes of data. -** + 4 byte checksum -** -** When we speak of the journal header, we mean the first 7 items above. -** Each entry in the journal is an instance of the 8th item. -** -** Call the value from the second bullet "nRec". nRec is the number of -** valid page entries in the journal. In most cases, you can compute the -** value of nRec from the size of the journal file. But if a power -** failure occurred while the journal was being written, it could be the -** case that the size of the journal file had already been increased but -** the extra entries had not yet made it safely to disk. In such a case, -** the value of nRec computed from the file size would be too large. For -** that reason, we always use the nRec value in the header. -** -** If the nRec value is 0xffffffff it means that nRec should be computed -** from the file size. This value is used when the user selects the -** no-sync option for the journal. A power failure could lead to corruption -** in this case. But for things like temporary table (which will be -** deleted when the power is restored) we don't care. -** -** If the file opened as the journal file is not a well-formed -** journal file then all pages up to the first corrupted page are rolled -** back (or no pages if the journal header is corrupted). The journal file -** is then deleted and SQLITE_OK returned, just as if no corruption had -** been encountered. -** -** If an I/O or malloc() error occurs, the journal-file is not deleted -** and an error code is returned. -** -** The isHot parameter indicates that we are trying to rollback a journal -** that might be a hot journal. Or, it could be that the journal is -** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. -** If the journal really is hot, reset the pager cache prior rolling -** back any content. If the journal is merely persistent, no reset is -** needed. -*/ -static int pager_playback(Pager *pPager, int isHot){ - sqlite3_vfs *pVfs = pPager->pVfs; - i64 szJ; /* Size of the journal file in bytes */ - u32 nRec; /* Number of Records in the journal */ - u32 u; /* Unsigned loop counter */ - Pgno mxPg = 0; /* Size of the original file in pages */ - int rc; /* Result code of a subroutine */ - int res = 1; /* Value returned by sqlite3OsAccess() */ - char *zMaster = 0; /* Name of master journal file if any */ - int needPagerReset; /* True to reset page prior to first page rollback */ - - /* Figure out how many records are in the journal. Abort early if - ** the journal is empty. - */ - assert( isOpen(pPager->jfd) ); - rc = sqlite3OsFileSize(pPager->jfd, &szJ); - if( rc!=SQLITE_OK ){ - goto end_playback; - } - - /* Read the master journal name from the journal, if it is present. - ** If a master journal file name is specified, but the file is not - ** present on disk, then the journal is not hot and does not need to be - ** played back. - ** - ** TODO: Technically the following is an error because it assumes that - ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that - ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, - ** mxPathname is 512, which is the same as the minimum allowable value - ** for pageSize. - */ - zMaster = pPager->pTmpSpace; - rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); - if( rc==SQLITE_OK && zMaster[0] ){ - rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); - } - zMaster = 0; - if( rc!=SQLITE_OK || !res ){ - goto end_playback; - } - pPager->journalOff = 0; - needPagerReset = isHot; - - /* This loop terminates either when a readJournalHdr() or - ** pager_playback_one_page() call returns SQLITE_DONE or an IO error - ** occurs. - */ - while( 1 ){ - /* Read the next journal header from the journal file. If there are - ** not enough bytes left in the journal file for a complete header, or - ** it is corrupted, then a process must have failed while writing it. - ** This indicates nothing more needs to be rolled back. - */ - rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_DONE ){ - rc = SQLITE_OK; - } - goto end_playback; - } - - /* If nRec is 0xffffffff, then this journal was created by a process - ** working in no-sync mode. This means that the rest of the journal - ** file consists of pages, there are no more journal headers. Compute - ** the value of nRec based on this assumption. - */ - if( nRec==0xffffffff ){ - assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); - nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); - } - - /* If nRec is 0 and this rollback is of a transaction created by this - ** process and if this is the final header in the journal, then it means - ** that this part of the journal was being filled but has not yet been - ** synced to disk. Compute the number of pages based on the remaining - ** size of the file. - ** - ** The third term of the test was added to fix ticket #2565. - ** When rolling back a hot journal, nRec==0 always means that the next - ** chunk of the journal contains zero pages to be rolled back. But - ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in - ** the journal, it means that the journal might contain additional - ** pages that need to be rolled back and that the number of pages - ** should be computed based on the journal file size. - */ - if( nRec==0 && !isHot && - pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ - nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); - } - - /* If this is the first header read from the journal, truncate the - ** database file back to its original size. - */ - if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ - rc = pager_truncate(pPager, mxPg); - if( rc!=SQLITE_OK ){ - goto end_playback; - } - pPager->dbSize = mxPg; - } - - /* Copy original pages out of the journal and back into the - ** database file and/or page cache. - */ - for(u=0; u<nRec; u++){ - if( needPagerReset ){ - pager_reset(pPager); - needPagerReset = 0; - } - rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_DONE ){ - pPager->journalOff = szJ; - break; - }else if( rc==SQLITE_IOERR_SHORT_READ ){ - /* If the journal has been truncated, simply stop reading and - ** processing the journal. This might happen if the journal was - ** not completely written and synced prior to a crash. In that - ** case, the database should have never been written in the - ** first place so it is OK to simply abandon the rollback. */ - rc = SQLITE_OK; - goto end_playback; - }else{ - /* If we are unable to rollback, quit and return the error - ** code. This will cause the pager to enter the error state - ** so that no further harm will be done. Perhaps the next - ** process to come along will be able to rollback the database. - */ - goto end_playback; - } - } - } - } - /*NOTREACHED*/ - assert( 0 ); - -end_playback: - /* Following a rollback, the database file should be back in its original - ** state prior to the start of the transaction, so invoke the - ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the - ** assertion that the transaction counter was modified. - */ -#ifdef SQLITE_DEBUG - if( pPager->fd->pMethods ){ - sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); - } -#endif - - /* If this playback is happening automatically as a result of an IO or - ** malloc error that occurred after the change-counter was updated but - ** before the transaction was committed, then the change-counter - ** modification may just have been reverted. If this happens in exclusive - ** mode, then subsequent transactions performed by the connection will not - ** update the change-counter at all. This may lead to cache inconsistency - ** problems for other processes at some point in the future. So, just - ** in case this has happened, clear the changeCountDone flag now. - */ - pPager->changeCountDone = pPager->tempFile; - - if( rc==SQLITE_OK ){ - zMaster = pPager->pTmpSpace; - rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); - testcase( rc!=SQLITE_OK ); - } - if( rc==SQLITE_OK - && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) - ){ - rc = sqlite3PagerSync(pPager); - } - if( rc==SQLITE_OK ){ - rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); - testcase( rc!=SQLITE_OK ); - } - if( rc==SQLITE_OK && zMaster[0] && res ){ - /* If there was a master journal and this routine will return success, - ** see if it is possible to delete the master journal. - */ - rc = pager_delmaster(pPager, zMaster); - testcase( rc!=SQLITE_OK ); - } - - /* The Pager.sectorSize variable may have been updated while rolling - ** back a journal created by a process with a different sector size - ** value. Reset it to the correct value for this process. - */ - setSectorSize(pPager); - return rc; -} - - -/* -** Read the content for page pPg out of the database file and into -** pPg->pData. A shared lock or greater must be held on the database -** file before this function is called. -** -** If page 1 is read, then the value of Pager.dbFileVers[] is set to -** the value read from the database file. -** -** If an IO error occurs, then the IO error is returned to the caller. -** Otherwise, SQLITE_OK is returned. -*/ -static int readDbPage(PgHdr *pPg){ - Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ - Pgno pgno = pPg->pgno; /* Page number to read */ - int rc = SQLITE_OK; /* Return code */ - int isInWal = 0; /* True if page is in log file */ - int pgsz = pPager->pageSize; /* Number of bytes to read */ - - assert( pPager->eState>=PAGER_READER && !MEMDB ); - assert( isOpen(pPager->fd) ); - - if( NEVER(!isOpen(pPager->fd)) ){ - assert( pPager->tempFile ); - memset(pPg->pData, 0, pPager->pageSize); - return SQLITE_OK; - } - - if( pagerUseWal(pPager) ){ - /* Try to pull the page from the write-ahead log. */ - rc = sqlite3WalRead(pPager->pWal, pgno, &isInWal, pgsz, pPg->pData); - } - if( rc==SQLITE_OK && !isInWal ){ - i64 iOffset = (pgno-1)*(i64)pPager->pageSize; - rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset); - if( rc==SQLITE_IOERR_SHORT_READ ){ - rc = SQLITE_OK; - } - } - - if( pgno==1 ){ - if( rc ){ - /* If the read is unsuccessful, set the dbFileVers[] to something - ** that will never be a valid file version. dbFileVers[] is a copy - ** of bytes 24..39 of the database. Bytes 28..31 should always be - ** zero or the size of the database in page. Bytes 32..35 and 35..39 - ** should be page numbers which are never 0xffffffff. So filling - ** pPager->dbFileVers[] with all 0xff bytes should suffice. - ** - ** For an encrypted database, the situation is more complex: bytes - ** 24..39 of the database are white noise. But the probability of - ** white noising equaling 16 bytes of 0xff is vanishingly small so - ** we should still be ok. - */ - memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); - }else{ - u8 *dbFileVers = &((u8*)pPg->pData)[24]; - memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); - } - } - CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM); - - PAGER_INCR(sqlite3_pager_readdb_count); - PAGER_INCR(pPager->nRead); - IOTRACE(("PGIN %p %d\n", pPager, pgno)); - PAGERTRACE(("FETCH %d page %d hash(%08x)\n", - PAGERID(pPager), pgno, pager_pagehash(pPg))); - - return rc; -} - -/* -** Update the value of the change-counter at offsets 24 and 92 in -** the header and the sqlite version number at offset 96. -** -** This is an unconditional update. See also the pager_incr_changecounter() -** routine which only updates the change-counter if the update is actually -** needed, as determined by the pPager->changeCountDone state variable. -*/ -static void pager_write_changecounter(PgHdr *pPg){ - u32 change_counter; - - /* Increment the value just read and write it back to byte 24. */ - change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; - put32bits(((char*)pPg->pData)+24, change_counter); - - /* Also store the SQLite version number in bytes 96..99 and in - ** bytes 92..95 store the change counter for which the version number - ** is valid. */ - put32bits(((char*)pPg->pData)+92, change_counter); - put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); -} - -#ifndef SQLITE_OMIT_WAL -/* -** This function is invoked once for each page that has already been -** written into the log file when a WAL transaction is rolled back. -** Parameter iPg is the page number of said page. The pCtx argument -** is actually a pointer to the Pager structure. -** -** If page iPg is present in the cache, and has no outstanding references, -** it is discarded. Otherwise, if there are one or more outstanding -** references, the page content is reloaded from the database. If the -** attempt to reload content from the database is required and fails, -** return an SQLite error code. Otherwise, SQLITE_OK. -*/ -static int pagerUndoCallback(void *pCtx, Pgno iPg){ - int rc = SQLITE_OK; - Pager *pPager = (Pager *)pCtx; - PgHdr *pPg; - - pPg = sqlite3PagerLookup(pPager, iPg); - if( pPg ){ - if( sqlite3PcachePageRefcount(pPg)==1 ){ - sqlite3PcacheDrop(pPg); - }else{ - rc = readDbPage(pPg); - if( rc==SQLITE_OK ){ - pPager->xReiniter(pPg); - } - sqlite3PagerUnref(pPg); - } - } - - /* Normally, if a transaction is rolled back, any backup processes are - ** updated as data is copied out of the rollback journal and into the - ** database. This is not generally possible with a WAL database, as - ** rollback involves simply truncating the log file. Therefore, if one - ** or more frames have already been written to the log (and therefore - ** also copied into the backup databases) as part of this transaction, - ** the backups must be restarted. - */ - sqlite3BackupRestart(pPager->pBackup); - - return rc; -} - -/* -** This function is called to rollback a transaction on a WAL database. -*/ -static int pagerRollbackWal(Pager *pPager){ - int rc; /* Return Code */ - PgHdr *pList; /* List of dirty pages to revert */ - - /* For all pages in the cache that are currently dirty or have already - ** been written (but not committed) to the log file, do one of the - ** following: - ** - ** + Discard the cached page (if refcount==0), or - ** + Reload page content from the database (if refcount>0). - */ - pPager->dbSize = pPager->dbOrigSize; - rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); - pList = sqlite3PcacheDirtyList(pPager->pPCache); - while( pList && rc==SQLITE_OK ){ - PgHdr *pNext = pList->pDirty; - rc = pagerUndoCallback((void *)pPager, pList->pgno); - pList = pNext; - } - - return rc; -} - -/* -** This function is a wrapper around sqlite3WalFrames(). As well as logging -** the contents of the list of pages headed by pList (connected by pDirty), -** this function notifies any active backup processes that the pages have -** changed. -** -** The list of pages passed into this routine is always sorted by page number. -** Hence, if page 1 appears anywhere on the list, it will be the first page. -*/ -static int pagerWalFrames( - Pager *pPager, /* Pager object */ - PgHdr *pList, /* List of frames to log */ - Pgno nTruncate, /* Database size after this commit */ - int isCommit /* True if this is a commit */ -){ - int rc; /* Return code */ - int nList; /* Number of pages in pList */ -#if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES) - PgHdr *p; /* For looping over pages */ -#endif - - assert( pPager->pWal ); - assert( pList ); -#ifdef SQLITE_DEBUG - /* Verify that the page list is in accending order */ - for(p=pList; p && p->pDirty; p=p->pDirty){ - assert( p->pgno < p->pDirty->pgno ); - } -#endif - - assert( pList->pDirty==0 || isCommit ); - if( isCommit ){ - /* If a WAL transaction is being committed, there is no point in writing - ** any pages with page numbers greater than nTruncate into the WAL file. - ** They will never be read by any client. So remove them from the pDirty - ** list here. */ - PgHdr *p; - PgHdr **ppNext = &pList; - nList = 0; - for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ - if( p->pgno<=nTruncate ){ - ppNext = &p->pDirty; - nList++; - } - } - assert( pList ); - }else{ - nList = 1; - } - pPager->aStat[PAGER_STAT_WRITE] += nList; - - if( pList->pgno==1 ) pager_write_changecounter(pList); - rc = sqlite3WalFrames(pPager->pWal, - pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags - ); - if( rc==SQLITE_OK && pPager->pBackup ){ - PgHdr *p; - for(p=pList; p; p=p->pDirty){ - sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); - } - } - -#ifdef SQLITE_CHECK_PAGES - pList = sqlite3PcacheDirtyList(pPager->pPCache); - for(p=pList; p; p=p->pDirty){ - pager_set_pagehash(p); - } -#endif - - return rc; -} - -/* -** Begin a read transaction on the WAL. -** -** This routine used to be called "pagerOpenSnapshot()" because it essentially -** makes a snapshot of the database at the current point in time and preserves -** that snapshot for use by the reader in spite of concurrently changes by -** other writers or checkpointers. -*/ -static int pagerBeginReadTransaction(Pager *pPager){ - int rc; /* Return code */ - int changed = 0; /* True if cache must be reset */ - - assert( pagerUseWal(pPager) ); - assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); - - /* sqlite3WalEndReadTransaction() was not called for the previous - ** transaction in locking_mode=EXCLUSIVE. So call it now. If we - ** are in locking_mode=NORMAL and EndRead() was previously called, - ** the duplicate call is harmless. - */ - sqlite3WalEndReadTransaction(pPager->pWal); - - rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); - if( rc!=SQLITE_OK || changed ){ - pager_reset(pPager); - } - - return rc; -} -#endif - -/* -** This function is called as part of the transition from PAGER_OPEN -** to PAGER_READER state to determine the size of the database file -** in pages (assuming the page size currently stored in Pager.pageSize). -** -** If no error occurs, SQLITE_OK is returned and the size of the database -** in pages is stored in *pnPage. Otherwise, an error code (perhaps -** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. -*/ -static int pagerPagecount(Pager *pPager, Pgno *pnPage){ - Pgno nPage; /* Value to return via *pnPage */ - - /* Query the WAL sub-system for the database size. The WalDbsize() - ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or - ** if the database size is not available. The database size is not - ** available from the WAL sub-system if the log file is empty or - ** contains no valid committed transactions. - */ - assert( pPager->eState==PAGER_OPEN ); - assert( pPager->eLock>=SHARED_LOCK ); - nPage = sqlite3WalDbsize(pPager->pWal); - - /* If the database size was not available from the WAL sub-system, - ** determine it based on the size of the database file. If the size - ** of the database file is not an integer multiple of the page-size, - ** round down to the nearest page. Except, any file larger than 0 - ** bytes in size is considered to contain at least one page. - */ - if( nPage==0 ){ - i64 n = 0; /* Size of db file in bytes */ - assert( isOpen(pPager->fd) || pPager->tempFile ); - if( isOpen(pPager->fd) ){ - int rc = sqlite3OsFileSize(pPager->fd, &n); - if( rc!=SQLITE_OK ){ - return rc; - } - } - nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); - } - - /* If the current number of pages in the file is greater than the - ** configured maximum pager number, increase the allowed limit so - ** that the file can be read. - */ - if( nPage>pPager->mxPgno ){ - pPager->mxPgno = (Pgno)nPage; - } - - *pnPage = nPage; - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_WAL -/* -** Check if the *-wal file that corresponds to the database opened by pPager -** exists if the database is not empy, or verify that the *-wal file does -** not exist (by deleting it) if the database file is empty. -** -** If the database is not empty and the *-wal file exists, open the pager -** in WAL mode. If the database is empty or if no *-wal file exists and -** if no error occurs, make sure Pager.journalMode is not set to -** PAGER_JOURNALMODE_WAL. -** -** Return SQLITE_OK or an error code. -** -** The caller must hold a SHARED lock on the database file to call this -** function. Because an EXCLUSIVE lock on the db file is required to delete -** a WAL on a none-empty database, this ensures there is no race condition -** between the xAccess() below and an xDelete() being executed by some -** other connection. -*/ -static int pagerOpenWalIfPresent(Pager *pPager){ - int rc = SQLITE_OK; - assert( pPager->eState==PAGER_OPEN ); - assert( pPager->eLock>=SHARED_LOCK ); - - if( !pPager->tempFile ){ - int isWal; /* True if WAL file exists */ - Pgno nPage; /* Size of the database file */ - - rc = pagerPagecount(pPager, &nPage); - if( rc ) return rc; - if( nPage==0 ){ - rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); - if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; - isWal = 0; - }else{ - rc = sqlite3OsAccess( - pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal - ); - } - if( rc==SQLITE_OK ){ - if( isWal ){ - testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); - rc = sqlite3PagerOpenWal(pPager, 0); - }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ - pPager->journalMode = PAGER_JOURNALMODE_DELETE; - } - } - } - return rc; -} -#endif - -/* -** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback -** the entire master journal file. The case pSavepoint==NULL occurs when -** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction -** savepoint. -** -** When pSavepoint is not NULL (meaning a non-transaction savepoint is -** being rolled back), then the rollback consists of up to three stages, -** performed in the order specified: -** -** * Pages are played back from the main journal starting at byte -** offset PagerSavepoint.iOffset and continuing to -** PagerSavepoint.iHdrOffset, or to the end of the main journal -** file if PagerSavepoint.iHdrOffset is zero. -** -** * If PagerSavepoint.iHdrOffset is not zero, then pages are played -** back starting from the journal header immediately following -** PagerSavepoint.iHdrOffset to the end of the main journal file. -** -** * Pages are then played back from the sub-journal file, starting -** with the PagerSavepoint.iSubRec and continuing to the end of -** the journal file. -** -** Throughout the rollback process, each time a page is rolled back, the -** corresponding bit is set in a bitvec structure (variable pDone in the -** implementation below). This is used to ensure that a page is only -** rolled back the first time it is encountered in either journal. -** -** If pSavepoint is NULL, then pages are only played back from the main -** journal file. There is no need for a bitvec in this case. -** -** In either case, before playback commences the Pager.dbSize variable -** is reset to the value that it held at the start of the savepoint -** (or transaction). No page with a page-number greater than this value -** is played back. If one is encountered it is simply skipped. -*/ -static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ - i64 szJ; /* Effective size of the main journal */ - i64 iHdrOff; /* End of first segment of main-journal records */ - int rc = SQLITE_OK; /* Return code */ - Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ - - assert( pPager->eState!=PAGER_ERROR ); - assert( pPager->eState>=PAGER_WRITER_LOCKED ); - - /* Allocate a bitvec to use to store the set of pages rolled back */ - if( pSavepoint ){ - pDone = sqlite3BitvecCreate(pSavepoint->nOrig); - if( !pDone ){ - return SQLITE_NOMEM; - } - } - - /* Set the database size back to the value it was before the savepoint - ** being reverted was opened. - */ - pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; - pPager->changeCountDone = pPager->tempFile; - - if( !pSavepoint && pagerUseWal(pPager) ){ - return pagerRollbackWal(pPager); - } - - /* Use pPager->journalOff as the effective size of the main rollback - ** journal. The actual file might be larger than this in - ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything - ** past pPager->journalOff is off-limits to us. - */ - szJ = pPager->journalOff; - assert( pagerUseWal(pPager)==0 || szJ==0 ); - - /* Begin by rolling back records from the main journal starting at - ** PagerSavepoint.iOffset and continuing to the next journal header. - ** There might be records in the main journal that have a page number - ** greater than the current database size (pPager->dbSize) but those - ** will be skipped automatically. Pages are added to pDone as they - ** are played back. - */ - if( pSavepoint && !pagerUseWal(pPager) ){ - iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; - pPager->journalOff = pSavepoint->iOffset; - while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ - rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); - } - assert( rc!=SQLITE_DONE ); - }else{ - pPager->journalOff = 0; - } - - /* Continue rolling back records out of the main journal starting at - ** the first journal header seen and continuing until the effective end - ** of the main journal file. Continue to skip out-of-range pages and - ** continue adding pages rolled back to pDone. - */ - while( rc==SQLITE_OK && pPager->journalOff<szJ ){ - u32 ii; /* Loop counter */ - u32 nJRec = 0; /* Number of Journal Records */ - u32 dummy; - rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); - assert( rc!=SQLITE_DONE ); - - /* - ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" - ** test is related to ticket #2565. See the discussion in the - ** pager_playback() function for additional information. - */ - if( nJRec==0 - && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff - ){ - nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); - } - for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ - rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); - } - assert( rc!=SQLITE_DONE ); - } - assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); - - /* Finally, rollback pages from the sub-journal. Page that were - ** previously rolled back out of the main journal (and are hence in pDone) - ** will be skipped. Out-of-range pages are also skipped. - */ - if( pSavepoint ){ - u32 ii; /* Loop counter */ - i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); - - if( pagerUseWal(pPager) ){ - rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); - } - for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ - assert( offset==(i64)ii*(4+pPager->pageSize) ); - rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); - } - assert( rc!=SQLITE_DONE ); - } - - sqlite3BitvecDestroy(pDone); - if( rc==SQLITE_OK ){ - pPager->journalOff = szJ; - } - - return rc; -} - -/* -** Change the maximum number of in-memory pages that are allowed. -*/ -SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ - sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); -} - -/* -** Free as much memory as possible from the pager. -*/ -SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ - sqlite3PcacheShrink(pPager->pPCache); -} - -/* -** Adjust the robustness of the database to damage due to OS crashes -** or power failures by changing the number of syncs()s when writing -** the rollback journal. There are three levels: -** -** OFF sqlite3OsSync() is never called. This is the default -** for temporary and transient files. -** -** NORMAL The journal is synced once before writes begin on the -** database. This is normally adequate protection, but -** it is theoretically possible, though very unlikely, -** that an inopertune power failure could leave the journal -** in a state which would cause damage to the database -** when it is rolled back. -** -** FULL The journal is synced twice before writes begin on the -** database (with some additional information - the nRec field -** of the journal header - being written in between the two -** syncs). If we assume that writing a -** single disk sector is atomic, then this mode provides -** assurance that the journal will not be corrupted to the -** point of causing damage to the database during rollback. -** -** The above is for a rollback-journal mode. For WAL mode, OFF continues -** to mean that no syncs ever occur. NORMAL means that the WAL is synced -** prior to the start of checkpoint and that the database file is synced -** at the conclusion of the checkpoint if the entire content of the WAL -** was written back into the database. But no sync operations occur for -** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL -** file is synced following each commit operation, in addition to the -** syncs associated with NORMAL. -** -** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The -** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync -** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an -** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL -** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the -** synchronous=FULL versus synchronous=NORMAL setting determines when -** the xSync primitive is called and is relevant to all platforms. -** -** Numeric values associated with these states are OFF==1, NORMAL=2, -** and FULL=3. -*/ -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel( - Pager *pPager, /* The pager to set safety level for */ - int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ - int bFullFsync, /* PRAGMA fullfsync */ - int bCkptFullFsync /* PRAGMA checkpoint_fullfsync */ -){ - assert( level>=1 && level<=3 ); - pPager->noSync = (level==1 || pPager->tempFile) ?1:0; - pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; - if( pPager->noSync ){ - pPager->syncFlags = 0; - pPager->ckptSyncFlags = 0; - }else if( bFullFsync ){ - pPager->syncFlags = SQLITE_SYNC_FULL; - pPager->ckptSyncFlags = SQLITE_SYNC_FULL; - }else if( bCkptFullFsync ){ - pPager->syncFlags = SQLITE_SYNC_NORMAL; - pPager->ckptSyncFlags = SQLITE_SYNC_FULL; - }else{ - pPager->syncFlags = SQLITE_SYNC_NORMAL; - pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; - } - pPager->walSyncFlags = pPager->syncFlags; - if( pPager->fullSync ){ - pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS; - } -} -#endif - -/* -** The following global variable is incremented whenever the library -** attempts to open a temporary file. This information is used for -** testing and analysis only. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_opentemp_count = 0; -#endif - -/* -** Open a temporary file. -** -** Write the file descriptor into *pFile. Return SQLITE_OK on success -** or some other error code if we fail. The OS will automatically -** delete the temporary file when it is closed. -** -** The flags passed to the VFS layer xOpen() call are those specified -** by parameter vfsFlags ORed with the following: -** -** SQLITE_OPEN_READWRITE -** SQLITE_OPEN_CREATE -** SQLITE_OPEN_EXCLUSIVE -** SQLITE_OPEN_DELETEONCLOSE -*/ -static int pagerOpentemp( - Pager *pPager, /* The pager object */ - sqlite3_file *pFile, /* Write the file descriptor here */ - int vfsFlags /* Flags passed through to the VFS */ -){ - int rc; /* Return code */ - -#ifdef SQLITE_TEST - sqlite3_opentemp_count++; /* Used for testing and analysis only */ -#endif - - vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | - SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; - rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); - assert( rc!=SQLITE_OK || isOpen(pFile) ); - return rc; -} - -/* -** Set the busy handler function. -** -** The pager invokes the busy-handler if sqlite3OsLock() returns -** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, -** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE -** lock. It does *not* invoke the busy handler when upgrading from -** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE -** (which occurs during hot-journal rollback). Summary: -** -** Transition | Invokes xBusyHandler -** -------------------------------------------------------- -** NO_LOCK -> SHARED_LOCK | Yes -** SHARED_LOCK -> RESERVED_LOCK | No -** SHARED_LOCK -> EXCLUSIVE_LOCK | No -** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes -** -** If the busy-handler callback returns non-zero, the lock is -** retried. If it returns zero, then the SQLITE_BUSY error is -** returned to the caller of the pager API function. -*/ -SQLITE_PRIVATE void sqlite3PagerSetBusyhandler( - Pager *pPager, /* Pager object */ - int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ - void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ -){ - pPager->xBusyHandler = xBusyHandler; - pPager->pBusyHandlerArg = pBusyHandlerArg; - - if( isOpen(pPager->fd) ){ - void **ap = (void **)&pPager->xBusyHandler; - assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); - assert( ap[1]==pBusyHandlerArg ); - sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); - } -} - -/* -** Change the page size used by the Pager object. The new page size -** is passed in *pPageSize. -** -** If the pager is in the error state when this function is called, it -** is a no-op. The value returned is the error state error code (i.e. -** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). -** -** Otherwise, if all of the following are true: -** -** * the new page size (value of *pPageSize) is valid (a power -** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and -** -** * there are no outstanding page references, and -** -** * the database is either not an in-memory database or it is -** an in-memory database that currently consists of zero pages. -** -** then the pager object page size is set to *pPageSize. -** -** If the page size is changed, then this function uses sqlite3PagerMalloc() -** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt -** fails, SQLITE_NOMEM is returned and the page size remains unchanged. -** In all other cases, SQLITE_OK is returned. -** -** If the page size is not changed, either because one of the enumerated -** conditions above is not true, the pager was in error state when this -** function was called, or because the memory allocation attempt failed, -** then *pPageSize is set to the old, retained page size before returning. -*/ -SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ - int rc = SQLITE_OK; - - /* It is not possible to do a full assert_pager_state() here, as this - ** function may be called from within PagerOpen(), before the state - ** of the Pager object is internally consistent. - ** - ** At one point this function returned an error if the pager was in - ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that - ** there is at least one outstanding page reference, this function - ** is a no-op for that case anyhow. - */ - - u32 pageSize = *pPageSize; - assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); - if( (pPager->memDb==0 || pPager->dbSize==0) - && sqlite3PcacheRefCount(pPager->pPCache)==0 - && pageSize && pageSize!=(u32)pPager->pageSize - ){ - char *pNew = NULL; /* New temp space */ - i64 nByte = 0; - - if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ - rc = sqlite3OsFileSize(pPager->fd, &nByte); - } - if( rc==SQLITE_OK ){ - pNew = (char *)sqlite3PageMalloc(pageSize); - if( !pNew ) rc = SQLITE_NOMEM; - } - - if( rc==SQLITE_OK ){ - pager_reset(pPager); - pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); - pPager->pageSize = pageSize; - sqlite3PageFree(pPager->pTmpSpace); - pPager->pTmpSpace = pNew; - sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); - } - } - - *pPageSize = pPager->pageSize; - if( rc==SQLITE_OK ){ - if( nReserve<0 ) nReserve = pPager->nReserve; - assert( nReserve>=0 && nReserve<1000 ); - pPager->nReserve = (i16)nReserve; - pagerReportSize(pPager); - } - return rc; -} - -/* -** Return a pointer to the "temporary page" buffer held internally -** by the pager. This is a buffer that is big enough to hold the -** entire content of a database page. This buffer is used internally -** during rollback and will be overwritten whenever a rollback -** occurs. But other modules are free to use it too, as long as -** no rollbacks are happening. -*/ -SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){ - return pPager->pTmpSpace; -} - -/* -** Attempt to set the maximum database page count if mxPage is positive. -** Make no changes if mxPage is zero or negative. And never reduce the -** maximum page count below the current size of the database. -** -** Regardless of mxPage, return the current maximum page count. -*/ -SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ - if( mxPage>0 ){ - pPager->mxPgno = mxPage; - } - assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ - assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ - return pPager->mxPgno; -} - -/* -** The following set of routines are used to disable the simulated -** I/O error mechanism. These routines are used to avoid simulated -** errors in places where we do not care about errors. -** -** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops -** and generate no code. -*/ -#ifdef SQLITE_TEST -SQLITE_API extern int sqlite3_io_error_pending; -SQLITE_API extern int sqlite3_io_error_hit; -static int saved_cnt; -void disable_simulated_io_errors(void){ - saved_cnt = sqlite3_io_error_pending; - sqlite3_io_error_pending = -1; -} -void enable_simulated_io_errors(void){ - sqlite3_io_error_pending = saved_cnt; -} -#else -# define disable_simulated_io_errors() -# define enable_simulated_io_errors() -#endif - -/* -** Read the first N bytes from the beginning of the file into memory -** that pDest points to. -** -** If the pager was opened on a transient file (zFilename==""), or -** opened on a file less than N bytes in size, the output buffer is -** zeroed and SQLITE_OK returned. The rationale for this is that this -** function is used to read database headers, and a new transient or -** zero sized database has a header than consists entirely of zeroes. -** -** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, -** the error code is returned to the caller and the contents of the -** output buffer undefined. -*/ -SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ - int rc = SQLITE_OK; - memset(pDest, 0, N); - assert( isOpen(pPager->fd) || pPager->tempFile ); - - /* This routine is only called by btree immediately after creating - ** the Pager object. There has not been an opportunity to transition - ** to WAL mode yet. - */ - assert( !pagerUseWal(pPager) ); - - if( isOpen(pPager->fd) ){ - IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) - rc = sqlite3OsRead(pPager->fd, pDest, N, 0); - if( rc==SQLITE_IOERR_SHORT_READ ){ - rc = SQLITE_OK; - } - } - return rc; -} - -/* -** This function may only be called when a read-transaction is open on -** the pager. It returns the total number of pages in the database. -** -** However, if the file is between 1 and <page-size> bytes in size, then -** this is considered a 1 page file. -*/ -SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ - assert( pPager->eState>=PAGER_READER ); - assert( pPager->eState!=PAGER_WRITER_FINISHED ); - *pnPage = (int)pPager->dbSize; -} - - -/* -** Try to obtain a lock of type locktype on the database file. If -** a similar or greater lock is already held, this function is a no-op -** (returning SQLITE_OK immediately). -** -** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke -** the busy callback if the lock is currently not available. Repeat -** until the busy callback returns false or until the attempt to -** obtain the lock succeeds. -** -** Return SQLITE_OK on success and an error code if we cannot obtain -** the lock. If the lock is obtained successfully, set the Pager.state -** variable to locktype before returning. -*/ -static int pager_wait_on_lock(Pager *pPager, int locktype){ - int rc; /* Return code */ - - /* Check that this is either a no-op (because the requested lock is - ** already held, or one of the transistions that the busy-handler - ** may be invoked during, according to the comment above - ** sqlite3PagerSetBusyhandler(). - */ - assert( (pPager->eLock>=locktype) - || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) - || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) - ); - - do { - rc = pagerLockDb(pPager, locktype); - }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); - return rc; -} - -/* -** Function assertTruncateConstraint(pPager) checks that one of the -** following is true for all dirty pages currently in the page-cache: -** -** a) The page number is less than or equal to the size of the -** current database image, in pages, OR -** -** b) if the page content were written at this time, it would not -** be necessary to write the current content out to the sub-journal -** (as determined by function subjRequiresPage()). -** -** If the condition asserted by this function were not true, and the -** dirty page were to be discarded from the cache via the pagerStress() -** routine, pagerStress() would not write the current page content to -** the database file. If a savepoint transaction were rolled back after -** this happened, the correct behavior would be to restore the current -** content of the page. However, since this content is not present in either -** the database file or the portion of the rollback journal and -** sub-journal rolled back the content could not be restored and the -** database image would become corrupt. It is therefore fortunate that -** this circumstance cannot arise. -*/ -#if defined(SQLITE_DEBUG) -static void assertTruncateConstraintCb(PgHdr *pPg){ - assert( pPg->flags&PGHDR_DIRTY ); - assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); -} -static void assertTruncateConstraint(Pager *pPager){ - sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); -} -#else -# define assertTruncateConstraint(pPager) -#endif - -/* -** Truncate the in-memory database file image to nPage pages. This -** function does not actually modify the database file on disk. It -** just sets the internal state of the pager object so that the -** truncation will be done when the current transaction is committed. -** -** This function is only called right before committing a transaction. -** Once this function has been called, the transaction must either be -** rolled back or committed. It is not safe to call this function and -** then continue writing to the database. -*/ -SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ - assert( pPager->dbSize>=nPage ); - assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); - pPager->dbSize = nPage; - - /* At one point the code here called assertTruncateConstraint() to - ** ensure that all pages being truncated away by this operation are, - ** if one or more savepoints are open, present in the savepoint - ** journal so that they can be restored if the savepoint is rolled - ** back. This is no longer necessary as this function is now only - ** called right before committing a transaction. So although the - ** Pager object may still have open savepoints (Pager.nSavepoint!=0), - ** they cannot be rolled back. So the assertTruncateConstraint() call - ** is no longer correct. */ -} - - -/* -** This function is called before attempting a hot-journal rollback. It -** syncs the journal file to disk, then sets pPager->journalHdr to the -** size of the journal file so that the pager_playback() routine knows -** that the entire journal file has been synced. -** -** Syncing a hot-journal to disk before attempting to roll it back ensures -** that if a power-failure occurs during the rollback, the process that -** attempts rollback following system recovery sees the same journal -** content as this process. -** -** If everything goes as planned, SQLITE_OK is returned. Otherwise, -** an SQLite error code. -*/ -static int pagerSyncHotJournal(Pager *pPager){ - int rc = SQLITE_OK; - if( !pPager->noSync ){ - rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); - } - if( rc==SQLITE_OK ){ - rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); - } - return rc; -} - -/* -** Shutdown the page cache. Free all memory and close all files. -** -** If a transaction was in progress when this routine is called, that -** transaction is rolled back. All outstanding pages are invalidated -** and their memory is freed. Any attempt to use a page associated -** with this page cache after this function returns will likely -** result in a coredump. -** -** This function always succeeds. If a transaction is active an attempt -** is made to roll it back. If an error occurs during the rollback -** a hot journal may be left in the filesystem but no error is returned -** to the caller. -*/ -SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){ - u8 *pTmp = (u8 *)pPager->pTmpSpace; - - assert( assert_pager_state(pPager) ); - disable_simulated_io_errors(); - sqlite3BeginBenignMalloc(); - /* pPager->errCode = 0; */ - pPager->exclusiveMode = 0; -#ifndef SQLITE_OMIT_WAL - sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp); - pPager->pWal = 0; -#endif - pager_reset(pPager); - if( MEMDB ){ - pager_unlock(pPager); - }else{ - /* If it is open, sync the journal file before calling UnlockAndRollback. - ** If this is not done, then an unsynced portion of the open journal - ** file may be played back into the database. If a power failure occurs - ** while this is happening, the database could become corrupt. - ** - ** If an error occurs while trying to sync the journal, shift the pager - ** into the ERROR state. This causes UnlockAndRollback to unlock the - ** database and close the journal file without attempting to roll it - ** back or finalize it. The next database user will have to do hot-journal - ** rollback before accessing the database file. - */ - if( isOpen(pPager->jfd) ){ - pager_error(pPager, pagerSyncHotJournal(pPager)); - } - pagerUnlockAndRollback(pPager); - } - sqlite3EndBenignMalloc(); - enable_simulated_io_errors(); - PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); - IOTRACE(("CLOSE %p\n", pPager)) - sqlite3OsClose(pPager->jfd); - sqlite3OsClose(pPager->fd); - sqlite3PageFree(pTmp); - sqlite3PcacheClose(pPager->pPCache); - -#ifdef SQLITE_HAS_CODEC - if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); -#endif - - assert( !pPager->aSavepoint && !pPager->pInJournal ); - assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); - - sqlite3_free(pPager); - return SQLITE_OK; -} - -#if !defined(NDEBUG) || defined(SQLITE_TEST) -/* -** Return the page number for page pPg. -*/ -SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){ - return pPg->pgno; -} -#endif - -/* -** Increment the reference count for page pPg. -*/ -SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){ - sqlite3PcacheRef(pPg); -} - -/* -** Sync the journal. In other words, make sure all the pages that have -** been written to the journal have actually reached the surface of the -** disk and can be restored in the event of a hot-journal rollback. -** -** If the Pager.noSync flag is set, then this function is a no-op. -** Otherwise, the actions required depend on the journal-mode and the -** device characteristics of the file-system, as follows: -** -** * If the journal file is an in-memory journal file, no action need -** be taken. -** -** * Otherwise, if the device does not support the SAFE_APPEND property, -** then the nRec field of the most recently written journal header -** is updated to contain the number of journal records that have -** been written following it. If the pager is operating in full-sync -** mode, then the journal file is synced before this field is updated. -** -** * If the device does not support the SEQUENTIAL property, then -** journal file is synced. -** -** Or, in pseudo-code: -** -** if( NOT <in-memory journal> ){ -** if( NOT SAFE_APPEND ){ -** if( <full-sync mode> ) xSync(<journal file>); -** <update nRec field> -** } -** if( NOT SEQUENTIAL ) xSync(<journal file>); -** } -** -** If successful, this routine clears the PGHDR_NEED_SYNC flag of every -** page currently held in memory before returning SQLITE_OK. If an IO -** error is encountered, then the IO error code is returned to the caller. -*/ -static int syncJournal(Pager *pPager, int newHdr){ - int rc; /* Return code */ - - assert( pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - ); - assert( assert_pager_state(pPager) ); - assert( !pagerUseWal(pPager) ); - - rc = sqlite3PagerExclusiveLock(pPager); - if( rc!=SQLITE_OK ) return rc; - - if( !pPager->noSync ){ - assert( !pPager->tempFile ); - if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ - const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); - assert( isOpen(pPager->jfd) ); - - if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ - /* This block deals with an obscure problem. If the last connection - ** that wrote to this database was operating in persistent-journal - ** mode, then the journal file may at this point actually be larger - ** than Pager.journalOff bytes. If the next thing in the journal - ** file happens to be a journal-header (written as part of the - ** previous connection's transaction), and a crash or power-failure - ** occurs after nRec is updated but before this connection writes - ** anything else to the journal file (or commits/rolls back its - ** transaction), then SQLite may become confused when doing the - ** hot-journal rollback following recovery. It may roll back all - ** of this connections data, then proceed to rolling back the old, - ** out-of-date data that follows it. Database corruption. - ** - ** To work around this, if the journal file does appear to contain - ** a valid header following Pager.journalOff, then write a 0x00 - ** byte to the start of it to prevent it from being recognized. - ** - ** Variable iNextHdrOffset is set to the offset at which this - ** problematic header will occur, if it exists. aMagic is used - ** as a temporary buffer to inspect the first couple of bytes of - ** the potential journal header. - */ - i64 iNextHdrOffset; - u8 aMagic[8]; - u8 zHeader[sizeof(aJournalMagic)+4]; - - memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); - put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); - - iNextHdrOffset = journalHdrOffset(pPager); - rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); - if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ - static const u8 zerobyte = 0; - rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); - } - if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ - return rc; - } - - /* Write the nRec value into the journal file header. If in - ** full-synchronous mode, sync the journal first. This ensures that - ** all data has really hit the disk before nRec is updated to mark - ** it as a candidate for rollback. - ** - ** This is not required if the persistent media supports the - ** SAFE_APPEND property. Because in this case it is not possible - ** for garbage data to be appended to the file, the nRec field - ** is populated with 0xFFFFFFFF when the journal header is written - ** and never needs to be updated. - */ - if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ - PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); - IOTRACE(("JSYNC %p\n", pPager)) - rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); - if( rc!=SQLITE_OK ) return rc; - } - IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); - rc = sqlite3OsWrite( - pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr - ); - if( rc!=SQLITE_OK ) return rc; - } - if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ - PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); - IOTRACE(("JSYNC %p\n", pPager)) - rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| - (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) - ); - if( rc!=SQLITE_OK ) return rc; - } - - pPager->journalHdr = pPager->journalOff; - if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ - pPager->nRec = 0; - rc = writeJournalHdr(pPager); - if( rc!=SQLITE_OK ) return rc; - } - }else{ - pPager->journalHdr = pPager->journalOff; - } - } - - /* Unless the pager is in noSync mode, the journal file was just - ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on - ** all pages. - */ - sqlite3PcacheClearSyncFlags(pPager->pPCache); - pPager->eState = PAGER_WRITER_DBMOD; - assert( assert_pager_state(pPager) ); - return SQLITE_OK; -} - -/* -** The argument is the first in a linked list of dirty pages connected -** by the PgHdr.pDirty pointer. This function writes each one of the -** in-memory pages in the list to the database file. The argument may -** be NULL, representing an empty list. In this case this function is -** a no-op. -** -** The pager must hold at least a RESERVED lock when this function -** is called. Before writing anything to the database file, this lock -** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, -** SQLITE_BUSY is returned and no data is written to the database file. -** -** If the pager is a temp-file pager and the actual file-system file -** is not yet open, it is created and opened before any data is -** written out. -** -** Once the lock has been upgraded and, if necessary, the file opened, -** the pages are written out to the database file in list order. Writing -** a page is skipped if it meets either of the following criteria: -** -** * The page number is greater than Pager.dbSize, or -** * The PGHDR_DONT_WRITE flag is set on the page. -** -** If writing out a page causes the database file to grow, Pager.dbFileSize -** is updated accordingly. If page 1 is written out, then the value cached -** in Pager.dbFileVers[] is updated to match the new value stored in -** the database file. -** -** If everything is successful, SQLITE_OK is returned. If an IO error -** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot -** be obtained, SQLITE_BUSY is returned. -*/ -static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ - int rc = SQLITE_OK; /* Return code */ - - /* This function is only called for rollback pagers in WRITER_DBMOD state. */ - assert( !pagerUseWal(pPager) ); - assert( pPager->eState==PAGER_WRITER_DBMOD ); - assert( pPager->eLock==EXCLUSIVE_LOCK ); - - /* If the file is a temp-file has not yet been opened, open it now. It - ** is not possible for rc to be other than SQLITE_OK if this branch - ** is taken, as pager_wait_on_lock() is a no-op for temp-files. - */ - if( !isOpen(pPager->fd) ){ - assert( pPager->tempFile && rc==SQLITE_OK ); - rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); - } - - /* Before the first write, give the VFS a hint of what the final - ** file size will be. - */ - assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); - if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){ - sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; - sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); - pPager->dbHintSize = pPager->dbSize; - } - - while( rc==SQLITE_OK && pList ){ - Pgno pgno = pList->pgno; - - /* If there are dirty pages in the page cache with page numbers greater - ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to - ** make the file smaller (presumably by auto-vacuum code). Do not write - ** any such pages to the file. - ** - ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag - ** set (set by sqlite3PagerDontWrite()). - */ - if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ - i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ - char *pData; /* Data to write */ - - assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); - if( pList->pgno==1 ) pager_write_changecounter(pList); - - /* Encode the database */ - CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData); - - /* Write out the page data. */ - rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); - - /* If page 1 was just written, update Pager.dbFileVers to match - ** the value now stored in the database file. If writing this - ** page caused the database file to grow, update dbFileSize. - */ - if( pgno==1 ){ - memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); - } - if( pgno>pPager->dbFileSize ){ - pPager->dbFileSize = pgno; - } - pPager->aStat[PAGER_STAT_WRITE]++; - - /* Update any backup objects copying the contents of this pager. */ - sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); - - PAGERTRACE(("STORE %d page %d hash(%08x)\n", - PAGERID(pPager), pgno, pager_pagehash(pList))); - IOTRACE(("PGOUT %p %d\n", pPager, pgno)); - PAGER_INCR(sqlite3_pager_writedb_count); - }else{ - PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); - } - pager_set_pagehash(pList); - pList = pList->pDirty; - } - - return rc; -} - -/* -** Ensure that the sub-journal file is open. If it is already open, this -** function is a no-op. -** -** SQLITE_OK is returned if everything goes according to plan. An -** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() -** fails. -*/ -static int openSubJournal(Pager *pPager){ - int rc = SQLITE_OK; - if( !isOpen(pPager->sjfd) ){ - if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ - sqlite3MemJournalOpen(pPager->sjfd); - }else{ - rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL); - } - } - return rc; -} - -/* -** Append a record of the current state of page pPg to the sub-journal. -** It is the callers responsibility to use subjRequiresPage() to check -** that it is really required before calling this function. -** -** If successful, set the bit corresponding to pPg->pgno in the bitvecs -** for all open savepoints before returning. -** -** This function returns SQLITE_OK if everything is successful, an IO -** error code if the attempt to write to the sub-journal fails, or -** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint -** bitvec. -*/ -static int subjournalPage(PgHdr *pPg){ - int rc = SQLITE_OK; - Pager *pPager = pPg->pPager; - if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ - - /* Open the sub-journal, if it has not already been opened */ - assert( pPager->useJournal ); - assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); - assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); - assert( pagerUseWal(pPager) - || pageInJournal(pPg) - || pPg->pgno>pPager->dbOrigSize - ); - rc = openSubJournal(pPager); - - /* If the sub-journal was opened successfully (or was already open), - ** write the journal record into the file. */ - if( rc==SQLITE_OK ){ - void *pData = pPg->pData; - i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); - char *pData2; - - CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); - PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); - rc = write32bits(pPager->sjfd, offset, pPg->pgno); - if( rc==SQLITE_OK ){ - rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); - } - } - } - if( rc==SQLITE_OK ){ - pPager->nSubRec++; - assert( pPager->nSavepoint>0 ); - rc = addToSavepointBitvecs(pPager, pPg->pgno); - } - return rc; -} - -/* -** This function is called by the pcache layer when it has reached some -** soft memory limit. The first argument is a pointer to a Pager object -** (cast as a void*). The pager is always 'purgeable' (not an in-memory -** database). The second argument is a reference to a page that is -** currently dirty but has no outstanding references. The page -** is always associated with the Pager object passed as the first -** argument. -** -** The job of this function is to make pPg clean by writing its contents -** out to the database file, if possible. This may involve syncing the -** journal file. -** -** If successful, sqlite3PcacheMakeClean() is called on the page and -** SQLITE_OK returned. If an IO error occurs while trying to make the -** page clean, the IO error code is returned. If the page cannot be -** made clean for some other reason, but no error occurs, then SQLITE_OK -** is returned by sqlite3PcacheMakeClean() is not called. -*/ -static int pagerStress(void *p, PgHdr *pPg){ - Pager *pPager = (Pager *)p; - int rc = SQLITE_OK; - - assert( pPg->pPager==pPager ); - assert( pPg->flags&PGHDR_DIRTY ); - - /* The doNotSyncSpill flag is set during times when doing a sync of - ** journal (and adding a new header) is not allowed. This occurs - ** during calls to sqlite3PagerWrite() while trying to journal multiple - ** pages belonging to the same sector. - ** - ** The doNotSpill flag inhibits all cache spilling regardless of whether - ** or not a sync is required. This is set during a rollback. - ** - ** Spilling is also prohibited when in an error state since that could - ** lead to database corruption. In the current implementaton it - ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1 - ** while in the error state, hence it is impossible for this routine to - ** be called in the error state. Nevertheless, we include a NEVER() - ** test for the error state as a safeguard against future changes. - */ - if( NEVER(pPager->errCode) ) return SQLITE_OK; - if( pPager->doNotSpill ) return SQLITE_OK; - if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){ - return SQLITE_OK; - } - - pPg->pDirty = 0; - if( pagerUseWal(pPager) ){ - /* Write a single frame for this page to the log. */ - if( subjRequiresPage(pPg) ){ - rc = subjournalPage(pPg); - } - if( rc==SQLITE_OK ){ - rc = pagerWalFrames(pPager, pPg, 0, 0); - } - }else{ - - /* Sync the journal file if required. */ - if( pPg->flags&PGHDR_NEED_SYNC - || pPager->eState==PAGER_WRITER_CACHEMOD - ){ - rc = syncJournal(pPager, 1); - } - - /* If the page number of this page is larger than the current size of - ** the database image, it may need to be written to the sub-journal. - ** This is because the call to pager_write_pagelist() below will not - ** actually write data to the file in this case. - ** - ** Consider the following sequence of events: - ** - ** BEGIN; - ** <journal page X> - ** <modify page X> - ** SAVEPOINT sp; - ** <shrink database file to Y pages> - ** pagerStress(page X) - ** ROLLBACK TO sp; - ** - ** If (X>Y), then when pagerStress is called page X will not be written - ** out to the database file, but will be dropped from the cache. Then, - ** following the "ROLLBACK TO sp" statement, reading page X will read - ** data from the database file. This will be the copy of page X as it - ** was when the transaction started, not as it was when "SAVEPOINT sp" - ** was executed. - ** - ** The solution is to write the current data for page X into the - ** sub-journal file now (if it is not already there), so that it will - ** be restored to its current value when the "ROLLBACK TO sp" is - ** executed. - */ - if( NEVER( - rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg) - ) ){ - rc = subjournalPage(pPg); - } - - /* Write the contents of the page out to the database file. */ - if( rc==SQLITE_OK ){ - assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); - rc = pager_write_pagelist(pPager, pPg); - } - } - - /* Mark the page as clean. */ - if( rc==SQLITE_OK ){ - PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); - sqlite3PcacheMakeClean(pPg); - } - - return pager_error(pPager, rc); -} - - -/* -** Allocate and initialize a new Pager object and put a pointer to it -** in *ppPager. The pager should eventually be freed by passing it -** to sqlite3PagerClose(). -** -** The zFilename argument is the path to the database file to open. -** If zFilename is NULL then a randomly-named temporary file is created -** and used as the file to be cached. Temporary files are be deleted -** automatically when they are closed. If zFilename is ":memory:" then -** all information is held in cache. It is never written to disk. -** This can be used to implement an in-memory database. -** -** The nExtra parameter specifies the number of bytes of space allocated -** along with each page reference. This space is available to the user -** via the sqlite3PagerGetExtra() API. -** -** The flags argument is used to specify properties that affect the -** operation of the pager. It should be passed some bitwise combination -** of the PAGER_* flags. -** -** The vfsFlags parameter is a bitmask to pass to the flags parameter -** of the xOpen() method of the supplied VFS when opening files. -** -** If the pager object is allocated and the specified file opened -** successfully, SQLITE_OK is returned and *ppPager set to point to -** the new pager object. If an error occurs, *ppPager is set to NULL -** and error code returned. This function may return SQLITE_NOMEM -** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or -** various SQLITE_IO_XXX errors. -*/ -SQLITE_PRIVATE int sqlite3PagerOpen( - sqlite3_vfs *pVfs, /* The virtual file system to use */ - Pager **ppPager, /* OUT: Return the Pager structure here */ - const char *zFilename, /* Name of the database file to open */ - int nExtra, /* Extra bytes append to each in-memory page */ - int flags, /* flags controlling this file */ - int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ - void (*xReinit)(DbPage*) /* Function to reinitialize pages */ -){ - u8 *pPtr; - Pager *pPager = 0; /* Pager object to allocate and return */ - int rc = SQLITE_OK; /* Return code */ - int tempFile = 0; /* True for temp files (incl. in-memory files) */ - int memDb = 0; /* True if this is an in-memory file */ - int readOnly = 0; /* True if this is a read-only file */ - int journalFileSize; /* Bytes to allocate for each journal fd */ - char *zPathname = 0; /* Full path to database file */ - int nPathname = 0; /* Number of bytes in zPathname */ - int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ - int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ - u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ - const char *zUri = 0; /* URI args to copy */ - int nUri = 0; /* Number of bytes of URI args at *zUri */ - - /* Figure out how much space is required for each journal file-handle - ** (there are two of them, the main journal and the sub-journal). This - ** is the maximum space required for an in-memory journal file handle - ** and a regular journal file-handle. Note that a "regular journal-handle" - ** may be a wrapper capable of caching the first portion of the journal - ** file in memory to implement the atomic-write optimization (see - ** source file journal.c). - */ - if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){ - journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); - }else{ - journalFileSize = ROUND8(sqlite3MemJournalSize()); - } - - /* Set the output variable to NULL in case an error occurs. */ - *ppPager = 0; - -#ifndef SQLITE_OMIT_MEMORYDB - if( flags & PAGER_MEMORY ){ - memDb = 1; - if( zFilename && zFilename[0] ){ - zPathname = sqlite3DbStrDup(0, zFilename); - if( zPathname==0 ) return SQLITE_NOMEM; - nPathname = sqlite3Strlen30(zPathname); - zFilename = 0; - } - } -#endif - - /* Compute and store the full pathname in an allocated buffer pointed - ** to by zPathname, length nPathname. Or, if this is a temporary file, - ** leave both nPathname and zPathname set to 0. - */ - if( zFilename && zFilename[0] ){ - const char *z; - nPathname = pVfs->mxPathname+1; - zPathname = sqlite3DbMallocRaw(0, nPathname*2); - if( zPathname==0 ){ - return SQLITE_NOMEM; - } - zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ - rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); - nPathname = sqlite3Strlen30(zPathname); - z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; - while( *z ){ - z += sqlite3Strlen30(z)+1; - z += sqlite3Strlen30(z)+1; - } - nUri = (int)(&z[1] - zUri); - assert( nUri>=0 ); - if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ - /* This branch is taken when the journal path required by - ** the database being opened will be more than pVfs->mxPathname - ** bytes in length. This means the database cannot be opened, - ** as it will not be possible to open the journal file or even - ** check for a hot-journal before reading. - */ - rc = SQLITE_CANTOPEN_BKPT; - } - if( rc!=SQLITE_OK ){ - sqlite3DbFree(0, zPathname); - return rc; - } - } - - /* Allocate memory for the Pager structure, PCache object, the - ** three file descriptors, the database file name and the journal - ** file name. The layout in memory is as follows: - ** - ** Pager object (sizeof(Pager) bytes) - ** PCache object (sqlite3PcacheSize() bytes) - ** Database file handle (pVfs->szOsFile bytes) - ** Sub-journal file handle (journalFileSize bytes) - ** Main journal file handle (journalFileSize bytes) - ** Database file name (nPathname+1 bytes) - ** Journal file name (nPathname+8+1 bytes) - */ - pPtr = (u8 *)sqlite3MallocZero( - ROUND8(sizeof(*pPager)) + /* Pager structure */ - ROUND8(pcacheSize) + /* PCache object */ - ROUND8(pVfs->szOsFile) + /* The main db file */ - journalFileSize * 2 + /* The two journal files */ - nPathname + 1 + nUri + /* zFilename */ - nPathname + 8 + 2 /* zJournal */ -#ifndef SQLITE_OMIT_WAL - + nPathname + 4 + 2 /* zWal */ -#endif - ); - assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); - if( !pPtr ){ - sqlite3DbFree(0, zPathname); - return SQLITE_NOMEM; - } - pPager = (Pager*)(pPtr); - pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); - pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); - pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); - pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); - pPager->zFilename = (char*)(pPtr += journalFileSize); - assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); - - /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ - if( zPathname ){ - assert( nPathname>0 ); - pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); - memcpy(pPager->zFilename, zPathname, nPathname); - if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); - memcpy(pPager->zJournal, zPathname, nPathname); - memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2); - sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); -#ifndef SQLITE_OMIT_WAL - pPager->zWal = &pPager->zJournal[nPathname+8+1]; - memcpy(pPager->zWal, zPathname, nPathname); - memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); - sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); -#endif - sqlite3DbFree(0, zPathname); - } - pPager->pVfs = pVfs; - pPager->vfsFlags = vfsFlags; - - /* Open the pager file. - */ - if( zFilename && zFilename[0] ){ - int fout = 0; /* VFS flags returned by xOpen() */ - rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); - assert( !memDb ); - readOnly = (fout&SQLITE_OPEN_READONLY); - - /* If the file was successfully opened for read/write access, - ** choose a default page size in case we have to create the - ** database file. The default page size is the maximum of: - ** - ** + SQLITE_DEFAULT_PAGE_SIZE, - ** + The value returned by sqlite3OsSectorSize() - ** + The largest page size that can be written atomically. - */ - if( rc==SQLITE_OK && !readOnly ){ - setSectorSize(pPager); - assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); - if( szPageDflt<pPager->sectorSize ){ - if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ - szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; - }else{ - szPageDflt = (u32)pPager->sectorSize; - } - } -#ifdef SQLITE_ENABLE_ATOMIC_WRITE - { - int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); - int ii; - assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); - assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); - assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); - for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ - if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ - szPageDflt = ii; - } - } - } -#endif - } - }else{ - /* If a temporary file is requested, it is not opened immediately. - ** In this case we accept the default page size and delay actually - ** opening the file until the first call to OsWrite(). - ** - ** This branch is also run for an in-memory database. An in-memory - ** database is the same as a temp-file that is never written out to - ** disk and uses an in-memory rollback journal. - */ - tempFile = 1; - pPager->eState = PAGER_READER; - pPager->eLock = EXCLUSIVE_LOCK; - readOnly = (vfsFlags&SQLITE_OPEN_READONLY); - } - - /* The following call to PagerSetPagesize() serves to set the value of - ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. - */ - if( rc==SQLITE_OK ){ - assert( pPager->memDb==0 ); - rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); - testcase( rc!=SQLITE_OK ); - } - - /* If an error occurred in either of the blocks above, free the - ** Pager structure and close the file. - */ - if( rc!=SQLITE_OK ){ - assert( !pPager->pTmpSpace ); - sqlite3OsClose(pPager->fd); - sqlite3_free(pPager); - return rc; - } - - /* Initialize the PCache object. */ - assert( nExtra<1000 ); - nExtra = ROUND8(nExtra); - sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, - !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); - - PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); - IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) - - pPager->useJournal = (u8)useJournal; - /* pPager->stmtOpen = 0; */ - /* pPager->stmtInUse = 0; */ - /* pPager->nRef = 0; */ - /* pPager->stmtSize = 0; */ - /* pPager->stmtJSize = 0; */ - /* pPager->nPage = 0; */ - pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; - /* pPager->state = PAGER_UNLOCK; */ -#if 0 - assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); -#endif - /* pPager->errMask = 0; */ - pPager->tempFile = (u8)tempFile; - assert( tempFile==PAGER_LOCKINGMODE_NORMAL - || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); - assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); - pPager->exclusiveMode = (u8)tempFile; - pPager->changeCountDone = pPager->tempFile; - pPager->memDb = (u8)memDb; - pPager->readOnly = (u8)readOnly; - assert( useJournal || pPager->tempFile ); - pPager->noSync = pPager->tempFile; - if( pPager->noSync ){ - assert( pPager->fullSync==0 ); - assert( pPager->syncFlags==0 ); - assert( pPager->walSyncFlags==0 ); - assert( pPager->ckptSyncFlags==0 ); - }else{ - pPager->fullSync = 1; - pPager->syncFlags = SQLITE_SYNC_NORMAL; - pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS; - pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; - } - /* pPager->pFirst = 0; */ - /* pPager->pFirstSynced = 0; */ - /* pPager->pLast = 0; */ - pPager->nExtra = (u16)nExtra; - pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; - assert( isOpen(pPager->fd) || tempFile ); - setSectorSize(pPager); - if( !useJournal ){ - pPager->journalMode = PAGER_JOURNALMODE_OFF; - }else if( memDb ){ - pPager->journalMode = PAGER_JOURNALMODE_MEMORY; - } - /* pPager->xBusyHandler = 0; */ - /* pPager->pBusyHandlerArg = 0; */ - pPager->xReiniter = xReinit; - /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ - - *ppPager = pPager; - return SQLITE_OK; -} - - - -/* -** This function is called after transitioning from PAGER_UNLOCK to -** PAGER_SHARED state. It tests if there is a hot journal present in -** the file-system for the given pager. A hot journal is one that -** needs to be played back. According to this function, a hot-journal -** file exists if the following criteria are met: -** -** * The journal file exists in the file system, and -** * No process holds a RESERVED or greater lock on the database file, and -** * The database file itself is greater than 0 bytes in size, and -** * The first byte of the journal file exists and is not 0x00. -** -** If the current size of the database file is 0 but a journal file -** exists, that is probably an old journal left over from a prior -** database with the same name. In this case the journal file is -** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK -** is returned. -** -** This routine does not check if there is a master journal filename -** at the end of the file. If there is, and that master journal file -** does not exist, then the journal file is not really hot. In this -** case this routine will return a false-positive. The pager_playback() -** routine will discover that the journal file is not really hot and -** will not roll it back. -** -** If a hot-journal file is found to exist, *pExists is set to 1 and -** SQLITE_OK returned. If no hot-journal file is present, *pExists is -** set to 0 and SQLITE_OK returned. If an IO error occurs while trying -** to determine whether or not a hot-journal file exists, the IO error -** code is returned and the value of *pExists is undefined. -*/ -static int hasHotJournal(Pager *pPager, int *pExists){ - sqlite3_vfs * const pVfs = pPager->pVfs; - int rc = SQLITE_OK; /* Return code */ - int exists = 1; /* True if a journal file is present */ - int jrnlOpen = !!isOpen(pPager->jfd); - - assert( pPager->useJournal ); - assert( isOpen(pPager->fd) ); - assert( pPager->eState==PAGER_OPEN ); - - assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & - SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN - )); - - *pExists = 0; - if( !jrnlOpen ){ - rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); - } - if( rc==SQLITE_OK && exists ){ - int locked = 0; /* True if some process holds a RESERVED lock */ - - /* Race condition here: Another process might have been holding the - ** the RESERVED lock and have a journal open at the sqlite3OsAccess() - ** call above, but then delete the journal and drop the lock before - ** we get to the following sqlite3OsCheckReservedLock() call. If that - ** is the case, this routine might think there is a hot journal when - ** in fact there is none. This results in a false-positive which will - ** be dealt with by the playback routine. Ticket #3883. - */ - rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); - if( rc==SQLITE_OK && !locked ){ - Pgno nPage; /* Number of pages in database file */ - - /* Check the size of the database file. If it consists of 0 pages, - ** then delete the journal file. See the header comment above for - ** the reasoning here. Delete the obsolete journal file under - ** a RESERVED lock to avoid race conditions and to avoid violating - ** [H33020]. - */ - rc = pagerPagecount(pPager, &nPage); - if( rc==SQLITE_OK ){ - if( nPage==0 ){ - sqlite3BeginBenignMalloc(); - if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ - sqlite3OsDelete(pVfs, pPager->zJournal, 0); - if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); - } - sqlite3EndBenignMalloc(); - }else{ - /* The journal file exists and no other connection has a reserved - ** or greater lock on the database file. Now check that there is - ** at least one non-zero bytes at the start of the journal file. - ** If there is, then we consider this journal to be hot. If not, - ** it can be ignored. - */ - if( !jrnlOpen ){ - int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; - rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); - } - if( rc==SQLITE_OK ){ - u8 first = 0; - rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); - if( rc==SQLITE_IOERR_SHORT_READ ){ - rc = SQLITE_OK; - } - if( !jrnlOpen ){ - sqlite3OsClose(pPager->jfd); - } - *pExists = (first!=0); - }else if( rc==SQLITE_CANTOPEN ){ - /* If we cannot open the rollback journal file in order to see if - ** its has a zero header, that might be due to an I/O error, or - ** it might be due to the race condition described above and in - ** ticket #3883. Either way, assume that the journal is hot. - ** This might be a false positive. But if it is, then the - ** automatic journal playback and recovery mechanism will deal - ** with it under an EXCLUSIVE lock where we do not need to - ** worry so much with race conditions. - */ - *pExists = 1; - rc = SQLITE_OK; - } - } - } - } - } - - return rc; -} - -/* -** This function is called to obtain a shared lock on the database file. -** It is illegal to call sqlite3PagerAcquire() until after this function -** has been successfully called. If a shared-lock is already held when -** this function is called, it is a no-op. -** -** The following operations are also performed by this function. -** -** 1) If the pager is currently in PAGER_OPEN state (no lock held -** on the database file), then an attempt is made to obtain a -** SHARED lock on the database file. Immediately after obtaining -** the SHARED lock, the file-system is checked for a hot-journal, -** which is played back if present. Following any hot-journal -** rollback, the contents of the cache are validated by checking -** the 'change-counter' field of the database file header and -** discarded if they are found to be invalid. -** -** 2) If the pager is running in exclusive-mode, and there are currently -** no outstanding references to any pages, and is in the error state, -** then an attempt is made to clear the error state by discarding -** the contents of the page cache and rolling back any open journal -** file. -** -** If everything is successful, SQLITE_OK is returned. If an IO error -** occurs while locking the database, checking for a hot-journal file or -** rolling back a journal file, the IO error code is returned. -*/ -SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){ - int rc = SQLITE_OK; /* Return code */ - - /* This routine is only called from b-tree and only when there are no - ** outstanding pages. This implies that the pager state should either - ** be OPEN or READER. READER is only possible if the pager is or was in - ** exclusive access mode. - */ - assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); - assert( assert_pager_state(pPager) ); - assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); - if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; } - - if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ - int bHotJournal = 1; /* True if there exists a hot journal-file */ - - assert( !MEMDB ); - - rc = pager_wait_on_lock(pPager, SHARED_LOCK); - if( rc!=SQLITE_OK ){ - assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); - goto failed; - } - - /* If a journal file exists, and there is no RESERVED lock on the - ** database file, then it either needs to be played back or deleted. - */ - if( pPager->eLock<=SHARED_LOCK ){ - rc = hasHotJournal(pPager, &bHotJournal); - } - if( rc!=SQLITE_OK ){ - goto failed; - } - if( bHotJournal ){ - if( pPager->readOnly ){ - rc = SQLITE_READONLY_ROLLBACK; - goto failed; - } - - /* Get an EXCLUSIVE lock on the database file. At this point it is - ** important that a RESERVED lock is not obtained on the way to the - ** EXCLUSIVE lock. If it were, another process might open the - ** database file, detect the RESERVED lock, and conclude that the - ** database is safe to read while this process is still rolling the - ** hot-journal back. - ** - ** Because the intermediate RESERVED lock is not requested, any - ** other process attempting to access the database file will get to - ** this point in the code and fail to obtain its own EXCLUSIVE lock - ** on the database file. - ** - ** Unless the pager is in locking_mode=exclusive mode, the lock is - ** downgraded to SHARED_LOCK before this function returns. - */ - rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); - if( rc!=SQLITE_OK ){ - goto failed; - } - - /* If it is not already open and the file exists on disk, open the - ** journal for read/write access. Write access is required because - ** in exclusive-access mode the file descriptor will be kept open - ** and possibly used for a transaction later on. Also, write-access - ** is usually required to finalize the journal in journal_mode=persist - ** mode (and also for journal_mode=truncate on some systems). - ** - ** If the journal does not exist, it usually means that some - ** other connection managed to get in and roll it back before - ** this connection obtained the exclusive lock above. Or, it - ** may mean that the pager was in the error-state when this - ** function was called and the journal file does not exist. - */ - if( !isOpen(pPager->jfd) ){ - sqlite3_vfs * const pVfs = pPager->pVfs; - int bExists; /* True if journal file exists */ - rc = sqlite3OsAccess( - pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); - if( rc==SQLITE_OK && bExists ){ - int fout = 0; - int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; - assert( !pPager->tempFile ); - rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); - assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); - if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ - rc = SQLITE_CANTOPEN_BKPT; - sqlite3OsClose(pPager->jfd); - } - } - } - - /* Playback and delete the journal. Drop the database write - ** lock and reacquire the read lock. Purge the cache before - ** playing back the hot-journal so that we don't end up with - ** an inconsistent cache. Sync the hot journal before playing - ** it back since the process that crashed and left the hot journal - ** probably did not sync it and we are required to always sync - ** the journal before playing it back. - */ - if( isOpen(pPager->jfd) ){ - assert( rc==SQLITE_OK ); - rc = pagerSyncHotJournal(pPager); - if( rc==SQLITE_OK ){ - rc = pager_playback(pPager, 1); - pPager->eState = PAGER_OPEN; - } - }else if( !pPager->exclusiveMode ){ - pagerUnlockDb(pPager, SHARED_LOCK); - } - - if( rc!=SQLITE_OK ){ - /* This branch is taken if an error occurs while trying to open - ** or roll back a hot-journal while holding an EXCLUSIVE lock. The - ** pager_unlock() routine will be called before returning to unlock - ** the file. If the unlock attempt fails, then Pager.eLock must be - ** set to UNKNOWN_LOCK (see the comment above the #define for - ** UNKNOWN_LOCK above for an explanation). - ** - ** In order to get pager_unlock() to do this, set Pager.eState to - ** PAGER_ERROR now. This is not actually counted as a transition - ** to ERROR state in the state diagram at the top of this file, - ** since we know that the same call to pager_unlock() will very - ** shortly transition the pager object to the OPEN state. Calling - ** assert_pager_state() would fail now, as it should not be possible - ** to be in ERROR state when there are zero outstanding page - ** references. - */ - pager_error(pPager, rc); - goto failed; - } - - assert( pPager->eState==PAGER_OPEN ); - assert( (pPager->eLock==SHARED_LOCK) - || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) - ); - } - - if( !pPager->tempFile - && (pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0) - ){ - /* The shared-lock has just been acquired on the database file - ** and there are already pages in the cache (from a previous - ** read or write transaction). Check to see if the database - ** has been modified. If the database has changed, flush the - ** cache. - ** - ** Database changes is detected by looking at 15 bytes beginning - ** at offset 24 into the file. The first 4 of these 16 bytes are - ** a 32-bit counter that is incremented with each change. The - ** other bytes change randomly with each file change when - ** a codec is in use. - ** - ** There is a vanishingly small chance that a change will not be - ** detected. The chance of an undetected change is so small that - ** it can be neglected. - */ - Pgno nPage = 0; - char dbFileVers[sizeof(pPager->dbFileVers)]; - - rc = pagerPagecount(pPager, &nPage); - if( rc ) goto failed; - - if( nPage>0 ){ - IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); - rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); - if( rc!=SQLITE_OK ){ - goto failed; - } - }else{ - memset(dbFileVers, 0, sizeof(dbFileVers)); - } - - if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ - pager_reset(pPager); - } - } - - /* If there is a WAL file in the file-system, open this database in WAL - ** mode. Otherwise, the following function call is a no-op. - */ - rc = pagerOpenWalIfPresent(pPager); -#ifndef SQLITE_OMIT_WAL - assert( pPager->pWal==0 || rc==SQLITE_OK ); -#endif - } - - if( pagerUseWal(pPager) ){ - assert( rc==SQLITE_OK ); - rc = pagerBeginReadTransaction(pPager); - } - - if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ - rc = pagerPagecount(pPager, &pPager->dbSize); - } - - failed: - if( rc!=SQLITE_OK ){ - assert( !MEMDB ); - pager_unlock(pPager); - assert( pPager->eState==PAGER_OPEN ); - }else{ - pPager->eState = PAGER_READER; - } - return rc; -} - -/* -** If the reference count has reached zero, rollback any active -** transaction and unlock the pager. -** -** Except, in locking_mode=EXCLUSIVE when there is nothing to in -** the rollback journal, the unlock is not performed and there is -** nothing to rollback, so this routine is a no-op. -*/ -static void pagerUnlockIfUnused(Pager *pPager){ - if( (sqlite3PcacheRefCount(pPager->pPCache)==0) ){ - pagerUnlockAndRollback(pPager); - } -} - -/* -** Acquire a reference to page number pgno in pager pPager (a page -** reference has type DbPage*). If the requested reference is -** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. -** -** If the requested page is already in the cache, it is returned. -** Otherwise, a new page object is allocated and populated with data -** read from the database file. In some cases, the pcache module may -** choose not to allocate a new page object and may reuse an existing -** object with no outstanding references. -** -** The extra data appended to a page is always initialized to zeros the -** first time a page is loaded into memory. If the page requested is -** already in the cache when this function is called, then the extra -** data is left as it was when the page object was last used. -** -** If the database image is smaller than the requested page or if a -** non-zero value is passed as the noContent parameter and the -** requested page is not already stored in the cache, then no -** actual disk read occurs. In this case the memory image of the -** page is initialized to all zeros. -** -** If noContent is true, it means that we do not care about the contents -** of the page. This occurs in two seperate scenarios: -** -** a) When reading a free-list leaf page from the database, and -** -** b) When a savepoint is being rolled back and we need to load -** a new page into the cache to be filled with the data read -** from the savepoint journal. -** -** If noContent is true, then the data returned is zeroed instead of -** being read from the database. Additionally, the bits corresponding -** to pgno in Pager.pInJournal (bitvec of pages already written to the -** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open -** savepoints are set. This means if the page is made writable at any -** point in the future, using a call to sqlite3PagerWrite(), its contents -** will not be journaled. This saves IO. -** -** The acquisition might fail for several reasons. In all cases, -** an appropriate error code is returned and *ppPage is set to NULL. -** -** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt -** to find a page in the in-memory cache first. If the page is not already -** in memory, this routine goes to disk to read it in whereas Lookup() -** just returns 0. This routine acquires a read-lock the first time it -** has to go to disk, and could also playback an old journal if necessary. -** Since Lookup() never goes to disk, it never has to deal with locks -** or journal files. -*/ -SQLITE_PRIVATE int sqlite3PagerAcquire( - Pager *pPager, /* The pager open on the database file */ - Pgno pgno, /* Page number to fetch */ - DbPage **ppPage, /* Write a pointer to the page here */ - int noContent /* Do not bother reading content from disk if true */ -){ - int rc; - PgHdr *pPg; - - assert( pPager->eState>=PAGER_READER ); - assert( assert_pager_state(pPager) ); - - if( pgno==0 ){ - return SQLITE_CORRUPT_BKPT; - } - - /* If the pager is in the error state, return an error immediately. - ** Otherwise, request the page from the PCache layer. */ - if( pPager->errCode!=SQLITE_OK ){ - rc = pPager->errCode; - }else{ - rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage); - } - - if( rc!=SQLITE_OK ){ - /* Either the call to sqlite3PcacheFetch() returned an error or the - ** pager was already in the error-state when this function was called. - ** Set pPg to 0 and jump to the exception handler. */ - pPg = 0; - goto pager_acquire_err; - } - assert( (*ppPage)->pgno==pgno ); - assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 ); - - if( (*ppPage)->pPager && !noContent ){ - /* In this case the pcache already contains an initialized copy of - ** the page. Return without further ado. */ - assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); - pPager->aStat[PAGER_STAT_HIT]++; - return SQLITE_OK; - - }else{ - /* The pager cache has created a new page. Its content needs to - ** be initialized. */ - - pPg = *ppPage; - pPg->pPager = pPager; - - /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page - ** number greater than this, or the unused locking-page, is requested. */ - if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ - rc = SQLITE_CORRUPT_BKPT; - goto pager_acquire_err; - } - - if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){ - if( pgno>pPager->mxPgno ){ - rc = SQLITE_FULL; - goto pager_acquire_err; - } - if( noContent ){ - /* Failure to set the bits in the InJournal bit-vectors is benign. - ** It merely means that we might do some extra work to journal a - ** page that does not need to be journaled. Nevertheless, be sure - ** to test the case where a malloc error occurs while trying to set - ** a bit in a bit vector. - */ - sqlite3BeginBenignMalloc(); - if( pgno<=pPager->dbOrigSize ){ - TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); - testcase( rc==SQLITE_NOMEM ); - } - TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); - testcase( rc==SQLITE_NOMEM ); - sqlite3EndBenignMalloc(); - } - memset(pPg->pData, 0, pPager->pageSize); - IOTRACE(("ZERO %p %d\n", pPager, pgno)); - }else{ - assert( pPg->pPager==pPager ); - pPager->aStat[PAGER_STAT_MISS]++; - rc = readDbPage(pPg); - if( rc!=SQLITE_OK ){ - goto pager_acquire_err; - } - } - pager_set_pagehash(pPg); - } - - return SQLITE_OK; - -pager_acquire_err: - assert( rc!=SQLITE_OK ); - if( pPg ){ - sqlite3PcacheDrop(pPg); - } - pagerUnlockIfUnused(pPager); - - *ppPage = 0; - return rc; -} - -/* -** Acquire a page if it is already in the in-memory cache. Do -** not read the page from disk. Return a pointer to the page, -** or 0 if the page is not in cache. -** -** See also sqlite3PagerGet(). The difference between this routine -** and sqlite3PagerGet() is that _get() will go to the disk and read -** in the page if the page is not already in cache. This routine -** returns NULL if the page is not in cache or if a disk I/O error -** has ever happened. -*/ -SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ - PgHdr *pPg = 0; - assert( pPager!=0 ); - assert( pgno!=0 ); - assert( pPager->pPCache!=0 ); - assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR ); - sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); - return pPg; -} - -/* -** Release a page reference. -** -** If the number of references to the page drop to zero, then the -** page is added to the LRU list. When all references to all pages -** are released, a rollback occurs and the lock on the database is -** removed. -*/ -SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){ - if( pPg ){ - Pager *pPager = pPg->pPager; - sqlite3PcacheRelease(pPg); - pagerUnlockIfUnused(pPager); - } -} - -/* -** This function is called at the start of every write transaction. -** There must already be a RESERVED or EXCLUSIVE lock on the database -** file when this routine is called. -** -** Open the journal file for pager pPager and write a journal header -** to the start of it. If there are active savepoints, open the sub-journal -** as well. This function is only used when the journal file is being -** opened to write a rollback log for a transaction. It is not used -** when opening a hot journal file to roll it back. -** -** If the journal file is already open (as it may be in exclusive mode), -** then this function just writes a journal header to the start of the -** already open file. -** -** Whether or not the journal file is opened by this function, the -** Pager.pInJournal bitvec structure is allocated. -** -** Return SQLITE_OK if everything is successful. Otherwise, return -** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or -** an IO error code if opening or writing the journal file fails. -*/ -static int pager_open_journal(Pager *pPager){ - int rc = SQLITE_OK; /* Return code */ - sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ - - assert( pPager->eState==PAGER_WRITER_LOCKED ); - assert( assert_pager_state(pPager) ); - assert( pPager->pInJournal==0 ); - - /* If already in the error state, this function is a no-op. But on - ** the other hand, this routine is never called if we are already in - ** an error state. */ - if( NEVER(pPager->errCode) ) return pPager->errCode; - - if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ - pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); - if( pPager->pInJournal==0 ){ - return SQLITE_NOMEM; - } - - /* Open the journal file if it is not already open. */ - if( !isOpen(pPager->jfd) ){ - if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ - sqlite3MemJournalOpen(pPager->jfd); - }else{ - const int flags = /* VFS flags to open journal file */ - SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| - (pPager->tempFile ? - (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL): - (SQLITE_OPEN_MAIN_JOURNAL) - ); - #ifdef SQLITE_ENABLE_ATOMIC_WRITE - rc = sqlite3JournalOpen( - pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) - ); - #else - rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); - #endif - } - assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); - } - - - /* Write the first journal header to the journal file and open - ** the sub-journal if necessary. - */ - if( rc==SQLITE_OK ){ - /* TODO: Check if all of these are really required. */ - pPager->nRec = 0; - pPager->journalOff = 0; - pPager->setMaster = 0; - pPager->journalHdr = 0; - rc = writeJournalHdr(pPager); - } - } - - if( rc!=SQLITE_OK ){ - sqlite3BitvecDestroy(pPager->pInJournal); - pPager->pInJournal = 0; - }else{ - assert( pPager->eState==PAGER_WRITER_LOCKED ); - pPager->eState = PAGER_WRITER_CACHEMOD; - } - - return rc; -} - -/* -** Begin a write-transaction on the specified pager object. If a -** write-transaction has already been opened, this function is a no-op. -** -** If the exFlag argument is false, then acquire at least a RESERVED -** lock on the database file. If exFlag is true, then acquire at least -** an EXCLUSIVE lock. If such a lock is already held, no locking -** functions need be called. -** -** If the subjInMemory argument is non-zero, then any sub-journal opened -** within this transaction will be opened as an in-memory file. This -** has no effect if the sub-journal is already opened (as it may be when -** running in exclusive mode) or if the transaction does not require a -** sub-journal. If the subjInMemory argument is zero, then any required -** sub-journal is implemented in-memory if pPager is an in-memory database, -** or using a temporary file otherwise. -*/ -SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ - int rc = SQLITE_OK; - - if( pPager->errCode ) return pPager->errCode; - assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); - pPager->subjInMemory = (u8)subjInMemory; - - if( ALWAYS(pPager->eState==PAGER_READER) ){ - assert( pPager->pInJournal==0 ); - - if( pagerUseWal(pPager) ){ - /* If the pager is configured to use locking_mode=exclusive, and an - ** exclusive lock on the database is not already held, obtain it now. - */ - if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ - rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); - if( rc!=SQLITE_OK ){ - return rc; - } - sqlite3WalExclusiveMode(pPager->pWal, 1); - } - - /* Grab the write lock on the log file. If successful, upgrade to - ** PAGER_RESERVED state. Otherwise, return an error code to the caller. - ** The busy-handler is not invoked if another connection already - ** holds the write-lock. If possible, the upper layer will call it. - */ - rc = sqlite3WalBeginWriteTransaction(pPager->pWal); - }else{ - /* Obtain a RESERVED lock on the database file. If the exFlag parameter - ** is true, then immediately upgrade this to an EXCLUSIVE lock. The - ** busy-handler callback can be used when upgrading to the EXCLUSIVE - ** lock, but not when obtaining the RESERVED lock. - */ - rc = pagerLockDb(pPager, RESERVED_LOCK); - if( rc==SQLITE_OK && exFlag ){ - rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); - } - } - - if( rc==SQLITE_OK ){ - /* Change to WRITER_LOCKED state. - ** - ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD - ** when it has an open transaction, but never to DBMOD or FINISHED. - ** This is because in those states the code to roll back savepoint - ** transactions may copy data from the sub-journal into the database - ** file as well as into the page cache. Which would be incorrect in - ** WAL mode. - */ - pPager->eState = PAGER_WRITER_LOCKED; - pPager->dbHintSize = pPager->dbSize; - pPager->dbFileSize = pPager->dbSize; - pPager->dbOrigSize = pPager->dbSize; - pPager->journalOff = 0; - } - - assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); - assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); - assert( assert_pager_state(pPager) ); - } - - PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); - return rc; -} - -/* -** Mark a single data page as writeable. The page is written into the -** main journal or sub-journal as required. If the page is written into -** one of the journals, the corresponding bit is set in the -** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs -** of any open savepoints as appropriate. -*/ -static int pager_write(PgHdr *pPg){ - void *pData = pPg->pData; - Pager *pPager = pPg->pPager; - int rc = SQLITE_OK; - - /* This routine is not called unless a write-transaction has already - ** been started. The journal file may or may not be open at this point. - ** It is never called in the ERROR state. - */ - assert( pPager->eState==PAGER_WRITER_LOCKED - || pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - ); - assert( assert_pager_state(pPager) ); - - /* If an error has been previously detected, report the same error - ** again. This should not happen, but the check provides robustness. */ - if( NEVER(pPager->errCode) ) return pPager->errCode; - - /* Higher-level routines never call this function if database is not - ** writable. But check anyway, just for robustness. */ - if( NEVER(pPager->readOnly) ) return SQLITE_PERM; - - CHECK_PAGE(pPg); - - /* The journal file needs to be opened. Higher level routines have already - ** obtained the necessary locks to begin the write-transaction, but the - ** rollback journal might not yet be open. Open it now if this is the case. - ** - ** This is done before calling sqlite3PcacheMakeDirty() on the page. - ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then - ** an error might occur and the pager would end up in WRITER_LOCKED state - ** with pages marked as dirty in the cache. - */ - if( pPager->eState==PAGER_WRITER_LOCKED ){ - rc = pager_open_journal(pPager); - if( rc!=SQLITE_OK ) return rc; - } - assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); - assert( assert_pager_state(pPager) ); - - /* Mark the page as dirty. If the page has already been written - ** to the journal then we can return right away. - */ - sqlite3PcacheMakeDirty(pPg); - if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){ - assert( !pagerUseWal(pPager) ); - }else{ - - /* The transaction journal now exists and we have a RESERVED or an - ** EXCLUSIVE lock on the main database file. Write the current page to - ** the transaction journal if it is not there already. - */ - if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){ - assert( pagerUseWal(pPager)==0 ); - if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){ - u32 cksum; - char *pData2; - i64 iOff = pPager->journalOff; - - /* We should never write to the journal file the page that - ** contains the database locks. The following assert verifies - ** that we do not. */ - assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); - - assert( pPager->journalHdr<=pPager->journalOff ); - CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); - cksum = pager_cksum(pPager, (u8*)pData2); - - /* Even if an IO or diskfull error occurs while journalling the - ** page in the block above, set the need-sync flag for the page. - ** Otherwise, when the transaction is rolled back, the logic in - ** playback_one_page() will think that the page needs to be restored - ** in the database file. And if an IO error occurs while doing so, - ** then corruption may follow. - */ - pPg->flags |= PGHDR_NEED_SYNC; - - rc = write32bits(pPager->jfd, iOff, pPg->pgno); - if( rc!=SQLITE_OK ) return rc; - rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); - if( rc!=SQLITE_OK ) return rc; - rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); - if( rc!=SQLITE_OK ) return rc; - - IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, - pPager->journalOff, pPager->pageSize)); - PAGER_INCR(sqlite3_pager_writej_count); - PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", - PAGERID(pPager), pPg->pgno, - ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); - - pPager->journalOff += 8 + pPager->pageSize; - pPager->nRec++; - assert( pPager->pInJournal!=0 ); - rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); - testcase( rc==SQLITE_NOMEM ); - assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); - rc |= addToSavepointBitvecs(pPager, pPg->pgno); - if( rc!=SQLITE_OK ){ - assert( rc==SQLITE_NOMEM ); - return rc; - } - }else{ - if( pPager->eState!=PAGER_WRITER_DBMOD ){ - pPg->flags |= PGHDR_NEED_SYNC; - } - PAGERTRACE(("APPEND %d page %d needSync=%d\n", - PAGERID(pPager), pPg->pgno, - ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); - } - } - - /* If the statement journal is open and the page is not in it, - ** then write the current page to the statement journal. Note that - ** the statement journal format differs from the standard journal format - ** in that it omits the checksums and the header. - */ - if( subjRequiresPage(pPg) ){ - rc = subjournalPage(pPg); - } - } - - /* Update the database size and return. - */ - if( pPager->dbSize<pPg->pgno ){ - pPager->dbSize = pPg->pgno; - } - return rc; -} - -/* -** Mark a data page as writeable. This routine must be called before -** making changes to a page. The caller must check the return value -** of this function and be careful not to change any page data unless -** this routine returns SQLITE_OK. -** -** The difference between this function and pager_write() is that this -** function also deals with the special case where 2 or more pages -** fit on a single disk sector. In this case all co-resident pages -** must have been written to the journal file before returning. -** -** If an error occurs, SQLITE_NOMEM or an IO error code is returned -** as appropriate. Otherwise, SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){ - int rc = SQLITE_OK; - - PgHdr *pPg = pDbPage; - Pager *pPager = pPg->pPager; - Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); - - assert( pPager->eState>=PAGER_WRITER_LOCKED ); - assert( pPager->eState!=PAGER_ERROR ); - assert( assert_pager_state(pPager) ); - - if( nPagePerSector>1 ){ - Pgno nPageCount; /* Total number of pages in database file */ - Pgno pg1; /* First page of the sector pPg is located on. */ - int nPage = 0; /* Number of pages starting at pg1 to journal */ - int ii; /* Loop counter */ - int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ - - /* Set the doNotSyncSpill flag to 1. This is because we cannot allow - ** a journal header to be written between the pages journaled by - ** this function. - */ - assert( !MEMDB ); - assert( pPager->doNotSyncSpill==0 ); - pPager->doNotSyncSpill++; - - /* This trick assumes that both the page-size and sector-size are - ** an integer power of 2. It sets variable pg1 to the identifier - ** of the first page of the sector pPg is located on. - */ - pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; - - nPageCount = pPager->dbSize; - if( pPg->pgno>nPageCount ){ - nPage = (pPg->pgno - pg1)+1; - }else if( (pg1+nPagePerSector-1)>nPageCount ){ - nPage = nPageCount+1-pg1; - }else{ - nPage = nPagePerSector; - } - assert(nPage>0); - assert(pg1<=pPg->pgno); - assert((pg1+nPage)>pPg->pgno); - - for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ - Pgno pg = pg1+ii; - PgHdr *pPage; - if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ - if( pg!=PAGER_MJ_PGNO(pPager) ){ - rc = sqlite3PagerGet(pPager, pg, &pPage); - if( rc==SQLITE_OK ){ - rc = pager_write(pPage); - if( pPage->flags&PGHDR_NEED_SYNC ){ - needSync = 1; - } - sqlite3PagerUnref(pPage); - } - } - }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ - if( pPage->flags&PGHDR_NEED_SYNC ){ - needSync = 1; - } - sqlite3PagerUnref(pPage); - } - } - - /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages - ** starting at pg1, then it needs to be set for all of them. Because - ** writing to any of these nPage pages may damage the others, the - ** journal file must contain sync()ed copies of all of them - ** before any of them can be written out to the database file. - */ - if( rc==SQLITE_OK && needSync ){ - assert( !MEMDB ); - for(ii=0; ii<nPage; ii++){ - PgHdr *pPage = pager_lookup(pPager, pg1+ii); - if( pPage ){ - pPage->flags |= PGHDR_NEED_SYNC; - sqlite3PagerUnref(pPage); - } - } - } - - assert( pPager->doNotSyncSpill==1 ); - pPager->doNotSyncSpill--; - }else{ - rc = pager_write(pDbPage); - } - return rc; -} - -/* -** Return TRUE if the page given in the argument was previously passed -** to sqlite3PagerWrite(). In other words, return TRUE if it is ok -** to change the content of the page. -*/ -#ifndef NDEBUG -SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ - return pPg->flags&PGHDR_DIRTY; -} -#endif - -/* -** A call to this routine tells the pager that it is not necessary to -** write the information on page pPg back to the disk, even though -** that page might be marked as dirty. This happens, for example, when -** the page has been added as a leaf of the freelist and so its -** content no longer matters. -** -** The overlying software layer calls this routine when all of the data -** on the given page is unused. The pager marks the page as clean so -** that it does not get written to disk. -** -** Tests show that this optimization can quadruple the speed of large -** DELETE operations. -*/ -SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ - Pager *pPager = pPg->pPager; - if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ - PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); - IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) - pPg->flags |= PGHDR_DONT_WRITE; - pager_set_pagehash(pPg); - } -} - -/* -** This routine is called to increment the value of the database file -** change-counter, stored as a 4-byte big-endian integer starting at -** byte offset 24 of the pager file. The secondary change counter at -** 92 is also updated, as is the SQLite version number at offset 96. -** -** But this only happens if the pPager->changeCountDone flag is false. -** To avoid excess churning of page 1, the update only happens once. -** See also the pager_write_changecounter() routine that does an -** unconditional update of the change counters. -** -** If the isDirectMode flag is zero, then this is done by calling -** sqlite3PagerWrite() on page 1, then modifying the contents of the -** page data. In this case the file will be updated when the current -** transaction is committed. -** -** The isDirectMode flag may only be non-zero if the library was compiled -** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, -** if isDirect is non-zero, then the database file is updated directly -** by writing an updated version of page 1 using a call to the -** sqlite3OsWrite() function. -*/ -static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ - int rc = SQLITE_OK; - - assert( pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - ); - assert( assert_pager_state(pPager) ); - - /* Declare and initialize constant integer 'isDirect'. If the - ** atomic-write optimization is enabled in this build, then isDirect - ** is initialized to the value passed as the isDirectMode parameter - ** to this function. Otherwise, it is always set to zero. - ** - ** The idea is that if the atomic-write optimization is not - ** enabled at compile time, the compiler can omit the tests of - ** 'isDirect' below, as well as the block enclosed in the - ** "if( isDirect )" condition. - */ -#ifndef SQLITE_ENABLE_ATOMIC_WRITE -# define DIRECT_MODE 0 - assert( isDirectMode==0 ); - UNUSED_PARAMETER(isDirectMode); -#else -# define DIRECT_MODE isDirectMode -#endif - - if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ - PgHdr *pPgHdr; /* Reference to page 1 */ - - assert( !pPager->tempFile && isOpen(pPager->fd) ); - - /* Open page 1 of the file for writing. */ - rc = sqlite3PagerGet(pPager, 1, &pPgHdr); - assert( pPgHdr==0 || rc==SQLITE_OK ); - - /* If page one was fetched successfully, and this function is not - ** operating in direct-mode, make page 1 writable. When not in - ** direct mode, page 1 is always held in cache and hence the PagerGet() - ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. - */ - if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ - rc = sqlite3PagerWrite(pPgHdr); - } - - if( rc==SQLITE_OK ){ - /* Actually do the update of the change counter */ - pager_write_changecounter(pPgHdr); - - /* If running in direct mode, write the contents of page 1 to the file. */ - if( DIRECT_MODE ){ - const void *zBuf; - assert( pPager->dbFileSize>0 ); - CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf); - if( rc==SQLITE_OK ){ - rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); - pPager->aStat[PAGER_STAT_WRITE]++; - } - if( rc==SQLITE_OK ){ - pPager->changeCountDone = 1; - } - }else{ - pPager->changeCountDone = 1; - } - } - - /* Release the page reference. */ - sqlite3PagerUnref(pPgHdr); - } - return rc; -} - -/* -** Sync the database file to disk. This is a no-op for in-memory databases -** or pages with the Pager.noSync flag set. -** -** If successful, or if called on a pager for which it is a no-op, this -** function returns SQLITE_OK. Otherwise, an IO error code is returned. -*/ -SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){ - int rc = SQLITE_OK; - if( !pPager->noSync ){ - assert( !MEMDB ); - rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); - }else if( isOpen(pPager->fd) ){ - assert( !MEMDB ); - rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, 0); - if( rc==SQLITE_NOTFOUND ){ - rc = SQLITE_OK; - } - } - return rc; -} - -/* -** This function may only be called while a write-transaction is active in -** rollback. If the connection is in WAL mode, this call is a no-op. -** Otherwise, if the connection does not already have an EXCLUSIVE lock on -** the database file, an attempt is made to obtain one. -** -** If the EXCLUSIVE lock is already held or the attempt to obtain it is -** successful, or the connection is in WAL mode, SQLITE_OK is returned. -** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is -** returned. -*/ -SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){ - int rc = SQLITE_OK; - assert( pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - || pPager->eState==PAGER_WRITER_LOCKED - ); - assert( assert_pager_state(pPager) ); - if( 0==pagerUseWal(pPager) ){ - rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); - } - return rc; -} - -/* -** Sync the database file for the pager pPager. zMaster points to the name -** of a master journal file that should be written into the individual -** journal file. zMaster may be NULL, which is interpreted as no master -** journal (a single database transaction). -** -** This routine ensures that: -** -** * The database file change-counter is updated, -** * the journal is synced (unless the atomic-write optimization is used), -** * all dirty pages are written to the database file, -** * the database file is truncated (if required), and -** * the database file synced. -** -** The only thing that remains to commit the transaction is to finalize -** (delete, truncate or zero the first part of) the journal file (or -** delete the master journal file if specified). -** -** Note that if zMaster==NULL, this does not overwrite a previous value -** passed to an sqlite3PagerCommitPhaseOne() call. -** -** If the final parameter - noSync - is true, then the database file itself -** is not synced. The caller must call sqlite3PagerSync() directly to -** sync the database file before calling CommitPhaseTwo() to delete the -** journal file in this case. -*/ -SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne( - Pager *pPager, /* Pager object */ - const char *zMaster, /* If not NULL, the master journal name */ - int noSync /* True to omit the xSync on the db file */ -){ - int rc = SQLITE_OK; /* Return code */ - - assert( pPager->eState==PAGER_WRITER_LOCKED - || pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - || pPager->eState==PAGER_ERROR - ); - assert( assert_pager_state(pPager) ); - - /* If a prior error occurred, report that error again. */ - if( NEVER(pPager->errCode) ) return pPager->errCode; - - PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", - pPager->zFilename, zMaster, pPager->dbSize)); - - /* If no database changes have been made, return early. */ - if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; - - if( MEMDB ){ - /* If this is an in-memory db, or no pages have been written to, or this - ** function has already been called, it is mostly a no-op. However, any - ** backup in progress needs to be restarted. - */ - sqlite3BackupRestart(pPager->pBackup); - }else{ - if( pagerUseWal(pPager) ){ - PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); - PgHdr *pPageOne = 0; - if( pList==0 ){ - /* Must have at least one page for the WAL commit flag. - ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ - rc = sqlite3PagerGet(pPager, 1, &pPageOne); - pList = pPageOne; - pList->pDirty = 0; - } - assert( rc==SQLITE_OK ); - if( ALWAYS(pList) ){ - rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); - } - sqlite3PagerUnref(pPageOne); - if( rc==SQLITE_OK ){ - sqlite3PcacheCleanAll(pPager->pPCache); - } - }else{ - /* The following block updates the change-counter. Exactly how it - ** does this depends on whether or not the atomic-update optimization - ** was enabled at compile time, and if this transaction meets the - ** runtime criteria to use the operation: - ** - ** * The file-system supports the atomic-write property for - ** blocks of size page-size, and - ** * This commit is not part of a multi-file transaction, and - ** * Exactly one page has been modified and store in the journal file. - ** - ** If the optimization was not enabled at compile time, then the - ** pager_incr_changecounter() function is called to update the change - ** counter in 'indirect-mode'. If the optimization is compiled in but - ** is not applicable to this transaction, call sqlite3JournalCreate() - ** to make sure the journal file has actually been created, then call - ** pager_incr_changecounter() to update the change-counter in indirect - ** mode. - ** - ** Otherwise, if the optimization is both enabled and applicable, - ** then call pager_incr_changecounter() to update the change-counter - ** in 'direct' mode. In this case the journal file will never be - ** created for this transaction. - */ - #ifdef SQLITE_ENABLE_ATOMIC_WRITE - PgHdr *pPg; - assert( isOpen(pPager->jfd) - || pPager->journalMode==PAGER_JOURNALMODE_OFF - || pPager->journalMode==PAGER_JOURNALMODE_WAL - ); - if( !zMaster && isOpen(pPager->jfd) - && pPager->journalOff==jrnlBufferSize(pPager) - && pPager->dbSize>=pPager->dbOrigSize - && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) - ){ - /* Update the db file change counter via the direct-write method. The - ** following call will modify the in-memory representation of page 1 - ** to include the updated change counter and then write page 1 - ** directly to the database file. Because of the atomic-write - ** property of the host file-system, this is safe. - */ - rc = pager_incr_changecounter(pPager, 1); - }else{ - rc = sqlite3JournalCreate(pPager->jfd); - if( rc==SQLITE_OK ){ - rc = pager_incr_changecounter(pPager, 0); - } - } - #else - rc = pager_incr_changecounter(pPager, 0); - #endif - if( rc!=SQLITE_OK ) goto commit_phase_one_exit; - - /* Write the master journal name into the journal file. If a master - ** journal file name has already been written to the journal file, - ** or if zMaster is NULL (no master journal), then this call is a no-op. - */ - rc = writeMasterJournal(pPager, zMaster); - if( rc!=SQLITE_OK ) goto commit_phase_one_exit; - - /* Sync the journal file and write all dirty pages to the database. - ** If the atomic-update optimization is being used, this sync will not - ** create the journal file or perform any real IO. - ** - ** Because the change-counter page was just modified, unless the - ** atomic-update optimization is used it is almost certain that the - ** journal requires a sync here. However, in locking_mode=exclusive - ** on a system under memory pressure it is just possible that this is - ** not the case. In this case it is likely enough that the redundant - ** xSync() call will be changed to a no-op by the OS anyhow. - */ - rc = syncJournal(pPager, 0); - if( rc!=SQLITE_OK ) goto commit_phase_one_exit; - - rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); - if( rc!=SQLITE_OK ){ - assert( rc!=SQLITE_IOERR_BLOCKED ); - goto commit_phase_one_exit; - } - sqlite3PcacheCleanAll(pPager->pPCache); - - /* If the file on disk is smaller than the database image, use - ** pager_truncate to grow the file here. This can happen if the database - ** image was extended as part of the current transaction and then the - ** last page in the db image moved to the free-list. In this case the - ** last page is never written out to disk, leaving the database file - ** undersized. Fix this now if it is the case. */ - if( pPager->dbSize>pPager->dbFileSize ){ - Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); - assert( pPager->eState==PAGER_WRITER_DBMOD ); - rc = pager_truncate(pPager, nNew); - if( rc!=SQLITE_OK ) goto commit_phase_one_exit; - } - - /* Finally, sync the database file. */ - if( !noSync ){ - rc = sqlite3PagerSync(pPager); - } - IOTRACE(("DBSYNC %p\n", pPager)) - } - } - -commit_phase_one_exit: - if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ - pPager->eState = PAGER_WRITER_FINISHED; - } - return rc; -} - - -/* -** When this function is called, the database file has been completely -** updated to reflect the changes made by the current transaction and -** synced to disk. The journal file still exists in the file-system -** though, and if a failure occurs at this point it will eventually -** be used as a hot-journal and the current transaction rolled back. -** -** This function finalizes the journal file, either by deleting, -** truncating or partially zeroing it, so that it cannot be used -** for hot-journal rollback. Once this is done the transaction is -** irrevocably committed. -** -** If an error occurs, an IO error code is returned and the pager -** moves into the error state. Otherwise, SQLITE_OK is returned. -*/ -SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){ - int rc = SQLITE_OK; /* Return code */ - - /* This routine should not be called if a prior error has occurred. - ** But if (due to a coding error elsewhere in the system) it does get - ** called, just return the same error code without doing anything. */ - if( NEVER(pPager->errCode) ) return pPager->errCode; - - assert( pPager->eState==PAGER_WRITER_LOCKED - || pPager->eState==PAGER_WRITER_FINISHED - || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) - ); - assert( assert_pager_state(pPager) ); - - /* An optimization. If the database was not actually modified during - ** this transaction, the pager is running in exclusive-mode and is - ** using persistent journals, then this function is a no-op. - ** - ** The start of the journal file currently contains a single journal - ** header with the nRec field set to 0. If such a journal is used as - ** a hot-journal during hot-journal rollback, 0 changes will be made - ** to the database file. So there is no need to zero the journal - ** header. Since the pager is in exclusive mode, there is no need - ** to drop any locks either. - */ - if( pPager->eState==PAGER_WRITER_LOCKED - && pPager->exclusiveMode - && pPager->journalMode==PAGER_JOURNALMODE_PERSIST - ){ - assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); - pPager->eState = PAGER_READER; - return SQLITE_OK; - } - - PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); - rc = pager_end_transaction(pPager, pPager->setMaster, 1); - return pager_error(pPager, rc); -} - -/* -** If a write transaction is open, then all changes made within the -** transaction are reverted and the current write-transaction is closed. -** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR -** state if an error occurs. -** -** If the pager is already in PAGER_ERROR state when this function is called, -** it returns Pager.errCode immediately. No work is performed in this case. -** -** Otherwise, in rollback mode, this function performs two functions: -** -** 1) It rolls back the journal file, restoring all database file and -** in-memory cache pages to the state they were in when the transaction -** was opened, and -** -** 2) It finalizes the journal file, so that it is not used for hot -** rollback at any point in the future. -** -** Finalization of the journal file (task 2) is only performed if the -** rollback is successful. -** -** In WAL mode, all cache-entries containing data modified within the -** current transaction are either expelled from the cache or reverted to -** their pre-transaction state by re-reading data from the database or -** WAL files. The WAL transaction is then closed. -*/ -SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){ - int rc = SQLITE_OK; /* Return code */ - PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); - - /* PagerRollback() is a no-op if called in READER or OPEN state. If - ** the pager is already in the ERROR state, the rollback is not - ** attempted here. Instead, the error code is returned to the caller. - */ - assert( assert_pager_state(pPager) ); - if( pPager->eState==PAGER_ERROR ) return pPager->errCode; - if( pPager->eState<=PAGER_READER ) return SQLITE_OK; - - if( pagerUseWal(pPager) ){ - int rc2; - rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); - rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); - if( rc==SQLITE_OK ) rc = rc2; - }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ - int eState = pPager->eState; - rc = pager_end_transaction(pPager, 0, 0); - if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ - /* This can happen using journal_mode=off. Move the pager to the error - ** state to indicate that the contents of the cache may not be trusted. - ** Any active readers will get SQLITE_ABORT. - */ - pPager->errCode = SQLITE_ABORT; - pPager->eState = PAGER_ERROR; - return rc; - } - }else{ - rc = pager_playback(pPager, 0); - } - - assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); - assert( rc==SQLITE_OK || rc==SQLITE_FULL - || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR ); - - /* If an error occurs during a ROLLBACK, we can no longer trust the pager - ** cache. So call pager_error() on the way out to make any error persistent. - */ - return pager_error(pPager, rc); -} - -/* -** Return TRUE if the database file is opened read-only. Return FALSE -** if the database is (in theory) writable. -*/ -SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ - return pPager->readOnly; -} - -/* -** Return the number of references to the pager. -*/ -SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ - return sqlite3PcacheRefCount(pPager->pPCache); -} - -/* -** Return the approximate number of bytes of memory currently -** used by the pager and its associated cache. -*/ -SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ - int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) - + 5*sizeof(void*); - return perPageSize*sqlite3PcachePagecount(pPager->pPCache) - + sqlite3MallocSize(pPager) - + pPager->pageSize; -} - -/* -** Return the number of references to the specified page. -*/ -SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){ - return sqlite3PcachePageRefcount(pPage); -} - -#ifdef SQLITE_TEST -/* -** This routine is used for testing and analysis only. -*/ -SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){ - static int a[11]; - a[0] = sqlite3PcacheRefCount(pPager->pPCache); - a[1] = sqlite3PcachePagecount(pPager->pPCache); - a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); - a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; - a[4] = pPager->eState; - a[5] = pPager->errCode; - a[6] = pPager->aStat[PAGER_STAT_HIT]; - a[7] = pPager->aStat[PAGER_STAT_MISS]; - a[8] = 0; /* Used to be pPager->nOvfl */ - a[9] = pPager->nRead; - a[10] = pPager->aStat[PAGER_STAT_WRITE]; - return a; -} -#endif - -/* -** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or -** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the -** current cache hit or miss count, according to the value of eStat. If the -** reset parameter is non-zero, the cache hit or miss count is zeroed before -** returning. -*/ -SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ - - assert( eStat==SQLITE_DBSTATUS_CACHE_HIT - || eStat==SQLITE_DBSTATUS_CACHE_MISS - || eStat==SQLITE_DBSTATUS_CACHE_WRITE - ); - - assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); - assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); - assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 ); - - *pnVal += pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT]; - if( reset ){ - pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT] = 0; - } -} - -/* -** Return true if this is an in-memory pager. -*/ -SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){ - return MEMDB; -} - -/* -** Check that there are at least nSavepoint savepoints open. If there are -** currently less than nSavepoints open, then open one or more savepoints -** to make up the difference. If the number of savepoints is already -** equal to nSavepoint, then this function is a no-op. -** -** If a memory allocation fails, SQLITE_NOMEM is returned. If an error -** occurs while opening the sub-journal file, then an IO error code is -** returned. Otherwise, SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ - int rc = SQLITE_OK; /* Return code */ - int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ - - assert( pPager->eState>=PAGER_WRITER_LOCKED ); - assert( assert_pager_state(pPager) ); - - if( nSavepoint>nCurrent && pPager->useJournal ){ - int ii; /* Iterator variable */ - PagerSavepoint *aNew; /* New Pager.aSavepoint array */ - - /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM - ** if the allocation fails. Otherwise, zero the new portion in case a - ** malloc failure occurs while populating it in the for(...) loop below. - */ - aNew = (PagerSavepoint *)sqlite3Realloc( - pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint - ); - if( !aNew ){ - return SQLITE_NOMEM; - } - memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); - pPager->aSavepoint = aNew; - - /* Populate the PagerSavepoint structures just allocated. */ - for(ii=nCurrent; ii<nSavepoint; ii++){ - aNew[ii].nOrig = pPager->dbSize; - if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ - aNew[ii].iOffset = pPager->journalOff; - }else{ - aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); - } - aNew[ii].iSubRec = pPager->nSubRec; - aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); - if( !aNew[ii].pInSavepoint ){ - return SQLITE_NOMEM; - } - if( pagerUseWal(pPager) ){ - sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); - } - pPager->nSavepoint = ii+1; - } - assert( pPager->nSavepoint==nSavepoint ); - assertTruncateConstraint(pPager); - } - - return rc; -} - -/* -** This function is called to rollback or release (commit) a savepoint. -** The savepoint to release or rollback need not be the most recently -** created savepoint. -** -** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. -** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with -** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes -** that have occurred since the specified savepoint was created. -** -** The savepoint to rollback or release is identified by parameter -** iSavepoint. A value of 0 means to operate on the outermost savepoint -** (the first created). A value of (Pager.nSavepoint-1) means operate -** on the most recently created savepoint. If iSavepoint is greater than -** (Pager.nSavepoint-1), then this function is a no-op. -** -** If a negative value is passed to this function, then the current -** transaction is rolled back. This is different to calling -** sqlite3PagerRollback() because this function does not terminate -** the transaction or unlock the database, it just restores the -** contents of the database to its original state. -** -** In any case, all savepoints with an index greater than iSavepoint -** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), -** then savepoint iSavepoint is also destroyed. -** -** This function may return SQLITE_NOMEM if a memory allocation fails, -** or an IO error code if an IO error occurs while rolling back a -** savepoint. If no errors occur, SQLITE_OK is returned. -*/ -SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ - int rc = pPager->errCode; /* Return code */ - - assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); - assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); - - if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ - int ii; /* Iterator variable */ - int nNew; /* Number of remaining savepoints after this op. */ - - /* Figure out how many savepoints will still be active after this - ** operation. Store this value in nNew. Then free resources associated - ** with any savepoints that are destroyed by this operation. - */ - nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); - for(ii=nNew; ii<pPager->nSavepoint; ii++){ - sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); - } - pPager->nSavepoint = nNew; - - /* If this is a release of the outermost savepoint, truncate - ** the sub-journal to zero bytes in size. */ - if( op==SAVEPOINT_RELEASE ){ - if( nNew==0 && isOpen(pPager->sjfd) ){ - /* Only truncate if it is an in-memory sub-journal. */ - if( sqlite3IsMemJournal(pPager->sjfd) ){ - rc = sqlite3OsTruncate(pPager->sjfd, 0); - assert( rc==SQLITE_OK ); - } - pPager->nSubRec = 0; - } - } - /* Else this is a rollback operation, playback the specified savepoint. - ** If this is a temp-file, it is possible that the journal file has - ** not yet been opened. In this case there have been no changes to - ** the database file, so the playback operation can be skipped. - */ - else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ - PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; - rc = pagerPlaybackSavepoint(pPager, pSavepoint); - assert(rc!=SQLITE_DONE); - } - } - - return rc; -} - -/* -** Return the full pathname of the database file. -** -** Except, if the pager is in-memory only, then return an empty string if -** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when -** used to report the filename to the user, for compatibility with legacy -** behavior. But when the Btree needs to know the filename for matching to -** shared cache, it uses nullIfMemDb==0 so that in-memory databases can -** participate in shared-cache. -*/ -SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){ - return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename; -} - -/* -** Return the VFS structure for the pager. -*/ -SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ - return pPager->pVfs; -} - -/* -** Return the file handle for the database file associated -** with the pager. This might return NULL if the file has -** not yet been opened. -*/ -SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){ - return pPager->fd; -} - -/* -** Return the full pathname of the journal file. -*/ -SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){ - return pPager->zJournal; -} - -/* -** Return true if fsync() calls are disabled for this pager. Return FALSE -** if fsync()s are executed normally. -*/ -SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){ - return pPager->noSync; -} - -#ifdef SQLITE_HAS_CODEC -/* -** Set or retrieve the codec for this pager -*/ -SQLITE_PRIVATE void sqlite3PagerSetCodec( - Pager *pPager, - void *(*xCodec)(void*,void*,Pgno,int), - void (*xCodecSizeChng)(void*,int,int), - void (*xCodecFree)(void*), - void *pCodec -){ - if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); - pPager->xCodec = pPager->memDb ? 0 : xCodec; - pPager->xCodecSizeChng = xCodecSizeChng; - pPager->xCodecFree = xCodecFree; - pPager->pCodec = pCodec; - pagerReportSize(pPager); -} -SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){ - return pPager->pCodec; -} -#endif - -#ifndef SQLITE_OMIT_AUTOVACUUM -/* -** Move the page pPg to location pgno in the file. -** -** There must be no references to the page previously located at -** pgno (which we call pPgOld) though that page is allowed to be -** in cache. If the page previously located at pgno is not already -** in the rollback journal, it is not put there by by this routine. -** -** References to the page pPg remain valid. Updating any -** meta-data associated with pPg (i.e. data stored in the nExtra bytes -** allocated along with the page) is the responsibility of the caller. -** -** A transaction must be active when this routine is called. It used to be -** required that a statement transaction was not active, but this restriction -** has been removed (CREATE INDEX needs to move a page when a statement -** transaction is active). -** -** If the fourth argument, isCommit, is non-zero, then this page is being -** moved as part of a database reorganization just before the transaction -** is being committed. In this case, it is guaranteed that the database page -** pPg refers to will not be written to again within this transaction. -** -** This function may return SQLITE_NOMEM or an IO error code if an error -** occurs. Otherwise, it returns SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ - PgHdr *pPgOld; /* The page being overwritten. */ - Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ - int rc; /* Return code */ - Pgno origPgno; /* The original page number */ - - assert( pPg->nRef>0 ); - assert( pPager->eState==PAGER_WRITER_CACHEMOD - || pPager->eState==PAGER_WRITER_DBMOD - ); - assert( assert_pager_state(pPager) ); - - /* In order to be able to rollback, an in-memory database must journal - ** the page we are moving from. - */ - if( MEMDB ){ - rc = sqlite3PagerWrite(pPg); - if( rc ) return rc; - } - - /* If the page being moved is dirty and has not been saved by the latest - ** savepoint, then save the current contents of the page into the - ** sub-journal now. This is required to handle the following scenario: - ** - ** BEGIN; - ** <journal page X, then modify it in memory> - ** SAVEPOINT one; - ** <Move page X to location Y> - ** ROLLBACK TO one; - ** - ** If page X were not written to the sub-journal here, it would not - ** be possible to restore its contents when the "ROLLBACK TO one" - ** statement were is processed. - ** - ** subjournalPage() may need to allocate space to store pPg->pgno into - ** one or more savepoint bitvecs. This is the reason this function - ** may return SQLITE_NOMEM. - */ - if( pPg->flags&PGHDR_DIRTY - && subjRequiresPage(pPg) - && SQLITE_OK!=(rc = subjournalPage(pPg)) - ){ - return rc; - } - - PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", - PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); - IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) - - /* If the journal needs to be sync()ed before page pPg->pgno can - ** be written to, store pPg->pgno in local variable needSyncPgno. - ** - ** If the isCommit flag is set, there is no need to remember that - ** the journal needs to be sync()ed before database page pPg->pgno - ** can be written to. The caller has already promised not to write to it. - */ - if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ - needSyncPgno = pPg->pgno; - assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || - pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize ); - assert( pPg->flags&PGHDR_DIRTY ); - } - - /* If the cache contains a page with page-number pgno, remove it - ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for - ** page pgno before the 'move' operation, it needs to be retained - ** for the page moved there. - */ - pPg->flags &= ~PGHDR_NEED_SYNC; - pPgOld = pager_lookup(pPager, pgno); - assert( !pPgOld || pPgOld->nRef==1 ); - if( pPgOld ){ - pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); - if( MEMDB ){ - /* Do not discard pages from an in-memory database since we might - ** need to rollback later. Just move the page out of the way. */ - sqlite3PcacheMove(pPgOld, pPager->dbSize+1); - }else{ - sqlite3PcacheDrop(pPgOld); - } - } - - origPgno = pPg->pgno; - sqlite3PcacheMove(pPg, pgno); - sqlite3PcacheMakeDirty(pPg); - - /* For an in-memory database, make sure the original page continues - ** to exist, in case the transaction needs to roll back. Use pPgOld - ** as the original page since it has already been allocated. - */ - if( MEMDB ){ - assert( pPgOld ); - sqlite3PcacheMove(pPgOld, origPgno); - sqlite3PagerUnref(pPgOld); - } - - if( needSyncPgno ){ - /* If needSyncPgno is non-zero, then the journal file needs to be - ** sync()ed before any data is written to database file page needSyncPgno. - ** Currently, no such page exists in the page-cache and the - ** "is journaled" bitvec flag has been set. This needs to be remedied by - ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC - ** flag. - ** - ** If the attempt to load the page into the page-cache fails, (due - ** to a malloc() or IO failure), clear the bit in the pInJournal[] - ** array. Otherwise, if the page is loaded and written again in - ** this transaction, it may be written to the database file before - ** it is synced into the journal file. This way, it may end up in - ** the journal file twice, but that is not a problem. - */ - PgHdr *pPgHdr; - rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); - if( rc!=SQLITE_OK ){ - if( needSyncPgno<=pPager->dbOrigSize ){ - assert( pPager->pTmpSpace!=0 ); - sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); - } - return rc; - } - pPgHdr->flags |= PGHDR_NEED_SYNC; - sqlite3PcacheMakeDirty(pPgHdr); - sqlite3PagerUnref(pPgHdr); - } - - return SQLITE_OK; -} -#endif - -/* -** Return a pointer to the data for the specified page. -*/ -SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){ - assert( pPg->nRef>0 || pPg->pPager->memDb ); - return pPg->pData; -} - -/* -** Return a pointer to the Pager.nExtra bytes of "extra" space -** allocated along with the specified page. -*/ -SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){ - return pPg->pExtra; -} - -/* -** Get/set the locking-mode for this pager. Parameter eMode must be one -** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or -** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then -** the locking-mode is set to the value specified. -** -** The returned value is either PAGER_LOCKINGMODE_NORMAL or -** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) -** locking-mode. -*/ -SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){ - assert( eMode==PAGER_LOCKINGMODE_QUERY - || eMode==PAGER_LOCKINGMODE_NORMAL - || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); - assert( PAGER_LOCKINGMODE_QUERY<0 ); - assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); - assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); - if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ - pPager->exclusiveMode = (u8)eMode; - } - return (int)pPager->exclusiveMode; -} - -/* -** Set the journal-mode for this pager. Parameter eMode must be one of: -** -** PAGER_JOURNALMODE_DELETE -** PAGER_JOURNALMODE_TRUNCATE -** PAGER_JOURNALMODE_PERSIST -** PAGER_JOURNALMODE_OFF -** PAGER_JOURNALMODE_MEMORY -** PAGER_JOURNALMODE_WAL -** -** The journalmode is set to the value specified if the change is allowed. -** The change may be disallowed for the following reasons: -** -** * An in-memory database can only have its journal_mode set to _OFF -** or _MEMORY. -** -** * Temporary databases cannot have _WAL journalmode. -** -** The returned indicate the current (possibly updated) journal-mode. -*/ -SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ - u8 eOld = pPager->journalMode; /* Prior journalmode */ - -#ifdef SQLITE_DEBUG - /* The print_pager_state() routine is intended to be used by the debugger - ** only. We invoke it once here to suppress a compiler warning. */ - print_pager_state(pPager); -#endif - - - /* The eMode parameter is always valid */ - assert( eMode==PAGER_JOURNALMODE_DELETE - || eMode==PAGER_JOURNALMODE_TRUNCATE - || eMode==PAGER_JOURNALMODE_PERSIST - || eMode==PAGER_JOURNALMODE_OFF - || eMode==PAGER_JOURNALMODE_WAL - || eMode==PAGER_JOURNALMODE_MEMORY ); - - /* This routine is only called from the OP_JournalMode opcode, and - ** the logic there will never allow a temporary file to be changed - ** to WAL mode. - */ - assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); - - /* Do allow the journalmode of an in-memory database to be set to - ** anything other than MEMORY or OFF - */ - if( MEMDB ){ - assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); - if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ - eMode = eOld; - } - } - - if( eMode!=eOld ){ - - /* Change the journal mode. */ - assert( pPager->eState!=PAGER_ERROR ); - pPager->journalMode = (u8)eMode; - - /* When transistioning from TRUNCATE or PERSIST to any other journal - ** mode except WAL, unless the pager is in locking_mode=exclusive mode, - ** delete the journal file. - */ - assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); - assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); - assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); - assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); - assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); - assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); - - assert( isOpen(pPager->fd) || pPager->exclusiveMode ); - if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ - - /* In this case we would like to delete the journal file. If it is - ** not possible, then that is not a problem. Deleting the journal file - ** here is an optimization only. - ** - ** Before deleting the journal file, obtain a RESERVED lock on the - ** database file. This ensures that the journal file is not deleted - ** while it is in use by some other client. - */ - sqlite3OsClose(pPager->jfd); - if( pPager->eLock>=RESERVED_LOCK ){ - sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); - }else{ - int rc = SQLITE_OK; - int state = pPager->eState; - assert( state==PAGER_OPEN || state==PAGER_READER ); - if( state==PAGER_OPEN ){ - rc = sqlite3PagerSharedLock(pPager); - } - if( pPager->eState==PAGER_READER ){ - assert( rc==SQLITE_OK ); - rc = pagerLockDb(pPager, RESERVED_LOCK); - } - if( rc==SQLITE_OK ){ - sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); - } - if( rc==SQLITE_OK && state==PAGER_READER ){ - pagerUnlockDb(pPager, SHARED_LOCK); - }else if( state==PAGER_OPEN ){ - pager_unlock(pPager); - } - assert( state==pPager->eState ); - } - } - } - - /* Return the new journal mode */ - return (int)pPager->journalMode; -} - -/* -** Return the current journal mode. -*/ -SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){ - return (int)pPager->journalMode; -} - -/* -** Return TRUE if the pager is in a state where it is OK to change the -** journalmode. Journalmode changes can only happen when the database -** is unmodified. -*/ -SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ - assert( assert_pager_state(pPager) ); - if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; - if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; - return 1; -} - -/* -** Get/set the size-limit used for persistent journal files. -** -** Setting the size limit to -1 means no limit is enforced. -** An attempt to set a limit smaller than -1 is a no-op. -*/ -SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ - if( iLimit>=-1 ){ - pPager->journalSizeLimit = iLimit; - sqlite3WalLimit(pPager->pWal, iLimit); - } - return pPager->journalSizeLimit; -} - -/* -** Return a pointer to the pPager->pBackup variable. The backup module -** in backup.c maintains the content of this variable. This module -** uses it opaquely as an argument to sqlite3BackupRestart() and -** sqlite3BackupUpdate() only. -*/ -SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ - return &pPager->pBackup; -} - -#ifndef SQLITE_OMIT_VACUUM -/* -** Unless this is an in-memory or temporary database, clear the pager cache. -*/ -SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){ - if( !MEMDB && pPager->tempFile==0 ) pager_reset(pPager); -} -#endif - -#ifndef SQLITE_OMIT_WAL -/* -** This function is called when the user invokes "PRAGMA wal_checkpoint", -** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() -** or wal_blocking_checkpoint() API functions. -** -** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. -*/ -SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ - int rc = SQLITE_OK; - if( pPager->pWal ){ - rc = sqlite3WalCheckpoint(pPager->pWal, eMode, - pPager->xBusyHandler, pPager->pBusyHandlerArg, - pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, - pnLog, pnCkpt - ); - } - return rc; -} - -SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){ - return sqlite3WalCallback(pPager->pWal); -} - -/* -** Return true if the underlying VFS for the given pager supports the -** primitives necessary for write-ahead logging. -*/ -SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){ - const sqlite3_io_methods *pMethods = pPager->fd->pMethods; - return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); -} - -/* -** Attempt to take an exclusive lock on the database file. If a PENDING lock -** is obtained instead, immediately release it. -*/ -static int pagerExclusiveLock(Pager *pPager){ - int rc; /* Return code */ - - assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); - rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); - if( rc!=SQLITE_OK ){ - /* If the attempt to grab the exclusive lock failed, release the - ** pending lock that may have been obtained instead. */ - pagerUnlockDb(pPager, SHARED_LOCK); - } - - return rc; -} - -/* -** Call sqlite3WalOpen() to open the WAL handle. If the pager is in -** exclusive-locking mode when this function is called, take an EXCLUSIVE -** lock on the database file and use heap-memory to store the wal-index -** in. Otherwise, use the normal shared-memory. -*/ -static int pagerOpenWal(Pager *pPager){ - int rc = SQLITE_OK; - - assert( pPager->pWal==0 && pPager->tempFile==0 ); - assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); - - /* If the pager is already in exclusive-mode, the WAL module will use - ** heap-memory for the wal-index instead of the VFS shared-memory - ** implementation. Take the exclusive lock now, before opening the WAL - ** file, to make sure this is safe. - */ - if( pPager->exclusiveMode ){ - rc = pagerExclusiveLock(pPager); - } - - /* Open the connection to the log file. If this operation fails, - ** (e.g. due to malloc() failure), return an error code. - */ - if( rc==SQLITE_OK ){ - rc = sqlite3WalOpen(pPager->pVfs, - pPager->fd, pPager->zWal, pPager->exclusiveMode, - pPager->journalSizeLimit, &pPager->pWal - ); - } - - return rc; -} - - -/* -** The caller must be holding a SHARED lock on the database file to call -** this function. -** -** If the pager passed as the first argument is open on a real database -** file (not a temp file or an in-memory database), and the WAL file -** is not already open, make an attempt to open it now. If successful, -** return SQLITE_OK. If an error occurs or the VFS used by the pager does -** not support the xShmXXX() methods, return an error code. *pbOpen is -** not modified in either case. -** -** If the pager is open on a temp-file (or in-memory database), or if -** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK -** without doing anything. -*/ -SQLITE_PRIVATE int sqlite3PagerOpenWal( - Pager *pPager, /* Pager object */ - int *pbOpen /* OUT: Set to true if call is a no-op */ -){ - int rc = SQLITE_OK; /* Return code */ - - assert( assert_pager_state(pPager) ); - assert( pPager->eState==PAGER_OPEN || pbOpen ); - assert( pPager->eState==PAGER_READER || !pbOpen ); - assert( pbOpen==0 || *pbOpen==0 ); - assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); - - if( !pPager->tempFile && !pPager->pWal ){ - if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; - - /* Close any rollback journal previously open */ - sqlite3OsClose(pPager->jfd); - - rc = pagerOpenWal(pPager); - if( rc==SQLITE_OK ){ - pPager->journalMode = PAGER_JOURNALMODE_WAL; - pPager->eState = PAGER_OPEN; - } - }else{ - *pbOpen = 1; - } - - return rc; -} - -/* -** This function is called to close the connection to the log file prior -** to switching from WAL to rollback mode. -** -** Before closing the log file, this function attempts to take an -** EXCLUSIVE lock on the database file. If this cannot be obtained, an -** error (SQLITE_BUSY) is returned and the log connection is not closed. -** If successful, the EXCLUSIVE lock is not released before returning. -*/ -SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager){ - int rc = SQLITE_OK; - - assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); - - /* If the log file is not already open, but does exist in the file-system, - ** it may need to be checkpointed before the connection can switch to - ** rollback mode. Open it now so this can happen. - */ - if( !pPager->pWal ){ - int logexists = 0; - rc = pagerLockDb(pPager, SHARED_LOCK); - if( rc==SQLITE_OK ){ - rc = sqlite3OsAccess( - pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists - ); - } - if( rc==SQLITE_OK && logexists ){ - rc = pagerOpenWal(pPager); - } - } - - /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on - ** the database file, the log and log-summary files will be deleted. - */ - if( rc==SQLITE_OK && pPager->pWal ){ - rc = pagerExclusiveLock(pPager); - if( rc==SQLITE_OK ){ - rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, - pPager->pageSize, (u8*)pPager->pTmpSpace); - pPager->pWal = 0; - } - } - return rc; -} - -#endif /* !SQLITE_OMIT_WAL */ - -#ifdef SQLITE_ENABLE_ZIPVFS -/* -** A read-lock must be held on the pager when this function is called. If -** the pager is in WAL mode and the WAL file currently contains one or more -** frames, return the size in bytes of the page images stored within the -** WAL frames. Otherwise, if this is not a WAL database or the WAL file -** is empty, return 0. -*/ -SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ - assert( pPager->eState==PAGER_READER ); - return sqlite3WalFramesize(pPager->pWal); -} -#endif - -#ifdef SQLITE_HAS_CODEC -/* -** This function is called by the wal module when writing page content -** into the log file. -** -** This function returns a pointer to a buffer containing the encrypted -** page content. If a malloc fails, this function may return NULL. -*/ -SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){ - void *aData = 0; - CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); - return aData; -} -#endif /* SQLITE_HAS_CODEC */ - -#endif /* SQLITE_OMIT_DISKIO */ - -/************** End of pager.c ***********************************************/ -/************** Begin file wal.c *********************************************/ -/* -** 2010 February 1 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains the implementation of a write-ahead log (WAL) used in -** "journal_mode=WAL" mode. -** -** WRITE-AHEAD LOG (WAL) FILE FORMAT -** -** A WAL file consists of a header followed by zero or more "frames". -** Each frame records the revised content of a single page from the -** database file. All changes to the database are recorded by writing -** frames into the WAL. Transactions commit when a frame is written that -** contains a commit marker. A single WAL can and usually does record -** multiple transactions. Periodically, the content of the WAL is -** transferred back into the database file in an operation called a -** "checkpoint". -** -** A single WAL file can be used multiple times. In other words, the -** WAL can fill up with frames and then be checkpointed and then new -** frames can overwrite the old ones. A WAL always grows from beginning -** toward the end. Checksums and counters attached to each frame are -** used to determine which frames within the WAL are valid and which -** are leftovers from prior checkpoints. -** -** The WAL header is 32 bytes in size and consists of the following eight -** big-endian 32-bit unsigned integer values: -** -** 0: Magic number. 0x377f0682 or 0x377f0683 -** 4: File format version. Currently 3007000 -** 8: Database page size. Example: 1024 -** 12: Checkpoint sequence number -** 16: Salt-1, random integer incremented with each checkpoint -** 20: Salt-2, a different random integer changing with each ckpt -** 24: Checksum-1 (first part of checksum for first 24 bytes of header). -** 28: Checksum-2 (second part of checksum for first 24 bytes of header). -** -** Immediately following the wal-header are zero or more frames. Each -** frame consists of a 24-byte frame-header followed by a <page-size> bytes -** of page data. The frame-header is six big-endian 32-bit unsigned -** integer values, as follows: -** -** 0: Page number. -** 4: For commit records, the size of the database image in pages -** after the commit. For all other records, zero. -** 8: Salt-1 (copied from the header) -** 12: Salt-2 (copied from the header) -** 16: Checksum-1. -** 20: Checksum-2. -** -** A frame is considered valid if and only if the following conditions are -** true: -** -** (1) The salt-1 and salt-2 values in the frame-header match -** salt values in the wal-header -** -** (2) The checksum values in the final 8 bytes of the frame-header -** exactly match the checksum computed consecutively on the -** WAL header and the first 8 bytes and the content of all frames -** up to and including the current frame. -** -** The checksum is computed using 32-bit big-endian integers if the -** magic number in the first 4 bytes of the WAL is 0x377f0683 and it -** is computed using little-endian if the magic number is 0x377f0682. -** The checksum values are always stored in the frame header in a -** big-endian format regardless of which byte order is used to compute -** the checksum. The checksum is computed by interpreting the input as -** an even number of unsigned 32-bit integers: x[0] through x[N]. The -** algorithm used for the checksum is as follows: -** -** for i from 0 to n-1 step 2: -** s0 += x[i] + s1; -** s1 += x[i+1] + s0; -** endfor -** -** Note that s0 and s1 are both weighted checksums using fibonacci weights -** in reverse order (the largest fibonacci weight occurs on the first element -** of the sequence being summed.) The s1 value spans all 32-bit -** terms of the sequence whereas s0 omits the final term. -** -** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the -** WAL is transferred into the database, then the database is VFS.xSync-ed. -** The VFS.xSync operations serve as write barriers - all writes launched -** before the xSync must complete before any write that launches after the -** xSync begins. -** -** After each checkpoint, the salt-1 value is incremented and the salt-2 -** value is randomized. This prevents old and new frames in the WAL from -** being considered valid at the same time and being checkpointing together -** following a crash. -** -** READER ALGORITHM -** -** To read a page from the database (call it page number P), a reader -** first checks the WAL to see if it contains page P. If so, then the -** last valid instance of page P that is a followed by a commit frame -** or is a commit frame itself becomes the value read. If the WAL -** contains no copies of page P that are valid and which are a commit -** frame or are followed by a commit frame, then page P is read from -** the database file. -** -** To start a read transaction, the reader records the index of the last -** valid frame in the WAL. The reader uses this recorded "mxFrame" value -** for all subsequent read operations. New transactions can be appended -** to the WAL, but as long as the reader uses its original mxFrame value -** and ignores the newly appended content, it will see a consistent snapshot -** of the database from a single point in time. This technique allows -** multiple concurrent readers to view different versions of the database -** content simultaneously. -** -** The reader algorithm in the previous paragraphs works correctly, but -** because frames for page P can appear anywhere within the WAL, the -** reader has to scan the entire WAL looking for page P frames. If the -** WAL is large (multiple megabytes is typical) that scan can be slow, -** and read performance suffers. To overcome this problem, a separate -** data structure called the wal-index is maintained to expedite the -** search for frames of a particular page. -** -** WAL-INDEX FORMAT -** -** Conceptually, the wal-index is shared memory, though VFS implementations -** might choose to implement the wal-index using a mmapped file. Because -** the wal-index is shared memory, SQLite does not support journal_mode=WAL -** on a network filesystem. All users of the database must be able to -** share memory. -** -** The wal-index is transient. After a crash, the wal-index can (and should -** be) reconstructed from the original WAL file. In fact, the VFS is required -** to either truncate or zero the header of the wal-index when the last -** connection to it closes. Because the wal-index is transient, it can -** use an architecture-specific format; it does not have to be cross-platform. -** Hence, unlike the database and WAL file formats which store all values -** as big endian, the wal-index can store multi-byte values in the native -** byte order of the host computer. -** -** The purpose of the wal-index is to answer this question quickly: Given -** a page number P and a maximum frame index M, return the index of the -** last frame in the wal before frame M for page P in the WAL, or return -** NULL if there are no frames for page P in the WAL prior to M. -** -** The wal-index consists of a header region, followed by an one or -** more index blocks. -** -** The wal-index header contains the total number of frames within the WAL -** in the mxFrame field. -** -** Each index block except for the first contains information on -** HASHTABLE_NPAGE frames. The first index block contains information on -** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and -** HASHTABLE_NPAGE are selected so that together the wal-index header and -** first index block are the same size as all other index blocks in the -** wal-index. -** -** Each index block contains two sections, a page-mapping that contains the -** database page number associated with each wal frame, and a hash-table -** that allows readers to query an index block for a specific page number. -** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE -** for the first index block) 32-bit page numbers. The first entry in the -** first index-block contains the database page number corresponding to the -** first frame in the WAL file. The first entry in the second index block -** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in -** the log, and so on. -** -** The last index block in a wal-index usually contains less than the full -** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, -** depending on the contents of the WAL file. This does not change the -** allocated size of the page-mapping array - the page-mapping array merely -** contains unused entries. -** -** Even without using the hash table, the last frame for page P -** can be found by scanning the page-mapping sections of each index block -** starting with the last index block and moving toward the first, and -** within each index block, starting at the end and moving toward the -** beginning. The first entry that equals P corresponds to the frame -** holding the content for that page. -** -** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. -** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the -** hash table for each page number in the mapping section, so the hash -** table is never more than half full. The expected number of collisions -** prior to finding a match is 1. Each entry of the hash table is an -** 1-based index of an entry in the mapping section of the same -** index block. Let K be the 1-based index of the largest entry in -** the mapping section. (For index blocks other than the last, K will -** always be exactly HASHTABLE_NPAGE (4096) and for the last index block -** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table -** contain a value of 0. -** -** To look for page P in the hash table, first compute a hash iKey on -** P as follows: -** -** iKey = (P * 383) % HASHTABLE_NSLOT -** -** Then start scanning entries of the hash table, starting with iKey -** (wrapping around to the beginning when the end of the hash table is -** reached) until an unused hash slot is found. Let the first unused slot -** be at index iUnused. (iUnused might be less than iKey if there was -** wrap-around.) Because the hash table is never more than half full, -** the search is guaranteed to eventually hit an unused entry. Let -** iMax be the value between iKey and iUnused, closest to iUnused, -** where aHash[iMax]==P. If there is no iMax entry (if there exists -** no hash slot such that aHash[i]==p) then page P is not in the -** current index block. Otherwise the iMax-th mapping entry of the -** current index block corresponds to the last entry that references -** page P. -** -** A hash search begins with the last index block and moves toward the -** first index block, looking for entries corresponding to page P. On -** average, only two or three slots in each index block need to be -** examined in order to either find the last entry for page P, or to -** establish that no such entry exists in the block. Each index block -** holds over 4000 entries. So two or three index blocks are sufficient -** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 -** comparisons (on average) suffice to either locate a frame in the -** WAL or to establish that the frame does not exist in the WAL. This -** is much faster than scanning the entire 10MB WAL. -** -** Note that entries are added in order of increasing K. Hence, one -** reader might be using some value K0 and a second reader that started -** at a later time (after additional transactions were added to the WAL -** and to the wal-index) might be using a different value K1, where K1>K0. -** Both readers can use the same hash table and mapping section to get -** the correct result. There may be entries in the hash table with -** K>K0 but to the first reader, those entries will appear to be unused -** slots in the hash table and so the first reader will get an answer as -** if no values greater than K0 had ever been inserted into the hash table -** in the first place - which is what reader one wants. Meanwhile, the -** second reader using K1 will see additional values that were inserted -** later, which is exactly what reader two wants. -** -** When a rollback occurs, the value of K is decreased. Hash table entries -** that correspond to frames greater than the new K value are removed -** from the hash table at this point. -*/ -#ifndef SQLITE_OMIT_WAL - - -/* -** Trace output macros -*/ -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -SQLITE_PRIVATE int sqlite3WalTrace = 0; -# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X -#else -# define WALTRACE(X) -#endif - -/* -** The maximum (and only) versions of the wal and wal-index formats -** that may be interpreted by this version of SQLite. -** -** If a client begins recovering a WAL file and finds that (a) the checksum -** values in the wal-header are correct and (b) the version field is not -** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. -** -** Similarly, if a client successfully reads a wal-index header (i.e. the -** checksum test is successful) and finds that the version field is not -** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite -** returns SQLITE_CANTOPEN. -*/ -#define WAL_MAX_VERSION 3007000 -#define WALINDEX_MAX_VERSION 3007000 - -/* -** Indices of various locking bytes. WAL_NREADER is the number -** of available reader locks and should be at least 3. -*/ -#define WAL_WRITE_LOCK 0 -#define WAL_ALL_BUT_WRITE 1 -#define WAL_CKPT_LOCK 1 -#define WAL_RECOVER_LOCK 2 -#define WAL_READ_LOCK(I) (3+(I)) -#define WAL_NREADER (SQLITE_SHM_NLOCK-3) - - -/* Object declarations */ -typedef struct WalIndexHdr WalIndexHdr; -typedef struct WalIterator WalIterator; -typedef struct WalCkptInfo WalCkptInfo; - - -/* -** The following object holds a copy of the wal-index header content. -** -** The actual header in the wal-index consists of two copies of this -** object. -** -** The szPage value can be any power of 2 between 512 and 32768, inclusive. -** Or it can be 1 to represent a 65536-byte page. The latter case was -** added in 3.7.1 when support for 64K pages was added. -*/ -struct WalIndexHdr { - u32 iVersion; /* Wal-index version */ - u32 unused; /* Unused (padding) field */ - u32 iChange; /* Counter incremented each transaction */ - u8 isInit; /* 1 when initialized */ - u8 bigEndCksum; /* True if checksums in WAL are big-endian */ - u16 szPage; /* Database page size in bytes. 1==64K */ - u32 mxFrame; /* Index of last valid frame in the WAL */ - u32 nPage; /* Size of database in pages */ - u32 aFrameCksum[2]; /* Checksum of last frame in log */ - u32 aSalt[2]; /* Two salt values copied from WAL header */ - u32 aCksum[2]; /* Checksum over all prior fields */ -}; - -/* -** A copy of the following object occurs in the wal-index immediately -** following the second copy of the WalIndexHdr. This object stores -** information used by checkpoint. -** -** nBackfill is the number of frames in the WAL that have been written -** back into the database. (We call the act of moving content from WAL to -** database "backfilling".) The nBackfill number is never greater than -** WalIndexHdr.mxFrame. nBackfill can only be increased by threads -** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). -** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from -** mxFrame back to zero when the WAL is reset. -** -** There is one entry in aReadMark[] for each reader lock. If a reader -** holds read-lock K, then the value in aReadMark[K] is no greater than -** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) -** for any aReadMark[] means that entry is unused. aReadMark[0] is -** a special case; its value is never used and it exists as a place-holder -** to avoid having to offset aReadMark[] indexs by one. Readers holding -** WAL_READ_LOCK(0) always ignore the entire WAL and read all content -** directly from the database. -** -** The value of aReadMark[K] may only be changed by a thread that -** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of -** aReadMark[K] cannot changed while there is a reader is using that mark -** since the reader will be holding a shared lock on WAL_READ_LOCK(K). -** -** The checkpointer may only transfer frames from WAL to database where -** the frame numbers are less than or equal to every aReadMark[] that is -** in use (that is, every aReadMark[j] for which there is a corresponding -** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the -** largest value and will increase an unused aReadMark[] to mxFrame if there -** is not already an aReadMark[] equal to mxFrame. The exception to the -** previous sentence is when nBackfill equals mxFrame (meaning that everything -** in the WAL has been backfilled into the database) then new readers -** will choose aReadMark[0] which has value 0 and hence such reader will -** get all their all content directly from the database file and ignore -** the WAL. -** -** Writers normally append new frames to the end of the WAL. However, -** if nBackfill equals mxFrame (meaning that all WAL content has been -** written back into the database) and if no readers are using the WAL -** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then -** the writer will first "reset" the WAL back to the beginning and start -** writing new content beginning at frame 1. -** -** We assume that 32-bit loads are atomic and so no locks are needed in -** order to read from any aReadMark[] entries. -*/ -struct WalCkptInfo { - u32 nBackfill; /* Number of WAL frames backfilled into DB */ - u32 aReadMark[WAL_NREADER]; /* Reader marks */ -}; -#define READMARK_NOT_USED 0xffffffff - - -/* A block of WALINDEX_LOCK_RESERVED bytes beginning at -** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems -** only support mandatory file-locks, we do not read or write data -** from the region of the file on which locks are applied. -*/ -#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) -#define WALINDEX_LOCK_RESERVED 16 -#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) - -/* Size of header before each frame in wal */ -#define WAL_FRAME_HDRSIZE 24 - -/* Size of write ahead log header, including checksum. */ -/* #define WAL_HDRSIZE 24 */ -#define WAL_HDRSIZE 32 - -/* WAL magic value. Either this value, or the same value with the least -** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit -** big-endian format in the first 4 bytes of a WAL file. -** -** If the LSB is set, then the checksums for each frame within the WAL -** file are calculated by treating all data as an array of 32-bit -** big-endian words. Otherwise, they are calculated by interpreting -** all data as 32-bit little-endian words. -*/ -#define WAL_MAGIC 0x377f0682 - -/* -** Return the offset of frame iFrame in the write-ahead log file, -** assuming a database page size of szPage bytes. The offset returned -** is to the start of the write-ahead log frame-header. -*/ -#define walFrameOffset(iFrame, szPage) ( \ - WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ -) - -/* -** An open write-ahead log file is represented by an instance of the -** following object. -*/ -struct Wal { - sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ - sqlite3_file *pDbFd; /* File handle for the database file */ - sqlite3_file *pWalFd; /* File handle for WAL file */ - u32 iCallback; /* Value to pass to log callback (or 0) */ - i64 mxWalSize; /* Truncate WAL to this size upon reset */ - int nWiData; /* Size of array apWiData */ - int szFirstBlock; /* Size of first block written to WAL file */ - volatile u32 **apWiData; /* Pointer to wal-index content in memory */ - u32 szPage; /* Database page size */ - i16 readLock; /* Which read lock is being held. -1 for none */ - u8 syncFlags; /* Flags to use to sync header writes */ - u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ - u8 writeLock; /* True if in a write transaction */ - u8 ckptLock; /* True if holding a checkpoint lock */ - u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ - u8 truncateOnCommit; /* True to truncate WAL file on commit */ - u8 syncHeader; /* Fsync the WAL header if true */ - u8 padToSectorBoundary; /* Pad transactions out to the next sector */ - WalIndexHdr hdr; /* Wal-index header for current transaction */ - const char *zWalName; /* Name of WAL file */ - u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ -#ifdef SQLITE_DEBUG - u8 lockError; /* True if a locking error has occurred */ -#endif -}; - -/* -** Candidate values for Wal.exclusiveMode. -*/ -#define WAL_NORMAL_MODE 0 -#define WAL_EXCLUSIVE_MODE 1 -#define WAL_HEAPMEMORY_MODE 2 - -/* -** Possible values for WAL.readOnly -*/ -#define WAL_RDWR 0 /* Normal read/write connection */ -#define WAL_RDONLY 1 /* The WAL file is readonly */ -#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ - -/* -** Each page of the wal-index mapping contains a hash-table made up of -** an array of HASHTABLE_NSLOT elements of the following type. -*/ -typedef u16 ht_slot; - -/* -** This structure is used to implement an iterator that loops through -** all frames in the WAL in database page order. Where two or more frames -** correspond to the same database page, the iterator visits only the -** frame most recently written to the WAL (in other words, the frame with -** the largest index). -** -** The internals of this structure are only accessed by: -** -** walIteratorInit() - Create a new iterator, -** walIteratorNext() - Step an iterator, -** walIteratorFree() - Free an iterator. -** -** This functionality is used by the checkpoint code (see walCheckpoint()). -*/ -struct WalIterator { - int iPrior; /* Last result returned from the iterator */ - int nSegment; /* Number of entries in aSegment[] */ - struct WalSegment { - int iNext; /* Next slot in aIndex[] not yet returned */ - ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ - u32 *aPgno; /* Array of page numbers. */ - int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ - int iZero; /* Frame number associated with aPgno[0] */ - } aSegment[1]; /* One for every 32KB page in the wal-index */ -}; - -/* -** Define the parameters of the hash tables in the wal-index file. There -** is a hash-table following every HASHTABLE_NPAGE page numbers in the -** wal-index. -** -** Changing any of these constants will alter the wal-index format and -** create incompatibilities. -*/ -#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ -#define HASHTABLE_HASH_1 383 /* Should be prime */ -#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ - -/* -** The block of page numbers associated with the first hash-table in a -** wal-index is smaller than usual. This is so that there is a complete -** hash-table on each aligned 32KB page of the wal-index. -*/ -#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) - -/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ -#define WALINDEX_PGSZ ( \ - sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ -) - -/* -** Obtain a pointer to the iPage'th page of the wal-index. The wal-index -** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are -** numbered from zero. -** -** If this call is successful, *ppPage is set to point to the wal-index -** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, -** then an SQLite error code is returned and *ppPage is set to 0. -*/ -static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ - int rc = SQLITE_OK; - - /* Enlarge the pWal->apWiData[] array if required */ - if( pWal->nWiData<=iPage ){ - int nByte = sizeof(u32*)*(iPage+1); - volatile u32 **apNew; - apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte); - if( !apNew ){ - *ppPage = 0; - return SQLITE_NOMEM; - } - memset((void*)&apNew[pWal->nWiData], 0, - sizeof(u32*)*(iPage+1-pWal->nWiData)); - pWal->apWiData = apNew; - pWal->nWiData = iPage+1; - } - - /* Request a pointer to the required page from the VFS */ - if( pWal->apWiData[iPage]==0 ){ - if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ - pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); - if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; - }else{ - rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, - pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] - ); - if( rc==SQLITE_READONLY ){ - pWal->readOnly |= WAL_SHM_RDONLY; - rc = SQLITE_OK; - } - } - } - - *ppPage = pWal->apWiData[iPage]; - assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); - return rc; -} - -/* -** Return a pointer to the WalCkptInfo structure in the wal-index. -*/ -static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); -} - -/* -** Return a pointer to the WalIndexHdr structure in the wal-index. -*/ -static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - return (volatile WalIndexHdr*)pWal->apWiData[0]; -} - -/* -** The argument to this macro must be of type u32. On a little-endian -** architecture, it returns the u32 value that results from interpreting -** the 4 bytes as a big-endian value. On a big-endian architecture, it -** returns the value that would be produced by intepreting the 4 bytes -** of the input value as a little-endian integer. -*/ -#define BYTESWAP32(x) ( \ - (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ - + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ -) - -/* -** Generate or extend an 8 byte checksum based on the data in -** array aByte[] and the initial values of aIn[0] and aIn[1] (or -** initial values of 0 and 0 if aIn==NULL). -** -** The checksum is written back into aOut[] before returning. -** -** nByte must be a positive multiple of 8. -*/ -static void walChecksumBytes( - int nativeCksum, /* True for native byte-order, false for non-native */ - u8 *a, /* Content to be checksummed */ - int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ - const u32 *aIn, /* Initial checksum value input */ - u32 *aOut /* OUT: Final checksum value output */ -){ - u32 s1, s2; - u32 *aData = (u32 *)a; - u32 *aEnd = (u32 *)&a[nByte]; - - if( aIn ){ - s1 = aIn[0]; - s2 = aIn[1]; - }else{ - s1 = s2 = 0; - } - - assert( nByte>=8 ); - assert( (nByte&0x00000007)==0 ); - - if( nativeCksum ){ - do { - s1 += *aData++ + s2; - s2 += *aData++ + s1; - }while( aData<aEnd ); - }else{ - do { - s1 += BYTESWAP32(aData[0]) + s2; - s2 += BYTESWAP32(aData[1]) + s1; - aData += 2; - }while( aData<aEnd ); - } - - aOut[0] = s1; - aOut[1] = s2; -} - -static void walShmBarrier(Wal *pWal){ - if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ - sqlite3OsShmBarrier(pWal->pDbFd); - } -} - -/* -** Write the header information in pWal->hdr into the wal-index. -** -** The checksum on pWal->hdr is updated before it is written. -*/ -static void walIndexWriteHdr(Wal *pWal){ - volatile WalIndexHdr *aHdr = walIndexHdr(pWal); - const int nCksum = offsetof(WalIndexHdr, aCksum); - - assert( pWal->writeLock ); - pWal->hdr.isInit = 1; - pWal->hdr.iVersion = WALINDEX_MAX_VERSION; - walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); - memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); - walShmBarrier(pWal); - memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); -} - -/* -** This function encodes a single frame header and writes it to a buffer -** supplied by the caller. A frame-header is made up of a series of -** 4-byte big-endian integers, as follows: -** -** 0: Page number. -** 4: For commit records, the size of the database image in pages -** after the commit. For all other records, zero. -** 8: Salt-1 (copied from the wal-header) -** 12: Salt-2 (copied from the wal-header) -** 16: Checksum-1. -** 20: Checksum-2. -*/ -static void walEncodeFrame( - Wal *pWal, /* The write-ahead log */ - u32 iPage, /* Database page number for frame */ - u32 nTruncate, /* New db size (or 0 for non-commit frames) */ - u8 *aData, /* Pointer to page data */ - u8 *aFrame /* OUT: Write encoded frame here */ -){ - int nativeCksum; /* True for native byte-order checksums */ - u32 *aCksum = pWal->hdr.aFrameCksum; - assert( WAL_FRAME_HDRSIZE==24 ); - sqlite3Put4byte(&aFrame[0], iPage); - sqlite3Put4byte(&aFrame[4], nTruncate); - memcpy(&aFrame[8], pWal->hdr.aSalt, 8); - - nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); - walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); - walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); - - sqlite3Put4byte(&aFrame[16], aCksum[0]); - sqlite3Put4byte(&aFrame[20], aCksum[1]); -} - -/* -** Check to see if the frame with header in aFrame[] and content -** in aData[] is valid. If it is a valid frame, fill *piPage and -** *pnTruncate and return true. Return if the frame is not valid. -*/ -static int walDecodeFrame( - Wal *pWal, /* The write-ahead log */ - u32 *piPage, /* OUT: Database page number for frame */ - u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ - u8 *aData, /* Pointer to page data (for checksum) */ - u8 *aFrame /* Frame data */ -){ - int nativeCksum; /* True for native byte-order checksums */ - u32 *aCksum = pWal->hdr.aFrameCksum; - u32 pgno; /* Page number of the frame */ - assert( WAL_FRAME_HDRSIZE==24 ); - - /* A frame is only valid if the salt values in the frame-header - ** match the salt values in the wal-header. - */ - if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ - return 0; - } - - /* A frame is only valid if the page number is creater than zero. - */ - pgno = sqlite3Get4byte(&aFrame[0]); - if( pgno==0 ){ - return 0; - } - - /* A frame is only valid if a checksum of the WAL header, - ** all prior frams, the first 16 bytes of this frame-header, - ** and the frame-data matches the checksum in the last 8 - ** bytes of this frame-header. - */ - nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); - walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); - walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); - if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) - || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) - ){ - /* Checksum failed. */ - return 0; - } - - /* If we reach this point, the frame is valid. Return the page number - ** and the new database size. - */ - *piPage = pgno; - *pnTruncate = sqlite3Get4byte(&aFrame[4]); - return 1; -} - - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -/* -** Names of locks. This routine is used to provide debugging output and is not -** a part of an ordinary build. -*/ -static const char *walLockName(int lockIdx){ - if( lockIdx==WAL_WRITE_LOCK ){ - return "WRITE-LOCK"; - }else if( lockIdx==WAL_CKPT_LOCK ){ - return "CKPT-LOCK"; - }else if( lockIdx==WAL_RECOVER_LOCK ){ - return "RECOVER-LOCK"; - }else{ - static char zName[15]; - sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", - lockIdx-WAL_READ_LOCK(0)); - return zName; - } -} -#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ - - -/* -** Set or release locks on the WAL. Locks are either shared or exclusive. -** A lock cannot be moved directly between shared and exclusive - it must go -** through the unlocked state first. -** -** In locking_mode=EXCLUSIVE, all of these routines become no-ops. -*/ -static int walLockShared(Wal *pWal, int lockIdx){ - int rc; - if( pWal->exclusiveMode ) return SQLITE_OK; - rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, - SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); - WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, - walLockName(lockIdx), rc ? "failed" : "ok")); - VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) - return rc; -} -static void walUnlockShared(Wal *pWal, int lockIdx){ - if( pWal->exclusiveMode ) return; - (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, - SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); - WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); -} -static int walLockExclusive(Wal *pWal, int lockIdx, int n){ - int rc; - if( pWal->exclusiveMode ) return SQLITE_OK; - rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, - SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); - WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, - walLockName(lockIdx), n, rc ? "failed" : "ok")); - VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) - return rc; -} -static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ - if( pWal->exclusiveMode ) return; - (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, - SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); - WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, - walLockName(lockIdx), n)); -} - -/* -** Compute a hash on a page number. The resulting hash value must land -** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances -** the hash to the next value in the event of a collision. -*/ -static int walHash(u32 iPage){ - assert( iPage>0 ); - assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); - return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); -} -static int walNextHash(int iPriorHash){ - return (iPriorHash+1)&(HASHTABLE_NSLOT-1); -} - -/* -** Return pointers to the hash table and page number array stored on -** page iHash of the wal-index. The wal-index is broken into 32KB pages -** numbered starting from 0. -** -** Set output variable *paHash to point to the start of the hash table -** in the wal-index file. Set *piZero to one less than the frame -** number of the first frame indexed by this hash table. If a -** slot in the hash table is set to N, it refers to frame number -** (*piZero+N) in the log. -** -** Finally, set *paPgno so that *paPgno[1] is the page number of the -** first frame indexed by the hash table, frame (*piZero+1). -*/ -static int walHashGet( - Wal *pWal, /* WAL handle */ - int iHash, /* Find the iHash'th table */ - volatile ht_slot **paHash, /* OUT: Pointer to hash index */ - volatile u32 **paPgno, /* OUT: Pointer to page number array */ - u32 *piZero /* OUT: Frame associated with *paPgno[0] */ -){ - int rc; /* Return code */ - volatile u32 *aPgno; - - rc = walIndexPage(pWal, iHash, &aPgno); - assert( rc==SQLITE_OK || iHash>0 ); - - if( rc==SQLITE_OK ){ - u32 iZero; - volatile ht_slot *aHash; - - aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; - if( iHash==0 ){ - aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; - iZero = 0; - }else{ - iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; - } - - *paPgno = &aPgno[-1]; - *paHash = aHash; - *piZero = iZero; - } - return rc; -} - -/* -** Return the number of the wal-index page that contains the hash-table -** and page-number array that contain entries corresponding to WAL frame -** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages -** are numbered starting from 0. -*/ -static int walFramePage(u32 iFrame){ - int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; - assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) - && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) - && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) - && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) - && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) - ); - return iHash; -} - -/* -** Return the page number associated with frame iFrame in this WAL. -*/ -static u32 walFramePgno(Wal *pWal, u32 iFrame){ - int iHash = walFramePage(iFrame); - if( iHash==0 ){ - return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; - } - return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; -} - -/* -** Remove entries from the hash table that point to WAL slots greater -** than pWal->hdr.mxFrame. -** -** This function is called whenever pWal->hdr.mxFrame is decreased due -** to a rollback or savepoint. -** -** At most only the hash table containing pWal->hdr.mxFrame needs to be -** updated. Any later hash tables will be automatically cleared when -** pWal->hdr.mxFrame advances to the point where those hash tables are -** actually needed. -*/ -static void walCleanupHash(Wal *pWal){ - volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ - volatile u32 *aPgno = 0; /* Page number array for hash table */ - u32 iZero = 0; /* frame == (aHash[x]+iZero) */ - int iLimit = 0; /* Zero values greater than this */ - int nByte; /* Number of bytes to zero in aPgno[] */ - int i; /* Used to iterate through aHash[] */ - - assert( pWal->writeLock ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); - - if( pWal->hdr.mxFrame==0 ) return; - - /* Obtain pointers to the hash-table and page-number array containing - ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed - ** that the page said hash-table and array reside on is already mapped. - */ - assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); - assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); - walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); - - /* Zero all hash-table entries that correspond to frame numbers greater - ** than pWal->hdr.mxFrame. - */ - iLimit = pWal->hdr.mxFrame - iZero; - assert( iLimit>0 ); - for(i=0; i<HASHTABLE_NSLOT; i++){ - if( aHash[i]>iLimit ){ - aHash[i] = 0; - } - } - - /* Zero the entries in the aPgno array that correspond to frames with - ** frame numbers greater than pWal->hdr.mxFrame. - */ - nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); - memset((void *)&aPgno[iLimit+1], 0, nByte); - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* Verify that the every entry in the mapping region is still reachable - ** via the hash table even after the cleanup. - */ - if( iLimit ){ - int i; /* Loop counter */ - int iKey; /* Hash key */ - for(i=1; i<=iLimit; i++){ - for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ - if( aHash[iKey]==i ) break; - } - assert( aHash[iKey]==i ); - } - } -#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ -} - - -/* -** Set an entry in the wal-index that will map database page number -** pPage into WAL frame iFrame. -*/ -static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ - int rc; /* Return code */ - u32 iZero = 0; /* One less than frame number of aPgno[1] */ - volatile u32 *aPgno = 0; /* Page number array */ - volatile ht_slot *aHash = 0; /* Hash table */ - - rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); - - /* Assuming the wal-index file was successfully mapped, populate the - ** page number array and hash table entry. - */ - if( rc==SQLITE_OK ){ - int iKey; /* Hash table key */ - int idx; /* Value to write to hash-table slot */ - int nCollide; /* Number of hash collisions */ - - idx = iFrame - iZero; - assert( idx <= HASHTABLE_NSLOT/2 + 1 ); - - /* If this is the first entry to be added to this hash-table, zero the - ** entire hash table and aPgno[] array before proceding. - */ - if( idx==1 ){ - int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); - memset((void*)&aPgno[1], 0, nByte); - } - - /* If the entry in aPgno[] is already set, then the previous writer - ** must have exited unexpectedly in the middle of a transaction (after - ** writing one or more dirty pages to the WAL to free up memory). - ** Remove the remnants of that writers uncommitted transaction from - ** the hash-table before writing any new entries. - */ - if( aPgno[idx] ){ - walCleanupHash(pWal); - assert( !aPgno[idx] ); - } - - /* Write the aPgno[] array entry and the hash-table slot. */ - nCollide = idx; - for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ - if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; - } - aPgno[idx] = iPage; - aHash[iKey] = (ht_slot)idx; - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* Verify that the number of entries in the hash table exactly equals - ** the number of entries in the mapping region. - */ - { - int i; /* Loop counter */ - int nEntry = 0; /* Number of entries in the hash table */ - for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } - assert( nEntry==idx ); - } - - /* Verify that the every entry in the mapping region is reachable - ** via the hash table. This turns out to be a really, really expensive - ** thing to check, so only do this occasionally - not on every - ** iteration. - */ - if( (idx&0x3ff)==0 ){ - int i; /* Loop counter */ - for(i=1; i<=idx; i++){ - for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ - if( aHash[iKey]==i ) break; - } - assert( aHash[iKey]==i ); - } - } -#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ - } - - - return rc; -} - - -/* -** Recover the wal-index by reading the write-ahead log file. -** -** This routine first tries to establish an exclusive lock on the -** wal-index to prevent other threads/processes from doing anything -** with the WAL or wal-index while recovery is running. The -** WAL_RECOVER_LOCK is also held so that other threads will know -** that this thread is running recovery. If unable to establish -** the necessary locks, this routine returns SQLITE_BUSY. -*/ -static int walIndexRecover(Wal *pWal){ - int rc; /* Return Code */ - i64 nSize; /* Size of log file */ - u32 aFrameCksum[2] = {0, 0}; - int iLock; /* Lock offset to lock for checkpoint */ - int nLock; /* Number of locks to hold */ - - /* Obtain an exclusive lock on all byte in the locking range not already - ** locked by the caller. The caller is guaranteed to have locked the - ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. - ** If successful, the same bytes that are locked here are unlocked before - ** this function returns. - */ - assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); - assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); - assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); - assert( pWal->writeLock ); - iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; - nLock = SQLITE_SHM_NLOCK - iLock; - rc = walLockExclusive(pWal, iLock, nLock); - if( rc ){ - return rc; - } - WALTRACE(("WAL%p: recovery begin...\n", pWal)); - - memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); - - rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); - if( rc!=SQLITE_OK ){ - goto recovery_error; - } - - if( nSize>WAL_HDRSIZE ){ - u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ - u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ - int szFrame; /* Number of bytes in buffer aFrame[] */ - u8 *aData; /* Pointer to data part of aFrame buffer */ - int iFrame; /* Index of last frame read */ - i64 iOffset; /* Next offset to read from log file */ - int szPage; /* Page size according to the log */ - u32 magic; /* Magic value read from WAL header */ - u32 version; /* Magic value read from WAL header */ - int isValid; /* True if this frame is valid */ - - /* Read in the WAL header. */ - rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); - if( rc!=SQLITE_OK ){ - goto recovery_error; - } - - /* If the database page size is not a power of two, or is greater than - ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid - ** data. Similarly, if the 'magic' value is invalid, ignore the whole - ** WAL file. - */ - magic = sqlite3Get4byte(&aBuf[0]); - szPage = sqlite3Get4byte(&aBuf[8]); - if( (magic&0xFFFFFFFE)!=WAL_MAGIC - || szPage&(szPage-1) - || szPage>SQLITE_MAX_PAGE_SIZE - || szPage<512 - ){ - goto finished; - } - pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); - pWal->szPage = szPage; - pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); - memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); - - /* Verify that the WAL header checksum is correct */ - walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, - aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum - ); - if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) - || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) - ){ - goto finished; - } - - /* Verify that the version number on the WAL format is one that - ** are able to understand */ - version = sqlite3Get4byte(&aBuf[4]); - if( version!=WAL_MAX_VERSION ){ - rc = SQLITE_CANTOPEN_BKPT; - goto finished; - } - - /* Malloc a buffer to read frames into. */ - szFrame = szPage + WAL_FRAME_HDRSIZE; - aFrame = (u8 *)sqlite3_malloc(szFrame); - if( !aFrame ){ - rc = SQLITE_NOMEM; - goto recovery_error; - } - aData = &aFrame[WAL_FRAME_HDRSIZE]; - - /* Read all frames from the log file. */ - iFrame = 0; - for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ - u32 pgno; /* Database page number for frame */ - u32 nTruncate; /* dbsize field from frame header */ - - /* Read and decode the next log frame. */ - iFrame++; - rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); - if( rc!=SQLITE_OK ) break; - isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); - if( !isValid ) break; - rc = walIndexAppend(pWal, iFrame, pgno); - if( rc!=SQLITE_OK ) break; - - /* If nTruncate is non-zero, this is a commit record. */ - if( nTruncate ){ - pWal->hdr.mxFrame = iFrame; - pWal->hdr.nPage = nTruncate; - pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; - aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; - } - } - - sqlite3_free(aFrame); - } - -finished: - if( rc==SQLITE_OK ){ - volatile WalCkptInfo *pInfo; - int i; - pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; - pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; - walIndexWriteHdr(pWal); - - /* Reset the checkpoint-header. This is safe because this thread is - ** currently holding locks that exclude all other readers, writers and - ** checkpointers. - */ - pInfo = walCkptInfo(pWal); - pInfo->nBackfill = 0; - pInfo->aReadMark[0] = 0; - for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; - if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; - - /* If more than one frame was recovered from the log file, report an - ** event via sqlite3_log(). This is to help with identifying performance - ** problems caused by applications routinely shutting down without - ** checkpointing the log file. - */ - if( pWal->hdr.nPage ){ - sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s", - pWal->hdr.nPage, pWal->zWalName - ); - } - } - -recovery_error: - WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); - walUnlockExclusive(pWal, iLock, nLock); - return rc; -} - -/* -** Close an open wal-index. -*/ -static void walIndexClose(Wal *pWal, int isDelete){ - if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ - int i; - for(i=0; i<pWal->nWiData; i++){ - sqlite3_free((void *)pWal->apWiData[i]); - pWal->apWiData[i] = 0; - } - }else{ - sqlite3OsShmUnmap(pWal->pDbFd, isDelete); - } -} - -/* -** Open a connection to the WAL file zWalName. The database file must -** already be opened on connection pDbFd. The buffer that zWalName points -** to must remain valid for the lifetime of the returned Wal* handle. -** -** A SHARED lock should be held on the database file when this function -** is called. The purpose of this SHARED lock is to prevent any other -** client from unlinking the WAL or wal-index file. If another process -** were to do this just after this client opened one of these files, the -** system would be badly broken. -** -** If the log file is successfully opened, SQLITE_OK is returned and -** *ppWal is set to point to a new WAL handle. If an error occurs, -** an SQLite error code is returned and *ppWal is left unmodified. -*/ -SQLITE_PRIVATE int sqlite3WalOpen( - sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ - sqlite3_file *pDbFd, /* The open database file */ - const char *zWalName, /* Name of the WAL file */ - int bNoShm, /* True to run in heap-memory mode */ - i64 mxWalSize, /* Truncate WAL to this size on reset */ - Wal **ppWal /* OUT: Allocated Wal handle */ -){ - int rc; /* Return Code */ - Wal *pRet; /* Object to allocate and return */ - int flags; /* Flags passed to OsOpen() */ - - assert( zWalName && zWalName[0] ); - assert( pDbFd ); - - /* In the amalgamation, the os_unix.c and os_win.c source files come before - ** this source file. Verify that the #defines of the locking byte offsets - ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. - */ -#ifdef WIN_SHM_BASE - assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); -#endif -#ifdef UNIX_SHM_BASE - assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); -#endif - - - /* Allocate an instance of struct Wal to return. */ - *ppWal = 0; - pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); - if( !pRet ){ - return SQLITE_NOMEM; - } - - pRet->pVfs = pVfs; - pRet->pWalFd = (sqlite3_file *)&pRet[1]; - pRet->pDbFd = pDbFd; - pRet->readLock = -1; - pRet->mxWalSize = mxWalSize; - pRet->zWalName = zWalName; - pRet->syncHeader = 1; - pRet->padToSectorBoundary = 1; - pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); - - /* Open file handle on the write-ahead log file. */ - flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); - rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); - if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ - pRet->readOnly = WAL_RDONLY; - } - - if( rc!=SQLITE_OK ){ - walIndexClose(pRet, 0); - sqlite3OsClose(pRet->pWalFd); - sqlite3_free(pRet); - }else{ - int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd); - if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } - if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ - pRet->padToSectorBoundary = 0; - } - *ppWal = pRet; - WALTRACE(("WAL%d: opened\n", pRet)); - } - return rc; -} - -/* -** Change the size to which the WAL file is trucated on each reset. -*/ -SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){ - if( pWal ) pWal->mxWalSize = iLimit; -} - -/* -** Find the smallest page number out of all pages held in the WAL that -** has not been returned by any prior invocation of this method on the -** same WalIterator object. Write into *piFrame the frame index where -** that page was last written into the WAL. Write into *piPage the page -** number. -** -** Return 0 on success. If there are no pages in the WAL with a page -** number larger than *piPage, then return 1. -*/ -static int walIteratorNext( - WalIterator *p, /* Iterator */ - u32 *piPage, /* OUT: The page number of the next page */ - u32 *piFrame /* OUT: Wal frame index of next page */ -){ - u32 iMin; /* Result pgno must be greater than iMin */ - u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ - int i; /* For looping through segments */ - - iMin = p->iPrior; - assert( iMin<0xffffffff ); - for(i=p->nSegment-1; i>=0; i--){ - struct WalSegment *pSegment = &p->aSegment[i]; - while( pSegment->iNext<pSegment->nEntry ){ - u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; - if( iPg>iMin ){ - if( iPg<iRet ){ - iRet = iPg; - *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; - } - break; - } - pSegment->iNext++; - } - } - - *piPage = p->iPrior = iRet; - return (iRet==0xFFFFFFFF); -} - -/* -** This function merges two sorted lists into a single sorted list. -** -** aLeft[] and aRight[] are arrays of indices. The sort key is -** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following -** is guaranteed for all J<K: -** -** aContent[aLeft[J]] < aContent[aLeft[K]] -** aContent[aRight[J]] < aContent[aRight[K]] -** -** This routine overwrites aRight[] with a new (probably longer) sequence -** of indices such that the aRight[] contains every index that appears in -** either aLeft[] or the old aRight[] and such that the second condition -** above is still met. -** -** The aContent[aLeft[X]] values will be unique for all X. And the -** aContent[aRight[X]] values will be unique too. But there might be -** one or more combinations of X and Y such that -** -** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] -** -** When that happens, omit the aLeft[X] and use the aRight[Y] index. -*/ -static void walMerge( - const u32 *aContent, /* Pages in wal - keys for the sort */ - ht_slot *aLeft, /* IN: Left hand input list */ - int nLeft, /* IN: Elements in array *paLeft */ - ht_slot **paRight, /* IN/OUT: Right hand input list */ - int *pnRight, /* IN/OUT: Elements in *paRight */ - ht_slot *aTmp /* Temporary buffer */ -){ - int iLeft = 0; /* Current index in aLeft */ - int iRight = 0; /* Current index in aRight */ - int iOut = 0; /* Current index in output buffer */ - int nRight = *pnRight; - ht_slot *aRight = *paRight; - - assert( nLeft>0 && nRight>0 ); - while( iRight<nRight || iLeft<nLeft ){ - ht_slot logpage; - Pgno dbpage; - - if( (iLeft<nLeft) - && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) - ){ - logpage = aLeft[iLeft++]; - }else{ - logpage = aRight[iRight++]; - } - dbpage = aContent[logpage]; - - aTmp[iOut++] = logpage; - if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; - - assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); - assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); - } - - *paRight = aLeft; - *pnRight = iOut; - memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); -} - -/* -** Sort the elements in list aList using aContent[] as the sort key. -** Remove elements with duplicate keys, preferring to keep the -** larger aList[] values. -** -** The aList[] entries are indices into aContent[]. The values in -** aList[] are to be sorted so that for all J<K: -** -** aContent[aList[J]] < aContent[aList[K]] -** -** For any X and Y such that -** -** aContent[aList[X]] == aContent[aList[Y]] -** -** Keep the larger of the two values aList[X] and aList[Y] and discard -** the smaller. -*/ -static void walMergesort( - const u32 *aContent, /* Pages in wal */ - ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ - ht_slot *aList, /* IN/OUT: List to sort */ - int *pnList /* IN/OUT: Number of elements in aList[] */ -){ - struct Sublist { - int nList; /* Number of elements in aList */ - ht_slot *aList; /* Pointer to sub-list content */ - }; - - const int nList = *pnList; /* Size of input list */ - int nMerge = 0; /* Number of elements in list aMerge */ - ht_slot *aMerge = 0; /* List to be merged */ - int iList; /* Index into input list */ - int iSub = 0; /* Index into aSub array */ - struct Sublist aSub[13]; /* Array of sub-lists */ - - memset(aSub, 0, sizeof(aSub)); - assert( nList<=HASHTABLE_NPAGE && nList>0 ); - assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); - - for(iList=0; iList<nList; iList++){ - nMerge = 1; - aMerge = &aList[iList]; - for(iSub=0; iList & (1<<iSub); iSub++){ - struct Sublist *p = &aSub[iSub]; - assert( p->aList && p->nList<=(1<<iSub) ); - assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); - walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); - } - aSub[iSub].aList = aMerge; - aSub[iSub].nList = nMerge; - } - - for(iSub++; iSub<ArraySize(aSub); iSub++){ - if( nList & (1<<iSub) ){ - struct Sublist *p = &aSub[iSub]; - assert( p->nList<=(1<<iSub) ); - assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); - walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); - } - } - assert( aMerge==aList ); - *pnList = nMerge; - -#ifdef SQLITE_DEBUG - { - int i; - for(i=1; i<*pnList; i++){ - assert( aContent[aList[i]] > aContent[aList[i-1]] ); - } - } -#endif -} - -/* -** Free an iterator allocated by walIteratorInit(). -*/ -static void walIteratorFree(WalIterator *p){ - sqlite3ScratchFree(p); -} - -/* -** Construct a WalInterator object that can be used to loop over all -** pages in the WAL in ascending order. The caller must hold the checkpoint -** lock. -** -** On success, make *pp point to the newly allocated WalInterator object -** return SQLITE_OK. Otherwise, return an error code. If this routine -** returns an error, the value of *pp is undefined. -** -** The calling routine should invoke walIteratorFree() to destroy the -** WalIterator object when it has finished with it. -*/ -static int walIteratorInit(Wal *pWal, WalIterator **pp){ - WalIterator *p; /* Return value */ - int nSegment; /* Number of segments to merge */ - u32 iLast; /* Last frame in log */ - int nByte; /* Number of bytes to allocate */ - int i; /* Iterator variable */ - ht_slot *aTmp; /* Temp space used by merge-sort */ - int rc = SQLITE_OK; /* Return Code */ - - /* This routine only runs while holding the checkpoint lock. And - ** it only runs if there is actually content in the log (mxFrame>0). - */ - assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); - iLast = pWal->hdr.mxFrame; - - /* Allocate space for the WalIterator object. */ - nSegment = walFramePage(iLast) + 1; - nByte = sizeof(WalIterator) - + (nSegment-1)*sizeof(struct WalSegment) - + iLast*sizeof(ht_slot); - p = (WalIterator *)sqlite3ScratchMalloc(nByte); - if( !p ){ - return SQLITE_NOMEM; - } - memset(p, 0, nByte); - p->nSegment = nSegment; - - /* Allocate temporary space used by the merge-sort routine. This block - ** of memory will be freed before this function returns. - */ - aTmp = (ht_slot *)sqlite3ScratchMalloc( - sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) - ); - if( !aTmp ){ - rc = SQLITE_NOMEM; - } - - for(i=0; rc==SQLITE_OK && i<nSegment; i++){ - volatile ht_slot *aHash; - u32 iZero; - volatile u32 *aPgno; - - rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); - if( rc==SQLITE_OK ){ - int j; /* Counter variable */ - int nEntry; /* Number of entries in this segment */ - ht_slot *aIndex; /* Sorted index for this segment */ - - aPgno++; - if( (i+1)==nSegment ){ - nEntry = (int)(iLast - iZero); - }else{ - nEntry = (int)((u32*)aHash - (u32*)aPgno); - } - aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; - iZero++; - - for(j=0; j<nEntry; j++){ - aIndex[j] = (ht_slot)j; - } - walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); - p->aSegment[i].iZero = iZero; - p->aSegment[i].nEntry = nEntry; - p->aSegment[i].aIndex = aIndex; - p->aSegment[i].aPgno = (u32 *)aPgno; - } - } - sqlite3ScratchFree(aTmp); - - if( rc!=SQLITE_OK ){ - walIteratorFree(p); - } - *pp = p; - return rc; -} - -/* -** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and -** n. If the attempt fails and parameter xBusy is not NULL, then it is a -** busy-handler function. Invoke it and retry the lock until either the -** lock is successfully obtained or the busy-handler returns 0. -*/ -static int walBusyLock( - Wal *pWal, /* WAL connection */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int lockIdx, /* Offset of first byte to lock */ - int n /* Number of bytes to lock */ -){ - int rc; - do { - rc = walLockExclusive(pWal, lockIdx, n); - }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); - return rc; -} - -/* -** The cache of the wal-index header must be valid to call this function. -** Return the page-size in bytes used by the database. -*/ -static int walPagesize(Wal *pWal){ - return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); -} - -/* -** Copy as much content as we can from the WAL back into the database file -** in response to an sqlite3_wal_checkpoint() request or the equivalent. -** -** The amount of information copies from WAL to database might be limited -** by active readers. This routine will never overwrite a database page -** that a concurrent reader might be using. -** -** All I/O barrier operations (a.k.a fsyncs) occur in this routine when -** SQLite is in WAL-mode in synchronous=NORMAL. That means that if -** checkpoints are always run by a background thread or background -** process, foreground threads will never block on a lengthy fsync call. -** -** Fsync is called on the WAL before writing content out of the WAL and -** into the database. This ensures that if the new content is persistent -** in the WAL and can be recovered following a power-loss or hard reset. -** -** Fsync is also called on the database file if (and only if) the entire -** WAL content is copied into the database file. This second fsync makes -** it safe to delete the WAL since the new content will persist in the -** database file. -** -** This routine uses and updates the nBackfill field of the wal-index header. -** This is the only routine tha will increase the value of nBackfill. -** (A WAL reset or recovery will revert nBackfill to zero, but not increase -** its value.) -** -** The caller must be holding sufficient locks to ensure that no other -** checkpoint is running (in any other thread or process) at the same -** time. -*/ -static int walCheckpoint( - Wal *pWal, /* Wal connection */ - int eMode, /* One of PASSIVE, FULL or RESTART */ - int (*xBusyCall)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int sync_flags, /* Flags for OsSync() (or 0) */ - u8 *zBuf /* Temporary buffer to use */ -){ - int rc; /* Return code */ - int szPage; /* Database page-size */ - WalIterator *pIter = 0; /* Wal iterator context */ - u32 iDbpage = 0; /* Next database page to write */ - u32 iFrame = 0; /* Wal frame containing data for iDbpage */ - u32 mxSafeFrame; /* Max frame that can be backfilled */ - u32 mxPage; /* Max database page to write */ - int i; /* Loop counter */ - volatile WalCkptInfo *pInfo; /* The checkpoint status information */ - int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ - - szPage = walPagesize(pWal); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - pInfo = walCkptInfo(pWal); - if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK; - - /* Allocate the iterator */ - rc = walIteratorInit(pWal, &pIter); - if( rc!=SQLITE_OK ){ - return rc; - } - assert( pIter ); - - if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; - - /* Compute in mxSafeFrame the index of the last frame of the WAL that is - ** safe to write into the database. Frames beyond mxSafeFrame might - ** overwrite database pages that are in use by active readers and thus - ** cannot be backfilled from the WAL. - */ - mxSafeFrame = pWal->hdr.mxFrame; - mxPage = pWal->hdr.nPage; - for(i=1; i<WAL_NREADER; i++){ - u32 y = pInfo->aReadMark[i]; - if( mxSafeFrame>y ){ - assert( y<=pWal->hdr.mxFrame ); - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); - if( rc==SQLITE_OK ){ - pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); - walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); - }else if( rc==SQLITE_BUSY ){ - mxSafeFrame = y; - xBusy = 0; - }else{ - goto walcheckpoint_out; - } - } - } - - if( pInfo->nBackfill<mxSafeFrame - && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK - ){ - i64 nSize; /* Current size of database file */ - u32 nBackfill = pInfo->nBackfill; - - /* Sync the WAL to disk */ - if( sync_flags ){ - rc = sqlite3OsSync(pWal->pWalFd, sync_flags); - } - - /* If the database file may grow as a result of this checkpoint, hint - ** about the eventual size of the db file to the VFS layer. - */ - if( rc==SQLITE_OK ){ - i64 nReq = ((i64)mxPage * szPage); - rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); - if( rc==SQLITE_OK && nSize<nReq ){ - sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); - } - } - - /* Iterate through the contents of the WAL, copying data to the db file. */ - while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ - i64 iOffset; - assert( walFramePgno(pWal, iFrame)==iDbpage ); - if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; - iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; - /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ - rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); - if( rc!=SQLITE_OK ) break; - iOffset = (iDbpage-1)*(i64)szPage; - testcase( IS_BIG_INT(iOffset) ); - rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); - if( rc!=SQLITE_OK ) break; - } - - /* If work was actually accomplished... */ - if( rc==SQLITE_OK ){ - if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ - i64 szDb = pWal->hdr.nPage*(i64)szPage; - testcase( IS_BIG_INT(szDb) ); - rc = sqlite3OsTruncate(pWal->pDbFd, szDb); - if( rc==SQLITE_OK && sync_flags ){ - rc = sqlite3OsSync(pWal->pDbFd, sync_flags); - } - } - if( rc==SQLITE_OK ){ - pInfo->nBackfill = mxSafeFrame; - } - } - - /* Release the reader lock held while backfilling */ - walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); - } - - if( rc==SQLITE_BUSY ){ - /* Reset the return code so as not to report a checkpoint failure - ** just because there are active readers. */ - rc = SQLITE_OK; - } - - /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal - ** file has been copied into the database file, then block until all - ** readers have finished using the wal file. This ensures that the next - ** process to write to the database restarts the wal file. - */ - if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ - assert( pWal->writeLock ); - if( pInfo->nBackfill<pWal->hdr.mxFrame ){ - rc = SQLITE_BUSY; - }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ - assert( mxSafeFrame==pWal->hdr.mxFrame ); - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); - if( rc==SQLITE_OK ){ - walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); - } - } - } - - walcheckpoint_out: - walIteratorFree(pIter); - return rc; -} - -/* -** If the WAL file is currently larger than nMax bytes in size, truncate -** it to exactly nMax bytes. If an error occurs while doing so, ignore it. -*/ -static void walLimitSize(Wal *pWal, i64 nMax){ - i64 sz; - int rx; - sqlite3BeginBenignMalloc(); - rx = sqlite3OsFileSize(pWal->pWalFd, &sz); - if( rx==SQLITE_OK && (sz > nMax ) ){ - rx = sqlite3OsTruncate(pWal->pWalFd, nMax); - } - sqlite3EndBenignMalloc(); - if( rx ){ - sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); - } -} - -/* -** Close a connection to a log file. -*/ -SQLITE_PRIVATE int sqlite3WalClose( - Wal *pWal, /* Wal to close */ - int sync_flags, /* Flags to pass to OsSync() (or 0) */ - int nBuf, - u8 *zBuf /* Buffer of at least nBuf bytes */ -){ - int rc = SQLITE_OK; - if( pWal ){ - int isDelete = 0; /* True to unlink wal and wal-index files */ - - /* If an EXCLUSIVE lock can be obtained on the database file (using the - ** ordinary, rollback-mode locking methods, this guarantees that the - ** connection associated with this log file is the only connection to - ** the database. In this case checkpoint the database and unlink both - ** the wal and wal-index files. - ** - ** The EXCLUSIVE lock is not released before returning. - */ - rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); - if( rc==SQLITE_OK ){ - if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ - pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; - } - rc = sqlite3WalCheckpoint( - pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 - ); - if( rc==SQLITE_OK ){ - int bPersist = -1; - sqlite3OsFileControlHint( - pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist - ); - if( bPersist!=1 ){ - /* Try to delete the WAL file if the checkpoint completed and - ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal - ** mode (!bPersist) */ - isDelete = 1; - }else if( pWal->mxWalSize>=0 ){ - /* Try to truncate the WAL file to zero bytes if the checkpoint - ** completed and fsynced (rc==SQLITE_OK) and we are in persistent - ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a - ** non-negative value (pWal->mxWalSize>=0). Note that we truncate - ** to zero bytes as truncating to the journal_size_limit might - ** leave a corrupt WAL file on disk. */ - walLimitSize(pWal, 0); - } - } - } - - walIndexClose(pWal, isDelete); - sqlite3OsClose(pWal->pWalFd); - if( isDelete ){ - sqlite3BeginBenignMalloc(); - sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); - sqlite3EndBenignMalloc(); - } - WALTRACE(("WAL%p: closed\n", pWal)); - sqlite3_free((void *)pWal->apWiData); - sqlite3_free(pWal); - } - return rc; -} - -/* -** Try to read the wal-index header. Return 0 on success and 1 if -** there is a problem. -** -** The wal-index is in shared memory. Another thread or process might -** be writing the header at the same time this procedure is trying to -** read it, which might result in inconsistency. A dirty read is detected -** by verifying that both copies of the header are the same and also by -** a checksum on the header. -** -** If and only if the read is consistent and the header is different from -** pWal->hdr, then pWal->hdr is updated to the content of the new header -** and *pChanged is set to 1. -** -** If the checksum cannot be verified return non-zero. If the header -** is read successfully and the checksum verified, return zero. -*/ -static int walIndexTryHdr(Wal *pWal, int *pChanged){ - u32 aCksum[2]; /* Checksum on the header content */ - WalIndexHdr h1, h2; /* Two copies of the header content */ - WalIndexHdr volatile *aHdr; /* Header in shared memory */ - - /* The first page of the wal-index must be mapped at this point. */ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - - /* Read the header. This might happen concurrently with a write to the - ** same area of shared memory on a different CPU in a SMP, - ** meaning it is possible that an inconsistent snapshot is read - ** from the file. If this happens, return non-zero. - ** - ** There are two copies of the header at the beginning of the wal-index. - ** When reading, read [0] first then [1]. Writes are in the reverse order. - ** Memory barriers are used to prevent the compiler or the hardware from - ** reordering the reads and writes. - */ - aHdr = walIndexHdr(pWal); - memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); - walShmBarrier(pWal); - memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); - - if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ - return 1; /* Dirty read */ - } - if( h1.isInit==0 ){ - return 1; /* Malformed header - probably all zeros */ - } - walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); - if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ - return 1; /* Checksum does not match */ - } - - if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ - *pChanged = 1; - memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); - pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); - testcase( pWal->szPage<=32768 ); - testcase( pWal->szPage>=65536 ); - } - - /* The header was successfully read. Return zero. */ - return 0; -} - -/* -** Read the wal-index header from the wal-index and into pWal->hdr. -** If the wal-header appears to be corrupt, try to reconstruct the -** wal-index from the WAL before returning. -** -** Set *pChanged to 1 if the wal-index header value in pWal->hdr is -** changed by this opertion. If pWal->hdr is unchanged, set *pChanged -** to 0. -** -** If the wal-index header is successfully read, return SQLITE_OK. -** Otherwise an SQLite error code. -*/ -static int walIndexReadHdr(Wal *pWal, int *pChanged){ - int rc; /* Return code */ - int badHdr; /* True if a header read failed */ - volatile u32 *page0; /* Chunk of wal-index containing header */ - - /* Ensure that page 0 of the wal-index (the page that contains the - ** wal-index header) is mapped. Return early if an error occurs here. - */ - assert( pChanged ); - rc = walIndexPage(pWal, 0, &page0); - if( rc!=SQLITE_OK ){ - return rc; - }; - assert( page0 || pWal->writeLock==0 ); - - /* If the first page of the wal-index has been mapped, try to read the - ** wal-index header immediately, without holding any lock. This usually - ** works, but may fail if the wal-index header is corrupt or currently - ** being modified by another thread or process. - */ - badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); - - /* If the first attempt failed, it might have been due to a race - ** with a writer. So get a WRITE lock and try again. - */ - assert( badHdr==0 || pWal->writeLock==0 ); - if( badHdr ){ - if( pWal->readOnly & WAL_SHM_RDONLY ){ - if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ - walUnlockShared(pWal, WAL_WRITE_LOCK); - rc = SQLITE_READONLY_RECOVERY; - } - }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ - pWal->writeLock = 1; - if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ - badHdr = walIndexTryHdr(pWal, pChanged); - if( badHdr ){ - /* If the wal-index header is still malformed even while holding - ** a WRITE lock, it can only mean that the header is corrupted and - ** needs to be reconstructed. So run recovery to do exactly that. - */ - rc = walIndexRecover(pWal); - *pChanged = 1; - } - } - pWal->writeLock = 0; - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - } - } - - /* If the header is read successfully, check the version number to make - ** sure the wal-index was not constructed with some future format that - ** this version of SQLite cannot understand. - */ - if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ - rc = SQLITE_CANTOPEN_BKPT; - } - - return rc; -} - -/* -** This is the value that walTryBeginRead returns when it needs to -** be retried. -*/ -#define WAL_RETRY (-1) - -/* -** Attempt to start a read transaction. This might fail due to a race or -** other transient condition. When that happens, it returns WAL_RETRY to -** indicate to the caller that it is safe to retry immediately. -** -** On success return SQLITE_OK. On a permanent failure (such an -** I/O error or an SQLITE_BUSY because another process is running -** recovery) return a positive error code. -** -** The useWal parameter is true to force the use of the WAL and disable -** the case where the WAL is bypassed because it has been completely -** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() -** to make a copy of the wal-index header into pWal->hdr. If the -** wal-index header has changed, *pChanged is set to 1 (as an indication -** to the caller that the local paget cache is obsolete and needs to be -** flushed.) When useWal==1, the wal-index header is assumed to already -** be loaded and the pChanged parameter is unused. -** -** The caller must set the cnt parameter to the number of prior calls to -** this routine during the current read attempt that returned WAL_RETRY. -** This routine will start taking more aggressive measures to clear the -** race conditions after multiple WAL_RETRY returns, and after an excessive -** number of errors will ultimately return SQLITE_PROTOCOL. The -** SQLITE_PROTOCOL return indicates that some other process has gone rogue -** and is not honoring the locking protocol. There is a vanishingly small -** chance that SQLITE_PROTOCOL could be returned because of a run of really -** bad luck when there is lots of contention for the wal-index, but that -** possibility is so small that it can be safely neglected, we believe. -** -** On success, this routine obtains a read lock on -** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is -** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) -** that means the Wal does not hold any read lock. The reader must not -** access any database page that is modified by a WAL frame up to and -** including frame number aReadMark[pWal->readLock]. The reader will -** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 -** Or if pWal->readLock==0, then the reader will ignore the WAL -** completely and get all content directly from the database file. -** If the useWal parameter is 1 then the WAL will never be ignored and -** this routine will always set pWal->readLock>0 on success. -** When the read transaction is completed, the caller must release the -** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. -** -** This routine uses the nBackfill and aReadMark[] fields of the header -** to select a particular WAL_READ_LOCK() that strives to let the -** checkpoint process do as much work as possible. This routine might -** update values of the aReadMark[] array in the header, but if it does -** so it takes care to hold an exclusive lock on the corresponding -** WAL_READ_LOCK() while changing values. -*/ -static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ - volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ - u32 mxReadMark; /* Largest aReadMark[] value */ - int mxI; /* Index of largest aReadMark[] value */ - int i; /* Loop counter */ - int rc = SQLITE_OK; /* Return code */ - - assert( pWal->readLock<0 ); /* Not currently locked */ - - /* Take steps to avoid spinning forever if there is a protocol error. - ** - ** Circumstances that cause a RETRY should only last for the briefest - ** instances of time. No I/O or other system calls are done while the - ** locks are held, so the locks should not be held for very long. But - ** if we are unlucky, another process that is holding a lock might get - ** paged out or take a page-fault that is time-consuming to resolve, - ** during the few nanoseconds that it is holding the lock. In that case, - ** it might take longer than normal for the lock to free. - ** - ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few - ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this - ** is more of a scheduler yield than an actual delay. But on the 10th - ** an subsequent retries, the delays start becoming longer and longer, - ** so that on the 100th (and last) RETRY we delay for 21 milliseconds. - ** The total delay time before giving up is less than 1 second. - */ - if( cnt>5 ){ - int nDelay = 1; /* Pause time in microseconds */ - if( cnt>100 ){ - VVA_ONLY( pWal->lockError = 1; ) - return SQLITE_PROTOCOL; - } - if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */ - sqlite3OsSleep(pWal->pVfs, nDelay); - } - - if( !useWal ){ - rc = walIndexReadHdr(pWal, pChanged); - if( rc==SQLITE_BUSY ){ - /* If there is not a recovery running in another thread or process - ** then convert BUSY errors to WAL_RETRY. If recovery is known to - ** be running, convert BUSY to BUSY_RECOVERY. There is a race here - ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY - ** would be technically correct. But the race is benign since with - ** WAL_RETRY this routine will be called again and will probably be - ** right on the second iteration. - */ - if( pWal->apWiData[0]==0 ){ - /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. - ** We assume this is a transient condition, so return WAL_RETRY. The - ** xShmMap() implementation used by the default unix and win32 VFS - ** modules may return SQLITE_BUSY due to a race condition in the - ** code that determines whether or not the shared-memory region - ** must be zeroed before the requested page is returned. - */ - rc = WAL_RETRY; - }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ - walUnlockShared(pWal, WAL_RECOVER_LOCK); - rc = WAL_RETRY; - }else if( rc==SQLITE_BUSY ){ - rc = SQLITE_BUSY_RECOVERY; - } - } - if( rc!=SQLITE_OK ){ - return rc; - } - } - - pInfo = walCkptInfo(pWal); - if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ - /* The WAL has been completely backfilled (or it is empty). - ** and can be safely ignored. - */ - rc = walLockShared(pWal, WAL_READ_LOCK(0)); - walShmBarrier(pWal); - if( rc==SQLITE_OK ){ - if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ - /* It is not safe to allow the reader to continue here if frames - ** may have been appended to the log before READ_LOCK(0) was obtained. - ** When holding READ_LOCK(0), the reader ignores the entire log file, - ** which implies that the database file contains a trustworthy - ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from - ** happening, this is usually correct. - ** - ** However, if frames have been appended to the log (or if the log - ** is wrapped and written for that matter) before the READ_LOCK(0) - ** is obtained, that is not necessarily true. A checkpointer may - ** have started to backfill the appended frames but crashed before - ** it finished. Leaving a corrupt image in the database file. - */ - walUnlockShared(pWal, WAL_READ_LOCK(0)); - return WAL_RETRY; - } - pWal->readLock = 0; - return SQLITE_OK; - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - - /* If we get this far, it means that the reader will want to use - ** the WAL to get at content from recent commits. The job now is - ** to select one of the aReadMark[] entries that is closest to - ** but not exceeding pWal->hdr.mxFrame and lock that entry. - */ - mxReadMark = 0; - mxI = 0; - for(i=1; i<WAL_NREADER; i++){ - u32 thisMark = pInfo->aReadMark[i]; - if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ - assert( thisMark!=READMARK_NOT_USED ); - mxReadMark = thisMark; - mxI = i; - } - } - /* There was once an "if" here. The extra "{" is to preserve indentation. */ - { - if( (pWal->readOnly & WAL_SHM_RDONLY)==0 - && (mxReadMark<pWal->hdr.mxFrame || mxI==0) - ){ - for(i=1; i<WAL_NREADER; i++){ - rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); - if( rc==SQLITE_OK ){ - mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; - mxI = i; - walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); - break; - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - } - if( mxI==0 ){ - assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); - return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; - } - - rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); - if( rc ){ - return rc==SQLITE_BUSY ? WAL_RETRY : rc; - } - /* Now that the read-lock has been obtained, check that neither the - ** value in the aReadMark[] array or the contents of the wal-index - ** header have changed. - ** - ** It is necessary to check that the wal-index header did not change - ** between the time it was read and when the shared-lock was obtained - ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility - ** that the log file may have been wrapped by a writer, or that frames - ** that occur later in the log than pWal->hdr.mxFrame may have been - ** copied into the database by a checkpointer. If either of these things - ** happened, then reading the database with the current value of - ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry - ** instead. - ** - ** This does not guarantee that the copy of the wal-index header is up to - ** date before proceeding. That would not be possible without somehow - ** blocking writers. It only guarantees that a dangerous checkpoint or - ** log-wrap (either of which would require an exclusive lock on - ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. - */ - walShmBarrier(pWal); - if( pInfo->aReadMark[mxI]!=mxReadMark - || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) - ){ - walUnlockShared(pWal, WAL_READ_LOCK(mxI)); - return WAL_RETRY; - }else{ - assert( mxReadMark<=pWal->hdr.mxFrame ); - pWal->readLock = (i16)mxI; - } - } - return rc; -} - -/* -** Begin a read transaction on the database. -** -** This routine used to be called sqlite3OpenSnapshot() and with good reason: -** it takes a snapshot of the state of the WAL and wal-index for the current -** instant in time. The current thread will continue to use this snapshot. -** Other threads might append new content to the WAL and wal-index but -** that extra content is ignored by the current thread. -** -** If the database contents have changes since the previous read -** transaction, then *pChanged is set to 1 before returning. The -** Pager layer will use this to know that is cache is stale and -** needs to be flushed. -*/ -SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ - int rc; /* Return code */ - int cnt = 0; /* Number of TryBeginRead attempts */ - - do{ - rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); - }while( rc==WAL_RETRY ); - testcase( (rc&0xff)==SQLITE_BUSY ); - testcase( (rc&0xff)==SQLITE_IOERR ); - testcase( rc==SQLITE_PROTOCOL ); - testcase( rc==SQLITE_OK ); - return rc; -} - -/* -** Finish with a read transaction. All this does is release the -** read-lock. -*/ -SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){ - sqlite3WalEndWriteTransaction(pWal); - if( pWal->readLock>=0 ){ - walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); - pWal->readLock = -1; - } -} - -/* -** Read a page from the WAL, if it is present in the WAL and if the -** current read transaction is configured to use the WAL. -** -** The *pInWal is set to 1 if the requested page is in the WAL and -** has been loaded. Or *pInWal is set to 0 if the page was not in -** the WAL and needs to be read out of the database. -*/ -SQLITE_PRIVATE int sqlite3WalRead( - Wal *pWal, /* WAL handle */ - Pgno pgno, /* Database page number to read data for */ - int *pInWal, /* OUT: True if data is read from WAL */ - int nOut, /* Size of buffer pOut in bytes */ - u8 *pOut /* Buffer to write page data to */ -){ - u32 iRead = 0; /* If !=0, WAL frame to return data from */ - u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ - int iHash; /* Used to loop through N hash tables */ - - /* This routine is only be called from within a read transaction. */ - assert( pWal->readLock>=0 || pWal->lockError ); - - /* If the "last page" field of the wal-index header snapshot is 0, then - ** no data will be read from the wal under any circumstances. Return early - ** in this case as an optimization. Likewise, if pWal->readLock==0, - ** then the WAL is ignored by the reader so return early, as if the - ** WAL were empty. - */ - if( iLast==0 || pWal->readLock==0 ){ - *pInWal = 0; - return SQLITE_OK; - } - - /* Search the hash table or tables for an entry matching page number - ** pgno. Each iteration of the following for() loop searches one - ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). - ** - ** This code might run concurrently to the code in walIndexAppend() - ** that adds entries to the wal-index (and possibly to this hash - ** table). This means the value just read from the hash - ** slot (aHash[iKey]) may have been added before or after the - ** current read transaction was opened. Values added after the - ** read transaction was opened may have been written incorrectly - - ** i.e. these slots may contain garbage data. However, we assume - ** that any slots written before the current read transaction was - ** opened remain unmodified. - ** - ** For the reasons above, the if(...) condition featured in the inner - ** loop of the following block is more stringent that would be required - ** if we had exclusive access to the hash-table: - ** - ** (aPgno[iFrame]==pgno): - ** This condition filters out normal hash-table collisions. - ** - ** (iFrame<=iLast): - ** This condition filters out entries that were added to the hash - ** table after the current read-transaction had started. - */ - for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ - volatile ht_slot *aHash; /* Pointer to hash table */ - volatile u32 *aPgno; /* Pointer to array of page numbers */ - u32 iZero; /* Frame number corresponding to aPgno[0] */ - int iKey; /* Hash slot index */ - int nCollide; /* Number of hash collisions remaining */ - int rc; /* Error code */ - - rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); - if( rc!=SQLITE_OK ){ - return rc; - } - nCollide = HASHTABLE_NSLOT; - for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ - u32 iFrame = aHash[iKey] + iZero; - if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ - /* assert( iFrame>iRead ); -- not true if there is corruption */ - iRead = iFrame; - } - if( (nCollide--)==0 ){ - return SQLITE_CORRUPT_BKPT; - } - } - } - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* If expensive assert() statements are available, do a linear search - ** of the wal-index file content. Make sure the results agree with the - ** result obtained using the hash indexes above. */ - { - u32 iRead2 = 0; - u32 iTest; - for(iTest=iLast; iTest>0; iTest--){ - if( walFramePgno(pWal, iTest)==pgno ){ - iRead2 = iTest; - break; - } - } - assert( iRead==iRead2 ); - } -#endif - - /* If iRead is non-zero, then it is the log frame number that contains the - ** required page. Read and return data from the log file. - */ - if( iRead ){ - int sz; - i64 iOffset; - sz = pWal->hdr.szPage; - sz = (sz&0xfe00) + ((sz&0x0001)<<16); - testcase( sz<=32768 ); - testcase( sz>=65536 ); - iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; - *pInWal = 1; - /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ - return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); - } - - *pInWal = 0; - return SQLITE_OK; -} - - -/* -** Return the size of the database in pages (or zero, if unknown). -*/ -SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){ - if( pWal && ALWAYS(pWal->readLock>=0) ){ - return pWal->hdr.nPage; - } - return 0; -} - - -/* -** This function starts a write transaction on the WAL. -** -** A read transaction must have already been started by a prior call -** to sqlite3WalBeginReadTransaction(). -** -** If another thread or process has written into the database since -** the read transaction was started, then it is not possible for this -** thread to write as doing so would cause a fork. So this routine -** returns SQLITE_BUSY in that case and no write transaction is started. -** -** There can only be a single writer active at a time. -*/ -SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){ - int rc; - - /* Cannot start a write transaction without first holding a read - ** transaction. */ - assert( pWal->readLock>=0 ); - - if( pWal->readOnly ){ - return SQLITE_READONLY; - } - - /* Only one writer allowed at a time. Get the write lock. Return - ** SQLITE_BUSY if unable. - */ - rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); - if( rc ){ - return rc; - } - pWal->writeLock = 1; - - /* If another connection has written to the database file since the - ** time the read transaction on this connection was started, then - ** the write is disallowed. - */ - if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - pWal->writeLock = 0; - rc = SQLITE_BUSY; - } - - return rc; -} - -/* -** End a write transaction. The commit has already been done. This -** routine merely releases the lock. -*/ -SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){ - if( pWal->writeLock ){ - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - pWal->writeLock = 0; - pWal->truncateOnCommit = 0; - } - return SQLITE_OK; -} - -/* -** If any data has been written (but not committed) to the log file, this -** function moves the write-pointer back to the start of the transaction. -** -** Additionally, the callback function is invoked for each frame written -** to the WAL since the start of the transaction. If the callback returns -** other than SQLITE_OK, it is not invoked again and the error code is -** returned to the caller. -** -** Otherwise, if the callback function does not return an error, this -** function returns SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ - int rc = SQLITE_OK; - if( ALWAYS(pWal->writeLock) ){ - Pgno iMax = pWal->hdr.mxFrame; - Pgno iFrame; - - /* Restore the clients cache of the wal-index header to the state it - ** was in before the client began writing to the database. - */ - memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); - - for(iFrame=pWal->hdr.mxFrame+1; - ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; - iFrame++ - ){ - /* This call cannot fail. Unless the page for which the page number - ** is passed as the second argument is (a) in the cache and - ** (b) has an outstanding reference, then xUndo is either a no-op - ** (if (a) is false) or simply expels the page from the cache (if (b) - ** is false). - ** - ** If the upper layer is doing a rollback, it is guaranteed that there - ** are no outstanding references to any page other than page 1. And - ** page 1 is never written to the log until the transaction is - ** committed. As a result, the call to xUndo may not fail. - */ - assert( walFramePgno(pWal, iFrame)!=1 ); - rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); - } - if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); - } - assert( rc==SQLITE_OK ); - return rc; -} - -/* -** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 -** values. This function populates the array with values required to -** "rollback" the write position of the WAL handle back to the current -** point in the event of a savepoint rollback (via WalSavepointUndo()). -*/ -SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ - assert( pWal->writeLock ); - aWalData[0] = pWal->hdr.mxFrame; - aWalData[1] = pWal->hdr.aFrameCksum[0]; - aWalData[2] = pWal->hdr.aFrameCksum[1]; - aWalData[3] = pWal->nCkpt; -} - -/* -** Move the write position of the WAL back to the point identified by -** the values in the aWalData[] array. aWalData must point to an array -** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated -** by a call to WalSavepoint(). -*/ -SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ - int rc = SQLITE_OK; - - assert( pWal->writeLock ); - assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); - - if( aWalData[3]!=pWal->nCkpt ){ - /* This savepoint was opened immediately after the write-transaction - ** was started. Right after that, the writer decided to wrap around - ** to the start of the log. Update the savepoint values to match. - */ - aWalData[0] = 0; - aWalData[3] = pWal->nCkpt; - } - - if( aWalData[0]<pWal->hdr.mxFrame ){ - pWal->hdr.mxFrame = aWalData[0]; - pWal->hdr.aFrameCksum[0] = aWalData[1]; - pWal->hdr.aFrameCksum[1] = aWalData[2]; - walCleanupHash(pWal); - } - - return rc; -} - - -/* -** This function is called just before writing a set of frames to the log -** file (see sqlite3WalFrames()). It checks to see if, instead of appending -** to the current log file, it is possible to overwrite the start of the -** existing log file with the new frames (i.e. "reset" the log). If so, -** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left -** unchanged. -** -** SQLITE_OK is returned if no error is encountered (regardless of whether -** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned -** if an error occurs. -*/ -static int walRestartLog(Wal *pWal){ - int rc = SQLITE_OK; - int cnt; - - if( pWal->readLock==0 ){ - volatile WalCkptInfo *pInfo = walCkptInfo(pWal); - assert( pInfo->nBackfill==pWal->hdr.mxFrame ); - if( pInfo->nBackfill>0 ){ - u32 salt1; - sqlite3_randomness(4, &salt1); - rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); - if( rc==SQLITE_OK ){ - /* If all readers are using WAL_READ_LOCK(0) (in other words if no - ** readers are currently using the WAL), then the transactions - ** frames will overwrite the start of the existing log. Update the - ** wal-index header to reflect this. - ** - ** In theory it would be Ok to update the cache of the header only - ** at this point. But updating the actual wal-index header is also - ** safe and means there is no special case for sqlite3WalUndo() - ** to handle if this transaction is rolled back. - */ - int i; /* Loop counter */ - u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ - - pWal->nCkpt++; - pWal->hdr.mxFrame = 0; - sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); - aSalt[1] = salt1; - walIndexWriteHdr(pWal); - pInfo->nBackfill = 0; - pInfo->aReadMark[1] = 0; - for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; - assert( pInfo->aReadMark[0]==0 ); - walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - walUnlockShared(pWal, WAL_READ_LOCK(0)); - pWal->readLock = -1; - cnt = 0; - do{ - int notUsed; - rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); - }while( rc==WAL_RETRY ); - assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ - testcase( (rc&0xff)==SQLITE_IOERR ); - testcase( rc==SQLITE_PROTOCOL ); - testcase( rc==SQLITE_OK ); - } - return rc; -} - -/* -** Information about the current state of the WAL file and where -** the next fsync should occur - passed from sqlite3WalFrames() into -** walWriteToLog(). -*/ -typedef struct WalWriter { - Wal *pWal; /* The complete WAL information */ - sqlite3_file *pFd; /* The WAL file to which we write */ - sqlite3_int64 iSyncPoint; /* Fsync at this offset */ - int syncFlags; /* Flags for the fsync */ - int szPage; /* Size of one page */ -} WalWriter; - -/* -** Write iAmt bytes of content into the WAL file beginning at iOffset. -** Do a sync when crossing the p->iSyncPoint boundary. -** -** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, -** first write the part before iSyncPoint, then sync, then write the -** rest. -*/ -static int walWriteToLog( - WalWriter *p, /* WAL to write to */ - void *pContent, /* Content to be written */ - int iAmt, /* Number of bytes to write */ - sqlite3_int64 iOffset /* Start writing at this offset */ -){ - int rc; - if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ - int iFirstAmt = (int)(p->iSyncPoint - iOffset); - rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); - if( rc ) return rc; - iOffset += iFirstAmt; - iAmt -= iFirstAmt; - pContent = (void*)(iFirstAmt + (char*)pContent); - assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); - rc = sqlite3OsSync(p->pFd, p->syncFlags); - if( iAmt==0 || rc ) return rc; - } - rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); - return rc; -} - -/* -** Write out a single frame of the WAL -*/ -static int walWriteOneFrame( - WalWriter *p, /* Where to write the frame */ - PgHdr *pPage, /* The page of the frame to be written */ - int nTruncate, /* The commit flag. Usually 0. >0 for commit */ - sqlite3_int64 iOffset /* Byte offset at which to write */ -){ - int rc; /* Result code from subfunctions */ - void *pData; /* Data actually written */ - u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ -#if defined(SQLITE_HAS_CODEC) - if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; -#else - pData = pPage->pData; -#endif - walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); - rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); - if( rc ) return rc; - /* Write the page data */ - rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); - return rc; -} - -/* -** Write a set of frames to the log. The caller must hold the write-lock -** on the log file (obtained using sqlite3WalBeginWriteTransaction()). -*/ -SQLITE_PRIVATE int sqlite3WalFrames( - Wal *pWal, /* Wal handle to write to */ - int szPage, /* Database page-size in bytes */ - PgHdr *pList, /* List of dirty pages to write */ - Pgno nTruncate, /* Database size after this commit */ - int isCommit, /* True if this is a commit */ - int sync_flags /* Flags to pass to OsSync() (or 0) */ -){ - int rc; /* Used to catch return codes */ - u32 iFrame; /* Next frame address */ - PgHdr *p; /* Iterator to run through pList with. */ - PgHdr *pLast = 0; /* Last frame in list */ - int nExtra = 0; /* Number of extra copies of last page */ - int szFrame; /* The size of a single frame */ - i64 iOffset; /* Next byte to write in WAL file */ - WalWriter w; /* The writer */ - - assert( pList ); - assert( pWal->writeLock ); - - /* If this frame set completes a transaction, then nTruncate>0. If - ** nTruncate==0 then this frame set does not complete the transaction. */ - assert( (isCommit!=0)==(nTruncate!=0) ); - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) - { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} - WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", - pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); - } -#endif - - /* See if it is possible to write these frames into the start of the - ** log file, instead of appending to it at pWal->hdr.mxFrame. - */ - if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ - return rc; - } - - /* If this is the first frame written into the log, write the WAL - ** header to the start of the WAL file. See comments at the top of - ** this source file for a description of the WAL header format. - */ - iFrame = pWal->hdr.mxFrame; - if( iFrame==0 ){ - u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ - u32 aCksum[2]; /* Checksum for wal-header */ - - sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); - sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); - sqlite3Put4byte(&aWalHdr[8], szPage); - sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); - if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); - memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); - walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); - sqlite3Put4byte(&aWalHdr[24], aCksum[0]); - sqlite3Put4byte(&aWalHdr[28], aCksum[1]); - - pWal->szPage = szPage; - pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; - pWal->hdr.aFrameCksum[0] = aCksum[0]; - pWal->hdr.aFrameCksum[1] = aCksum[1]; - pWal->truncateOnCommit = 1; - - rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); - WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); - if( rc!=SQLITE_OK ){ - return rc; - } - - /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless - ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise - ** an out-of-order write following a WAL restart could result in - ** database corruption. See the ticket: - ** - ** http://localhost:591/sqlite/info/ff5be73dee - */ - if( pWal->syncHeader && sync_flags ){ - rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); - if( rc ) return rc; - } - } - assert( (int)pWal->szPage==szPage ); - - /* Setup information needed to write frames into the WAL */ - w.pWal = pWal; - w.pFd = pWal->pWalFd; - w.iSyncPoint = 0; - w.syncFlags = sync_flags; - w.szPage = szPage; - iOffset = walFrameOffset(iFrame+1, szPage); - szFrame = szPage + WAL_FRAME_HDRSIZE; - - /* Write all frames into the log file exactly once */ - for(p=pList; p; p=p->pDirty){ - int nDbSize; /* 0 normally. Positive == commit flag */ - iFrame++; - assert( iOffset==walFrameOffset(iFrame, szPage) ); - nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; - rc = walWriteOneFrame(&w, p, nDbSize, iOffset); - if( rc ) return rc; - pLast = p; - iOffset += szFrame; - } - - /* If this is the end of a transaction, then we might need to pad - ** the transaction and/or sync the WAL file. - ** - ** Padding and syncing only occur if this set of frames complete a - ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL - ** or synchonous==OFF, then no padding or syncing are needed. - ** - ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not - ** needed and only the sync is done. If padding is needed, then the - ** final frame is repeated (with its commit mark) until the next sector - ** boundary is crossed. Only the part of the WAL prior to the last - ** sector boundary is synced; the part of the last frame that extends - ** past the sector boundary is written after the sync. - */ - if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ - if( pWal->padToSectorBoundary ){ - int sectorSize = sqlite3SectorSize(pWal->pWalFd); - w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; - while( iOffset<w.iSyncPoint ){ - rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); - if( rc ) return rc; - iOffset += szFrame; - nExtra++; - } - }else{ - rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); - } - } - - /* If this frame set completes the first transaction in the WAL and - ** if PRAGMA journal_size_limit is set, then truncate the WAL to the - ** journal size limit, if possible. - */ - if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ - i64 sz = pWal->mxWalSize; - if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ - sz = walFrameOffset(iFrame+nExtra+1, szPage); - } - walLimitSize(pWal, sz); - pWal->truncateOnCommit = 0; - } - - /* Append data to the wal-index. It is not necessary to lock the - ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index - ** guarantees that there are no other writers, and no data that may - ** be in use by existing readers is being overwritten. - */ - iFrame = pWal->hdr.mxFrame; - for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ - iFrame++; - rc = walIndexAppend(pWal, iFrame, p->pgno); - } - while( rc==SQLITE_OK && nExtra>0 ){ - iFrame++; - nExtra--; - rc = walIndexAppend(pWal, iFrame, pLast->pgno); - } - - if( rc==SQLITE_OK ){ - /* Update the private copy of the header. */ - pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - pWal->hdr.mxFrame = iFrame; - if( isCommit ){ - pWal->hdr.iChange++; - pWal->hdr.nPage = nTruncate; - } - /* If this is a commit, update the wal-index header too. */ - if( isCommit ){ - walIndexWriteHdr(pWal); - pWal->iCallback = iFrame; - } - } - - WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); - return rc; -} - -/* -** This routine is called to implement sqlite3_wal_checkpoint() and -** related interfaces. -** -** Obtain a CHECKPOINT lock and then backfill as much information as -** we can from WAL into the database. -** -** If parameter xBusy is not NULL, it is a pointer to a busy-handler -** callback. In this case this function runs a blocking checkpoint. -*/ -SQLITE_PRIVATE int sqlite3WalCheckpoint( - Wal *pWal, /* Wal connection */ - int eMode, /* PASSIVE, FULL or RESTART */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int sync_flags, /* Flags to sync db file with (or 0) */ - int nBuf, /* Size of temporary buffer */ - u8 *zBuf, /* Temporary buffer to use */ - int *pnLog, /* OUT: Number of frames in WAL */ - int *pnCkpt /* OUT: Number of backfilled frames in WAL */ -){ - int rc; /* Return code */ - int isChanged = 0; /* True if a new wal-index header is loaded */ - int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ - - assert( pWal->ckptLock==0 ); - assert( pWal->writeLock==0 ); - - if( pWal->readOnly ) return SQLITE_READONLY; - WALTRACE(("WAL%p: checkpoint begins\n", pWal)); - rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); - if( rc ){ - /* Usually this is SQLITE_BUSY meaning that another thread or process - ** is already running a checkpoint, or maybe a recovery. But it might - ** also be SQLITE_IOERR. */ - return rc; - } - pWal->ckptLock = 1; - - /* If this is a blocking-checkpoint, then obtain the write-lock as well - ** to prevent any writers from running while the checkpoint is underway. - ** This has to be done before the call to walIndexReadHdr() below. - ** - ** If the writer lock cannot be obtained, then a passive checkpoint is - ** run instead. Since the checkpointer is not holding the writer lock, - ** there is no point in blocking waiting for any readers. Assuming no - ** other error occurs, this function will return SQLITE_BUSY to the caller. - */ - if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); - if( rc==SQLITE_OK ){ - pWal->writeLock = 1; - }else if( rc==SQLITE_BUSY ){ - eMode2 = SQLITE_CHECKPOINT_PASSIVE; - rc = SQLITE_OK; - } - } - - /* Read the wal-index header. */ - if( rc==SQLITE_OK ){ - rc = walIndexReadHdr(pWal, &isChanged); - } - - /* Copy data from the log to the database file. */ - if( rc==SQLITE_OK ){ - if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ - rc = SQLITE_CORRUPT_BKPT; - }else{ - rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); - } - - /* If no error occurred, set the output variables. */ - if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ - if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; - if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); - } - } - - if( isChanged ){ - /* If a new wal-index header was loaded before the checkpoint was - ** performed, then the pager-cache associated with pWal is now - ** out of date. So zero the cached wal-index header to ensure that - ** next time the pager opens a snapshot on this database it knows that - ** the cache needs to be reset. - */ - memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); - } - - /* Release the locks. */ - sqlite3WalEndWriteTransaction(pWal); - walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); - pWal->ckptLock = 0; - WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); - return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); -} - -/* Return the value to pass to a sqlite3_wal_hook callback, the -** number of frames in the WAL at the point of the last commit since -** sqlite3WalCallback() was called. If no commits have occurred since -** the last call, then return 0. -*/ -SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){ - u32 ret = 0; - if( pWal ){ - ret = pWal->iCallback; - pWal->iCallback = 0; - } - return (int)ret; -} - -/* -** This function is called to change the WAL subsystem into or out -** of locking_mode=EXCLUSIVE. -** -** If op is zero, then attempt to change from locking_mode=EXCLUSIVE -** into locking_mode=NORMAL. This means that we must acquire a lock -** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL -** or if the acquisition of the lock fails, then return 0. If the -** transition out of exclusive-mode is successful, return 1. This -** operation must occur while the pager is still holding the exclusive -** lock on the main database file. -** -** If op is one, then change from locking_mode=NORMAL into -** locking_mode=EXCLUSIVE. This means that the pWal->readLock must -** be released. Return 1 if the transition is made and 0 if the -** WAL is already in exclusive-locking mode - meaning that this -** routine is a no-op. The pager must already hold the exclusive lock -** on the main database file before invoking this operation. -** -** If op is negative, then do a dry-run of the op==1 case but do -** not actually change anything. The pager uses this to see if it -** should acquire the database exclusive lock prior to invoking -** the op==1 case. -*/ -SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){ - int rc; - assert( pWal->writeLock==0 ); - assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); - - /* pWal->readLock is usually set, but might be -1 if there was a - ** prior error while attempting to acquire are read-lock. This cannot - ** happen if the connection is actually in exclusive mode (as no xShmLock - ** locks are taken in this case). Nor should the pager attempt to - ** upgrade to exclusive-mode following such an error. - */ - assert( pWal->readLock>=0 || pWal->lockError ); - assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); - - if( op==0 ){ - if( pWal->exclusiveMode ){ - pWal->exclusiveMode = 0; - if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ - pWal->exclusiveMode = 1; - } - rc = pWal->exclusiveMode==0; - }else{ - /* Already in locking_mode=NORMAL */ - rc = 0; - } - }else if( op>0 ){ - assert( pWal->exclusiveMode==0 ); - assert( pWal->readLock>=0 ); - walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); - pWal->exclusiveMode = 1; - rc = 1; - }else{ - rc = pWal->exclusiveMode==0; - } - return rc; -} - -/* -** Return true if the argument is non-NULL and the WAL module is using -** heap-memory for the wal-index. Otherwise, if the argument is NULL or the -** WAL module is using shared-memory, return false. -*/ -SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){ - return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); -} - -#ifdef SQLITE_ENABLE_ZIPVFS -/* -** If the argument is not NULL, it points to a Wal object that holds a -** read-lock. This function returns the database page-size if it is known, -** or zero if it is not (or if pWal is NULL). -*/ -SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){ - assert( pWal==0 || pWal->readLock>=0 ); - return (pWal ? pWal->szPage : 0); -} -#endif - -#endif /* #ifndef SQLITE_OMIT_WAL */ - -/************** End of wal.c *************************************************/ -/************** Begin file btmutex.c *****************************************/ -/* -** 2007 August 27 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code used to implement mutexes on Btree objects. -** This code really belongs in btree.c. But btree.c is getting too -** big and we want to break it down some. This packaged seemed like -** a good breakout. -*/ -/************** Include btreeInt.h in the middle of btmutex.c ****************/ -/************** Begin file btreeInt.h ****************************************/ -/* -** 2004 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file implements a external (disk-based) database using BTrees. -** For a detailed discussion of BTrees, refer to -** -** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: -** "Sorting And Searching", pages 473-480. Addison-Wesley -** Publishing Company, Reading, Massachusetts. -** -** The basic idea is that each page of the file contains N database -** entries and N+1 pointers to subpages. -** -** ---------------------------------------------------------------- -** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | -** ---------------------------------------------------------------- -** -** All of the keys on the page that Ptr(0) points to have values less -** than Key(0). All of the keys on page Ptr(1) and its subpages have -** values greater than Key(0) and less than Key(1). All of the keys -** on Ptr(N) and its subpages have values greater than Key(N-1). And -** so forth. -** -** Finding a particular key requires reading O(log(M)) pages from the -** disk where M is the number of entries in the tree. -** -** In this implementation, a single file can hold one or more separate -** BTrees. Each BTree is identified by the index of its root page. The -** key and data for any entry are combined to form the "payload". A -** fixed amount of payload can be carried directly on the database -** page. If the payload is larger than the preset amount then surplus -** bytes are stored on overflow pages. The payload for an entry -** and the preceding pointer are combined to form a "Cell". Each -** page has a small header which contains the Ptr(N) pointer and other -** information such as the size of key and data. -** -** FORMAT DETAILS -** -** The file is divided into pages. The first page is called page 1, -** the second is page 2, and so forth. A page number of zero indicates -** "no such page". The page size can be any power of 2 between 512 and 65536. -** Each page can be either a btree page, a freelist page, an overflow -** page, or a pointer-map page. -** -** The first page is always a btree page. The first 100 bytes of the first -** page contain a special header (the "file header") that describes the file. -** The format of the file header is as follows: -** -** OFFSET SIZE DESCRIPTION -** 0 16 Header string: "SQLite format 3\000" -** 16 2 Page size in bytes. -** 18 1 File format write version -** 19 1 File format read version -** 20 1 Bytes of unused space at the end of each page -** 21 1 Max embedded payload fraction -** 22 1 Min embedded payload fraction -** 23 1 Min leaf payload fraction -** 24 4 File change counter -** 28 4 Reserved for future use -** 32 4 First freelist page -** 36 4 Number of freelist pages in the file -** 40 60 15 4-byte meta values passed to higher layers -** -** 40 4 Schema cookie -** 44 4 File format of schema layer -** 48 4 Size of page cache -** 52 4 Largest root-page (auto/incr_vacuum) -** 56 4 1=UTF-8 2=UTF16le 3=UTF16be -** 60 4 User version -** 64 4 Incremental vacuum mode -** 68 4 unused -** 72 4 unused -** 76 4 unused -** -** All of the integer values are big-endian (most significant byte first). -** -** The file change counter is incremented when the database is changed -** This counter allows other processes to know when the file has changed -** and thus when they need to flush their cache. -** -** The max embedded payload fraction is the amount of the total usable -** space in a page that can be consumed by a single cell for standard -** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default -** is to limit the maximum cell size so that at least 4 cells will fit -** on one page. Thus the default max embedded payload fraction is 64. -** -** If the payload for a cell is larger than the max payload, then extra -** payload is spilled to overflow pages. Once an overflow page is allocated, -** as many bytes as possible are moved into the overflow pages without letting -** the cell size drop below the min embedded payload fraction. -** -** The min leaf payload fraction is like the min embedded payload fraction -** except that it applies to leaf nodes in a LEAFDATA tree. The maximum -** payload fraction for a LEAFDATA tree is always 100% (or 255) and it -** not specified in the header. -** -** Each btree pages is divided into three sections: The header, the -** cell pointer array, and the cell content area. Page 1 also has a 100-byte -** file header that occurs before the page header. -** -** |----------------| -** | file header | 100 bytes. Page 1 only. -** |----------------| -** | page header | 8 bytes for leaves. 12 bytes for interior nodes -** |----------------| -** | cell pointer | | 2 bytes per cell. Sorted order. -** | array | | Grows downward -** | | v -** |----------------| -** | unallocated | -** | space | -** |----------------| ^ Grows upwards -** | cell content | | Arbitrary order interspersed with freeblocks. -** | area | | and free space fragments. -** |----------------| -** -** The page headers looks like this: -** -** OFFSET SIZE DESCRIPTION -** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf -** 1 2 byte offset to the first freeblock -** 3 2 number of cells on this page -** 5 2 first byte of the cell content area -** 7 1 number of fragmented free bytes -** 8 4 Right child (the Ptr(N) value). Omitted on leaves. -** -** The flags define the format of this btree page. The leaf flag means that -** this page has no children. The zerodata flag means that this page carries -** only keys and no data. The intkey flag means that the key is a integer -** which is stored in the key size entry of the cell header rather than in -** the payload area. -** -** The cell pointer array begins on the first byte after the page header. -** The cell pointer array contains zero or more 2-byte numbers which are -** offsets from the beginning of the page to the cell content in the cell -** content area. The cell pointers occur in sorted order. The system strives -** to keep free space after the last cell pointer so that new cells can -** be easily added without having to defragment the page. -** -** Cell content is stored at the very end of the page and grows toward the -** beginning of the page. -** -** Unused space within the cell content area is collected into a linked list of -** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset -** to the first freeblock is given in the header. Freeblocks occur in -** increasing order. Because a freeblock must be at least 4 bytes in size, -** any group of 3 or fewer unused bytes in the cell content area cannot -** exist on the freeblock chain. A group of 3 or fewer free bytes is called -** a fragment. The total number of bytes in all fragments is recorded. -** in the page header at offset 7. -** -** SIZE DESCRIPTION -** 2 Byte offset of the next freeblock -** 2 Bytes in this freeblock -** -** Cells are of variable length. Cells are stored in the cell content area at -** the end of the page. Pointers to the cells are in the cell pointer array -** that immediately follows the page header. Cells is not necessarily -** contiguous or in order, but cell pointers are contiguous and in order. -** -** Cell content makes use of variable length integers. A variable -** length integer is 1 to 9 bytes where the lower 7 bits of each -** byte are used. The integer consists of all bytes that have bit 8 set and -** the first byte with bit 8 clear. The most significant byte of the integer -** appears first. A variable-length integer may not be more than 9 bytes long. -** As a special case, all 8 bytes of the 9th byte are used as data. This -** allows a 64-bit integer to be encoded in 9 bytes. -** -** 0x00 becomes 0x00000000 -** 0x7f becomes 0x0000007f -** 0x81 0x00 becomes 0x00000080 -** 0x82 0x00 becomes 0x00000100 -** 0x80 0x7f becomes 0x0000007f -** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 -** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 -** -** Variable length integers are used for rowids and to hold the number of -** bytes of key and data in a btree cell. -** -** The content of a cell looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of the left child. Omitted if leaf flag is set. -** var Number of bytes of data. Omitted if the zerodata flag is set. -** var Number of bytes of key. Or the key itself if intkey flag is set. -** * Payload -** 4 First page of the overflow chain. Omitted if no overflow -** -** Overflow pages form a linked list. Each page except the last is completely -** filled with data (pagesize - 4 bytes). The last page can have as little -** as 1 byte of data. -** -** SIZE DESCRIPTION -** 4 Page number of next overflow page -** * Data -** -** Freelist pages come in two subtypes: trunk pages and leaf pages. The -** file header points to the first in a linked list of trunk page. Each trunk -** page points to multiple leaf pages. The content of a leaf page is -** unspecified. A trunk page looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of next trunk page -** 4 Number of leaf pointers on this page -** * zero or more pages numbers of leaves -*/ - - -/* The following value is the maximum cell size assuming a maximum page -** size give above. -*/ -#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) - -/* The maximum number of cells on a single page of the database. This -** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself -** plus 2 bytes for the index to the cell in the page header). Such -** small cells will be rare, but they are possible. -*/ -#define MX_CELL(pBt) ((pBt->pageSize-8)/6) - -/* Forward declarations */ -typedef struct MemPage MemPage; -typedef struct BtLock BtLock; - -/* -** This is a magic string that appears at the beginning of every -** SQLite database in order to identify the file as a real database. -** -** You can change this value at compile-time by specifying a -** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The -** header must be exactly 16 bytes including the zero-terminator so -** the string itself should be 15 characters long. If you change -** the header, then your custom library will not be able to read -** databases generated by the standard tools and the standard tools -** will not be able to read databases created by your custom library. -*/ -#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ -# define SQLITE_FILE_HEADER "SQLite format 3" -#endif - -/* -** Page type flags. An ORed combination of these flags appear as the -** first byte of on-disk image of every BTree page. -*/ -#define PTF_INTKEY 0x01 -#define PTF_ZERODATA 0x02 -#define PTF_LEAFDATA 0x04 -#define PTF_LEAF 0x08 - -/* -** As each page of the file is loaded into memory, an instance of the following -** structure is appended and initialized to zero. This structure stores -** information about the page that is decoded from the raw file page. -** -** The pParent field points back to the parent page. This allows us to -** walk up the BTree from any leaf to the root. Care must be taken to -** unref() the parent page pointer when this page is no longer referenced. -** The pageDestructor() routine handles that chore. -** -** Access to all fields of this structure is controlled by the mutex -** stored in MemPage.pBt->mutex. -*/ -struct MemPage { - u8 isInit; /* True if previously initialized. MUST BE FIRST! */ - u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ - u8 intKey; /* True if intkey flag is set */ - u8 leaf; /* True if leaf flag is set */ - u8 hasData; /* True if this page stores data */ - u8 hdrOffset; /* 100 for page 1. 0 otherwise */ - u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ - u8 max1bytePayload; /* min(maxLocal,127) */ - u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ - u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ - u16 cellOffset; /* Index in aData of first cell pointer */ - u16 nFree; /* Number of free bytes on the page */ - u16 nCell; /* Number of cells on this page, local and ovfl */ - u16 maskPage; /* Mask for page offset */ - u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th - ** non-overflow cell */ - u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ - BtShared *pBt; /* Pointer to BtShared that this page is part of */ - u8 *aData; /* Pointer to disk image of the page data */ - u8 *aDataEnd; /* One byte past the end of usable data */ - u8 *aCellIdx; /* The cell index area */ - DbPage *pDbPage; /* Pager page handle */ - Pgno pgno; /* Page number for this page */ -}; - -/* -** The in-memory image of a disk page has the auxiliary information appended -** to the end. EXTRA_SIZE is the number of bytes of space needed to hold -** that extra information. -*/ -#define EXTRA_SIZE sizeof(MemPage) - -/* -** A linked list of the following structures is stored at BtShared.pLock. -** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor -** is opened on the table with root page BtShared.iTable. Locks are removed -** from this list when a transaction is committed or rolled back, or when -** a btree handle is closed. -*/ -struct BtLock { - Btree *pBtree; /* Btree handle holding this lock */ - Pgno iTable; /* Root page of table */ - u8 eLock; /* READ_LOCK or WRITE_LOCK */ - BtLock *pNext; /* Next in BtShared.pLock list */ -}; - -/* Candidate values for BtLock.eLock */ -#define READ_LOCK 1 -#define WRITE_LOCK 2 - -/* A Btree handle -** -** A database connection contains a pointer to an instance of -** this object for every database file that it has open. This structure -** is opaque to the database connection. The database connection cannot -** see the internals of this structure and only deals with pointers to -** this structure. -** -** For some database files, the same underlying database cache might be -** shared between multiple connections. In that case, each connection -** has it own instance of this object. But each instance of this object -** points to the same BtShared object. The database cache and the -** schema associated with the database file are all contained within -** the BtShared object. -** -** All fields in this structure are accessed under sqlite3.mutex. -** The pBt pointer itself may not be changed while there exists cursors -** in the referenced BtShared that point back to this Btree since those -** cursors have to go through this Btree to find their BtShared and -** they often do so without holding sqlite3.mutex. -*/ -struct Btree { - sqlite3 *db; /* The database connection holding this btree */ - BtShared *pBt; /* Sharable content of this btree */ - u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ - u8 sharable; /* True if we can share pBt with another db */ - u8 locked; /* True if db currently has pBt locked */ - int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ - int nBackup; /* Number of backup operations reading this btree */ - Btree *pNext; /* List of other sharable Btrees from the same db */ - Btree *pPrev; /* Back pointer of the same list */ -#ifndef SQLITE_OMIT_SHARED_CACHE - BtLock lock; /* Object used to lock page 1 */ -#endif -}; - -/* -** Btree.inTrans may take one of the following values. -** -** If the shared-data extension is enabled, there may be multiple users -** of the Btree structure. At most one of these may open a write transaction, -** but any number may have active read transactions. -*/ -#define TRANS_NONE 0 -#define TRANS_READ 1 -#define TRANS_WRITE 2 - -/* -** An instance of this object represents a single database file. -** -** A single database file can be in use at the same time by two -** or more database connections. When two or more connections are -** sharing the same database file, each connection has it own -** private Btree object for the file and each of those Btrees points -** to this one BtShared object. BtShared.nRef is the number of -** connections currently sharing this database file. -** -** Fields in this structure are accessed under the BtShared.mutex -** mutex, except for nRef and pNext which are accessed under the -** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field -** may not be modified once it is initially set as long as nRef>0. -** The pSchema field may be set once under BtShared.mutex and -** thereafter is unchanged as long as nRef>0. -** -** isPending: -** -** If a BtShared client fails to obtain a write-lock on a database -** table (because there exists one or more read-locks on the table), -** the shared-cache enters 'pending-lock' state and isPending is -** set to true. -** -** The shared-cache leaves the 'pending lock' state when either of -** the following occur: -** -** 1) The current writer (BtShared.pWriter) concludes its transaction, OR -** 2) The number of locks held by other connections drops to zero. -** -** while in the 'pending-lock' state, no connection may start a new -** transaction. -** -** This feature is included to help prevent writer-starvation. -*/ -struct BtShared { - Pager *pPager; /* The page cache */ - sqlite3 *db; /* Database connection currently using this Btree */ - BtCursor *pCursor; /* A list of all open cursors */ - MemPage *pPage1; /* First page of the database */ - u8 openFlags; /* Flags to sqlite3BtreeOpen() */ -#ifndef SQLITE_OMIT_AUTOVACUUM - u8 autoVacuum; /* True if auto-vacuum is enabled */ - u8 incrVacuum; /* True if incr-vacuum is enabled */ - u8 bDoTruncate; /* True to truncate db on commit */ -#endif - u8 inTransaction; /* Transaction state */ - u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */ - u16 btsFlags; /* Boolean parameters. See BTS_* macros below */ - u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ - u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ - u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ - u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ - u32 pageSize; /* Total number of bytes on a page */ - u32 usableSize; /* Number of usable bytes on each page */ - int nTransaction; /* Number of open transactions (read + write) */ - u32 nPage; /* Number of pages in the database */ - void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ - void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ - sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ - Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ -#ifndef SQLITE_OMIT_SHARED_CACHE - int nRef; /* Number of references to this structure */ - BtShared *pNext; /* Next on a list of sharable BtShared structs */ - BtLock *pLock; /* List of locks held on this shared-btree struct */ - Btree *pWriter; /* Btree with currently open write transaction */ -#endif - u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */ -}; - -/* -** Allowed values for BtShared.btsFlags -*/ -#define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */ -#define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */ -#define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */ -#define BTS_INITIALLY_EMPTY 0x0008 /* Database was empty at trans start */ -#define BTS_NO_WAL 0x0010 /* Do not open write-ahead-log files */ -#define BTS_EXCLUSIVE 0x0020 /* pWriter has an exclusive lock */ -#define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */ - -/* -** An instance of the following structure is used to hold information -** about a cell. The parseCellPtr() function fills in this structure -** based on information extract from the raw disk page. -*/ -typedef struct CellInfo CellInfo; -struct CellInfo { - i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ - u8 *pCell; /* Pointer to the start of cell content */ - u32 nData; /* Number of bytes of data */ - u32 nPayload; /* Total amount of payload */ - u16 nHeader; /* Size of the cell content header in bytes */ - u16 nLocal; /* Amount of payload held locally */ - u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ - u16 nSize; /* Size of the cell content on the main b-tree page */ -}; - -/* -** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than -** this will be declared corrupt. This value is calculated based on a -** maximum database size of 2^31 pages a minimum fanout of 2 for a -** root-node and 3 for all other internal nodes. -** -** If a tree that appears to be taller than this is encountered, it is -** assumed that the database is corrupt. -*/ -#define BTCURSOR_MAX_DEPTH 20 - -/* -** A cursor is a pointer to a particular entry within a particular -** b-tree within a database file. -** -** The entry is identified by its MemPage and the index in -** MemPage.aCell[] of the entry. -** -** A single database file can be shared by two more database connections, -** but cursors cannot be shared. Each cursor is associated with a -** particular database connection identified BtCursor.pBtree.db. -** -** Fields in this structure are accessed under the BtShared.mutex -** found at self->pBt->mutex. -*/ -struct BtCursor { - Btree *pBtree; /* The Btree to which this cursor belongs */ - BtShared *pBt; /* The BtShared this cursor points to */ - BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ - struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ -#ifndef SQLITE_OMIT_INCRBLOB - Pgno *aOverflow; /* Cache of overflow page locations */ -#endif - Pgno pgnoRoot; /* The root page of this tree */ - sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */ - CellInfo info; /* A parse of the cell we are pointing at */ - i64 nKey; /* Size of pKey, or last integer key */ - void *pKey; /* Saved key that was cursor's last known position */ - int skipNext; /* Prev() is noop if negative. Next() is noop if positive */ - u8 wrFlag; /* True if writable */ - u8 atLast; /* Cursor pointing to the last entry */ - u8 validNKey; /* True if info.nKey is valid */ - u8 eState; /* One of the CURSOR_XXX constants (see below) */ -#ifndef SQLITE_OMIT_INCRBLOB - u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ -#endif - u8 hints; /* As configured by CursorSetHints() */ - i16 iPage; /* Index of current page in apPage */ - u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ - MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ -}; - -/* -** Potential values for BtCursor.eState. -** -** CURSOR_VALID: -** Cursor points to a valid entry. getPayload() etc. may be called. -** -** CURSOR_INVALID: -** Cursor does not point to a valid entry. This can happen (for example) -** because the table is empty or because BtreeCursorFirst() has not been -** called. -** -** CURSOR_REQUIRESEEK: -** The table that this cursor was opened on still exists, but has been -** modified since the cursor was last used. The cursor position is saved -** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in -** this state, restoreCursorPosition() can be called to attempt to -** seek the cursor to the saved position. -** -** CURSOR_FAULT: -** A unrecoverable error (an I/O error or a malloc failure) has occurred -** on a different connection that shares the BtShared cache with this -** cursor. The error has left the cache in an inconsistent state. -** Do nothing else with this cursor. Any attempt to use the cursor -** should return the error code stored in BtCursor.skip -*/ -#define CURSOR_INVALID 0 -#define CURSOR_VALID 1 -#define CURSOR_REQUIRESEEK 2 -#define CURSOR_FAULT 3 - -/* -** The database page the PENDING_BYTE occupies. This page is never used. -*/ -# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt) - -/* -** These macros define the location of the pointer-map entry for a -** database page. The first argument to each is the number of usable -** bytes on each page of the database (often 1024). The second is the -** page number to look up in the pointer map. -** -** PTRMAP_PAGENO returns the database page number of the pointer-map -** page that stores the required pointer. PTRMAP_PTROFFSET returns -** the offset of the requested map entry. -** -** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, -** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be -** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements -** this test. -*/ -#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) -#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) -#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) - -/* -** The pointer map is a lookup table that identifies the parent page for -** each child page in the database file. The parent page is the page that -** contains a pointer to the child. Every page in the database contains -** 0 or 1 parent pages. (In this context 'database page' refers -** to any page that is not part of the pointer map itself.) Each pointer map -** entry consists of a single byte 'type' and a 4 byte parent page number. -** The PTRMAP_XXX identifiers below are the valid types. -** -** The purpose of the pointer map is to facility moving pages from one -** position in the file to another as part of autovacuum. When a page -** is moved, the pointer in its parent must be updated to point to the -** new location. The pointer map is used to locate the parent page quickly. -** -** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not -** used in this case. -** -** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number -** is not used in this case. -** -** PTRMAP_OVERFLOW1: The database page is the first page in a list of -** overflow pages. The page number identifies the page that -** contains the cell with a pointer to this overflow page. -** -** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of -** overflow pages. The page-number identifies the previous -** page in the overflow page list. -** -** PTRMAP_BTREE: The database page is a non-root btree page. The page number -** identifies the parent page in the btree. -*/ -#define PTRMAP_ROOTPAGE 1 -#define PTRMAP_FREEPAGE 2 -#define PTRMAP_OVERFLOW1 3 -#define PTRMAP_OVERFLOW2 4 -#define PTRMAP_BTREE 5 - -/* A bunch of assert() statements to check the transaction state variables -** of handle p (type Btree*) are internally consistent. -*/ -#define btreeIntegrity(p) \ - assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ - assert( p->pBt->inTransaction>=p->inTrans ); - - -/* -** The ISAUTOVACUUM macro is used within balance_nonroot() to determine -** if the database supports auto-vacuum or not. Because it is used -** within an expression that is an argument to another macro -** (sqliteMallocRaw), it is not possible to use conditional compilation. -** So, this macro is defined instead. -*/ -#ifndef SQLITE_OMIT_AUTOVACUUM -#define ISAUTOVACUUM (pBt->autoVacuum) -#else -#define ISAUTOVACUUM 0 -#endif - - -/* -** This structure is passed around through all the sanity checking routines -** in order to keep track of some global state information. -** -** The aRef[] array is allocated so that there is 1 bit for each page in -** the database. As the integrity-check proceeds, for each page used in -** the database the corresponding bit is set. This allows integrity-check to -** detect pages that are used twice and orphaned pages (both of which -** indicate corruption). -*/ -typedef struct IntegrityCk IntegrityCk; -struct IntegrityCk { - BtShared *pBt; /* The tree being checked out */ - Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ - u8 *aPgRef; /* 1 bit per page in the db (see above) */ - Pgno nPage; /* Number of pages in the database */ - int mxErr; /* Stop accumulating errors when this reaches zero */ - int nErr; /* Number of messages written to zErrMsg so far */ - int mallocFailed; /* A memory allocation error has occurred */ - StrAccum errMsg; /* Accumulate the error message text here */ -}; - -/* -** Routines to read or write a two- and four-byte big-endian integer values. -*/ -#define get2byte(x) ((x)[0]<<8 | (x)[1]) -#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) -#define get4byte sqlite3Get4byte -#define put4byte sqlite3Put4byte - -/************** End of btreeInt.h ********************************************/ -/************** Continuing where we left off in btmutex.c ********************/ -#ifndef SQLITE_OMIT_SHARED_CACHE -#if SQLITE_THREADSAFE - -/* -** Obtain the BtShared mutex associated with B-Tree handle p. Also, -** set BtShared.db to the database handle associated with p and the -** p->locked boolean to true. -*/ -static void lockBtreeMutex(Btree *p){ - assert( p->locked==0 ); - assert( sqlite3_mutex_notheld(p->pBt->mutex) ); - assert( sqlite3_mutex_held(p->db->mutex) ); - - sqlite3_mutex_enter(p->pBt->mutex); - p->pBt->db = p->db; - p->locked = 1; -} - -/* -** Release the BtShared mutex associated with B-Tree handle p and -** clear the p->locked boolean. -*/ -static void unlockBtreeMutex(Btree *p){ - BtShared *pBt = p->pBt; - assert( p->locked==1 ); - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( sqlite3_mutex_held(p->db->mutex) ); - assert( p->db==pBt->db ); - - sqlite3_mutex_leave(pBt->mutex); - p->locked = 0; -} - -/* -** Enter a mutex on the given BTree object. -** -** If the object is not sharable, then no mutex is ever required -** and this routine is a no-op. The underlying mutex is non-recursive. -** But we keep a reference count in Btree.wantToLock so the behavior -** of this interface is recursive. -** -** To avoid deadlocks, multiple Btrees are locked in the same order -** by all database connections. The p->pNext is a list of other -** Btrees belonging to the same database connection as the p Btree -** which need to be locked after p. If we cannot get a lock on -** p, then first unlock all of the others on p->pNext, then wait -** for the lock to become available on p, then relock all of the -** subsequent Btrees that desire a lock. -*/ -SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ - Btree *pLater; - - /* Some basic sanity checking on the Btree. The list of Btrees - ** connected by pNext and pPrev should be in sorted order by - ** Btree.pBt value. All elements of the list should belong to - ** the same connection. Only shared Btrees are on the list. */ - assert( p->pNext==0 || p->pNext->pBt>p->pBt ); - assert( p->pPrev==0 || p->pPrev->pBt<p->pBt ); - assert( p->pNext==0 || p->pNext->db==p->db ); - assert( p->pPrev==0 || p->pPrev->db==p->db ); - assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); - - /* Check for locking consistency */ - assert( !p->locked || p->wantToLock>0 ); - assert( p->sharable || p->wantToLock==0 ); - - /* We should already hold a lock on the database connection */ - assert( sqlite3_mutex_held(p->db->mutex) ); - - /* Unless the database is sharable and unlocked, then BtShared.db - ** should already be set correctly. */ - assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); - - if( !p->sharable ) return; - p->wantToLock++; - if( p->locked ) return; - - /* In most cases, we should be able to acquire the lock we - ** want without having to go throught the ascending lock - ** procedure that follows. Just be sure not to block. - */ - if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ - p->pBt->db = p->db; - p->locked = 1; - return; - } - - /* To avoid deadlock, first release all locks with a larger - ** BtShared address. Then acquire our lock. Then reacquire - ** the other BtShared locks that we used to hold in ascending - ** order. - */ - for(pLater=p->pNext; pLater; pLater=pLater->pNext){ - assert( pLater->sharable ); - assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); - assert( !pLater->locked || pLater->wantToLock>0 ); - if( pLater->locked ){ - unlockBtreeMutex(pLater); - } - } - lockBtreeMutex(p); - for(pLater=p->pNext; pLater; pLater=pLater->pNext){ - if( pLater->wantToLock ){ - lockBtreeMutex(pLater); - } - } -} - -/* -** Exit the recursive mutex on a Btree. -*/ -SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){ - if( p->sharable ){ - assert( p->wantToLock>0 ); - p->wantToLock--; - if( p->wantToLock==0 ){ - unlockBtreeMutex(p); - } - } -} - -#ifndef NDEBUG -/* -** Return true if the BtShared mutex is held on the btree, or if the -** B-Tree is not marked as sharable. -** -** This routine is used only from within assert() statements. -*/ -SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){ - assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); - assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); - assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); - assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); - - return (p->sharable==0 || p->locked); -} -#endif - - -#ifndef SQLITE_OMIT_INCRBLOB -/* -** Enter and leave a mutex on a Btree given a cursor owned by that -** Btree. These entry points are used by incremental I/O and can be -** omitted if that module is not used. -*/ -SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){ - sqlite3BtreeEnter(pCur->pBtree); -} -SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){ - sqlite3BtreeLeave(pCur->pBtree); -} -#endif /* SQLITE_OMIT_INCRBLOB */ - - -/* -** Enter the mutex on every Btree associated with a database -** connection. This is needed (for example) prior to parsing -** a statement since we will be comparing table and column names -** against all schemas and we do not want those schemas being -** reset out from under us. -** -** There is a corresponding leave-all procedures. -** -** Enter the mutexes in accending order by BtShared pointer address -** to avoid the possibility of deadlock when two threads with -** two or more btrees in common both try to lock all their btrees -** at the same instant. -*/ -SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ - int i; - Btree *p; - assert( sqlite3_mutex_held(db->mutex) ); - for(i=0; i<db->nDb; i++){ - p = db->aDb[i].pBt; - if( p ) sqlite3BtreeEnter(p); - } -} -SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ - int i; - Btree *p; - assert( sqlite3_mutex_held(db->mutex) ); - for(i=0; i<db->nDb; i++){ - p = db->aDb[i].pBt; - if( p ) sqlite3BtreeLeave(p); - } -} - -/* -** Return true if a particular Btree requires a lock. Return FALSE if -** no lock is ever required since it is not sharable. -*/ -SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){ - return p->sharable; -} - -#ifndef NDEBUG -/* -** Return true if the current thread holds the database connection -** mutex and all required BtShared mutexes. -** -** This routine is used inside assert() statements only. -*/ -SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ - int i; - if( !sqlite3_mutex_held(db->mutex) ){ - return 0; - } - for(i=0; i<db->nDb; i++){ - Btree *p; - p = db->aDb[i].pBt; - if( p && p->sharable && - (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ - return 0; - } - } - return 1; -} -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* -** Return true if the correct mutexes are held for accessing the -** db->aDb[iDb].pSchema structure. The mutexes required for schema -** access are: -** -** (1) The mutex on db -** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. -** -** If pSchema is not NULL, then iDb is computed from pSchema and -** db using sqlite3SchemaToIndex(). -*/ -SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ - Btree *p; - assert( db!=0 ); - if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); - assert( iDb>=0 && iDb<db->nDb ); - if( !sqlite3_mutex_held(db->mutex) ) return 0; - if( iDb==1 ) return 1; - p = db->aDb[iDb].pBt; - assert( p!=0 ); - return p->sharable==0 || p->locked==1; -} -#endif /* NDEBUG */ - -#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ -/* -** The following are special cases for mutex enter routines for use -** in single threaded applications that use shared cache. Except for -** these two routines, all mutex operations are no-ops in that case and -** are null #defines in btree.h. -** -** If shared cache is disabled, then all btree mutex routines, including -** the ones below, are no-ops and are null #defines in btree.h. -*/ - -SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ - p->pBt->db = p->db; -} -SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ - int i; - for(i=0; i<db->nDb; i++){ - Btree *p = db->aDb[i].pBt; - if( p ){ - p->pBt->db = p->db; - } - } -} -#endif /* if SQLITE_THREADSAFE */ -#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ - -/************** End of btmutex.c *********************************************/ -/************** Begin file btree.c *******************************************/ -/* -** 2004 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file implements a external (disk-based) database using BTrees. -** See the header comment on "btreeInt.h" for additional information. -** Including a description of file format and an overview of operation. -*/ - -/* -** The header string that appears at the beginning of every -** SQLite database. -*/ -static const char zMagicHeader[] = SQLITE_FILE_HEADER; - -/* -** Set this global variable to 1 to enable tracing using the TRACE -** macro. -*/ -#if 0 -int sqlite3BtreeTrace=1; /* True to enable tracing */ -# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} -#else -# define TRACE(X) -#endif - -/* -** Extract a 2-byte big-endian integer from an array of unsigned bytes. -** But if the value is zero, make it 65536. -** -** This routine is used to extract the "offset to cell content area" value -** from the header of a btree page. If the page size is 65536 and the page -** is empty, the offset should be 65536, but the 2-byte value stores zero. -** This routine makes the necessary adjustment to 65536. -*/ -#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) - -/* -** Values passed as the 5th argument to allocateBtreePage() -*/ -#define BTALLOC_ANY 0 /* Allocate any page */ -#define BTALLOC_EXACT 1 /* Allocate exact page if possible */ -#define BTALLOC_LE 2 /* Allocate any page <= the parameter */ - -/* -** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not -** defined, or 0 if it is. For example: -** -** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); -*/ -#ifndef SQLITE_OMIT_AUTOVACUUM -#define IfNotOmitAV(expr) (expr) -#else -#define IfNotOmitAV(expr) 0 -#endif - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** A list of BtShared objects that are eligible for participation -** in shared cache. This variable has file scope during normal builds, -** but the test harness needs to access it so we make it global for -** test builds. -** -** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. -*/ -#ifdef SQLITE_TEST -SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; -#else -static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; -#endif -#endif /* SQLITE_OMIT_SHARED_CACHE */ - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** Enable or disable the shared pager and schema features. -** -** This routine has no effect on existing database connections. -** The shared cache setting effects only future calls to -** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). -*/ -SQLITE_API int sqlite3_enable_shared_cache(int enable){ - sqlite3GlobalConfig.sharedCacheEnabled = enable; - return SQLITE_OK; -} -#endif - - - -#ifdef SQLITE_OMIT_SHARED_CACHE - /* - ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), - ** and clearAllSharedCacheTableLocks() - ** manipulate entries in the BtShared.pLock linked list used to store - ** shared-cache table level locks. If the library is compiled with the - ** shared-cache feature disabled, then there is only ever one user - ** of each BtShared structure and so this locking is not necessary. - ** So define the lock related functions as no-ops. - */ - #define querySharedCacheTableLock(a,b,c) SQLITE_OK - #define setSharedCacheTableLock(a,b,c) SQLITE_OK - #define clearAllSharedCacheTableLocks(a) - #define downgradeAllSharedCacheTableLocks(a) - #define hasSharedCacheTableLock(a,b,c,d) 1 - #define hasReadConflicts(a, b) 0 -#endif - -#ifndef SQLITE_OMIT_SHARED_CACHE - -#ifdef SQLITE_DEBUG -/* -**** This function is only used as part of an assert() statement. *** -** -** Check to see if pBtree holds the required locks to read or write to the -** table with root page iRoot. Return 1 if it does and 0 if not. -** -** For example, when writing to a table with root-page iRoot via -** Btree connection pBtree: -** -** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); -** -** When writing to an index that resides in a sharable database, the -** caller should have first obtained a lock specifying the root page of -** the corresponding table. This makes things a bit more complicated, -** as this module treats each table as a separate structure. To determine -** the table corresponding to the index being written, this -** function has to search through the database schema. -** -** Instead of a lock on the table/index rooted at page iRoot, the caller may -** hold a write-lock on the schema table (root page 1). This is also -** acceptable. -*/ -static int hasSharedCacheTableLock( - Btree *pBtree, /* Handle that must hold lock */ - Pgno iRoot, /* Root page of b-tree */ - int isIndex, /* True if iRoot is the root of an index b-tree */ - int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ -){ - Schema *pSchema = (Schema *)pBtree->pBt->pSchema; - Pgno iTab = 0; - BtLock *pLock; - - /* If this database is not shareable, or if the client is reading - ** and has the read-uncommitted flag set, then no lock is required. - ** Return true immediately. - */ - if( (pBtree->sharable==0) - || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) - ){ - return 1; - } - - /* If the client is reading or writing an index and the schema is - ** not loaded, then it is too difficult to actually check to see if - ** the correct locks are held. So do not bother - just return true. - ** This case does not come up very often anyhow. - */ - if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){ - return 1; - } - - /* Figure out the root-page that the lock should be held on. For table - ** b-trees, this is just the root page of the b-tree being read or - ** written. For index b-trees, it is the root page of the associated - ** table. */ - if( isIndex ){ - HashElem *p; - for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ - Index *pIdx = (Index *)sqliteHashData(p); - if( pIdx->tnum==(int)iRoot ){ - iTab = pIdx->pTable->tnum; - } - } - }else{ - iTab = iRoot; - } - - /* Search for the required lock. Either a write-lock on root-page iTab, a - ** write-lock on the schema table, or (if the client is reading) a - ** read-lock on iTab will suffice. Return 1 if any of these are found. */ - for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ - if( pLock->pBtree==pBtree - && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) - && pLock->eLock>=eLockType - ){ - return 1; - } - } - - /* Failed to find the required lock. */ - return 0; -} -#endif /* SQLITE_DEBUG */ - -#ifdef SQLITE_DEBUG -/* -**** This function may be used as part of assert() statements only. **** -** -** Return true if it would be illegal for pBtree to write into the -** table or index rooted at iRoot because other shared connections are -** simultaneously reading that same table or index. -** -** It is illegal for pBtree to write if some other Btree object that -** shares the same BtShared object is currently reading or writing -** the iRoot table. Except, if the other Btree object has the -** read-uncommitted flag set, then it is OK for the other object to -** have a read cursor. -** -** For example, before writing to any part of the table or index -** rooted at page iRoot, one should call: -** -** assert( !hasReadConflicts(pBtree, iRoot) ); -*/ -static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ - BtCursor *p; - for(p=pBtree->pBt->pCursor; p; p=p->pNext){ - if( p->pgnoRoot==iRoot - && p->pBtree!=pBtree - && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) - ){ - return 1; - } - } - return 0; -} -#endif /* #ifdef SQLITE_DEBUG */ - -/* -** Query to see if Btree handle p may obtain a lock of type eLock -** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return -** SQLITE_OK if the lock may be obtained (by calling -** setSharedCacheTableLock()), or SQLITE_LOCKED if not. -*/ -static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ - BtShared *pBt = p->pBt; - BtLock *pIter; - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); - assert( p->db!=0 ); - assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); - - /* If requesting a write-lock, then the Btree must have an open write - ** transaction on this file. And, obviously, for this to be so there - ** must be an open write transaction on the file itself. - */ - assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); - assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); - - /* This routine is a no-op if the shared-cache is not enabled */ - if( !p->sharable ){ - return SQLITE_OK; - } - - /* If some other connection is holding an exclusive lock, the - ** requested lock may not be obtained. - */ - if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ - sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); - return SQLITE_LOCKED_SHAREDCACHE; - } - - for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ - /* The condition (pIter->eLock!=eLock) in the following if(...) - ** statement is a simplification of: - ** - ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) - ** - ** since we know that if eLock==WRITE_LOCK, then no other connection - ** may hold a WRITE_LOCK on any table in this file (since there can - ** only be a single writer). - */ - assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); - assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); - if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ - sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); - if( eLock==WRITE_LOCK ){ - assert( p==pBt->pWriter ); - pBt->btsFlags |= BTS_PENDING; - } - return SQLITE_LOCKED_SHAREDCACHE; - } - } - return SQLITE_OK; -} -#endif /* !SQLITE_OMIT_SHARED_CACHE */ - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** Add a lock on the table with root-page iTable to the shared-btree used -** by Btree handle p. Parameter eLock must be either READ_LOCK or -** WRITE_LOCK. -** -** This function assumes the following: -** -** (a) The specified Btree object p is connected to a sharable -** database (one with the BtShared.sharable flag set), and -** -** (b) No other Btree objects hold a lock that conflicts -** with the requested lock (i.e. querySharedCacheTableLock() has -** already been called and returned SQLITE_OK). -** -** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM -** is returned if a malloc attempt fails. -*/ -static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ - BtShared *pBt = p->pBt; - BtLock *pLock = 0; - BtLock *pIter; - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); - assert( p->db!=0 ); - - /* A connection with the read-uncommitted flag set will never try to - ** obtain a read-lock using this function. The only read-lock obtained - ** by a connection in read-uncommitted mode is on the sqlite_master - ** table, and that lock is obtained in BtreeBeginTrans(). */ - assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); - - /* This function should only be called on a sharable b-tree after it - ** has been determined that no other b-tree holds a conflicting lock. */ - assert( p->sharable ); - assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); - - /* First search the list for an existing lock on this table. */ - for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ - if( pIter->iTable==iTable && pIter->pBtree==p ){ - pLock = pIter; - break; - } - } - - /* If the above search did not find a BtLock struct associating Btree p - ** with table iTable, allocate one and link it into the list. - */ - if( !pLock ){ - pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); - if( !pLock ){ - return SQLITE_NOMEM; - } - pLock->iTable = iTable; - pLock->pBtree = p; - pLock->pNext = pBt->pLock; - pBt->pLock = pLock; - } - - /* Set the BtLock.eLock variable to the maximum of the current lock - ** and the requested lock. This means if a write-lock was already held - ** and a read-lock requested, we don't incorrectly downgrade the lock. - */ - assert( WRITE_LOCK>READ_LOCK ); - if( eLock>pLock->eLock ){ - pLock->eLock = eLock; - } - - return SQLITE_OK; -} -#endif /* !SQLITE_OMIT_SHARED_CACHE */ - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** Release all the table locks (locks obtained via calls to -** the setSharedCacheTableLock() procedure) held by Btree object p. -** -** This function assumes that Btree p has an open read or write -** transaction. If it does not, then the BTS_PENDING flag -** may be incorrectly cleared. -*/ -static void clearAllSharedCacheTableLocks(Btree *p){ - BtShared *pBt = p->pBt; - BtLock **ppIter = &pBt->pLock; - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( p->sharable || 0==*ppIter ); - assert( p->inTrans>0 ); - - while( *ppIter ){ - BtLock *pLock = *ppIter; - assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); - assert( pLock->pBtree->inTrans>=pLock->eLock ); - if( pLock->pBtree==p ){ - *ppIter = pLock->pNext; - assert( pLock->iTable!=1 || pLock==&p->lock ); - if( pLock->iTable!=1 ){ - sqlite3_free(pLock); - } - }else{ - ppIter = &pLock->pNext; - } - } - - assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); - if( pBt->pWriter==p ){ - pBt->pWriter = 0; - pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); - }else if( pBt->nTransaction==2 ){ - /* This function is called when Btree p is concluding its - ** transaction. If there currently exists a writer, and p is not - ** that writer, then the number of locks held by connections other - ** than the writer must be about to drop to zero. In this case - ** set the BTS_PENDING flag to 0. - ** - ** If there is not currently a writer, then BTS_PENDING must - ** be zero already. So this next line is harmless in that case. - */ - pBt->btsFlags &= ~BTS_PENDING; - } -} - -/* -** This function changes all write-locks held by Btree p into read-locks. -*/ -static void downgradeAllSharedCacheTableLocks(Btree *p){ - BtShared *pBt = p->pBt; - if( pBt->pWriter==p ){ - BtLock *pLock; - pBt->pWriter = 0; - pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); - for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ - assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); - pLock->eLock = READ_LOCK; - } - } -} - -#endif /* SQLITE_OMIT_SHARED_CACHE */ - -static void releasePage(MemPage *pPage); /* Forward reference */ - -/* -***** This routine is used inside of assert() only **** -** -** Verify that the cursor holds the mutex on its BtShared -*/ -#ifdef SQLITE_DEBUG -static int cursorHoldsMutex(BtCursor *p){ - return sqlite3_mutex_held(p->pBt->mutex); -} -#endif - - -#ifndef SQLITE_OMIT_INCRBLOB -/* -** Invalidate the overflow page-list cache for cursor pCur, if any. -*/ -static void invalidateOverflowCache(BtCursor *pCur){ - assert( cursorHoldsMutex(pCur) ); - sqlite3_free(pCur->aOverflow); - pCur->aOverflow = 0; -} - -/* -** Invalidate the overflow page-list cache for all cursors opened -** on the shared btree structure pBt. -*/ -static void invalidateAllOverflowCache(BtShared *pBt){ - BtCursor *p; - assert( sqlite3_mutex_held(pBt->mutex) ); - for(p=pBt->pCursor; p; p=p->pNext){ - invalidateOverflowCache(p); - } -} - -/* -** This function is called before modifying the contents of a table -** to invalidate any incrblob cursors that are open on the -** row or one of the rows being modified. -** -** If argument isClearTable is true, then the entire contents of the -** table is about to be deleted. In this case invalidate all incrblob -** cursors open on any row within the table with root-page pgnoRoot. -** -** Otherwise, if argument isClearTable is false, then the row with -** rowid iRow is being replaced or deleted. In this case invalidate -** only those incrblob cursors open on that specific row. -*/ -static void invalidateIncrblobCursors( - Btree *pBtree, /* The database file to check */ - i64 iRow, /* The rowid that might be changing */ - int isClearTable /* True if all rows are being deleted */ -){ - BtCursor *p; - BtShared *pBt = pBtree->pBt; - assert( sqlite3BtreeHoldsMutex(pBtree) ); - for(p=pBt->pCursor; p; p=p->pNext){ - if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){ - p->eState = CURSOR_INVALID; - } - } -} - -#else - /* Stub functions when INCRBLOB is omitted */ - #define invalidateOverflowCache(x) - #define invalidateAllOverflowCache(x) - #define invalidateIncrblobCursors(x,y,z) -#endif /* SQLITE_OMIT_INCRBLOB */ - -/* -** Set bit pgno of the BtShared.pHasContent bitvec. This is called -** when a page that previously contained data becomes a free-list leaf -** page. -** -** The BtShared.pHasContent bitvec exists to work around an obscure -** bug caused by the interaction of two useful IO optimizations surrounding -** free-list leaf pages: -** -** 1) When all data is deleted from a page and the page becomes -** a free-list leaf page, the page is not written to the database -** (as free-list leaf pages contain no meaningful data). Sometimes -** such a page is not even journalled (as it will not be modified, -** why bother journalling it?). -** -** 2) When a free-list leaf page is reused, its content is not read -** from the database or written to the journal file (why should it -** be, if it is not at all meaningful?). -** -** By themselves, these optimizations work fine and provide a handy -** performance boost to bulk delete or insert operations. However, if -** a page is moved to the free-list and then reused within the same -** transaction, a problem comes up. If the page is not journalled when -** it is moved to the free-list and it is also not journalled when it -** is extracted from the free-list and reused, then the original data -** may be lost. In the event of a rollback, it may not be possible -** to restore the database to its original configuration. -** -** The solution is the BtShared.pHasContent bitvec. Whenever a page is -** moved to become a free-list leaf page, the corresponding bit is -** set in the bitvec. Whenever a leaf page is extracted from the free-list, -** optimization 2 above is omitted if the corresponding bit is already -** set in BtShared.pHasContent. The contents of the bitvec are cleared -** at the end of every transaction. -*/ -static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ - int rc = SQLITE_OK; - if( !pBt->pHasContent ){ - assert( pgno<=pBt->nPage ); - pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); - if( !pBt->pHasContent ){ - rc = SQLITE_NOMEM; - } - } - if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ - rc = sqlite3BitvecSet(pBt->pHasContent, pgno); - } - return rc; -} - -/* -** Query the BtShared.pHasContent vector. -** -** This function is called when a free-list leaf page is removed from the -** free-list for reuse. It returns false if it is safe to retrieve the -** page from the pager layer with the 'no-content' flag set. True otherwise. -*/ -static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ - Bitvec *p = pBt->pHasContent; - return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); -} - -/* -** Clear (destroy) the BtShared.pHasContent bitvec. This should be -** invoked at the conclusion of each write-transaction. -*/ -static void btreeClearHasContent(BtShared *pBt){ - sqlite3BitvecDestroy(pBt->pHasContent); - pBt->pHasContent = 0; -} - -/* -** Release all of the apPage[] pages for a cursor. -*/ -static void btreeReleaseAllCursorPages(BtCursor *pCur){ - int i; - for(i=0; i<=pCur->iPage; i++){ - releasePage(pCur->apPage[i]); - pCur->apPage[i] = 0; - } - pCur->iPage = -1; -} - - -/* -** Save the current cursor position in the variables BtCursor.nKey -** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. -** -** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) -** prior to calling this routine. -*/ -static int saveCursorPosition(BtCursor *pCur){ - int rc; - - assert( CURSOR_VALID==pCur->eState ); - assert( 0==pCur->pKey ); - assert( cursorHoldsMutex(pCur) ); - - rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); - assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ - - /* If this is an intKey table, then the above call to BtreeKeySize() - ** stores the integer key in pCur->nKey. In this case this value is - ** all that is required. Otherwise, if pCur is not open on an intKey - ** table, then malloc space for and store the pCur->nKey bytes of key - ** data. - */ - if( 0==pCur->apPage[0]->intKey ){ - void *pKey = sqlite3Malloc( (int)pCur->nKey ); - if( pKey ){ - rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); - if( rc==SQLITE_OK ){ - pCur->pKey = pKey; - }else{ - sqlite3_free(pKey); - } - }else{ - rc = SQLITE_NOMEM; - } - } - assert( !pCur->apPage[0]->intKey || !pCur->pKey ); - - if( rc==SQLITE_OK ){ - btreeReleaseAllCursorPages(pCur); - pCur->eState = CURSOR_REQUIRESEEK; - } - - invalidateOverflowCache(pCur); - return rc; -} - -/* -** Save the positions of all cursors (except pExcept) that are open on -** the table with root-page iRoot. Usually, this is called just before cursor -** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). -*/ -static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ - BtCursor *p; - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( pExcept==0 || pExcept->pBt==pBt ); - for(p=pBt->pCursor; p; p=p->pNext){ - if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ - if( p->eState==CURSOR_VALID ){ - int rc = saveCursorPosition(p); - if( SQLITE_OK!=rc ){ - return rc; - } - }else{ - testcase( p->iPage>0 ); - btreeReleaseAllCursorPages(p); - } - } - } - return SQLITE_OK; -} - -/* -** Clear the current cursor position. -*/ -SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){ - assert( cursorHoldsMutex(pCur) ); - sqlite3_free(pCur->pKey); - pCur->pKey = 0; - pCur->eState = CURSOR_INVALID; -} - -/* -** In this version of BtreeMoveto, pKey is a packed index record -** such as is generated by the OP_MakeRecord opcode. Unpack the -** record and then call BtreeMovetoUnpacked() to do the work. -*/ -static int btreeMoveto( - BtCursor *pCur, /* Cursor open on the btree to be searched */ - const void *pKey, /* Packed key if the btree is an index */ - i64 nKey, /* Integer key for tables. Size of pKey for indices */ - int bias, /* Bias search to the high end */ - int *pRes /* Write search results here */ -){ - int rc; /* Status code */ - UnpackedRecord *pIdxKey; /* Unpacked index key */ - char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */ - char *pFree = 0; - - if( pKey ){ - assert( nKey==(i64)(int)nKey ); - pIdxKey = sqlite3VdbeAllocUnpackedRecord( - pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree - ); - if( pIdxKey==0 ) return SQLITE_NOMEM; - sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); - }else{ - pIdxKey = 0; - } - rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); - if( pFree ){ - sqlite3DbFree(pCur->pKeyInfo->db, pFree); - } - return rc; -} - -/* -** Restore the cursor to the position it was in (or as close to as possible) -** when saveCursorPosition() was called. Note that this call deletes the -** saved position info stored by saveCursorPosition(), so there can be -** at most one effective restoreCursorPosition() call after each -** saveCursorPosition(). -*/ -static int btreeRestoreCursorPosition(BtCursor *pCur){ - int rc; - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState>=CURSOR_REQUIRESEEK ); - if( pCur->eState==CURSOR_FAULT ){ - return pCur->skipNext; - } - pCur->eState = CURSOR_INVALID; - rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); - if( rc==SQLITE_OK ){ - sqlite3_free(pCur->pKey); - pCur->pKey = 0; - assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); - } - return rc; -} - -#define restoreCursorPosition(p) \ - (p->eState>=CURSOR_REQUIRESEEK ? \ - btreeRestoreCursorPosition(p) : \ - SQLITE_OK) - -/* -** Determine whether or not a cursor has moved from the position it -** was last placed at. Cursors can move when the row they are pointing -** at is deleted out from under them. -** -** This routine returns an error code if something goes wrong. The -** integer *pHasMoved is set to one if the cursor has moved and 0 if not. -*/ -SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){ - int rc; - - rc = restoreCursorPosition(pCur); - if( rc ){ - *pHasMoved = 1; - return rc; - } - if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){ - *pHasMoved = 1; - }else{ - *pHasMoved = 0; - } - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_AUTOVACUUM -/* -** Given a page number of a regular database page, return the page -** number for the pointer-map page that contains the entry for the -** input page number. -** -** Return 0 (not a valid page) for pgno==1 since there is -** no pointer map associated with page 1. The integrity_check logic -** requires that ptrmapPageno(*,1)!=1. -*/ -static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ - int nPagesPerMapPage; - Pgno iPtrMap, ret; - assert( sqlite3_mutex_held(pBt->mutex) ); - if( pgno<2 ) return 0; - nPagesPerMapPage = (pBt->usableSize/5)+1; - iPtrMap = (pgno-2)/nPagesPerMapPage; - ret = (iPtrMap*nPagesPerMapPage) + 2; - if( ret==PENDING_BYTE_PAGE(pBt) ){ - ret++; - } - return ret; -} - -/* -** Write an entry into the pointer map. -** -** This routine updates the pointer map entry for page number 'key' -** so that it maps to type 'eType' and parent page number 'pgno'. -** -** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is -** a no-op. If an error occurs, the appropriate error code is written -** into *pRC. -*/ -static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ - DbPage *pDbPage; /* The pointer map page */ - u8 *pPtrmap; /* The pointer map data */ - Pgno iPtrmap; /* The pointer map page number */ - int offset; /* Offset in pointer map page */ - int rc; /* Return code from subfunctions */ - - if( *pRC ) return; - - assert( sqlite3_mutex_held(pBt->mutex) ); - /* The master-journal page number must never be used as a pointer map page */ - assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); - - assert( pBt->autoVacuum ); - if( key==0 ){ - *pRC = SQLITE_CORRUPT_BKPT; - return; - } - iPtrmap = PTRMAP_PAGENO(pBt, key); - rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); - if( rc!=SQLITE_OK ){ - *pRC = rc; - return; - } - offset = PTRMAP_PTROFFSET(iPtrmap, key); - if( offset<0 ){ - *pRC = SQLITE_CORRUPT_BKPT; - goto ptrmap_exit; - } - assert( offset <= (int)pBt->usableSize-5 ); - pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); - - if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ - TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); - *pRC= rc = sqlite3PagerWrite(pDbPage); - if( rc==SQLITE_OK ){ - pPtrmap[offset] = eType; - put4byte(&pPtrmap[offset+1], parent); - } - } - -ptrmap_exit: - sqlite3PagerUnref(pDbPage); -} - -/* -** Read an entry from the pointer map. -** -** This routine retrieves the pointer map entry for page 'key', writing -** the type and parent page number to *pEType and *pPgno respectively. -** An error code is returned if something goes wrong, otherwise SQLITE_OK. -*/ -static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ - DbPage *pDbPage; /* The pointer map page */ - int iPtrmap; /* Pointer map page index */ - u8 *pPtrmap; /* Pointer map page data */ - int offset; /* Offset of entry in pointer map */ - int rc; - - assert( sqlite3_mutex_held(pBt->mutex) ); - - iPtrmap = PTRMAP_PAGENO(pBt, key); - rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); - if( rc!=0 ){ - return rc; - } - pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); - - offset = PTRMAP_PTROFFSET(iPtrmap, key); - if( offset<0 ){ - sqlite3PagerUnref(pDbPage); - return SQLITE_CORRUPT_BKPT; - } - assert( offset <= (int)pBt->usableSize-5 ); - assert( pEType!=0 ); - *pEType = pPtrmap[offset]; - if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); - - sqlite3PagerUnref(pDbPage); - if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; - return SQLITE_OK; -} - -#else /* if defined SQLITE_OMIT_AUTOVACUUM */ - #define ptrmapPut(w,x,y,z,rc) - #define ptrmapGet(w,x,y,z) SQLITE_OK - #define ptrmapPutOvflPtr(x, y, rc) -#endif - -/* -** Given a btree page and a cell index (0 means the first cell on -** the page, 1 means the second cell, and so forth) return a pointer -** to the cell content. -** -** This routine works only for pages that do not contain overflow cells. -*/ -#define findCell(P,I) \ - ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)]))) -#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I))))) - - -/* -** This a more complex version of findCell() that works for -** pages that do contain overflow cells. -*/ -static u8 *findOverflowCell(MemPage *pPage, int iCell){ - int i; - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - for(i=pPage->nOverflow-1; i>=0; i--){ - int k; - k = pPage->aiOvfl[i]; - if( k<=iCell ){ - if( k==iCell ){ - return pPage->apOvfl[i]; - } - iCell--; - } - } - return findCell(pPage, iCell); -} - -/* -** Parse a cell content block and fill in the CellInfo structure. There -** are two versions of this function. btreeParseCell() takes a -** cell index as the second argument and btreeParseCellPtr() -** takes a pointer to the body of the cell as its second argument. -** -** Within this file, the parseCell() macro can be called instead of -** btreeParseCellPtr(). Using some compilers, this will be faster. -*/ -static void btreeParseCellPtr( - MemPage *pPage, /* Page containing the cell */ - u8 *pCell, /* Pointer to the cell text. */ - CellInfo *pInfo /* Fill in this structure */ -){ - u16 n; /* Number bytes in cell content header */ - u32 nPayload; /* Number of bytes of cell payload */ - - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - - pInfo->pCell = pCell; - assert( pPage->leaf==0 || pPage->leaf==1 ); - n = pPage->childPtrSize; - assert( n==4-4*pPage->leaf ); - if( pPage->intKey ){ - if( pPage->hasData ){ - n += getVarint32(&pCell[n], nPayload); - }else{ - nPayload = 0; - } - n += getVarint(&pCell[n], (u64*)&pInfo->nKey); - pInfo->nData = nPayload; - }else{ - pInfo->nData = 0; - n += getVarint32(&pCell[n], nPayload); - pInfo->nKey = nPayload; - } - pInfo->nPayload = nPayload; - pInfo->nHeader = n; - testcase( nPayload==pPage->maxLocal ); - testcase( nPayload==pPage->maxLocal+1 ); - if( likely(nPayload<=pPage->maxLocal) ){ - /* This is the (easy) common case where the entire payload fits - ** on the local page. No overflow is required. - */ - if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4; - pInfo->nLocal = (u16)nPayload; - pInfo->iOverflow = 0; - }else{ - /* If the payload will not fit completely on the local page, we have - ** to decide how much to store locally and how much to spill onto - ** overflow pages. The strategy is to minimize the amount of unused - ** space on overflow pages while keeping the amount of local storage - ** in between minLocal and maxLocal. - ** - ** Warning: changing the way overflow payload is distributed in any - ** way will result in an incompatible file format. - */ - int minLocal; /* Minimum amount of payload held locally */ - int maxLocal; /* Maximum amount of payload held locally */ - int surplus; /* Overflow payload available for local storage */ - - minLocal = pPage->minLocal; - maxLocal = pPage->maxLocal; - surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); - testcase( surplus==maxLocal ); - testcase( surplus==maxLocal+1 ); - if( surplus <= maxLocal ){ - pInfo->nLocal = (u16)surplus; - }else{ - pInfo->nLocal = (u16)minLocal; - } - pInfo->iOverflow = (u16)(pInfo->nLocal + n); - pInfo->nSize = pInfo->iOverflow + 4; - } -} -#define parseCell(pPage, iCell, pInfo) \ - btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) -static void btreeParseCell( - MemPage *pPage, /* Page containing the cell */ - int iCell, /* The cell index. First cell is 0 */ - CellInfo *pInfo /* Fill in this structure */ -){ - parseCell(pPage, iCell, pInfo); -} - -/* -** Compute the total number of bytes that a Cell needs in the cell -** data area of the btree-page. The return number includes the cell -** data header and the local payload, but not any overflow page or -** the space used by the cell pointer. -*/ -static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ - u8 *pIter = &pCell[pPage->childPtrSize]; - u32 nSize; - -#ifdef SQLITE_DEBUG - /* The value returned by this function should always be the same as - ** the (CellInfo.nSize) value found by doing a full parse of the - ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of - ** this function verifies that this invariant is not violated. */ - CellInfo debuginfo; - btreeParseCellPtr(pPage, pCell, &debuginfo); -#endif - - if( pPage->intKey ){ - u8 *pEnd; - if( pPage->hasData ){ - pIter += getVarint32(pIter, nSize); - }else{ - nSize = 0; - } - - /* pIter now points at the 64-bit integer key value, a variable length - ** integer. The following block moves pIter to point at the first byte - ** past the end of the key value. */ - pEnd = &pIter[9]; - while( (*pIter++)&0x80 && pIter<pEnd ); - }else{ - pIter += getVarint32(pIter, nSize); - } - - testcase( nSize==pPage->maxLocal ); - testcase( nSize==pPage->maxLocal+1 ); - if( nSize>pPage->maxLocal ){ - int minLocal = pPage->minLocal; - nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); - testcase( nSize==pPage->maxLocal ); - testcase( nSize==pPage->maxLocal+1 ); - if( nSize>pPage->maxLocal ){ - nSize = minLocal; - } - nSize += 4; - } - nSize += (u32)(pIter - pCell); - - /* The minimum size of any cell is 4 bytes. */ - if( nSize<4 ){ - nSize = 4; - } - - assert( nSize==debuginfo.nSize ); - return (u16)nSize; -} - -#ifdef SQLITE_DEBUG -/* This variation on cellSizePtr() is used inside of assert() statements -** only. */ -static u16 cellSize(MemPage *pPage, int iCell){ - return cellSizePtr(pPage, findCell(pPage, iCell)); -} -#endif - -#ifndef SQLITE_OMIT_AUTOVACUUM -/* -** If the cell pCell, part of page pPage contains a pointer -** to an overflow page, insert an entry into the pointer-map -** for the overflow page. -*/ -static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ - CellInfo info; - if( *pRC ) return; - assert( pCell!=0 ); - btreeParseCellPtr(pPage, pCell, &info); - assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); - if( info.iOverflow ){ - Pgno ovfl = get4byte(&pCell[info.iOverflow]); - ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); - } -} -#endif - - -/* -** Defragment the page given. All Cells are moved to the -** end of the page and all free space is collected into one -** big FreeBlk that occurs in between the header and cell -** pointer array and the cell content area. -*/ -static int defragmentPage(MemPage *pPage){ - int i; /* Loop counter */ - int pc; /* Address of a i-th cell */ - int hdr; /* Offset to the page header */ - int size; /* Size of a cell */ - int usableSize; /* Number of usable bytes on a page */ - int cellOffset; /* Offset to the cell pointer array */ - int cbrk; /* Offset to the cell content area */ - int nCell; /* Number of cells on the page */ - unsigned char *data; /* The page data */ - unsigned char *temp; /* Temp area for cell content */ - int iCellFirst; /* First allowable cell index */ - int iCellLast; /* Last possible cell index */ - - - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - assert( pPage->pBt!=0 ); - assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); - assert( pPage->nOverflow==0 ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - temp = sqlite3PagerTempSpace(pPage->pBt->pPager); - data = pPage->aData; - hdr = pPage->hdrOffset; - cellOffset = pPage->cellOffset; - nCell = pPage->nCell; - assert( nCell==get2byte(&data[hdr+3]) ); - usableSize = pPage->pBt->usableSize; - cbrk = get2byte(&data[hdr+5]); - memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk); - cbrk = usableSize; - iCellFirst = cellOffset + 2*nCell; - iCellLast = usableSize - 4; - for(i=0; i<nCell; i++){ - u8 *pAddr; /* The i-th cell pointer */ - pAddr = &data[cellOffset + i*2]; - pc = get2byte(pAddr); - testcase( pc==iCellFirst ); - testcase( pc==iCellLast ); -#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) - /* These conditions have already been verified in btreeInitPage() - ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined - */ - if( pc<iCellFirst || pc>iCellLast ){ - return SQLITE_CORRUPT_BKPT; - } -#endif - assert( pc>=iCellFirst && pc<=iCellLast ); - size = cellSizePtr(pPage, &temp[pc]); - cbrk -= size; -#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) - if( cbrk<iCellFirst ){ - return SQLITE_CORRUPT_BKPT; - } -#else - if( cbrk<iCellFirst || pc+size>usableSize ){ - return SQLITE_CORRUPT_BKPT; - } -#endif - assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); - testcase( cbrk+size==usableSize ); - testcase( pc+size==usableSize ); - memcpy(&data[cbrk], &temp[pc], size); - put2byte(pAddr, cbrk); - } - assert( cbrk>=iCellFirst ); - put2byte(&data[hdr+5], cbrk); - data[hdr+1] = 0; - data[hdr+2] = 0; - data[hdr+7] = 0; - memset(&data[iCellFirst], 0, cbrk-iCellFirst); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - if( cbrk-iCellFirst!=pPage->nFree ){ - return SQLITE_CORRUPT_BKPT; - } - return SQLITE_OK; -} - -/* -** Allocate nByte bytes of space from within the B-Tree page passed -** as the first argument. Write into *pIdx the index into pPage->aData[] -** of the first byte of allocated space. Return either SQLITE_OK or -** an error code (usually SQLITE_CORRUPT). -** -** The caller guarantees that there is sufficient space to make the -** allocation. This routine might need to defragment in order to bring -** all the space together, however. This routine will avoid using -** the first two bytes past the cell pointer area since presumably this -** allocation is being made in order to insert a new cell, so we will -** also end up needing a new cell pointer. -*/ -static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ - const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ - u8 * const data = pPage->aData; /* Local cache of pPage->aData */ - int nFrag; /* Number of fragmented bytes on pPage */ - int top; /* First byte of cell content area */ - int gap; /* First byte of gap between cell pointers and cell content */ - int rc; /* Integer return code */ - int usableSize; /* Usable size of the page */ - - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - assert( pPage->pBt ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( nByte>=0 ); /* Minimum cell size is 4 */ - assert( pPage->nFree>=nByte ); - assert( pPage->nOverflow==0 ); - usableSize = pPage->pBt->usableSize; - assert( nByte < usableSize-8 ); - - nFrag = data[hdr+7]; - assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); - gap = pPage->cellOffset + 2*pPage->nCell; - top = get2byteNotZero(&data[hdr+5]); - if( gap>top ) return SQLITE_CORRUPT_BKPT; - testcase( gap+2==top ); - testcase( gap+1==top ); - testcase( gap==top ); - - if( nFrag>=60 ){ - /* Always defragment highly fragmented pages */ - rc = defragmentPage(pPage); - if( rc ) return rc; - top = get2byteNotZero(&data[hdr+5]); - }else if( gap+2<=top ){ - /* Search the freelist looking for a free slot big enough to satisfy - ** the request. The allocation is made from the first free slot in - ** the list that is large enough to accomadate it. - */ - int pc, addr; - for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ - int size; /* Size of the free slot */ - if( pc>usableSize-4 || pc<addr+4 ){ - return SQLITE_CORRUPT_BKPT; - } - size = get2byte(&data[pc+2]); - if( size>=nByte ){ - int x = size - nByte; - testcase( x==4 ); - testcase( x==3 ); - if( x<4 ){ - /* Remove the slot from the free-list. Update the number of - ** fragmented bytes within the page. */ - memcpy(&data[addr], &data[pc], 2); - data[hdr+7] = (u8)(nFrag + x); - }else if( size+pc > usableSize ){ - return SQLITE_CORRUPT_BKPT; - }else{ - /* The slot remains on the free-list. Reduce its size to account - ** for the portion used by the new allocation. */ - put2byte(&data[pc+2], x); - } - *pIdx = pc + x; - return SQLITE_OK; - } - } - } - - /* Check to make sure there is enough space in the gap to satisfy - ** the allocation. If not, defragment. - */ - testcase( gap+2+nByte==top ); - if( gap+2+nByte>top ){ - rc = defragmentPage(pPage); - if( rc ) return rc; - top = get2byteNotZero(&data[hdr+5]); - assert( gap+nByte<=top ); - } - - - /* Allocate memory from the gap in between the cell pointer array - ** and the cell content area. The btreeInitPage() call has already - ** validated the freelist. Given that the freelist is valid, there - ** is no way that the allocation can extend off the end of the page. - ** The assert() below verifies the previous sentence. - */ - top -= nByte; - put2byte(&data[hdr+5], top); - assert( top+nByte <= (int)pPage->pBt->usableSize ); - *pIdx = top; - return SQLITE_OK; -} - -/* -** Return a section of the pPage->aData to the freelist. -** The first byte of the new free block is pPage->aDisk[start] -** and the size of the block is "size" bytes. -** -** Most of the effort here is involved in coalesing adjacent -** free blocks into a single big free block. -*/ -static int freeSpace(MemPage *pPage, int start, int size){ - int addr, pbegin, hdr; - int iLast; /* Largest possible freeblock offset */ - unsigned char *data = pPage->aData; - - assert( pPage->pBt!=0 ); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - assert( start>=pPage->hdrOffset+6+pPage->childPtrSize ); - assert( (start + size) <= (int)pPage->pBt->usableSize ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( size>=0 ); /* Minimum cell size is 4 */ - - if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ - /* Overwrite deleted information with zeros when the secure_delete - ** option is enabled */ - memset(&data[start], 0, size); - } - - /* Add the space back into the linked list of freeblocks. Note that - ** even though the freeblock list was checked by btreeInitPage(), - ** btreeInitPage() did not detect overlapping cells or - ** freeblocks that overlapped cells. Nor does it detect when the - ** cell content area exceeds the value in the page header. If these - ** situations arise, then subsequent insert operations might corrupt - ** the freelist. So we do need to check for corruption while scanning - ** the freelist. - */ - hdr = pPage->hdrOffset; - addr = hdr + 1; - iLast = pPage->pBt->usableSize - 4; - assert( start<=iLast ); - while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ - if( pbegin<addr+4 ){ - return SQLITE_CORRUPT_BKPT; - } - addr = pbegin; - } - if( pbegin>iLast ){ - return SQLITE_CORRUPT_BKPT; - } - assert( pbegin>addr || pbegin==0 ); - put2byte(&data[addr], start); - put2byte(&data[start], pbegin); - put2byte(&data[start+2], size); - pPage->nFree = pPage->nFree + (u16)size; - - /* Coalesce adjacent free blocks */ - addr = hdr + 1; - while( (pbegin = get2byte(&data[addr]))>0 ){ - int pnext, psize, x; - assert( pbegin>addr ); - assert( pbegin <= (int)pPage->pBt->usableSize-4 ); - pnext = get2byte(&data[pbegin]); - psize = get2byte(&data[pbegin+2]); - if( pbegin + psize + 3 >= pnext && pnext>0 ){ - int frag = pnext - (pbegin+psize); - if( (frag<0) || (frag>(int)data[hdr+7]) ){ - return SQLITE_CORRUPT_BKPT; - } - data[hdr+7] -= (u8)frag; - x = get2byte(&data[pnext]); - put2byte(&data[pbegin], x); - x = pnext + get2byte(&data[pnext+2]) - pbegin; - put2byte(&data[pbegin+2], x); - }else{ - addr = pbegin; - } - } - - /* If the cell content area begins with a freeblock, remove it. */ - if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ - int top; - pbegin = get2byte(&data[hdr+1]); - memcpy(&data[hdr+1], &data[pbegin], 2); - top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]); - put2byte(&data[hdr+5], top); - } - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - return SQLITE_OK; -} - -/* -** Decode the flags byte (the first byte of the header) for a page -** and initialize fields of the MemPage structure accordingly. -** -** Only the following combinations are supported. Anything different -** indicates a corrupt database files: -** -** PTF_ZERODATA -** PTF_ZERODATA | PTF_LEAF -** PTF_LEAFDATA | PTF_INTKEY -** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF -*/ -static int decodeFlags(MemPage *pPage, int flagByte){ - BtShared *pBt; /* A copy of pPage->pBt */ - - assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); - flagByte &= ~PTF_LEAF; - pPage->childPtrSize = 4-4*pPage->leaf; - pBt = pPage->pBt; - if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ - pPage->intKey = 1; - pPage->hasData = pPage->leaf; - pPage->maxLocal = pBt->maxLeaf; - pPage->minLocal = pBt->minLeaf; - }else if( flagByte==PTF_ZERODATA ){ - pPage->intKey = 0; - pPage->hasData = 0; - pPage->maxLocal = pBt->maxLocal; - pPage->minLocal = pBt->minLocal; - }else{ - return SQLITE_CORRUPT_BKPT; - } - pPage->max1bytePayload = pBt->max1bytePayload; - return SQLITE_OK; -} - -/* -** Initialize the auxiliary information for a disk block. -** -** Return SQLITE_OK on success. If we see that the page does -** not contain a well-formed database page, then return -** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not -** guarantee that the page is well-formed. It only shows that -** we failed to detect any corruption. -*/ -static int btreeInitPage(MemPage *pPage){ - - assert( pPage->pBt!=0 ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); - assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); - assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); - - if( !pPage->isInit ){ - u16 pc; /* Address of a freeblock within pPage->aData[] */ - u8 hdr; /* Offset to beginning of page header */ - u8 *data; /* Equal to pPage->aData */ - BtShared *pBt; /* The main btree structure */ - int usableSize; /* Amount of usable space on each page */ - u16 cellOffset; /* Offset from start of page to first cell pointer */ - int nFree; /* Number of unused bytes on the page */ - int top; /* First byte of the cell content area */ - int iCellFirst; /* First allowable cell or freeblock offset */ - int iCellLast; /* Last possible cell or freeblock offset */ - - pBt = pPage->pBt; - - hdr = pPage->hdrOffset; - data = pPage->aData; - if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; - assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); - pPage->maskPage = (u16)(pBt->pageSize - 1); - pPage->nOverflow = 0; - usableSize = pBt->usableSize; - pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; - pPage->aDataEnd = &data[usableSize]; - pPage->aCellIdx = &data[cellOffset]; - top = get2byteNotZero(&data[hdr+5]); - pPage->nCell = get2byte(&data[hdr+3]); - if( pPage->nCell>MX_CELL(pBt) ){ - /* To many cells for a single page. The page must be corrupt */ - return SQLITE_CORRUPT_BKPT; - } - testcase( pPage->nCell==MX_CELL(pBt) ); - - /* A malformed database page might cause us to read past the end - ** of page when parsing a cell. - ** - ** The following block of code checks early to see if a cell extends - ** past the end of a page boundary and causes SQLITE_CORRUPT to be - ** returned if it does. - */ - iCellFirst = cellOffset + 2*pPage->nCell; - iCellLast = usableSize - 4; -#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) - { - int i; /* Index into the cell pointer array */ - int sz; /* Size of a cell */ - - if( !pPage->leaf ) iCellLast--; - for(i=0; i<pPage->nCell; i++){ - pc = get2byte(&data[cellOffset+i*2]); - testcase( pc==iCellFirst ); - testcase( pc==iCellLast ); - if( pc<iCellFirst || pc>iCellLast ){ - return SQLITE_CORRUPT_BKPT; - } - sz = cellSizePtr(pPage, &data[pc]); - testcase( pc+sz==usableSize ); - if( pc+sz>usableSize ){ - return SQLITE_CORRUPT_BKPT; - } - } - if( !pPage->leaf ) iCellLast++; - } -#endif - - /* Compute the total free space on the page */ - pc = get2byte(&data[hdr+1]); - nFree = data[hdr+7] + top; - while( pc>0 ){ - u16 next, size; - if( pc<iCellFirst || pc>iCellLast ){ - /* Start of free block is off the page */ - return SQLITE_CORRUPT_BKPT; - } - next = get2byte(&data[pc]); - size = get2byte(&data[pc+2]); - if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ - /* Free blocks must be in ascending order. And the last byte of - ** the free-block must lie on the database page. */ - return SQLITE_CORRUPT_BKPT; - } - nFree = nFree + size; - pc = next; - } - - /* At this point, nFree contains the sum of the offset to the start - ** of the cell-content area plus the number of free bytes within - ** the cell-content area. If this is greater than the usable-size - ** of the page, then the page must be corrupted. This check also - ** serves to verify that the offset to the start of the cell-content - ** area, according to the page header, lies within the page. - */ - if( nFree>usableSize ){ - return SQLITE_CORRUPT_BKPT; - } - pPage->nFree = (u16)(nFree - iCellFirst); - pPage->isInit = 1; - } - return SQLITE_OK; -} - -/* -** Set up a raw page so that it looks like a database page holding -** no entries. -*/ -static void zeroPage(MemPage *pPage, int flags){ - unsigned char *data = pPage->aData; - BtShared *pBt = pPage->pBt; - u8 hdr = pPage->hdrOffset; - u16 first; - - assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); - assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); - assert( sqlite3PagerGetData(pPage->pDbPage) == data ); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - assert( sqlite3_mutex_held(pBt->mutex) ); - if( pBt->btsFlags & BTS_SECURE_DELETE ){ - memset(&data[hdr], 0, pBt->usableSize - hdr); - } - data[hdr] = (char)flags; - first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0); - memset(&data[hdr+1], 0, 4); - data[hdr+7] = 0; - put2byte(&data[hdr+5], pBt->usableSize); - pPage->nFree = (u16)(pBt->usableSize - first); - decodeFlags(pPage, flags); - pPage->hdrOffset = hdr; - pPage->cellOffset = first; - pPage->aDataEnd = &data[pBt->usableSize]; - pPage->aCellIdx = &data[first]; - pPage->nOverflow = 0; - assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); - pPage->maskPage = (u16)(pBt->pageSize - 1); - pPage->nCell = 0; - pPage->isInit = 1; -} - - -/* -** Convert a DbPage obtained from the pager into a MemPage used by -** the btree layer. -*/ -static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ - MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); - pPage->aData = sqlite3PagerGetData(pDbPage); - pPage->pDbPage = pDbPage; - pPage->pBt = pBt; - pPage->pgno = pgno; - pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; - return pPage; -} - -/* -** Get a page from the pager. Initialize the MemPage.pBt and -** MemPage.aData elements if needed. -** -** If the noContent flag is set, it means that we do not care about -** the content of the page at this time. So do not go to the disk -** to fetch the content. Just fill in the content with zeros for now. -** If in the future we call sqlite3PagerWrite() on this page, that -** means we have started to be concerned about content and the disk -** read should occur at that point. -*/ -static int btreeGetPage( - BtShared *pBt, /* The btree */ - Pgno pgno, /* Number of the page to fetch */ - MemPage **ppPage, /* Return the page in this parameter */ - int noContent /* Do not load page content if true */ -){ - int rc; - DbPage *pDbPage; - - assert( sqlite3_mutex_held(pBt->mutex) ); - rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); - if( rc ) return rc; - *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); - return SQLITE_OK; -} - -/* -** Retrieve a page from the pager cache. If the requested page is not -** already in the pager cache return NULL. Initialize the MemPage.pBt and -** MemPage.aData elements if needed. -*/ -static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ - DbPage *pDbPage; - assert( sqlite3_mutex_held(pBt->mutex) ); - pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); - if( pDbPage ){ - return btreePageFromDbPage(pDbPage, pgno, pBt); - } - return 0; -} - -/* -** Return the size of the database file in pages. If there is any kind of -** error, return ((unsigned int)-1). -*/ -static Pgno btreePagecount(BtShared *pBt){ - return pBt->nPage; -} -SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ - assert( sqlite3BtreeHoldsMutex(p) ); - assert( ((p->pBt->nPage)&0x8000000)==0 ); - return (int)btreePagecount(p->pBt); -} - -/* -** Get a page from the pager and initialize it. This routine is just a -** convenience wrapper around separate calls to btreeGetPage() and -** btreeInitPage(). -** -** If an error occurs, then the value *ppPage is set to is undefined. It -** may remain unchanged, or it may be set to an invalid value. -*/ -static int getAndInitPage( - BtShared *pBt, /* The database file */ - Pgno pgno, /* Number of the page to get */ - MemPage **ppPage /* Write the page pointer here */ -){ - int rc; - assert( sqlite3_mutex_held(pBt->mutex) ); - - if( pgno>btreePagecount(pBt) ){ - rc = SQLITE_CORRUPT_BKPT; - }else{ - rc = btreeGetPage(pBt, pgno, ppPage, 0); - if( rc==SQLITE_OK ){ - rc = btreeInitPage(*ppPage); - if( rc!=SQLITE_OK ){ - releasePage(*ppPage); - } - } - } - - testcase( pgno==0 ); - assert( pgno!=0 || rc==SQLITE_CORRUPT ); - return rc; -} - -/* -** Release a MemPage. This should be called once for each prior -** call to btreeGetPage. -*/ -static void releasePage(MemPage *pPage){ - if( pPage ){ - assert( pPage->aData ); - assert( pPage->pBt ); - assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); - assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - sqlite3PagerUnref(pPage->pDbPage); - } -} - -/* -** During a rollback, when the pager reloads information into the cache -** so that the cache is restored to its original state at the start of -** the transaction, for each page restored this routine is called. -** -** This routine needs to reset the extra data section at the end of the -** page to agree with the restored data. -*/ -static void pageReinit(DbPage *pData){ - MemPage *pPage; - pPage = (MemPage *)sqlite3PagerGetExtra(pData); - assert( sqlite3PagerPageRefcount(pData)>0 ); - if( pPage->isInit ){ - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - pPage->isInit = 0; - if( sqlite3PagerPageRefcount(pData)>1 ){ - /* pPage might not be a btree page; it might be an overflow page - ** or ptrmap page or a free page. In those cases, the following - ** call to btreeInitPage() will likely return SQLITE_CORRUPT. - ** But no harm is done by this. And it is very important that - ** btreeInitPage() be called on every btree page so we make - ** the call for every page that comes in for re-initing. */ - btreeInitPage(pPage); - } - } -} - -/* -** Invoke the busy handler for a btree. -*/ -static int btreeInvokeBusyHandler(void *pArg){ - BtShared *pBt = (BtShared*)pArg; - assert( pBt->db ); - assert( sqlite3_mutex_held(pBt->db->mutex) ); - return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); -} - -/* -** Open a database file. -** -** zFilename is the name of the database file. If zFilename is NULL -** then an ephemeral database is created. The ephemeral database might -** be exclusively in memory, or it might use a disk-based memory cache. -** Either way, the ephemeral database will be automatically deleted -** when sqlite3BtreeClose() is called. -** -** If zFilename is ":memory:" then an in-memory database is created -** that is automatically destroyed when it is closed. -** -** The "flags" parameter is a bitmask that might contain bits like -** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. -** -** If the database is already opened in the same database connection -** and we are in shared cache mode, then the open will fail with an -** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared -** objects in the same database connection since doing so will lead -** to problems with locking. -*/ -SQLITE_PRIVATE int sqlite3BtreeOpen( - sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ - const char *zFilename, /* Name of the file containing the BTree database */ - sqlite3 *db, /* Associated database handle */ - Btree **ppBtree, /* Pointer to new Btree object written here */ - int flags, /* Options */ - int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ -){ - BtShared *pBt = 0; /* Shared part of btree structure */ - Btree *p; /* Handle to return */ - sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ - int rc = SQLITE_OK; /* Result code from this function */ - u8 nReserve; /* Byte of unused space on each page */ - unsigned char zDbHeader[100]; /* Database header content */ - - /* True if opening an ephemeral, temporary database */ - const int isTempDb = zFilename==0 || zFilename[0]==0; - - /* Set the variable isMemdb to true for an in-memory database, or - ** false for a file-based database. - */ -#ifdef SQLITE_OMIT_MEMORYDB - const int isMemdb = 0; -#else - const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) - || (isTempDb && sqlite3TempInMemory(db)) - || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; -#endif - - assert( db!=0 ); - assert( pVfs!=0 ); - assert( sqlite3_mutex_held(db->mutex) ); - assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ - - /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ - assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); - - /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ - assert( (flags & BTREE_SINGLE)==0 || isTempDb ); - - if( isMemdb ){ - flags |= BTREE_MEMORY; - } - if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ - vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; - } - p = sqlite3MallocZero(sizeof(Btree)); - if( !p ){ - return SQLITE_NOMEM; - } - p->inTrans = TRANS_NONE; - p->db = db; -#ifndef SQLITE_OMIT_SHARED_CACHE - p->lock.pBtree = p; - p->lock.iTable = 1; -#endif - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) - /* - ** If this Btree is a candidate for shared cache, try to find an - ** existing BtShared object that we can share with - */ - if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ - if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ - int nFullPathname = pVfs->mxPathname+1; - char *zFullPathname = sqlite3Malloc(nFullPathname); - MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) - p->sharable = 1; - if( !zFullPathname ){ - sqlite3_free(p); - return SQLITE_NOMEM; - } - if( isMemdb ){ - memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1); - }else{ - rc = sqlite3OsFullPathname(pVfs, zFilename, - nFullPathname, zFullPathname); - if( rc ){ - sqlite3_free(zFullPathname); - sqlite3_free(p); - return rc; - } - } -#if SQLITE_THREADSAFE - mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); - sqlite3_mutex_enter(mutexOpen); - mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); - sqlite3_mutex_enter(mutexShared); -#endif - for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ - assert( pBt->nRef>0 ); - if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) - && sqlite3PagerVfs(pBt->pPager)==pVfs ){ - int iDb; - for(iDb=db->nDb-1; iDb>=0; iDb--){ - Btree *pExisting = db->aDb[iDb].pBt; - if( pExisting && pExisting->pBt==pBt ){ - sqlite3_mutex_leave(mutexShared); - sqlite3_mutex_leave(mutexOpen); - sqlite3_free(zFullPathname); - sqlite3_free(p); - return SQLITE_CONSTRAINT; - } - } - p->pBt = pBt; - pBt->nRef++; - break; - } - } - sqlite3_mutex_leave(mutexShared); - sqlite3_free(zFullPathname); - } -#ifdef SQLITE_DEBUG - else{ - /* In debug mode, we mark all persistent databases as sharable - ** even when they are not. This exercises the locking code and - ** gives more opportunity for asserts(sqlite3_mutex_held()) - ** statements to find locking problems. - */ - p->sharable = 1; - } -#endif - } -#endif - if( pBt==0 ){ - /* - ** The following asserts make sure that structures used by the btree are - ** the right size. This is to guard against size changes that result - ** when compiling on a different architecture. - */ - assert( sizeof(i64)==8 || sizeof(i64)==4 ); - assert( sizeof(u64)==8 || sizeof(u64)==4 ); - assert( sizeof(u32)==4 ); - assert( sizeof(u16)==2 ); - assert( sizeof(Pgno)==4 ); - - pBt = sqlite3MallocZero( sizeof(*pBt) ); - if( pBt==0 ){ - rc = SQLITE_NOMEM; - goto btree_open_out; - } - rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, - EXTRA_SIZE, flags, vfsFlags, pageReinit); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); - } - if( rc!=SQLITE_OK ){ - goto btree_open_out; - } - pBt->openFlags = (u8)flags; - pBt->db = db; - sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); - p->pBt = pBt; - - pBt->pCursor = 0; - pBt->pPage1 = 0; - if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; -#ifdef SQLITE_SECURE_DELETE - pBt->btsFlags |= BTS_SECURE_DELETE; -#endif - pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); - if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE - || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ - pBt->pageSize = 0; -#ifndef SQLITE_OMIT_AUTOVACUUM - /* If the magic name ":memory:" will create an in-memory database, then - ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if - ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if - ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a - ** regular file-name. In this case the auto-vacuum applies as per normal. - */ - if( zFilename && !isMemdb ){ - pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); - pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); - } -#endif - nReserve = 0; - }else{ - nReserve = zDbHeader[20]; - pBt->btsFlags |= BTS_PAGESIZE_FIXED; -#ifndef SQLITE_OMIT_AUTOVACUUM - pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); - pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); -#endif - } - rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); - if( rc ) goto btree_open_out; - pBt->usableSize = pBt->pageSize - nReserve; - assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) - /* Add the new BtShared object to the linked list sharable BtShareds. - */ - if( p->sharable ){ - MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) - pBt->nRef = 1; - MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) - if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ - pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); - if( pBt->mutex==0 ){ - rc = SQLITE_NOMEM; - db->mallocFailed = 0; - goto btree_open_out; - } - } - sqlite3_mutex_enter(mutexShared); - pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); - GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; - sqlite3_mutex_leave(mutexShared); - } -#endif - } - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) - /* If the new Btree uses a sharable pBtShared, then link the new - ** Btree into the list of all sharable Btrees for the same connection. - ** The list is kept in ascending order by pBt address. - */ - if( p->sharable ){ - int i; - Btree *pSib; - for(i=0; i<db->nDb; i++){ - if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ - while( pSib->pPrev ){ pSib = pSib->pPrev; } - if( p->pBt<pSib->pBt ){ - p->pNext = pSib; - p->pPrev = 0; - pSib->pPrev = p; - }else{ - while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ - pSib = pSib->pNext; - } - p->pNext = pSib->pNext; - p->pPrev = pSib; - if( p->pNext ){ - p->pNext->pPrev = p; - } - pSib->pNext = p; - } - break; - } - } - } -#endif - *ppBtree = p; - -btree_open_out: - if( rc!=SQLITE_OK ){ - if( pBt && pBt->pPager ){ - sqlite3PagerClose(pBt->pPager); - } - sqlite3_free(pBt); - sqlite3_free(p); - *ppBtree = 0; - }else{ - /* If the B-Tree was successfully opened, set the pager-cache size to the - ** default value. Except, when opening on an existing shared pager-cache, - ** do not change the pager-cache size. - */ - if( sqlite3BtreeSchema(p, 0, 0)==0 ){ - sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); - } - } - if( mutexOpen ){ - assert( sqlite3_mutex_held(mutexOpen) ); - sqlite3_mutex_leave(mutexOpen); - } - return rc; -} - -/* -** Decrement the BtShared.nRef counter. When it reaches zero, -** remove the BtShared structure from the sharing list. Return -** true if the BtShared.nRef counter reaches zero and return -** false if it is still positive. -*/ -static int removeFromSharingList(BtShared *pBt){ -#ifndef SQLITE_OMIT_SHARED_CACHE - MUTEX_LOGIC( sqlite3_mutex *pMaster; ) - BtShared *pList; - int removed = 0; - - assert( sqlite3_mutex_notheld(pBt->mutex) ); - MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) - sqlite3_mutex_enter(pMaster); - pBt->nRef--; - if( pBt->nRef<=0 ){ - if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ - GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; - }else{ - pList = GLOBAL(BtShared*,sqlite3SharedCacheList); - while( ALWAYS(pList) && pList->pNext!=pBt ){ - pList=pList->pNext; - } - if( ALWAYS(pList) ){ - pList->pNext = pBt->pNext; - } - } - if( SQLITE_THREADSAFE ){ - sqlite3_mutex_free(pBt->mutex); - } - removed = 1; - } - sqlite3_mutex_leave(pMaster); - return removed; -#else - return 1; -#endif -} - -/* -** Make sure pBt->pTmpSpace points to an allocation of -** MX_CELL_SIZE(pBt) bytes. -*/ -static void allocateTempSpace(BtShared *pBt){ - if( !pBt->pTmpSpace ){ - pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); - } -} - -/* -** Free the pBt->pTmpSpace allocation -*/ -static void freeTempSpace(BtShared *pBt){ - sqlite3PageFree( pBt->pTmpSpace); - pBt->pTmpSpace = 0; -} - -/* -** Close an open database and invalidate all cursors. -*/ -SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){ - BtShared *pBt = p->pBt; - BtCursor *pCur; - - /* Close all cursors opened via this handle. */ - assert( sqlite3_mutex_held(p->db->mutex) ); - sqlite3BtreeEnter(p); - pCur = pBt->pCursor; - while( pCur ){ - BtCursor *pTmp = pCur; - pCur = pCur->pNext; - if( pTmp->pBtree==p ){ - sqlite3BtreeCloseCursor(pTmp); - } - } - - /* Rollback any active transaction and free the handle structure. - ** The call to sqlite3BtreeRollback() drops any table-locks held by - ** this handle. - */ - sqlite3BtreeRollback(p, SQLITE_OK); - sqlite3BtreeLeave(p); - - /* If there are still other outstanding references to the shared-btree - ** structure, return now. The remainder of this procedure cleans - ** up the shared-btree. - */ - assert( p->wantToLock==0 && p->locked==0 ); - if( !p->sharable || removeFromSharingList(pBt) ){ - /* The pBt is no longer on the sharing list, so we can access - ** it without having to hold the mutex. - ** - ** Clean out and delete the BtShared object. - */ - assert( !pBt->pCursor ); - sqlite3PagerClose(pBt->pPager); - if( pBt->xFreeSchema && pBt->pSchema ){ - pBt->xFreeSchema(pBt->pSchema); - } - sqlite3DbFree(0, pBt->pSchema); - freeTempSpace(pBt); - sqlite3_free(pBt); - } - -#ifndef SQLITE_OMIT_SHARED_CACHE - assert( p->wantToLock==0 ); - assert( p->locked==0 ); - if( p->pPrev ) p->pPrev->pNext = p->pNext; - if( p->pNext ) p->pNext->pPrev = p->pPrev; -#endif - - sqlite3_free(p); - return SQLITE_OK; -} - -/* -** Change the limit on the number of pages allowed in the cache. -** -** The maximum number of cache pages is set to the absolute -** value of mxPage. If mxPage is negative, the pager will -** operate asynchronously - it will not stop to do fsync()s -** to insure data is written to the disk surface before -** continuing. Transactions still work if synchronous is off, -** and the database cannot be corrupted if this program -** crashes. But if the operating system crashes or there is -** an abrupt power failure when synchronous is off, the database -** could be left in an inconsistent and unrecoverable state. -** Synchronous is on by default so database corruption is not -** normally a worry. -*/ -SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ - BtShared *pBt = p->pBt; - assert( sqlite3_mutex_held(p->db->mutex) ); - sqlite3BtreeEnter(p); - sqlite3PagerSetCachesize(pBt->pPager, mxPage); - sqlite3BtreeLeave(p); - return SQLITE_OK; -} - -/* -** Change the way data is synced to disk in order to increase or decrease -** how well the database resists damage due to OS crashes and power -** failures. Level 1 is the same as asynchronous (no syncs() occur and -** there is a high probability of damage) Level 2 is the default. There -** is a very low but non-zero probability of damage. Level 3 reduces the -** probability of damage to near zero but with a write performance reduction. -*/ -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel( - Btree *p, /* The btree to set the safety level on */ - int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ - int fullSync, /* PRAGMA fullfsync. */ - int ckptFullSync /* PRAGMA checkpoint_fullfync */ -){ - BtShared *pBt = p->pBt; - assert( sqlite3_mutex_held(p->db->mutex) ); - assert( level>=1 && level<=3 ); - sqlite3BtreeEnter(p); - sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync); - sqlite3BtreeLeave(p); - return SQLITE_OK; -} -#endif - -/* -** Return TRUE if the given btree is set to safety level 1. In other -** words, return TRUE if no sync() occurs on the disk files. -*/ -SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){ - BtShared *pBt = p->pBt; - int rc; - assert( sqlite3_mutex_held(p->db->mutex) ); - sqlite3BtreeEnter(p); - assert( pBt && pBt->pPager ); - rc = sqlite3PagerNosync(pBt->pPager); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Change the default pages size and the number of reserved bytes per page. -** Or, if the page size has already been fixed, return SQLITE_READONLY -** without changing anything. -** -** The page size must be a power of 2 between 512 and 65536. If the page -** size supplied does not meet this constraint then the page size is not -** changed. -** -** Page sizes are constrained to be a power of two so that the region -** of the database file used for locking (beginning at PENDING_BYTE, -** the first byte past the 1GB boundary, 0x40000000) needs to occur -** at the beginning of a page. -** -** If parameter nReserve is less than zero, then the number of reserved -** bytes per page is left unchanged. -** -** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size -** and autovacuum mode can no longer be changed. -*/ -SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ - int rc = SQLITE_OK; - BtShared *pBt = p->pBt; - assert( nReserve>=-1 && nReserve<=255 ); - sqlite3BtreeEnter(p); - if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ - sqlite3BtreeLeave(p); - return SQLITE_READONLY; - } - if( nReserve<0 ){ - nReserve = pBt->pageSize - pBt->usableSize; - } - assert( nReserve>=0 && nReserve<=255 ); - if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && - ((pageSize-1)&pageSize)==0 ){ - assert( (pageSize & 7)==0 ); - assert( !pBt->pPage1 && !pBt->pCursor ); - pBt->pageSize = (u32)pageSize; - freeTempSpace(pBt); - } - rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); - pBt->usableSize = pBt->pageSize - (u16)nReserve; - if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Return the currently defined page size -*/ -SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ - return p->pBt->pageSize; -} - -#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG) -/* -** This function is similar to sqlite3BtreeGetReserve(), except that it -** may only be called if it is guaranteed that the b-tree mutex is already -** held. -** -** This is useful in one special case in the backup API code where it is -** known that the shared b-tree mutex is held, but the mutex on the -** database handle that owns *p is not. In this case if sqlite3BtreeEnter() -** were to be called, it might collide with some other operation on the -** database handle that owns *p, causing undefined behavior. -*/ -SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){ - assert( sqlite3_mutex_held(p->pBt->mutex) ); - return p->pBt->pageSize - p->pBt->usableSize; -} -#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */ - -#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) -/* -** Return the number of bytes of space at the end of every page that -** are intentually left unused. This is the "reserved" space that is -** sometimes used by extensions. -*/ -SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){ - int n; - sqlite3BtreeEnter(p); - n = p->pBt->pageSize - p->pBt->usableSize; - sqlite3BtreeLeave(p); - return n; -} - -/* -** Set the maximum page count for a database if mxPage is positive. -** No changes are made if mxPage is 0 or negative. -** Regardless of the value of mxPage, return the maximum page count. -*/ -SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ - int n; - sqlite3BtreeEnter(p); - n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); - sqlite3BtreeLeave(p); - return n; -} - -/* -** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, -** then make no changes. Always return the value of the BTS_SECURE_DELETE -** setting after the change. -*/ -SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ - int b; - if( p==0 ) return 0; - sqlite3BtreeEnter(p); - if( newFlag>=0 ){ - p->pBt->btsFlags &= ~BTS_SECURE_DELETE; - if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; - } - b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; - sqlite3BtreeLeave(p); - return b; -} -#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ - -/* -** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' -** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it -** is disabled. The default value for the auto-vacuum property is -** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. -*/ -SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ -#ifdef SQLITE_OMIT_AUTOVACUUM - return SQLITE_READONLY; -#else - BtShared *pBt = p->pBt; - int rc = SQLITE_OK; - u8 av = (u8)autoVacuum; - - sqlite3BtreeEnter(p); - if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ - rc = SQLITE_READONLY; - }else{ - pBt->autoVacuum = av ?1:0; - pBt->incrVacuum = av==2 ?1:0; - } - sqlite3BtreeLeave(p); - return rc; -#endif -} - -/* -** Return the value of the 'auto-vacuum' property. If auto-vacuum is -** enabled 1 is returned. Otherwise 0. -*/ -SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){ -#ifdef SQLITE_OMIT_AUTOVACUUM - return BTREE_AUTOVACUUM_NONE; -#else - int rc; - sqlite3BtreeEnter(p); - rc = ( - (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: - (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: - BTREE_AUTOVACUUM_INCR - ); - sqlite3BtreeLeave(p); - return rc; -#endif -} - - -/* -** Get a reference to pPage1 of the database file. This will -** also acquire a readlock on that file. -** -** SQLITE_OK is returned on success. If the file is not a -** well-formed database file, then SQLITE_CORRUPT is returned. -** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM -** is returned if we run out of memory. -*/ -static int lockBtree(BtShared *pBt){ - int rc; /* Result code from subfunctions */ - MemPage *pPage1; /* Page 1 of the database file */ - int nPage; /* Number of pages in the database */ - int nPageFile = 0; /* Number of pages in the database file */ - int nPageHeader; /* Number of pages in the database according to hdr */ - - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( pBt->pPage1==0 ); - rc = sqlite3PagerSharedLock(pBt->pPager); - if( rc!=SQLITE_OK ) return rc; - rc = btreeGetPage(pBt, 1, &pPage1, 0); - if( rc!=SQLITE_OK ) return rc; - - /* Do some checking to help insure the file we opened really is - ** a valid database file. - */ - nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); - sqlite3PagerPagecount(pBt->pPager, &nPageFile); - if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ - nPage = nPageFile; - } - if( nPage>0 ){ - u32 pageSize; - u32 usableSize; - u8 *page1 = pPage1->aData; - rc = SQLITE_NOTADB; - if( memcmp(page1, zMagicHeader, 16)!=0 ){ - goto page1_init_failed; - } - -#ifdef SQLITE_OMIT_WAL - if( page1[18]>1 ){ - pBt->btsFlags |= BTS_READ_ONLY; - } - if( page1[19]>1 ){ - goto page1_init_failed; - } -#else - if( page1[18]>2 ){ - pBt->btsFlags |= BTS_READ_ONLY; - } - if( page1[19]>2 ){ - goto page1_init_failed; - } - - /* If the write version is set to 2, this database should be accessed - ** in WAL mode. If the log is not already open, open it now. Then - ** return SQLITE_OK and return without populating BtShared.pPage1. - ** The caller detects this and calls this function again. This is - ** required as the version of page 1 currently in the page1 buffer - ** may not be the latest version - there may be a newer one in the log - ** file. - */ - if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ - int isOpen = 0; - rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); - if( rc!=SQLITE_OK ){ - goto page1_init_failed; - }else if( isOpen==0 ){ - releasePage(pPage1); - return SQLITE_OK; - } - rc = SQLITE_NOTADB; - } -#endif - - /* The maximum embedded fraction must be exactly 25%. And the minimum - ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. - ** The original design allowed these amounts to vary, but as of - ** version 3.6.0, we require them to be fixed. - */ - if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ - goto page1_init_failed; - } - pageSize = (page1[16]<<8) | (page1[17]<<16); - if( ((pageSize-1)&pageSize)!=0 - || pageSize>SQLITE_MAX_PAGE_SIZE - || pageSize<=256 - ){ - goto page1_init_failed; - } - assert( (pageSize & 7)==0 ); - usableSize = pageSize - page1[20]; - if( (u32)pageSize!=pBt->pageSize ){ - /* After reading the first page of the database assuming a page size - ** of BtShared.pageSize, we have discovered that the page-size is - ** actually pageSize. Unlock the database, leave pBt->pPage1 at - ** zero and return SQLITE_OK. The caller will call this function - ** again with the correct page-size. - */ - releasePage(pPage1); - pBt->usableSize = usableSize; - pBt->pageSize = pageSize; - freeTempSpace(pBt); - rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, - pageSize-usableSize); - return rc; - } - if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ - rc = SQLITE_CORRUPT_BKPT; - goto page1_init_failed; - } - if( usableSize<480 ){ - goto page1_init_failed; - } - pBt->pageSize = pageSize; - pBt->usableSize = usableSize; -#ifndef SQLITE_OMIT_AUTOVACUUM - pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); - pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); -#endif - } - - /* maxLocal is the maximum amount of payload to store locally for - ** a cell. Make sure it is small enough so that at least minFanout - ** cells can will fit on one page. We assume a 10-byte page header. - ** Besides the payload, the cell must store: - ** 2-byte pointer to the cell - ** 4-byte child pointer - ** 9-byte nKey value - ** 4-byte nData value - ** 4-byte overflow page pointer - ** So a cell consists of a 2-byte pointer, a header which is as much as - ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow - ** page pointer. - */ - pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); - pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); - pBt->maxLeaf = (u16)(pBt->usableSize - 35); - pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); - if( pBt->maxLocal>127 ){ - pBt->max1bytePayload = 127; - }else{ - pBt->max1bytePayload = (u8)pBt->maxLocal; - } - assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); - pBt->pPage1 = pPage1; - pBt->nPage = nPage; - return SQLITE_OK; - -page1_init_failed: - releasePage(pPage1); - pBt->pPage1 = 0; - return rc; -} - -/* -** If there are no outstanding cursors and we are not in the middle -** of a transaction but there is a read lock on the database, then -** this routine unrefs the first page of the database file which -** has the effect of releasing the read lock. -** -** If there is a transaction in progress, this routine is a no-op. -*/ -static void unlockBtreeIfUnused(BtShared *pBt){ - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE ); - if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ - assert( pBt->pPage1->aData ); - assert( sqlite3PagerRefcount(pBt->pPager)==1 ); - assert( pBt->pPage1->aData ); - releasePage(pBt->pPage1); - pBt->pPage1 = 0; - } -} - -/* -** If pBt points to an empty file then convert that empty file -** into a new empty database by initializing the first page of -** the database. -*/ -static int newDatabase(BtShared *pBt){ - MemPage *pP1; - unsigned char *data; - int rc; - - assert( sqlite3_mutex_held(pBt->mutex) ); - if( pBt->nPage>0 ){ - return SQLITE_OK; - } - pP1 = pBt->pPage1; - assert( pP1!=0 ); - data = pP1->aData; - rc = sqlite3PagerWrite(pP1->pDbPage); - if( rc ) return rc; - memcpy(data, zMagicHeader, sizeof(zMagicHeader)); - assert( sizeof(zMagicHeader)==16 ); - data[16] = (u8)((pBt->pageSize>>8)&0xff); - data[17] = (u8)((pBt->pageSize>>16)&0xff); - data[18] = 1; - data[19] = 1; - assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); - data[20] = (u8)(pBt->pageSize - pBt->usableSize); - data[21] = 64; - data[22] = 32; - data[23] = 32; - memset(&data[24], 0, 100-24); - zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); - pBt->btsFlags |= BTS_PAGESIZE_FIXED; -#ifndef SQLITE_OMIT_AUTOVACUUM - assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); - assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); - put4byte(&data[36 + 4*4], pBt->autoVacuum); - put4byte(&data[36 + 7*4], pBt->incrVacuum); -#endif - pBt->nPage = 1; - data[31] = 1; - return SQLITE_OK; -} - -/* -** Initialize the first page of the database file (creating a database -** consisting of a single page and no schema objects). Return SQLITE_OK -** if successful, or an SQLite error code otherwise. -*/ -SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){ - int rc; - sqlite3BtreeEnter(p); - p->pBt->nPage = 0; - rc = newDatabase(p->pBt); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Attempt to start a new transaction. A write-transaction -** is started if the second argument is nonzero, otherwise a read- -** transaction. If the second argument is 2 or more and exclusive -** transaction is started, meaning that no other process is allowed -** to access the database. A preexisting transaction may not be -** upgraded to exclusive by calling this routine a second time - the -** exclusivity flag only works for a new transaction. -** -** A write-transaction must be started before attempting any -** changes to the database. None of the following routines -** will work unless a transaction is started first: -** -** sqlite3BtreeCreateTable() -** sqlite3BtreeCreateIndex() -** sqlite3BtreeClearTable() -** sqlite3BtreeDropTable() -** sqlite3BtreeInsert() -** sqlite3BtreeDelete() -** sqlite3BtreeUpdateMeta() -** -** If an initial attempt to acquire the lock fails because of lock contention -** and the database was previously unlocked, then invoke the busy handler -** if there is one. But if there was previously a read-lock, do not -** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is -** returned when there is already a read-lock in order to avoid a deadlock. -** -** Suppose there are two processes A and B. A has a read lock and B has -** a reserved lock. B tries to promote to exclusive but is blocked because -** of A's read lock. A tries to promote to reserved but is blocked by B. -** One or the other of the two processes must give way or there can be -** no progress. By returning SQLITE_BUSY and not invoking the busy callback -** when A already has a read lock, we encourage A to give up and let B -** proceed. -*/ -SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ - sqlite3 *pBlock = 0; - BtShared *pBt = p->pBt; - int rc = SQLITE_OK; - - sqlite3BtreeEnter(p); - btreeIntegrity(p); - - /* If the btree is already in a write-transaction, or it - ** is already in a read-transaction and a read-transaction - ** is requested, this is a no-op. - */ - if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ - goto trans_begun; - } - assert( IfNotOmitAV(pBt->bDoTruncate)==0 ); - - /* Write transactions are not possible on a read-only database */ - if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ - rc = SQLITE_READONLY; - goto trans_begun; - } - -#ifndef SQLITE_OMIT_SHARED_CACHE - /* If another database handle has already opened a write transaction - ** on this shared-btree structure and a second write transaction is - ** requested, return SQLITE_LOCKED. - */ - if( (wrflag && pBt->inTransaction==TRANS_WRITE) - || (pBt->btsFlags & BTS_PENDING)!=0 - ){ - pBlock = pBt->pWriter->db; - }else if( wrflag>1 ){ - BtLock *pIter; - for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ - if( pIter->pBtree!=p ){ - pBlock = pIter->pBtree->db; - break; - } - } - } - if( pBlock ){ - sqlite3ConnectionBlocked(p->db, pBlock); - rc = SQLITE_LOCKED_SHAREDCACHE; - goto trans_begun; - } -#endif - - /* Any read-only or read-write transaction implies a read-lock on - ** page 1. So if some other shared-cache client already has a write-lock - ** on page 1, the transaction cannot be opened. */ - rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); - if( SQLITE_OK!=rc ) goto trans_begun; - - pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; - if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; - do { - /* Call lockBtree() until either pBt->pPage1 is populated or - ** lockBtree() returns something other than SQLITE_OK. lockBtree() - ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after - ** reading page 1 it discovers that the page-size of the database - ** file is not pBt->pageSize. In this case lockBtree() will update - ** pBt->pageSize to the page-size of the file on disk. - */ - while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); - - if( rc==SQLITE_OK && wrflag ){ - if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ - rc = SQLITE_READONLY; - }else{ - rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); - if( rc==SQLITE_OK ){ - rc = newDatabase(pBt); - } - } - } - - if( rc!=SQLITE_OK ){ - unlockBtreeIfUnused(pBt); - } - }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && - btreeInvokeBusyHandler(pBt) ); - - if( rc==SQLITE_OK ){ - if( p->inTrans==TRANS_NONE ){ - pBt->nTransaction++; -#ifndef SQLITE_OMIT_SHARED_CACHE - if( p->sharable ){ - assert( p->lock.pBtree==p && p->lock.iTable==1 ); - p->lock.eLock = READ_LOCK; - p->lock.pNext = pBt->pLock; - pBt->pLock = &p->lock; - } -#endif - } - p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); - if( p->inTrans>pBt->inTransaction ){ - pBt->inTransaction = p->inTrans; - } - if( wrflag ){ - MemPage *pPage1 = pBt->pPage1; -#ifndef SQLITE_OMIT_SHARED_CACHE - assert( !pBt->pWriter ); - pBt->pWriter = p; - pBt->btsFlags &= ~BTS_EXCLUSIVE; - if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; -#endif - - /* If the db-size header field is incorrect (as it may be if an old - ** client has been writing the database file), update it now. Doing - ** this sooner rather than later means the database size can safely - ** re-read the database size from page 1 if a savepoint or transaction - ** rollback occurs within the transaction. - */ - if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ - rc = sqlite3PagerWrite(pPage1->pDbPage); - if( rc==SQLITE_OK ){ - put4byte(&pPage1->aData[28], pBt->nPage); - } - } - } - } - - -trans_begun: - if( rc==SQLITE_OK && wrflag ){ - /* This call makes sure that the pager has the correct number of - ** open savepoints. If the second parameter is greater than 0 and - ** the sub-journal is not already open, then it will be opened here. - */ - rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); - } - - btreeIntegrity(p); - sqlite3BtreeLeave(p); - return rc; -} - -#ifndef SQLITE_OMIT_AUTOVACUUM - -/* -** Set the pointer-map entries for all children of page pPage. Also, if -** pPage contains cells that point to overflow pages, set the pointer -** map entries for the overflow pages as well. -*/ -static int setChildPtrmaps(MemPage *pPage){ - int i; /* Counter variable */ - int nCell; /* Number of cells in page pPage */ - int rc; /* Return code */ - BtShared *pBt = pPage->pBt; - u8 isInitOrig = pPage->isInit; - Pgno pgno = pPage->pgno; - - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - rc = btreeInitPage(pPage); - if( rc!=SQLITE_OK ){ - goto set_child_ptrmaps_out; - } - nCell = pPage->nCell; - - for(i=0; i<nCell; i++){ - u8 *pCell = findCell(pPage, i); - - ptrmapPutOvflPtr(pPage, pCell, &rc); - - if( !pPage->leaf ){ - Pgno childPgno = get4byte(pCell); - ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); - } - } - - if( !pPage->leaf ){ - Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); - ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); - } - -set_child_ptrmaps_out: - pPage->isInit = isInitOrig; - return rc; -} - -/* -** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so -** that it points to iTo. Parameter eType describes the type of pointer to -** be modified, as follows: -** -** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child -** page of pPage. -** -** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow -** page pointed to by one of the cells on pPage. -** -** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next -** overflow page in the list. -*/ -static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - if( eType==PTRMAP_OVERFLOW2 ){ - /* The pointer is always the first 4 bytes of the page in this case. */ - if( get4byte(pPage->aData)!=iFrom ){ - return SQLITE_CORRUPT_BKPT; - } - put4byte(pPage->aData, iTo); - }else{ - u8 isInitOrig = pPage->isInit; - int i; - int nCell; - - btreeInitPage(pPage); - nCell = pPage->nCell; - - for(i=0; i<nCell; i++){ - u8 *pCell = findCell(pPage, i); - if( eType==PTRMAP_OVERFLOW1 ){ - CellInfo info; - btreeParseCellPtr(pPage, pCell, &info); - if( info.iOverflow - && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage - && iFrom==get4byte(&pCell[info.iOverflow]) - ){ - put4byte(&pCell[info.iOverflow], iTo); - break; - } - }else{ - if( get4byte(pCell)==iFrom ){ - put4byte(pCell, iTo); - break; - } - } - } - - if( i==nCell ){ - if( eType!=PTRMAP_BTREE || - get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ - return SQLITE_CORRUPT_BKPT; - } - put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); - } - - pPage->isInit = isInitOrig; - } - return SQLITE_OK; -} - - -/* -** Move the open database page pDbPage to location iFreePage in the -** database. The pDbPage reference remains valid. -** -** The isCommit flag indicates that there is no need to remember that -** the journal needs to be sync()ed before database page pDbPage->pgno -** can be written to. The caller has already promised not to write to that -** page. -*/ -static int relocatePage( - BtShared *pBt, /* Btree */ - MemPage *pDbPage, /* Open page to move */ - u8 eType, /* Pointer map 'type' entry for pDbPage */ - Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ - Pgno iFreePage, /* The location to move pDbPage to */ - int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ -){ - MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ - Pgno iDbPage = pDbPage->pgno; - Pager *pPager = pBt->pPager; - int rc; - - assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || - eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( pDbPage->pBt==pBt ); - - /* Move page iDbPage from its current location to page number iFreePage */ - TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", - iDbPage, iFreePage, iPtrPage, eType)); - rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); - if( rc!=SQLITE_OK ){ - return rc; - } - pDbPage->pgno = iFreePage; - - /* If pDbPage was a btree-page, then it may have child pages and/or cells - ** that point to overflow pages. The pointer map entries for all these - ** pages need to be changed. - ** - ** If pDbPage is an overflow page, then the first 4 bytes may store a - ** pointer to a subsequent overflow page. If this is the case, then - ** the pointer map needs to be updated for the subsequent overflow page. - */ - if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ - rc = setChildPtrmaps(pDbPage); - if( rc!=SQLITE_OK ){ - return rc; - } - }else{ - Pgno nextOvfl = get4byte(pDbPage->aData); - if( nextOvfl!=0 ){ - ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); - if( rc!=SQLITE_OK ){ - return rc; - } - } - } - - /* Fix the database pointer on page iPtrPage that pointed at iDbPage so - ** that it points at iFreePage. Also fix the pointer map entry for - ** iPtrPage. - */ - if( eType!=PTRMAP_ROOTPAGE ){ - rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - rc = sqlite3PagerWrite(pPtrPage->pDbPage); - if( rc!=SQLITE_OK ){ - releasePage(pPtrPage); - return rc; - } - rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); - releasePage(pPtrPage); - if( rc==SQLITE_OK ){ - ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); - } - } - return rc; -} - -/* Forward declaration required by incrVacuumStep(). */ -static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); - -/* -** Perform a single step of an incremental-vacuum. If successful, return -** SQLITE_OK. If there is no work to do (and therefore no point in -** calling this function again), return SQLITE_DONE. Or, if an error -** occurs, return some other error code. -** -** More specificly, this function attempts to re-organize the database so -** that the last page of the file currently in use is no longer in use. -** -** Parameter nFin is the number of pages that this database would contain -** were this function called until it returns SQLITE_DONE. -** -** If the bCommit parameter is non-zero, this function assumes that the -** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE -** or an error. bCommit is passed true for an auto-vacuum-on-commmit -** operation, or false for an incremental vacuum. -*/ -static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ - Pgno nFreeList; /* Number of pages still on the free-list */ - int rc; - - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( iLastPg>nFin ); - - if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ - u8 eType; - Pgno iPtrPage; - - nFreeList = get4byte(&pBt->pPage1->aData[36]); - if( nFreeList==0 ){ - return SQLITE_DONE; - } - - rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); - if( rc!=SQLITE_OK ){ - return rc; - } - if( eType==PTRMAP_ROOTPAGE ){ - return SQLITE_CORRUPT_BKPT; - } - - if( eType==PTRMAP_FREEPAGE ){ - if( bCommit==0 ){ - /* Remove the page from the files free-list. This is not required - ** if bCommit is non-zero. In that case, the free-list will be - ** truncated to zero after this function returns, so it doesn't - ** matter if it still contains some garbage entries. - */ - Pgno iFreePg; - MemPage *pFreePg; - rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); - if( rc!=SQLITE_OK ){ - return rc; - } - assert( iFreePg==iLastPg ); - releasePage(pFreePg); - } - } else { - Pgno iFreePg; /* Index of free page to move pLastPg to */ - MemPage *pLastPg; - u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ - Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ - - rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - - /* If bCommit is zero, this loop runs exactly once and page pLastPg - ** is swapped with the first free page pulled off the free list. - ** - ** On the other hand, if bCommit is greater than zero, then keep - ** looping until a free-page located within the first nFin pages - ** of the file is found. - */ - if( bCommit==0 ){ - eMode = BTALLOC_LE; - iNear = nFin; - } - do { - MemPage *pFreePg; - rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); - if( rc!=SQLITE_OK ){ - releasePage(pLastPg); - return rc; - } - releasePage(pFreePg); - }while( bCommit && iFreePg>nFin ); - assert( iFreePg<iLastPg ); - - rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); - releasePage(pLastPg); - if( rc!=SQLITE_OK ){ - return rc; - } - } - } - - if( bCommit==0 ){ - do { - iLastPg--; - }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); - pBt->bDoTruncate = 1; - pBt->nPage = iLastPg; - } - return SQLITE_OK; -} - -/* -** The database opened by the first argument is an auto-vacuum database -** nOrig pages in size containing nFree free pages. Return the expected -** size of the database in pages following an auto-vacuum operation. -*/ -static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ - int nEntry; /* Number of entries on one ptrmap page */ - Pgno nPtrmap; /* Number of PtrMap pages to be freed */ - Pgno nFin; /* Return value */ - - nEntry = pBt->usableSize/5; - nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; - nFin = nOrig - nFree - nPtrmap; - if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ - nFin--; - } - while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ - nFin--; - } - - return nFin; -} - -/* -** A write-transaction must be opened before calling this function. -** It performs a single unit of work towards an incremental vacuum. -** -** If the incremental vacuum is finished after this function has run, -** SQLITE_DONE is returned. If it is not finished, but no error occurred, -** SQLITE_OK is returned. Otherwise an SQLite error code. -*/ -SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){ - int rc; - BtShared *pBt = p->pBt; - - sqlite3BtreeEnter(p); - assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); - if( !pBt->autoVacuum ){ - rc = SQLITE_DONE; - }else{ - Pgno nOrig = btreePagecount(pBt); - Pgno nFree = get4byte(&pBt->pPage1->aData[36]); - Pgno nFin = finalDbSize(pBt, nOrig, nFree); - - if( nOrig<nFin ){ - rc = SQLITE_CORRUPT_BKPT; - }else if( nFree>0 ){ - invalidateAllOverflowCache(pBt); - rc = incrVacuumStep(pBt, nFin, nOrig, 0); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); - put4byte(&pBt->pPage1->aData[28], pBt->nPage); - } - }else{ - rc = SQLITE_DONE; - } - } - sqlite3BtreeLeave(p); - return rc; -} - -/* -** This routine is called prior to sqlite3PagerCommit when a transaction -** is commited for an auto-vacuum database. -** -** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages -** the database file should be truncated to during the commit process. -** i.e. the database has been reorganized so that only the first *pnTrunc -** pages are in use. -*/ -static int autoVacuumCommit(BtShared *pBt){ - int rc = SQLITE_OK; - Pager *pPager = pBt->pPager; - VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); - - assert( sqlite3_mutex_held(pBt->mutex) ); - invalidateAllOverflowCache(pBt); - assert(pBt->autoVacuum); - if( !pBt->incrVacuum ){ - Pgno nFin; /* Number of pages in database after autovacuuming */ - Pgno nFree; /* Number of pages on the freelist initially */ - Pgno iFree; /* The next page to be freed */ - Pgno nOrig; /* Database size before freeing */ - - nOrig = btreePagecount(pBt); - if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ - /* It is not possible to create a database for which the final page - ** is either a pointer-map page or the pending-byte page. If one - ** is encountered, this indicates corruption. - */ - return SQLITE_CORRUPT_BKPT; - } - - nFree = get4byte(&pBt->pPage1->aData[36]); - nFin = finalDbSize(pBt, nOrig, nFree); - if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; - - for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ - rc = incrVacuumStep(pBt, nFin, iFree, 1); - } - if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ - rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); - put4byte(&pBt->pPage1->aData[32], 0); - put4byte(&pBt->pPage1->aData[36], 0); - put4byte(&pBt->pPage1->aData[28], nFin); - pBt->bDoTruncate = 1; - pBt->nPage = nFin; - } - if( rc!=SQLITE_OK ){ - sqlite3PagerRollback(pPager); - } - } - - assert( nRef==sqlite3PagerRefcount(pPager) ); - return rc; -} - -#else /* ifndef SQLITE_OMIT_AUTOVACUUM */ -# define setChildPtrmaps(x) SQLITE_OK -#endif - -/* -** This routine does the first phase of a two-phase commit. This routine -** causes a rollback journal to be created (if it does not already exist) -** and populated with enough information so that if a power loss occurs -** the database can be restored to its original state by playing back -** the journal. Then the contents of the journal are flushed out to -** the disk. After the journal is safely on oxide, the changes to the -** database are written into the database file and flushed to oxide. -** At the end of this call, the rollback journal still exists on the -** disk and we are still holding all locks, so the transaction has not -** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the -** commit process. -** -** This call is a no-op if no write-transaction is currently active on pBt. -** -** Otherwise, sync the database file for the btree pBt. zMaster points to -** the name of a master journal file that should be written into the -** individual journal file, or is NULL, indicating no master journal file -** (single database transaction). -** -** When this is called, the master journal should already have been -** created, populated with this journal pointer and synced to disk. -** -** Once this is routine has returned, the only thing required to commit -** the write-transaction for this database file is to delete the journal. -*/ -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ - int rc = SQLITE_OK; - if( p->inTrans==TRANS_WRITE ){ - BtShared *pBt = p->pBt; - sqlite3BtreeEnter(p); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum ){ - rc = autoVacuumCommit(pBt); - if( rc!=SQLITE_OK ){ - sqlite3BtreeLeave(p); - return rc; - } - } - if( pBt->bDoTruncate ){ - sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); - } -#endif - rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); - sqlite3BtreeLeave(p); - } - return rc; -} - -/* -** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() -** at the conclusion of a transaction. -*/ -static void btreeEndTransaction(Btree *p){ - BtShared *pBt = p->pBt; - assert( sqlite3BtreeHoldsMutex(p) ); - -#ifndef SQLITE_OMIT_AUTOVACUUM - pBt->bDoTruncate = 0; -#endif - btreeClearHasContent(pBt); - if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){ - /* If there are other active statements that belong to this database - ** handle, downgrade to a read-only transaction. The other statements - ** may still be reading from the database. */ - downgradeAllSharedCacheTableLocks(p); - p->inTrans = TRANS_READ; - }else{ - /* If the handle had any kind of transaction open, decrement the - ** transaction count of the shared btree. If the transaction count - ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() - ** call below will unlock the pager. */ - if( p->inTrans!=TRANS_NONE ){ - clearAllSharedCacheTableLocks(p); - pBt->nTransaction--; - if( 0==pBt->nTransaction ){ - pBt->inTransaction = TRANS_NONE; - } - } - - /* Set the current transaction state to TRANS_NONE and unlock the - ** pager if this call closed the only read or write transaction. */ - p->inTrans = TRANS_NONE; - unlockBtreeIfUnused(pBt); - } - - btreeIntegrity(p); -} - -/* -** Commit the transaction currently in progress. -** -** This routine implements the second phase of a 2-phase commit. The -** sqlite3BtreeCommitPhaseOne() routine does the first phase and should -** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() -** routine did all the work of writing information out to disk and flushing the -** contents so that they are written onto the disk platter. All this -** routine has to do is delete or truncate or zero the header in the -** the rollback journal (which causes the transaction to commit) and -** drop locks. -** -** Normally, if an error occurs while the pager layer is attempting to -** finalize the underlying journal file, this function returns an error and -** the upper layer will attempt a rollback. However, if the second argument -** is non-zero then this b-tree transaction is part of a multi-file -** transaction. In this case, the transaction has already been committed -** (by deleting a master journal file) and the caller will ignore this -** functions return code. So, even if an error occurs in the pager layer, -** reset the b-tree objects internal state to indicate that the write -** transaction has been closed. This is quite safe, as the pager will have -** transitioned to the error state. -** -** This will release the write lock on the database file. If there -** are no active cursors, it also releases the read lock. -*/ -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ - - if( p->inTrans==TRANS_NONE ) return SQLITE_OK; - sqlite3BtreeEnter(p); - btreeIntegrity(p); - - /* If the handle has a write-transaction open, commit the shared-btrees - ** transaction and set the shared state to TRANS_READ. - */ - if( p->inTrans==TRANS_WRITE ){ - int rc; - BtShared *pBt = p->pBt; - assert( pBt->inTransaction==TRANS_WRITE ); - assert( pBt->nTransaction>0 ); - rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); - if( rc!=SQLITE_OK && bCleanup==0 ){ - sqlite3BtreeLeave(p); - return rc; - } - pBt->inTransaction = TRANS_READ; - } - - btreeEndTransaction(p); - sqlite3BtreeLeave(p); - return SQLITE_OK; -} - -/* -** Do both phases of a commit. -*/ -SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ - int rc; - sqlite3BtreeEnter(p); - rc = sqlite3BtreeCommitPhaseOne(p, 0); - if( rc==SQLITE_OK ){ - rc = sqlite3BtreeCommitPhaseTwo(p, 0); - } - sqlite3BtreeLeave(p); - return rc; -} - -#ifndef NDEBUG -/* -** Return the number of write-cursors open on this handle. This is for use -** in assert() expressions, so it is only compiled if NDEBUG is not -** defined. -** -** For the purposes of this routine, a write-cursor is any cursor that -** is capable of writing to the databse. That means the cursor was -** originally opened for writing and the cursor has not be disabled -** by having its state changed to CURSOR_FAULT. -*/ -static int countWriteCursors(BtShared *pBt){ - BtCursor *pCur; - int r = 0; - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; - } - return r; -} -#endif - -/* -** This routine sets the state to CURSOR_FAULT and the error -** code to errCode for every cursor on BtShared that pBtree -** references. -** -** Every cursor is tripped, including cursors that belong -** to other database connections that happen to be sharing -** the cache with pBtree. -** -** This routine gets called when a rollback occurs. -** All cursors using the same cache must be tripped -** to prevent them from trying to use the btree after -** the rollback. The rollback may have deleted tables -** or moved root pages, so it is not sufficient to -** save the state of the cursor. The cursor must be -** invalidated. -*/ -SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ - BtCursor *p; - if( pBtree==0 ) return; - sqlite3BtreeEnter(pBtree); - for(p=pBtree->pBt->pCursor; p; p=p->pNext){ - int i; - sqlite3BtreeClearCursor(p); - p->eState = CURSOR_FAULT; - p->skipNext = errCode; - for(i=0; i<=p->iPage; i++){ - releasePage(p->apPage[i]); - p->apPage[i] = 0; - } - } - sqlite3BtreeLeave(pBtree); -} - -/* -** Rollback the transaction in progress. All cursors will be -** invalided by this operation. Any attempt to use a cursor -** that was open at the beginning of this operation will result -** in an error. -** -** This will release the write lock on the database file. If there -** are no active cursors, it also releases the read lock. -*/ -SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode){ - int rc; - BtShared *pBt = p->pBt; - MemPage *pPage1; - - sqlite3BtreeEnter(p); - if( tripCode==SQLITE_OK ){ - rc = tripCode = saveAllCursors(pBt, 0, 0); - }else{ - rc = SQLITE_OK; - } - if( tripCode ){ - sqlite3BtreeTripAllCursors(p, tripCode); - } - btreeIntegrity(p); - - if( p->inTrans==TRANS_WRITE ){ - int rc2; - - assert( TRANS_WRITE==pBt->inTransaction ); - rc2 = sqlite3PagerRollback(pBt->pPager); - if( rc2!=SQLITE_OK ){ - rc = rc2; - } - - /* The rollback may have destroyed the pPage1->aData value. So - ** call btreeGetPage() on page 1 again to make - ** sure pPage1->aData is set correctly. */ - if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ - int nPage = get4byte(28+(u8*)pPage1->aData); - testcase( nPage==0 ); - if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); - testcase( pBt->nPage!=nPage ); - pBt->nPage = nPage; - releasePage(pPage1); - } - assert( countWriteCursors(pBt)==0 ); - pBt->inTransaction = TRANS_READ; - } - - btreeEndTransaction(p); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Start a statement subtransaction. The subtransaction can can be rolled -** back independently of the main transaction. You must start a transaction -** before starting a subtransaction. The subtransaction is ended automatically -** if the main transaction commits or rolls back. -** -** Statement subtransactions are used around individual SQL statements -** that are contained within a BEGIN...COMMIT block. If a constraint -** error occurs within the statement, the effect of that one statement -** can be rolled back without having to rollback the entire transaction. -** -** A statement sub-transaction is implemented as an anonymous savepoint. The -** value passed as the second parameter is the total number of savepoints, -** including the new anonymous savepoint, open on the B-Tree. i.e. if there -** are no active savepoints and no other statement-transactions open, -** iStatement is 1. This anonymous savepoint can be released or rolled back -** using the sqlite3BtreeSavepoint() function. -*/ -SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ - int rc; - BtShared *pBt = p->pBt; - sqlite3BtreeEnter(p); - assert( p->inTrans==TRANS_WRITE ); - assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); - assert( iStatement>0 ); - assert( iStatement>p->db->nSavepoint ); - assert( pBt->inTransaction==TRANS_WRITE ); - /* At the pager level, a statement transaction is a savepoint with - ** an index greater than all savepoints created explicitly using - ** SQL statements. It is illegal to open, release or rollback any - ** such savepoints while the statement transaction savepoint is active. - */ - rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** The second argument to this function, op, is always SAVEPOINT_ROLLBACK -** or SAVEPOINT_RELEASE. This function either releases or rolls back the -** savepoint identified by parameter iSavepoint, depending on the value -** of op. -** -** Normally, iSavepoint is greater than or equal to zero. However, if op is -** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the -** contents of the entire transaction are rolled back. This is different -** from a normal transaction rollback, as no locks are released and the -** transaction remains open. -*/ -SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ - int rc = SQLITE_OK; - if( p && p->inTrans==TRANS_WRITE ){ - BtShared *pBt = p->pBt; - assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); - assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); - sqlite3BtreeEnter(p); - rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); - if( rc==SQLITE_OK ){ - if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ - pBt->nPage = 0; - } - rc = newDatabase(pBt); - pBt->nPage = get4byte(28 + pBt->pPage1->aData); - - /* The database size was written into the offset 28 of the header - ** when the transaction started, so we know that the value at offset - ** 28 is nonzero. */ - assert( pBt->nPage>0 ); - } - sqlite3BtreeLeave(p); - } - return rc; -} - -/* -** Create a new cursor for the BTree whose root is on the page -** iTable. If a read-only cursor is requested, it is assumed that -** the caller already has at least a read-only transaction open -** on the database already. If a write-cursor is requested, then -** the caller is assumed to have an open write transaction. -** -** If wrFlag==0, then the cursor can only be used for reading. -** If wrFlag==1, then the cursor can be used for reading or for -** writing if other conditions for writing are also met. These -** are the conditions that must be met in order for writing to -** be allowed: -** -** 1: The cursor must have been opened with wrFlag==1 -** -** 2: Other database connections that share the same pager cache -** but which are not in the READ_UNCOMMITTED state may not have -** cursors open with wrFlag==0 on the same table. Otherwise -** the changes made by this write cursor would be visible to -** the read cursors in the other database connection. -** -** 3: The database must be writable (not on read-only media) -** -** 4: There must be an active transaction. -** -** No checking is done to make sure that page iTable really is the -** root page of a b-tree. If it is not, then the cursor acquired -** will not work correctly. -** -** It is assumed that the sqlite3BtreeCursorZero() has been called -** on pCur to initialize the memory space prior to invoking this routine. -*/ -static int btreeCursor( - Btree *p, /* The btree */ - int iTable, /* Root page of table to open */ - int wrFlag, /* 1 to write. 0 read-only */ - struct KeyInfo *pKeyInfo, /* First arg to comparison function */ - BtCursor *pCur /* Space for new cursor */ -){ - BtShared *pBt = p->pBt; /* Shared b-tree handle */ - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( wrFlag==0 || wrFlag==1 ); - - /* The following assert statements verify that if this is a sharable - ** b-tree database, the connection is holding the required table locks, - ** and that no other connection has any open cursor that conflicts with - ** this lock. */ - assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); - assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); - - /* Assert that the caller has opened the required transaction. */ - assert( p->inTrans>TRANS_NONE ); - assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); - assert( pBt->pPage1 && pBt->pPage1->aData ); - - if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){ - return SQLITE_READONLY; - } - if( iTable==1 && btreePagecount(pBt)==0 ){ - assert( wrFlag==0 ); - iTable = 0; - } - - /* Now that no other errors can occur, finish filling in the BtCursor - ** variables and link the cursor into the BtShared list. */ - pCur->pgnoRoot = (Pgno)iTable; - pCur->iPage = -1; - pCur->pKeyInfo = pKeyInfo; - pCur->pBtree = p; - pCur->pBt = pBt; - pCur->wrFlag = (u8)wrFlag; - pCur->pNext = pBt->pCursor; - if( pCur->pNext ){ - pCur->pNext->pPrev = pCur; - } - pBt->pCursor = pCur; - pCur->eState = CURSOR_INVALID; - pCur->cachedRowid = 0; - return SQLITE_OK; -} -SQLITE_PRIVATE int sqlite3BtreeCursor( - Btree *p, /* The btree */ - int iTable, /* Root page of table to open */ - int wrFlag, /* 1 to write. 0 read-only */ - struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ - BtCursor *pCur /* Write new cursor here */ -){ - int rc; - sqlite3BtreeEnter(p); - rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Return the size of a BtCursor object in bytes. -** -** This interfaces is needed so that users of cursors can preallocate -** sufficient storage to hold a cursor. The BtCursor object is opaque -** to users so they cannot do the sizeof() themselves - they must call -** this routine. -*/ -SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){ - return ROUND8(sizeof(BtCursor)); -} - -/* -** Initialize memory that will be converted into a BtCursor object. -** -** The simple approach here would be to memset() the entire object -** to zero. But it turns out that the apPage[] and aiIdx[] arrays -** do not need to be zeroed and they are large, so we can save a lot -** of run-time by skipping the initialization of those elements. -*/ -SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ - memset(p, 0, offsetof(BtCursor, iPage)); -} - -/* -** Set the cached rowid value of every cursor in the same database file -** as pCur and having the same root page number as pCur. The value is -** set to iRowid. -** -** Only positive rowid values are considered valid for this cache. -** The cache is initialized to zero, indicating an invalid cache. -** A btree will work fine with zero or negative rowids. We just cannot -** cache zero or negative rowids, which means tables that use zero or -** negative rowids might run a little slower. But in practice, zero -** or negative rowids are very uncommon so this should not be a problem. -*/ -SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){ - BtCursor *p; - for(p=pCur->pBt->pCursor; p; p=p->pNext){ - if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid; - } - assert( pCur->cachedRowid==iRowid ); -} - -/* -** Return the cached rowid for the given cursor. A negative or zero -** return value indicates that the rowid cache is invalid and should be -** ignored. If the rowid cache has never before been set, then a -** zero is returned. -*/ -SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){ - return pCur->cachedRowid; -} - -/* -** Close a cursor. The read lock on the database file is released -** when the last cursor is closed. -*/ -SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ - Btree *pBtree = pCur->pBtree; - if( pBtree ){ - int i; - BtShared *pBt = pCur->pBt; - sqlite3BtreeEnter(pBtree); - sqlite3BtreeClearCursor(pCur); - if( pCur->pPrev ){ - pCur->pPrev->pNext = pCur->pNext; - }else{ - pBt->pCursor = pCur->pNext; - } - if( pCur->pNext ){ - pCur->pNext->pPrev = pCur->pPrev; - } - for(i=0; i<=pCur->iPage; i++){ - releasePage(pCur->apPage[i]); - } - unlockBtreeIfUnused(pBt); - invalidateOverflowCache(pCur); - /* sqlite3_free(pCur); */ - sqlite3BtreeLeave(pBtree); - } - return SQLITE_OK; -} - -/* -** Make sure the BtCursor* given in the argument has a valid -** BtCursor.info structure. If it is not already valid, call -** btreeParseCell() to fill it in. -** -** BtCursor.info is a cache of the information in the current cell. -** Using this cache reduces the number of calls to btreeParseCell(). -** -** 2007-06-25: There is a bug in some versions of MSVC that cause the -** compiler to crash when getCellInfo() is implemented as a macro. -** But there is a measureable speed advantage to using the macro on gcc -** (when less compiler optimizations like -Os or -O0 are used and the -** compiler is not doing agressive inlining.) So we use a real function -** for MSVC and a macro for everything else. Ticket #2457. -*/ -#ifndef NDEBUG - static void assertCellInfo(BtCursor *pCur){ - CellInfo info; - int iPage = pCur->iPage; - memset(&info, 0, sizeof(info)); - btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); - assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); - } -#else - #define assertCellInfo(x) -#endif -#ifdef _MSC_VER - /* Use a real function in MSVC to work around bugs in that compiler. */ - static void getCellInfo(BtCursor *pCur){ - if( pCur->info.nSize==0 ){ - int iPage = pCur->iPage; - btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); - pCur->validNKey = 1; - }else{ - assertCellInfo(pCur); - } - } -#else /* if not _MSC_VER */ - /* Use a macro in all other compilers so that the function is inlined */ -#define getCellInfo(pCur) \ - if( pCur->info.nSize==0 ){ \ - int iPage = pCur->iPage; \ - btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ - pCur->validNKey = 1; \ - }else{ \ - assertCellInfo(pCur); \ - } -#endif /* _MSC_VER */ - -#ifndef NDEBUG /* The next routine used only within assert() statements */ -/* -** Return true if the given BtCursor is valid. A valid cursor is one -** that is currently pointing to a row in a (non-empty) table. -** This is a verification routine is used only within assert() statements. -*/ -SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){ - return pCur && pCur->eState==CURSOR_VALID; -} -#endif /* NDEBUG */ - -/* -** Set *pSize to the size of the buffer needed to hold the value of -** the key for the current entry. If the cursor is not pointing -** to a valid entry, *pSize is set to 0. -** -** For a table with the INTKEY flag set, this routine returns the key -** itself, not the number of bytes in the key. -** -** The caller must position the cursor prior to invoking this routine. -** -** This routine cannot fail. It always returns SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); - if( pCur->eState!=CURSOR_VALID ){ - *pSize = 0; - }else{ - getCellInfo(pCur); - *pSize = pCur->info.nKey; - } - return SQLITE_OK; -} - -/* -** Set *pSize to the number of bytes of data in the entry the -** cursor currently points to. -** -** The caller must guarantee that the cursor is pointing to a non-NULL -** valid entry. In other words, the calling procedure must guarantee -** that the cursor has Cursor.eState==CURSOR_VALID. -** -** Failure is not possible. This function always returns SQLITE_OK. -** It might just as well be a procedure (returning void) but we continue -** to return an integer result code for historical reasons. -*/ -SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - getCellInfo(pCur); - *pSize = pCur->info.nData; - return SQLITE_OK; -} - -/* -** Given the page number of an overflow page in the database (parameter -** ovfl), this function finds the page number of the next page in the -** linked list of overflow pages. If possible, it uses the auto-vacuum -** pointer-map data instead of reading the content of page ovfl to do so. -** -** If an error occurs an SQLite error code is returned. Otherwise: -** -** The page number of the next overflow page in the linked list is -** written to *pPgnoNext. If page ovfl is the last page in its linked -** list, *pPgnoNext is set to zero. -** -** If ppPage is not NULL, and a reference to the MemPage object corresponding -** to page number pOvfl was obtained, then *ppPage is set to point to that -** reference. It is the responsibility of the caller to call releasePage() -** on *ppPage to free the reference. In no reference was obtained (because -** the pointer-map was used to obtain the value for *pPgnoNext), then -** *ppPage is set to zero. -*/ -static int getOverflowPage( - BtShared *pBt, /* The database file */ - Pgno ovfl, /* Current overflow page number */ - MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ - Pgno *pPgnoNext /* OUT: Next overflow page number */ -){ - Pgno next = 0; - MemPage *pPage = 0; - int rc = SQLITE_OK; - - assert( sqlite3_mutex_held(pBt->mutex) ); - assert(pPgnoNext); - -#ifndef SQLITE_OMIT_AUTOVACUUM - /* Try to find the next page in the overflow list using the - ** autovacuum pointer-map pages. Guess that the next page in - ** the overflow list is page number (ovfl+1). If that guess turns - ** out to be wrong, fall back to loading the data of page - ** number ovfl to determine the next page number. - */ - if( pBt->autoVacuum ){ - Pgno pgno; - Pgno iGuess = ovfl+1; - u8 eType; - - while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ - iGuess++; - } - - if( iGuess<=btreePagecount(pBt) ){ - rc = ptrmapGet(pBt, iGuess, &eType, &pgno); - if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ - next = iGuess; - rc = SQLITE_DONE; - } - } - } -#endif - - assert( next==0 || rc==SQLITE_DONE ); - if( rc==SQLITE_OK ){ - rc = btreeGetPage(pBt, ovfl, &pPage, 0); - assert( rc==SQLITE_OK || pPage==0 ); - if( rc==SQLITE_OK ){ - next = get4byte(pPage->aData); - } - } - - *pPgnoNext = next; - if( ppPage ){ - *ppPage = pPage; - }else{ - releasePage(pPage); - } - return (rc==SQLITE_DONE ? SQLITE_OK : rc); -} - -/* -** Copy data from a buffer to a page, or from a page to a buffer. -** -** pPayload is a pointer to data stored on database page pDbPage. -** If argument eOp is false, then nByte bytes of data are copied -** from pPayload to the buffer pointed at by pBuf. If eOp is true, -** then sqlite3PagerWrite() is called on pDbPage and nByte bytes -** of data are copied from the buffer pBuf to pPayload. -** -** SQLITE_OK is returned on success, otherwise an error code. -*/ -static int copyPayload( - void *pPayload, /* Pointer to page data */ - void *pBuf, /* Pointer to buffer */ - int nByte, /* Number of bytes to copy */ - int eOp, /* 0 -> copy from page, 1 -> copy to page */ - DbPage *pDbPage /* Page containing pPayload */ -){ - if( eOp ){ - /* Copy data from buffer to page (a write operation) */ - int rc = sqlite3PagerWrite(pDbPage); - if( rc!=SQLITE_OK ){ - return rc; - } - memcpy(pPayload, pBuf, nByte); - }else{ - /* Copy data from page to buffer (a read operation) */ - memcpy(pBuf, pPayload, nByte); - } - return SQLITE_OK; -} - -/* -** This function is used to read or overwrite payload information -** for the entry that the pCur cursor is pointing to. If the eOp -** parameter is 0, this is a read operation (data copied into -** buffer pBuf). If it is non-zero, a write (data copied from -** buffer pBuf). -** -** A total of "amt" bytes are read or written beginning at "offset". -** Data is read to or from the buffer pBuf. -** -** The content being read or written might appear on the main page -** or be scattered out on multiple overflow pages. -** -** If the BtCursor.isIncrblobHandle flag is set, and the current -** cursor entry uses one or more overflow pages, this function -** allocates space for and lazily popluates the overflow page-list -** cache array (BtCursor.aOverflow). Subsequent calls use this -** cache to make seeking to the supplied offset more efficient. -** -** Once an overflow page-list cache has been allocated, it may be -** invalidated if some other cursor writes to the same table, or if -** the cursor is moved to a different row. Additionally, in auto-vacuum -** mode, the following events may invalidate an overflow page-list cache. -** -** * An incremental vacuum, -** * A commit in auto_vacuum="full" mode, -** * Creating a table (may require moving an overflow page). -*/ -static int accessPayload( - BtCursor *pCur, /* Cursor pointing to entry to read from */ - u32 offset, /* Begin reading this far into payload */ - u32 amt, /* Read this many bytes */ - unsigned char *pBuf, /* Write the bytes into this buffer */ - int eOp /* zero to read. non-zero to write. */ -){ - unsigned char *aPayload; - int rc = SQLITE_OK; - u32 nKey; - int iIdx = 0; - MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ - BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ - - assert( pPage ); - assert( pCur->eState==CURSOR_VALID ); - assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); - assert( cursorHoldsMutex(pCur) ); - - getCellInfo(pCur); - aPayload = pCur->info.pCell + pCur->info.nHeader; - nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey); - - if( NEVER(offset+amt > nKey+pCur->info.nData) - || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] - ){ - /* Trying to read or write past the end of the data is an error */ - return SQLITE_CORRUPT_BKPT; - } - - /* Check if data must be read/written to/from the btree page itself. */ - if( offset<pCur->info.nLocal ){ - int a = amt; - if( a+offset>pCur->info.nLocal ){ - a = pCur->info.nLocal - offset; - } - rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); - offset = 0; - pBuf += a; - amt -= a; - }else{ - offset -= pCur->info.nLocal; - } - - if( rc==SQLITE_OK && amt>0 ){ - const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ - Pgno nextPage; - - nextPage = get4byte(&aPayload[pCur->info.nLocal]); - -#ifndef SQLITE_OMIT_INCRBLOB - /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] - ** has not been allocated, allocate it now. The array is sized at - ** one entry for each overflow page in the overflow chain. The - ** page number of the first overflow page is stored in aOverflow[0], - ** etc. A value of 0 in the aOverflow[] array means "not yet known" - ** (the cache is lazily populated). - */ - if( pCur->isIncrblobHandle && !pCur->aOverflow ){ - int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; - pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); - /* nOvfl is always positive. If it were zero, fetchPayload would have - ** been used instead of this routine. */ - if( ALWAYS(nOvfl) && !pCur->aOverflow ){ - rc = SQLITE_NOMEM; - } - } - - /* If the overflow page-list cache has been allocated and the - ** entry for the first required overflow page is valid, skip - ** directly to it. - */ - if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ - iIdx = (offset/ovflSize); - nextPage = pCur->aOverflow[iIdx]; - offset = (offset%ovflSize); - } -#endif - - for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ - -#ifndef SQLITE_OMIT_INCRBLOB - /* If required, populate the overflow page-list cache. */ - if( pCur->aOverflow ){ - assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); - pCur->aOverflow[iIdx] = nextPage; - } -#endif - - if( offset>=ovflSize ){ - /* The only reason to read this page is to obtain the page - ** number for the next page in the overflow chain. The page - ** data is not required. So first try to lookup the overflow - ** page-list cache, if any, then fall back to the getOverflowPage() - ** function. - */ -#ifndef SQLITE_OMIT_INCRBLOB - if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ - nextPage = pCur->aOverflow[iIdx+1]; - } else -#endif - rc = getOverflowPage(pBt, nextPage, 0, &nextPage); - offset -= ovflSize; - }else{ - /* Need to read this page properly. It contains some of the - ** range of data that is being read (eOp==0) or written (eOp!=0). - */ -#ifdef SQLITE_DIRECT_OVERFLOW_READ - sqlite3_file *fd; -#endif - int a = amt; - if( a + offset > ovflSize ){ - a = ovflSize - offset; - } - -#ifdef SQLITE_DIRECT_OVERFLOW_READ - /* If all the following are true: - ** - ** 1) this is a read operation, and - ** 2) data is required from the start of this overflow page, and - ** 3) the database is file-backed, and - ** 4) there is no open write-transaction, and - ** 5) the database is not a WAL database, - ** - ** then data can be read directly from the database file into the - ** output buffer, bypassing the page-cache altogether. This speeds - ** up loading large records that span many overflow pages. - */ - if( eOp==0 /* (1) */ - && offset==0 /* (2) */ - && pBt->inTransaction==TRANS_READ /* (4) */ - && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ - && pBt->pPage1->aData[19]==0x01 /* (5) */ - ){ - u8 aSave[4]; - u8 *aWrite = &pBuf[-4]; - memcpy(aSave, aWrite, 4); - rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); - nextPage = get4byte(aWrite); - memcpy(aWrite, aSave, 4); - }else -#endif - - { - DbPage *pDbPage; - rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); - if( rc==SQLITE_OK ){ - aPayload = sqlite3PagerGetData(pDbPage); - nextPage = get4byte(aPayload); - rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); - sqlite3PagerUnref(pDbPage); - offset = 0; - } - } - amt -= a; - pBuf += a; - } - } - } - - if( rc==SQLITE_OK && amt>0 ){ - return SQLITE_CORRUPT_BKPT; - } - return rc; -} - -/* -** Read part of the key associated with cursor pCur. Exactly -** "amt" bytes will be transfered into pBuf[]. The transfer -** begins at "offset". -** -** The caller must ensure that pCur is pointing to a valid row -** in the table. -** -** Return SQLITE_OK on success or an error code if anything goes -** wrong. An error is returned if "offset+amt" is larger than -** the available payload. -*/ -SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); - assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); - return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); -} - -/* -** Read part of the data associated with cursor pCur. Exactly -** "amt" bytes will be transfered into pBuf[]. The transfer -** begins at "offset". -** -** Return SQLITE_OK on success or an error code if anything goes -** wrong. An error is returned if "offset+amt" is larger than -** the available payload. -*/ -SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ - int rc; - -#ifndef SQLITE_OMIT_INCRBLOB - if ( pCur->eState==CURSOR_INVALID ){ - return SQLITE_ABORT; - } -#endif - - assert( cursorHoldsMutex(pCur) ); - rc = restoreCursorPosition(pCur); - if( rc==SQLITE_OK ){ - assert( pCur->eState==CURSOR_VALID ); - assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); - assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); - rc = accessPayload(pCur, offset, amt, pBuf, 0); - } - return rc; -} - -/* -** Return a pointer to payload information from the entry that the -** pCur cursor is pointing to. The pointer is to the beginning of -** the key if skipKey==0 and it points to the beginning of data if -** skipKey==1. The number of bytes of available key/data is written -** into *pAmt. If *pAmt==0, then the value returned will not be -** a valid pointer. -** -** This routine is an optimization. It is common for the entire key -** and data to fit on the local page and for there to be no overflow -** pages. When that is so, this routine can be used to access the -** key and data without making a copy. If the key and/or data spills -** onto overflow pages, then accessPayload() must be used to reassemble -** the key/data and copy it into a preallocated buffer. -** -** The pointer returned by this routine looks directly into the cached -** page of the database. The data might change or move the next time -** any btree routine is called. -*/ -static const unsigned char *fetchPayload( - BtCursor *pCur, /* Cursor pointing to entry to read from */ - int *pAmt, /* Write the number of available bytes here */ - int skipKey /* read beginning at data if this is true */ -){ - unsigned char *aPayload; - MemPage *pPage; - u32 nKey; - u32 nLocal; - - assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); - assert( pCur->eState==CURSOR_VALID ); - assert( cursorHoldsMutex(pCur) ); - pPage = pCur->apPage[pCur->iPage]; - assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); - if( NEVER(pCur->info.nSize==0) ){ - btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage], - &pCur->info); - } - aPayload = pCur->info.pCell; - aPayload += pCur->info.nHeader; - if( pPage->intKey ){ - nKey = 0; - }else{ - nKey = (int)pCur->info.nKey; - } - if( skipKey ){ - aPayload += nKey; - nLocal = pCur->info.nLocal - nKey; - }else{ - nLocal = pCur->info.nLocal; - assert( nLocal<=nKey ); - } - *pAmt = nLocal; - return aPayload; -} - - -/* -** For the entry that cursor pCur is point to, return as -** many bytes of the key or data as are available on the local -** b-tree page. Write the number of available bytes into *pAmt. -** -** The pointer returned is ephemeral. The key/data may move -** or be destroyed on the next call to any Btree routine, -** including calls from other threads against the same cache. -** Hence, a mutex on the BtShared should be held prior to calling -** this routine. -** -** These routines is used to get quick access to key and data -** in the common case where no overflow pages are used. -*/ -SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ - const void *p = 0; - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - assert( cursorHoldsMutex(pCur) ); - if( ALWAYS(pCur->eState==CURSOR_VALID) ){ - p = (const void*)fetchPayload(pCur, pAmt, 0); - } - return p; -} -SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ - const void *p = 0; - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - assert( cursorHoldsMutex(pCur) ); - if( ALWAYS(pCur->eState==CURSOR_VALID) ){ - p = (const void*)fetchPayload(pCur, pAmt, 1); - } - return p; -} - - -/* -** Move the cursor down to a new child page. The newPgno argument is the -** page number of the child page to move to. -** -** This function returns SQLITE_CORRUPT if the page-header flags field of -** the new child page does not match the flags field of the parent (i.e. -** if an intkey page appears to be the parent of a non-intkey page, or -** vice-versa). -*/ -static int moveToChild(BtCursor *pCur, u32 newPgno){ - int rc; - int i = pCur->iPage; - MemPage *pNewPage; - BtShared *pBt = pCur->pBt; - - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); - if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ - return SQLITE_CORRUPT_BKPT; - } - rc = getAndInitPage(pBt, newPgno, &pNewPage); - if( rc ) return rc; - pCur->apPage[i+1] = pNewPage; - pCur->aiIdx[i+1] = 0; - pCur->iPage++; - - pCur->info.nSize = 0; - pCur->validNKey = 0; - if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ - return SQLITE_CORRUPT_BKPT; - } - return SQLITE_OK; -} - -#if 0 -/* -** Page pParent is an internal (non-leaf) tree page. This function -** asserts that page number iChild is the left-child if the iIdx'th -** cell in page pParent. Or, if iIdx is equal to the total number of -** cells in pParent, that page number iChild is the right-child of -** the page. -*/ -static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ - assert( iIdx<=pParent->nCell ); - if( iIdx==pParent->nCell ){ - assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); - }else{ - assert( get4byte(findCell(pParent, iIdx))==iChild ); - } -} -#else -# define assertParentIndex(x,y,z) -#endif - -/* -** Move the cursor up to the parent page. -** -** pCur->idx is set to the cell index that contains the pointer -** to the page we are coming from. If we are coming from the -** right-most child page then pCur->idx is set to one more than -** the largest cell index. -*/ -static void moveToParent(BtCursor *pCur){ - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - assert( pCur->iPage>0 ); - assert( pCur->apPage[pCur->iPage] ); - - /* UPDATE: It is actually possible for the condition tested by the assert - ** below to be untrue if the database file is corrupt. This can occur if - ** one cursor has modified page pParent while a reference to it is held - ** by a second cursor. Which can only happen if a single page is linked - ** into more than one b-tree structure in a corrupt database. */ -#if 0 - assertParentIndex( - pCur->apPage[pCur->iPage-1], - pCur->aiIdx[pCur->iPage-1], - pCur->apPage[pCur->iPage]->pgno - ); -#endif - testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); - - releasePage(pCur->apPage[pCur->iPage]); - pCur->iPage--; - pCur->info.nSize = 0; - pCur->validNKey = 0; -} - -/* -** Move the cursor to point to the root page of its b-tree structure. -** -** If the table has a virtual root page, then the cursor is moved to point -** to the virtual root page instead of the actual root page. A table has a -** virtual root page when the actual root page contains no cells and a -** single child page. This can only happen with the table rooted at page 1. -** -** If the b-tree structure is empty, the cursor state is set to -** CURSOR_INVALID. Otherwise, the cursor is set to point to the first -** cell located on the root (or virtual root) page and the cursor state -** is set to CURSOR_VALID. -** -** If this function returns successfully, it may be assumed that the -** page-header flags indicate that the [virtual] root-page is the expected -** kind of b-tree page (i.e. if when opening the cursor the caller did not -** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, -** indicating a table b-tree, or if the caller did specify a KeyInfo -** structure the flags byte is set to 0x02 or 0x0A, indicating an index -** b-tree). -*/ -static int moveToRoot(BtCursor *pCur){ - MemPage *pRoot; - int rc = SQLITE_OK; - Btree *p = pCur->pBtree; - BtShared *pBt = p->pBt; - - assert( cursorHoldsMutex(pCur) ); - assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); - assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); - assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); - if( pCur->eState>=CURSOR_REQUIRESEEK ){ - if( pCur->eState==CURSOR_FAULT ){ - assert( pCur->skipNext!=SQLITE_OK ); - return pCur->skipNext; - } - sqlite3BtreeClearCursor(pCur); - } - - if( pCur->iPage>=0 ){ - int i; - for(i=1; i<=pCur->iPage; i++){ - releasePage(pCur->apPage[i]); - } - pCur->iPage = 0; - }else if( pCur->pgnoRoot==0 ){ - pCur->eState = CURSOR_INVALID; - return SQLITE_OK; - }else{ - rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]); - if( rc!=SQLITE_OK ){ - pCur->eState = CURSOR_INVALID; - return rc; - } - pCur->iPage = 0; - - /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor - ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is - ** NULL, the caller expects a table b-tree. If this is not the case, - ** return an SQLITE_CORRUPT error. */ - assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 ); - if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){ - return SQLITE_CORRUPT_BKPT; - } - } - - /* Assert that the root page is of the correct type. This must be the - ** case as the call to this function that loaded the root-page (either - ** this call or a previous invocation) would have detected corruption - ** if the assumption were not true, and it is not possible for the flags - ** byte to have been modified while this cursor is holding a reference - ** to the page. */ - pRoot = pCur->apPage[0]; - assert( pRoot->pgno==pCur->pgnoRoot ); - assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey ); - - pCur->aiIdx[0] = 0; - pCur->info.nSize = 0; - pCur->atLast = 0; - pCur->validNKey = 0; - - if( pRoot->nCell==0 && !pRoot->leaf ){ - Pgno subpage; - if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; - subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); - pCur->eState = CURSOR_VALID; - rc = moveToChild(pCur, subpage); - }else{ - pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID); - } - return rc; -} - -/* -** Move the cursor down to the left-most leaf entry beneath the -** entry to which it is currently pointing. -** -** The left-most leaf is the one with the smallest key - the first -** in ascending order. -*/ -static int moveToLeftmost(BtCursor *pCur){ - Pgno pgno; - int rc = SQLITE_OK; - MemPage *pPage; - - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ - assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); - pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); - rc = moveToChild(pCur, pgno); - } - return rc; -} - -/* -** Move the cursor down to the right-most leaf entry beneath the -** page to which it is currently pointing. Notice the difference -** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() -** finds the left-most entry beneath the *entry* whereas moveToRightmost() -** finds the right-most entry beneath the *page*. -** -** The right-most entry is the one with the largest key - the last -** key in ascending order. -*/ -static int moveToRightmost(BtCursor *pCur){ - Pgno pgno; - int rc = SQLITE_OK; - MemPage *pPage = 0; - - assert( cursorHoldsMutex(pCur) ); - assert( pCur->eState==CURSOR_VALID ); - while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ - pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); - pCur->aiIdx[pCur->iPage] = pPage->nCell; - rc = moveToChild(pCur, pgno); - } - if( rc==SQLITE_OK ){ - pCur->aiIdx[pCur->iPage] = pPage->nCell-1; - pCur->info.nSize = 0; - pCur->validNKey = 0; - } - return rc; -} - -/* Move the cursor to the first entry in the table. Return SQLITE_OK -** on success. Set *pRes to 0 if the cursor actually points to something -** or set *pRes to 1 if the table is empty. -*/ -SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ - int rc; - - assert( cursorHoldsMutex(pCur) ); - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - rc = moveToRoot(pCur); - if( rc==SQLITE_OK ){ - if( pCur->eState==CURSOR_INVALID ){ - assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); - *pRes = 1; - }else{ - assert( pCur->apPage[pCur->iPage]->nCell>0 ); - *pRes = 0; - rc = moveToLeftmost(pCur); - } - } - return rc; -} - -/* Move the cursor to the last entry in the table. Return SQLITE_OK -** on success. Set *pRes to 0 if the cursor actually points to something -** or set *pRes to 1 if the table is empty. -*/ -SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ - int rc; - - assert( cursorHoldsMutex(pCur) ); - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - - /* If the cursor already points to the last entry, this is a no-op. */ - if( CURSOR_VALID==pCur->eState && pCur->atLast ){ -#ifdef SQLITE_DEBUG - /* This block serves to assert() that the cursor really does point - ** to the last entry in the b-tree. */ - int ii; - for(ii=0; ii<pCur->iPage; ii++){ - assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); - } - assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); - assert( pCur->apPage[pCur->iPage]->leaf ); -#endif - return SQLITE_OK; - } - - rc = moveToRoot(pCur); - if( rc==SQLITE_OK ){ - if( CURSOR_INVALID==pCur->eState ){ - assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); - *pRes = 1; - }else{ - assert( pCur->eState==CURSOR_VALID ); - *pRes = 0; - rc = moveToRightmost(pCur); - pCur->atLast = rc==SQLITE_OK ?1:0; - } - } - return rc; -} - -/* Move the cursor so that it points to an entry near the key -** specified by pIdxKey or intKey. Return a success code. -** -** For INTKEY tables, the intKey parameter is used. pIdxKey -** must be NULL. For index tables, pIdxKey is used and intKey -** is ignored. -** -** If an exact match is not found, then the cursor is always -** left pointing at a leaf page which would hold the entry if it -** were present. The cursor might point to an entry that comes -** before or after the key. -** -** An integer is written into *pRes which is the result of -** comparing the key with the entry to which the cursor is -** pointing. The meaning of the integer written into -** *pRes is as follows: -** -** *pRes<0 The cursor is left pointing at an entry that -** is smaller than intKey/pIdxKey or if the table is empty -** and the cursor is therefore left point to nothing. -** -** *pRes==0 The cursor is left pointing at an entry that -** exactly matches intKey/pIdxKey. -** -** *pRes>0 The cursor is left pointing at an entry that -** is larger than intKey/pIdxKey. -** -*/ -SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( - BtCursor *pCur, /* The cursor to be moved */ - UnpackedRecord *pIdxKey, /* Unpacked index key */ - i64 intKey, /* The table key */ - int biasRight, /* If true, bias the search to the high end */ - int *pRes /* Write search results here */ -){ - int rc; - - assert( cursorHoldsMutex(pCur) ); - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - assert( pRes ); - assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); - - /* If the cursor is already positioned at the point we are trying - ** to move to, then just return without doing any work */ - if( pCur->eState==CURSOR_VALID && pCur->validNKey - && pCur->apPage[0]->intKey - ){ - if( pCur->info.nKey==intKey ){ - *pRes = 0; - return SQLITE_OK; - } - if( pCur->atLast && pCur->info.nKey<intKey ){ - *pRes = -1; - return SQLITE_OK; - } - } - - rc = moveToRoot(pCur); - if( rc ){ - return rc; - } - assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); - assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); - assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); - if( pCur->eState==CURSOR_INVALID ){ - *pRes = -1; - assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); - return SQLITE_OK; - } - assert( pCur->apPage[0]->intKey || pIdxKey ); - for(;;){ - int lwr, upr, idx; - Pgno chldPg; - MemPage *pPage = pCur->apPage[pCur->iPage]; - int c; - - /* pPage->nCell must be greater than zero. If this is the root-page - ** the cursor would have been INVALID above and this for(;;) loop - ** not run. If this is not the root-page, then the moveToChild() routine - ** would have already detected db corruption. Similarly, pPage must - ** be the right kind (index or table) of b-tree page. Otherwise - ** a moveToChild() or moveToRoot() call would have detected corruption. */ - assert( pPage->nCell>0 ); - assert( pPage->intKey==(pIdxKey==0) ); - lwr = 0; - upr = pPage->nCell-1; - if( biasRight ){ - pCur->aiIdx[pCur->iPage] = (u16)(idx = upr); - }else{ - pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2); - } - for(;;){ - u8 *pCell; /* Pointer to current cell in pPage */ - - assert( idx==pCur->aiIdx[pCur->iPage] ); - pCur->info.nSize = 0; - pCell = findCell(pPage, idx) + pPage->childPtrSize; - if( pPage->intKey ){ - i64 nCellKey; - if( pPage->hasData ){ - u32 dummy; - pCell += getVarint32(pCell, dummy); - } - getVarint(pCell, (u64*)&nCellKey); - if( nCellKey==intKey ){ - c = 0; - }else if( nCellKey<intKey ){ - c = -1; - }else{ - assert( nCellKey>intKey ); - c = +1; - } - pCur->validNKey = 1; - pCur->info.nKey = nCellKey; - }else{ - /* The maximum supported page-size is 65536 bytes. This means that - ** the maximum number of record bytes stored on an index B-Tree - ** page is less than 16384 bytes and may be stored as a 2-byte - ** varint. This information is used to attempt to avoid parsing - ** the entire cell by checking for the cases where the record is - ** stored entirely within the b-tree page by inspecting the first - ** 2 bytes of the cell. - */ - int nCell = pCell[0]; - if( nCell<=pPage->max1bytePayload - /* && (pCell+nCell)<pPage->aDataEnd */ - ){ - /* This branch runs if the record-size field of the cell is a - ** single byte varint and the record fits entirely on the main - ** b-tree page. */ - testcase( pCell+nCell+1==pPage->aDataEnd ); - c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey); - }else if( !(pCell[1] & 0x80) - && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal - /* && (pCell+nCell+2)<=pPage->aDataEnd */ - ){ - /* The record-size field is a 2 byte varint and the record - ** fits entirely on the main b-tree page. */ - testcase( pCell+nCell+2==pPage->aDataEnd ); - c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey); - }else{ - /* The record flows over onto one or more overflow pages. In - ** this case the whole cell needs to be parsed, a buffer allocated - ** and accessPayload() used to retrieve the record into the - ** buffer before VdbeRecordCompare() can be called. */ - void *pCellKey; - u8 * const pCellBody = pCell - pPage->childPtrSize; - btreeParseCellPtr(pPage, pCellBody, &pCur->info); - nCell = (int)pCur->info.nKey; - pCellKey = sqlite3Malloc( nCell ); - if( pCellKey==0 ){ - rc = SQLITE_NOMEM; - goto moveto_finish; - } - rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); - if( rc ){ - sqlite3_free(pCellKey); - goto moveto_finish; - } - c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); - sqlite3_free(pCellKey); - } - } - if( c==0 ){ - if( pPage->intKey && !pPage->leaf ){ - lwr = idx; - break; - }else{ - *pRes = 0; - rc = SQLITE_OK; - goto moveto_finish; - } - } - if( c<0 ){ - lwr = idx+1; - }else{ - upr = idx-1; - } - if( lwr>upr ){ - break; - } - pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2); - } - assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); - assert( pPage->isInit ); - if( pPage->leaf ){ - chldPg = 0; - }else if( lwr>=pPage->nCell ){ - chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); - }else{ - chldPg = get4byte(findCell(pPage, lwr)); - } - if( chldPg==0 ){ - assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); - *pRes = c; - rc = SQLITE_OK; - goto moveto_finish; - } - pCur->aiIdx[pCur->iPage] = (u16)lwr; - pCur->info.nSize = 0; - pCur->validNKey = 0; - rc = moveToChild(pCur, chldPg); - if( rc ) goto moveto_finish; - } -moveto_finish: - return rc; -} - - -/* -** Return TRUE if the cursor is not pointing at an entry of the table. -** -** TRUE will be returned after a call to sqlite3BtreeNext() moves -** past the last entry in the table or sqlite3BtreePrev() moves past -** the first entry. TRUE is also returned if the table is empty. -*/ -SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){ - /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries - ** have been deleted? This API will need to change to return an error code - ** as well as the boolean result value. - */ - return (CURSOR_VALID!=pCur->eState); -} - -/* -** Advance the cursor to the next entry in the database. If -** successful then set *pRes=0. If the cursor -** was already pointing to the last entry in the database before -** this routine was called, then set *pRes=1. -*/ -SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ - int rc; - int idx; - MemPage *pPage; - - assert( cursorHoldsMutex(pCur) ); - rc = restoreCursorPosition(pCur); - if( rc!=SQLITE_OK ){ - return rc; - } - assert( pRes!=0 ); - if( CURSOR_INVALID==pCur->eState ){ - *pRes = 1; - return SQLITE_OK; - } - if( pCur->skipNext>0 ){ - pCur->skipNext = 0; - *pRes = 0; - return SQLITE_OK; - } - pCur->skipNext = 0; - - pPage = pCur->apPage[pCur->iPage]; - idx = ++pCur->aiIdx[pCur->iPage]; - assert( pPage->isInit ); - - /* If the database file is corrupt, it is possible for the value of idx - ** to be invalid here. This can only occur if a second cursor modifies - ** the page while cursor pCur is holding a reference to it. Which can - ** only happen if the database is corrupt in such a way as to link the - ** page into more than one b-tree structure. */ - testcase( idx>pPage->nCell ); - - pCur->info.nSize = 0; - pCur->validNKey = 0; - if( idx>=pPage->nCell ){ - if( !pPage->leaf ){ - rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); - if( rc ) return rc; - rc = moveToLeftmost(pCur); - *pRes = 0; - return rc; - } - do{ - if( pCur->iPage==0 ){ - *pRes = 1; - pCur->eState = CURSOR_INVALID; - return SQLITE_OK; - } - moveToParent(pCur); - pPage = pCur->apPage[pCur->iPage]; - }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); - *pRes = 0; - if( pPage->intKey ){ - rc = sqlite3BtreeNext(pCur, pRes); - }else{ - rc = SQLITE_OK; - } - return rc; - } - *pRes = 0; - if( pPage->leaf ){ - return SQLITE_OK; - } - rc = moveToLeftmost(pCur); - return rc; -} - - -/* -** Step the cursor to the back to the previous entry in the database. If -** successful then set *pRes=0. If the cursor -** was already pointing to the first entry in the database before -** this routine was called, then set *pRes=1. -*/ -SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ - int rc; - MemPage *pPage; - - assert( cursorHoldsMutex(pCur) ); - rc = restoreCursorPosition(pCur); - if( rc!=SQLITE_OK ){ - return rc; - } - pCur->atLast = 0; - if( CURSOR_INVALID==pCur->eState ){ - *pRes = 1; - return SQLITE_OK; - } - if( pCur->skipNext<0 ){ - pCur->skipNext = 0; - *pRes = 0; - return SQLITE_OK; - } - pCur->skipNext = 0; - - pPage = pCur->apPage[pCur->iPage]; - assert( pPage->isInit ); - if( !pPage->leaf ){ - int idx = pCur->aiIdx[pCur->iPage]; - rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); - if( rc ){ - return rc; - } - rc = moveToRightmost(pCur); - }else{ - while( pCur->aiIdx[pCur->iPage]==0 ){ - if( pCur->iPage==0 ){ - pCur->eState = CURSOR_INVALID; - *pRes = 1; - return SQLITE_OK; - } - moveToParent(pCur); - } - pCur->info.nSize = 0; - pCur->validNKey = 0; - - pCur->aiIdx[pCur->iPage]--; - pPage = pCur->apPage[pCur->iPage]; - if( pPage->intKey && !pPage->leaf ){ - rc = sqlite3BtreePrevious(pCur, pRes); - }else{ - rc = SQLITE_OK; - } - } - *pRes = 0; - return rc; -} - -/* -** Allocate a new page from the database file. -** -** The new page is marked as dirty. (In other words, sqlite3PagerWrite() -** has already been called on the new page.) The new page has also -** been referenced and the calling routine is responsible for calling -** sqlite3PagerUnref() on the new page when it is done. -** -** SQLITE_OK is returned on success. Any other return value indicates -** an error. *ppPage and *pPgno are undefined in the event of an error. -** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. -** -** If the "nearby" parameter is not 0, then an effort is made to -** locate a page close to the page number "nearby". This can be used in an -** attempt to keep related pages close to each other in the database file, -** which in turn can make database access faster. -** -** If the eMode parameter is BTALLOC_EXACT and the nearby page exists -** anywhere on the free-list, then it is guaranteed to be returned. If -** eMode is BTALLOC_LT then the page returned will be less than or equal -** to nearby if any such page exists. If eMode is BTALLOC_ANY then there -** are no restrictions on which page is returned. -*/ -static int allocateBtreePage( - BtShared *pBt, /* The btree */ - MemPage **ppPage, /* Store pointer to the allocated page here */ - Pgno *pPgno, /* Store the page number here */ - Pgno nearby, /* Search for a page near this one */ - u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ -){ - MemPage *pPage1; - int rc; - u32 n; /* Number of pages on the freelist */ - u32 k; /* Number of leaves on the trunk of the freelist */ - MemPage *pTrunk = 0; - MemPage *pPrevTrunk = 0; - Pgno mxPage; /* Total size of the database file */ - - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); - pPage1 = pBt->pPage1; - mxPage = btreePagecount(pBt); - n = get4byte(&pPage1->aData[36]); - testcase( n==mxPage-1 ); - if( n>=mxPage ){ - return SQLITE_CORRUPT_BKPT; - } - if( n>0 ){ - /* There are pages on the freelist. Reuse one of those pages. */ - Pgno iTrunk; - u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ - - /* If eMode==BTALLOC_EXACT and a query of the pointer-map - ** shows that the page 'nearby' is somewhere on the free-list, then - ** the entire-list will be searched for that page. - */ -#ifndef SQLITE_OMIT_AUTOVACUUM - if( eMode==BTALLOC_EXACT ){ - if( nearby<=mxPage ){ - u8 eType; - assert( nearby>0 ); - assert( pBt->autoVacuum ); - rc = ptrmapGet(pBt, nearby, &eType, 0); - if( rc ) return rc; - if( eType==PTRMAP_FREEPAGE ){ - searchList = 1; - } - } - }else if( eMode==BTALLOC_LE ){ - searchList = 1; - } -#endif - - /* Decrement the free-list count by 1. Set iTrunk to the index of the - ** first free-list trunk page. iPrevTrunk is initially 1. - */ - rc = sqlite3PagerWrite(pPage1->pDbPage); - if( rc ) return rc; - put4byte(&pPage1->aData[36], n-1); - - /* The code within this loop is run only once if the 'searchList' variable - ** is not true. Otherwise, it runs once for each trunk-page on the - ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) - ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) - */ - do { - pPrevTrunk = pTrunk; - if( pPrevTrunk ){ - iTrunk = get4byte(&pPrevTrunk->aData[0]); - }else{ - iTrunk = get4byte(&pPage1->aData[32]); - } - testcase( iTrunk==mxPage ); - if( iTrunk>mxPage ){ - rc = SQLITE_CORRUPT_BKPT; - }else{ - rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); - } - if( rc ){ - pTrunk = 0; - goto end_allocate_page; - } - assert( pTrunk!=0 ); - assert( pTrunk->aData!=0 ); - - k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ - if( k==0 && !searchList ){ - /* The trunk has no leaves and the list is not being searched. - ** So extract the trunk page itself and use it as the newly - ** allocated page */ - assert( pPrevTrunk==0 ); - rc = sqlite3PagerWrite(pTrunk->pDbPage); - if( rc ){ - goto end_allocate_page; - } - *pPgno = iTrunk; - memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); - *ppPage = pTrunk; - pTrunk = 0; - TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); - }else if( k>(u32)(pBt->usableSize/4 - 2) ){ - /* Value of k is out of range. Database corruption */ - rc = SQLITE_CORRUPT_BKPT; - goto end_allocate_page; -#ifndef SQLITE_OMIT_AUTOVACUUM - }else if( searchList - && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) - ){ - /* The list is being searched and this trunk page is the page - ** to allocate, regardless of whether it has leaves. - */ - *pPgno = iTrunk; - *ppPage = pTrunk; - searchList = 0; - rc = sqlite3PagerWrite(pTrunk->pDbPage); - if( rc ){ - goto end_allocate_page; - } - if( k==0 ){ - if( !pPrevTrunk ){ - memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); - }else{ - rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); - if( rc!=SQLITE_OK ){ - goto end_allocate_page; - } - memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); - } - }else{ - /* The trunk page is required by the caller but it contains - ** pointers to free-list leaves. The first leaf becomes a trunk - ** page in this case. - */ - MemPage *pNewTrunk; - Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); - if( iNewTrunk>mxPage ){ - rc = SQLITE_CORRUPT_BKPT; - goto end_allocate_page; - } - testcase( iNewTrunk==mxPage ); - rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); - if( rc!=SQLITE_OK ){ - goto end_allocate_page; - } - rc = sqlite3PagerWrite(pNewTrunk->pDbPage); - if( rc!=SQLITE_OK ){ - releasePage(pNewTrunk); - goto end_allocate_page; - } - memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); - put4byte(&pNewTrunk->aData[4], k-1); - memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); - releasePage(pNewTrunk); - if( !pPrevTrunk ){ - assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); - put4byte(&pPage1->aData[32], iNewTrunk); - }else{ - rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); - if( rc ){ - goto end_allocate_page; - } - put4byte(&pPrevTrunk->aData[0], iNewTrunk); - } - } - pTrunk = 0; - TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); -#endif - }else if( k>0 ){ - /* Extract a leaf from the trunk */ - u32 closest; - Pgno iPage; - unsigned char *aData = pTrunk->aData; - if( nearby>0 ){ - u32 i; - closest = 0; - if( eMode==BTALLOC_LE ){ - for(i=0; i<k; i++){ - iPage = get4byte(&aData[8+i*4]); - if( iPage<=nearby ){ - closest = i; - break; - } - } - }else{ - int dist; - dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); - for(i=1; i<k; i++){ - int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); - if( d2<dist ){ - closest = i; - dist = d2; - } - } - } - }else{ - closest = 0; - } - - iPage = get4byte(&aData[8+closest*4]); - testcase( iPage==mxPage ); - if( iPage>mxPage ){ - rc = SQLITE_CORRUPT_BKPT; - goto end_allocate_page; - } - testcase( iPage==mxPage ); - if( !searchList - || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) - ){ - int noContent; - *pPgno = iPage; - TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" - ": %d more free pages\n", - *pPgno, closest+1, k, pTrunk->pgno, n-1)); - rc = sqlite3PagerWrite(pTrunk->pDbPage); - if( rc ) goto end_allocate_page; - if( closest<k-1 ){ - memcpy(&aData[8+closest*4], &aData[4+k*4], 4); - } - put4byte(&aData[4], k-1); - noContent = !btreeGetHasContent(pBt, *pPgno); - rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerWrite((*ppPage)->pDbPage); - if( rc!=SQLITE_OK ){ - releasePage(*ppPage); - } - } - searchList = 0; - } - } - releasePage(pPrevTrunk); - pPrevTrunk = 0; - }while( searchList ); - }else{ - /* There are no pages on the freelist, so append a new page to the - ** database image. - ** - ** Normally, new pages allocated by this block can be requested from the - ** pager layer with the 'no-content' flag set. This prevents the pager - ** from trying to read the pages content from disk. However, if the - ** current transaction has already run one or more incremental-vacuum - ** steps, then the page we are about to allocate may contain content - ** that is required in the event of a rollback. In this case, do - ** not set the no-content flag. This causes the pager to load and journal - ** the current page content before overwriting it. - ** - ** Note that the pager will not actually attempt to load or journal - ** content for any page that really does lie past the end of the database - ** file on disk. So the effects of disabling the no-content optimization - ** here are confined to those pages that lie between the end of the - ** database image and the end of the database file. - */ - int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)); - - rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); - if( rc ) return rc; - pBt->nPage++; - if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; - -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ - /* If *pPgno refers to a pointer-map page, allocate two new pages - ** at the end of the file instead of one. The first allocated page - ** becomes a new pointer-map page, the second is used by the caller. - */ - MemPage *pPg = 0; - TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); - assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); - rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerWrite(pPg->pDbPage); - releasePage(pPg); - } - if( rc ) return rc; - pBt->nPage++; - if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } - } -#endif - put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); - *pPgno = pBt->nPage; - - assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); - rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent); - if( rc ) return rc; - rc = sqlite3PagerWrite((*ppPage)->pDbPage); - if( rc!=SQLITE_OK ){ - releasePage(*ppPage); - } - TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); - } - - assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); - -end_allocate_page: - releasePage(pTrunk); - releasePage(pPrevTrunk); - if( rc==SQLITE_OK ){ - if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ - releasePage(*ppPage); - return SQLITE_CORRUPT_BKPT; - } - (*ppPage)->isInit = 0; - }else{ - *ppPage = 0; - } - assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); - return rc; -} - -/* -** This function is used to add page iPage to the database file free-list. -** It is assumed that the page is not already a part of the free-list. -** -** The value passed as the second argument to this function is optional. -** If the caller happens to have a pointer to the MemPage object -** corresponding to page iPage handy, it may pass it as the second value. -** Otherwise, it may pass NULL. -** -** If a pointer to a MemPage object is passed as the second argument, -** its reference count is not altered by this function. -*/ -static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ - MemPage *pTrunk = 0; /* Free-list trunk page */ - Pgno iTrunk = 0; /* Page number of free-list trunk page */ - MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ - MemPage *pPage; /* Page being freed. May be NULL. */ - int rc; /* Return Code */ - int nFree; /* Initial number of pages on free-list */ - - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( iPage>1 ); - assert( !pMemPage || pMemPage->pgno==iPage ); - - if( pMemPage ){ - pPage = pMemPage; - sqlite3PagerRef(pPage->pDbPage); - }else{ - pPage = btreePageLookup(pBt, iPage); - } - - /* Increment the free page count on pPage1 */ - rc = sqlite3PagerWrite(pPage1->pDbPage); - if( rc ) goto freepage_out; - nFree = get4byte(&pPage1->aData[36]); - put4byte(&pPage1->aData[36], nFree+1); - - if( pBt->btsFlags & BTS_SECURE_DELETE ){ - /* If the secure_delete option is enabled, then - ** always fully overwrite deleted information with zeros. - */ - if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) - || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) - ){ - goto freepage_out; - } - memset(pPage->aData, 0, pPage->pBt->pageSize); - } - - /* If the database supports auto-vacuum, write an entry in the pointer-map - ** to indicate that the page is free. - */ - if( ISAUTOVACUUM ){ - ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); - if( rc ) goto freepage_out; - } - - /* Now manipulate the actual database free-list structure. There are two - ** possibilities. If the free-list is currently empty, or if the first - ** trunk page in the free-list is full, then this page will become a - ** new free-list trunk page. Otherwise, it will become a leaf of the - ** first trunk page in the current free-list. This block tests if it - ** is possible to add the page as a new free-list leaf. - */ - if( nFree!=0 ){ - u32 nLeaf; /* Initial number of leaf cells on trunk page */ - - iTrunk = get4byte(&pPage1->aData[32]); - rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); - if( rc!=SQLITE_OK ){ - goto freepage_out; - } - - nLeaf = get4byte(&pTrunk->aData[4]); - assert( pBt->usableSize>32 ); - if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ - rc = SQLITE_CORRUPT_BKPT; - goto freepage_out; - } - if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ - /* In this case there is room on the trunk page to insert the page - ** being freed as a new leaf. - ** - ** Note that the trunk page is not really full until it contains - ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have - ** coded. But due to a coding error in versions of SQLite prior to - ** 3.6.0, databases with freelist trunk pages holding more than - ** usableSize/4 - 8 entries will be reported as corrupt. In order - ** to maintain backwards compatibility with older versions of SQLite, - ** we will continue to restrict the number of entries to usableSize/4 - 8 - ** for now. At some point in the future (once everyone has upgraded - ** to 3.6.0 or later) we should consider fixing the conditional above - ** to read "usableSize/4-2" instead of "usableSize/4-8". - */ - rc = sqlite3PagerWrite(pTrunk->pDbPage); - if( rc==SQLITE_OK ){ - put4byte(&pTrunk->aData[4], nLeaf+1); - put4byte(&pTrunk->aData[8+nLeaf*4], iPage); - if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ - sqlite3PagerDontWrite(pPage->pDbPage); - } - rc = btreeSetHasContent(pBt, iPage); - } - TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); - goto freepage_out; - } - } - - /* If control flows to this point, then it was not possible to add the - ** the page being freed as a leaf page of the first trunk in the free-list. - ** Possibly because the free-list is empty, or possibly because the - ** first trunk in the free-list is full. Either way, the page being freed - ** will become the new first trunk page in the free-list. - */ - if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ - goto freepage_out; - } - rc = sqlite3PagerWrite(pPage->pDbPage); - if( rc!=SQLITE_OK ){ - goto freepage_out; - } - put4byte(pPage->aData, iTrunk); - put4byte(&pPage->aData[4], 0); - put4byte(&pPage1->aData[32], iPage); - TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); - -freepage_out: - if( pPage ){ - pPage->isInit = 0; - } - releasePage(pPage); - releasePage(pTrunk); - return rc; -} -static void freePage(MemPage *pPage, int *pRC){ - if( (*pRC)==SQLITE_OK ){ - *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); - } -} - -/* -** Free any overflow pages associated with the given Cell. -*/ -static int clearCell(MemPage *pPage, unsigned char *pCell){ - BtShared *pBt = pPage->pBt; - CellInfo info; - Pgno ovflPgno; - int rc; - int nOvfl; - u32 ovflPageSize; - - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - btreeParseCellPtr(pPage, pCell, &info); - if( info.iOverflow==0 ){ - return SQLITE_OK; /* No overflow pages. Return without doing anything */ - } - if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ - return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ - } - ovflPgno = get4byte(&pCell[info.iOverflow]); - assert( pBt->usableSize > 4 ); - ovflPageSize = pBt->usableSize - 4; - nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; - assert( ovflPgno==0 || nOvfl>0 ); - while( nOvfl-- ){ - Pgno iNext = 0; - MemPage *pOvfl = 0; - if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ - /* 0 is not a legal page number and page 1 cannot be an - ** overflow page. Therefore if ovflPgno<2 or past the end of the - ** file the database must be corrupt. */ - return SQLITE_CORRUPT_BKPT; - } - if( nOvfl ){ - rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); - if( rc ) return rc; - } - - if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) - && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 - ){ - /* There is no reason any cursor should have an outstanding reference - ** to an overflow page belonging to a cell that is being deleted/updated. - ** So if there exists more than one reference to this page, then it - ** must not really be an overflow page and the database must be corrupt. - ** It is helpful to detect this before calling freePage2(), as - ** freePage2() may zero the page contents if secure-delete mode is - ** enabled. If this 'overflow' page happens to be a page that the - ** caller is iterating through or using in some other way, this - ** can be problematic. - */ - rc = SQLITE_CORRUPT_BKPT; - }else{ - rc = freePage2(pBt, pOvfl, ovflPgno); - } - - if( pOvfl ){ - sqlite3PagerUnref(pOvfl->pDbPage); - } - if( rc ) return rc; - ovflPgno = iNext; - } - return SQLITE_OK; -} - -/* -** Create the byte sequence used to represent a cell on page pPage -** and write that byte sequence into pCell[]. Overflow pages are -** allocated and filled in as necessary. The calling procedure -** is responsible for making sure sufficient space has been allocated -** for pCell[]. -** -** Note that pCell does not necessary need to point to the pPage->aData -** area. pCell might point to some temporary storage. The cell will -** be constructed in this temporary area then copied into pPage->aData -** later. -*/ -static int fillInCell( - MemPage *pPage, /* The page that contains the cell */ - unsigned char *pCell, /* Complete text of the cell */ - const void *pKey, i64 nKey, /* The key */ - const void *pData,int nData, /* The data */ - int nZero, /* Extra zero bytes to append to pData */ - int *pnSize /* Write cell size here */ -){ - int nPayload; - const u8 *pSrc; - int nSrc, n, rc; - int spaceLeft; - MemPage *pOvfl = 0; - MemPage *pToRelease = 0; - unsigned char *pPrior; - unsigned char *pPayload; - BtShared *pBt = pPage->pBt; - Pgno pgnoOvfl = 0; - int nHeader; - CellInfo info; - - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - - /* pPage is not necessarily writeable since pCell might be auxiliary - ** buffer space that is separate from the pPage buffer area */ - assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] - || sqlite3PagerIswriteable(pPage->pDbPage) ); - - /* Fill in the header. */ - nHeader = 0; - if( !pPage->leaf ){ - nHeader += 4; - } - if( pPage->hasData ){ - nHeader += putVarint(&pCell[nHeader], nData+nZero); - }else{ - nData = nZero = 0; - } - nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); - btreeParseCellPtr(pPage, pCell, &info); - assert( info.nHeader==nHeader ); - assert( info.nKey==nKey ); - assert( info.nData==(u32)(nData+nZero) ); - - /* Fill in the payload */ - nPayload = nData + nZero; - if( pPage->intKey ){ - pSrc = pData; - nSrc = nData; - nData = 0; - }else{ - if( NEVER(nKey>0x7fffffff || pKey==0) ){ - return SQLITE_CORRUPT_BKPT; - } - nPayload += (int)nKey; - pSrc = pKey; - nSrc = (int)nKey; - } - *pnSize = info.nSize; - spaceLeft = info.nLocal; - pPayload = &pCell[nHeader]; - pPrior = &pCell[info.iOverflow]; - - while( nPayload>0 ){ - if( spaceLeft==0 ){ -#ifndef SQLITE_OMIT_AUTOVACUUM - Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ - if( pBt->autoVacuum ){ - do{ - pgnoOvfl++; - } while( - PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) - ); - } -#endif - rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); -#ifndef SQLITE_OMIT_AUTOVACUUM - /* If the database supports auto-vacuum, and the second or subsequent - ** overflow page is being allocated, add an entry to the pointer-map - ** for that page now. - ** - ** If this is the first overflow page, then write a partial entry - ** to the pointer-map. If we write nothing to this pointer-map slot, - ** then the optimistic overflow chain processing in clearCell() - ** may misinterpret the uninitialized values and delete the - ** wrong pages from the database. - */ - if( pBt->autoVacuum && rc==SQLITE_OK ){ - u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); - ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); - if( rc ){ - releasePage(pOvfl); - } - } -#endif - if( rc ){ - releasePage(pToRelease); - return rc; - } - - /* If pToRelease is not zero than pPrior points into the data area - ** of pToRelease. Make sure pToRelease is still writeable. */ - assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); - - /* If pPrior is part of the data area of pPage, then make sure pPage - ** is still writeable */ - assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] - || sqlite3PagerIswriteable(pPage->pDbPage) ); - - put4byte(pPrior, pgnoOvfl); - releasePage(pToRelease); - pToRelease = pOvfl; - pPrior = pOvfl->aData; - put4byte(pPrior, 0); - pPayload = &pOvfl->aData[4]; - spaceLeft = pBt->usableSize - 4; - } - n = nPayload; - if( n>spaceLeft ) n = spaceLeft; - - /* If pToRelease is not zero than pPayload points into the data area - ** of pToRelease. Make sure pToRelease is still writeable. */ - assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); - - /* If pPayload is part of the data area of pPage, then make sure pPage - ** is still writeable */ - assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] - || sqlite3PagerIswriteable(pPage->pDbPage) ); - - if( nSrc>0 ){ - if( n>nSrc ) n = nSrc; - assert( pSrc ); - memcpy(pPayload, pSrc, n); - }else{ - memset(pPayload, 0, n); - } - nPayload -= n; - pPayload += n; - pSrc += n; - nSrc -= n; - spaceLeft -= n; - if( nSrc==0 ){ - nSrc = nData; - pSrc = pData; - } - } - releasePage(pToRelease); - return SQLITE_OK; -} - -/* -** Remove the i-th cell from pPage. This routine effects pPage only. -** The cell content is not freed or deallocated. It is assumed that -** the cell content has been copied someplace else. This routine just -** removes the reference to the cell from pPage. -** -** "sz" must be the number of bytes in the cell. -*/ -static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ - u32 pc; /* Offset to cell content of cell being deleted */ - u8 *data; /* pPage->aData */ - u8 *ptr; /* Used to move bytes around within data[] */ - u8 *endPtr; /* End of loop */ - int rc; /* The return code */ - int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ - - if( *pRC ) return; - - assert( idx>=0 && idx<pPage->nCell ); - assert( sz==cellSize(pPage, idx) ); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - data = pPage->aData; - ptr = &pPage->aCellIdx[2*idx]; - pc = get2byte(ptr); - hdr = pPage->hdrOffset; - testcase( pc==get2byte(&data[hdr+5]) ); - testcase( pc+sz==pPage->pBt->usableSize ); - if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ - *pRC = SQLITE_CORRUPT_BKPT; - return; - } - rc = freeSpace(pPage, pc, sz); - if( rc ){ - *pRC = rc; - return; - } - endPtr = &pPage->aCellIdx[2*pPage->nCell - 2]; - assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */ - while( ptr<endPtr ){ - *(u16*)ptr = *(u16*)&ptr[2]; - ptr += 2; - } - pPage->nCell--; - put2byte(&data[hdr+3], pPage->nCell); - pPage->nFree += 2; -} - -/* -** Insert a new cell on pPage at cell index "i". pCell points to the -** content of the cell. -** -** If the cell content will fit on the page, then put it there. If it -** will not fit, then make a copy of the cell content into pTemp if -** pTemp is not null. Regardless of pTemp, allocate a new entry -** in pPage->apOvfl[] and make it point to the cell content (either -** in pTemp or the original pCell) and also record its index. -** Allocating a new entry in pPage->aCell[] implies that -** pPage->nOverflow is incremented. -** -** If nSkip is non-zero, then do not copy the first nSkip bytes of the -** cell. The caller will overwrite them after this function returns. If -** nSkip is non-zero, then pCell may not point to an invalid memory location -** (but pCell+nSkip is always valid). -*/ -static void insertCell( - MemPage *pPage, /* Page into which we are copying */ - int i, /* New cell becomes the i-th cell of the page */ - u8 *pCell, /* Content of the new cell */ - int sz, /* Bytes of content in pCell */ - u8 *pTemp, /* Temp storage space for pCell, if needed */ - Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ - int *pRC /* Read and write return code from here */ -){ - int idx = 0; /* Where to write new cell content in data[] */ - int j; /* Loop counter */ - int end; /* First byte past the last cell pointer in data[] */ - int ins; /* Index in data[] where new cell pointer is inserted */ - int cellOffset; /* Address of first cell pointer in data[] */ - u8 *data; /* The content of the whole page */ - u8 *ptr; /* Used for moving information around in data[] */ - u8 *endPtr; /* End of the loop */ - - int nSkip = (iChild ? 4 : 0); - - if( *pRC ) return; - - assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); - assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 ); - assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); - assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - /* The cell should normally be sized correctly. However, when moving a - ** malformed cell from a leaf page to an interior page, if the cell size - ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size - ** might be less than 8 (leaf-size + pointer) on the interior node. Hence - ** the term after the || in the following assert(). */ - assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); - if( pPage->nOverflow || sz+2>pPage->nFree ){ - if( pTemp ){ - memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); - pCell = pTemp; - } - if( iChild ){ - put4byte(pCell, iChild); - } - j = pPage->nOverflow++; - assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); - pPage->apOvfl[j] = pCell; - pPage->aiOvfl[j] = (u16)i; - }else{ - int rc = sqlite3PagerWrite(pPage->pDbPage); - if( rc!=SQLITE_OK ){ - *pRC = rc; - return; - } - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - data = pPage->aData; - cellOffset = pPage->cellOffset; - end = cellOffset + 2*pPage->nCell; - ins = cellOffset + 2*i; - rc = allocateSpace(pPage, sz, &idx); - if( rc ){ *pRC = rc; return; } - /* The allocateSpace() routine guarantees the following two properties - ** if it returns success */ - assert( idx >= end+2 ); - assert( idx+sz <= (int)pPage->pBt->usableSize ); - pPage->nCell++; - pPage->nFree -= (u16)(2 + sz); - memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); - if( iChild ){ - put4byte(&data[idx], iChild); - } - ptr = &data[end]; - endPtr = &data[ins]; - assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */ - while( ptr>endPtr ){ - *(u16*)ptr = *(u16*)&ptr[-2]; - ptr -= 2; - } - put2byte(&data[ins], idx); - put2byte(&data[pPage->hdrOffset+3], pPage->nCell); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pPage->pBt->autoVacuum ){ - /* The cell may contain a pointer to an overflow page. If so, write - ** the entry for the overflow page into the pointer map. - */ - ptrmapPutOvflPtr(pPage, pCell, pRC); - } -#endif - } -} - -/* -** Add a list of cells to a page. The page should be initially empty. -** The cells are guaranteed to fit on the page. -*/ -static void assemblePage( - MemPage *pPage, /* The page to be assemblied */ - int nCell, /* The number of cells to add to this page */ - u8 **apCell, /* Pointers to cell bodies */ - u16 *aSize /* Sizes of the cells */ -){ - int i; /* Loop counter */ - u8 *pCellptr; /* Address of next cell pointer */ - int cellbody; /* Address of next cell body */ - u8 * const data = pPage->aData; /* Pointer to data for pPage */ - const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ - const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ - - assert( pPage->nOverflow==0 ); - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) - && (int)MX_CELL(pPage->pBt)<=10921); - assert( sqlite3PagerIswriteable(pPage->pDbPage) ); - - /* Check that the page has just been zeroed by zeroPage() */ - assert( pPage->nCell==0 ); - assert( get2byteNotZero(&data[hdr+5])==nUsable ); - - pCellptr = &pPage->aCellIdx[nCell*2]; - cellbody = nUsable; - for(i=nCell-1; i>=0; i--){ - u16 sz = aSize[i]; - pCellptr -= 2; - cellbody -= sz; - put2byte(pCellptr, cellbody); - memcpy(&data[cellbody], apCell[i], sz); - } - put2byte(&data[hdr+3], nCell); - put2byte(&data[hdr+5], cellbody); - pPage->nFree -= (nCell*2 + nUsable - cellbody); - pPage->nCell = (u16)nCell; -} - -/* -** The following parameters determine how many adjacent pages get involved -** in a balancing operation. NN is the number of neighbors on either side -** of the page that participate in the balancing operation. NB is the -** total number of pages that participate, including the target page and -** NN neighbors on either side. -** -** The minimum value of NN is 1 (of course). Increasing NN above 1 -** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance -** in exchange for a larger degradation in INSERT and UPDATE performance. -** The value of NN appears to give the best results overall. -*/ -#define NN 1 /* Number of neighbors on either side of pPage */ -#define NB (NN*2+1) /* Total pages involved in the balance */ - - -#ifndef SQLITE_OMIT_QUICKBALANCE -/* -** This version of balance() handles the common special case where -** a new entry is being inserted on the extreme right-end of the -** tree, in other words, when the new entry will become the largest -** entry in the tree. -** -** Instead of trying to balance the 3 right-most leaf pages, just add -** a new page to the right-hand side and put the one new entry in -** that page. This leaves the right side of the tree somewhat -** unbalanced. But odds are that we will be inserting new entries -** at the end soon afterwards so the nearly empty page will quickly -** fill up. On average. -** -** pPage is the leaf page which is the right-most page in the tree. -** pParent is its parent. pPage must have a single overflow entry -** which is also the right-most entry on the page. -** -** The pSpace buffer is used to store a temporary copy of the divider -** cell that will be inserted into pParent. Such a cell consists of a 4 -** byte page number followed by a variable length integer. In other -** words, at most 13 bytes. Hence the pSpace buffer must be at -** least 13 bytes in size. -*/ -static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ - BtShared *const pBt = pPage->pBt; /* B-Tree Database */ - MemPage *pNew; /* Newly allocated page */ - int rc; /* Return Code */ - Pgno pgnoNew; /* Page number of pNew */ - - assert( sqlite3_mutex_held(pPage->pBt->mutex) ); - assert( sqlite3PagerIswriteable(pParent->pDbPage) ); - assert( pPage->nOverflow==1 ); - - /* This error condition is now caught prior to reaching this function */ - if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; - - /* Allocate a new page. This page will become the right-sibling of - ** pPage. Make the parent page writable, so that the new divider cell - ** may be inserted. If both these operations are successful, proceed. - */ - rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); - - if( rc==SQLITE_OK ){ - - u8 *pOut = &pSpace[4]; - u8 *pCell = pPage->apOvfl[0]; - u16 szCell = cellSizePtr(pPage, pCell); - u8 *pStop; - - assert( sqlite3PagerIswriteable(pNew->pDbPage) ); - assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); - zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); - assemblePage(pNew, 1, &pCell, &szCell); - - /* If this is an auto-vacuum database, update the pointer map - ** with entries for the new page, and any pointer from the - ** cell on the page to an overflow page. If either of these - ** operations fails, the return code is set, but the contents - ** of the parent page are still manipulated by thh code below. - ** That is Ok, at this point the parent page is guaranteed to - ** be marked as dirty. Returning an error code will cause a - ** rollback, undoing any changes made to the parent page. - */ - if( ISAUTOVACUUM ){ - ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); - if( szCell>pNew->minLocal ){ - ptrmapPutOvflPtr(pNew, pCell, &rc); - } - } - - /* Create a divider cell to insert into pParent. The divider cell - ** consists of a 4-byte page number (the page number of pPage) and - ** a variable length key value (which must be the same value as the - ** largest key on pPage). - ** - ** To find the largest key value on pPage, first find the right-most - ** cell on pPage. The first two fields of this cell are the - ** record-length (a variable length integer at most 32-bits in size) - ** and the key value (a variable length integer, may have any value). - ** The first of the while(...) loops below skips over the record-length - ** field. The second while(...) loop copies the key value from the - ** cell on pPage into the pSpace buffer. - */ - pCell = findCell(pPage, pPage->nCell-1); - pStop = &pCell[9]; - while( (*(pCell++)&0x80) && pCell<pStop ); - pStop = &pCell[9]; - while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); - - /* Insert the new divider cell into pParent. */ - insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), - 0, pPage->pgno, &rc); - - /* Set the right-child pointer of pParent to point to the new page. */ - put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); - - /* Release the reference to the new page. */ - releasePage(pNew); - } - - return rc; -} -#endif /* SQLITE_OMIT_QUICKBALANCE */ - -#if 0 -/* -** This function does not contribute anything to the operation of SQLite. -** it is sometimes activated temporarily while debugging code responsible -** for setting pointer-map entries. -*/ -static int ptrmapCheckPages(MemPage **apPage, int nPage){ - int i, j; - for(i=0; i<nPage; i++){ - Pgno n; - u8 e; - MemPage *pPage = apPage[i]; - BtShared *pBt = pPage->pBt; - assert( pPage->isInit ); - - for(j=0; j<pPage->nCell; j++){ - CellInfo info; - u8 *z; - - z = findCell(pPage, j); - btreeParseCellPtr(pPage, z, &info); - if( info.iOverflow ){ - Pgno ovfl = get4byte(&z[info.iOverflow]); - ptrmapGet(pBt, ovfl, &e, &n); - assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); - } - if( !pPage->leaf ){ - Pgno child = get4byte(z); - ptrmapGet(pBt, child, &e, &n); - assert( n==pPage->pgno && e==PTRMAP_BTREE ); - } - } - if( !pPage->leaf ){ - Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); - ptrmapGet(pBt, child, &e, &n); - assert( n==pPage->pgno && e==PTRMAP_BTREE ); - } - } - return 1; -} -#endif - -/* -** This function is used to copy the contents of the b-tree node stored -** on page pFrom to page pTo. If page pFrom was not a leaf page, then -** the pointer-map entries for each child page are updated so that the -** parent page stored in the pointer map is page pTo. If pFrom contained -** any cells with overflow page pointers, then the corresponding pointer -** map entries are also updated so that the parent page is page pTo. -** -** If pFrom is currently carrying any overflow cells (entries in the -** MemPage.apOvfl[] array), they are not copied to pTo. -** -** Before returning, page pTo is reinitialized using btreeInitPage(). -** -** The performance of this function is not critical. It is only used by -** the balance_shallower() and balance_deeper() procedures, neither of -** which are called often under normal circumstances. -*/ -static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ - if( (*pRC)==SQLITE_OK ){ - BtShared * const pBt = pFrom->pBt; - u8 * const aFrom = pFrom->aData; - u8 * const aTo = pTo->aData; - int const iFromHdr = pFrom->hdrOffset; - int const iToHdr = ((pTo->pgno==1) ? 100 : 0); - int rc; - int iData; - - - assert( pFrom->isInit ); - assert( pFrom->nFree>=iToHdr ); - assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); - - /* Copy the b-tree node content from page pFrom to page pTo. */ - iData = get2byte(&aFrom[iFromHdr+5]); - memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); - memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); - - /* Reinitialize page pTo so that the contents of the MemPage structure - ** match the new data. The initialization of pTo can actually fail under - ** fairly obscure circumstances, even though it is a copy of initialized - ** page pFrom. - */ - pTo->isInit = 0; - rc = btreeInitPage(pTo); - if( rc!=SQLITE_OK ){ - *pRC = rc; - return; - } - - /* If this is an auto-vacuum database, update the pointer-map entries - ** for any b-tree or overflow pages that pTo now contains the pointers to. - */ - if( ISAUTOVACUUM ){ - *pRC = setChildPtrmaps(pTo); - } - } -} - -/* -** This routine redistributes cells on the iParentIdx'th child of pParent -** (hereafter "the page") and up to 2 siblings so that all pages have about the -** same amount of free space. Usually a single sibling on either side of the -** page are used in the balancing, though both siblings might come from one -** side if the page is the first or last child of its parent. If the page -** has fewer than 2 siblings (something which can only happen if the page -** is a root page or a child of a root page) then all available siblings -** participate in the balancing. -** -** The number of siblings of the page might be increased or decreased by -** one or two in an effort to keep pages nearly full but not over full. -** -** Note that when this routine is called, some of the cells on the page -** might not actually be stored in MemPage.aData[]. This can happen -** if the page is overfull. This routine ensures that all cells allocated -** to the page and its siblings fit into MemPage.aData[] before returning. -** -** In the course of balancing the page and its siblings, cells may be -** inserted into or removed from the parent page (pParent). Doing so -** may cause the parent page to become overfull or underfull. If this -** happens, it is the responsibility of the caller to invoke the correct -** balancing routine to fix this problem (see the balance() routine). -** -** If this routine fails for any reason, it might leave the database -** in a corrupted state. So if this routine fails, the database should -** be rolled back. -** -** The third argument to this function, aOvflSpace, is a pointer to a -** buffer big enough to hold one page. If while inserting cells into the parent -** page (pParent) the parent page becomes overfull, this buffer is -** used to store the parent's overflow cells. Because this function inserts -** a maximum of four divider cells into the parent page, and the maximum -** size of a cell stored within an internal node is always less than 1/4 -** of the page-size, the aOvflSpace[] buffer is guaranteed to be large -** enough for all overflow cells. -** -** If aOvflSpace is set to a null pointer, this function returns -** SQLITE_NOMEM. -*/ -#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) -#pragma optimize("", off) -#endif -static int balance_nonroot( - MemPage *pParent, /* Parent page of siblings being balanced */ - int iParentIdx, /* Index of "the page" in pParent */ - u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ - int isRoot, /* True if pParent is a root-page */ - int bBulk /* True if this call is part of a bulk load */ -){ - BtShared *pBt; /* The whole database */ - int nCell = 0; /* Number of cells in apCell[] */ - int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ - int nNew = 0; /* Number of pages in apNew[] */ - int nOld; /* Number of pages in apOld[] */ - int i, j, k; /* Loop counters */ - int nxDiv; /* Next divider slot in pParent->aCell[] */ - int rc = SQLITE_OK; /* The return code */ - u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ - int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ - int usableSpace; /* Bytes in pPage beyond the header */ - int pageFlags; /* Value of pPage->aData[0] */ - int subtotal; /* Subtotal of bytes in cells on one page */ - int iSpace1 = 0; /* First unused byte of aSpace1[] */ - int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ - int szScratch; /* Size of scratch memory requested */ - MemPage *apOld[NB]; /* pPage and up to two siblings */ - MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ - MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ - u8 *pRight; /* Location in parent of right-sibling pointer */ - u8 *apDiv[NB-1]; /* Divider cells in pParent */ - int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ - int szNew[NB+2]; /* Combined size of cells place on i-th page */ - u8 **apCell = 0; /* All cells begin balanced */ - u16 *szCell; /* Local size of all cells in apCell[] */ - u8 *aSpace1; /* Space for copies of dividers cells */ - Pgno pgno; /* Temp var to store a page number in */ - - pBt = pParent->pBt; - assert( sqlite3_mutex_held(pBt->mutex) ); - assert( sqlite3PagerIswriteable(pParent->pDbPage) ); - -#if 0 - TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); -#endif - - /* At this point pParent may have at most one overflow cell. And if - ** this overflow cell is present, it must be the cell with - ** index iParentIdx. This scenario comes about when this function - ** is called (indirectly) from sqlite3BtreeDelete(). - */ - assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); - assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); - - if( !aOvflSpace ){ - return SQLITE_NOMEM; - } - - /* Find the sibling pages to balance. Also locate the cells in pParent - ** that divide the siblings. An attempt is made to find NN siblings on - ** either side of pPage. More siblings are taken from one side, however, - ** if there are fewer than NN siblings on the other side. If pParent - ** has NB or fewer children then all children of pParent are taken. - ** - ** This loop also drops the divider cells from the parent page. This - ** way, the remainder of the function does not have to deal with any - ** overflow cells in the parent page, since if any existed they will - ** have already been removed. - */ - i = pParent->nOverflow + pParent->nCell; - if( i<2 ){ - nxDiv = 0; - }else{ - assert( bBulk==0 || bBulk==1 ); - if( iParentIdx==0 ){ - nxDiv = 0; - }else if( iParentIdx==i ){ - nxDiv = i-2+bBulk; - }else{ - assert( bBulk==0 ); - nxDiv = iParentIdx-1; - } - i = 2-bBulk; - } - nOld = i+1; - if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ - pRight = &pParent->aData[pParent->hdrOffset+8]; - }else{ - pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); - } - pgno = get4byte(pRight); - while( 1 ){ - rc = getAndInitPage(pBt, pgno, &apOld[i]); - if( rc ){ - memset(apOld, 0, (i+1)*sizeof(MemPage*)); - goto balance_cleanup; - } - nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; - if( (i--)==0 ) break; - - if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ - apDiv[i] = pParent->apOvfl[0]; - pgno = get4byte(apDiv[i]); - szNew[i] = cellSizePtr(pParent, apDiv[i]); - pParent->nOverflow = 0; - }else{ - apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); - pgno = get4byte(apDiv[i]); - szNew[i] = cellSizePtr(pParent, apDiv[i]); - - /* Drop the cell from the parent page. apDiv[i] still points to - ** the cell within the parent, even though it has been dropped. - ** This is safe because dropping a cell only overwrites the first - ** four bytes of it, and this function does not need the first - ** four bytes of the divider cell. So the pointer is safe to use - ** later on. - ** - ** But not if we are in secure-delete mode. In secure-delete mode, - ** the dropCell() routine will overwrite the entire cell with zeroes. - ** In this case, temporarily copy the cell into the aOvflSpace[] - ** buffer. It will be copied out again as soon as the aSpace[] buffer - ** is allocated. */ - if( pBt->btsFlags & BTS_SECURE_DELETE ){ - int iOff; - - iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); - if( (iOff+szNew[i])>(int)pBt->usableSize ){ - rc = SQLITE_CORRUPT_BKPT; - memset(apOld, 0, (i+1)*sizeof(MemPage*)); - goto balance_cleanup; - }else{ - memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); - apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; - } - } - dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); - } - } - - /* Make nMaxCells a multiple of 4 in order to preserve 8-byte - ** alignment */ - nMaxCells = (nMaxCells + 3)&~3; - - /* - ** Allocate space for memory structures - */ - k = pBt->pageSize + ROUND8(sizeof(MemPage)); - szScratch = - nMaxCells*sizeof(u8*) /* apCell */ - + nMaxCells*sizeof(u16) /* szCell */ - + pBt->pageSize /* aSpace1 */ - + k*nOld; /* Page copies (apCopy) */ - apCell = sqlite3ScratchMalloc( szScratch ); - if( apCell==0 ){ - rc = SQLITE_NOMEM; - goto balance_cleanup; - } - szCell = (u16*)&apCell[nMaxCells]; - aSpace1 = (u8*)&szCell[nMaxCells]; - assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); - - /* - ** Load pointers to all cells on sibling pages and the divider cells - ** into the local apCell[] array. Make copies of the divider cells - ** into space obtained from aSpace1[] and remove the divider cells - ** from pParent. - ** - ** If the siblings are on leaf pages, then the child pointers of the - ** divider cells are stripped from the cells before they are copied - ** into aSpace1[]. In this way, all cells in apCell[] are without - ** child pointers. If siblings are not leaves, then all cell in - ** apCell[] include child pointers. Either way, all cells in apCell[] - ** are alike. - ** - ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. - ** leafData: 1 if pPage holds key+data and pParent holds only keys. - */ - leafCorrection = apOld[0]->leaf*4; - leafData = apOld[0]->hasData; - for(i=0; i<nOld; i++){ - int limit; - - /* Before doing anything else, take a copy of the i'th original sibling - ** The rest of this function will use data from the copies rather - ** that the original pages since the original pages will be in the - ** process of being overwritten. */ - MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i]; - memcpy(pOld, apOld[i], sizeof(MemPage)); - pOld->aData = (void*)&pOld[1]; - memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize); - - limit = pOld->nCell+pOld->nOverflow; - if( pOld->nOverflow>0 ){ - for(j=0; j<limit; j++){ - assert( nCell<nMaxCells ); - apCell[nCell] = findOverflowCell(pOld, j); - szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); - nCell++; - } - }else{ - u8 *aData = pOld->aData; - u16 maskPage = pOld->maskPage; - u16 cellOffset = pOld->cellOffset; - for(j=0; j<limit; j++){ - assert( nCell<nMaxCells ); - apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j); - szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); - nCell++; - } - } - if( i<nOld-1 && !leafData){ - u16 sz = (u16)szNew[i]; - u8 *pTemp; - assert( nCell<nMaxCells ); - szCell[nCell] = sz; - pTemp = &aSpace1[iSpace1]; - iSpace1 += sz; - assert( sz<=pBt->maxLocal+23 ); - assert( iSpace1 <= (int)pBt->pageSize ); - memcpy(pTemp, apDiv[i], sz); - apCell[nCell] = pTemp+leafCorrection; - assert( leafCorrection==0 || leafCorrection==4 ); - szCell[nCell] = szCell[nCell] - leafCorrection; - if( !pOld->leaf ){ - assert( leafCorrection==0 ); - assert( pOld->hdrOffset==0 ); - /* The right pointer of the child page pOld becomes the left - ** pointer of the divider cell */ - memcpy(apCell[nCell], &pOld->aData[8], 4); - }else{ - assert( leafCorrection==4 ); - if( szCell[nCell]<4 ){ - /* Do not allow any cells smaller than 4 bytes. */ - szCell[nCell] = 4; - } - } - nCell++; - } - } - - /* - ** Figure out the number of pages needed to hold all nCell cells. - ** Store this number in "k". Also compute szNew[] which is the total - ** size of all cells on the i-th page and cntNew[] which is the index - ** in apCell[] of the cell that divides page i from page i+1. - ** cntNew[k] should equal nCell. - ** - ** Values computed by this block: - ** - ** k: The total number of sibling pages - ** szNew[i]: Spaced used on the i-th sibling page. - ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to - ** the right of the i-th sibling page. - ** usableSpace: Number of bytes of space available on each sibling. - ** - */ - usableSpace = pBt->usableSize - 12 + leafCorrection; - for(subtotal=k=i=0; i<nCell; i++){ - assert( i<nMaxCells ); - subtotal += szCell[i] + 2; - if( subtotal > usableSpace ){ - szNew[k] = subtotal - szCell[i]; - cntNew[k] = i; - if( leafData ){ i--; } - subtotal = 0; - k++; - if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } - } - } - szNew[k] = subtotal; - cntNew[k] = nCell; - k++; - - /* - ** The packing computed by the previous block is biased toward the siblings - ** on the left side. The left siblings are always nearly full, while the - ** right-most sibling might be nearly empty. This block of code attempts - ** to adjust the packing of siblings to get a better balance. - ** - ** This adjustment is more than an optimization. The packing above might - ** be so out of balance as to be illegal. For example, the right-most - ** sibling might be completely empty. This adjustment is not optional. - */ - for(i=k-1; i>0; i--){ - int szRight = szNew[i]; /* Size of sibling on the right */ - int szLeft = szNew[i-1]; /* Size of sibling on the left */ - int r; /* Index of right-most cell in left sibling */ - int d; /* Index of first cell to the left of right sibling */ - - r = cntNew[i-1] - 1; - d = r + 1 - leafData; - assert( d<nMaxCells ); - assert( r<nMaxCells ); - while( szRight==0 - || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) - ){ - szRight += szCell[d] + 2; - szLeft -= szCell[r] + 2; - cntNew[i-1]--; - r = cntNew[i-1] - 1; - d = r + 1 - leafData; - } - szNew[i] = szRight; - szNew[i-1] = szLeft; - } - - /* Either we found one or more cells (cntnew[0])>0) or pPage is - ** a virtual root page. A virtual root page is when the real root - ** page is page 1 and we are the only child of that page. - ** - ** UPDATE: The assert() below is not necessarily true if the database - ** file is corrupt. The corruption will be detected and reported later - ** in this procedure so there is no need to act upon it now. - */ -#if 0 - assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); -#endif - - TRACE(("BALANCE: old: %d %d %d ", - apOld[0]->pgno, - nOld>=2 ? apOld[1]->pgno : 0, - nOld>=3 ? apOld[2]->pgno : 0 - )); - - /* - ** Allocate k new pages. Reuse old pages where possible. - */ - if( apOld[0]->pgno<=1 ){ - rc = SQLITE_CORRUPT_BKPT; - goto balance_cleanup; - } - pageFlags = apOld[0]->aData[0]; - for(i=0; i<k; i++){ - MemPage *pNew; - if( i<nOld ){ - pNew = apNew[i] = apOld[i]; - apOld[i] = 0; - rc = sqlite3PagerWrite(pNew->pDbPage); - nNew++; - if( rc ) goto balance_cleanup; - }else{ - assert( i>0 ); - rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); - if( rc ) goto balance_cleanup; - apNew[i] = pNew; - nNew++; - - /* Set the pointer-map entry for the new sibling page. */ - if( ISAUTOVACUUM ){ - ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); - if( rc!=SQLITE_OK ){ - goto balance_cleanup; - } - } - } - } - - /* Free any old pages that were not reused as new pages. - */ - while( i<nOld ){ - freePage(apOld[i], &rc); - if( rc ) goto balance_cleanup; - releasePage(apOld[i]); - apOld[i] = 0; - i++; - } - - /* - ** Put the new pages in accending order. This helps to - ** keep entries in the disk file in order so that a scan - ** of the table is a linear scan through the file. That - ** in turn helps the operating system to deliver pages - ** from the disk more rapidly. - ** - ** An O(n^2) insertion sort algorithm is used, but since - ** n is never more than NB (a small constant), that should - ** not be a problem. - ** - ** When NB==3, this one optimization makes the database - ** about 25% faster for large insertions and deletions. - */ - for(i=0; i<k-1; i++){ - int minV = apNew[i]->pgno; - int minI = i; - for(j=i+1; j<k; j++){ - if( apNew[j]->pgno<(unsigned)minV ){ - minI = j; - minV = apNew[j]->pgno; - } - } - if( minI>i ){ - MemPage *pT; - pT = apNew[i]; - apNew[i] = apNew[minI]; - apNew[minI] = pT; - } - } - TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", - apNew[0]->pgno, szNew[0], - nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, - nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, - nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, - nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0)); - - assert( sqlite3PagerIswriteable(pParent->pDbPage) ); - put4byte(pRight, apNew[nNew-1]->pgno); - - /* - ** Evenly distribute the data in apCell[] across the new pages. - ** Insert divider cells into pParent as necessary. - */ - j = 0; - for(i=0; i<nNew; i++){ - /* Assemble the new sibling page. */ - MemPage *pNew = apNew[i]; - assert( j<nMaxCells ); - zeroPage(pNew, pageFlags); - assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); - assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); - assert( pNew->nOverflow==0 ); - - j = cntNew[i]; - - /* If the sibling page assembled above was not the right-most sibling, - ** insert a divider cell into the parent page. - */ - assert( i<nNew-1 || j==nCell ); - if( j<nCell ){ - u8 *pCell; - u8 *pTemp; - int sz; - - assert( j<nMaxCells ); - pCell = apCell[j]; - sz = szCell[j] + leafCorrection; - pTemp = &aOvflSpace[iOvflSpace]; - if( !pNew->leaf ){ - memcpy(&pNew->aData[8], pCell, 4); - }else if( leafData ){ - /* If the tree is a leaf-data tree, and the siblings are leaves, - ** then there is no divider cell in apCell[]. Instead, the divider - ** cell consists of the integer key for the right-most cell of - ** the sibling-page assembled above only. - */ - CellInfo info; - j--; - btreeParseCellPtr(pNew, apCell[j], &info); - pCell = pTemp; - sz = 4 + putVarint(&pCell[4], info.nKey); - pTemp = 0; - }else{ - pCell -= 4; - /* Obscure case for non-leaf-data trees: If the cell at pCell was - ** previously stored on a leaf node, and its reported size was 4 - ** bytes, then it may actually be smaller than this - ** (see btreeParseCellPtr(), 4 bytes is the minimum size of - ** any cell). But it is important to pass the correct size to - ** insertCell(), so reparse the cell now. - ** - ** Note that this can never happen in an SQLite data file, as all - ** cells are at least 4 bytes. It only happens in b-trees used - ** to evaluate "IN (SELECT ...)" and similar clauses. - */ - if( szCell[j]==4 ){ - assert(leafCorrection==4); - sz = cellSizePtr(pParent, pCell); - } - } - iOvflSpace += sz; - assert( sz<=pBt->maxLocal+23 ); - assert( iOvflSpace <= (int)pBt->pageSize ); - insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc); - if( rc!=SQLITE_OK ) goto balance_cleanup; - assert( sqlite3PagerIswriteable(pParent->pDbPage) ); - - j++; - nxDiv++; - } - } - assert( j==nCell ); - assert( nOld>0 ); - assert( nNew>0 ); - if( (pageFlags & PTF_LEAF)==0 ){ - u8 *zChild = &apCopy[nOld-1]->aData[8]; - memcpy(&apNew[nNew-1]->aData[8], zChild, 4); - } - - if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ - /* The root page of the b-tree now contains no cells. The only sibling - ** page is the right-child of the parent. Copy the contents of the - ** child page into the parent, decreasing the overall height of the - ** b-tree structure by one. This is described as the "balance-shallower" - ** sub-algorithm in some documentation. - ** - ** If this is an auto-vacuum database, the call to copyNodeContent() - ** sets all pointer-map entries corresponding to database image pages - ** for which the pointer is stored within the content being copied. - ** - ** The second assert below verifies that the child page is defragmented - ** (it must be, as it was just reconstructed using assemblePage()). This - ** is important if the parent page happens to be page 1 of the database - ** image. */ - assert( nNew==1 ); - assert( apNew[0]->nFree == - (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) - ); - copyNodeContent(apNew[0], pParent, &rc); - freePage(apNew[0], &rc); - }else if( ISAUTOVACUUM ){ - /* Fix the pointer-map entries for all the cells that were shifted around. - ** There are several different types of pointer-map entries that need to - ** be dealt with by this routine. Some of these have been set already, but - ** many have not. The following is a summary: - ** - ** 1) The entries associated with new sibling pages that were not - ** siblings when this function was called. These have already - ** been set. We don't need to worry about old siblings that were - ** moved to the free-list - the freePage() code has taken care - ** of those. - ** - ** 2) The pointer-map entries associated with the first overflow - ** page in any overflow chains used by new divider cells. These - ** have also already been taken care of by the insertCell() code. - ** - ** 3) If the sibling pages are not leaves, then the child pages of - ** cells stored on the sibling pages may need to be updated. - ** - ** 4) If the sibling pages are not internal intkey nodes, then any - ** overflow pages used by these cells may need to be updated - ** (internal intkey nodes never contain pointers to overflow pages). - ** - ** 5) If the sibling pages are not leaves, then the pointer-map - ** entries for the right-child pages of each sibling may need - ** to be updated. - ** - ** Cases 1 and 2 are dealt with above by other code. The next - ** block deals with cases 3 and 4 and the one after that, case 5. Since - ** setting a pointer map entry is a relatively expensive operation, this - ** code only sets pointer map entries for child or overflow pages that have - ** actually moved between pages. */ - MemPage *pNew = apNew[0]; - MemPage *pOld = apCopy[0]; - int nOverflow = pOld->nOverflow; - int iNextOld = pOld->nCell + nOverflow; - int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1); - j = 0; /* Current 'old' sibling page */ - k = 0; /* Current 'new' sibling page */ - for(i=0; i<nCell; i++){ - int isDivider = 0; - while( i==iNextOld ){ - /* Cell i is the cell immediately following the last cell on old - ** sibling page j. If the siblings are not leaf pages of an - ** intkey b-tree, then cell i was a divider cell. */ - assert( j+1 < ArraySize(apCopy) ); - assert( j+1 < nOld ); - pOld = apCopy[++j]; - iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; - if( pOld->nOverflow ){ - nOverflow = pOld->nOverflow; - iOverflow = i + !leafData + pOld->aiOvfl[0]; - } - isDivider = !leafData; - } - - assert(nOverflow>0 || iOverflow<i ); - assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1); - assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1); - if( i==iOverflow ){ - isDivider = 1; - if( (--nOverflow)>0 ){ - iOverflow++; - } - } - - if( i==cntNew[k] ){ - /* Cell i is the cell immediately following the last cell on new - ** sibling page k. If the siblings are not leaf pages of an - ** intkey b-tree, then cell i is a divider cell. */ - pNew = apNew[++k]; - if( !leafData ) continue; - } - assert( j<nOld ); - assert( k<nNew ); - - /* If the cell was originally divider cell (and is not now) or - ** an overflow cell, or if the cell was located on a different sibling - ** page before the balancing, then the pointer map entries associated - ** with any child or overflow pages need to be updated. */ - if( isDivider || pOld->pgno!=pNew->pgno ){ - if( !leafCorrection ){ - ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc); - } - if( szCell[i]>pNew->minLocal ){ - ptrmapPutOvflPtr(pNew, apCell[i], &rc); - } - } - } - - if( !leafCorrection ){ - for(i=0; i<nNew; i++){ - u32 key = get4byte(&apNew[i]->aData[8]); - ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); - } - } - -#if 0 - /* The ptrmapCheckPages() contains assert() statements that verify that - ** all pointer map pages are set correctly. This is helpful while - ** debugging. This is usually disabled because a corrupt database may - ** cause an assert() statement to fail. */ - ptrmapCheckPages(apNew, nNew); - ptrmapCheckPages(&pParent, 1); -#endif - } - - assert( pParent->isInit ); - TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", - nOld, nNew, nCell)); - - /* - ** Cleanup before returning. - */ -balance_cleanup: - sqlite3ScratchFree(apCell); - for(i=0; i<nOld; i++){ - releasePage(apOld[i]); - } - for(i=0; i<nNew; i++){ - releasePage(apNew[i]); - } - - return rc; -} -#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) -#pragma optimize("", on) -#endif - - -/* -** This function is called when the root page of a b-tree structure is -** overfull (has one or more overflow pages). -** -** A new child page is allocated and the contents of the current root -** page, including overflow cells, are copied into the child. The root -** page is then overwritten to make it an empty page with the right-child -** pointer pointing to the new page. -** -** Before returning, all pointer-map entries corresponding to pages -** that the new child-page now contains pointers to are updated. The -** entry corresponding to the new right-child pointer of the root -** page is also updated. -** -** If successful, *ppChild is set to contain a reference to the child -** page and SQLITE_OK is returned. In this case the caller is required -** to call releasePage() on *ppChild exactly once. If an error occurs, -** an error code is returned and *ppChild is set to 0. -*/ -static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ - int rc; /* Return value from subprocedures */ - MemPage *pChild = 0; /* Pointer to a new child page */ - Pgno pgnoChild = 0; /* Page number of the new child page */ - BtShared *pBt = pRoot->pBt; /* The BTree */ - - assert( pRoot->nOverflow>0 ); - assert( sqlite3_mutex_held(pBt->mutex) ); - - /* Make pRoot, the root page of the b-tree, writable. Allocate a new - ** page that will become the new right-child of pPage. Copy the contents - ** of the node stored on pRoot into the new child page. - */ - rc = sqlite3PagerWrite(pRoot->pDbPage); - if( rc==SQLITE_OK ){ - rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); - copyNodeContent(pRoot, pChild, &rc); - if( ISAUTOVACUUM ){ - ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); - } - } - if( rc ){ - *ppChild = 0; - releasePage(pChild); - return rc; - } - assert( sqlite3PagerIswriteable(pChild->pDbPage) ); - assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); - assert( pChild->nCell==pRoot->nCell ); - - TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); - - /* Copy the overflow cells from pRoot to pChild */ - memcpy(pChild->aiOvfl, pRoot->aiOvfl, - pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); - memcpy(pChild->apOvfl, pRoot->apOvfl, - pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); - pChild->nOverflow = pRoot->nOverflow; - - /* Zero the contents of pRoot. Then install pChild as the right-child. */ - zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); - put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); - - *ppChild = pChild; - return SQLITE_OK; -} - -/* -** The page that pCur currently points to has just been modified in -** some way. This function figures out if this modification means the -** tree needs to be balanced, and if so calls the appropriate balancing -** routine. Balancing routines are: -** -** balance_quick() -** balance_deeper() -** balance_nonroot() -*/ -static int balance(BtCursor *pCur){ - int rc = SQLITE_OK; - const int nMin = pCur->pBt->usableSize * 2 / 3; - u8 aBalanceQuickSpace[13]; - u8 *pFree = 0; - - TESTONLY( int balance_quick_called = 0 ); - TESTONLY( int balance_deeper_called = 0 ); - - do { - int iPage = pCur->iPage; - MemPage *pPage = pCur->apPage[iPage]; - - if( iPage==0 ){ - if( pPage->nOverflow ){ - /* The root page of the b-tree is overfull. In this case call the - ** balance_deeper() function to create a new child for the root-page - ** and copy the current contents of the root-page to it. The - ** next iteration of the do-loop will balance the child page. - */ - assert( (balance_deeper_called++)==0 ); - rc = balance_deeper(pPage, &pCur->apPage[1]); - if( rc==SQLITE_OK ){ - pCur->iPage = 1; - pCur->aiIdx[0] = 0; - pCur->aiIdx[1] = 0; - assert( pCur->apPage[1]->nOverflow ); - } - }else{ - break; - } - }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ - break; - }else{ - MemPage * const pParent = pCur->apPage[iPage-1]; - int const iIdx = pCur->aiIdx[iPage-1]; - - rc = sqlite3PagerWrite(pParent->pDbPage); - if( rc==SQLITE_OK ){ -#ifndef SQLITE_OMIT_QUICKBALANCE - if( pPage->hasData - && pPage->nOverflow==1 - && pPage->aiOvfl[0]==pPage->nCell - && pParent->pgno!=1 - && pParent->nCell==iIdx - ){ - /* Call balance_quick() to create a new sibling of pPage on which - ** to store the overflow cell. balance_quick() inserts a new cell - ** into pParent, which may cause pParent overflow. If this - ** happens, the next interation of the do-loop will balance pParent - ** use either balance_nonroot() or balance_deeper(). Until this - ** happens, the overflow cell is stored in the aBalanceQuickSpace[] - ** buffer. - ** - ** The purpose of the following assert() is to check that only a - ** single call to balance_quick() is made for each call to this - ** function. If this were not verified, a subtle bug involving reuse - ** of the aBalanceQuickSpace[] might sneak in. - */ - assert( (balance_quick_called++)==0 ); - rc = balance_quick(pParent, pPage, aBalanceQuickSpace); - }else -#endif - { - /* In this case, call balance_nonroot() to redistribute cells - ** between pPage and up to 2 of its sibling pages. This involves - ** modifying the contents of pParent, which may cause pParent to - ** become overfull or underfull. The next iteration of the do-loop - ** will balance the parent page to correct this. - ** - ** If the parent page becomes overfull, the overflow cell or cells - ** are stored in the pSpace buffer allocated immediately below. - ** A subsequent iteration of the do-loop will deal with this by - ** calling balance_nonroot() (balance_deeper() may be called first, - ** but it doesn't deal with overflow cells - just moves them to a - ** different page). Once this subsequent call to balance_nonroot() - ** has completed, it is safe to release the pSpace buffer used by - ** the previous call, as the overflow cell data will have been - ** copied either into the body of a database page or into the new - ** pSpace buffer passed to the latter call to balance_nonroot(). - */ - u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); - rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints); - if( pFree ){ - /* If pFree is not NULL, it points to the pSpace buffer used - ** by a previous call to balance_nonroot(). Its contents are - ** now stored either on real database pages or within the - ** new pSpace buffer, so it may be safely freed here. */ - sqlite3PageFree(pFree); - } - - /* The pSpace buffer will be freed after the next call to - ** balance_nonroot(), or just before this function returns, whichever - ** comes first. */ - pFree = pSpace; - } - } - - pPage->nOverflow = 0; - - /* The next iteration of the do-loop balances the parent page. */ - releasePage(pPage); - pCur->iPage--; - } - }while( rc==SQLITE_OK ); - - if( pFree ){ - sqlite3PageFree(pFree); - } - return rc; -} - - -/* -** Insert a new record into the BTree. The key is given by (pKey,nKey) -** and the data is given by (pData,nData). The cursor is used only to -** define what table the record should be inserted into. The cursor -** is left pointing at a random location. -** -** For an INTKEY table, only the nKey value of the key is used. pKey is -** ignored. For a ZERODATA table, the pData and nData are both ignored. -** -** If the seekResult parameter is non-zero, then a successful call to -** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already -** been performed. seekResult is the search result returned (a negative -** number if pCur points at an entry that is smaller than (pKey, nKey), or -** a positive value if pCur points at an etry that is larger than -** (pKey, nKey)). -** -** If the seekResult parameter is non-zero, then the caller guarantees that -** cursor pCur is pointing at the existing copy of a row that is to be -** overwritten. If the seekResult parameter is 0, then cursor pCur may -** point to any entry or to no entry at all and so this function has to seek -** the cursor before the new key can be inserted. -*/ -SQLITE_PRIVATE int sqlite3BtreeInsert( - BtCursor *pCur, /* Insert data into the table of this cursor */ - const void *pKey, i64 nKey, /* The key of the new record */ - const void *pData, int nData, /* The data of the new record */ - int nZero, /* Number of extra 0 bytes to append to data */ - int appendBias, /* True if this is likely an append */ - int seekResult /* Result of prior MovetoUnpacked() call */ -){ - int rc; - int loc = seekResult; /* -1: before desired location +1: after */ - int szNew = 0; - int idx; - MemPage *pPage; - Btree *p = pCur->pBtree; - BtShared *pBt = p->pBt; - unsigned char *oldCell; - unsigned char *newCell = 0; - - if( pCur->eState==CURSOR_FAULT ){ - assert( pCur->skipNext!=SQLITE_OK ); - return pCur->skipNext; - } - - assert( cursorHoldsMutex(pCur) ); - assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE - && (pBt->btsFlags & BTS_READ_ONLY)==0 ); - assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); - - /* Assert that the caller has been consistent. If this cursor was opened - ** expecting an index b-tree, then the caller should be inserting blob - ** keys with no associated data. If the cursor was opened expecting an - ** intkey table, the caller should be inserting integer keys with a - ** blob of associated data. */ - assert( (pKey==0)==(pCur->pKeyInfo==0) ); - - /* Save the positions of any other cursors open on this table. - ** - ** In some cases, the call to btreeMoveto() below is a no-op. For - ** example, when inserting data into a table with auto-generated integer - ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the - ** integer key to use. It then calls this function to actually insert the - ** data into the intkey B-Tree. In this case btreeMoveto() recognizes - ** that the cursor is already where it needs to be and returns without - ** doing any work. To avoid thwarting these optimizations, it is important - ** not to clear the cursor here. - */ - rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); - if( rc ) return rc; - - /* If this is an insert into a table b-tree, invalidate any incrblob - ** cursors open on the row being replaced (assuming this is a replace - ** operation - if it is not, the following is a no-op). */ - if( pCur->pKeyInfo==0 ){ - invalidateIncrblobCursors(p, nKey, 0); - } - - if( !loc ){ - rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); - if( rc ) return rc; - } - assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); - - pPage = pCur->apPage[pCur->iPage]; - assert( pPage->intKey || nKey>=0 ); - assert( pPage->leaf || !pPage->intKey ); - - TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", - pCur->pgnoRoot, nKey, nData, pPage->pgno, - loc==0 ? "overwrite" : "new entry")); - assert( pPage->isInit ); - allocateTempSpace(pBt); - newCell = pBt->pTmpSpace; - if( newCell==0 ) return SQLITE_NOMEM; - rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); - if( rc ) goto end_insert; - assert( szNew==cellSizePtr(pPage, newCell) ); - assert( szNew <= MX_CELL_SIZE(pBt) ); - idx = pCur->aiIdx[pCur->iPage]; - if( loc==0 ){ - u16 szOld; - assert( idx<pPage->nCell ); - rc = sqlite3PagerWrite(pPage->pDbPage); - if( rc ){ - goto end_insert; - } - oldCell = findCell(pPage, idx); - if( !pPage->leaf ){ - memcpy(newCell, oldCell, 4); - } - szOld = cellSizePtr(pPage, oldCell); - rc = clearCell(pPage, oldCell); - dropCell(pPage, idx, szOld, &rc); - if( rc ) goto end_insert; - }else if( loc<0 && pPage->nCell>0 ){ - assert( pPage->leaf ); - idx = ++pCur->aiIdx[pCur->iPage]; - }else{ - assert( pPage->leaf ); - } - insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); - assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); - - /* If no error has occurred and pPage has an overflow cell, call balance() - ** to redistribute the cells within the tree. Since balance() may move - ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey - ** variables. - ** - ** Previous versions of SQLite called moveToRoot() to move the cursor - ** back to the root page as balance() used to invalidate the contents - ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, - ** set the cursor state to "invalid". This makes common insert operations - ** slightly faster. - ** - ** There is a subtle but important optimization here too. When inserting - ** multiple records into an intkey b-tree using a single cursor (as can - ** happen while processing an "INSERT INTO ... SELECT" statement), it - ** is advantageous to leave the cursor pointing to the last entry in - ** the b-tree if possible. If the cursor is left pointing to the last - ** entry in the table, and the next row inserted has an integer key - ** larger than the largest existing key, it is possible to insert the - ** row without seeking the cursor. This can be a big performance boost. - */ - pCur->info.nSize = 0; - pCur->validNKey = 0; - if( rc==SQLITE_OK && pPage->nOverflow ){ - rc = balance(pCur); - - /* Must make sure nOverflow is reset to zero even if the balance() - ** fails. Internal data structure corruption will result otherwise. - ** Also, set the cursor state to invalid. This stops saveCursorPosition() - ** from trying to save the current position of the cursor. */ - pCur->apPage[pCur->iPage]->nOverflow = 0; - pCur->eState = CURSOR_INVALID; - } - assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); - -end_insert: - return rc; -} - -/* -** Delete the entry that the cursor is pointing to. The cursor -** is left pointing at a arbitrary location. -*/ -SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){ - Btree *p = pCur->pBtree; - BtShared *pBt = p->pBt; - int rc; /* Return code */ - MemPage *pPage; /* Page to delete cell from */ - unsigned char *pCell; /* Pointer to cell to delete */ - int iCellIdx; /* Index of cell to delete */ - int iCellDepth; /* Depth of node containing pCell */ - - assert( cursorHoldsMutex(pCur) ); - assert( pBt->inTransaction==TRANS_WRITE ); - assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); - assert( pCur->wrFlag ); - assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); - assert( !hasReadConflicts(p, pCur->pgnoRoot) ); - - if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) - || NEVER(pCur->eState!=CURSOR_VALID) - ){ - return SQLITE_ERROR; /* Something has gone awry. */ - } - - iCellDepth = pCur->iPage; - iCellIdx = pCur->aiIdx[iCellDepth]; - pPage = pCur->apPage[iCellDepth]; - pCell = findCell(pPage, iCellIdx); - - /* If the page containing the entry to delete is not a leaf page, move - ** the cursor to the largest entry in the tree that is smaller than - ** the entry being deleted. This cell will replace the cell being deleted - ** from the internal node. The 'previous' entry is used for this instead - ** of the 'next' entry, as the previous entry is always a part of the - ** sub-tree headed by the child page of the cell being deleted. This makes - ** balancing the tree following the delete operation easier. */ - if( !pPage->leaf ){ - int notUsed; - rc = sqlite3BtreePrevious(pCur, ¬Used); - if( rc ) return rc; - } - - /* Save the positions of any other cursors open on this table before - ** making any modifications. Make the page containing the entry to be - ** deleted writable. Then free any overflow pages associated with the - ** entry and finally remove the cell itself from within the page. - */ - rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); - if( rc ) return rc; - - /* If this is a delete operation to remove a row from a table b-tree, - ** invalidate any incrblob cursors open on the row being deleted. */ - if( pCur->pKeyInfo==0 ){ - invalidateIncrblobCursors(p, pCur->info.nKey, 0); - } - - rc = sqlite3PagerWrite(pPage->pDbPage); - if( rc ) return rc; - rc = clearCell(pPage, pCell); - dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc); - if( rc ) return rc; - - /* If the cell deleted was not located on a leaf page, then the cursor - ** is currently pointing to the largest entry in the sub-tree headed - ** by the child-page of the cell that was just deleted from an internal - ** node. The cell from the leaf node needs to be moved to the internal - ** node to replace the deleted cell. */ - if( !pPage->leaf ){ - MemPage *pLeaf = pCur->apPage[pCur->iPage]; - int nCell; - Pgno n = pCur->apPage[iCellDepth+1]->pgno; - unsigned char *pTmp; - - pCell = findCell(pLeaf, pLeaf->nCell-1); - nCell = cellSizePtr(pLeaf, pCell); - assert( MX_CELL_SIZE(pBt) >= nCell ); - - allocateTempSpace(pBt); - pTmp = pBt->pTmpSpace; - - rc = sqlite3PagerWrite(pLeaf->pDbPage); - insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); - dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); - if( rc ) return rc; - } - - /* Balance the tree. If the entry deleted was located on a leaf page, - ** then the cursor still points to that page. In this case the first - ** call to balance() repairs the tree, and the if(...) condition is - ** never true. - ** - ** Otherwise, if the entry deleted was on an internal node page, then - ** pCur is pointing to the leaf page from which a cell was removed to - ** replace the cell deleted from the internal node. This is slightly - ** tricky as the leaf node may be underfull, and the internal node may - ** be either under or overfull. In this case run the balancing algorithm - ** on the leaf node first. If the balance proceeds far enough up the - ** tree that we can be sure that any problem in the internal node has - ** been corrected, so be it. Otherwise, after balancing the leaf node, - ** walk the cursor up the tree to the internal node and balance it as - ** well. */ - rc = balance(pCur); - if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ - while( pCur->iPage>iCellDepth ){ - releasePage(pCur->apPage[pCur->iPage--]); - } - rc = balance(pCur); - } - - if( rc==SQLITE_OK ){ - moveToRoot(pCur); - } - return rc; -} - -/* -** Create a new BTree table. Write into *piTable the page -** number for the root page of the new table. -** -** The type of type is determined by the flags parameter. Only the -** following values of flags are currently in use. Other values for -** flags might not work: -** -** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys -** BTREE_ZERODATA Used for SQL indices -*/ -static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ - BtShared *pBt = p->pBt; - MemPage *pRoot; - Pgno pgnoRoot; - int rc; - int ptfFlags; /* Page-type flage for the root page of new table */ - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( pBt->inTransaction==TRANS_WRITE ); - assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); - -#ifdef SQLITE_OMIT_AUTOVACUUM - rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); - if( rc ){ - return rc; - } -#else - if( pBt->autoVacuum ){ - Pgno pgnoMove; /* Move a page here to make room for the root-page */ - MemPage *pPageMove; /* The page to move to. */ - - /* Creating a new table may probably require moving an existing database - ** to make room for the new tables root page. In case this page turns - ** out to be an overflow page, delete all overflow page-map caches - ** held by open cursors. - */ - invalidateAllOverflowCache(pBt); - - /* Read the value of meta[3] from the database to determine where the - ** root page of the new table should go. meta[3] is the largest root-page - ** created so far, so the new root-page is (meta[3]+1). - */ - sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); - pgnoRoot++; - - /* The new root-page may not be allocated on a pointer-map page, or the - ** PENDING_BYTE page. - */ - while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || - pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ - pgnoRoot++; - } - assert( pgnoRoot>=3 ); - - /* Allocate a page. The page that currently resides at pgnoRoot will - ** be moved to the allocated page (unless the allocated page happens - ** to reside at pgnoRoot). - */ - rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); - if( rc!=SQLITE_OK ){ - return rc; - } - - if( pgnoMove!=pgnoRoot ){ - /* pgnoRoot is the page that will be used for the root-page of - ** the new table (assuming an error did not occur). But we were - ** allocated pgnoMove. If required (i.e. if it was not allocated - ** by extending the file), the current page at position pgnoMove - ** is already journaled. - */ - u8 eType = 0; - Pgno iPtrPage = 0; - - releasePage(pPageMove); - - /* Move the page currently at pgnoRoot to pgnoMove. */ - rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); - if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ - rc = SQLITE_CORRUPT_BKPT; - } - if( rc!=SQLITE_OK ){ - releasePage(pRoot); - return rc; - } - assert( eType!=PTRMAP_ROOTPAGE ); - assert( eType!=PTRMAP_FREEPAGE ); - rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); - releasePage(pRoot); - - /* Obtain the page at pgnoRoot */ - if( rc!=SQLITE_OK ){ - return rc; - } - rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - rc = sqlite3PagerWrite(pRoot->pDbPage); - if( rc!=SQLITE_OK ){ - releasePage(pRoot); - return rc; - } - }else{ - pRoot = pPageMove; - } - - /* Update the pointer-map and meta-data with the new root-page number. */ - ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); - if( rc ){ - releasePage(pRoot); - return rc; - } - - /* When the new root page was allocated, page 1 was made writable in - ** order either to increase the database filesize, or to decrement the - ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. - */ - assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); - rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); - if( NEVER(rc) ){ - releasePage(pRoot); - return rc; - } - - }else{ - rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); - if( rc ) return rc; - } -#endif - assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); - if( createTabFlags & BTREE_INTKEY ){ - ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; - }else{ - ptfFlags = PTF_ZERODATA | PTF_LEAF; - } - zeroPage(pRoot, ptfFlags); - sqlite3PagerUnref(pRoot->pDbPage); - assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); - *piTable = (int)pgnoRoot; - return SQLITE_OK; -} -SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ - int rc; - sqlite3BtreeEnter(p); - rc = btreeCreateTable(p, piTable, flags); - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Erase the given database page and all its children. Return -** the page to the freelist. -*/ -static int clearDatabasePage( - BtShared *pBt, /* The BTree that contains the table */ - Pgno pgno, /* Page number to clear */ - int freePageFlag, /* Deallocate page if true */ - int *pnChange /* Add number of Cells freed to this counter */ -){ - MemPage *pPage; - int rc; - unsigned char *pCell; - int i; - - assert( sqlite3_mutex_held(pBt->mutex) ); - if( pgno>btreePagecount(pBt) ){ - return SQLITE_CORRUPT_BKPT; - } - - rc = getAndInitPage(pBt, pgno, &pPage); - if( rc ) return rc; - for(i=0; i<pPage->nCell; i++){ - pCell = findCell(pPage, i); - if( !pPage->leaf ){ - rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); - if( rc ) goto cleardatabasepage_out; - } - rc = clearCell(pPage, pCell); - if( rc ) goto cleardatabasepage_out; - } - if( !pPage->leaf ){ - rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange); - if( rc ) goto cleardatabasepage_out; - }else if( pnChange ){ - assert( pPage->intKey ); - *pnChange += pPage->nCell; - } - if( freePageFlag ){ - freePage(pPage, &rc); - }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ - zeroPage(pPage, pPage->aData[0] | PTF_LEAF); - } - -cleardatabasepage_out: - releasePage(pPage); - return rc; -} - -/* -** Delete all information from a single table in the database. iTable is -** the page number of the root of the table. After this routine returns, -** the root page is empty, but still exists. -** -** This routine will fail with SQLITE_LOCKED if there are any open -** read cursors on the table. Open write cursors are moved to the -** root of the table. -** -** If pnChange is not NULL, then table iTable must be an intkey table. The -** integer value pointed to by pnChange is incremented by the number of -** entries in the table. -*/ -SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ - int rc; - BtShared *pBt = p->pBt; - sqlite3BtreeEnter(p); - assert( p->inTrans==TRANS_WRITE ); - - rc = saveAllCursors(pBt, (Pgno)iTable, 0); - - if( SQLITE_OK==rc ){ - /* Invalidate all incrblob cursors open on table iTable (assuming iTable - ** is the root of a table b-tree - if it is not, the following call is - ** a no-op). */ - invalidateIncrblobCursors(p, 0, 1); - rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); - } - sqlite3BtreeLeave(p); - return rc; -} - -/* -** Erase all information in a table and add the root of the table to -** the freelist. Except, the root of the principle table (the one on -** page 1) is never added to the freelist. -** -** This routine will fail with SQLITE_LOCKED if there are any open -** cursors on the table. -** -** If AUTOVACUUM is enabled and the page at iTable is not the last -** root page in the database file, then the last root page -** in the database file is moved into the slot formerly occupied by -** iTable and that last slot formerly occupied by the last root page -** is added to the freelist instead of iTable. In this say, all -** root pages are kept at the beginning of the database file, which -** is necessary for AUTOVACUUM to work right. *piMoved is set to the -** page number that used to be the last root page in the file before -** the move. If no page gets moved, *piMoved is set to 0. -** The last root page is recorded in meta[3] and the value of -** meta[3] is updated by this procedure. -*/ -static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ - int rc; - MemPage *pPage = 0; - BtShared *pBt = p->pBt; - - assert( sqlite3BtreeHoldsMutex(p) ); - assert( p->inTrans==TRANS_WRITE ); - - /* It is illegal to drop a table if any cursors are open on the - ** database. This is because in auto-vacuum mode the backend may - ** need to move another root-page to fill a gap left by the deleted - ** root page. If an open cursor was using this page a problem would - ** occur. - ** - ** This error is caught long before control reaches this point. - */ - if( NEVER(pBt->pCursor) ){ - sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); - return SQLITE_LOCKED_SHAREDCACHE; - } - - rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); - if( rc ) return rc; - rc = sqlite3BtreeClearTable(p, iTable, 0); - if( rc ){ - releasePage(pPage); - return rc; - } - - *piMoved = 0; - - if( iTable>1 ){ -#ifdef SQLITE_OMIT_AUTOVACUUM - freePage(pPage, &rc); - releasePage(pPage); -#else - if( pBt->autoVacuum ){ - Pgno maxRootPgno; - sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); - - if( iTable==maxRootPgno ){ - /* If the table being dropped is the table with the largest root-page - ** number in the database, put the root page on the free list. - */ - freePage(pPage, &rc); - releasePage(pPage); - if( rc!=SQLITE_OK ){ - return rc; - } - }else{ - /* The table being dropped does not have the largest root-page - ** number in the database. So move the page that does into the - ** gap left by the deleted root-page. - */ - MemPage *pMove; - releasePage(pPage); - rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); - releasePage(pMove); - if( rc!=SQLITE_OK ){ - return rc; - } - pMove = 0; - rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); - freePage(pMove, &rc); - releasePage(pMove); - if( rc!=SQLITE_OK ){ - return rc; - } - *piMoved = maxRootPgno; - } - - /* Set the new 'max-root-page' value in the database header. This - ** is the old value less one, less one more if that happens to - ** be a root-page number, less one again if that is the - ** PENDING_BYTE_PAGE. - */ - maxRootPgno--; - while( maxRootPgno==PENDING_BYTE_PAGE(pBt) - || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ - maxRootPgno--; - } - assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); - - rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); - }else{ - freePage(pPage, &rc); - releasePage(pPage); - } -#endif - }else{ - /* If sqlite3BtreeDropTable was called on page 1. - ** This really never should happen except in a corrupt - ** database. - */ - zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); - releasePage(pPage); - } - return rc; -} -SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ - int rc; - sqlite3BtreeEnter(p); - rc = btreeDropTable(p, iTable, piMoved); - sqlite3BtreeLeave(p); - return rc; -} - - -/* -** This function may only be called if the b-tree connection already -** has a read or write transaction open on the database. -** -** Read the meta-information out of a database file. Meta[0] -** is the number of free pages currently in the database. Meta[1] -** through meta[15] are available for use by higher layers. Meta[0] -** is read-only, the others are read/write. -** -** The schema layer numbers meta values differently. At the schema -** layer (and the SetCookie and ReadCookie opcodes) the number of -** free pages is not visible. So Cookie[0] is the same as Meta[1]. -*/ -SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ - BtShared *pBt = p->pBt; - - sqlite3BtreeEnter(p); - assert( p->inTrans>TRANS_NONE ); - assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); - assert( pBt->pPage1 ); - assert( idx>=0 && idx<=15 ); - - *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); - - /* If auto-vacuum is disabled in this build and this is an auto-vacuum - ** database, mark the database as read-only. */ -#ifdef SQLITE_OMIT_AUTOVACUUM - if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ - pBt->btsFlags |= BTS_READ_ONLY; - } -#endif - - sqlite3BtreeLeave(p); -} - -/* -** Write meta-information back into the database. Meta[0] is -** read-only and may not be written. -*/ -SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ - BtShared *pBt = p->pBt; - unsigned char *pP1; - int rc; - assert( idx>=1 && idx<=15 ); - sqlite3BtreeEnter(p); - assert( p->inTrans==TRANS_WRITE ); - assert( pBt->pPage1!=0 ); - pP1 = pBt->pPage1->aData; - rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); - if( rc==SQLITE_OK ){ - put4byte(&pP1[36 + idx*4], iMeta); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( idx==BTREE_INCR_VACUUM ){ - assert( pBt->autoVacuum || iMeta==0 ); - assert( iMeta==0 || iMeta==1 ); - pBt->incrVacuum = (u8)iMeta; - } -#endif - } - sqlite3BtreeLeave(p); - return rc; -} - -#ifndef SQLITE_OMIT_BTREECOUNT -/* -** The first argument, pCur, is a cursor opened on some b-tree. Count the -** number of entries in the b-tree and write the result to *pnEntry. -** -** SQLITE_OK is returned if the operation is successfully executed. -** Otherwise, if an error is encountered (i.e. an IO error or database -** corruption) an SQLite error code is returned. -*/ -SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ - i64 nEntry = 0; /* Value to return in *pnEntry */ - int rc; /* Return code */ - - if( pCur->pgnoRoot==0 ){ - *pnEntry = 0; - return SQLITE_OK; - } - rc = moveToRoot(pCur); - - /* Unless an error occurs, the following loop runs one iteration for each - ** page in the B-Tree structure (not including overflow pages). - */ - while( rc==SQLITE_OK ){ - int iIdx; /* Index of child node in parent */ - MemPage *pPage; /* Current page of the b-tree */ - - /* If this is a leaf page or the tree is not an int-key tree, then - ** this page contains countable entries. Increment the entry counter - ** accordingly. - */ - pPage = pCur->apPage[pCur->iPage]; - if( pPage->leaf || !pPage->intKey ){ - nEntry += pPage->nCell; - } - - /* pPage is a leaf node. This loop navigates the cursor so that it - ** points to the first interior cell that it points to the parent of - ** the next page in the tree that has not yet been visited. The - ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell - ** of the page, or to the number of cells in the page if the next page - ** to visit is the right-child of its parent. - ** - ** If all pages in the tree have been visited, return SQLITE_OK to the - ** caller. - */ - if( pPage->leaf ){ - do { - if( pCur->iPage==0 ){ - /* All pages of the b-tree have been visited. Return successfully. */ - *pnEntry = nEntry; - return SQLITE_OK; - } - moveToParent(pCur); - }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); - - pCur->aiIdx[pCur->iPage]++; - pPage = pCur->apPage[pCur->iPage]; - } - - /* Descend to the child node of the cell that the cursor currently - ** points at. This is the right-child if (iIdx==pPage->nCell). - */ - iIdx = pCur->aiIdx[pCur->iPage]; - if( iIdx==pPage->nCell ){ - rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); - }else{ - rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); - } - } - - /* An error has occurred. Return an error code. */ - return rc; -} -#endif - -/* -** Return the pager associated with a BTree. This routine is used for -** testing and debugging only. -*/ -SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){ - return p->pBt->pPager; -} - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK -/* -** Append a message to the error message string. -*/ -static void checkAppendMsg( - IntegrityCk *pCheck, - char *zMsg1, - const char *zFormat, - ... -){ - va_list ap; - if( !pCheck->mxErr ) return; - pCheck->mxErr--; - pCheck->nErr++; - va_start(ap, zFormat); - if( pCheck->errMsg.nChar ){ - sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); - } - if( zMsg1 ){ - sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1); - } - sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); - va_end(ap); - if( pCheck->errMsg.mallocFailed ){ - pCheck->mallocFailed = 1; - } -} -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK - -/* -** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that -** corresponds to page iPg is already set. -*/ -static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ - assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); - return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); -} - -/* -** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. -*/ -static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ - assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); - pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); -} - - -/* -** Add 1 to the reference count for page iPage. If this is the second -** reference to the page, add an error message to pCheck->zErrMsg. -** Return 1 if there are 2 ore more references to the page and 0 if -** if this is the first reference to the page. -** -** Also check that the page number is in bounds. -*/ -static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){ - if( iPage==0 ) return 1; - if( iPage>pCheck->nPage ){ - checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); - return 1; - } - if( getPageReferenced(pCheck, iPage) ){ - checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); - return 1; - } - setPageReferenced(pCheck, iPage); - return 0; -} - -#ifndef SQLITE_OMIT_AUTOVACUUM -/* -** Check that the entry in the pointer-map for page iChild maps to -** page iParent, pointer type ptrType. If not, append an error message -** to pCheck. -*/ -static void checkPtrmap( - IntegrityCk *pCheck, /* Integrity check context */ - Pgno iChild, /* Child page number */ - u8 eType, /* Expected pointer map type */ - Pgno iParent, /* Expected pointer map parent page number */ - char *zContext /* Context description (used for error msg) */ -){ - int rc; - u8 ePtrmapType; - Pgno iPtrmapParent; - - rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; - checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); - return; - } - - if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ - checkAppendMsg(pCheck, zContext, - "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", - iChild, eType, iParent, ePtrmapType, iPtrmapParent); - } -} -#endif - -/* -** Check the integrity of the freelist or of an overflow page list. -** Verify that the number of pages on the list is N. -*/ -static void checkList( - IntegrityCk *pCheck, /* Integrity checking context */ - int isFreeList, /* True for a freelist. False for overflow page list */ - int iPage, /* Page number for first page in the list */ - int N, /* Expected number of pages in the list */ - char *zContext /* Context for error messages */ -){ - int i; - int expected = N; - int iFirst = iPage; - while( N-- > 0 && pCheck->mxErr ){ - DbPage *pOvflPage; - unsigned char *pOvflData; - if( iPage<1 ){ - checkAppendMsg(pCheck, zContext, - "%d of %d pages missing from overflow list starting at %d", - N+1, expected, iFirst); - break; - } - if( checkRef(pCheck, iPage, zContext) ) break; - if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ - checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); - break; - } - pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); - if( isFreeList ){ - int n = get4byte(&pOvflData[4]); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pCheck->pBt->autoVacuum ){ - checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); - } -#endif - if( n>(int)pCheck->pBt->usableSize/4-2 ){ - checkAppendMsg(pCheck, zContext, - "freelist leaf count too big on page %d", iPage); - N--; - }else{ - for(i=0; i<n; i++){ - Pgno iFreePage = get4byte(&pOvflData[8+i*4]); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pCheck->pBt->autoVacuum ){ - checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); - } -#endif - checkRef(pCheck, iFreePage, zContext); - } - N -= n; - } - } -#ifndef SQLITE_OMIT_AUTOVACUUM - else{ - /* If this database supports auto-vacuum and iPage is not the last - ** page in this overflow list, check that the pointer-map entry for - ** the following page matches iPage. - */ - if( pCheck->pBt->autoVacuum && N>0 ){ - i = get4byte(pOvflData); - checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); - } - } -#endif - iPage = get4byte(pOvflData); - sqlite3PagerUnref(pOvflPage); - } -} -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK -/* -** Do various sanity checks on a single page of a tree. Return -** the tree depth. Root pages return 0. Parents of root pages -** return 1, and so forth. -** -** These checks are done: -** -** 1. Make sure that cells and freeblocks do not overlap -** but combine to completely cover the page. -** NO 2. Make sure cell keys are in order. -** NO 3. Make sure no key is less than or equal to zLowerBound. -** NO 4. Make sure no key is greater than or equal to zUpperBound. -** 5. Check the integrity of overflow pages. -** 6. Recursively call checkTreePage on all children. -** 7. Verify that the depth of all children is the same. -** 8. Make sure this page is at least 33% full or else it is -** the root of the tree. -*/ -static int checkTreePage( - IntegrityCk *pCheck, /* Context for the sanity check */ - int iPage, /* Page number of the page to check */ - char *zParentContext, /* Parent context */ - i64 *pnParentMinKey, - i64 *pnParentMaxKey -){ - MemPage *pPage; - int i, rc, depth, d2, pgno, cnt; - int hdr, cellStart; - int nCell; - u8 *data; - BtShared *pBt; - int usableSize; - char zContext[100]; - char *hit = 0; - i64 nMinKey = 0; - i64 nMaxKey = 0; - - sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); - - /* Check that the page exists - */ - pBt = pCheck->pBt; - usableSize = pBt->usableSize; - if( iPage==0 ) return 0; - if( checkRef(pCheck, iPage, zParentContext) ) return 0; - if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ - checkAppendMsg(pCheck, zContext, - "unable to get the page. error code=%d", rc); - return 0; - } - - /* Clear MemPage.isInit to make sure the corruption detection code in - ** btreeInitPage() is executed. */ - pPage->isInit = 0; - if( (rc = btreeInitPage(pPage))!=0 ){ - assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ - checkAppendMsg(pCheck, zContext, - "btreeInitPage() returns error code %d", rc); - releasePage(pPage); - return 0; - } - - /* Check out all the cells. - */ - depth = 0; - for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ - u8 *pCell; - u32 sz; - CellInfo info; - - /* Check payload overflow pages - */ - sqlite3_snprintf(sizeof(zContext), zContext, - "On tree page %d cell %d: ", iPage, i); - pCell = findCell(pPage,i); - btreeParseCellPtr(pPage, pCell, &info); - sz = info.nData; - if( !pPage->intKey ) sz += (int)info.nKey; - /* For intKey pages, check that the keys are in order. - */ - else if( i==0 ) nMinKey = nMaxKey = info.nKey; - else{ - if( info.nKey <= nMaxKey ){ - checkAppendMsg(pCheck, zContext, - "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); - } - nMaxKey = info.nKey; - } - assert( sz==info.nPayload ); - if( (sz>info.nLocal) - && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) - ){ - int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); - Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum ){ - checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); - } -#endif - checkList(pCheck, 0, pgnoOvfl, nPage, zContext); - } - - /* Check sanity of left child page. - */ - if( !pPage->leaf ){ - pgno = get4byte(pCell); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum ){ - checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); - } -#endif - d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey); - if( i>0 && d2!=depth ){ - checkAppendMsg(pCheck, zContext, "Child page depth differs"); - } - depth = d2; - } - } - - if( !pPage->leaf ){ - pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); - sqlite3_snprintf(sizeof(zContext), zContext, - "On page %d at right child: ", iPage); -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum ){ - checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); - } -#endif - checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey); - } - - /* For intKey leaf pages, check that the min/max keys are in order - ** with any left/parent/right pages. - */ - if( pPage->leaf && pPage->intKey ){ - /* if we are a left child page */ - if( pnParentMinKey ){ - /* if we are the left most child page */ - if( !pnParentMaxKey ){ - if( nMaxKey > *pnParentMinKey ){ - checkAppendMsg(pCheck, zContext, - "Rowid %lld out of order (max larger than parent min of %lld)", - nMaxKey, *pnParentMinKey); - } - }else{ - if( nMinKey <= *pnParentMinKey ){ - checkAppendMsg(pCheck, zContext, - "Rowid %lld out of order (min less than parent min of %lld)", - nMinKey, *pnParentMinKey); - } - if( nMaxKey > *pnParentMaxKey ){ - checkAppendMsg(pCheck, zContext, - "Rowid %lld out of order (max larger than parent max of %lld)", - nMaxKey, *pnParentMaxKey); - } - *pnParentMinKey = nMaxKey; - } - /* else if we're a right child page */ - } else if( pnParentMaxKey ){ - if( nMinKey <= *pnParentMaxKey ){ - checkAppendMsg(pCheck, zContext, - "Rowid %lld out of order (min less than parent max of %lld)", - nMinKey, *pnParentMaxKey); - } - } - } - - /* Check for complete coverage of the page - */ - data = pPage->aData; - hdr = pPage->hdrOffset; - hit = sqlite3PageMalloc( pBt->pageSize ); - if( hit==0 ){ - pCheck->mallocFailed = 1; - }else{ - int contentOffset = get2byteNotZero(&data[hdr+5]); - assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ - memset(hit+contentOffset, 0, usableSize-contentOffset); - memset(hit, 1, contentOffset); - nCell = get2byte(&data[hdr+3]); - cellStart = hdr + 12 - 4*pPage->leaf; - for(i=0; i<nCell; i++){ - int pc = get2byte(&data[cellStart+i*2]); - u32 size = 65536; - int j; - if( pc<=usableSize-4 ){ - size = cellSizePtr(pPage, &data[pc]); - } - if( (int)(pc+size-1)>=usableSize ){ - checkAppendMsg(pCheck, 0, - "Corruption detected in cell %d on page %d",i,iPage); - }else{ - for(j=pc+size-1; j>=pc; j--) hit[j]++; - } - } - i = get2byte(&data[hdr+1]); - while( i>0 ){ - int size, j; - assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ - size = get2byte(&data[i+2]); - assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ - for(j=i+size-1; j>=i; j--) hit[j]++; - j = get2byte(&data[i]); - assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ - assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ - i = j; - } - for(i=cnt=0; i<usableSize; i++){ - if( hit[i]==0 ){ - cnt++; - }else if( hit[i]>1 ){ - checkAppendMsg(pCheck, 0, - "Multiple uses for byte %d of page %d", i, iPage); - break; - } - } - if( cnt!=data[hdr+7] ){ - checkAppendMsg(pCheck, 0, - "Fragmentation of %d bytes reported as %d on page %d", - cnt, data[hdr+7], iPage); - } - } - sqlite3PageFree(hit); - releasePage(pPage); - return depth+1; -} -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK -/* -** This routine does a complete check of the given BTree file. aRoot[] is -** an array of pages numbers were each page number is the root page of -** a table. nRoot is the number of entries in aRoot. -** -** A read-only or read-write transaction must be opened before calling -** this function. -** -** Write the number of error seen in *pnErr. Except for some memory -** allocation errors, an error message held in memory obtained from -** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is -** returned. If a memory allocation error occurs, NULL is returned. -*/ -SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck( - Btree *p, /* The btree to be checked */ - int *aRoot, /* An array of root pages numbers for individual trees */ - int nRoot, /* Number of entries in aRoot[] */ - int mxErr, /* Stop reporting errors after this many */ - int *pnErr /* Write number of errors seen to this variable */ -){ - Pgno i; - int nRef; - IntegrityCk sCheck; - BtShared *pBt = p->pBt; - char zErr[100]; - - sqlite3BtreeEnter(p); - assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); - nRef = sqlite3PagerRefcount(pBt->pPager); - sCheck.pBt = pBt; - sCheck.pPager = pBt->pPager; - sCheck.nPage = btreePagecount(sCheck.pBt); - sCheck.mxErr = mxErr; - sCheck.nErr = 0; - sCheck.mallocFailed = 0; - *pnErr = 0; - if( sCheck.nPage==0 ){ - sqlite3BtreeLeave(p); - return 0; - } - - sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); - if( !sCheck.aPgRef ){ - *pnErr = 1; - sqlite3BtreeLeave(p); - return 0; - } - i = PENDING_BYTE_PAGE(pBt); - if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); - sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); - sCheck.errMsg.useMalloc = 2; - - /* Check the integrity of the freelist - */ - checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), - get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); - - /* Check all the tables. - */ - for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ - if( aRoot[i]==0 ) continue; -#ifndef SQLITE_OMIT_AUTOVACUUM - if( pBt->autoVacuum && aRoot[i]>1 ){ - checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); - } -#endif - checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL); - } - - /* Make sure every page in the file is referenced - */ - for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ -#ifdef SQLITE_OMIT_AUTOVACUUM - if( getPageReferenced(&sCheck, i)==0 ){ - checkAppendMsg(&sCheck, 0, "Page %d is never used", i); - } -#else - /* If the database supports auto-vacuum, make sure no tables contain - ** references to pointer-map pages. - */ - if( getPageReferenced(&sCheck, i)==0 && - (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ - checkAppendMsg(&sCheck, 0, "Page %d is never used", i); - } - if( getPageReferenced(&sCheck, i)!=0 && - (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ - checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); - } -#endif - } - - /* Make sure this analysis did not leave any unref() pages. - ** This is an internal consistency check; an integrity check - ** of the integrity check. - */ - if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ - checkAppendMsg(&sCheck, 0, - "Outstanding page count goes from %d to %d during this analysis", - nRef, sqlite3PagerRefcount(pBt->pPager) - ); - } - - /* Clean up and report errors. - */ - sqlite3BtreeLeave(p); - sqlite3_free(sCheck.aPgRef); - if( sCheck.mallocFailed ){ - sqlite3StrAccumReset(&sCheck.errMsg); - *pnErr = sCheck.nErr+1; - return 0; - } - *pnErr = sCheck.nErr; - if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); - return sqlite3StrAccumFinish(&sCheck.errMsg); -} -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -/* -** Return the full pathname of the underlying database file. Return -** an empty string if the database is in-memory or a TEMP database. -** -** The pager filename is invariant as long as the pager is -** open so it is safe to access without the BtShared mutex. -*/ -SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){ - assert( p->pBt->pPager!=0 ); - return sqlite3PagerFilename(p->pBt->pPager, 1); -} - -/* -** Return the pathname of the journal file for this database. The return -** value of this routine is the same regardless of whether the journal file -** has been created or not. -** -** The pager journal filename is invariant as long as the pager is -** open so it is safe to access without the BtShared mutex. -*/ -SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){ - assert( p->pBt->pPager!=0 ); - return sqlite3PagerJournalname(p->pBt->pPager); -} - -/* -** Return non-zero if a transaction is active. -*/ -SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){ - assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); - return (p && (p->inTrans==TRANS_WRITE)); -} - -#ifndef SQLITE_OMIT_WAL -/* -** Run a checkpoint on the Btree passed as the first argument. -** -** Return SQLITE_LOCKED if this or any other connection has an open -** transaction on the shared-cache the argument Btree is connected to. -** -** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. -*/ -SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ - int rc = SQLITE_OK; - if( p ){ - BtShared *pBt = p->pBt; - sqlite3BtreeEnter(p); - if( pBt->inTransaction!=TRANS_NONE ){ - rc = SQLITE_LOCKED; - }else{ - rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); - } - sqlite3BtreeLeave(p); - } - return rc; -} -#endif - -/* -** Return non-zero if a read (or write) transaction is active. -*/ -SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){ - assert( p ); - assert( sqlite3_mutex_held(p->db->mutex) ); - return p->inTrans!=TRANS_NONE; -} - -SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){ - assert( p ); - assert( sqlite3_mutex_held(p->db->mutex) ); - return p->nBackup!=0; -} - -/* -** This function returns a pointer to a blob of memory associated with -** a single shared-btree. The memory is used by client code for its own -** purposes (for example, to store a high-level schema associated with -** the shared-btree). The btree layer manages reference counting issues. -** -** The first time this is called on a shared-btree, nBytes bytes of memory -** are allocated, zeroed, and returned to the caller. For each subsequent -** call the nBytes parameter is ignored and a pointer to the same blob -** of memory returned. -** -** If the nBytes parameter is 0 and the blob of memory has not yet been -** allocated, a null pointer is returned. If the blob has already been -** allocated, it is returned as normal. -** -** Just before the shared-btree is closed, the function passed as the -** xFree argument when the memory allocation was made is invoked on the -** blob of allocated memory. The xFree function should not call sqlite3_free() -** on the memory, the btree layer does that. -*/ -SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ - BtShared *pBt = p->pBt; - sqlite3BtreeEnter(p); - if( !pBt->pSchema && nBytes ){ - pBt->pSchema = sqlite3DbMallocZero(0, nBytes); - pBt->xFreeSchema = xFree; - } - sqlite3BtreeLeave(p); - return pBt->pSchema; -} - -/* -** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared -** btree as the argument handle holds an exclusive lock on the -** sqlite_master table. Otherwise SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){ - int rc; - assert( sqlite3_mutex_held(p->db->mutex) ); - sqlite3BtreeEnter(p); - rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); - assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); - sqlite3BtreeLeave(p); - return rc; -} - - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** Obtain a lock on the table whose root page is iTab. The -** lock is a write lock if isWritelock is true or a read lock -** if it is false. -*/ -SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ - int rc = SQLITE_OK; - assert( p->inTrans!=TRANS_NONE ); - if( p->sharable ){ - u8 lockType = READ_LOCK + isWriteLock; - assert( READ_LOCK+1==WRITE_LOCK ); - assert( isWriteLock==0 || isWriteLock==1 ); - - sqlite3BtreeEnter(p); - rc = querySharedCacheTableLock(p, iTab, lockType); - if( rc==SQLITE_OK ){ - rc = setSharedCacheTableLock(p, iTab, lockType); - } - sqlite3BtreeLeave(p); - } - return rc; -} -#endif - -#ifndef SQLITE_OMIT_INCRBLOB -/* -** Argument pCsr must be a cursor opened for writing on an -** INTKEY table currently pointing at a valid table entry. -** This function modifies the data stored as part of that entry. -** -** Only the data content may only be modified, it is not possible to -** change the length of the data stored. If this function is called with -** parameters that attempt to write past the end of the existing data, -** no modifications are made and SQLITE_CORRUPT is returned. -*/ -SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ - int rc; - assert( cursorHoldsMutex(pCsr) ); - assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); - assert( pCsr->isIncrblobHandle ); - - rc = restoreCursorPosition(pCsr); - if( rc!=SQLITE_OK ){ - return rc; - } - assert( pCsr->eState!=CURSOR_REQUIRESEEK ); - if( pCsr->eState!=CURSOR_VALID ){ - return SQLITE_ABORT; - } - - /* Check some assumptions: - ** (a) the cursor is open for writing, - ** (b) there is a read/write transaction open, - ** (c) the connection holds a write-lock on the table (if required), - ** (d) there are no conflicting read-locks, and - ** (e) the cursor points at a valid row of an intKey table. - */ - if( !pCsr->wrFlag ){ - return SQLITE_READONLY; - } - assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 - && pCsr->pBt->inTransaction==TRANS_WRITE ); - assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); - assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); - assert( pCsr->apPage[pCsr->iPage]->intKey ); - - return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); -} - -/* -** Set a flag on this cursor to cache the locations of pages from the -** overflow list for the current row. This is used by cursors opened -** for incremental blob IO only. -** -** This function sets a flag only. The actual page location cache -** (stored in BtCursor.aOverflow[]) is allocated and used by function -** accessPayload() (the worker function for sqlite3BtreeData() and -** sqlite3BtreePutData()). -*/ -SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){ - assert( cursorHoldsMutex(pCur) ); - assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); - invalidateOverflowCache(pCur); - pCur->isIncrblobHandle = 1; -} -#endif - -/* -** Set both the "read version" (single byte at byte offset 18) and -** "write version" (single byte at byte offset 19) fields in the database -** header to iVersion. -*/ -SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ - BtShared *pBt = pBtree->pBt; - int rc; /* Return code */ - - assert( iVersion==1 || iVersion==2 ); - - /* If setting the version fields to 1, do not automatically open the - ** WAL connection, even if the version fields are currently set to 2. - */ - pBt->btsFlags &= ~BTS_NO_WAL; - if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; - - rc = sqlite3BtreeBeginTrans(pBtree, 0); - if( rc==SQLITE_OK ){ - u8 *aData = pBt->pPage1->aData; - if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ - rc = sqlite3BtreeBeginTrans(pBtree, 2); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); - if( rc==SQLITE_OK ){ - aData[18] = (u8)iVersion; - aData[19] = (u8)iVersion; - } - } - } - } - - pBt->btsFlags &= ~BTS_NO_WAL; - return rc; -} - -/* -** set the mask of hint flags for cursor pCsr. Currently the only valid -** values are 0 and BTREE_BULKLOAD. -*/ -SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){ - assert( mask==BTREE_BULKLOAD || mask==0 ); - pCsr->hints = mask; -} - -/************** End of btree.c ***********************************************/ -/************** Begin file backup.c ******************************************/ -/* -** 2009 January 28 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the implementation of the sqlite3_backup_XXX() -** API functions and the related features. -*/ - -/* Macro to find the minimum of two numeric values. -*/ -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -/* -** Structure allocated for each backup operation. -*/ -struct sqlite3_backup { - sqlite3* pDestDb; /* Destination database handle */ - Btree *pDest; /* Destination b-tree file */ - u32 iDestSchema; /* Original schema cookie in destination */ - int bDestLocked; /* True once a write-transaction is open on pDest */ - - Pgno iNext; /* Page number of the next source page to copy */ - sqlite3* pSrcDb; /* Source database handle */ - Btree *pSrc; /* Source b-tree file */ - - int rc; /* Backup process error code */ - - /* These two variables are set by every call to backup_step(). They are - ** read by calls to backup_remaining() and backup_pagecount(). - */ - Pgno nRemaining; /* Number of pages left to copy */ - Pgno nPagecount; /* Total number of pages to copy */ - - int isAttached; /* True once backup has been registered with pager */ - sqlite3_backup *pNext; /* Next backup associated with source pager */ -}; - -/* -** THREAD SAFETY NOTES: -** -** Once it has been created using backup_init(), a single sqlite3_backup -** structure may be accessed via two groups of thread-safe entry points: -** -** * Via the sqlite3_backup_XXX() API function backup_step() and -** backup_finish(). Both these functions obtain the source database -** handle mutex and the mutex associated with the source BtShared -** structure, in that order. -** -** * Via the BackupUpdate() and BackupRestart() functions, which are -** invoked by the pager layer to report various state changes in -** the page cache associated with the source database. The mutex -** associated with the source database BtShared structure will always -** be held when either of these functions are invoked. -** -** The other sqlite3_backup_XXX() API functions, backup_remaining() and -** backup_pagecount() are not thread-safe functions. If they are called -** while some other thread is calling backup_step() or backup_finish(), -** the values returned may be invalid. There is no way for a call to -** BackupUpdate() or BackupRestart() to interfere with backup_remaining() -** or backup_pagecount(). -** -** Depending on the SQLite configuration, the database handles and/or -** the Btree objects may have their own mutexes that require locking. -** Non-sharable Btrees (in-memory databases for example), do not have -** associated mutexes. -*/ - -/* -** Return a pointer corresponding to database zDb (i.e. "main", "temp") -** in connection handle pDb. If such a database cannot be found, return -** a NULL pointer and write an error message to pErrorDb. -** -** If the "temp" database is requested, it may need to be opened by this -** function. If an error occurs while doing so, return 0 and write an -** error message to pErrorDb. -*/ -static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){ - int i = sqlite3FindDbName(pDb, zDb); - - if( i==1 ){ - Parse *pParse; - int rc = 0; - pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse)); - if( pParse==0 ){ - sqlite3Error(pErrorDb, SQLITE_NOMEM, "out of memory"); - rc = SQLITE_NOMEM; - }else{ - pParse->db = pDb; - if( sqlite3OpenTempDatabase(pParse) ){ - sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg); - rc = SQLITE_ERROR; - } - sqlite3DbFree(pErrorDb, pParse->zErrMsg); - sqlite3StackFree(pErrorDb, pParse); - } - if( rc ){ - return 0; - } - } - - if( i<0 ){ - sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb); - return 0; - } - - return pDb->aDb[i].pBt; -} - -/* -** Attempt to set the page size of the destination to match the page size -** of the source. -*/ -static int setDestPgsz(sqlite3_backup *p){ - int rc; - rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0); - return rc; -} - -/* -** Create an sqlite3_backup process to copy the contents of zSrcDb from -** connection handle pSrcDb to zDestDb in pDestDb. If successful, return -** a pointer to the new sqlite3_backup object. -** -** If an error occurs, NULL is returned and an error code and error message -** stored in database handle pDestDb. -*/ -SQLITE_API sqlite3_backup *sqlite3_backup_init( - sqlite3* pDestDb, /* Database to write to */ - const char *zDestDb, /* Name of database within pDestDb */ - sqlite3* pSrcDb, /* Database connection to read from */ - const char *zSrcDb /* Name of database within pSrcDb */ -){ - sqlite3_backup *p; /* Value to return */ - - /* Lock the source database handle. The destination database - ** handle is not locked in this routine, but it is locked in - ** sqlite3_backup_step(). The user is required to ensure that no - ** other thread accesses the destination handle for the duration - ** of the backup operation. Any attempt to use the destination - ** database connection while a backup is in progress may cause - ** a malfunction or a deadlock. - */ - sqlite3_mutex_enter(pSrcDb->mutex); - sqlite3_mutex_enter(pDestDb->mutex); - - if( pSrcDb==pDestDb ){ - sqlite3Error( - pDestDb, SQLITE_ERROR, "source and destination must be distinct" - ); - p = 0; - }else { - /* Allocate space for a new sqlite3_backup object... - ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a - ** call to sqlite3_backup_init() and is destroyed by a call to - ** sqlite3_backup_finish(). */ - p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); - if( !p ){ - sqlite3Error(pDestDb, SQLITE_NOMEM, 0); - } - } - - /* If the allocation succeeded, populate the new object. */ - if( p ){ - p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); - p->pDest = findBtree(pDestDb, pDestDb, zDestDb); - p->pDestDb = pDestDb; - p->pSrcDb = pSrcDb; - p->iNext = 1; - p->isAttached = 0; - - if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){ - /* One (or both) of the named databases did not exist or an OOM - ** error was hit. The error has already been written into the - ** pDestDb handle. All that is left to do here is free the - ** sqlite3_backup structure. - */ - sqlite3_free(p); - p = 0; - } - } - if( p ){ - p->pSrc->nBackup++; - } - - sqlite3_mutex_leave(pDestDb->mutex); - sqlite3_mutex_leave(pSrcDb->mutex); - return p; -} - -/* -** Argument rc is an SQLite error code. Return true if this error is -** considered fatal if encountered during a backup operation. All errors -** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED. -*/ -static int isFatalError(int rc){ - return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED)); -} - -/* -** Parameter zSrcData points to a buffer containing the data for -** page iSrcPg from the source database. Copy this data into the -** destination database. -*/ -static int backupOnePage( - sqlite3_backup *p, /* Backup handle */ - Pgno iSrcPg, /* Source database page to backup */ - const u8 *zSrcData, /* Source database page data */ - int bUpdate /* True for an update, false otherwise */ -){ - Pager * const pDestPager = sqlite3BtreePager(p->pDest); - const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); - int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); - const int nCopy = MIN(nSrcPgsz, nDestPgsz); - const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; -#ifdef SQLITE_HAS_CODEC - /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is - ** guaranteed that the shared-mutex is held by this thread, handle - ** p->pSrc may not actually be the owner. */ - int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc); - int nDestReserve = sqlite3BtreeGetReserve(p->pDest); -#endif - int rc = SQLITE_OK; - i64 iOff; - - assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 ); - assert( p->bDestLocked ); - assert( !isFatalError(p->rc) ); - assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); - assert( zSrcData ); - - /* Catch the case where the destination is an in-memory database and the - ** page sizes of the source and destination differ. - */ - if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){ - rc = SQLITE_READONLY; - } - -#ifdef SQLITE_HAS_CODEC - /* Backup is not possible if the page size of the destination is changing - ** and a codec is in use. - */ - if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){ - rc = SQLITE_READONLY; - } - - /* Backup is not possible if the number of bytes of reserve space differ - ** between source and destination. If there is a difference, try to - ** fix the destination to agree with the source. If that is not possible, - ** then the backup cannot proceed. - */ - if( nSrcReserve!=nDestReserve ){ - u32 newPgsz = nSrcPgsz; - rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve); - if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY; - } -#endif - - /* This loop runs once for each destination page spanned by the source - ** page. For each iteration, variable iOff is set to the byte offset - ** of the destination page. - */ - for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){ - DbPage *pDestPg = 0; - Pgno iDest = (Pgno)(iOff/nDestPgsz)+1; - if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue; - if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg)) - && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg)) - ){ - const u8 *zIn = &zSrcData[iOff%nSrcPgsz]; - u8 *zDestData = sqlite3PagerGetData(pDestPg); - u8 *zOut = &zDestData[iOff%nDestPgsz]; - - /* Copy the data from the source page into the destination page. - ** Then clear the Btree layer MemPage.isInit flag. Both this module - ** and the pager code use this trick (clearing the first byte - ** of the page 'extra' space to invalidate the Btree layers - ** cached parse of the page). MemPage.isInit is marked - ** "MUST BE FIRST" for this purpose. - */ - memcpy(zOut, zIn, nCopy); - ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; - if( iOff==0 && bUpdate==0 ){ - sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc)); - } - } - sqlite3PagerUnref(pDestPg); - } - - return rc; -} - -/* -** If pFile is currently larger than iSize bytes, then truncate it to -** exactly iSize bytes. If pFile is not larger than iSize bytes, then -** this function is a no-op. -** -** Return SQLITE_OK if everything is successful, or an SQLite error -** code if an error occurs. -*/ -static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){ - i64 iCurrent; - int rc = sqlite3OsFileSize(pFile, &iCurrent); - if( rc==SQLITE_OK && iCurrent>iSize ){ - rc = sqlite3OsTruncate(pFile, iSize); - } - return rc; -} - -/* -** Register this backup object with the associated source pager for -** callbacks when pages are changed or the cache invalidated. -*/ -static void attachBackupObject(sqlite3_backup *p){ - sqlite3_backup **pp; - assert( sqlite3BtreeHoldsMutex(p->pSrc) ); - pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); - p->pNext = *pp; - *pp = p; - p->isAttached = 1; -} - -/* -** Copy nPage pages from the source b-tree to the destination. -*/ -SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){ - int rc; - int destMode; /* Destination journal mode */ - int pgszSrc = 0; /* Source page size */ - int pgszDest = 0; /* Destination page size */ - - sqlite3_mutex_enter(p->pSrcDb->mutex); - sqlite3BtreeEnter(p->pSrc); - if( p->pDestDb ){ - sqlite3_mutex_enter(p->pDestDb->mutex); - } - - rc = p->rc; - if( !isFatalError(rc) ){ - Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ - Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ - int ii; /* Iterator variable */ - int nSrcPage = -1; /* Size of source db in pages */ - int bCloseTrans = 0; /* True if src db requires unlocking */ - - /* If the source pager is currently in a write-transaction, return - ** SQLITE_BUSY immediately. - */ - if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ - rc = SQLITE_BUSY; - }else{ - rc = SQLITE_OK; - } - - /* Lock the destination database, if it is not locked already. */ - if( SQLITE_OK==rc && p->bDestLocked==0 - && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2)) - ){ - p->bDestLocked = 1; - sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema); - } - - /* If there is no open read-transaction on the source database, open - ** one now. If a transaction is opened here, then it will be closed - ** before this function exits. - */ - if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ - rc = sqlite3BtreeBeginTrans(p->pSrc, 0); - bCloseTrans = 1; - } - - /* Do not allow backup if the destination database is in WAL mode - ** and the page sizes are different between source and destination */ - pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); - pgszDest = sqlite3BtreeGetPageSize(p->pDest); - destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); - if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){ - rc = SQLITE_READONLY; - } - - /* Now that there is a read-lock on the source database, query the - ** source pager for the number of pages in the database. - */ - nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); - assert( nSrcPage>=0 ); - for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ - const Pgno iSrcPg = p->iNext; /* Source page number */ - if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ - DbPage *pSrcPg; /* Source page object */ - rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); - if( rc==SQLITE_OK ){ - rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); - sqlite3PagerUnref(pSrcPg); - } - } - p->iNext++; - } - if( rc==SQLITE_OK ){ - p->nPagecount = nSrcPage; - p->nRemaining = nSrcPage+1-p->iNext; - if( p->iNext>(Pgno)nSrcPage ){ - rc = SQLITE_DONE; - }else if( !p->isAttached ){ - attachBackupObject(p); - } - } - - /* Update the schema version field in the destination database. This - ** is to make sure that the schema-version really does change in - ** the case where the source and destination databases have the - ** same schema version. - */ - if( rc==SQLITE_DONE ){ - if( nSrcPage==0 ){ - rc = sqlite3BtreeNewDb(p->pDest); - nSrcPage = 1; - } - if( rc==SQLITE_OK || rc==SQLITE_DONE ){ - rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); - } - if( rc==SQLITE_OK ){ - if( p->pDestDb ){ - sqlite3ResetAllSchemasOfConnection(p->pDestDb); - } - if( destMode==PAGER_JOURNALMODE_WAL ){ - rc = sqlite3BtreeSetVersion(p->pDest, 2); - } - } - if( rc==SQLITE_OK ){ - int nDestTruncate; - /* Set nDestTruncate to the final number of pages in the destination - ** database. The complication here is that the destination page - ** size may be different to the source page size. - ** - ** If the source page size is smaller than the destination page size, - ** round up. In this case the call to sqlite3OsTruncate() below will - ** fix the size of the file. However it is important to call - ** sqlite3PagerTruncateImage() here so that any pages in the - ** destination file that lie beyond the nDestTruncate page mark are - ** journalled by PagerCommitPhaseOne() before they are destroyed - ** by the file truncation. - */ - assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); - assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); - if( pgszSrc<pgszDest ){ - int ratio = pgszDest/pgszSrc; - nDestTruncate = (nSrcPage+ratio-1)/ratio; - if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){ - nDestTruncate--; - } - }else{ - nDestTruncate = nSrcPage * (pgszSrc/pgszDest); - } - assert( nDestTruncate>0 ); - - if( pgszSrc<pgszDest ){ - /* If the source page-size is smaller than the destination page-size, - ** two extra things may need to happen: - ** - ** * The destination may need to be truncated, and - ** - ** * Data stored on the pages immediately following the - ** pending-byte page in the source database may need to be - ** copied into the destination database. - */ - const i64 iSize = (i64)pgszSrc * (i64)nSrcPage; - sqlite3_file * const pFile = sqlite3PagerFile(pDestPager); - Pgno iPg; - int nDstPage; - i64 iOff; - i64 iEnd; - - assert( pFile ); - assert( nDestTruncate==0 - || (i64)nDestTruncate*(i64)pgszDest >= iSize || ( - nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) - && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest - )); - - /* This block ensures that all data required to recreate the original - ** database has been stored in the journal for pDestPager and the - ** journal synced to disk. So at this point we may safely modify - ** the database file in any way, knowing that if a power failure - ** occurs, the original database will be reconstructed from the - ** journal file. */ - sqlite3PagerPagecount(pDestPager, &nDstPage); - for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){ - if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){ - DbPage *pPg; - rc = sqlite3PagerGet(pDestPager, iPg, &pPg); - if( rc==SQLITE_OK ){ - rc = sqlite3PagerWrite(pPg); - sqlite3PagerUnref(pPg); - } - } - } - if( rc==SQLITE_OK ){ - rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); - } - - /* Write the extra pages and truncate the database file as required */ - iEnd = MIN(PENDING_BYTE + pgszDest, iSize); - for( - iOff=PENDING_BYTE+pgszSrc; - rc==SQLITE_OK && iOff<iEnd; - iOff+=pgszSrc - ){ - PgHdr *pSrcPg = 0; - const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1); - rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); - if( rc==SQLITE_OK ){ - u8 *zData = sqlite3PagerGetData(pSrcPg); - rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff); - } - sqlite3PagerUnref(pSrcPg); - } - if( rc==SQLITE_OK ){ - rc = backupTruncateFile(pFile, iSize); - } - - /* Sync the database file to disk. */ - if( rc==SQLITE_OK ){ - rc = sqlite3PagerSync(pDestPager); - } - }else{ - sqlite3PagerTruncateImage(pDestPager, nDestTruncate); - rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); - } - - /* Finish committing the transaction to the destination database. */ - if( SQLITE_OK==rc - && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0)) - ){ - rc = SQLITE_DONE; - } - } - } - - /* If bCloseTrans is true, then this function opened a read transaction - ** on the source database. Close the read transaction here. There is - ** no need to check the return values of the btree methods here, as - ** "committing" a read-only transaction cannot fail. - */ - if( bCloseTrans ){ - TESTONLY( int rc2 ); - TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); - TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); - assert( rc2==SQLITE_OK ); - } - - if( rc==SQLITE_IOERR_NOMEM ){ - rc = SQLITE_NOMEM; - } - p->rc = rc; - } - if( p->pDestDb ){ - sqlite3_mutex_leave(p->pDestDb->mutex); - } - sqlite3BtreeLeave(p->pSrc); - sqlite3_mutex_leave(p->pSrcDb->mutex); - return rc; -} - -/* -** Release all resources associated with an sqlite3_backup* handle. -*/ -SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){ - sqlite3_backup **pp; /* Ptr to head of pagers backup list */ - sqlite3 *pSrcDb; /* Source database connection */ - int rc; /* Value to return */ - - /* Enter the mutexes */ - if( p==0 ) return SQLITE_OK; - pSrcDb = p->pSrcDb; - sqlite3_mutex_enter(pSrcDb->mutex); - sqlite3BtreeEnter(p->pSrc); - if( p->pDestDb ){ - sqlite3_mutex_enter(p->pDestDb->mutex); - } - - /* Detach this backup from the source pager. */ - if( p->pDestDb ){ - p->pSrc->nBackup--; - } - if( p->isAttached ){ - pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); - while( *pp!=p ){ - pp = &(*pp)->pNext; - } - *pp = p->pNext; - } - - /* If a transaction is still open on the Btree, roll it back. */ - sqlite3BtreeRollback(p->pDest, SQLITE_OK); - - /* Set the error code of the destination database handle. */ - rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; - sqlite3Error(p->pDestDb, rc, 0); - - /* Exit the mutexes and free the backup context structure. */ - if( p->pDestDb ){ - sqlite3LeaveMutexAndCloseZombie(p->pDestDb); - } - sqlite3BtreeLeave(p->pSrc); - if( p->pDestDb ){ - /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a - ** call to sqlite3_backup_init() and is destroyed by a call to - ** sqlite3_backup_finish(). */ - sqlite3_free(p); - } - sqlite3LeaveMutexAndCloseZombie(pSrcDb); - return rc; -} - -/* -** Return the number of pages still to be backed up as of the most recent -** call to sqlite3_backup_step(). -*/ -SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){ - return p->nRemaining; -} - -/* -** Return the total number of pages in the source database as of the most -** recent call to sqlite3_backup_step(). -*/ -SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){ - return p->nPagecount; -} - -/* -** This function is called after the contents of page iPage of the -** source database have been modified. If page iPage has already been -** copied into the destination database, then the data written to the -** destination is now invalidated. The destination copy of iPage needs -** to be updated with the new data before the backup operation is -** complete. -** -** It is assumed that the mutex associated with the BtShared object -** corresponding to the source database is held when this function is -** called. -*/ -SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ - sqlite3_backup *p; /* Iterator variable */ - for(p=pBackup; p; p=p->pNext){ - assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); - if( !isFatalError(p->rc) && iPage<p->iNext ){ - /* The backup process p has already copied page iPage. But now it - ** has been modified by a transaction on the source pager. Copy - ** the new data into the backup. - */ - int rc; - assert( p->pDestDb ); - sqlite3_mutex_enter(p->pDestDb->mutex); - rc = backupOnePage(p, iPage, aData, 1); - sqlite3_mutex_leave(p->pDestDb->mutex); - assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); - if( rc!=SQLITE_OK ){ - p->rc = rc; - } - } - } -} - -/* -** Restart the backup process. This is called when the pager layer -** detects that the database has been modified by an external database -** connection. In this case there is no way of knowing which of the -** pages that have been copied into the destination database are still -** valid and which are not, so the entire process needs to be restarted. -** -** It is assumed that the mutex associated with the BtShared object -** corresponding to the source database is held when this function is -** called. -*/ -SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){ - sqlite3_backup *p; /* Iterator variable */ - for(p=pBackup; p; p=p->pNext){ - assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); - p->iNext = 1; - } -} - -#ifndef SQLITE_OMIT_VACUUM -/* -** Copy the complete content of pBtFrom into pBtTo. A transaction -** must be active for both files. -** -** The size of file pTo may be reduced by this operation. If anything -** goes wrong, the transaction on pTo is rolled back. If successful, the -** transaction is committed before returning. -*/ -SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ - int rc; - sqlite3_file *pFd; /* File descriptor for database pTo */ - sqlite3_backup b; - sqlite3BtreeEnter(pTo); - sqlite3BtreeEnter(pFrom); - - assert( sqlite3BtreeIsInTrans(pTo) ); - pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); - if( pFd->pMethods ){ - i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); - rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); - if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; - if( rc ) goto copy_finished; - } - - /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set - ** to 0. This is used by the implementations of sqlite3_backup_step() - ** and sqlite3_backup_finish() to detect that they are being called - ** from this function, not directly by the user. - */ - memset(&b, 0, sizeof(b)); - b.pSrcDb = pFrom->db; - b.pSrc = pFrom; - b.pDest = pTo; - b.iNext = 1; - - /* 0x7FFFFFFF is the hard limit for the number of pages in a database - ** file. By passing this as the number of pages to copy to - ** sqlite3_backup_step(), we can guarantee that the copy finishes - ** within a single call (unless an error occurs). The assert() statement - ** checks this assumption - (p->rc) should be set to either SQLITE_DONE - ** or an error code. - */ - sqlite3_backup_step(&b, 0x7FFFFFFF); - assert( b.rc!=SQLITE_OK ); - rc = sqlite3_backup_finish(&b); - if( rc==SQLITE_OK ){ - pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; - }else{ - sqlite3PagerClearCache(sqlite3BtreePager(b.pDest)); - } - - assert( sqlite3BtreeIsInTrans(pTo)==0 ); -copy_finished: - sqlite3BtreeLeave(pFrom); - sqlite3BtreeLeave(pTo); - return rc; -} -#endif /* SQLITE_OMIT_VACUUM */ - -/************** End of backup.c **********************************************/ -/************** Begin file vdbemem.c *****************************************/ -/* -** 2004 May 26 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code use to manipulate "Mem" structure. A "Mem" -** stores a single value in the VDBE. Mem is an opaque structure visible -** only within the VDBE. Interface routines refer to a Mem using the -** name sqlite_value -*/ - -/* -** If pMem is an object with a valid string representation, this routine -** ensures the internal encoding for the string representation is -** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. -** -** If pMem is not a string object, or the encoding of the string -** representation is already stored using the requested encoding, then this -** routine is a no-op. -** -** SQLITE_OK is returned if the conversion is successful (or not required). -** SQLITE_NOMEM may be returned if a malloc() fails during conversion -** between formats. -*/ -SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ -#ifndef SQLITE_OMIT_UTF16 - int rc; -#endif - assert( (pMem->flags&MEM_RowSet)==0 ); - assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE - || desiredEnc==SQLITE_UTF16BE ); - if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ - return SQLITE_OK; - } - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); -#ifdef SQLITE_OMIT_UTF16 - return SQLITE_ERROR; -#else - - /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, - ** then the encoding of the value may not have changed. - */ - rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); - assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); - assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); - assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); - return rc; -#endif -} - -/* -** Make sure pMem->z points to a writable allocation of at least -** n bytes. -** -** If the third argument passed to this function is true, then memory -** cell pMem must contain a string or blob. In this case the content is -** preserved. Otherwise, if the third parameter to this function is false, -** any current string or blob value may be discarded. -** -** This function sets the MEM_Dyn flag and clears any xDel callback. -** It also clears MEM_Ephem and MEM_Static. If the preserve flag is -** not set, Mem.n is zeroed. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ - assert( 1 >= - ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + - (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + - ((pMem->flags&MEM_Ephem) ? 1 : 0) + - ((pMem->flags&MEM_Static) ? 1 : 0) - ); - assert( (pMem->flags&MEM_RowSet)==0 ); - - /* If the preserve flag is set to true, then the memory cell must already - ** contain a valid string or blob value. */ - assert( preserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); - - if( n<32 ) n = 32; - if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ - if( preserve && pMem->z==pMem->zMalloc ){ - pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); - preserve = 0; - }else{ - sqlite3DbFree(pMem->db, pMem->zMalloc); - pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); - } - } - - if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ - memcpy(pMem->zMalloc, pMem->z, pMem->n); - } - if( pMem->flags&MEM_Dyn && pMem->xDel ){ - assert( pMem->xDel!=SQLITE_DYNAMIC ); - pMem->xDel((void *)(pMem->z)); - } - - pMem->z = pMem->zMalloc; - if( pMem->z==0 ){ - pMem->flags = MEM_Null; - }else{ - pMem->flags &= ~(MEM_Ephem|MEM_Static); - } - pMem->xDel = 0; - return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); -} - -/* -** Make the given Mem object MEM_Dyn. In other words, make it so -** that any TEXT or BLOB content is stored in memory obtained from -** malloc(). In this way, we know that the memory is safe to be -** overwritten or altered. -** -** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){ - int f; - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( (pMem->flags&MEM_RowSet)==0 ); - ExpandBlob(pMem); - f = pMem->flags; - if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ - if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ - return SQLITE_NOMEM; - } - pMem->z[pMem->n] = 0; - pMem->z[pMem->n+1] = 0; - pMem->flags |= MEM_Term; -#ifdef SQLITE_DEBUG - pMem->pScopyFrom = 0; -#endif - } - - return SQLITE_OK; -} - -/* -** If the given Mem* has a zero-filled tail, turn it into an ordinary -** blob stored in dynamically allocated space. -*/ -#ifndef SQLITE_OMIT_INCRBLOB -SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){ - if( pMem->flags & MEM_Zero ){ - int nByte; - assert( pMem->flags&MEM_Blob ); - assert( (pMem->flags&MEM_RowSet)==0 ); - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - - /* Set nByte to the number of bytes required to store the expanded blob. */ - nByte = pMem->n + pMem->u.nZero; - if( nByte<=0 ){ - nByte = 1; - } - if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ - return SQLITE_NOMEM; - } - - memset(&pMem->z[pMem->n], 0, pMem->u.nZero); - pMem->n += pMem->u.nZero; - pMem->flags &= ~(MEM_Zero|MEM_Term); - } - return SQLITE_OK; -} -#endif - - -/* -** Make sure the given Mem is \u0000 terminated. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){ - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ - return SQLITE_OK; /* Nothing to do */ - } - if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ - return SQLITE_NOMEM; - } - pMem->z[pMem->n] = 0; - pMem->z[pMem->n+1] = 0; - pMem->flags |= MEM_Term; - return SQLITE_OK; -} - -/* -** Add MEM_Str to the set of representations for the given Mem. Numbers -** are converted using sqlite3_snprintf(). Converting a BLOB to a string -** is a no-op. -** -** Existing representations MEM_Int and MEM_Real are *not* invalidated. -** -** A MEM_Null value will never be passed to this function. This function is -** used for converting values to text for returning to the user (i.e. via -** sqlite3_value_text()), or for ensuring that values to be used as btree -** keys are strings. In the former case a NULL pointer is returned the -** user and the later is an internal programming error. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){ - int rc = SQLITE_OK; - int fg = pMem->flags; - const int nByte = 32; - - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( !(fg&MEM_Zero) ); - assert( !(fg&(MEM_Str|MEM_Blob)) ); - assert( fg&(MEM_Int|MEM_Real) ); - assert( (pMem->flags&MEM_RowSet)==0 ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - - - if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ - return SQLITE_NOMEM; - } - - /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 - ** string representation of the value. Then, if the required encoding - ** is UTF-16le or UTF-16be do a translation. - ** - ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. - */ - if( fg & MEM_Int ){ - sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); - }else{ - assert( fg & MEM_Real ); - sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); - } - pMem->n = sqlite3Strlen30(pMem->z); - pMem->enc = SQLITE_UTF8; - pMem->flags |= MEM_Str|MEM_Term; - sqlite3VdbeChangeEncoding(pMem, enc); - return rc; -} - -/* -** Memory cell pMem contains the context of an aggregate function. -** This routine calls the finalize method for that function. The -** result of the aggregate is stored back into pMem. -** -** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK -** otherwise. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ - int rc = SQLITE_OK; - if( ALWAYS(pFunc && pFunc->xFinalize) ){ - sqlite3_context ctx; - assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - memset(&ctx, 0, sizeof(ctx)); - ctx.s.flags = MEM_Null; - ctx.s.db = pMem->db; - ctx.pMem = pMem; - ctx.pFunc = pFunc; - pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ - assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); - sqlite3DbFree(pMem->db, pMem->zMalloc); - memcpy(pMem, &ctx.s, sizeof(ctx.s)); - rc = ctx.isError; - } - return rc; -} - -/* -** If the memory cell contains a string value that must be freed by -** invoking an external callback, free it now. Calling this function -** does not free any Mem.zMalloc buffer. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ - assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); - if( p->flags&MEM_Agg ){ - sqlite3VdbeMemFinalize(p, p->u.pDef); - assert( (p->flags & MEM_Agg)==0 ); - sqlite3VdbeMemRelease(p); - }else if( p->flags&MEM_Dyn && p->xDel ){ - assert( (p->flags&MEM_RowSet)==0 ); - assert( p->xDel!=SQLITE_DYNAMIC ); - p->xDel((void *)p->z); - p->xDel = 0; - }else if( p->flags&MEM_RowSet ){ - sqlite3RowSetClear(p->u.pRowSet); - }else if( p->flags&MEM_Frame ){ - sqlite3VdbeMemSetNull(p); - } -} - -/* -** Release any memory held by the Mem. This may leave the Mem in an -** inconsistent state, for example with (Mem.z==0) and -** (Mem.type==SQLITE_TEXT). -*/ -SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){ - VdbeMemRelease(p); - sqlite3DbFree(p->db, p->zMalloc); - p->z = 0; - p->zMalloc = 0; - p->xDel = 0; -} - -/* -** Convert a 64-bit IEEE double into a 64-bit signed integer. -** If the double is too large, return 0x8000000000000000. -** -** Most systems appear to do this simply by assigning -** variables and without the extra range tests. But -** there are reports that windows throws an expection -** if the floating point value is out of range. (See ticket #2880.) -** Because we do not completely understand the problem, we will -** take the conservative approach and always do range tests -** before attempting the conversion. -*/ -static i64 doubleToInt64(double r){ -#ifdef SQLITE_OMIT_FLOATING_POINT - /* When floating-point is omitted, double and int64 are the same thing */ - return r; -#else - /* - ** Many compilers we encounter do not define constants for the - ** minimum and maximum 64-bit integers, or they define them - ** inconsistently. And many do not understand the "LL" notation. - ** So we define our own static constants here using nothing - ** larger than a 32-bit integer constant. - */ - static const i64 maxInt = LARGEST_INT64; - static const i64 minInt = SMALLEST_INT64; - - if( r<(double)minInt ){ - return minInt; - }else if( r>(double)maxInt ){ - /* minInt is correct here - not maxInt. It turns out that assigning - ** a very large positive number to an integer results in a very large - ** negative integer. This makes no sense, but it is what x86 hardware - ** does so for compatibility we will do the same in software. */ - return minInt; - }else{ - return (i64)r; - } -#endif -} - -/* -** Return some kind of integer value which is the best we can do -** at representing the value that *pMem describes as an integer. -** If pMem is an integer, then the value is exact. If pMem is -** a floating-point then the value returned is the integer part. -** If pMem is a string or blob, then we make an attempt to convert -** it into a integer and return that. If pMem represents an -** an SQL-NULL value, return 0. -** -** If pMem represents a string value, its encoding might be changed. -*/ -SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){ - int flags; - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - flags = pMem->flags; - if( flags & MEM_Int ){ - return pMem->u.i; - }else if( flags & MEM_Real ){ - return doubleToInt64(pMem->r); - }else if( flags & (MEM_Str|MEM_Blob) ){ - i64 value = 0; - assert( pMem->z || pMem->n==0 ); - testcase( pMem->z==0 ); - sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); - return value; - }else{ - return 0; - } -} - -/* -** Return the best representation of pMem that we can get into a -** double. If pMem is already a double or an integer, return its -** value. If it is a string or blob, try to convert it to a double. -** If it is a NULL, return 0.0. -*/ -SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){ - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - if( pMem->flags & MEM_Real ){ - return pMem->r; - }else if( pMem->flags & MEM_Int ){ - return (double)pMem->u.i; - }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ - /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ - double val = (double)0; - sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); - return val; - }else{ - /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ - return (double)0; - } -} - -/* -** The MEM structure is already a MEM_Real. Try to also make it a -** MEM_Int if we can. -*/ -SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){ - assert( pMem->flags & MEM_Real ); - assert( (pMem->flags & MEM_RowSet)==0 ); - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - - pMem->u.i = doubleToInt64(pMem->r); - - /* Only mark the value as an integer if - ** - ** (1) the round-trip conversion real->int->real is a no-op, and - ** (2) The integer is neither the largest nor the smallest - ** possible integer (ticket #3922) - ** - ** The second and third terms in the following conditional enforces - ** the second condition under the assumption that addition overflow causes - ** values to wrap around. On x86 hardware, the third term is always - ** true and could be omitted. But we leave it in because other - ** architectures might behave differently. - */ - if( pMem->r==(double)pMem->u.i - && pMem->u.i>SMALLEST_INT64 -#if defined(__i486__) || defined(__x86_64__) - && ALWAYS(pMem->u.i<LARGEST_INT64) -#else - && pMem->u.i<LARGEST_INT64 -#endif - ){ - pMem->flags |= MEM_Int; - } -} - -/* -** Convert pMem to type integer. Invalidate any prior representations. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){ - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( (pMem->flags & MEM_RowSet)==0 ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - - pMem->u.i = sqlite3VdbeIntValue(pMem); - MemSetTypeFlag(pMem, MEM_Int); - return SQLITE_OK; -} - -/* -** Convert pMem so that it is of type MEM_Real. -** Invalidate any prior representations. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){ - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - - pMem->r = sqlite3VdbeRealValue(pMem); - MemSetTypeFlag(pMem, MEM_Real); - return SQLITE_OK; -} - -/* -** Convert pMem so that it has types MEM_Real or MEM_Int or both. -** Invalidate any prior representations. -** -** Every effort is made to force the conversion, even if the input -** is a string that does not look completely like a number. Convert -** as much of the string as we can and ignore the rest. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){ - if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ - assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ - MemSetTypeFlag(pMem, MEM_Int); - }else{ - pMem->r = sqlite3VdbeRealValue(pMem); - MemSetTypeFlag(pMem, MEM_Real); - sqlite3VdbeIntegerAffinity(pMem); - } - } - assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); - pMem->flags &= ~(MEM_Str|MEM_Blob); - return SQLITE_OK; -} - -/* -** Delete any previous value and set the value stored in *pMem to NULL. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ - if( pMem->flags & MEM_Frame ){ - VdbeFrame *pFrame = pMem->u.pFrame; - pFrame->pParent = pFrame->v->pDelFrame; - pFrame->v->pDelFrame = pFrame; - } - if( pMem->flags & MEM_RowSet ){ - sqlite3RowSetClear(pMem->u.pRowSet); - } - MemSetTypeFlag(pMem, MEM_Null); - pMem->type = SQLITE_NULL; -} - -/* -** Delete any previous value and set the value to be a BLOB of length -** n containing all zeros. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ - sqlite3VdbeMemRelease(pMem); - pMem->flags = MEM_Blob|MEM_Zero; - pMem->type = SQLITE_BLOB; - pMem->n = 0; - if( n<0 ) n = 0; - pMem->u.nZero = n; - pMem->enc = SQLITE_UTF8; - -#ifdef SQLITE_OMIT_INCRBLOB - sqlite3VdbeMemGrow(pMem, n, 0); - if( pMem->z ){ - pMem->n = n; - memset(pMem->z, 0, n); - } -#endif -} - -/* -** Delete any previous value and set the value stored in *pMem to val, -** manifest type INTEGER. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ - sqlite3VdbeMemRelease(pMem); - pMem->u.i = val; - pMem->flags = MEM_Int; - pMem->type = SQLITE_INTEGER; -} - -#ifndef SQLITE_OMIT_FLOATING_POINT -/* -** Delete any previous value and set the value stored in *pMem to val, -** manifest type REAL. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ - if( sqlite3IsNaN(val) ){ - sqlite3VdbeMemSetNull(pMem); - }else{ - sqlite3VdbeMemRelease(pMem); - pMem->r = val; - pMem->flags = MEM_Real; - pMem->type = SQLITE_FLOAT; - } -} -#endif - -/* -** Delete any previous value and set the value of pMem to be an -** empty boolean index. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){ - sqlite3 *db = pMem->db; - assert( db!=0 ); - assert( (pMem->flags & MEM_RowSet)==0 ); - sqlite3VdbeMemRelease(pMem); - pMem->zMalloc = sqlite3DbMallocRaw(db, 64); - if( db->mallocFailed ){ - pMem->flags = MEM_Null; - }else{ - assert( pMem->zMalloc ); - pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, - sqlite3DbMallocSize(db, pMem->zMalloc)); - assert( pMem->u.pRowSet!=0 ); - pMem->flags = MEM_RowSet; - } -} - -/* -** Return true if the Mem object contains a TEXT or BLOB that is -** too large - whose size exceeds SQLITE_MAX_LENGTH. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){ - assert( p->db!=0 ); - if( p->flags & (MEM_Str|MEM_Blob) ){ - int n = p->n; - if( p->flags & MEM_Zero ){ - n += p->u.nZero; - } - return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; - } - return 0; -} - -#ifdef SQLITE_DEBUG -/* -** This routine prepares a memory cell for modication by breaking -** its link to a shallow copy and by marking any current shallow -** copies of this cell as invalid. -** -** This is used for testing and debugging only - to make sure shallow -** copies are not misused. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ - int i; - Mem *pX; - for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ - if( pX->pScopyFrom==pMem ){ - pX->flags |= MEM_Invalid; - pX->pScopyFrom = 0; - } - } - pMem->pScopyFrom = 0; -} -#endif /* SQLITE_DEBUG */ - -/* -** Size of struct Mem not including the Mem.zMalloc member. -*/ -#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) - -/* -** Make an shallow copy of pFrom into pTo. Prior contents of -** pTo are freed. The pFrom->z field is not duplicated. If -** pFrom->z is used, then pTo->z points to the same thing as pFrom->z -** and flags gets srcType (either MEM_Ephem or MEM_Static). -*/ -SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ - assert( (pFrom->flags & MEM_RowSet)==0 ); - VdbeMemRelease(pTo); - memcpy(pTo, pFrom, MEMCELLSIZE); - pTo->xDel = 0; - if( (pFrom->flags&MEM_Static)==0 ){ - pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); - assert( srcType==MEM_Ephem || srcType==MEM_Static ); - pTo->flags |= srcType; - } -} - -/* -** Make a full copy of pFrom into pTo. Prior contents of pTo are -** freed before the copy is made. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ - int rc = SQLITE_OK; - - assert( (pFrom->flags & MEM_RowSet)==0 ); - VdbeMemRelease(pTo); - memcpy(pTo, pFrom, MEMCELLSIZE); - pTo->flags &= ~MEM_Dyn; - - if( pTo->flags&(MEM_Str|MEM_Blob) ){ - if( 0==(pFrom->flags&MEM_Static) ){ - pTo->flags |= MEM_Ephem; - rc = sqlite3VdbeMemMakeWriteable(pTo); - } - } - - return rc; -} - -/* -** Transfer the contents of pFrom to pTo. Any existing value in pTo is -** freed. If pFrom contains ephemeral data, a copy is made. -** -** pFrom contains an SQL NULL when this routine returns. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ - assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); - assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); - assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); - - sqlite3VdbeMemRelease(pTo); - memcpy(pTo, pFrom, sizeof(Mem)); - pFrom->flags = MEM_Null; - pFrom->xDel = 0; - pFrom->zMalloc = 0; -} - -/* -** Change the value of a Mem to be a string or a BLOB. -** -** The memory management strategy depends on the value of the xDel -** parameter. If the value passed is SQLITE_TRANSIENT, then the -** string is copied into a (possibly existing) buffer managed by the -** Mem structure. Otherwise, any existing buffer is freed and the -** pointer copied. -** -** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH -** size limit) then no memory allocation occurs. If the string can be -** stored without allocating memory, then it is. If a memory allocation -** is required to store the string, then value of pMem is unchanged. In -** either case, SQLITE_TOOBIG is returned. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemSetStr( - Mem *pMem, /* Memory cell to set to string value */ - const char *z, /* String pointer */ - int n, /* Bytes in string, or negative */ - u8 enc, /* Encoding of z. 0 for BLOBs */ - void (*xDel)(void*) /* Destructor function */ -){ - int nByte = n; /* New value for pMem->n */ - int iLimit; /* Maximum allowed string or blob size */ - u16 flags = 0; /* New value for pMem->flags */ - - assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); - assert( (pMem->flags & MEM_RowSet)==0 ); - - /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ - if( !z ){ - sqlite3VdbeMemSetNull(pMem); - return SQLITE_OK; - } - - if( pMem->db ){ - iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; - }else{ - iLimit = SQLITE_MAX_LENGTH; - } - flags = (enc==0?MEM_Blob:MEM_Str); - if( nByte<0 ){ - assert( enc!=0 ); - if( enc==SQLITE_UTF8 ){ - for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} - }else{ - for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} - } - flags |= MEM_Term; - } - - /* The following block sets the new values of Mem.z and Mem.xDel. It - ** also sets a flag in local variable "flags" to indicate the memory - ** management (one of MEM_Dyn or MEM_Static). - */ - if( xDel==SQLITE_TRANSIENT ){ - int nAlloc = nByte; - if( flags&MEM_Term ){ - nAlloc += (enc==SQLITE_UTF8?1:2); - } - if( nByte>iLimit ){ - return SQLITE_TOOBIG; - } - if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ - return SQLITE_NOMEM; - } - memcpy(pMem->z, z, nAlloc); - }else if( xDel==SQLITE_DYNAMIC ){ - sqlite3VdbeMemRelease(pMem); - pMem->zMalloc = pMem->z = (char *)z; - pMem->xDel = 0; - }else{ - sqlite3VdbeMemRelease(pMem); - pMem->z = (char *)z; - pMem->xDel = xDel; - flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); - } - - pMem->n = nByte; - pMem->flags = flags; - pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); - pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); - -#ifndef SQLITE_OMIT_UTF16 - if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ - return SQLITE_NOMEM; - } -#endif - - if( nByte>iLimit ){ - return SQLITE_TOOBIG; - } - - return SQLITE_OK; -} - -/* -** Compare the values contained by the two memory cells, returning -** negative, zero or positive if pMem1 is less than, equal to, or greater -** than pMem2. Sorting order is NULL's first, followed by numbers (integers -** and reals) sorted numerically, followed by text ordered by the collating -** sequence pColl and finally blob's ordered by memcmp(). -** -** Two NULL values are considered equal by this function. -*/ -SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ - int rc; - int f1, f2; - int combined_flags; - - f1 = pMem1->flags; - f2 = pMem2->flags; - combined_flags = f1|f2; - assert( (combined_flags & MEM_RowSet)==0 ); - - /* If one value is NULL, it is less than the other. If both values - ** are NULL, return 0. - */ - if( combined_flags&MEM_Null ){ - return (f2&MEM_Null) - (f1&MEM_Null); - } - - /* If one value is a number and the other is not, the number is less. - ** If both are numbers, compare as reals if one is a real, or as integers - ** if both values are integers. - */ - if( combined_flags&(MEM_Int|MEM_Real) ){ - if( !(f1&(MEM_Int|MEM_Real)) ){ - return 1; - } - if( !(f2&(MEM_Int|MEM_Real)) ){ - return -1; - } - if( (f1 & f2 & MEM_Int)==0 ){ - double r1, r2; - if( (f1&MEM_Real)==0 ){ - r1 = (double)pMem1->u.i; - }else{ - r1 = pMem1->r; - } - if( (f2&MEM_Real)==0 ){ - r2 = (double)pMem2->u.i; - }else{ - r2 = pMem2->r; - } - if( r1<r2 ) return -1; - if( r1>r2 ) return 1; - return 0; - }else{ - assert( f1&MEM_Int ); - assert( f2&MEM_Int ); - if( pMem1->u.i < pMem2->u.i ) return -1; - if( pMem1->u.i > pMem2->u.i ) return 1; - return 0; - } - } - - /* If one value is a string and the other is a blob, the string is less. - ** If both are strings, compare using the collating functions. - */ - if( combined_flags&MEM_Str ){ - if( (f1 & MEM_Str)==0 ){ - return 1; - } - if( (f2 & MEM_Str)==0 ){ - return -1; - } - - assert( pMem1->enc==pMem2->enc ); - assert( pMem1->enc==SQLITE_UTF8 || - pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); - - /* The collation sequence must be defined at this point, even if - ** the user deletes the collation sequence after the vdbe program is - ** compiled (this was not always the case). - */ - assert( !pColl || pColl->xCmp ); - - if( pColl ){ - if( pMem1->enc==pColl->enc ){ - /* The strings are already in the correct encoding. Call the - ** comparison function directly */ - return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); - }else{ - const void *v1, *v2; - int n1, n2; - Mem c1; - Mem c2; - memset(&c1, 0, sizeof(c1)); - memset(&c2, 0, sizeof(c2)); - sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); - sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); - v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); - n1 = v1==0 ? 0 : c1.n; - v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); - n2 = v2==0 ? 0 : c2.n; - rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); - sqlite3VdbeMemRelease(&c1); - sqlite3VdbeMemRelease(&c2); - return rc; - } - } - /* If a NULL pointer was passed as the collate function, fall through - ** to the blob case and use memcmp(). */ - } - - /* Both values must be blobs. Compare using memcmp(). */ - rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); - if( rc==0 ){ - rc = pMem1->n - pMem2->n; - } - return rc; -} - -/* -** Move data out of a btree key or data field and into a Mem structure. -** The data or key is taken from the entry that pCur is currently pointing -** to. offset and amt determine what portion of the data or key to retrieve. -** key is true to get the key or false to get data. The result is written -** into the pMem element. -** -** The pMem structure is assumed to be uninitialized. Any prior content -** is overwritten without being freed. -** -** If this routine fails for any reason (malloc returns NULL or unable -** to read from the disk) then the pMem is left in an inconsistent state. -*/ -SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( - BtCursor *pCur, /* Cursor pointing at record to retrieve. */ - int offset, /* Offset from the start of data to return bytes from. */ - int amt, /* Number of bytes to return. */ - int key, /* If true, retrieve from the btree key, not data. */ - Mem *pMem /* OUT: Return data in this Mem structure. */ -){ - char *zData; /* Data from the btree layer */ - int available = 0; /* Number of bytes available on the local btree page */ - int rc = SQLITE_OK; /* Return code */ - - assert( sqlite3BtreeCursorIsValid(pCur) ); - - /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() - ** that both the BtShared and database handle mutexes are held. */ - assert( (pMem->flags & MEM_RowSet)==0 ); - if( key ){ - zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); - }else{ - zData = (char *)sqlite3BtreeDataFetch(pCur, &available); - } - assert( zData!=0 ); - - if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ - sqlite3VdbeMemRelease(pMem); - pMem->z = &zData[offset]; - pMem->flags = MEM_Blob|MEM_Ephem; - }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ - pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; - pMem->enc = 0; - pMem->type = SQLITE_BLOB; - if( key ){ - rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); - }else{ - rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); - } - pMem->z[amt] = 0; - pMem->z[amt+1] = 0; - if( rc!=SQLITE_OK ){ - sqlite3VdbeMemRelease(pMem); - } - } - pMem->n = amt; - - return rc; -} - -/* This function is only available internally, it is not part of the -** external API. It works in a similar way to sqlite3_value_text(), -** except the data returned is in the encoding specified by the second -** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or -** SQLITE_UTF8. -** -** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. -** If that is the case, then the result must be aligned on an even byte -** boundary. -*/ -SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ - if( !pVal ) return 0; - - assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); - assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); - assert( (pVal->flags & MEM_RowSet)==0 ); - - if( pVal->flags&MEM_Null ){ - return 0; - } - assert( (MEM_Blob>>3) == MEM_Str ); - pVal->flags |= (pVal->flags & MEM_Blob)>>3; - ExpandBlob(pVal); - if( pVal->flags&MEM_Str ){ - sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); - if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ - assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); - if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ - return 0; - } - } - sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ - }else{ - assert( (pVal->flags&MEM_Blob)==0 ); - sqlite3VdbeMemStringify(pVal, enc); - assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); - } - assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 - || pVal->db->mallocFailed ); - if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ - return pVal->z; - }else{ - return 0; - } -} - -/* -** Create a new sqlite3_value object. -*/ -SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ - Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); - if( p ){ - p->flags = MEM_Null; - p->type = SQLITE_NULL; - p->db = db; - } - return p; -} - -/* -** Create a new sqlite3_value object, containing the value of pExpr. -** -** This only works for very simple expressions that consist of one constant -** token (i.e. "5", "5.1", "'a string'"). If the expression can -** be converted directly into a value, then the value is allocated and -** a pointer written to *ppVal. The caller is responsible for deallocating -** the value by passing it to sqlite3ValueFree() later on. If the expression -** cannot be converted to a value, then *ppVal is set to NULL. -*/ -SQLITE_PRIVATE int sqlite3ValueFromExpr( - sqlite3 *db, /* The database connection */ - Expr *pExpr, /* The expression to evaluate */ - u8 enc, /* Encoding to use */ - u8 affinity, /* Affinity to use */ - sqlite3_value **ppVal /* Write the new value here */ -){ - int op; - char *zVal = 0; - sqlite3_value *pVal = 0; - int negInt = 1; - const char *zNeg = ""; - - if( !pExpr ){ - *ppVal = 0; - return SQLITE_OK; - } - op = pExpr->op; - - /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3. - ** The ifdef here is to enable us to achieve 100% branch test coverage even - ** when SQLITE_ENABLE_STAT3 is omitted. - */ -#ifdef SQLITE_ENABLE_STAT3 - if( op==TK_REGISTER ) op = pExpr->op2; -#else - if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; -#endif - - /* Handle negative integers in a single step. This is needed in the - ** case when the value is -9223372036854775808. - */ - if( op==TK_UMINUS - && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ - pExpr = pExpr->pLeft; - op = pExpr->op; - negInt = -1; - zNeg = "-"; - } - - if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ - pVal = sqlite3ValueNew(db); - if( pVal==0 ) goto no_mem; - if( ExprHasProperty(pExpr, EP_IntValue) ){ - sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); - }else{ - zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); - if( zVal==0 ) goto no_mem; - sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); - if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; - } - if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ - sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); - }else{ - sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); - } - if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; - if( enc!=SQLITE_UTF8 ){ - sqlite3VdbeChangeEncoding(pVal, enc); - } - }else if( op==TK_UMINUS ) { - /* This branch happens for multiple negative signs. Ex: -(-5) */ - if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ - sqlite3VdbeMemNumerify(pVal); - if( pVal->u.i==SMALLEST_INT64 ){ - pVal->flags &= MEM_Int; - pVal->flags |= MEM_Real; - pVal->r = (double)LARGEST_INT64; - }else{ - pVal->u.i = -pVal->u.i; - } - pVal->r = -pVal->r; - sqlite3ValueApplyAffinity(pVal, affinity, enc); - } - }else if( op==TK_NULL ){ - pVal = sqlite3ValueNew(db); - if( pVal==0 ) goto no_mem; - } -#ifndef SQLITE_OMIT_BLOB_LITERAL - else if( op==TK_BLOB ){ - int nVal; - assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); - assert( pExpr->u.zToken[1]=='\'' ); - pVal = sqlite3ValueNew(db); - if( !pVal ) goto no_mem; - zVal = &pExpr->u.zToken[2]; - nVal = sqlite3Strlen30(zVal)-1; - assert( zVal[nVal]=='\'' ); - sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, - 0, SQLITE_DYNAMIC); - } -#endif - - if( pVal ){ - sqlite3VdbeMemStoreType(pVal); - } - *ppVal = pVal; - return SQLITE_OK; - -no_mem: - db->mallocFailed = 1; - sqlite3DbFree(db, zVal); - sqlite3ValueFree(pVal); - *ppVal = 0; - return SQLITE_NOMEM; -} - -/* -** Change the string value of an sqlite3_value object -*/ -SQLITE_PRIVATE void sqlite3ValueSetStr( - sqlite3_value *v, /* Value to be set */ - int n, /* Length of string z */ - const void *z, /* Text of the new string */ - u8 enc, /* Encoding to use */ - void (*xDel)(void*) /* Destructor for the string */ -){ - if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); -} - -/* -** Free an sqlite3_value object -*/ -SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ - if( !v ) return; - sqlite3VdbeMemRelease((Mem *)v); - sqlite3DbFree(((Mem*)v)->db, v); -} - -/* -** Return the number of bytes in the sqlite3_value object assuming -** that it uses the encoding "enc" -*/ -SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ - Mem *p = (Mem*)pVal; - if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ - if( p->flags & MEM_Zero ){ - return p->n + p->u.nZero; - }else{ - return p->n; - } - } - return 0; -} - -/************** End of vdbemem.c *********************************************/ -/************** Begin file vdbeaux.c *****************************************/ -/* -** 2003 September 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used for creating, destroying, and populating -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior -** to version 2.8.7, all this code was combined into the vdbe.c source file. -** But that file was getting too big so this subroutines were split out. -*/ - -/* -** Create a new virtual database engine. -*/ -SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){ - Vdbe *p; - p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); - if( p==0 ) return 0; - p->db = db; - if( db->pVdbe ){ - db->pVdbe->pPrev = p; - } - p->pNext = db->pVdbe; - p->pPrev = 0; - db->pVdbe = p; - p->magic = VDBE_MAGIC_INIT; - return p; -} - -/* -** Remember the SQL string for a prepared statement. -*/ -SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ - assert( isPrepareV2==1 || isPrepareV2==0 ); - if( p==0 ) return; -#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) - if( !isPrepareV2 ) return; -#endif - assert( p->zSql==0 ); - p->zSql = sqlite3DbStrNDup(p->db, z, n); - p->isPrepareV2 = (u8)isPrepareV2; -} - -/* -** Return the SQL associated with a prepared statement -*/ -SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){ - Vdbe *p = (Vdbe *)pStmt; - return (p && p->isPrepareV2) ? p->zSql : 0; -} - -/* -** Swap all content between two VDBE structures. -*/ -SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ - Vdbe tmp, *pTmp; - char *zTmp; - tmp = *pA; - *pA = *pB; - *pB = tmp; - pTmp = pA->pNext; - pA->pNext = pB->pNext; - pB->pNext = pTmp; - pTmp = pA->pPrev; - pA->pPrev = pB->pPrev; - pB->pPrev = pTmp; - zTmp = pA->zSql; - pA->zSql = pB->zSql; - pB->zSql = zTmp; - pB->isPrepareV2 = pA->isPrepareV2; -} - -#ifdef SQLITE_DEBUG -/* -** Turn tracing on or off -*/ -SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ - p->trace = trace; -} -#endif - -/* -** Resize the Vdbe.aOp array so that it is at least one op larger than -** it was. -** -** If an out-of-memory error occurs while resizing the array, return -** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain -** unchanged (this is so that any opcodes already allocated can be -** correctly deallocated along with the rest of the Vdbe). -*/ -static int growOpArray(Vdbe *p){ - VdbeOp *pNew; - int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); - pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); - if( pNew ){ - p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); - p->aOp = pNew; - } - return (pNew ? SQLITE_OK : SQLITE_NOMEM); -} - -/* -** Add a new instruction to the list of instructions current in the -** VDBE. Return the address of the new instruction. -** -** Parameters: -** -** p Pointer to the VDBE -** -** op The opcode for this instruction -** -** p1, p2, p3 Operands -** -** Use the sqlite3VdbeResolveLabel() function to fix an address and -** the sqlite3VdbeChangeP4() function to change the value of the P4 -** operand. -*/ -SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ - int i; - VdbeOp *pOp; - - i = p->nOp; - assert( p->magic==VDBE_MAGIC_INIT ); - assert( op>0 && op<0xff ); - if( p->nOpAlloc<=i ){ - if( growOpArray(p) ){ - return 1; - } - } - p->nOp++; - pOp = &p->aOp[i]; - pOp->opcode = (u8)op; - pOp->p5 = 0; - pOp->p1 = p1; - pOp->p2 = p2; - pOp->p3 = p3; - pOp->p4.p = 0; - pOp->p4type = P4_NOTUSED; -#ifdef SQLITE_DEBUG - pOp->zComment = 0; - if( p->db->flags & SQLITE_VdbeAddopTrace ){ - sqlite3VdbePrintOp(0, i, &p->aOp[i]); - } -#endif -#ifdef VDBE_PROFILE - pOp->cycles = 0; - pOp->cnt = 0; -#endif - return i; -} -SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ - return sqlite3VdbeAddOp3(p, op, 0, 0, 0); -} -SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ - return sqlite3VdbeAddOp3(p, op, p1, 0, 0); -} -SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ - return sqlite3VdbeAddOp3(p, op, p1, p2, 0); -} - - -/* -** Add an opcode that includes the p4 value as a pointer. -*/ -SQLITE_PRIVATE int sqlite3VdbeAddOp4( - Vdbe *p, /* Add the opcode to this VM */ - int op, /* The new opcode */ - int p1, /* The P1 operand */ - int p2, /* The P2 operand */ - int p3, /* The P3 operand */ - const char *zP4, /* The P4 operand */ - int p4type /* P4 operand type */ -){ - int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); - sqlite3VdbeChangeP4(p, addr, zP4, p4type); - return addr; -} - -/* -** Add an OP_ParseSchema opcode. This routine is broken out from -** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees -** as having been used. -** -** The zWhere string must have been obtained from sqlite3_malloc(). -** This routine will take ownership of the allocated memory. -*/ -SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ - int j; - int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); - sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); - for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); -} - -/* -** Add an opcode that includes the p4 value as an integer. -*/ -SQLITE_PRIVATE int sqlite3VdbeAddOp4Int( - Vdbe *p, /* Add the opcode to this VM */ - int op, /* The new opcode */ - int p1, /* The P1 operand */ - int p2, /* The P2 operand */ - int p3, /* The P3 operand */ - int p4 /* The P4 operand as an integer */ -){ - int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); - sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); - return addr; -} - -/* -** Create a new symbolic label for an instruction that has yet to be -** coded. The symbolic label is really just a negative number. The -** label can be used as the P2 value of an operation. Later, when -** the label is resolved to a specific address, the VDBE will scan -** through its operation list and change all values of P2 which match -** the label into the resolved address. -** -** The VDBE knows that a P2 value is a label because labels are -** always negative and P2 values are suppose to be non-negative. -** Hence, a negative P2 value is a label that has yet to be resolved. -** -** Zero is returned if a malloc() fails. -*/ -SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){ - int i = p->nLabel++; - assert( p->magic==VDBE_MAGIC_INIT ); - if( (i & (i-1))==0 ){ - p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, - (i*2+1)*sizeof(p->aLabel[0])); - } - if( p->aLabel ){ - p->aLabel[i] = -1; - } - return -1-i; -} - -/* -** Resolve label "x" to be the address of the next instruction to -** be inserted. The parameter "x" must have been obtained from -** a prior call to sqlite3VdbeMakeLabel(). -*/ -SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){ - int j = -1-x; - assert( p->magic==VDBE_MAGIC_INIT ); - assert( j>=0 && j<p->nLabel ); - if( p->aLabel ){ - p->aLabel[j] = p->nOp; - } -} - -/* -** Mark the VDBE as one that can only be run one time. -*/ -SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){ - p->runOnlyOnce = 1; -} - -#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ - -/* -** The following type and function are used to iterate through all opcodes -** in a Vdbe main program and each of the sub-programs (triggers) it may -** invoke directly or indirectly. It should be used as follows: -** -** Op *pOp; -** VdbeOpIter sIter; -** -** memset(&sIter, 0, sizeof(sIter)); -** sIter.v = v; // v is of type Vdbe* -** while( (pOp = opIterNext(&sIter)) ){ -** // Do something with pOp -** } -** sqlite3DbFree(v->db, sIter.apSub); -** -*/ -typedef struct VdbeOpIter VdbeOpIter; -struct VdbeOpIter { - Vdbe *v; /* Vdbe to iterate through the opcodes of */ - SubProgram **apSub; /* Array of subprograms */ - int nSub; /* Number of entries in apSub */ - int iAddr; /* Address of next instruction to return */ - int iSub; /* 0 = main program, 1 = first sub-program etc. */ -}; -static Op *opIterNext(VdbeOpIter *p){ - Vdbe *v = p->v; - Op *pRet = 0; - Op *aOp; - int nOp; - - if( p->iSub<=p->nSub ){ - - if( p->iSub==0 ){ - aOp = v->aOp; - nOp = v->nOp; - }else{ - aOp = p->apSub[p->iSub-1]->aOp; - nOp = p->apSub[p->iSub-1]->nOp; - } - assert( p->iAddr<nOp ); - - pRet = &aOp[p->iAddr]; - p->iAddr++; - if( p->iAddr==nOp ){ - p->iSub++; - p->iAddr = 0; - } - - if( pRet->p4type==P4_SUBPROGRAM ){ - int nByte = (p->nSub+1)*sizeof(SubProgram*); - int j; - for(j=0; j<p->nSub; j++){ - if( p->apSub[j]==pRet->p4.pProgram ) break; - } - if( j==p->nSub ){ - p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); - if( !p->apSub ){ - pRet = 0; - }else{ - p->apSub[p->nSub++] = pRet->p4.pProgram; - } - } - } - } - - return pRet; -} - -/* -** Check if the program stored in the VM associated with pParse may -** throw an ABORT exception (causing the statement, but not entire transaction -** to be rolled back). This condition is true if the main program or any -** sub-programs contains any of the following: -** -** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. -** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. -** * OP_Destroy -** * OP_VUpdate -** * OP_VRename -** * OP_FkCounter with P2==0 (immediate foreign key constraint) -** -** Then check that the value of Parse.mayAbort is true if an -** ABORT may be thrown, or false otherwise. Return true if it does -** match, or false otherwise. This function is intended to be used as -** part of an assert statement in the compiler. Similar to: -** -** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); -*/ -SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ - int hasAbort = 0; - Op *pOp; - VdbeOpIter sIter; - memset(&sIter, 0, sizeof(sIter)); - sIter.v = v; - - while( (pOp = opIterNext(&sIter))!=0 ){ - int opcode = pOp->opcode; - if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename -#ifndef SQLITE_OMIT_FOREIGN_KEY - || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) -#endif - || ((opcode==OP_Halt || opcode==OP_HaltIfNull) - && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) - ){ - hasAbort = 1; - break; - } - } - sqlite3DbFree(v->db, sIter.apSub); - - /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. - ** If malloc failed, then the while() loop above may not have iterated - ** through all opcodes and hasAbort may be set incorrectly. Return - ** true for this case to prevent the assert() in the callers frame - ** from failing. */ - return ( v->db->mallocFailed || hasAbort==mayAbort ); -} -#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ - -/* -** Loop through the program looking for P2 values that are negative -** on jump instructions. Each such value is a label. Resolve the -** label by setting the P2 value to its correct non-zero value. -** -** This routine is called once after all opcodes have been inserted. -** -** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument -** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by -** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. -** -** The Op.opflags field is set on all opcodes. -*/ -static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ - int i; - int nMaxArgs = *pMaxFuncArgs; - Op *pOp; - int *aLabel = p->aLabel; - p->readOnly = 1; - for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ - u8 opcode = pOp->opcode; - - pOp->opflags = sqlite3OpcodeProperty[opcode]; - if( opcode==OP_Function || opcode==OP_AggStep ){ - if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; - }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ - p->readOnly = 0; -#ifndef SQLITE_OMIT_VIRTUALTABLE - }else if( opcode==OP_VUpdate ){ - if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; - }else if( opcode==OP_VFilter ){ - int n; - assert( p->nOp - i >= 3 ); - assert( pOp[-1].opcode==OP_Integer ); - n = pOp[-1].p1; - if( n>nMaxArgs ) nMaxArgs = n; -#endif - }else if( opcode==OP_Next || opcode==OP_SorterNext ){ - pOp->p4.xAdvance = sqlite3BtreeNext; - pOp->p4type = P4_ADVANCE; - }else if( opcode==OP_Prev ){ - pOp->p4.xAdvance = sqlite3BtreePrevious; - pOp->p4type = P4_ADVANCE; - } - - if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ - assert( -1-pOp->p2<p->nLabel ); - pOp->p2 = aLabel[-1-pOp->p2]; - } - } - sqlite3DbFree(p->db, p->aLabel); - p->aLabel = 0; - - *pMaxFuncArgs = nMaxArgs; -} - -/* -** Return the address of the next instruction to be inserted. -*/ -SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ - assert( p->magic==VDBE_MAGIC_INIT ); - return p->nOp; -} - -/* -** This function returns a pointer to the array of opcodes associated with -** the Vdbe passed as the first argument. It is the callers responsibility -** to arrange for the returned array to be eventually freed using the -** vdbeFreeOpArray() function. -** -** Before returning, *pnOp is set to the number of entries in the returned -** array. Also, *pnMaxArg is set to the larger of its current value and -** the number of entries in the Vdbe.apArg[] array required to execute the -** returned program. -*/ -SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ - VdbeOp *aOp = p->aOp; - assert( aOp && !p->db->mallocFailed ); - - /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ - assert( p->btreeMask==0 ); - - resolveP2Values(p, pnMaxArg); - *pnOp = p->nOp; - p->aOp = 0; - return aOp; -} - -/* -** Add a whole list of operations to the operation stack. Return the -** address of the first operation added. -*/ -SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ - int addr; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ - return 0; - } - addr = p->nOp; - if( ALWAYS(nOp>0) ){ - int i; - VdbeOpList const *pIn = aOp; - for(i=0; i<nOp; i++, pIn++){ - int p2 = pIn->p2; - VdbeOp *pOut = &p->aOp[i+addr]; - pOut->opcode = pIn->opcode; - pOut->p1 = pIn->p1; - if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ - pOut->p2 = addr + ADDR(p2); - }else{ - pOut->p2 = p2; - } - pOut->p3 = pIn->p3; - pOut->p4type = P4_NOTUSED; - pOut->p4.p = 0; - pOut->p5 = 0; -#ifdef SQLITE_DEBUG - pOut->zComment = 0; - if( p->db->flags & SQLITE_VdbeAddopTrace ){ - sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); - } -#endif - } - p->nOp += nOp; - } - return addr; -} - -/* -** Change the value of the P1 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ - assert( p!=0 ); - if( ((u32)p->nOp)>addr ){ - p->aOp[addr].p1 = val; - } -} - -/* -** Change the value of the P2 operand for a specific instruction. -** This routine is useful for setting a jump destination. -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ - assert( p!=0 ); - if( ((u32)p->nOp)>addr ){ - p->aOp[addr].p2 = val; - } -} - -/* -** Change the value of the P3 operand for a specific instruction. -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ - assert( p!=0 ); - if( ((u32)p->nOp)>addr ){ - p->aOp[addr].p3 = val; - } -} - -/* -** Change the value of the P5 operand for the most recently -** added operation. -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ - assert( p!=0 ); - if( p->aOp ){ - assert( p->nOp>0 ); - p->aOp[p->nOp-1].p5 = val; - } -} - -/* -** Change the P2 operand of instruction addr so that it points to -** the address of the next instruction to be coded. -*/ -SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ - assert( addr>=0 || p->db->mallocFailed ); - if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp); -} - - -/* -** If the input FuncDef structure is ephemeral, then free it. If -** the FuncDef is not ephermal, then do nothing. -*/ -static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ - if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ - sqlite3DbFree(db, pDef); - } -} - -static void vdbeFreeOpArray(sqlite3 *, Op *, int); - -/* -** Delete a P4 value if necessary. -*/ -static void freeP4(sqlite3 *db, int p4type, void *p4){ - if( p4 ){ - assert( db ); - switch( p4type ){ - case P4_REAL: - case P4_INT64: - case P4_DYNAMIC: - case P4_KEYINFO: - case P4_INTARRAY: - case P4_KEYINFO_HANDOFF: { - sqlite3DbFree(db, p4); - break; - } - case P4_MPRINTF: { - if( db->pnBytesFreed==0 ) sqlite3_free(p4); - break; - } - case P4_VDBEFUNC: { - VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; - freeEphemeralFunction(db, pVdbeFunc->pFunc); - if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); - sqlite3DbFree(db, pVdbeFunc); - break; - } - case P4_FUNCDEF: { - freeEphemeralFunction(db, (FuncDef*)p4); - break; - } - case P4_MEM: { - if( db->pnBytesFreed==0 ){ - sqlite3ValueFree((sqlite3_value*)p4); - }else{ - Mem *p = (Mem*)p4; - sqlite3DbFree(db, p->zMalloc); - sqlite3DbFree(db, p); - } - break; - } - case P4_VTAB : { - if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); - break; - } - } - } -} - -/* -** Free the space allocated for aOp and any p4 values allocated for the -** opcodes contained within. If aOp is not NULL it is assumed to contain -** nOp entries. -*/ -static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ - if( aOp ){ - Op *pOp; - for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ - freeP4(db, pOp->p4type, pOp->p4.p); -#ifdef SQLITE_DEBUG - sqlite3DbFree(db, pOp->zComment); -#endif - } - } - sqlite3DbFree(db, aOp); -} - -/* -** Link the SubProgram object passed as the second argument into the linked -** list at Vdbe.pSubProgram. This list is used to delete all sub-program -** objects when the VM is no longer required. -*/ -SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ - p->pNext = pVdbe->pProgram; - pVdbe->pProgram = p; -} - -/* -** Change the opcode at addr into OP_Noop -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ - if( p->aOp ){ - VdbeOp *pOp = &p->aOp[addr]; - sqlite3 *db = p->db; - freeP4(db, pOp->p4type, pOp->p4.p); - memset(pOp, 0, sizeof(pOp[0])); - pOp->opcode = OP_Noop; - } -} - -/* -** Change the value of the P4 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -** -** If n>=0 then the P4 operand is dynamic, meaning that a copy of -** the string is made into memory obtained from sqlite3_malloc(). -** A value of n==0 means copy bytes of zP4 up to and including the -** first null byte. If n>0 then copy n+1 bytes of zP4. -** -** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. -** A copy is made of the KeyInfo structure into memory obtained from -** sqlite3_malloc, to be freed when the Vdbe is finalized. -** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure -** stored in memory that the caller has obtained from sqlite3_malloc. The -** caller should not free the allocation, it will be freed when the Vdbe is -** finalized. -** -** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points -** to a string or structure that is guaranteed to exist for the lifetime of -** the Vdbe. In these cases we can just copy the pointer. -** -** If addr<0 then change P4 on the most recently inserted instruction. -*/ -SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ - Op *pOp; - sqlite3 *db; - assert( p!=0 ); - db = p->db; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p->aOp==0 || db->mallocFailed ){ - if ( n!=P4_KEYINFO && n!=P4_VTAB ) { - freeP4(db, n, (void*)*(char**)&zP4); - } - return; - } - assert( p->nOp>0 ); - assert( addr<p->nOp ); - if( addr<0 ){ - addr = p->nOp - 1; - } - pOp = &p->aOp[addr]; - assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 ); - freeP4(db, pOp->p4type, pOp->p4.p); - pOp->p4.p = 0; - if( n==P4_INT32 ){ - /* Note: this cast is safe, because the origin data point was an int - ** that was cast to a (const char *). */ - pOp->p4.i = SQLITE_PTR_TO_INT(zP4); - pOp->p4type = P4_INT32; - }else if( zP4==0 ){ - pOp->p4.p = 0; - pOp->p4type = P4_NOTUSED; - }else if( n==P4_KEYINFO ){ - KeyInfo *pKeyInfo; - int nField, nByte; - - nField = ((KeyInfo*)zP4)->nField; - nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; - pKeyInfo = sqlite3DbMallocRaw(0, nByte); - pOp->p4.pKeyInfo = pKeyInfo; - if( pKeyInfo ){ - u8 *aSortOrder; - memcpy((char*)pKeyInfo, zP4, nByte - nField); - aSortOrder = pKeyInfo->aSortOrder; - assert( aSortOrder!=0 ); - pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; - memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); - pOp->p4type = P4_KEYINFO; - }else{ - p->db->mallocFailed = 1; - pOp->p4type = P4_NOTUSED; - } - }else if( n==P4_KEYINFO_HANDOFF ){ - pOp->p4.p = (void*)zP4; - pOp->p4type = P4_KEYINFO; - }else if( n==P4_VTAB ){ - pOp->p4.p = (void*)zP4; - pOp->p4type = P4_VTAB; - sqlite3VtabLock((VTable *)zP4); - assert( ((VTable *)zP4)->db==p->db ); - }else if( n<0 ){ - pOp->p4.p = (void*)zP4; - pOp->p4type = (signed char)n; - }else{ - if( n==0 ) n = sqlite3Strlen30(zP4); - pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); - pOp->p4type = P4_DYNAMIC; - } -} - -#ifndef NDEBUG -/* -** Change the comment on the most recently coded instruction. Or -** insert a No-op and add the comment to that new instruction. This -** makes the code easier to read during debugging. None of this happens -** in a production build. -*/ -static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ - assert( p->nOp>0 || p->aOp==0 ); - assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); - if( p->nOp ){ - assert( p->aOp ); - sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); - p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); - } -} -SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ - va_list ap; - if( p ){ - va_start(ap, zFormat); - vdbeVComment(p, zFormat, ap); - va_end(ap); - } -} -SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ - va_list ap; - if( p ){ - sqlite3VdbeAddOp0(p, OP_Noop); - va_start(ap, zFormat); - vdbeVComment(p, zFormat, ap); - va_end(ap); - } -} -#endif /* NDEBUG */ - -/* -** Return the opcode for a given address. If the address is -1, then -** return the most recently inserted opcode. -** -** If a memory allocation error has occurred prior to the calling of this -** routine, then a pointer to a dummy VdbeOp will be returned. That opcode -** is readable but not writable, though it is cast to a writable value. -** The return of a dummy opcode allows the call to continue functioning -** after a OOM fault without having to check to see if the return from -** this routine is a valid pointer. But because the dummy.opcode is 0, -** dummy will never be written to. This is verified by code inspection and -** by running with Valgrind. -** -** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called -** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, -** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as -** a new VDBE is created. So we are free to set addr to p->nOp-1 without -** having to double-check to make sure that the result is non-negative. But -** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to -** check the value of p->nOp-1 before continuing. -*/ -SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ - /* C89 specifies that the constant "dummy" will be initialized to all - ** zeros, which is correct. MSVC generates a warning, nevertheless. */ - static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ - assert( p->magic==VDBE_MAGIC_INIT ); - if( addr<0 ){ -#ifdef SQLITE_OMIT_TRACE - if( p->nOp==0 ) return (VdbeOp*)&dummy; -#endif - addr = p->nOp - 1; - } - assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); - if( p->db->mallocFailed ){ - return (VdbeOp*)&dummy; - }else{ - return &p->aOp[addr]; - } -} - -#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ - || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -/* -** Compute a string that describes the P4 parameter for an opcode. -** Use zTemp for any required temporary buffer space. -*/ -static char *displayP4(Op *pOp, char *zTemp, int nTemp){ - char *zP4 = zTemp; - assert( nTemp>=20 ); - switch( pOp->p4type ){ - case P4_KEYINFO_STATIC: - case P4_KEYINFO: { - int i, j; - KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; - assert( pKeyInfo->aSortOrder!=0 ); - sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); - i = sqlite3Strlen30(zTemp); - for(j=0; j<pKeyInfo->nField; j++){ - CollSeq *pColl = pKeyInfo->aColl[j]; - const char *zColl = pColl ? pColl->zName : "nil"; - int n = sqlite3Strlen30(zColl); - if( i+n>nTemp-6 ){ - memcpy(&zTemp[i],",...",4); - break; - } - zTemp[i++] = ','; - if( pKeyInfo->aSortOrder[j] ){ - zTemp[i++] = '-'; - } - memcpy(&zTemp[i], zColl, n+1); - i += n; - } - zTemp[i++] = ')'; - zTemp[i] = 0; - assert( i<nTemp ); - break; - } - case P4_COLLSEQ: { - CollSeq *pColl = pOp->p4.pColl; - sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); - break; - } - case P4_FUNCDEF: { - FuncDef *pDef = pOp->p4.pFunc; - sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); - break; - } - case P4_INT64: { - sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); - break; - } - case P4_INT32: { - sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); - break; - } - case P4_REAL: { - sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); - break; - } - case P4_MEM: { - Mem *pMem = pOp->p4.pMem; - if( pMem->flags & MEM_Str ){ - zP4 = pMem->z; - }else if( pMem->flags & MEM_Int ){ - sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); - }else if( pMem->flags & MEM_Real ){ - sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); - }else if( pMem->flags & MEM_Null ){ - sqlite3_snprintf(nTemp, zTemp, "NULL"); - }else{ - assert( pMem->flags & MEM_Blob ); - zP4 = "(blob)"; - } - break; - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - case P4_VTAB: { - sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; - sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); - break; - } -#endif - case P4_INTARRAY: { - sqlite3_snprintf(nTemp, zTemp, "intarray"); - break; - } - case P4_SUBPROGRAM: { - sqlite3_snprintf(nTemp, zTemp, "program"); - break; - } - case P4_ADVANCE: { - zTemp[0] = 0; - break; - } - default: { - zP4 = pOp->p4.z; - if( zP4==0 ){ - zP4 = zTemp; - zTemp[0] = 0; - } - } - } - assert( zP4!=0 ); - return zP4; -} -#endif - -/* -** Declare to the Vdbe that the BTree object at db->aDb[i] is used. -** -** The prepared statements need to know in advance the complete set of -** attached databases that will be use. A mask of these databases -** is maintained in p->btreeMask. The p->lockMask value is the subset of -** p->btreeMask of databases that will require a lock. -*/ -SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ - assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); - assert( i<(int)sizeof(p->btreeMask)*8 ); - p->btreeMask |= ((yDbMask)1)<<i; - if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ - p->lockMask |= ((yDbMask)1)<<i; - } -} - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 -/* -** If SQLite is compiled to support shared-cache mode and to be threadsafe, -** this routine obtains the mutex associated with each BtShared structure -** that may be accessed by the VM passed as an argument. In doing so it also -** sets the BtShared.db member of each of the BtShared structures, ensuring -** that the correct busy-handler callback is invoked if required. -** -** If SQLite is not threadsafe but does support shared-cache mode, then -** sqlite3BtreeEnter() is invoked to set the BtShared.db variables -** of all of BtShared structures accessible via the database handle -** associated with the VM. -** -** If SQLite is not threadsafe and does not support shared-cache mode, this -** function is a no-op. -** -** The p->btreeMask field is a bitmask of all btrees that the prepared -** statement p will ever use. Let N be the number of bits in p->btreeMask -** corresponding to btrees that use shared cache. Then the runtime of -** this routine is N*N. But as N is rarely more than 1, this should not -** be a problem. -*/ -SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){ - int i; - yDbMask mask; - sqlite3 *db; - Db *aDb; - int nDb; - if( p->lockMask==0 ) return; /* The common case */ - db = p->db; - aDb = db->aDb; - nDb = db->nDb; - for(i=0, mask=1; i<nDb; i++, mask += mask){ - if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ - sqlite3BtreeEnter(aDb[i].pBt); - } - } -} -#endif - -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 -/* -** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). -*/ -SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){ - int i; - yDbMask mask; - sqlite3 *db; - Db *aDb; - int nDb; - if( p->lockMask==0 ) return; /* The common case */ - db = p->db; - aDb = db->aDb; - nDb = db->nDb; - for(i=0, mask=1; i<nDb; i++, mask += mask){ - if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ - sqlite3BtreeLeave(aDb[i].pBt); - } - } -} -#endif - -#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -/* -** Print a single opcode. This routine is used for debugging only. -*/ -SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ - char *zP4; - char zPtr[50]; - static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; - if( pOut==0 ) pOut = stdout; - zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); - fprintf(pOut, zFormat1, pc, - sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, -#ifdef SQLITE_DEBUG - pOp->zComment ? pOp->zComment : "" -#else - "" -#endif - ); - fflush(pOut); -} -#endif - -/* -** Release an array of N Mem elements -*/ -static void releaseMemArray(Mem *p, int N){ - if( p && N ){ - Mem *pEnd; - sqlite3 *db = p->db; - u8 malloc_failed = db->mallocFailed; - if( db->pnBytesFreed ){ - for(pEnd=&p[N]; p<pEnd; p++){ - sqlite3DbFree(db, p->zMalloc); - } - return; - } - for(pEnd=&p[N]; p<pEnd; p++){ - assert( (&p[1])==pEnd || p[0].db==p[1].db ); - - /* This block is really an inlined version of sqlite3VdbeMemRelease() - ** that takes advantage of the fact that the memory cell value is - ** being set to NULL after releasing any dynamic resources. - ** - ** The justification for duplicating code is that according to - ** callgrind, this causes a certain test case to hit the CPU 4.7 - ** percent less (x86 linux, gcc version 4.1.2, -O6) than if - ** sqlite3MemRelease() were called from here. With -O2, this jumps - ** to 6.6 percent. The test case is inserting 1000 rows into a table - ** with no indexes using a single prepared INSERT statement, bind() - ** and reset(). Inserts are grouped into a transaction. - */ - if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ - sqlite3VdbeMemRelease(p); - }else if( p->zMalloc ){ - sqlite3DbFree(db, p->zMalloc); - p->zMalloc = 0; - } - - p->flags = MEM_Invalid; - } - db->mallocFailed = malloc_failed; - } -} - -/* -** Delete a VdbeFrame object and its contents. VdbeFrame objects are -** allocated by the OP_Program opcode in sqlite3VdbeExec(). -*/ -SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){ - int i; - Mem *aMem = VdbeFrameMem(p); - VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; - for(i=0; i<p->nChildCsr; i++){ - sqlite3VdbeFreeCursor(p->v, apCsr[i]); - } - releaseMemArray(aMem, p->nChildMem); - sqlite3DbFree(p->v->db, p); -} - -#ifndef SQLITE_OMIT_EXPLAIN -/* -** Give a listing of the program in the virtual machine. -** -** The interface is the same as sqlite3VdbeExec(). But instead of -** running the code, it invokes the callback once for each instruction. -** This feature is used to implement "EXPLAIN". -** -** When p->explain==1, each instruction is listed. When -** p->explain==2, only OP_Explain instructions are listed and these -** are shown in a different format. p->explain==2 is used to implement -** EXPLAIN QUERY PLAN. -** -** When p->explain==1, first the main program is listed, then each of -** the trigger subprograms are listed one by one. -*/ -SQLITE_PRIVATE int sqlite3VdbeList( - Vdbe *p /* The VDBE */ -){ - int nRow; /* Stop when row count reaches this */ - int nSub = 0; /* Number of sub-vdbes seen so far */ - SubProgram **apSub = 0; /* Array of sub-vdbes */ - Mem *pSub = 0; /* Memory cell hold array of subprogs */ - sqlite3 *db = p->db; /* The database connection */ - int i; /* Loop counter */ - int rc = SQLITE_OK; /* Return code */ - Mem *pMem = &p->aMem[1]; /* First Mem of result set */ - - assert( p->explain ); - assert( p->magic==VDBE_MAGIC_RUN ); - assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); - - /* Even though this opcode does not use dynamic strings for - ** the result, result columns may become dynamic if the user calls - ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. - */ - releaseMemArray(pMem, 8); - p->pResultSet = 0; - - if( p->rc==SQLITE_NOMEM ){ - /* This happens if a malloc() inside a call to sqlite3_column_text() or - ** sqlite3_column_text16() failed. */ - db->mallocFailed = 1; - return SQLITE_ERROR; - } - - /* When the number of output rows reaches nRow, that means the - ** listing has finished and sqlite3_step() should return SQLITE_DONE. - ** nRow is the sum of the number of rows in the main program, plus - ** the sum of the number of rows in all trigger subprograms encountered - ** so far. The nRow value will increase as new trigger subprograms are - ** encountered, but p->pc will eventually catch up to nRow. - */ - nRow = p->nOp; - if( p->explain==1 ){ - /* The first 8 memory cells are used for the result set. So we will - ** commandeer the 9th cell to use as storage for an array of pointers - ** to trigger subprograms. The VDBE is guaranteed to have at least 9 - ** cells. */ - assert( p->nMem>9 ); - pSub = &p->aMem[9]; - if( pSub->flags&MEM_Blob ){ - /* On the first call to sqlite3_step(), pSub will hold a NULL. It is - ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ - nSub = pSub->n/sizeof(Vdbe*); - apSub = (SubProgram **)pSub->z; - } - for(i=0; i<nSub; i++){ - nRow += apSub[i]->nOp; - } - } - - do{ - i = p->pc++; - }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); - if( i>=nRow ){ - p->rc = SQLITE_OK; - rc = SQLITE_DONE; - }else if( db->u1.isInterrupted ){ - p->rc = SQLITE_INTERRUPT; - rc = SQLITE_ERROR; - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); - }else{ - char *z; - Op *pOp; - if( i<p->nOp ){ - /* The output line number is small enough that we are still in the - ** main program. */ - pOp = &p->aOp[i]; - }else{ - /* We are currently listing subprograms. Figure out which one and - ** pick up the appropriate opcode. */ - int j; - i -= p->nOp; - for(j=0; i>=apSub[j]->nOp; j++){ - i -= apSub[j]->nOp; - } - pOp = &apSub[j]->aOp[i]; - } - if( p->explain==1 ){ - pMem->flags = MEM_Int; - pMem->type = SQLITE_INTEGER; - pMem->u.i = i; /* Program counter */ - pMem++; - - pMem->flags = MEM_Static|MEM_Str|MEM_Term; - pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ - assert( pMem->z!=0 ); - pMem->n = sqlite3Strlen30(pMem->z); - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - pMem++; - - /* When an OP_Program opcode is encounter (the only opcode that has - ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms - ** kept in p->aMem[9].z to hold the new program - assuming this subprogram - ** has not already been seen. - */ - if( pOp->p4type==P4_SUBPROGRAM ){ - int nByte = (nSub+1)*sizeof(SubProgram*); - int j; - for(j=0; j<nSub; j++){ - if( apSub[j]==pOp->p4.pProgram ) break; - } - if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ - apSub = (SubProgram **)pSub->z; - apSub[nSub++] = pOp->p4.pProgram; - pSub->flags |= MEM_Blob; - pSub->n = nSub*sizeof(SubProgram*); - } - } - } - - pMem->flags = MEM_Int; - pMem->u.i = pOp->p1; /* P1 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Int; - pMem->u.i = pOp->p2; /* P2 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Int; - pMem->u.i = pOp->p3; /* P3 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ - assert( p->db->mallocFailed ); - return SQLITE_ERROR; - } - pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; - z = displayP4(pOp, pMem->z, 32); - if( z!=pMem->z ){ - sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); - }else{ - assert( pMem->z!=0 ); - pMem->n = sqlite3Strlen30(pMem->z); - pMem->enc = SQLITE_UTF8; - } - pMem->type = SQLITE_TEXT; - pMem++; - - if( p->explain==1 ){ - if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ - assert( p->db->mallocFailed ); - return SQLITE_ERROR; - } - pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; - pMem->n = 2; - sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - pMem++; - -#ifdef SQLITE_DEBUG - if( pOp->zComment ){ - pMem->flags = MEM_Str|MEM_Term; - pMem->z = pOp->zComment; - pMem->n = sqlite3Strlen30(pMem->z); - pMem->enc = SQLITE_UTF8; - pMem->type = SQLITE_TEXT; - }else -#endif - { - pMem->flags = MEM_Null; /* Comment */ - pMem->type = SQLITE_NULL; - } - } - - p->nResColumn = 8 - 4*(p->explain-1); - p->pResultSet = &p->aMem[1]; - p->rc = SQLITE_OK; - rc = SQLITE_ROW; - } - return rc; -} -#endif /* SQLITE_OMIT_EXPLAIN */ - -#ifdef SQLITE_DEBUG -/* -** Print the SQL that was used to generate a VDBE program. -*/ -SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ - int nOp = p->nOp; - VdbeOp *pOp; - if( nOp<1 ) return; - pOp = &p->aOp[0]; - if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ - const char *z = pOp->p4.z; - while( sqlite3Isspace(*z) ) z++; - printf("SQL: [%s]\n", z); - } -} -#endif - -#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) -/* -** Print an IOTRACE message showing SQL content. -*/ -SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){ - int nOp = p->nOp; - VdbeOp *pOp; - if( sqlite3IoTrace==0 ) return; - if( nOp<1 ) return; - pOp = &p->aOp[0]; - if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ - int i, j; - char z[1000]; - sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); - for(i=0; sqlite3Isspace(z[i]); i++){} - for(j=0; z[i]; i++){ - if( sqlite3Isspace(z[i]) ){ - if( z[i-1]!=' ' ){ - z[j++] = ' '; - } - }else{ - z[j++] = z[i]; - } - } - z[j] = 0; - sqlite3IoTrace("SQL %s\n", z); - } -} -#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ - -/* -** Allocate space from a fixed size buffer and return a pointer to -** that space. If insufficient space is available, return NULL. -** -** The pBuf parameter is the initial value of a pointer which will -** receive the new memory. pBuf is normally NULL. If pBuf is not -** NULL, it means that memory space has already been allocated and that -** this routine should not allocate any new memory. When pBuf is not -** NULL simply return pBuf. Only allocate new memory space when pBuf -** is NULL. -** -** nByte is the number of bytes of space needed. -** -** *ppFrom points to available space and pEnd points to the end of the -** available space. When space is allocated, *ppFrom is advanced past -** the end of the allocated space. -** -** *pnByte is a counter of the number of bytes of space that have failed -** to allocate. If there is insufficient space in *ppFrom to satisfy the -** request, then increment *pnByte by the amount of the request. -*/ -static void *allocSpace( - void *pBuf, /* Where return pointer will be stored */ - int nByte, /* Number of bytes to allocate */ - u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ - u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ - int *pnByte /* If allocation cannot be made, increment *pnByte */ -){ - assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); - if( pBuf ) return pBuf; - nByte = ROUND8(nByte); - if( &(*ppFrom)[nByte] <= pEnd ){ - pBuf = (void*)*ppFrom; - *ppFrom += nByte; - }else{ - *pnByte += nByte; - } - return pBuf; -} - -/* -** Rewind the VDBE back to the beginning in preparation for -** running it. -*/ -SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){ -#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) - int i; -#endif - assert( p!=0 ); - assert( p->magic==VDBE_MAGIC_INIT ); - - /* There should be at least one opcode. - */ - assert( p->nOp>0 ); - - /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ - p->magic = VDBE_MAGIC_RUN; - -#ifdef SQLITE_DEBUG - for(i=1; i<p->nMem; i++){ - assert( p->aMem[i].db==p->db ); - } -#endif - p->pc = -1; - p->rc = SQLITE_OK; - p->errorAction = OE_Abort; - p->magic = VDBE_MAGIC_RUN; - p->nChange = 0; - p->cacheCtr = 1; - p->minWriteFileFormat = 255; - p->iStatement = 0; - p->nFkConstraint = 0; -#ifdef VDBE_PROFILE - for(i=0; i<p->nOp; i++){ - p->aOp[i].cnt = 0; - p->aOp[i].cycles = 0; - } -#endif -} - -/* -** Prepare a virtual machine for execution for the first time after -** creating the virtual machine. This involves things such -** as allocating stack space and initializing the program counter. -** After the VDBE has be prepped, it can be executed by one or more -** calls to sqlite3VdbeExec(). -** -** This function may be called exact once on a each virtual machine. -** After this routine is called the VM has been "packaged" and is ready -** to run. After this routine is called, futher calls to -** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects -** the Vdbe from the Parse object that helped generate it so that the -** the Vdbe becomes an independent entity and the Parse object can be -** destroyed. -** -** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back -** to its initial state after it has been run. -*/ -SQLITE_PRIVATE void sqlite3VdbeMakeReady( - Vdbe *p, /* The VDBE */ - Parse *pParse /* Parsing context */ -){ - sqlite3 *db; /* The database connection */ - int nVar; /* Number of parameters */ - int nMem; /* Number of VM memory registers */ - int nCursor; /* Number of cursors required */ - int nArg; /* Number of arguments in subprograms */ - int nOnce; /* Number of OP_Once instructions */ - int n; /* Loop counter */ - u8 *zCsr; /* Memory available for allocation */ - u8 *zEnd; /* First byte past allocated memory */ - int nByte; /* How much extra memory is needed */ - - assert( p!=0 ); - assert( p->nOp>0 ); - assert( pParse!=0 ); - assert( p->magic==VDBE_MAGIC_INIT ); - db = p->db; - assert( db->mallocFailed==0 ); - nVar = pParse->nVar; - nMem = pParse->nMem; - nCursor = pParse->nTab; - nArg = pParse->nMaxArg; - nOnce = pParse->nOnce; - if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ - - /* For each cursor required, also allocate a memory cell. Memory - ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by - ** the vdbe program. Instead they are used to allocate space for - ** VdbeCursor/BtCursor structures. The blob of memory associated with - ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) - ** stores the blob of memory associated with cursor 1, etc. - ** - ** See also: allocateCursor(). - */ - nMem += nCursor; - - /* Allocate space for memory registers, SQL variables, VDBE cursors and - ** an array to marshal SQL function arguments in. - */ - zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ - zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */ - - resolveP2Values(p, &nArg); - p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); - if( pParse->explain && nMem<10 ){ - nMem = 10; - } - memset(zCsr, 0, zEnd-zCsr); - zCsr += (zCsr - (u8*)0)&7; - assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); - p->expired = 0; - - /* Memory for registers, parameters, cursor, etc, is allocated in two - ** passes. On the first pass, we try to reuse unused space at the - ** end of the opcode array. If we are unable to satisfy all memory - ** requirements by reusing the opcode array tail, then the second - ** pass will fill in the rest using a fresh allocation. - ** - ** This two-pass approach that reuses as much memory as possible from - ** the leftover space at the end of the opcode array can significantly - ** reduce the amount of memory held by a prepared statement. - */ - do { - nByte = 0; - p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); - p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); - p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); - p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); - p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), - &zCsr, zEnd, &nByte); - p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); - if( nByte ){ - p->pFree = sqlite3DbMallocZero(db, nByte); - } - zCsr = p->pFree; - zEnd = &zCsr[nByte]; - }while( nByte && !db->mallocFailed ); - - p->nCursor = nCursor; - p->nOnceFlag = nOnce; - if( p->aVar ){ - p->nVar = (ynVar)nVar; - for(n=0; n<nVar; n++){ - p->aVar[n].flags = MEM_Null; - p->aVar[n].db = db; - } - } - if( p->azVar ){ - p->nzVar = pParse->nzVar; - memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); - memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); - } - if( p->aMem ){ - p->aMem--; /* aMem[] goes from 1..nMem */ - p->nMem = nMem; /* not from 0..nMem-1 */ - for(n=1; n<=nMem; n++){ - p->aMem[n].flags = MEM_Invalid; - p->aMem[n].db = db; - } - } - p->explain = pParse->explain; - sqlite3VdbeRewind(p); -} - -/* -** Close a VDBE cursor and release all the resources that cursor -** happens to hold. -*/ -SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ - if( pCx==0 ){ - return; - } - sqlite3VdbeSorterClose(p->db, pCx); - if( pCx->pBt ){ - sqlite3BtreeClose(pCx->pBt); - /* The pCx->pCursor will be close automatically, if it exists, by - ** the call above. */ - }else if( pCx->pCursor ){ - sqlite3BtreeCloseCursor(pCx->pCursor); - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pCx->pVtabCursor ){ - sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; - const sqlite3_module *pModule = pCx->pModule; - p->inVtabMethod = 1; - pModule->xClose(pVtabCursor); - p->inVtabMethod = 0; - } -#endif -} - -/* -** Copy the values stored in the VdbeFrame structure to its Vdbe. This -** is used, for example, when a trigger sub-program is halted to restore -** control to the main program. -*/ -SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ - Vdbe *v = pFrame->v; - v->aOnceFlag = pFrame->aOnceFlag; - v->nOnceFlag = pFrame->nOnceFlag; - v->aOp = pFrame->aOp; - v->nOp = pFrame->nOp; - v->aMem = pFrame->aMem; - v->nMem = pFrame->nMem; - v->apCsr = pFrame->apCsr; - v->nCursor = pFrame->nCursor; - v->db->lastRowid = pFrame->lastRowid; - v->nChange = pFrame->nChange; - return pFrame->pc; -} - -/* -** Close all cursors. -** -** Also release any dynamic memory held by the VM in the Vdbe.aMem memory -** cell array. This is necessary as the memory cell array may contain -** pointers to VdbeFrame objects, which may in turn contain pointers to -** open cursors. -*/ -static void closeAllCursors(Vdbe *p){ - if( p->pFrame ){ - VdbeFrame *pFrame; - for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); - sqlite3VdbeFrameRestore(pFrame); - } - p->pFrame = 0; - p->nFrame = 0; - - if( p->apCsr ){ - int i; - for(i=0; i<p->nCursor; i++){ - VdbeCursor *pC = p->apCsr[i]; - if( pC ){ - sqlite3VdbeFreeCursor(p, pC); - p->apCsr[i] = 0; - } - } - } - if( p->aMem ){ - releaseMemArray(&p->aMem[1], p->nMem); - } - while( p->pDelFrame ){ - VdbeFrame *pDel = p->pDelFrame; - p->pDelFrame = pDel->pParent; - sqlite3VdbeFrameDelete(pDel); - } -} - -/* -** Clean up the VM after execution. -** -** This routine will automatically close any cursors, lists, and/or -** sorters that were left open. It also deletes the values of -** variables in the aVar[] array. -*/ -static void Cleanup(Vdbe *p){ - sqlite3 *db = p->db; - -#ifdef SQLITE_DEBUG - /* Execute assert() statements to ensure that the Vdbe.apCsr[] and - ** Vdbe.aMem[] arrays have already been cleaned up. */ - int i; - if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); - if( p->aMem ){ - for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid ); - } -#endif - - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = 0; - p->pResultSet = 0; -} - -/* -** Set the number of result columns that will be returned by this SQL -** statement. This is now set at compile time, rather than during -** execution of the vdbe program so that sqlite3_column_count() can -** be called on an SQL statement before sqlite3_step(). -*/ -SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ - Mem *pColName; - int n; - sqlite3 *db = p->db; - - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); - sqlite3DbFree(db, p->aColName); - n = nResColumn*COLNAME_N; - p->nResColumn = (u16)nResColumn; - p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); - if( p->aColName==0 ) return; - while( n-- > 0 ){ - pColName->flags = MEM_Null; - pColName->db = p->db; - pColName++; - } -} - -/* -** Set the name of the idx'th column to be returned by the SQL statement. -** zName must be a pointer to a nul terminated string. -** -** This call must be made after a call to sqlite3VdbeSetNumCols(). -** -** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC -** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed -** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. -*/ -SQLITE_PRIVATE int sqlite3VdbeSetColName( - Vdbe *p, /* Vdbe being configured */ - int idx, /* Index of column zName applies to */ - int var, /* One of the COLNAME_* constants */ - const char *zName, /* Pointer to buffer containing name */ - void (*xDel)(void*) /* Memory management strategy for zName */ -){ - int rc; - Mem *pColName; - assert( idx<p->nResColumn ); - assert( var<COLNAME_N ); - if( p->db->mallocFailed ){ - assert( !zName || xDel!=SQLITE_DYNAMIC ); - return SQLITE_NOMEM; - } - assert( p->aColName!=0 ); - pColName = &(p->aColName[idx+var*p->nResColumn]); - rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); - assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); - return rc; -} - -/* -** A read or write transaction may or may not be active on database handle -** db. If a transaction is active, commit it. If there is a -** write-transaction spanning more than one database file, this routine -** takes care of the master journal trickery. -*/ -static int vdbeCommit(sqlite3 *db, Vdbe *p){ - int i; - int nTrans = 0; /* Number of databases with an active write-transaction */ - int rc = SQLITE_OK; - int needXcommit = 0; - -#ifdef SQLITE_OMIT_VIRTUALTABLE - /* With this option, sqlite3VtabSync() is defined to be simply - ** SQLITE_OK so p is not used. - */ - UNUSED_PARAMETER(p); -#endif - - /* Before doing anything else, call the xSync() callback for any - ** virtual module tables written in this transaction. This has to - ** be done before determining whether a master journal file is - ** required, as an xSync() callback may add an attached database - ** to the transaction. - */ - rc = sqlite3VtabSync(db, &p->zErrMsg); - - /* This loop determines (a) if the commit hook should be invoked and - ** (b) how many database files have open write transactions, not - ** including the temp database. (b) is important because if more than - ** one database file has an open write transaction, a master journal - ** file is required for an atomic commit. - */ - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( sqlite3BtreeIsInTrans(pBt) ){ - needXcommit = 1; - if( i!=1 ) nTrans++; - sqlite3BtreeEnter(pBt); - rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); - sqlite3BtreeLeave(pBt); - } - } - if( rc!=SQLITE_OK ){ - return rc; - } - - /* If there are any write-transactions at all, invoke the commit hook */ - if( needXcommit && db->xCommitCallback ){ - rc = db->xCommitCallback(db->pCommitArg); - if( rc ){ - return SQLITE_CONSTRAINT_COMMITHOOK; - } - } - - /* The simple case - no more than one database file (not counting the - ** TEMP database) has a transaction active. There is no need for the - ** master-journal. - ** - ** If the return value of sqlite3BtreeGetFilename() is a zero length - ** string, it means the main database is :memory: or a temp file. In - ** that case we do not support atomic multi-file commits, so use the - ** simple case then too. - */ - if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) - || nTrans<=1 - ){ - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseOne(pBt, 0); - } - } - - /* Do the commit only if all databases successfully complete phase 1. - ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an - ** IO error while deleting or truncating a journal file. It is unlikely, - ** but could happen. In this case abandon processing and return the error. - */ - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); - } - } - if( rc==SQLITE_OK ){ - sqlite3VtabCommit(db); - } - } - - /* The complex case - There is a multi-file write-transaction active. - ** This requires a master journal file to ensure the transaction is - ** committed atomicly. - */ -#ifndef SQLITE_OMIT_DISKIO - else{ - sqlite3_vfs *pVfs = db->pVfs; - int needSync = 0; - char *zMaster = 0; /* File-name for the master journal */ - char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); - sqlite3_file *pMaster = 0; - i64 offset = 0; - int res; - int retryCount = 0; - int nMainFile; - - /* Select a master journal file name */ - nMainFile = sqlite3Strlen30(zMainFile); - zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); - if( zMaster==0 ) return SQLITE_NOMEM; - do { - u32 iRandom; - if( retryCount ){ - if( retryCount>100 ){ - sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); - sqlite3OsDelete(pVfs, zMaster, 0); - break; - }else if( retryCount==1 ){ - sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); - } - } - retryCount++; - sqlite3_randomness(sizeof(iRandom), &iRandom); - sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", - (iRandom>>8)&0xffffff, iRandom&0xff); - /* The antipenultimate character of the master journal name must - ** be "9" to avoid name collisions when using 8+3 filenames. */ - assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); - sqlite3FileSuffix3(zMainFile, zMaster); - rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); - }while( rc==SQLITE_OK && res ); - if( rc==SQLITE_OK ){ - /* Open the master journal. */ - rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, - SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| - SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 - ); - } - if( rc!=SQLITE_OK ){ - sqlite3DbFree(db, zMaster); - return rc; - } - - /* Write the name of each database file in the transaction into the new - ** master journal file. If an error occurs at this point close - ** and delete the master journal file. All the individual journal files - ** still have 'null' as the master journal pointer, so they will roll - ** back independently if a failure occurs. - */ - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( sqlite3BtreeIsInTrans(pBt) ){ - char const *zFile = sqlite3BtreeGetJournalname(pBt); - if( zFile==0 ){ - continue; /* Ignore TEMP and :memory: databases */ - } - assert( zFile[0]!=0 ); - if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ - needSync = 1; - } - rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); - offset += sqlite3Strlen30(zFile)+1; - if( rc!=SQLITE_OK ){ - sqlite3OsCloseFree(pMaster); - sqlite3OsDelete(pVfs, zMaster, 0); - sqlite3DbFree(db, zMaster); - return rc; - } - } - } - - /* Sync the master journal file. If the IOCAP_SEQUENTIAL device - ** flag is set this is not required. - */ - if( needSync - && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) - && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) - ){ - sqlite3OsCloseFree(pMaster); - sqlite3OsDelete(pVfs, zMaster, 0); - sqlite3DbFree(db, zMaster); - return rc; - } - - /* Sync all the db files involved in the transaction. The same call - ** sets the master journal pointer in each individual journal. If - ** an error occurs here, do not delete the master journal file. - ** - ** If the error occurs during the first call to - ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the - ** master journal file will be orphaned. But we cannot delete it, - ** in case the master journal file name was written into the journal - ** file before the failure occurred. - */ - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); - } - } - sqlite3OsCloseFree(pMaster); - assert( rc!=SQLITE_BUSY ); - if( rc!=SQLITE_OK ){ - sqlite3DbFree(db, zMaster); - return rc; - } - - /* Delete the master journal file. This commits the transaction. After - ** doing this the directory is synced again before any individual - ** transaction files are deleted. - */ - rc = sqlite3OsDelete(pVfs, zMaster, 1); - sqlite3DbFree(db, zMaster); - zMaster = 0; - if( rc ){ - return rc; - } - - /* All files and directories have already been synced, so the following - ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and - ** deleting or truncating journals. If something goes wrong while - ** this is happening we don't really care. The integrity of the - ** transaction is already guaranteed, but some stray 'cold' journals - ** may be lying around. Returning an error code won't help matters. - */ - disable_simulated_io_errors(); - sqlite3BeginBenignMalloc(); - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - sqlite3BtreeCommitPhaseTwo(pBt, 1); - } - } - sqlite3EndBenignMalloc(); - enable_simulated_io_errors(); - - sqlite3VtabCommit(db); - } -#endif - - return rc; -} - -/* -** This routine checks that the sqlite3.activeVdbeCnt count variable -** matches the number of vdbe's in the list sqlite3.pVdbe that are -** currently active. An assertion fails if the two counts do not match. -** This is an internal self-check only - it is not an essential processing -** step. -** -** This is a no-op if NDEBUG is defined. -*/ -#ifndef NDEBUG -static void checkActiveVdbeCnt(sqlite3 *db){ - Vdbe *p; - int cnt = 0; - int nWrite = 0; - p = db->pVdbe; - while( p ){ - if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ - cnt++; - if( p->readOnly==0 ) nWrite++; - } - p = p->pNext; - } - assert( cnt==db->activeVdbeCnt ); - assert( nWrite==db->writeVdbeCnt ); -} -#else -#define checkActiveVdbeCnt(x) -#endif - -/* -** If the Vdbe passed as the first argument opened a statement-transaction, -** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or -** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement -** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the -** statement transaction is commtted. -** -** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. -** Otherwise SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ - sqlite3 *const db = p->db; - int rc = SQLITE_OK; - - /* If p->iStatement is greater than zero, then this Vdbe opened a - ** statement transaction that should be closed here. The only exception - ** is that an IO error may have occurred, causing an emergency rollback. - ** In this case (db->nStatement==0), and there is nothing to do. - */ - if( db->nStatement && p->iStatement ){ - int i; - const int iSavepoint = p->iStatement-1; - - assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); - assert( db->nStatement>0 ); - assert( p->iStatement==(db->nStatement+db->nSavepoint) ); - - for(i=0; i<db->nDb; i++){ - int rc2 = SQLITE_OK; - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - if( eOp==SAVEPOINT_ROLLBACK ){ - rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); - } - if( rc2==SQLITE_OK ){ - rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); - } - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - } - db->nStatement--; - p->iStatement = 0; - - if( rc==SQLITE_OK ){ - if( eOp==SAVEPOINT_ROLLBACK ){ - rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); - } - if( rc==SQLITE_OK ){ - rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); - } - } - - /* If the statement transaction is being rolled back, also restore the - ** database handles deferred constraint counter to the value it had when - ** the statement transaction was opened. */ - if( eOp==SAVEPOINT_ROLLBACK ){ - db->nDeferredCons = p->nStmtDefCons; - } - } - return rc; -} - -/* -** This function is called when a transaction opened by the database -** handle associated with the VM passed as an argument is about to be -** committed. If there are outstanding deferred foreign key constraint -** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. -** -** If there are outstanding FK violations and this function returns -** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY -** and write an error message to it. Then return SQLITE_ERROR. -*/ -#ifndef SQLITE_OMIT_FOREIGN_KEY -SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ - sqlite3 *db = p->db; - if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ - p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; - p->errorAction = OE_Abort; - sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); - return SQLITE_ERROR; - } - return SQLITE_OK; -} -#endif - -/* -** This routine is called the when a VDBE tries to halt. If the VDBE -** has made changes and is in autocommit mode, then commit those -** changes. If a rollback is needed, then do the rollback. -** -** This routine is the only way to move the state of a VM from -** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to -** call this on a VM that is in the SQLITE_MAGIC_HALT state. -** -** Return an error code. If the commit could not complete because of -** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it -** means the close did not happen and needs to be repeated. -*/ -SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){ - int rc; /* Used to store transient return codes */ - sqlite3 *db = p->db; - - /* This function contains the logic that determines if a statement or - ** transaction will be committed or rolled back as a result of the - ** execution of this virtual machine. - ** - ** If any of the following errors occur: - ** - ** SQLITE_NOMEM - ** SQLITE_IOERR - ** SQLITE_FULL - ** SQLITE_INTERRUPT - ** - ** Then the internal cache might have been left in an inconsistent - ** state. We need to rollback the statement transaction, if there is - ** one, or the complete transaction if there is no statement transaction. - */ - - if( p->db->mallocFailed ){ - p->rc = SQLITE_NOMEM; - } - if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); - closeAllCursors(p); - if( p->magic!=VDBE_MAGIC_RUN ){ - return SQLITE_OK; - } - checkActiveVdbeCnt(db); - - /* No commit or rollback needed if the program never started */ - if( p->pc>=0 ){ - int mrc; /* Primary error code from p->rc */ - int eStatementOp = 0; - int isSpecialError; /* Set to true if a 'special' error */ - - /* Lock all btrees used by the statement */ - sqlite3VdbeEnter(p); - - /* Check for one of the special errors */ - mrc = p->rc & 0xff; - assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ - isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR - || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; - if( isSpecialError ){ - /* If the query was read-only and the error code is SQLITE_INTERRUPT, - ** no rollback is necessary. Otherwise, at least a savepoint - ** transaction must be rolled back to restore the database to a - ** consistent state. - ** - ** Even if the statement is read-only, it is important to perform - ** a statement or transaction rollback operation. If the error - ** occurred while writing to the journal, sub-journal or database - ** file as part of an effort to free up cache space (see function - ** pagerStress() in pager.c), the rollback is required to restore - ** the pager to a consistent state. - */ - if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ - if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ - eStatementOp = SAVEPOINT_ROLLBACK; - }else{ - /* We are forced to roll back the active transaction. Before doing - ** so, abort any other statements this handle currently has active. - */ - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); - sqlite3CloseSavepoints(db); - db->autoCommit = 1; - } - } - } - - /* Check for immediate foreign key violations. */ - if( p->rc==SQLITE_OK ){ - sqlite3VdbeCheckFk(p, 0); - } - - /* If the auto-commit flag is set and this is the only active writer - ** VM, then we do either a commit or rollback of the current transaction. - ** - ** Note: This block also runs if one of the special errors handled - ** above has occurred. - */ - if( !sqlite3VtabInSync(db) - && db->autoCommit - && db->writeVdbeCnt==(p->readOnly==0) - ){ - if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ - rc = sqlite3VdbeCheckFk(p, 1); - if( rc!=SQLITE_OK ){ - if( NEVER(p->readOnly) ){ - sqlite3VdbeLeave(p); - return SQLITE_ERROR; - } - rc = SQLITE_CONSTRAINT_FOREIGNKEY; - }else{ - /* The auto-commit flag is true, the vdbe program was successful - ** or hit an 'OR FAIL' constraint and there are no deferred foreign - ** key constraints to hold up the transaction. This means a commit - ** is required. */ - rc = vdbeCommit(db, p); - } - if( rc==SQLITE_BUSY && p->readOnly ){ - sqlite3VdbeLeave(p); - return SQLITE_BUSY; - }else if( rc!=SQLITE_OK ){ - p->rc = rc; - sqlite3RollbackAll(db, SQLITE_OK); - }else{ - db->nDeferredCons = 0; - sqlite3CommitInternalChanges(db); - } - }else{ - sqlite3RollbackAll(db, SQLITE_OK); - } - db->nStatement = 0; - }else if( eStatementOp==0 ){ - if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ - eStatementOp = SAVEPOINT_RELEASE; - }else if( p->errorAction==OE_Abort ){ - eStatementOp = SAVEPOINT_ROLLBACK; - }else{ - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); - sqlite3CloseSavepoints(db); - db->autoCommit = 1; - } - } - - /* If eStatementOp is non-zero, then a statement transaction needs to - ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to - ** do so. If this operation returns an error, and the current statement - ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the - ** current statement error code. - */ - if( eStatementOp ){ - rc = sqlite3VdbeCloseStatement(p, eStatementOp); - if( rc ){ - if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ - p->rc = rc; - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = 0; - } - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); - sqlite3CloseSavepoints(db); - db->autoCommit = 1; - } - } - - /* If this was an INSERT, UPDATE or DELETE and no statement transaction - ** has been rolled back, update the database connection change-counter. - */ - if( p->changeCntOn ){ - if( eStatementOp!=SAVEPOINT_ROLLBACK ){ - sqlite3VdbeSetChanges(db, p->nChange); - }else{ - sqlite3VdbeSetChanges(db, 0); - } - p->nChange = 0; - } - - /* Release the locks */ - sqlite3VdbeLeave(p); - } - - /* We have successfully halted and closed the VM. Record this fact. */ - if( p->pc>=0 ){ - db->activeVdbeCnt--; - if( !p->readOnly ){ - db->writeVdbeCnt--; - } - assert( db->activeVdbeCnt>=db->writeVdbeCnt ); - } - p->magic = VDBE_MAGIC_HALT; - checkActiveVdbeCnt(db); - if( p->db->mallocFailed ){ - p->rc = SQLITE_NOMEM; - } - - /* If the auto-commit flag is set to true, then any locks that were held - ** by connection db have now been released. Call sqlite3ConnectionUnlocked() - ** to invoke any required unlock-notify callbacks. - */ - if( db->autoCommit ){ - sqlite3ConnectionUnlocked(db); - } - - assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); - return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); -} - - -/* -** Each VDBE holds the result of the most recent sqlite3_step() call -** in p->rc. This routine sets that result back to SQLITE_OK. -*/ -SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){ - p->rc = SQLITE_OK; -} - -/* -** Copy the error code and error message belonging to the VDBE passed -** as the first argument to its database handle (so that they will be -** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). -** -** This function does not clear the VDBE error code or message, just -** copies them to the database handle. -*/ -SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){ - sqlite3 *db = p->db; - int rc = p->rc; - if( p->zErrMsg ){ - u8 mallocFailed = db->mallocFailed; - sqlite3BeginBenignMalloc(); - sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); - sqlite3EndBenignMalloc(); - db->mallocFailed = mallocFailed; - db->errCode = rc; - }else{ - sqlite3Error(db, rc, 0); - } - return rc; -} - -#ifdef SQLITE_ENABLE_SQLLOG -/* -** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, -** invoke it. -*/ -static void vdbeInvokeSqllog(Vdbe *v){ - if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ - char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); - assert( v->db->init.busy==0 ); - if( zExpanded ){ - sqlite3GlobalConfig.xSqllog( - sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 - ); - sqlite3DbFree(v->db, zExpanded); - } - } -} -#else -# define vdbeInvokeSqllog(x) -#endif - -/* -** Clean up a VDBE after execution but do not delete the VDBE just yet. -** Write any error messages into *pzErrMsg. Return the result code. -** -** After this routine is run, the VDBE should be ready to be executed -** again. -** -** To look at it another way, this routine resets the state of the -** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to -** VDBE_MAGIC_INIT. -*/ -SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){ - sqlite3 *db; - db = p->db; - - /* If the VM did not run to completion or if it encountered an - ** error, then it might not have been halted properly. So halt - ** it now. - */ - sqlite3VdbeHalt(p); - - /* If the VDBE has be run even partially, then transfer the error code - ** and error message from the VDBE into the main database structure. But - ** if the VDBE has just been set to run but has not actually executed any - ** instructions yet, leave the main database error information unchanged. - */ - if( p->pc>=0 ){ - vdbeInvokeSqllog(p); - sqlite3VdbeTransferError(p); - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = 0; - if( p->runOnlyOnce ) p->expired = 1; - }else if( p->rc && p->expired ){ - /* The expired flag was set on the VDBE before the first call - ** to sqlite3_step(). For consistency (since sqlite3_step() was - ** called), set the database error in this case as well. - */ - sqlite3Error(db, p->rc, 0); - sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = 0; - } - - /* Reclaim all memory used by the VDBE - */ - Cleanup(p); - - /* Save profiling information from this VDBE run. - */ -#ifdef VDBE_PROFILE - { - FILE *out = fopen("vdbe_profile.out", "a"); - if( out ){ - int i; - fprintf(out, "---- "); - for(i=0; i<p->nOp; i++){ - fprintf(out, "%02x", p->aOp[i].opcode); - } - fprintf(out, "\n"); - for(i=0; i<p->nOp; i++){ - fprintf(out, "%6d %10lld %8lld ", - p->aOp[i].cnt, - p->aOp[i].cycles, - p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 - ); - sqlite3VdbePrintOp(out, i, &p->aOp[i]); - } - fclose(out); - } - } -#endif - p->magic = VDBE_MAGIC_INIT; - return p->rc & db->errMask; -} - -/* -** Clean up and delete a VDBE after execution. Return an integer which is -** the result code. Write any error message text into *pzErrMsg. -*/ -SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){ - int rc = SQLITE_OK; - if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ - rc = sqlite3VdbeReset(p); - assert( (rc & p->db->errMask)==rc ); - } - sqlite3VdbeDelete(p); - return rc; -} - -/* -** Call the destructor for each auxdata entry in pVdbeFunc for which -** the corresponding bit in mask is clear. Auxdata entries beyond 31 -** are always destroyed. To destroy all auxdata entries, call this -** routine with mask==0. -*/ -SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ - int i; - for(i=0; i<pVdbeFunc->nAux; i++){ - struct AuxData *pAux = &pVdbeFunc->apAux[i]; - if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ - if( pAux->xDelete ){ - pAux->xDelete(pAux->pAux); - } - pAux->pAux = 0; - } - } -} - -/* -** Free all memory associated with the Vdbe passed as the second argument, -** except for object itself, which is preserved. -** -** The difference between this function and sqlite3VdbeDelete() is that -** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with -** the database connection and frees the object itself. -*/ -SQLITE_PRIVATE void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ - SubProgram *pSub, *pNext; - int i; - assert( p->db==0 || p->db==db ); - releaseMemArray(p->aVar, p->nVar); - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); - for(pSub=p->pProgram; pSub; pSub=pNext){ - pNext = pSub->pNext; - vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); - sqlite3DbFree(db, pSub); - } - for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); - vdbeFreeOpArray(db, p->aOp, p->nOp); - sqlite3DbFree(db, p->aLabel); - sqlite3DbFree(db, p->aColName); - sqlite3DbFree(db, p->zSql); - sqlite3DbFree(db, p->pFree); -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) - sqlite3DbFree(db, p->zExplain); - sqlite3DbFree(db, p->pExplain); -#endif -} - -/* -** Delete an entire VDBE. -*/ -SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ - sqlite3 *db; - - if( NEVER(p==0) ) return; - db = p->db; - assert( sqlite3_mutex_held(db->mutex) ); - sqlite3VdbeClearObject(db, p); - if( p->pPrev ){ - p->pPrev->pNext = p->pNext; - }else{ - assert( db->pVdbe==p ); - db->pVdbe = p->pNext; - } - if( p->pNext ){ - p->pNext->pPrev = p->pPrev; - } - p->magic = VDBE_MAGIC_DEAD; - p->db = 0; - sqlite3DbFree(db, p); -} - -/* -** Make sure the cursor p is ready to read or write the row to which it -** was last positioned. Return an error code if an OOM fault or I/O error -** prevents us from positioning the cursor to its correct position. -** -** If a MoveTo operation is pending on the given cursor, then do that -** MoveTo now. If no move is pending, check to see if the row has been -** deleted out from under the cursor and if it has, mark the row as -** a NULL row. -** -** If the cursor is already pointing to the correct row and that row has -** not been deleted out from under the cursor, then this routine is a no-op. -*/ -SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){ - if( p->deferredMoveto ){ - int res, rc; -#ifdef SQLITE_TEST - extern int sqlite3_search_count; -#endif - assert( p->isTable ); - rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); - if( rc ) return rc; - p->lastRowid = p->movetoTarget; - if( res!=0 ) return SQLITE_CORRUPT_BKPT; - p->rowidIsValid = 1; -#ifdef SQLITE_TEST - sqlite3_search_count++; -#endif - p->deferredMoveto = 0; - p->cacheStatus = CACHE_STALE; - }else if( ALWAYS(p->pCursor) ){ - int hasMoved; - int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); - if( rc ) return rc; - if( hasMoved ){ - p->cacheStatus = CACHE_STALE; - p->nullRow = 1; - } - } - return SQLITE_OK; -} - -/* -** The following functions: -** -** sqlite3VdbeSerialType() -** sqlite3VdbeSerialTypeLen() -** sqlite3VdbeSerialLen() -** sqlite3VdbeSerialPut() -** sqlite3VdbeSerialGet() -** -** encapsulate the code that serializes values for storage in SQLite -** data and index records. Each serialized value consists of a -** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned -** integer, stored as a varint. -** -** In an SQLite index record, the serial type is stored directly before -** the blob of data that it corresponds to. In a table record, all serial -** types are stored at the start of the record, and the blobs of data at -** the end. Hence these functions allow the caller to handle the -** serial-type and data blob separately. -** -** The following table describes the various storage classes for data: -** -** serial type bytes of data type -** -------------- --------------- --------------- -** 0 0 NULL -** 1 1 signed integer -** 2 2 signed integer -** 3 3 signed integer -** 4 4 signed integer -** 5 6 signed integer -** 6 8 signed integer -** 7 8 IEEE float -** 8 0 Integer constant 0 -** 9 0 Integer constant 1 -** 10,11 reserved for expansion -** N>=12 and even (N-12)/2 BLOB -** N>=13 and odd (N-13)/2 text -** -** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions -** of SQLite will not understand those serial types. -*/ - -/* -** Return the serial-type for the value stored in pMem. -*/ -SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ - int flags = pMem->flags; - int n; - - if( flags&MEM_Null ){ - return 0; - } - if( flags&MEM_Int ){ - /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ -# define MAX_6BYTE ((((i64)0x00008000)<<32)-1) - i64 i = pMem->u.i; - u64 u; - if( i<0 ){ - if( i<(-MAX_6BYTE) ) return 6; - /* Previous test prevents: u = -(-9223372036854775808) */ - u = -i; - }else{ - u = i; - } - if( u<=127 ){ - return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; - } - if( u<=32767 ) return 2; - if( u<=8388607 ) return 3; - if( u<=2147483647 ) return 4; - if( u<=MAX_6BYTE ) return 5; - return 6; - } - if( flags&MEM_Real ){ - return 7; - } - assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); - n = pMem->n; - if( flags & MEM_Zero ){ - n += pMem->u.nZero; - } - assert( n>=0 ); - return ((n*2) + 12 + ((flags&MEM_Str)!=0)); -} - -/* -** Return the length of the data corresponding to the supplied serial-type. -*/ -SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ - if( serial_type>=12 ){ - return (serial_type-12)/2; - }else{ - static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; - return aSize[serial_type]; - } -} - -/* -** If we are on an architecture with mixed-endian floating -** points (ex: ARM7) then swap the lower 4 bytes with the -** upper 4 bytes. Return the result. -** -** For most architectures, this is a no-op. -** -** (later): It is reported to me that the mixed-endian problem -** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems -** that early versions of GCC stored the two words of a 64-bit -** float in the wrong order. And that error has been propagated -** ever since. The blame is not necessarily with GCC, though. -** GCC might have just copying the problem from a prior compiler. -** I am also told that newer versions of GCC that follow a different -** ABI get the byte order right. -** -** Developers using SQLite on an ARM7 should compile and run their -** application using -DSQLITE_DEBUG=1 at least once. With DEBUG -** enabled, some asserts below will ensure that the byte order of -** floating point values is correct. -** -** (2007-08-30) Frank van Vugt has studied this problem closely -** and has send his findings to the SQLite developers. Frank -** writes that some Linux kernels offer floating point hardware -** emulation that uses only 32-bit mantissas instead of a full -** 48-bits as required by the IEEE standard. (This is the -** CONFIG_FPE_FASTFPE option.) On such systems, floating point -** byte swapping becomes very complicated. To avoid problems, -** the necessary byte swapping is carried out using a 64-bit integer -** rather than a 64-bit float. Frank assures us that the code here -** works for him. We, the developers, have no way to independently -** verify this, but Frank seems to know what he is talking about -** so we trust him. -*/ -#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT -static u64 floatSwap(u64 in){ - union { - u64 r; - u32 i[2]; - } u; - u32 t; - - u.r = in; - t = u.i[0]; - u.i[0] = u.i[1]; - u.i[1] = t; - return u.r; -} -# define swapMixedEndianFloat(X) X = floatSwap(X) -#else -# define swapMixedEndianFloat(X) -#endif - -/* -** Write the serialized data blob for the value stored in pMem into -** buf. It is assumed that the caller has allocated sufficient space. -** Return the number of bytes written. -** -** nBuf is the amount of space left in buf[]. nBuf must always be -** large enough to hold the entire field. Except, if the field is -** a blob with a zero-filled tail, then buf[] might be just the right -** size to hold everything except for the zero-filled tail. If buf[] -** is only big enough to hold the non-zero prefix, then only write that -** prefix into buf[]. But if buf[] is large enough to hold both the -** prefix and the tail then write the prefix and set the tail to all -** zeros. -** -** Return the number of bytes actually written into buf[]. The number -** of bytes in the zero-filled tail is included in the return value only -** if those bytes were zeroed in buf[]. -*/ -SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ - u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); - u32 len; - - /* Integer and Real */ - if( serial_type<=7 && serial_type>0 ){ - u64 v; - u32 i; - if( serial_type==7 ){ - assert( sizeof(v)==sizeof(pMem->r) ); - memcpy(&v, &pMem->r, sizeof(v)); - swapMixedEndianFloat(v); - }else{ - v = pMem->u.i; - } - len = i = sqlite3VdbeSerialTypeLen(serial_type); - assert( len<=(u32)nBuf ); - while( i-- ){ - buf[i] = (u8)(v&0xFF); - v >>= 8; - } - return len; - } - - /* String or blob */ - if( serial_type>=12 ){ - assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) - == (int)sqlite3VdbeSerialTypeLen(serial_type) ); - assert( pMem->n<=nBuf ); - len = pMem->n; - memcpy(buf, pMem->z, len); - if( pMem->flags & MEM_Zero ){ - len += pMem->u.nZero; - assert( nBuf>=0 ); - if( len > (u32)nBuf ){ - len = (u32)nBuf; - } - memset(&buf[pMem->n], 0, len-pMem->n); - } - return len; - } - - /* NULL or constants 0 or 1 */ - return 0; -} - -/* -** Deserialize the data blob pointed to by buf as serial type serial_type -** and store the result in pMem. Return the number of bytes read. -*/ -SQLITE_PRIVATE u32 sqlite3VdbeSerialGet( - const unsigned char *buf, /* Buffer to deserialize from */ - u32 serial_type, /* Serial type to deserialize */ - Mem *pMem /* Memory cell to write value into */ -){ - switch( serial_type ){ - case 10: /* Reserved for future use */ - case 11: /* Reserved for future use */ - case 0: { /* NULL */ - pMem->flags = MEM_Null; - break; - } - case 1: { /* 1-byte signed integer */ - pMem->u.i = (signed char)buf[0]; - pMem->flags = MEM_Int; - return 1; - } - case 2: { /* 2-byte signed integer */ - pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; - pMem->flags = MEM_Int; - return 2; - } - case 3: { /* 3-byte signed integer */ - pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; - pMem->flags = MEM_Int; - return 3; - } - case 4: { /* 4-byte signed integer */ - pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; - pMem->flags = MEM_Int; - return 4; - } - case 5: { /* 6-byte signed integer */ - u64 x = (((signed char)buf[0])<<8) | buf[1]; - u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; - x = (x<<32) | y; - pMem->u.i = *(i64*)&x; - pMem->flags = MEM_Int; - return 6; - } - case 6: /* 8-byte signed integer */ - case 7: { /* IEEE floating point */ - u64 x; - u32 y; -#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) - /* Verify that integers and floating point values use the same - ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is - ** defined that 64-bit floating point values really are mixed - ** endian. - */ - static const u64 t1 = ((u64)0x3ff00000)<<32; - static const double r1 = 1.0; - u64 t2 = t1; - swapMixedEndianFloat(t2); - assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); -#endif - - x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; - y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; - x = (x<<32) | y; - if( serial_type==6 ){ - pMem->u.i = *(i64*)&x; - pMem->flags = MEM_Int; - }else{ - assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); - swapMixedEndianFloat(x); - memcpy(&pMem->r, &x, sizeof(x)); - pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; - } - return 8; - } - case 8: /* Integer 0 */ - case 9: { /* Integer 1 */ - pMem->u.i = serial_type-8; - pMem->flags = MEM_Int; - return 0; - } - default: { - u32 len = (serial_type-12)/2; - pMem->z = (char *)buf; - pMem->n = len; - pMem->xDel = 0; - if( serial_type&0x01 ){ - pMem->flags = MEM_Str | MEM_Ephem; - }else{ - pMem->flags = MEM_Blob | MEM_Ephem; - } - return len; - } - } - return 0; -} - -/* -** This routine is used to allocate sufficient space for an UnpackedRecord -** structure large enough to be used with sqlite3VdbeRecordUnpack() if -** the first argument is a pointer to KeyInfo structure pKeyInfo. -** -** The space is either allocated using sqlite3DbMallocRaw() or from within -** the unaligned buffer passed via the second and third arguments (presumably -** stack space). If the former, then *ppFree is set to a pointer that should -** be eventually freed by the caller using sqlite3DbFree(). Or, if the -** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL -** before returning. -** -** If an OOM error occurs, NULL is returned. -*/ -SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( - KeyInfo *pKeyInfo, /* Description of the record */ - char *pSpace, /* Unaligned space available */ - int szSpace, /* Size of pSpace[] in bytes */ - char **ppFree /* OUT: Caller should free this pointer */ -){ - UnpackedRecord *p; /* Unpacked record to return */ - int nOff; /* Increment pSpace by nOff to align it */ - int nByte; /* Number of bytes required for *p */ - - /* We want to shift the pointer pSpace up such that it is 8-byte aligned. - ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift - ** it by. If pSpace is already 8-byte aligned, nOff should be zero. - */ - nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; - nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); - if( nByte>szSpace+nOff ){ - p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); - *ppFree = (char *)p; - if( !p ) return 0; - }else{ - p = (UnpackedRecord*)&pSpace[nOff]; - *ppFree = 0; - } - - p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; - assert( pKeyInfo->aSortOrder!=0 ); - p->pKeyInfo = pKeyInfo; - p->nField = pKeyInfo->nField + 1; - return p; -} - -/* -** Given the nKey-byte encoding of a record in pKey[], populate the -** UnpackedRecord structure indicated by the fourth argument with the -** contents of the decoded record. -*/ -SQLITE_PRIVATE void sqlite3VdbeRecordUnpack( - KeyInfo *pKeyInfo, /* Information about the record format */ - int nKey, /* Size of the binary record */ - const void *pKey, /* The binary record */ - UnpackedRecord *p /* Populate this structure before returning. */ -){ - const unsigned char *aKey = (const unsigned char *)pKey; - int d; - u32 idx; /* Offset in aKey[] to read from */ - u16 u; /* Unsigned loop counter */ - u32 szHdr; - Mem *pMem = p->aMem; - - p->flags = 0; - assert( EIGHT_BYTE_ALIGNMENT(pMem) ); - idx = getVarint32(aKey, szHdr); - d = szHdr; - u = 0; - while( idx<szHdr && u<p->nField && d<=nKey ){ - u32 serial_type; - - idx += getVarint32(&aKey[idx], serial_type); - pMem->enc = pKeyInfo->enc; - pMem->db = pKeyInfo->db; - /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ - pMem->zMalloc = 0; - d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); - pMem++; - u++; - } - assert( u<=pKeyInfo->nField + 1 ); - p->nField = u; -} - -/* -** This function compares the two table rows or index records -** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero -** or positive integer if key1 is less than, equal to or -** greater than key2. The {nKey1, pKey1} key must be a blob -** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 -** key must be a parsed key such as obtained from -** sqlite3VdbeParseRecord. -** -** Key1 and Key2 do not have to contain the same number of fields. -** The key with fewer fields is usually compares less than the -** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set -** and the common prefixes are equal, then key1 is less than key2. -** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are -** equal, then the keys are considered to be equal and -** the parts beyond the common prefix are ignored. -*/ -SQLITE_PRIVATE int sqlite3VdbeRecordCompare( - int nKey1, const void *pKey1, /* Left key */ - UnpackedRecord *pPKey2 /* Right key */ -){ - int d1; /* Offset into aKey[] of next data element */ - u32 idx1; /* Offset into aKey[] of next header element */ - u32 szHdr1; /* Number of bytes in header */ - int i = 0; - int nField; - int rc = 0; - const unsigned char *aKey1 = (const unsigned char *)pKey1; - KeyInfo *pKeyInfo; - Mem mem1; - - pKeyInfo = pPKey2->pKeyInfo; - mem1.enc = pKeyInfo->enc; - mem1.db = pKeyInfo->db; - /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ - VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ - - /* Compilers may complain that mem1.u.i is potentially uninitialized. - ** We could initialize it, as shown here, to silence those complaints. - ** But in fact, mem1.u.i will never actually be used uninitialized, and doing - ** the unnecessary initialization has a measurable negative performance - ** impact, since this routine is a very high runner. And so, we choose - ** to ignore the compiler warnings and leave this variable uninitialized. - */ - /* mem1.u.i = 0; // not needed, here to silence compiler warning */ - - idx1 = getVarint32(aKey1, szHdr1); - d1 = szHdr1; - nField = pKeyInfo->nField; - assert( pKeyInfo->aSortOrder!=0 ); - while( idx1<szHdr1 && i<pPKey2->nField ){ - u32 serial_type1; - - /* Read the serial types for the next element in each key. */ - idx1 += getVarint32( aKey1+idx1, serial_type1 ); - if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; - - /* Extract the values to be compared. - */ - d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); - - /* Do the comparison - */ - rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], - i<nField ? pKeyInfo->aColl[i] : 0); - if( rc!=0 ){ - assert( mem1.zMalloc==0 ); /* See comment below */ - - /* Invert the result if we are using DESC sort order. */ - if( i<nField && pKeyInfo->aSortOrder[i] ){ - rc = -rc; - } - - /* If the PREFIX_SEARCH flag is set and all fields except the final - ** rowid field were equal, then clear the PREFIX_SEARCH flag and set - ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). - ** This is used by the OP_IsUnique opcode. - */ - if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ - assert( idx1==szHdr1 && rc ); - assert( mem1.flags & MEM_Int ); - pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; - pPKey2->rowid = mem1.u.i; - } - - return rc; - } - i++; - } - - /* No memory allocation is ever used on mem1. Prove this using - ** the following assert(). If the assert() fails, it indicates a - ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). - */ - assert( mem1.zMalloc==0 ); - - /* rc==0 here means that one of the keys ran out of fields and - ** all the fields up to that point were equal. If the UNPACKED_INCRKEY - ** flag is set, then break the tie by treating key2 as larger. - ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes - ** are considered to be equal. Otherwise, the longer key is the - ** larger. As it happens, the pPKey2 will always be the longer - ** if there is a difference. - */ - assert( rc==0 ); - if( pPKey2->flags & UNPACKED_INCRKEY ){ - rc = -1; - }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ - /* Leave rc==0 */ - }else if( idx1<szHdr1 ){ - rc = 1; - } - return rc; -} - - -/* -** pCur points at an index entry created using the OP_MakeRecord opcode. -** Read the rowid (the last field in the record) and store it in *rowid. -** Return SQLITE_OK if everything works, or an error code otherwise. -** -** pCur might be pointing to text obtained from a corrupt database file. -** So the content cannot be trusted. Do appropriate checks on the content. -*/ -SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ - i64 nCellKey = 0; - int rc; - u32 szHdr; /* Size of the header */ - u32 typeRowid; /* Serial type of the rowid */ - u32 lenRowid; /* Size of the rowid */ - Mem m, v; - - UNUSED_PARAMETER(db); - - /* Get the size of the index entry. Only indices entries of less - ** than 2GiB are support - anything large must be database corruption. - ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so - ** this code can safely assume that nCellKey is 32-bits - */ - assert( sqlite3BtreeCursorIsValid(pCur) ); - VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); - assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ - assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); - - /* Read in the complete content of the index entry */ - memset(&m, 0, sizeof(m)); - rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); - if( rc ){ - return rc; - } - - /* The index entry must begin with a header size */ - (void)getVarint32((u8*)m.z, szHdr); - testcase( szHdr==3 ); - testcase( szHdr==m.n ); - if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ - goto idx_rowid_corruption; - } - - /* The last field of the index should be an integer - the ROWID. - ** Verify that the last entry really is an integer. */ - (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); - testcase( typeRowid==1 ); - testcase( typeRowid==2 ); - testcase( typeRowid==3 ); - testcase( typeRowid==4 ); - testcase( typeRowid==5 ); - testcase( typeRowid==6 ); - testcase( typeRowid==8 ); - testcase( typeRowid==9 ); - if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ - goto idx_rowid_corruption; - } - lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); - testcase( (u32)m.n==szHdr+lenRowid ); - if( unlikely((u32)m.n<szHdr+lenRowid) ){ - goto idx_rowid_corruption; - } - - /* Fetch the integer off the end of the index record */ - sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); - *rowid = v.u.i; - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; - - /* Jump here if database corruption is detected after m has been - ** allocated. Free the m object and return SQLITE_CORRUPT. */ -idx_rowid_corruption: - testcase( m.zMalloc!=0 ); - sqlite3VdbeMemRelease(&m); - return SQLITE_CORRUPT_BKPT; -} - -/* -** Compare the key of the index entry that cursor pC is pointing to against -** the key string in pUnpacked. Write into *pRes a number -** that is negative, zero, or positive if pC is less than, equal to, -** or greater than pUnpacked. Return SQLITE_OK on success. -** -** pUnpacked is either created without a rowid or is truncated so that it -** omits the rowid at the end. The rowid at the end of the index entry -** is ignored as well. Hence, this routine only compares the prefixes -** of the keys prior to the final rowid, not the entire key. -*/ -SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare( - VdbeCursor *pC, /* The cursor to compare against */ - UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ - int *res /* Write the comparison result here */ -){ - i64 nCellKey = 0; - int rc; - BtCursor *pCur = pC->pCursor; - Mem m; - - assert( sqlite3BtreeCursorIsValid(pCur) ); - VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); - assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ - /* nCellKey will always be between 0 and 0xffffffff because of the say - ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ - if( nCellKey<=0 || nCellKey>0x7fffffff ){ - *res = 0; - return SQLITE_CORRUPT_BKPT; - } - memset(&m, 0, sizeof(m)); - rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); - if( rc ){ - return rc; - } - assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH ); - *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; -} - -/* -** This routine sets the value to be returned by subsequent calls to -** sqlite3_changes() on the database handle 'db'. -*/ -SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ - assert( sqlite3_mutex_held(db->mutex) ); - db->nChange = nChange; - db->nTotalChange += nChange; -} - -/* -** Set a flag in the vdbe to update the change counter when it is finalised -** or reset. -*/ -SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){ - v->changeCntOn = 1; -} - -/* -** Mark every prepared statement associated with a database connection -** as expired. -** -** An expired statement means that recompilation of the statement is -** recommend. Statements expire when things happen that make their -** programs obsolete. Removing user-defined functions or collating -** sequences, or changing an authorization function are the types of -** things that make prepared statements obsolete. -*/ -SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){ - Vdbe *p; - for(p = db->pVdbe; p; p=p->pNext){ - p->expired = 1; - } -} - -/* -** Return the database associated with the Vdbe. -*/ -SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){ - return v->db; -} - -/* -** Return a pointer to an sqlite3_value structure containing the value bound -** parameter iVar of VM v. Except, if the value is an SQL NULL, return -** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* -** constants) to the value before returning it. -** -** The returned value must be freed by the caller using sqlite3ValueFree(). -*/ -SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ - assert( iVar>0 ); - if( v ){ - Mem *pMem = &v->aVar[iVar-1]; - if( 0==(pMem->flags & MEM_Null) ){ - sqlite3_value *pRet = sqlite3ValueNew(v->db); - if( pRet ){ - sqlite3VdbeMemCopy((Mem *)pRet, pMem); - sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); - sqlite3VdbeMemStoreType((Mem *)pRet); - } - return pRet; - } - } - return 0; -} - -/* -** Configure SQL variable iVar so that binding a new value to it signals -** to sqlite3_reoptimize() that re-preparing the statement may result -** in a better query plan. -*/ -SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ - assert( iVar>0 ); - if( iVar>32 ){ - v->expmask = 0xffffffff; - }else{ - v->expmask |= ((u32)1 << (iVar-1)); - } -} - -/************** End of vdbeaux.c *********************************************/ -/************** Begin file vdbeapi.c *****************************************/ -/* -** 2004 May 26 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code use to implement APIs that are part of the -** VDBE. -*/ - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** Return TRUE (non-zero) of the statement supplied as an argument needs -** to be recompiled. A statement needs to be recompiled whenever the -** execution environment changes in a way that would alter the program -** that sqlite3_prepare() generates. For example, if new functions or -** collating sequences are registered or if an authorizer function is -** added or changed. -*/ -SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){ - Vdbe *p = (Vdbe*)pStmt; - return p==0 || p->expired; -} -#endif - -/* -** Check on a Vdbe to make sure it has not been finalized. Log -** an error and return true if it has been finalized (or is otherwise -** invalid). Return false if it is ok. -*/ -static int vdbeSafety(Vdbe *p){ - if( p->db==0 ){ - sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); - return 1; - }else{ - return 0; - } -} -static int vdbeSafetyNotNull(Vdbe *p){ - if( p==0 ){ - sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); - return 1; - }else{ - return vdbeSafety(p); - } -} - -/* -** The following routine destroys a virtual machine that is created by -** the sqlite3_compile() routine. The integer returned is an SQLITE_ -** success/failure code that describes the result of executing the virtual -** machine. -** -** This routine sets the error code and string returned by -** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). -*/ -SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){ - int rc; - if( pStmt==0 ){ - /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL - ** pointer is a harmless no-op. */ - rc = SQLITE_OK; - }else{ - Vdbe *v = (Vdbe*)pStmt; - sqlite3 *db = v->db; - if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; - sqlite3_mutex_enter(db->mutex); - rc = sqlite3VdbeFinalize(v); - rc = sqlite3ApiExit(db, rc); - sqlite3LeaveMutexAndCloseZombie(db); - } - return rc; -} - -/* -** Terminate the current execution of an SQL statement and reset it -** back to its starting state so that it can be reused. A success code from -** the prior execution is returned. -** -** This routine sets the error code and string returned by -** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). -*/ -SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){ - int rc; - if( pStmt==0 ){ - rc = SQLITE_OK; - }else{ - Vdbe *v = (Vdbe*)pStmt; - sqlite3_mutex_enter(v->db->mutex); - rc = sqlite3VdbeReset(v); - sqlite3VdbeRewind(v); - assert( (rc & (v->db->errMask))==rc ); - rc = sqlite3ApiExit(v->db, rc); - sqlite3_mutex_leave(v->db->mutex); - } - return rc; -} - -/* -** Set all the parameters in the compiled SQL statement to NULL. -*/ -SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ - int i; - int rc = SQLITE_OK; - Vdbe *p = (Vdbe*)pStmt; -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; -#endif - sqlite3_mutex_enter(mutex); - for(i=0; i<p->nVar; i++){ - sqlite3VdbeMemRelease(&p->aVar[i]); - p->aVar[i].flags = MEM_Null; - } - if( p->isPrepareV2 && p->expmask ){ - p->expired = 1; - } - sqlite3_mutex_leave(mutex); - return rc; -} - - -/**************************** sqlite3_value_ ******************************* -** The following routines extract information from a Mem or sqlite3_value -** structure. -*/ -SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ - Mem *p = (Mem*)pVal; - if( p->flags & (MEM_Blob|MEM_Str) ){ - sqlite3VdbeMemExpandBlob(p); - p->flags &= ~MEM_Str; - p->flags |= MEM_Blob; - return p->n ? p->z : 0; - }else{ - return sqlite3_value_text(pVal); - } -} -SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){ - return sqlite3ValueBytes(pVal, SQLITE_UTF8); -} -SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){ - return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); -} -SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){ - return sqlite3VdbeRealValue((Mem*)pVal); -} -SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){ - return (int)sqlite3VdbeIntValue((Mem*)pVal); -} -SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ - return sqlite3VdbeIntValue((Mem*)pVal); -} -SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ - return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){ - return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); -} -SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){ - return sqlite3ValueText(pVal, SQLITE_UTF16BE); -} -SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ - return sqlite3ValueText(pVal, SQLITE_UTF16LE); -} -#endif /* SQLITE_OMIT_UTF16 */ -SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ - return pVal->type; -} - -/**************************** sqlite3_result_ ******************************* -** The following routines are used by user-defined functions to specify -** the function result. -** -** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the -** result as a string or blob but if the string or blob is too large, it -** then sets the error code to SQLITE_TOOBIG -*/ -static void setResultStrOrError( - sqlite3_context *pCtx, /* Function context */ - const char *z, /* String pointer */ - int n, /* Bytes in string, or negative */ - u8 enc, /* Encoding of z. 0 for BLOBs */ - void (*xDel)(void*) /* Destructor function */ -){ - if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ - sqlite3_result_error_toobig(pCtx); - } -} -SQLITE_API void sqlite3_result_blob( - sqlite3_context *pCtx, - const void *z, - int n, - void (*xDel)(void *) -){ - assert( n>=0 ); - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - setResultStrOrError(pCtx, z, n, 0, xDel); -} -SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetDouble(&pCtx->s, rVal); -} -SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - pCtx->isError = SQLITE_ERROR; - sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - pCtx->isError = SQLITE_ERROR; - sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); -} -#endif -SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); -} -SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetInt64(&pCtx->s, iVal); -} -SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetNull(&pCtx->s); -} -SQLITE_API void sqlite3_result_text( - sqlite3_context *pCtx, - const char *z, - int n, - void (*xDel)(void *) -){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API void sqlite3_result_text16( - sqlite3_context *pCtx, - const void *z, - int n, - void (*xDel)(void *) -){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); -} -SQLITE_API void sqlite3_result_text16be( - sqlite3_context *pCtx, - const void *z, - int n, - void (*xDel)(void *) -){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); -} -SQLITE_API void sqlite3_result_text16le( - sqlite3_context *pCtx, - const void *z, - int n, - void (*xDel)(void *) -){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); -} -#endif /* SQLITE_OMIT_UTF16 */ -SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemCopy(&pCtx->s, pValue); -} -SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); -} -SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ - pCtx->isError = errCode; - if( pCtx->s.flags & MEM_Null ){ - sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, - SQLITE_UTF8, SQLITE_STATIC); - } -} - -/* Force an SQLITE_TOOBIG error. */ -SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - pCtx->isError = SQLITE_TOOBIG; - sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, - SQLITE_UTF8, SQLITE_STATIC); -} - -/* An SQLITE_NOMEM error. */ -SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){ - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - sqlite3VdbeMemSetNull(&pCtx->s); - pCtx->isError = SQLITE_NOMEM; - pCtx->s.db->mallocFailed = 1; -} - -/* -** This function is called after a transaction has been committed. It -** invokes callbacks registered with sqlite3_wal_hook() as required. -*/ -static int doWalCallbacks(sqlite3 *db){ - int rc = SQLITE_OK; -#ifndef SQLITE_OMIT_WAL - int i; - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); - if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ - rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); - } - } - } -#endif - return rc; -} - -/* -** Execute the statement pStmt, either until a row of data is ready, the -** statement is completely executed or an error occurs. -** -** This routine implements the bulk of the logic behind the sqlite_step() -** API. The only thing omitted is the automatic recompile if a -** schema change has occurred. That detail is handled by the -** outer sqlite3_step() wrapper procedure. -*/ -static int sqlite3Step(Vdbe *p){ - sqlite3 *db; - int rc; - - assert(p); - if( p->magic!=VDBE_MAGIC_RUN ){ - /* We used to require that sqlite3_reset() be called before retrying - ** sqlite3_step() after any error or after SQLITE_DONE. But beginning - ** with version 3.7.0, we changed this so that sqlite3_reset() would - ** be called automatically instead of throwing the SQLITE_MISUSE error. - ** This "automatic-reset" change is not technically an incompatibility, - ** since any application that receives an SQLITE_MISUSE is broken by - ** definition. - ** - ** Nevertheless, some published applications that were originally written - ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE - ** returns, and those were broken by the automatic-reset change. As a - ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the - ** legacy behavior of returning SQLITE_MISUSE for cases where the - ** previous sqlite3_step() returned something other than a SQLITE_LOCKED - ** or SQLITE_BUSY error. - */ -#ifdef SQLITE_OMIT_AUTORESET - if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ - sqlite3_reset((sqlite3_stmt*)p); - }else{ - return SQLITE_MISUSE_BKPT; - } -#else - sqlite3_reset((sqlite3_stmt*)p); -#endif - } - - /* Check that malloc() has not failed. If it has, return early. */ - db = p->db; - if( db->mallocFailed ){ - p->rc = SQLITE_NOMEM; - return SQLITE_NOMEM; - } - - if( p->pc<=0 && p->expired ){ - p->rc = SQLITE_SCHEMA; - rc = SQLITE_ERROR; - goto end_of_step; - } - if( p->pc<0 ){ - /* If there are no other statements currently running, then - ** reset the interrupt flag. This prevents a call to sqlite3_interrupt - ** from interrupting a statement that has not yet started. - */ - if( db->activeVdbeCnt==0 ){ - db->u1.isInterrupted = 0; - } - - assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); - -#ifndef SQLITE_OMIT_TRACE - if( db->xProfile && !db->init.busy ){ - sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); - } -#endif - - db->activeVdbeCnt++; - if( p->readOnly==0 ) db->writeVdbeCnt++; - p->pc = 0; - } -#ifndef SQLITE_OMIT_EXPLAIN - if( p->explain ){ - rc = sqlite3VdbeList(p); - }else -#endif /* SQLITE_OMIT_EXPLAIN */ - { - db->vdbeExecCnt++; - rc = sqlite3VdbeExec(p); - db->vdbeExecCnt--; - } - -#ifndef SQLITE_OMIT_TRACE - /* Invoke the profile callback if there is one - */ - if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ - sqlite3_int64 iNow; - sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); - db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); - } -#endif - - if( rc==SQLITE_DONE ){ - assert( p->rc==SQLITE_OK ); - p->rc = doWalCallbacks(db); - if( p->rc!=SQLITE_OK ){ - rc = SQLITE_ERROR; - } - } - - db->errCode = rc; - if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ - p->rc = SQLITE_NOMEM; - } -end_of_step: - /* At this point local variable rc holds the value that should be - ** returned if this statement was compiled using the legacy - ** sqlite3_prepare() interface. According to the docs, this can only - ** be one of the values in the first assert() below. Variable p->rc - ** contains the value that would be returned if sqlite3_finalize() - ** were called on statement p. - */ - assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR - || rc==SQLITE_BUSY || rc==SQLITE_MISUSE - ); - assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); - if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ - /* If this statement was prepared using sqlite3_prepare_v2(), and an - ** error has occurred, then return the error code in p->rc to the - ** caller. Set the error code in the database handle to the same value. - */ - rc = sqlite3VdbeTransferError(p); - } - return (rc&db->errMask); -} - -/* -** The maximum number of times that a statement will try to reparse -** itself before giving up and returning SQLITE_SCHEMA. -*/ -#ifndef SQLITE_MAX_SCHEMA_RETRY -# define SQLITE_MAX_SCHEMA_RETRY 5 -#endif - -/* -** This is the top-level implementation of sqlite3_step(). Call -** sqlite3Step() to do most of the work. If a schema error occurs, -** call sqlite3Reprepare() and try again. -*/ -SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){ - int rc = SQLITE_OK; /* Result from sqlite3Step() */ - int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ - Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ - int cnt = 0; /* Counter to prevent infinite loop of reprepares */ - sqlite3 *db; /* The database connection */ - - if( vdbeSafetyNotNull(v) ){ - return SQLITE_MISUSE_BKPT; - } - db = v->db; - sqlite3_mutex_enter(db->mutex); - v->doingRerun = 0; - while( (rc = sqlite3Step(v))==SQLITE_SCHEMA - && cnt++ < SQLITE_MAX_SCHEMA_RETRY - && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ - sqlite3_reset(pStmt); - v->doingRerun = 1; - assert( v->expired==0 ); - } - if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ - /* This case occurs after failing to recompile an sql statement. - ** The error message from the SQL compiler has already been loaded - ** into the database handle. This block copies the error message - ** from the database handle into the statement and sets the statement - ** program counter to 0 to ensure that when the statement is - ** finalized or reset the parser error message is available via - ** sqlite3_errmsg() and sqlite3_errcode(). - */ - const char *zErr = (const char *)sqlite3_value_text(db->pErr); - sqlite3DbFree(db, v->zErrMsg); - if( !db->mallocFailed ){ - v->zErrMsg = sqlite3DbStrDup(db, zErr); - v->rc = rc2; - } else { - v->zErrMsg = 0; - v->rc = rc = SQLITE_NOMEM; - } - } - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Extract the user data from a sqlite3_context structure and return a -** pointer to it. -*/ -SQLITE_API void *sqlite3_user_data(sqlite3_context *p){ - assert( p && p->pFunc ); - return p->pFunc->pUserData; -} - -/* -** Extract the user data from a sqlite3_context structure and return a -** pointer to it. -** -** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface -** returns a copy of the pointer to the database connection (the 1st -** parameter) of the sqlite3_create_function() and -** sqlite3_create_function16() routines that originally registered the -** application defined function. -*/ -SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ - assert( p && p->pFunc ); - return p->s.db; -} - -/* -** The following is the implementation of an SQL function that always -** fails with an error message stating that the function is used in the -** wrong context. The sqlite3_overload_function() API might construct -** SQL function that use this routine so that the functions will exist -** for name resolution but are actually overloaded by the xFindFunction -** method of virtual tables. -*/ -SQLITE_PRIVATE void sqlite3InvalidFunction( - sqlite3_context *context, /* The function calling context */ - int NotUsed, /* Number of arguments to the function */ - sqlite3_value **NotUsed2 /* Value of each argument */ -){ - const char *zName = context->pFunc->zName; - char *zErr; - UNUSED_PARAMETER2(NotUsed, NotUsed2); - zErr = sqlite3_mprintf( - "unable to use function %s in the requested context", zName); - sqlite3_result_error(context, zErr, -1); - sqlite3_free(zErr); -} - -/* -** Allocate or return the aggregate context for a user function. A new -** context is allocated on the first call. Subsequent calls return the -** same context that was returned on prior calls. -*/ -SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ - Mem *pMem; - assert( p && p->pFunc && p->pFunc->xStep ); - assert( sqlite3_mutex_held(p->s.db->mutex) ); - pMem = p->pMem; - testcase( nByte<0 ); - if( (pMem->flags & MEM_Agg)==0 ){ - if( nByte<=0 ){ - sqlite3VdbeMemReleaseExternal(pMem); - pMem->flags = MEM_Null; - pMem->z = 0; - }else{ - sqlite3VdbeMemGrow(pMem, nByte, 0); - pMem->flags = MEM_Agg; - pMem->u.pDef = p->pFunc; - if( pMem->z ){ - memset(pMem->z, 0, nByte); - } - } - } - return (void*)pMem->z; -} - -/* -** Return the auxilary data pointer, if any, for the iArg'th argument to -** the user-function defined by pCtx. -*/ -SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ - VdbeFunc *pVdbeFunc; - - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - pVdbeFunc = pCtx->pVdbeFunc; - if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ - return 0; - } - return pVdbeFunc->apAux[iArg].pAux; -} - -/* -** Set the auxilary data pointer and delete function, for the iArg'th -** argument to the user-function defined by pCtx. Any previous value is -** deleted by calling the delete function specified when it was set. -*/ -SQLITE_API void sqlite3_set_auxdata( - sqlite3_context *pCtx, - int iArg, - void *pAux, - void (*xDelete)(void*) -){ - struct AuxData *pAuxData; - VdbeFunc *pVdbeFunc; - if( iArg<0 ) goto failed; - - assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); - pVdbeFunc = pCtx->pVdbeFunc; - if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ - int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); - int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; - pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); - if( !pVdbeFunc ){ - goto failed; - } - pCtx->pVdbeFunc = pVdbeFunc; - memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); - pVdbeFunc->nAux = iArg+1; - pVdbeFunc->pFunc = pCtx->pFunc; - } - - pAuxData = &pVdbeFunc->apAux[iArg]; - if( pAuxData->pAux && pAuxData->xDelete ){ - pAuxData->xDelete(pAuxData->pAux); - } - pAuxData->pAux = pAux; - pAuxData->xDelete = xDelete; - return; - -failed: - if( xDelete ){ - xDelete(pAux); - } -} - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** Return the number of times the Step function of a aggregate has been -** called. -** -** This function is deprecated. Do not use it for new code. It is -** provide only to avoid breaking legacy code. New aggregate function -** implementations should keep their own counts within their aggregate -** context. -*/ -SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){ - assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); - return p->pMem->n; -} -#endif - -/* -** Return the number of columns in the result set for the statement pStmt. -*/ -SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ - Vdbe *pVm = (Vdbe *)pStmt; - return pVm ? pVm->nResColumn : 0; -} - -/* -** Return the number of values available from the current row of the -** currently executing statement pStmt. -*/ -SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ - Vdbe *pVm = (Vdbe *)pStmt; - if( pVm==0 || pVm->pResultSet==0 ) return 0; - return pVm->nResColumn; -} - - -/* -** Check to see if column iCol of the given statement is valid. If -** it is, return a pointer to the Mem for the value of that column. -** If iCol is not valid, return a pointer to a Mem which has a value -** of NULL. -*/ -static Mem *columnMem(sqlite3_stmt *pStmt, int i){ - Vdbe *pVm; - Mem *pOut; - - pVm = (Vdbe *)pStmt; - if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ - sqlite3_mutex_enter(pVm->db->mutex); - pOut = &pVm->pResultSet[i]; - }else{ - /* If the value passed as the second argument is out of range, return - ** a pointer to the following static Mem object which contains the - ** value SQL NULL. Even though the Mem structure contains an element - ** of type i64, on certain architectures (x86) with certain compiler - ** switches (-Os), gcc may align this Mem object on a 4-byte boundary - ** instead of an 8-byte one. This all works fine, except that when - ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s - ** that a Mem structure is located on an 8-byte boundary. To prevent - ** these assert()s from failing, when building with SQLITE_DEBUG defined - ** using gcc, we force nullMem to be 8-byte aligned using the magical - ** __attribute__((aligned(8))) macro. */ - static const Mem nullMem -#if defined(SQLITE_DEBUG) && defined(__GNUC__) - __attribute__((aligned(8))) -#endif - = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, -#ifdef SQLITE_DEBUG - 0, 0, /* pScopyFrom, pFiller */ -#endif - 0, 0 }; - - if( pVm && ALWAYS(pVm->db) ){ - sqlite3_mutex_enter(pVm->db->mutex); - sqlite3Error(pVm->db, SQLITE_RANGE, 0); - } - pOut = (Mem*)&nullMem; - } - return pOut; -} - -/* -** This function is called after invoking an sqlite3_value_XXX function on a -** column value (i.e. a value returned by evaluating an SQL expression in the -** select list of a SELECT statement) that may cause a malloc() failure. If -** malloc() has failed, the threads mallocFailed flag is cleared and the result -** code of statement pStmt set to SQLITE_NOMEM. -** -** Specifically, this is called from within: -** -** sqlite3_column_int() -** sqlite3_column_int64() -** sqlite3_column_text() -** sqlite3_column_text16() -** sqlite3_column_real() -** sqlite3_column_bytes() -** sqlite3_column_bytes16() -** sqiite3_column_blob() -*/ -static void columnMallocFailure(sqlite3_stmt *pStmt) -{ - /* If malloc() failed during an encoding conversion within an - ** sqlite3_column_XXX API, then set the return code of the statement to - ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR - ** and _finalize() will return NOMEM. - */ - Vdbe *p = (Vdbe *)pStmt; - if( p ){ - p->rc = sqlite3ApiExit(p->db, p->rc); - sqlite3_mutex_leave(p->db->mutex); - } -} - -/**************************** sqlite3_column_ ******************************* -** The following routines are used to access elements of the current row -** in the result set. -*/ -SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ - const void *val; - val = sqlite3_value_blob( columnMem(pStmt,i) ); - /* Even though there is no encoding conversion, value_blob() might - ** need to call malloc() to expand the result of a zeroblob() - ** expression. - */ - columnMallocFailure(pStmt); - return val; -} -SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ - int val = sqlite3_value_bytes( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ - int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ - double val = sqlite3_value_double( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ - int val = sqlite3_value_int( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ - sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ - const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ - Mem *pOut = columnMem(pStmt, i); - if( pOut->flags&MEM_Static ){ - pOut->flags &= ~MEM_Static; - pOut->flags |= MEM_Ephem; - } - columnMallocFailure(pStmt); - return (sqlite3_value *)pOut; -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ - const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return val; -} -#endif /* SQLITE_OMIT_UTF16 */ -SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ - int iType = sqlite3_value_type( columnMem(pStmt,i) ); - columnMallocFailure(pStmt); - return iType; -} - -/* The following function is experimental and subject to change or -** removal */ -/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ -** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); -**} -*/ - -/* -** Convert the N-th element of pStmt->pColName[] into a string using -** xFunc() then return that string. If N is out of range, return 0. -** -** There are up to 5 names for each column. useType determines which -** name is returned. Here are the names: -** -** 0 The column name as it should be displayed for output -** 1 The datatype name for the column -** 2 The name of the database that the column derives from -** 3 The name of the table that the column derives from -** 4 The name of the table column that the result column derives from -** -** If the result is not a simple column reference (if it is an expression -** or a constant) then useTypes 2, 3, and 4 return NULL. -*/ -static const void *columnName( - sqlite3_stmt *pStmt, - int N, - const void *(*xFunc)(Mem*), - int useType -){ - const void *ret = 0; - Vdbe *p = (Vdbe *)pStmt; - int n; - sqlite3 *db = p->db; - - assert( db!=0 ); - n = sqlite3_column_count(pStmt); - if( N<n && N>=0 ){ - N += useType*n; - sqlite3_mutex_enter(db->mutex); - assert( db->mallocFailed==0 ); - ret = xFunc(&p->aColName[N]); - /* A malloc may have failed inside of the xFunc() call. If this - ** is the case, clear the mallocFailed flag and return NULL. - */ - if( db->mallocFailed ){ - db->mallocFailed = 0; - ret = 0; - } - sqlite3_mutex_leave(db->mutex); - } - return ret; -} - -/* -** Return the name of the Nth column of the result set returned by SQL -** statement pStmt. -*/ -SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); -} -#endif - -/* -** Constraint: If you have ENABLE_COLUMN_METADATA then you must -** not define OMIT_DECLTYPE. -*/ -#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) -# error "Must not define both SQLITE_OMIT_DECLTYPE \ - and SQLITE_ENABLE_COLUMN_METADATA" -#endif - -#ifndef SQLITE_OMIT_DECLTYPE -/* -** Return the column declaration type (if applicable) of the 'i'th column -** of the result set of SQL statement pStmt. -*/ -SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); -} -#endif /* SQLITE_OMIT_UTF16 */ -#endif /* SQLITE_OMIT_DECLTYPE */ - -#ifdef SQLITE_ENABLE_COLUMN_METADATA -/* -** Return the name of the database from which a result column derives. -** NULL is returned if the result column is an expression or constant or -** anything else which is not an unabiguous reference to a database column. -*/ -SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** Return the name of the table from which a result column derives. -** NULL is returned if the result column is an expression or constant or -** anything else which is not an unabiguous reference to a database column. -*/ -SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** Return the name of the table column from which a result column derives. -** NULL is returned if the result column is an expression or constant or -** anything else which is not an unabiguous reference to a database column. -*/ -SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ - return columnName( - pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); -} -#endif /* SQLITE_OMIT_UTF16 */ -#endif /* SQLITE_ENABLE_COLUMN_METADATA */ - - -/******************************* sqlite3_bind_ *************************** -** -** Routines used to attach values to wildcards in a compiled SQL statement. -*/ -/* -** Unbind the value bound to variable i in virtual machine p. This is the -** the same as binding a NULL value to the column. If the "i" parameter is -** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. -** -** A successful evaluation of this routine acquires the mutex on p. -** the mutex is released if any kind of error occurs. -** -** The error code stored in database p->db is overwritten with the return -** value in any case. -*/ -static int vdbeUnbind(Vdbe *p, int i){ - Mem *pVar; - if( vdbeSafetyNotNull(p) ){ - return SQLITE_MISUSE_BKPT; - } - sqlite3_mutex_enter(p->db->mutex); - if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ - sqlite3Error(p->db, SQLITE_MISUSE, 0); - sqlite3_mutex_leave(p->db->mutex); - sqlite3_log(SQLITE_MISUSE, - "bind on a busy prepared statement: [%s]", p->zSql); - return SQLITE_MISUSE_BKPT; - } - if( i<1 || i>p->nVar ){ - sqlite3Error(p->db, SQLITE_RANGE, 0); - sqlite3_mutex_leave(p->db->mutex); - return SQLITE_RANGE; - } - i--; - pVar = &p->aVar[i]; - sqlite3VdbeMemRelease(pVar); - pVar->flags = MEM_Null; - sqlite3Error(p->db, SQLITE_OK, 0); - - /* If the bit corresponding to this variable in Vdbe.expmask is set, then - ** binding a new value to this variable invalidates the current query plan. - ** - ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host - ** parameter in the WHERE clause might influence the choice of query plan - ** for a statement, then the statement will be automatically recompiled, - ** as if there had been a schema change, on the first sqlite3_step() call - ** following any change to the bindings of that parameter. - */ - if( p->isPrepareV2 && - ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) - ){ - p->expired = 1; - } - return SQLITE_OK; -} - -/* -** Bind a text or BLOB value. -*/ -static int bindText( - sqlite3_stmt *pStmt, /* The statement to bind against */ - int i, /* Index of the parameter to bind */ - const void *zData, /* Pointer to the data to be bound */ - int nData, /* Number of bytes of data to be bound */ - void (*xDel)(void*), /* Destructor for the data */ - u8 encoding /* Encoding for the data */ -){ - Vdbe *p = (Vdbe *)pStmt; - Mem *pVar; - int rc; - - rc = vdbeUnbind(p, i); - if( rc==SQLITE_OK ){ - if( zData!=0 ){ - pVar = &p->aVar[i-1]; - rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); - if( rc==SQLITE_OK && encoding!=0 ){ - rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); - } - sqlite3Error(p->db, rc, 0); - rc = sqlite3ApiExit(p->db, rc); - } - sqlite3_mutex_leave(p->db->mutex); - }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ - xDel((void*)zData); - } - return rc; -} - - -/* -** Bind a blob value to an SQL statement variable. -*/ -SQLITE_API int sqlite3_bind_blob( - sqlite3_stmt *pStmt, - int i, - const void *zData, - int nData, - void (*xDel)(void*) -){ - return bindText(pStmt, i, zData, nData, xDel, 0); -} -SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ - int rc; - Vdbe *p = (Vdbe *)pStmt; - rc = vdbeUnbind(p, i); - if( rc==SQLITE_OK ){ - sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); - sqlite3_mutex_leave(p->db->mutex); - } - return rc; -} -SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ - return sqlite3_bind_int64(p, i, (i64)iValue); -} -SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ - int rc; - Vdbe *p = (Vdbe *)pStmt; - rc = vdbeUnbind(p, i); - if( rc==SQLITE_OK ){ - sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); - sqlite3_mutex_leave(p->db->mutex); - } - return rc; -} -SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ - int rc; - Vdbe *p = (Vdbe*)pStmt; - rc = vdbeUnbind(p, i); - if( rc==SQLITE_OK ){ - sqlite3_mutex_leave(p->db->mutex); - } - return rc; -} -SQLITE_API int sqlite3_bind_text( - sqlite3_stmt *pStmt, - int i, - const char *zData, - int nData, - void (*xDel)(void*) -){ - return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); -} -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API int sqlite3_bind_text16( - sqlite3_stmt *pStmt, - int i, - const void *zData, - int nData, - void (*xDel)(void*) -){ - return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); -} -#endif /* SQLITE_OMIT_UTF16 */ -SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ - int rc; - switch( pValue->type ){ - case SQLITE_INTEGER: { - rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); - break; - } - case SQLITE_FLOAT: { - rc = sqlite3_bind_double(pStmt, i, pValue->r); - break; - } - case SQLITE_BLOB: { - if( pValue->flags & MEM_Zero ){ - rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); - }else{ - rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); - } - break; - } - case SQLITE_TEXT: { - rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, - pValue->enc); - break; - } - default: { - rc = sqlite3_bind_null(pStmt, i); - break; - } - } - return rc; -} -SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ - int rc; - Vdbe *p = (Vdbe *)pStmt; - rc = vdbeUnbind(p, i); - if( rc==SQLITE_OK ){ - sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); - sqlite3_mutex_leave(p->db->mutex); - } - return rc; -} - -/* -** Return the number of wildcards that can be potentially bound to. -** This routine is added to support DBD::SQLite. -*/ -SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ - Vdbe *p = (Vdbe*)pStmt; - return p ? p->nVar : 0; -} - -/* -** Return the name of a wildcard parameter. Return NULL if the index -** is out of range or if the wildcard is unnamed. -** -** The result is always UTF-8. -*/ -SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ - Vdbe *p = (Vdbe*)pStmt; - if( p==0 || i<1 || i>p->nzVar ){ - return 0; - } - return p->azVar[i-1]; -} - -/* -** Given a wildcard parameter name, return the index of the variable -** with that name. If there is no variable with the given name, -** return 0. -*/ -SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ - int i; - if( p==0 ){ - return 0; - } - if( zName ){ - for(i=0; i<p->nzVar; i++){ - const char *z = p->azVar[i]; - if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ - return i+1; - } - } - } - return 0; -} -SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ - return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); -} - -/* -** Transfer all bindings from the first statement over to the second. -*/ -SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ - Vdbe *pFrom = (Vdbe*)pFromStmt; - Vdbe *pTo = (Vdbe*)pToStmt; - int i; - assert( pTo->db==pFrom->db ); - assert( pTo->nVar==pFrom->nVar ); - sqlite3_mutex_enter(pTo->db->mutex); - for(i=0; i<pFrom->nVar; i++){ - sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); - } - sqlite3_mutex_leave(pTo->db->mutex); - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** Deprecated external interface. Internal/core SQLite code -** should call sqlite3TransferBindings. -** -** Is is misuse to call this routine with statements from different -** database connections. But as this is a deprecated interface, we -** will not bother to check for that condition. -** -** If the two statements contain a different number of bindings, then -** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise -** SQLITE_OK is returned. -*/ -SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ - Vdbe *pFrom = (Vdbe*)pFromStmt; - Vdbe *pTo = (Vdbe*)pToStmt; - if( pFrom->nVar!=pTo->nVar ){ - return SQLITE_ERROR; - } - if( pTo->isPrepareV2 && pTo->expmask ){ - pTo->expired = 1; - } - if( pFrom->isPrepareV2 && pFrom->expmask ){ - pFrom->expired = 1; - } - return sqlite3TransferBindings(pFromStmt, pToStmt); -} -#endif - -/* -** Return the sqlite3* database handle to which the prepared statement given -** in the argument belongs. This is the same database handle that was -** the first argument to the sqlite3_prepare() that was used to create -** the statement in the first place. -*/ -SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ - return pStmt ? ((Vdbe*)pStmt)->db : 0; -} - -/* -** Return true if the prepared statement is guaranteed to not modify the -** database. -*/ -SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ - return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; -} - -/* -** Return true if the prepared statement is in need of being reset. -*/ -SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ - Vdbe *v = (Vdbe*)pStmt; - return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN; -} - -/* -** Return a pointer to the next prepared statement after pStmt associated -** with database connection pDb. If pStmt is NULL, return the first -** prepared statement for the database connection. Return NULL if there -** are no more. -*/ -SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ - sqlite3_stmt *pNext; - sqlite3_mutex_enter(pDb->mutex); - if( pStmt==0 ){ - pNext = (sqlite3_stmt*)pDb->pVdbe; - }else{ - pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; - } - sqlite3_mutex_leave(pDb->mutex); - return pNext; -} - -/* -** Return the value of a status counter for a prepared statement -*/ -SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ - Vdbe *pVdbe = (Vdbe*)pStmt; - int v = pVdbe->aCounter[op-1]; - if( resetFlag ) pVdbe->aCounter[op-1] = 0; - return v; -} - -/************** End of vdbeapi.c *********************************************/ -/************** Begin file vdbetrace.c ***************************************/ -/* -** 2009 November 25 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code used to insert the values of host parameters -** (aka "wildcards") into the SQL text output by sqlite3_trace(). -** -** The Vdbe parse-tree explainer is also found here. -*/ - -#ifndef SQLITE_OMIT_TRACE - -/* -** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of -** bytes in this text up to but excluding the first character in -** a host parameter. If the text contains no host parameters, return -** the total number of bytes in the text. -*/ -static int findNextHostParameter(const char *zSql, int *pnToken){ - int tokenType; - int nTotal = 0; - int n; - - *pnToken = 0; - while( zSql[0] ){ - n = sqlite3GetToken((u8*)zSql, &tokenType); - assert( n>0 && tokenType!=TK_ILLEGAL ); - if( tokenType==TK_VARIABLE ){ - *pnToken = n; - break; - } - nTotal += n; - zSql += n; - } - return nTotal; -} - -/* -** This function returns a pointer to a nul-terminated string in memory -** obtained from sqlite3DbMalloc(). If sqlite3.vdbeExecCnt is 1, then the -** string contains a copy of zRawSql but with host parameters expanded to -** their current bindings. Or, if sqlite3.vdbeExecCnt is greater than 1, -** then the returned string holds a copy of zRawSql with "-- " prepended -** to each line of text. -** -** The calling function is responsible for making sure the memory returned -** is eventually freed. -** -** ALGORITHM: Scan the input string looking for host parameters in any of -** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within -** string literals, quoted identifier names, and comments. For text forms, -** the host parameter index is found by scanning the perpared -** statement for the corresponding OP_Variable opcode. Once the host -** parameter index is known, locate the value in p->aVar[]. Then render -** the value as a literal in place of the host parameter name. -*/ -SQLITE_PRIVATE char *sqlite3VdbeExpandSql( - Vdbe *p, /* The prepared statement being evaluated */ - const char *zRawSql /* Raw text of the SQL statement */ -){ - sqlite3 *db; /* The database connection */ - int idx = 0; /* Index of a host parameter */ - int nextIndex = 1; /* Index of next ? host parameter */ - int n; /* Length of a token prefix */ - int nToken; /* Length of the parameter token */ - int i; /* Loop counter */ - Mem *pVar; /* Value of a host parameter */ - StrAccum out; /* Accumulate the output here */ - char zBase[100]; /* Initial working space */ - - db = p->db; - sqlite3StrAccumInit(&out, zBase, sizeof(zBase), - db->aLimit[SQLITE_LIMIT_LENGTH]); - out.db = db; - if( db->vdbeExecCnt>1 ){ - while( *zRawSql ){ - const char *zStart = zRawSql; - while( *(zRawSql++)!='\n' && *zRawSql ); - sqlite3StrAccumAppend(&out, "-- ", 3); - sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart)); - } - }else{ - while( zRawSql[0] ){ - n = findNextHostParameter(zRawSql, &nToken); - assert( n>0 ); - sqlite3StrAccumAppend(&out, zRawSql, n); - zRawSql += n; - assert( zRawSql[0] || nToken==0 ); - if( nToken==0 ) break; - if( zRawSql[0]=='?' ){ - if( nToken>1 ){ - assert( sqlite3Isdigit(zRawSql[1]) ); - sqlite3GetInt32(&zRawSql[1], &idx); - }else{ - idx = nextIndex; - } - }else{ - assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' ); - testcase( zRawSql[0]==':' ); - testcase( zRawSql[0]=='$' ); - testcase( zRawSql[0]=='@' ); - idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken); - assert( idx>0 ); - } - zRawSql += nToken; - nextIndex = idx + 1; - assert( idx>0 && idx<=p->nVar ); - pVar = &p->aVar[idx-1]; - if( pVar->flags & MEM_Null ){ - sqlite3StrAccumAppend(&out, "NULL", 4); - }else if( pVar->flags & MEM_Int ){ - sqlite3XPrintf(&out, "%lld", pVar->u.i); - }else if( pVar->flags & MEM_Real ){ - sqlite3XPrintf(&out, "%!.15g", pVar->r); - }else if( pVar->flags & MEM_Str ){ -#ifndef SQLITE_OMIT_UTF16 - u8 enc = ENC(db); - if( enc!=SQLITE_UTF8 ){ - Mem utf8; - memset(&utf8, 0, sizeof(utf8)); - utf8.db = db; - sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); - sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8); - sqlite3XPrintf(&out, "'%.*q'", utf8.n, utf8.z); - sqlite3VdbeMemRelease(&utf8); - }else -#endif - { - sqlite3XPrintf(&out, "'%.*q'", pVar->n, pVar->z); - } - }else if( pVar->flags & MEM_Zero ){ - sqlite3XPrintf(&out, "zeroblob(%d)", pVar->u.nZero); - }else{ - assert( pVar->flags & MEM_Blob ); - sqlite3StrAccumAppend(&out, "x'", 2); - for(i=0; i<pVar->n; i++){ - sqlite3XPrintf(&out, "%02x", pVar->z[i]&0xff); - } - sqlite3StrAccumAppend(&out, "'", 1); - } - } - } - return sqlite3StrAccumFinish(&out); -} - -#endif /* #ifndef SQLITE_OMIT_TRACE */ - -/***************************************************************************** -** The following code implements the data-structure explaining logic -** for the Vdbe. -*/ - -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) - -/* -** Allocate a new Explain object -*/ -SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){ - if( pVdbe ){ - Explain *p; - sqlite3BeginBenignMalloc(); - p = (Explain *)sqlite3MallocZero( sizeof(Explain) ); - if( p ){ - p->pVdbe = pVdbe; - sqlite3_free(pVdbe->pExplain); - pVdbe->pExplain = p; - sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase), - SQLITE_MAX_LENGTH); - p->str.useMalloc = 2; - }else{ - sqlite3EndBenignMalloc(); - } - } -} - -/* -** Return true if the Explain ends with a new-line. -*/ -static int endsWithNL(Explain *p){ - return p && p->str.zText && p->str.nChar - && p->str.zText[p->str.nChar-1]=='\n'; -} - -/* -** Append text to the indentation -*/ -SQLITE_PRIVATE void sqlite3ExplainPrintf(Vdbe *pVdbe, const char *zFormat, ...){ - Explain *p; - if( pVdbe && (p = pVdbe->pExplain)!=0 ){ - va_list ap; - if( p->nIndent && endsWithNL(p) ){ - int n = p->nIndent; - if( n>ArraySize(p->aIndent) ) n = ArraySize(p->aIndent); - sqlite3AppendSpace(&p->str, p->aIndent[n-1]); - } - va_start(ap, zFormat); - sqlite3VXPrintf(&p->str, 1, zFormat, ap); - va_end(ap); - } -} - -/* -** Append a '\n' if there is not already one. -*/ -SQLITE_PRIVATE void sqlite3ExplainNL(Vdbe *pVdbe){ - Explain *p; - if( pVdbe && (p = pVdbe->pExplain)!=0 && !endsWithNL(p) ){ - sqlite3StrAccumAppend(&p->str, "\n", 1); - } -} - -/* -** Push a new indentation level. Subsequent lines will be indented -** so that they begin at the current cursor position. -*/ -SQLITE_PRIVATE void sqlite3ExplainPush(Vdbe *pVdbe){ - Explain *p; - if( pVdbe && (p = pVdbe->pExplain)!=0 ){ - if( p->str.zText && p->nIndent<ArraySize(p->aIndent) ){ - const char *z = p->str.zText; - int i = p->str.nChar-1; - int x; - while( i>=0 && z[i]!='\n' ){ i--; } - x = (p->str.nChar - 1) - i; - if( p->nIndent && x<p->aIndent[p->nIndent-1] ){ - x = p->aIndent[p->nIndent-1]; - } - p->aIndent[p->nIndent] = x; - } - p->nIndent++; - } -} - -/* -** Pop the indentation stack by one level. -*/ -SQLITE_PRIVATE void sqlite3ExplainPop(Vdbe *p){ - if( p && p->pExplain ) p->pExplain->nIndent--; -} - -/* -** Free the indentation structure -*/ -SQLITE_PRIVATE void sqlite3ExplainFinish(Vdbe *pVdbe){ - if( pVdbe && pVdbe->pExplain ){ - sqlite3_free(pVdbe->zExplain); - sqlite3ExplainNL(pVdbe); - pVdbe->zExplain = sqlite3StrAccumFinish(&pVdbe->pExplain->str); - sqlite3_free(pVdbe->pExplain); - pVdbe->pExplain = 0; - sqlite3EndBenignMalloc(); - } -} - -/* -** Return the explanation of a virtual machine. -*/ -SQLITE_PRIVATE const char *sqlite3VdbeExplanation(Vdbe *pVdbe){ - return (pVdbe && pVdbe->zExplain) ? pVdbe->zExplain : 0; -} -#endif /* defined(SQLITE_DEBUG) */ - -/************** End of vdbetrace.c *******************************************/ -/************** Begin file vdbe.c ********************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** The code in this file implements execution method of the -** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") -** handles housekeeping details such as creating and deleting -** VDBE instances. This file is solely interested in executing -** the VDBE program. -** -** In the external interface, an "sqlite3_stmt*" is an opaque pointer -** to a VDBE. -** -** The SQL parser generates a program which is then executed by -** the VDBE to do the work of the SQL statement. VDBE programs are -** similar in form to assembly language. The program consists of -** a linear sequence of operations. Each operation has an opcode -** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 -** is a null-terminated string. Operand P5 is an unsigned character. -** Few opcodes use all 5 operands. -** -** Computation results are stored on a set of registers numbered beginning -** with 1 and going up to Vdbe.nMem. Each register can store -** either an integer, a null-terminated string, a floating point -** number, or the SQL "NULL" value. An implicit conversion from one -** type to the other occurs as necessary. -** -** Most of the code in this file is taken up by the sqlite3VdbeExec() -** function which does the work of interpreting a VDBE program. -** But other routines are also provided to help in building up -** a program instruction by instruction. -** -** Various scripts scan this source file in order to generate HTML -** documentation, headers files, or other derived files. The formatting -** of the code in this file is, therefore, important. See other comments -** in this file for details. If in doubt, do not deviate from existing -** commenting and indentation practices when changing or adding code. -*/ - -/* -** Invoke this macro on memory cells just prior to changing the -** value of the cell. This macro verifies that shallow copies are -** not misused. -*/ -#ifdef SQLITE_DEBUG -# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) -#else -# define memAboutToChange(P,M) -#endif - -/* -** The following global variable is incremented every time a cursor -** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test -** procedures use this information to make sure that indices are -** working correctly. This variable has no function other than to -** help verify the correct operation of the library. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_search_count = 0; -#endif - -/* -** When this global variable is positive, it gets decremented once before -** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted -** field of the sqlite3 structure is set in order to simulate an interrupt. -** -** This facility is used for testing purposes only. It does not function -** in an ordinary build. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_interrupt_count = 0; -#endif - -/* -** The next global variable is incremented each type the OP_Sort opcode -** is executed. The test procedures use this information to make sure that -** sorting is occurring or not occurring at appropriate times. This variable -** has no function other than to help verify the correct operation of the -** library. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_sort_count = 0; -#endif - -/* -** The next global variable records the size of the largest MEM_Blob -** or MEM_Str that has been used by a VDBE opcode. The test procedures -** use this information to make sure that the zero-blob functionality -** is working correctly. This variable has no function other than to -** help verify the correct operation of the library. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_max_blobsize = 0; -static void updateMaxBlobsize(Mem *p){ - if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ - sqlite3_max_blobsize = p->n; - } -} -#endif - -/* -** The next global variable is incremented each type the OP_Found opcode -** is executed. This is used to test whether or not the foreign key -** operation implemented using OP_FkIsZero is working. This variable -** has no function other than to help verify the correct operation of the -** library. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_found_count = 0; -#endif - -/* -** Test a register to see if it exceeds the current maximum blob size. -** If it does, record the new maximum blob size. -*/ -#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) -# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) -#else -# define UPDATE_MAX_BLOBSIZE(P) -#endif - -/* -** Convert the given register into a string if it isn't one -** already. Return non-zero if a malloc() fails. -*/ -#define Stringify(P, enc) \ - if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ - { goto no_mem; } - -/* -** An ephemeral string value (signified by the MEM_Ephem flag) contains -** a pointer to a dynamically allocated string where some other entity -** is responsible for deallocating that string. Because the register -** does not control the string, it might be deleted without the register -** knowing it. -** -** This routine converts an ephemeral string into a dynamically allocated -** string that the register itself controls. In other words, it -** converts an MEM_Ephem string into an MEM_Dyn string. -*/ -#define Deephemeralize(P) \ - if( ((P)->flags&MEM_Ephem)!=0 \ - && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} - -/* Return true if the cursor was opened using the OP_OpenSorter opcode. */ -# define isSorter(x) ((x)->pSorter!=0) - -/* -** Argument pMem points at a register that will be passed to a -** user-defined function or returned to the user as the result of a query. -** This routine sets the pMem->type variable used by the sqlite3_value_*() -** routines. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem){ - int flags = pMem->flags; - if( flags & MEM_Null ){ - pMem->type = SQLITE_NULL; - } - else if( flags & MEM_Int ){ - pMem->type = SQLITE_INTEGER; - } - else if( flags & MEM_Real ){ - pMem->type = SQLITE_FLOAT; - } - else if( flags & MEM_Str ){ - pMem->type = SQLITE_TEXT; - }else{ - pMem->type = SQLITE_BLOB; - } -} - -/* -** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL -** if we run out of memory. -*/ -static VdbeCursor *allocateCursor( - Vdbe *p, /* The virtual machine */ - int iCur, /* Index of the new VdbeCursor */ - int nField, /* Number of fields in the table or index */ - int iDb, /* Database the cursor belongs to, or -1 */ - int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ -){ - /* Find the memory cell that will be used to store the blob of memory - ** required for this VdbeCursor structure. It is convenient to use a - ** vdbe memory cell to manage the memory allocation required for a - ** VdbeCursor structure for the following reasons: - ** - ** * Sometimes cursor numbers are used for a couple of different - ** purposes in a vdbe program. The different uses might require - ** different sized allocations. Memory cells provide growable - ** allocations. - ** - ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can - ** be freed lazily via the sqlite3_release_memory() API. This - ** minimizes the number of malloc calls made by the system. - ** - ** Memory cells for cursors are allocated at the top of the address - ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for - ** cursor 1 is managed by memory cell (p->nMem-1), etc. - */ - Mem *pMem = &p->aMem[p->nMem-iCur]; - - int nByte; - VdbeCursor *pCx = 0; - nByte = - ROUND8(sizeof(VdbeCursor)) + - (isBtreeCursor?sqlite3BtreeCursorSize():0) + - 2*nField*sizeof(u32); - - assert( iCur<p->nCursor ); - if( p->apCsr[iCur] ){ - sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); - p->apCsr[iCur] = 0; - } - if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ - p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; - memset(pCx, 0, sizeof(VdbeCursor)); - pCx->iDb = iDb; - pCx->nField = nField; - if( nField ){ - pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; - } - if( isBtreeCursor ){ - pCx->pCursor = (BtCursor*) - &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; - sqlite3BtreeCursorZero(pCx->pCursor); - } - } - return pCx; -} - -/* -** Try to convert a value into a numeric representation if we can -** do so without loss of information. In other words, if the string -** looks like a number, convert it into a number. If it does not -** look like a number, leave it alone. -*/ -static void applyNumericAffinity(Mem *pRec){ - if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ - double rValue; - i64 iValue; - u8 enc = pRec->enc; - if( (pRec->flags&MEM_Str)==0 ) return; - if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; - if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ - pRec->u.i = iValue; - pRec->flags |= MEM_Int; - }else{ - pRec->r = rValue; - pRec->flags |= MEM_Real; - } - } -} - -/* -** Processing is determine by the affinity parameter: -** -** SQLITE_AFF_INTEGER: -** SQLITE_AFF_REAL: -** SQLITE_AFF_NUMERIC: -** Try to convert pRec to an integer representation or a -** floating-point representation if an integer representation -** is not possible. Note that the integer representation is -** always preferred, even if the affinity is REAL, because -** an integer representation is more space efficient on disk. -** -** SQLITE_AFF_TEXT: -** Convert pRec to a text representation. -** -** SQLITE_AFF_NONE: -** No-op. pRec is unchanged. -*/ -static void applyAffinity( - Mem *pRec, /* The value to apply affinity to */ - char affinity, /* The affinity to be applied */ - u8 enc /* Use this text encoding */ -){ - if( affinity==SQLITE_AFF_TEXT ){ - /* Only attempt the conversion to TEXT if there is an integer or real - ** representation (blob and NULL do not get converted) but no string - ** representation. - */ - if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ - sqlite3VdbeMemStringify(pRec, enc); - } - pRec->flags &= ~(MEM_Real|MEM_Int); - }else if( affinity!=SQLITE_AFF_NONE ){ - assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL - || affinity==SQLITE_AFF_NUMERIC ); - applyNumericAffinity(pRec); - if( pRec->flags & MEM_Real ){ - sqlite3VdbeIntegerAffinity(pRec); - } - } -} - -/* -** Try to convert the type of a function argument or a result column -** into a numeric representation. Use either INTEGER or REAL whichever -** is appropriate. But only do the conversion if it is possible without -** loss of information and return the revised type of the argument. -*/ -SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ - Mem *pMem = (Mem*)pVal; - if( pMem->type==SQLITE_TEXT ){ - applyNumericAffinity(pMem); - sqlite3VdbeMemStoreType(pMem); - } - return pMem->type; -} - -/* -** Exported version of applyAffinity(). This one works on sqlite3_value*, -** not the internal Mem* type. -*/ -SQLITE_PRIVATE void sqlite3ValueApplyAffinity( - sqlite3_value *pVal, - u8 affinity, - u8 enc -){ - applyAffinity((Mem *)pVal, affinity, enc); -} - -#ifdef SQLITE_DEBUG -/* -** Write a nice string representation of the contents of cell pMem -** into buffer zBuf, length nBuf. -*/ -SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ - char *zCsr = zBuf; - int f = pMem->flags; - - static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; - - if( f&MEM_Blob ){ - int i; - char c; - if( f & MEM_Dyn ){ - c = 'z'; - assert( (f & (MEM_Static|MEM_Ephem))==0 ); - }else if( f & MEM_Static ){ - c = 't'; - assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); - }else if( f & MEM_Ephem ){ - c = 'e'; - assert( (f & (MEM_Static|MEM_Dyn))==0 ); - }else{ - c = 's'; - } - - sqlite3_snprintf(100, zCsr, "%c", c); - zCsr += sqlite3Strlen30(zCsr); - sqlite3_snprintf(100, zCsr, "%d[", pMem->n); - zCsr += sqlite3Strlen30(zCsr); - for(i=0; i<16 && i<pMem->n; i++){ - sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); - zCsr += sqlite3Strlen30(zCsr); - } - for(i=0; i<16 && i<pMem->n; i++){ - char z = pMem->z[i]; - if( z<32 || z>126 ) *zCsr++ = '.'; - else *zCsr++ = z; - } - - sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); - zCsr += sqlite3Strlen30(zCsr); - if( f & MEM_Zero ){ - sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); - zCsr += sqlite3Strlen30(zCsr); - } - *zCsr = '\0'; - }else if( f & MEM_Str ){ - int j, k; - zBuf[0] = ' '; - if( f & MEM_Dyn ){ - zBuf[1] = 'z'; - assert( (f & (MEM_Static|MEM_Ephem))==0 ); - }else if( f & MEM_Static ){ - zBuf[1] = 't'; - assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); - }else if( f & MEM_Ephem ){ - zBuf[1] = 'e'; - assert( (f & (MEM_Static|MEM_Dyn))==0 ); - }else{ - zBuf[1] = 's'; - } - k = 2; - sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); - k += sqlite3Strlen30(&zBuf[k]); - zBuf[k++] = '['; - for(j=0; j<15 && j<pMem->n; j++){ - u8 c = pMem->z[j]; - if( c>=0x20 && c<0x7f ){ - zBuf[k++] = c; - }else{ - zBuf[k++] = '.'; - } - } - zBuf[k++] = ']'; - sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); - k += sqlite3Strlen30(&zBuf[k]); - zBuf[k++] = 0; - } -} -#endif - -#ifdef SQLITE_DEBUG -/* -** Print the value of a register for tracing purposes: -*/ -static void memTracePrint(FILE *out, Mem *p){ - if( p->flags & MEM_Invalid ){ - fprintf(out, " undefined"); - }else if( p->flags & MEM_Null ){ - fprintf(out, " NULL"); - }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ - fprintf(out, " si:%lld", p->u.i); - }else if( p->flags & MEM_Int ){ - fprintf(out, " i:%lld", p->u.i); -#ifndef SQLITE_OMIT_FLOATING_POINT - }else if( p->flags & MEM_Real ){ - fprintf(out, " r:%g", p->r); -#endif - }else if( p->flags & MEM_RowSet ){ - fprintf(out, " (rowset)"); - }else{ - char zBuf[200]; - sqlite3VdbeMemPrettyPrint(p, zBuf); - fprintf(out, " "); - fprintf(out, "%s", zBuf); - } -} -static void registerTrace(FILE *out, int iReg, Mem *p){ - fprintf(out, "REG[%d] = ", iReg); - memTracePrint(out, p); - fprintf(out, "\n"); -} -#endif - -#ifdef SQLITE_DEBUG -# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) -#else -# define REGISTER_TRACE(R,M) -#endif - - -#ifdef VDBE_PROFILE - -/* -** hwtime.h contains inline assembler code for implementing -** high-performance timing routines. -*/ -/************** Include hwtime.h in the middle of vdbe.c *********************/ -/************** Begin file hwtime.h ******************************************/ -/* -** 2008 May 27 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file contains inline asm code for retrieving "high-performance" -** counters for x86 class CPUs. -*/ -#ifndef _HWTIME_H_ -#define _HWTIME_H_ - -/* -** The following routine only works on pentium-class (or newer) processors. -** It uses the RDTSC opcode to read the cycle count value out of the -** processor and returns that value. This can be used for high-res -** profiling. -*/ -#if (defined(__GNUC__) || defined(_MSC_VER)) && \ - (defined(i386) || defined(__i386__) || defined(_M_IX86)) - - #if defined(__GNUC__) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned int lo, hi; - __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); - return (sqlite_uint64)hi << 32 | lo; - } - - #elif defined(_MSC_VER) - - __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){ - __asm { - rdtsc - ret ; return value at EDX:EAX - } - } - - #endif - -#elif (defined(__GNUC__) && defined(__x86_64__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long val; - __asm__ __volatile__ ("rdtsc" : "=A" (val)); - return val; - } - -#elif (defined(__GNUC__) && defined(__ppc__)) - - __inline__ sqlite_uint64 sqlite3Hwtime(void){ - unsigned long long retval; - unsigned long junk; - __asm__ __volatile__ ("\n\ - 1: mftbu %1\n\ - mftb %L0\n\ - mftbu %0\n\ - cmpw %0,%1\n\ - bne 1b" - : "=r" (retval), "=r" (junk)); - return retval; - } - -#else - - #error Need implementation of sqlite3Hwtime() for your platform. - - /* - ** To compile without implementing sqlite3Hwtime() for your platform, - ** you can remove the above #error and use the following - ** stub function. You will lose timing support for many - ** of the debugging and testing utilities, but it should at - ** least compile and run. - */ -SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); } - -#endif - -#endif /* !defined(_HWTIME_H_) */ - -/************** End of hwtime.h **********************************************/ -/************** Continuing where we left off in vdbe.c ***********************/ - -#endif - -/* -** The CHECK_FOR_INTERRUPT macro defined here looks to see if the -** sqlite3_interrupt() routine has been called. If it has been, then -** processing of the VDBE program is interrupted. -** -** This macro added to every instruction that does a jump in order to -** implement a loop. This test used to be on every single instruction, -** but that meant we more testing than we needed. By only testing the -** flag on jump instructions, we get a (small) speed improvement. -*/ -#define CHECK_FOR_INTERRUPT \ - if( db->u1.isInterrupted ) goto abort_due_to_interrupt; - - -#ifndef NDEBUG -/* -** This function is only called from within an assert() expression. It -** checks that the sqlite3.nTransaction variable is correctly set to -** the number of non-transaction savepoints currently in the -** linked list starting at sqlite3.pSavepoint. -** -** Usage: -** -** assert( checkSavepointCount(db) ); -*/ -static int checkSavepointCount(sqlite3 *db){ - int n = 0; - Savepoint *p; - for(p=db->pSavepoint; p; p=p->pNext) n++; - assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); - return 1; -} -#endif - -/* -** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored -** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored -** in memory obtained from sqlite3DbMalloc). -*/ -static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ - sqlite3 *db = p->db; - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); - sqlite3_free(pVtab->zErrMsg); - pVtab->zErrMsg = 0; -} - - -/* -** Execute as much of a VDBE program as we can then return. -** -** sqlite3VdbeMakeReady() must be called before this routine in order to -** close the program with a final OP_Halt and to set up the callbacks -** and the error message pointer. -** -** Whenever a row or result data is available, this routine will either -** invoke the result callback (if there is one) or return with -** SQLITE_ROW. -** -** If an attempt is made to open a locked database, then this routine -** will either invoke the busy callback (if there is one) or it will -** return SQLITE_BUSY. -** -** If an error occurs, an error message is written to memory obtained -** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. -** The error code is stored in p->rc and this routine returns SQLITE_ERROR. -** -** If the callback ever returns non-zero, then the program exits -** immediately. There will be no error message but the p->rc field is -** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. -** -** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this -** routine to return SQLITE_ERROR. -** -** Other fatal errors return SQLITE_ERROR. -** -** After this routine has finished, sqlite3VdbeFinalize() should be -** used to clean up the mess that was left behind. -*/ -SQLITE_PRIVATE int sqlite3VdbeExec( - Vdbe *p /* The VDBE */ -){ - int pc=0; /* The program counter */ - Op *aOp = p->aOp; /* Copy of p->aOp */ - Op *pOp; /* Current operation */ - int rc = SQLITE_OK; /* Value to return */ - sqlite3 *db = p->db; /* The database */ - u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ - u8 encoding = ENC(db); /* The database encoding */ -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - int checkProgress; /* True if progress callbacks are enabled */ - int nProgressOps = 0; /* Opcodes executed since progress callback. */ -#endif - Mem *aMem = p->aMem; /* Copy of p->aMem */ - Mem *pIn1 = 0; /* 1st input operand */ - Mem *pIn2 = 0; /* 2nd input operand */ - Mem *pIn3 = 0; /* 3rd input operand */ - Mem *pOut = 0; /* Output operand */ - int iCompare = 0; /* Result of last OP_Compare operation */ - int *aPermute = 0; /* Permutation of columns for OP_Compare */ - i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ -#ifdef VDBE_PROFILE - u64 start; /* CPU clock count at start of opcode */ - int origPc; /* Program counter at start of opcode */ -#endif - /******************************************************************** - ** Automatically generated code - ** - ** The following union is automatically generated by the - ** vdbe-compress.tcl script. The purpose of this union is to - ** reduce the amount of stack space required by this function. - ** See comments in the vdbe-compress.tcl script for details. - */ - union vdbeExecUnion { - struct OP_Yield_stack_vars { - int pcDest; - } aa; - struct OP_Null_stack_vars { - int cnt; - u16 nullFlag; - } ab; - struct OP_Variable_stack_vars { - Mem *pVar; /* Value being transferred */ - } ac; - struct OP_Move_stack_vars { - char *zMalloc; /* Holding variable for allocated memory */ - int n; /* Number of registers left to copy */ - int p1; /* Register to copy from */ - int p2; /* Register to copy to */ - } ad; - struct OP_Copy_stack_vars { - int n; - } ae; - struct OP_ResultRow_stack_vars { - Mem *pMem; - int i; - } af; - struct OP_Concat_stack_vars { - i64 nByte; - } ag; - struct OP_Remainder_stack_vars { - char bIntint; /* Started out as two integer operands */ - int flags; /* Combined MEM_* flags from both inputs */ - i64 iA; /* Integer value of left operand */ - i64 iB; /* Integer value of right operand */ - double rA; /* Real value of left operand */ - double rB; /* Real value of right operand */ - } ah; - struct OP_Function_stack_vars { - int i; - Mem *pArg; - sqlite3_context ctx; - sqlite3_value **apVal; - int n; - } ai; - struct OP_ShiftRight_stack_vars { - i64 iA; - u64 uA; - i64 iB; - u8 op; - } aj; - struct OP_Ge_stack_vars { - int res; /* Result of the comparison of pIn1 against pIn3 */ - char affinity; /* Affinity to use for comparison */ - u16 flags1; /* Copy of initial value of pIn1->flags */ - u16 flags3; /* Copy of initial value of pIn3->flags */ - } ak; - struct OP_Compare_stack_vars { - int n; - int i; - int p1; - int p2; - const KeyInfo *pKeyInfo; - int idx; - CollSeq *pColl; /* Collating sequence to use on this term */ - int bRev; /* True for DESCENDING sort order */ - } al; - struct OP_Or_stack_vars { - int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ - int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ - } am; - struct OP_IfNot_stack_vars { - int c; - } an; - struct OP_Column_stack_vars { - u32 payloadSize; /* Number of bytes in the record */ - i64 payloadSize64; /* Number of bytes in the record */ - int p1; /* P1 value of the opcode */ - int p2; /* column number to retrieve */ - VdbeCursor *pC; /* The VDBE cursor */ - char *zRec; /* Pointer to complete record-data */ - BtCursor *pCrsr; /* The BTree cursor */ - u32 *aType; /* aType[i] holds the numeric type of the i-th column */ - u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ - int nField; /* number of fields in the record */ - int len; /* The length of the serialized data for the column */ - int i; /* Loop counter */ - char *zData; /* Part of the record being decoded */ - Mem *pDest; /* Where to write the extracted value */ - Mem sMem; /* For storing the record being decoded */ - u8 *zIdx; /* Index into header */ - u8 *zEndHdr; /* Pointer to first byte after the header */ - u32 offset; /* Offset into the data */ - u32 szField; /* Number of bytes in the content of a field */ - int szHdr; /* Size of the header size field at start of record */ - int avail; /* Number of bytes of available data */ - u32 t; /* A type code from the record header */ - Mem *pReg; /* PseudoTable input register */ - } ao; - struct OP_Affinity_stack_vars { - const char *zAffinity; /* The affinity to be applied */ - char cAff; /* A single character of affinity */ - } ap; - struct OP_MakeRecord_stack_vars { - u8 *zNewRecord; /* A buffer to hold the data for the new record */ - Mem *pRec; /* The new record */ - u64 nData; /* Number of bytes of data space */ - int nHdr; /* Number of bytes of header space */ - i64 nByte; /* Data space required for this record */ - int nZero; /* Number of zero bytes at the end of the record */ - int nVarint; /* Number of bytes in a varint */ - u32 serial_type; /* Type field */ - Mem *pData0; /* First field to be combined into the record */ - Mem *pLast; /* Last field of the record */ - int nField; /* Number of fields in the record */ - char *zAffinity; /* The affinity string for the record */ - int file_format; /* File format to use for encoding */ - int i; /* Space used in zNewRecord[] */ - int len; /* Length of a field */ - } aq; - struct OP_Count_stack_vars { - i64 nEntry; - BtCursor *pCrsr; - } ar; - struct OP_Savepoint_stack_vars { - int p1; /* Value of P1 operand */ - char *zName; /* Name of savepoint */ - int nName; - Savepoint *pNew; - Savepoint *pSavepoint; - Savepoint *pTmp; - int iSavepoint; - int ii; - } as; - struct OP_AutoCommit_stack_vars { - int desiredAutoCommit; - int iRollback; - int turnOnAC; - } at; - struct OP_Transaction_stack_vars { - Btree *pBt; - } au; - struct OP_ReadCookie_stack_vars { - int iMeta; - int iDb; - int iCookie; - } av; - struct OP_SetCookie_stack_vars { - Db *pDb; - } aw; - struct OP_VerifyCookie_stack_vars { - int iMeta; - int iGen; - Btree *pBt; - } ax; - struct OP_OpenWrite_stack_vars { - int nField; - KeyInfo *pKeyInfo; - int p2; - int iDb; - int wrFlag; - Btree *pX; - VdbeCursor *pCur; - Db *pDb; - } ay; - struct OP_OpenEphemeral_stack_vars { - VdbeCursor *pCx; - } az; - struct OP_SorterOpen_stack_vars { - VdbeCursor *pCx; - } ba; - struct OP_OpenPseudo_stack_vars { - VdbeCursor *pCx; - } bb; - struct OP_SeekGt_stack_vars { - int res; - int oc; - VdbeCursor *pC; - UnpackedRecord r; - int nField; - i64 iKey; /* The rowid we are to seek to */ - } bc; - struct OP_Seek_stack_vars { - VdbeCursor *pC; - } bd; - struct OP_Found_stack_vars { - int alreadyExists; - VdbeCursor *pC; - int res; - char *pFree; - UnpackedRecord *pIdxKey; - UnpackedRecord r; - char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; - } be; - struct OP_IsUnique_stack_vars { - u16 ii; - VdbeCursor *pCx; - BtCursor *pCrsr; - u16 nField; - Mem *aMx; - UnpackedRecord r; /* B-Tree index search key */ - i64 R; /* Rowid stored in register P3 */ - } bf; - struct OP_NotExists_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - u64 iKey; - } bg; - struct OP_NewRowid_stack_vars { - i64 v; /* The new rowid */ - VdbeCursor *pC; /* Cursor of table to get the new rowid */ - int res; /* Result of an sqlite3BtreeLast() */ - int cnt; /* Counter to limit the number of searches */ - Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ - VdbeFrame *pFrame; /* Root frame of VDBE */ - } bh; - struct OP_InsertInt_stack_vars { - Mem *pData; /* MEM cell holding data for the record to be inserted */ - Mem *pKey; /* MEM cell holding key for the record */ - i64 iKey; /* The integer ROWID or key for the record to be inserted */ - VdbeCursor *pC; /* Cursor to table into which insert is written */ - int nZero; /* Number of zero-bytes to append */ - int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ - const char *zDb; /* database name - used by the update hook */ - const char *zTbl; /* Table name - used by the opdate hook */ - int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ - } bi; - struct OP_Delete_stack_vars { - i64 iKey; - VdbeCursor *pC; - } bj; - struct OP_SorterCompare_stack_vars { - VdbeCursor *pC; - int res; - } bk; - struct OP_SorterData_stack_vars { - VdbeCursor *pC; - } bl; - struct OP_RowData_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - u32 n; - i64 n64; - } bm; - struct OP_Rowid_stack_vars { - VdbeCursor *pC; - i64 v; - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; - } bn; - struct OP_NullRow_stack_vars { - VdbeCursor *pC; - } bo; - struct OP_Last_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - } bp; - struct OP_Rewind_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - } bq; - struct OP_Next_stack_vars { - VdbeCursor *pC; - int res; - } br; - struct OP_IdxInsert_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - int nKey; - const char *zKey; - } bs; - struct OP_IdxDelete_stack_vars { - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - UnpackedRecord r; - } bt; - struct OP_IdxRowid_stack_vars { - BtCursor *pCrsr; - VdbeCursor *pC; - i64 rowid; - } bu; - struct OP_IdxGE_stack_vars { - VdbeCursor *pC; - int res; - UnpackedRecord r; - } bv; - struct OP_Destroy_stack_vars { - int iMoved; - int iCnt; - Vdbe *pVdbe; - int iDb; - } bw; - struct OP_Clear_stack_vars { - int nChange; - } bx; - struct OP_CreateTable_stack_vars { - int pgno; - int flags; - Db *pDb; - } by; - struct OP_ParseSchema_stack_vars { - int iDb; - const char *zMaster; - char *zSql; - InitData initData; - } bz; - struct OP_IntegrityCk_stack_vars { - int nRoot; /* Number of tables to check. (Number of root pages.) */ - int *aRoot; /* Array of rootpage numbers for tables to be checked */ - int j; /* Loop counter */ - int nErr; /* Number of errors reported */ - char *z; /* Text of the error report */ - Mem *pnErr; /* Register keeping track of errors remaining */ - } ca; - struct OP_RowSetRead_stack_vars { - i64 val; - } cb; - struct OP_RowSetTest_stack_vars { - int iSet; - int exists; - } cc; - struct OP_Program_stack_vars { - int nMem; /* Number of memory registers for sub-program */ - int nByte; /* Bytes of runtime space required for sub-program */ - Mem *pRt; /* Register to allocate runtime space */ - Mem *pMem; /* Used to iterate through memory cells */ - Mem *pEnd; /* Last memory cell in new array */ - VdbeFrame *pFrame; /* New vdbe frame to execute in */ - SubProgram *pProgram; /* Sub-program to execute */ - void *t; /* Token identifying trigger */ - } cd; - struct OP_Param_stack_vars { - VdbeFrame *pFrame; - Mem *pIn; - } ce; - struct OP_MemMax_stack_vars { - Mem *pIn1; - VdbeFrame *pFrame; - } cf; - struct OP_AggStep_stack_vars { - int n; - int i; - Mem *pMem; - Mem *pRec; - sqlite3_context ctx; - sqlite3_value **apVal; - } cg; - struct OP_AggFinal_stack_vars { - Mem *pMem; - } ch; - struct OP_Checkpoint_stack_vars { - int i; /* Loop counter */ - int aRes[3]; /* Results */ - Mem *pMem; /* Write results here */ - } ci; - struct OP_JournalMode_stack_vars { - Btree *pBt; /* Btree to change journal mode of */ - Pager *pPager; /* Pager associated with pBt */ - int eNew; /* New journal mode */ - int eOld; /* The old journal mode */ -#ifndef SQLITE_OMIT_WAL - const char *zFilename; /* Name of database file for pPager */ -#endif - } cj; - struct OP_IncrVacuum_stack_vars { - Btree *pBt; - } ck; - struct OP_VBegin_stack_vars { - VTable *pVTab; - } cl; - struct OP_VOpen_stack_vars { - VdbeCursor *pCur; - sqlite3_vtab_cursor *pVtabCursor; - sqlite3_vtab *pVtab; - sqlite3_module *pModule; - } cm; - struct OP_VFilter_stack_vars { - int nArg; - int iQuery; - const sqlite3_module *pModule; - Mem *pQuery; - Mem *pArgc; - sqlite3_vtab_cursor *pVtabCursor; - sqlite3_vtab *pVtab; - VdbeCursor *pCur; - int res; - int i; - Mem **apArg; - } cn; - struct OP_VColumn_stack_vars { - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; - Mem *pDest; - sqlite3_context sContext; - } co; - struct OP_VNext_stack_vars { - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; - int res; - VdbeCursor *pCur; - } cp; - struct OP_VRename_stack_vars { - sqlite3_vtab *pVtab; - Mem *pName; - } cq; - struct OP_VUpdate_stack_vars { - sqlite3_vtab *pVtab; - sqlite3_module *pModule; - int nArg; - int i; - sqlite_int64 rowid; - Mem **apArg; - Mem *pX; - } cr; - struct OP_Trace_stack_vars { - char *zTrace; - char *z; - } cs; - } u; - /* End automatically generated code - ********************************************************************/ - - assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ - sqlite3VdbeEnter(p); - if( p->rc==SQLITE_NOMEM ){ - /* This happens if a malloc() inside a call to sqlite3_column_text() or - ** sqlite3_column_text16() failed. */ - goto no_mem; - } - assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); - p->rc = SQLITE_OK; - assert( p->explain==0 ); - p->pResultSet = 0; - db->busyHandler.nBusy = 0; - CHECK_FOR_INTERRUPT; - sqlite3VdbeIOTraceSql(p); -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - checkProgress = db->xProgress!=0; -#endif -#ifdef SQLITE_DEBUG - sqlite3BeginBenignMalloc(); - if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ - int i; - printf("VDBE Program Listing:\n"); - sqlite3VdbePrintSql(p); - for(i=0; i<p->nOp; i++){ - sqlite3VdbePrintOp(stdout, i, &aOp[i]); - } - } - sqlite3EndBenignMalloc(); -#endif - for(pc=p->pc; rc==SQLITE_OK; pc++){ - assert( pc>=0 && pc<p->nOp ); - if( db->mallocFailed ) goto no_mem; -#ifdef VDBE_PROFILE - origPc = pc; - start = sqlite3Hwtime(); -#endif - pOp = &aOp[pc]; - - /* Only allow tracing if SQLITE_DEBUG is defined. - */ -#ifdef SQLITE_DEBUG - if( p->trace ){ - if( pc==0 ){ - printf("VDBE Execution Trace:\n"); - sqlite3VdbePrintSql(p); - } - sqlite3VdbePrintOp(p->trace, pc, pOp); - } -#endif - - - /* Check to see if we need to simulate an interrupt. This only happens - ** if we have a special test build. - */ -#ifdef SQLITE_TEST - if( sqlite3_interrupt_count>0 ){ - sqlite3_interrupt_count--; - if( sqlite3_interrupt_count==0 ){ - sqlite3_interrupt(db); - } - } -#endif - -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - /* Call the progress callback if it is configured and the required number - ** of VDBE ops have been executed (either since this invocation of - ** sqlite3VdbeExec() or since last time the progress callback was called). - ** If the progress callback returns non-zero, exit the virtual machine with - ** a return code SQLITE_ABORT. - */ - if( checkProgress ){ - if( db->nProgressOps==nProgressOps ){ - int prc; - prc = db->xProgress(db->pProgressArg); - if( prc!=0 ){ - rc = SQLITE_INTERRUPT; - goto vdbe_error_halt; - } - nProgressOps = 0; - } - nProgressOps++; - } -#endif - - /* On any opcode with the "out2-prerelease" tag, free any - ** external allocations out of mem[p2] and set mem[p2] to be - ** an undefined integer. Opcodes will either fill in the integer - ** value or convert mem[p2] to a different type. - */ - assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); - if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ - assert( pOp->p2>0 ); - assert( pOp->p2<=p->nMem ); - pOut = &aMem[pOp->p2]; - memAboutToChange(p, pOut); - VdbeMemRelease(pOut); - pOut->flags = MEM_Int; - } - - /* Sanity checking on other operands */ -#ifdef SQLITE_DEBUG - if( (pOp->opflags & OPFLG_IN1)!=0 ){ - assert( pOp->p1>0 ); - assert( pOp->p1<=p->nMem ); - assert( memIsValid(&aMem[pOp->p1]) ); - REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); - } - if( (pOp->opflags & OPFLG_IN2)!=0 ){ - assert( pOp->p2>0 ); - assert( pOp->p2<=p->nMem ); - assert( memIsValid(&aMem[pOp->p2]) ); - REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); - } - if( (pOp->opflags & OPFLG_IN3)!=0 ){ - assert( pOp->p3>0 ); - assert( pOp->p3<=p->nMem ); - assert( memIsValid(&aMem[pOp->p3]) ); - REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); - } - if( (pOp->opflags & OPFLG_OUT2)!=0 ){ - assert( pOp->p2>0 ); - assert( pOp->p2<=p->nMem ); - memAboutToChange(p, &aMem[pOp->p2]); - } - if( (pOp->opflags & OPFLG_OUT3)!=0 ){ - assert( pOp->p3>0 ); - assert( pOp->p3<=p->nMem ); - memAboutToChange(p, &aMem[pOp->p3]); - } -#endif - - switch( pOp->opcode ){ - -/***************************************************************************** -** What follows is a massive switch statement where each case implements a -** separate instruction in the virtual machine. If we follow the usual -** indentation conventions, each case should be indented by 6 spaces. But -** that is a lot of wasted space on the left margin. So the code within -** the switch statement will break with convention and be flush-left. Another -** big comment (similar to this one) will mark the point in the code where -** we transition back to normal indentation. -** -** The formatting of each case is important. The makefile for SQLite -** generates two C files "opcodes.h" and "opcodes.c" by scanning this -** file looking for lines that begin with "case OP_". The opcodes.h files -** will be filled with #defines that give unique integer values to each -** opcode and the opcodes.c file is filled with an array of strings where -** each string is the symbolic name for the corresponding opcode. If the -** case statement is followed by a comment of the form "/# same as ... #/" -** that comment is used to determine the particular value of the opcode. -** -** Other keywords in the comment that follows each case are used to -** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. -** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See -** the mkopcodeh.awk script for additional information. -** -** Documentation about VDBE opcodes is generated by scanning this file -** for lines of that contain "Opcode:". That line and all subsequent -** comment lines are used in the generation of the opcode.html documentation -** file. -** -** SUMMARY: -** -** Formatting is important to scripts that scan this file. -** Do not deviate from the formatting style currently in use. -** -*****************************************************************************/ - -/* Opcode: Goto * P2 * * * -** -** An unconditional jump to address P2. -** The next instruction executed will be -** the one at index P2 from the beginning of -** the program. -*/ -case OP_Goto: { /* jump */ - CHECK_FOR_INTERRUPT; - pc = pOp->p2 - 1; - break; -} - -/* Opcode: Gosub P1 P2 * * * -** -** Write the current address onto register P1 -** and then jump to address P2. -*/ -case OP_Gosub: { /* jump */ - assert( pOp->p1>0 && pOp->p1<=p->nMem ); - pIn1 = &aMem[pOp->p1]; - assert( (pIn1->flags & MEM_Dyn)==0 ); - memAboutToChange(p, pIn1); - pIn1->flags = MEM_Int; - pIn1->u.i = pc; - REGISTER_TRACE(pOp->p1, pIn1); - pc = pOp->p2 - 1; - break; -} - -/* Opcode: Return P1 * * * * -** -** Jump to the next instruction after the address in register P1. -*/ -case OP_Return: { /* in1 */ - pIn1 = &aMem[pOp->p1]; - assert( pIn1->flags & MEM_Int ); - pc = (int)pIn1->u.i; - break; -} - -/* Opcode: Yield P1 * * * * -** -** Swap the program counter with the value in register P1. -*/ -case OP_Yield: { /* in1 */ -#if 0 /* local variables moved into u.aa */ - int pcDest; -#endif /* local variables moved into u.aa */ - pIn1 = &aMem[pOp->p1]; - assert( (pIn1->flags & MEM_Dyn)==0 ); - pIn1->flags = MEM_Int; - u.aa.pcDest = (int)pIn1->u.i; - pIn1->u.i = pc; - REGISTER_TRACE(pOp->p1, pIn1); - pc = u.aa.pcDest; - break; -} - -/* Opcode: HaltIfNull P1 P2 P3 P4 * -** -** Check the value in register P3. If it is NULL then Halt using -** parameter P1, P2, and P4 as if this were a Halt instruction. If the -** value in register P3 is not NULL, then this routine is a no-op. -*/ -case OP_HaltIfNull: { /* in3 */ - pIn3 = &aMem[pOp->p3]; - if( (pIn3->flags & MEM_Null)==0 ) break; - /* Fall through into OP_Halt */ -} - -/* Opcode: Halt P1 P2 * P4 * -** -** Exit immediately. All open cursors, etc are closed -** automatically. -** -** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), -** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). -** For errors, it can be some other value. If P1!=0 then P2 will determine -** whether or not to rollback the current transaction. Do not rollback -** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, -** then back out all changes that have occurred during this execution of the -** VDBE, but do not rollback the transaction. -** -** If P4 is not null then it is an error message string. -** -** There is an implied "Halt 0 0 0" instruction inserted at the very end of -** every program. So a jump past the last instruction of the program -** is the same as executing Halt. -*/ -case OP_Halt: { - if( pOp->p1==SQLITE_OK && p->pFrame ){ - /* Halt the sub-program. Return control to the parent frame. */ - VdbeFrame *pFrame = p->pFrame; - p->pFrame = pFrame->pParent; - p->nFrame--; - sqlite3VdbeSetChanges(db, p->nChange); - pc = sqlite3VdbeFrameRestore(pFrame); - lastRowid = db->lastRowid; - if( pOp->p2==OE_Ignore ){ - /* Instruction pc is the OP_Program that invoked the sub-program - ** currently being halted. If the p2 instruction of this OP_Halt - ** instruction is set to OE_Ignore, then the sub-program is throwing - ** an IGNORE exception. In this case jump to the address specified - ** as the p2 of the calling OP_Program. */ - pc = p->aOp[pc].p2-1; - } - aOp = p->aOp; - aMem = p->aMem; - break; - } - - p->rc = pOp->p1; - p->errorAction = (u8)pOp->p2; - p->pc = pc; - if( pOp->p4.z ){ - assert( p->rc!=SQLITE_OK ); - sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); - }else if( p->rc ){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); - } - rc = sqlite3VdbeHalt(p); - assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); - if( rc==SQLITE_BUSY ){ - p->rc = rc = SQLITE_BUSY; - }else{ - assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); - assert( rc==SQLITE_OK || db->nDeferredCons>0 ); - rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; - } - goto vdbe_return; -} - -/* Opcode: Integer P1 P2 * * * -** -** The 32-bit integer value P1 is written into register P2. -*/ -case OP_Integer: { /* out2-prerelease */ - pOut->u.i = pOp->p1; - break; -} - -/* Opcode: Int64 * P2 * P4 * -** -** P4 is a pointer to a 64-bit integer value. -** Write that value into register P2. -*/ -case OP_Int64: { /* out2-prerelease */ - assert( pOp->p4.pI64!=0 ); - pOut->u.i = *pOp->p4.pI64; - break; -} - -#ifndef SQLITE_OMIT_FLOATING_POINT -/* Opcode: Real * P2 * P4 * -** -** P4 is a pointer to a 64-bit floating point value. -** Write that value into register P2. -*/ -case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ - pOut->flags = MEM_Real; - assert( !sqlite3IsNaN(*pOp->p4.pReal) ); - pOut->r = *pOp->p4.pReal; - break; -} -#endif - -/* Opcode: String8 * P2 * P4 * -** -** P4 points to a nul terminated UTF-8 string. This opcode is transformed -** into an OP_String before it is executed for the first time. -*/ -case OP_String8: { /* same as TK_STRING, out2-prerelease */ - assert( pOp->p4.z!=0 ); - pOp->opcode = OP_String; - pOp->p1 = sqlite3Strlen30(pOp->p4.z); - -#ifndef SQLITE_OMIT_UTF16 - if( encoding!=SQLITE_UTF8 ){ - rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); - if( rc==SQLITE_TOOBIG ) goto too_big; - if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; - assert( pOut->zMalloc==pOut->z ); - assert( pOut->flags & MEM_Dyn ); - pOut->zMalloc = 0; - pOut->flags |= MEM_Static; - pOut->flags &= ~MEM_Dyn; - if( pOp->p4type==P4_DYNAMIC ){ - sqlite3DbFree(db, pOp->p4.z); - } - pOp->p4type = P4_DYNAMIC; - pOp->p4.z = pOut->z; - pOp->p1 = pOut->n; - } -#endif - if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - /* Fall through to the next case, OP_String */ -} - -/* Opcode: String P1 P2 * P4 * -** -** The string value P4 of length P1 (bytes) is stored in register P2. -*/ -case OP_String: { /* out2-prerelease */ - assert( pOp->p4.z!=0 ); - pOut->flags = MEM_Str|MEM_Static|MEM_Term; - pOut->z = pOp->p4.z; - pOut->n = pOp->p1; - pOut->enc = encoding; - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Null P1 P2 P3 * * -** -** Write a NULL into registers P2. If P3 greater than P2, then also write -** NULL into register P3 and every register in between P2 and P3. If P3 -** is less than P2 (typically P3 is zero) then only register P2 is -** set to NULL. -** -** If the P1 value is non-zero, then also set the MEM_Cleared flag so that -** NULL values will not compare equal even if SQLITE_NULLEQ is set on -** OP_Ne or OP_Eq. -*/ -case OP_Null: { /* out2-prerelease */ -#if 0 /* local variables moved into u.ab */ - int cnt; - u16 nullFlag; -#endif /* local variables moved into u.ab */ - u.ab.cnt = pOp->p3-pOp->p2; - assert( pOp->p3<=p->nMem ); - pOut->flags = u.ab.nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; - while( u.ab.cnt>0 ){ - pOut++; - memAboutToChange(p, pOut); - VdbeMemRelease(pOut); - pOut->flags = u.ab.nullFlag; - u.ab.cnt--; - } - break; -} - - -/* Opcode: Blob P1 P2 * P4 -** -** P4 points to a blob of data P1 bytes long. Store this -** blob in register P2. -*/ -case OP_Blob: { /* out2-prerelease */ - assert( pOp->p1 <= SQLITE_MAX_LENGTH ); - sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); - pOut->enc = encoding; - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Variable P1 P2 * P4 * -** -** Transfer the values of bound parameter P1 into register P2 -** -** If the parameter is named, then its name appears in P4 and P3==1. -** The P4 value is used by sqlite3_bind_parameter_name(). -*/ -case OP_Variable: { /* out2-prerelease */ -#if 0 /* local variables moved into u.ac */ - Mem *pVar; /* Value being transferred */ -#endif /* local variables moved into u.ac */ - - assert( pOp->p1>0 && pOp->p1<=p->nVar ); - assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); - u.ac.pVar = &p->aVar[pOp->p1 - 1]; - if( sqlite3VdbeMemTooBig(u.ac.pVar) ){ - goto too_big; - } - sqlite3VdbeMemShallowCopy(pOut, u.ac.pVar, MEM_Static); - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Move P1 P2 P3 * * -** -** Move the values in register P1..P1+P3 over into -** registers P2..P2+P3. Registers P1..P1+P3 are -** left holding a NULL. It is an error for register ranges -** P1..P1+P3 and P2..P2+P3 to overlap. -*/ -case OP_Move: { -#if 0 /* local variables moved into u.ad */ - char *zMalloc; /* Holding variable for allocated memory */ - int n; /* Number of registers left to copy */ - int p1; /* Register to copy from */ - int p2; /* Register to copy to */ -#endif /* local variables moved into u.ad */ - - u.ad.n = pOp->p3 + 1; - u.ad.p1 = pOp->p1; - u.ad.p2 = pOp->p2; - assert( u.ad.n>0 && u.ad.p1>0 && u.ad.p2>0 ); - assert( u.ad.p1+u.ad.n<=u.ad.p2 || u.ad.p2+u.ad.n<=u.ad.p1 ); - - pIn1 = &aMem[u.ad.p1]; - pOut = &aMem[u.ad.p2]; - while( u.ad.n-- ){ - assert( pOut<=&aMem[p->nMem] ); - assert( pIn1<=&aMem[p->nMem] ); - assert( memIsValid(pIn1) ); - memAboutToChange(p, pOut); - u.ad.zMalloc = pOut->zMalloc; - pOut->zMalloc = 0; - sqlite3VdbeMemMove(pOut, pIn1); -#ifdef SQLITE_DEBUG - if( pOut->pScopyFrom>=&aMem[u.ad.p1] && pOut->pScopyFrom<&aMem[u.ad.p1+pOp->p3] ){ - pOut->pScopyFrom += u.ad.p1 - pOp->p2; - } -#endif - pIn1->zMalloc = u.ad.zMalloc; - REGISTER_TRACE(u.ad.p2++, pOut); - pIn1++; - pOut++; - } - break; -} - -/* Opcode: Copy P1 P2 P3 * * -** -** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. -** -** This instruction makes a deep copy of the value. A duplicate -** is made of any string or blob constant. See also OP_SCopy. -*/ -case OP_Copy: { -#if 0 /* local variables moved into u.ae */ - int n; -#endif /* local variables moved into u.ae */ - - u.ae.n = pOp->p3; - pIn1 = &aMem[pOp->p1]; - pOut = &aMem[pOp->p2]; - assert( pOut!=pIn1 ); - while( 1 ){ - sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); - Deephemeralize(pOut); -#ifdef SQLITE_DEBUG - pOut->pScopyFrom = 0; -#endif - REGISTER_TRACE(pOp->p2+pOp->p3-u.ae.n, pOut); - if( (u.ae.n--)==0 ) break; - pOut++; - pIn1++; - } - break; -} - -/* Opcode: SCopy P1 P2 * * * -** -** Make a shallow copy of register P1 into register P2. -** -** This instruction makes a shallow copy of the value. If the value -** is a string or blob, then the copy is only a pointer to the -** original and hence if the original changes so will the copy. -** Worse, if the original is deallocated, the copy becomes invalid. -** Thus the program must guarantee that the original will not change -** during the lifetime of the copy. Use OP_Copy to make a complete -** copy. -*/ -case OP_SCopy: { /* in1, out2 */ - pIn1 = &aMem[pOp->p1]; - pOut = &aMem[pOp->p2]; - assert( pOut!=pIn1 ); - sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); -#ifdef SQLITE_DEBUG - if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; -#endif - REGISTER_TRACE(pOp->p2, pOut); - break; -} - -/* Opcode: ResultRow P1 P2 * * * -** -** The registers P1 through P1+P2-1 contain a single row of -** results. This opcode causes the sqlite3_step() call to terminate -** with an SQLITE_ROW return code and it sets up the sqlite3_stmt -** structure to provide access to the top P1 values as the result -** row. -*/ -case OP_ResultRow: { -#if 0 /* local variables moved into u.af */ - Mem *pMem; - int i; -#endif /* local variables moved into u.af */ - assert( p->nResColumn==pOp->p2 ); - assert( pOp->p1>0 ); - assert( pOp->p1+pOp->p2<=p->nMem+1 ); - - /* If this statement has violated immediate foreign key constraints, do - ** not return the number of rows modified. And do not RELEASE the statement - ** transaction. It needs to be rolled back. */ - if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ - assert( db->flags&SQLITE_CountRows ); - assert( p->usesStmtJournal ); - break; - } - - /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then - ** DML statements invoke this opcode to return the number of rows - ** modified to the user. This is the only way that a VM that - ** opens a statement transaction may invoke this opcode. - ** - ** In case this is such a statement, close any statement transaction - ** opened by this VM before returning control to the user. This is to - ** ensure that statement-transactions are always nested, not overlapping. - ** If the open statement-transaction is not closed here, then the user - ** may step another VM that opens its own statement transaction. This - ** may lead to overlapping statement transactions. - ** - ** The statement transaction is never a top-level transaction. Hence - ** the RELEASE call below can never fail. - */ - assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); - rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); - if( NEVER(rc!=SQLITE_OK) ){ - break; - } - - /* Invalidate all ephemeral cursor row caches */ - p->cacheCtr = (p->cacheCtr + 2)|1; - - /* Make sure the results of the current row are \000 terminated - ** and have an assigned type. The results are de-ephemeralized as - ** a side effect. - */ - u.af.pMem = p->pResultSet = &aMem[pOp->p1]; - for(u.af.i=0; u.af.i<pOp->p2; u.af.i++){ - assert( memIsValid(&u.af.pMem[u.af.i]) ); - Deephemeralize(&u.af.pMem[u.af.i]); - assert( (u.af.pMem[u.af.i].flags & MEM_Ephem)==0 - || (u.af.pMem[u.af.i].flags & (MEM_Str|MEM_Blob))==0 ); - sqlite3VdbeMemNulTerminate(&u.af.pMem[u.af.i]); - sqlite3VdbeMemStoreType(&u.af.pMem[u.af.i]); - REGISTER_TRACE(pOp->p1+u.af.i, &u.af.pMem[u.af.i]); - } - if( db->mallocFailed ) goto no_mem; - - /* Return SQLITE_ROW - */ - p->pc = pc + 1; - rc = SQLITE_ROW; - goto vdbe_return; -} - -/* Opcode: Concat P1 P2 P3 * * -** -** Add the text in register P1 onto the end of the text in -** register P2 and store the result in register P3. -** If either the P1 or P2 text are NULL then store NULL in P3. -** -** P3 = P2 || P1 -** -** It is illegal for P1 and P3 to be the same register. Sometimes, -** if P3 is the same register as P2, the implementation is able -** to avoid a memcpy(). -*/ -case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ -#if 0 /* local variables moved into u.ag */ - i64 nByte; -#endif /* local variables moved into u.ag */ - - pIn1 = &aMem[pOp->p1]; - pIn2 = &aMem[pOp->p2]; - pOut = &aMem[pOp->p3]; - assert( pIn1!=pOut ); - if( (pIn1->flags | pIn2->flags) & MEM_Null ){ - sqlite3VdbeMemSetNull(pOut); - break; - } - if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; - Stringify(pIn1, encoding); - Stringify(pIn2, encoding); - u.ag.nByte = pIn1->n + pIn2->n; - if( u.ag.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - MemSetTypeFlag(pOut, MEM_Str); - if( sqlite3VdbeMemGrow(pOut, (int)u.ag.nByte+2, pOut==pIn2) ){ - goto no_mem; - } - if( pOut!=pIn2 ){ - memcpy(pOut->z, pIn2->z, pIn2->n); - } - memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); - pOut->z[u.ag.nByte] = 0; - pOut->z[u.ag.nByte+1] = 0; - pOut->flags |= MEM_Term; - pOut->n = (int)u.ag.nByte; - pOut->enc = encoding; - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Add P1 P2 P3 * * -** -** Add the value in register P1 to the value in register P2 -** and store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: Multiply P1 P2 P3 * * -** -** -** Multiply the value in register P1 by the value in register P2 -** and store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: Subtract P1 P2 P3 * * -** -** Subtract the value in register P1 from the value in register P2 -** and store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: Divide P1 P2 P3 * * -** -** Divide the value in register P1 by the value in register P2 -** and store the result in register P3 (P3=P2/P1). If the value in -** register P1 is zero, then the result is NULL. If either input is -** NULL, the result is NULL. -*/ -/* Opcode: Remainder P1 P2 P3 * * -** -** Compute the remainder after integer division of the value in -** register P1 by the value in register P2 and store the result in P3. -** If the value in register P2 is zero the result is NULL. -** If either operand is NULL, the result is NULL. -*/ -case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ -case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ -case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ -case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ -case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ -#if 0 /* local variables moved into u.ah */ - char bIntint; /* Started out as two integer operands */ - int flags; /* Combined MEM_* flags from both inputs */ - i64 iA; /* Integer value of left operand */ - i64 iB; /* Integer value of right operand */ - double rA; /* Real value of left operand */ - double rB; /* Real value of right operand */ -#endif /* local variables moved into u.ah */ - - pIn1 = &aMem[pOp->p1]; - applyNumericAffinity(pIn1); - pIn2 = &aMem[pOp->p2]; - applyNumericAffinity(pIn2); - pOut = &aMem[pOp->p3]; - u.ah.flags = pIn1->flags | pIn2->flags; - if( (u.ah.flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; - if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ - u.ah.iA = pIn1->u.i; - u.ah.iB = pIn2->u.i; - u.ah.bIntint = 1; - switch( pOp->opcode ){ - case OP_Add: if( sqlite3AddInt64(&u.ah.iB,u.ah.iA) ) goto fp_math; break; - case OP_Subtract: if( sqlite3SubInt64(&u.ah.iB,u.ah.iA) ) goto fp_math; break; - case OP_Multiply: if( sqlite3MulInt64(&u.ah.iB,u.ah.iA) ) goto fp_math; break; - case OP_Divide: { - if( u.ah.iA==0 ) goto arithmetic_result_is_null; - if( u.ah.iA==-1 && u.ah.iB==SMALLEST_INT64 ) goto fp_math; - u.ah.iB /= u.ah.iA; - break; - } - default: { - if( u.ah.iA==0 ) goto arithmetic_result_is_null; - if( u.ah.iA==-1 ) u.ah.iA = 1; - u.ah.iB %= u.ah.iA; - break; - } - } - pOut->u.i = u.ah.iB; - MemSetTypeFlag(pOut, MEM_Int); - }else{ - u.ah.bIntint = 0; -fp_math: - u.ah.rA = sqlite3VdbeRealValue(pIn1); - u.ah.rB = sqlite3VdbeRealValue(pIn2); - switch( pOp->opcode ){ - case OP_Add: u.ah.rB += u.ah.rA; break; - case OP_Subtract: u.ah.rB -= u.ah.rA; break; - case OP_Multiply: u.ah.rB *= u.ah.rA; break; - case OP_Divide: { - /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ - if( u.ah.rA==(double)0 ) goto arithmetic_result_is_null; - u.ah.rB /= u.ah.rA; - break; - } - default: { - u.ah.iA = (i64)u.ah.rA; - u.ah.iB = (i64)u.ah.rB; - if( u.ah.iA==0 ) goto arithmetic_result_is_null; - if( u.ah.iA==-1 ) u.ah.iA = 1; - u.ah.rB = (double)(u.ah.iB % u.ah.iA); - break; - } - } -#ifdef SQLITE_OMIT_FLOATING_POINT - pOut->u.i = u.ah.rB; - MemSetTypeFlag(pOut, MEM_Int); -#else - if( sqlite3IsNaN(u.ah.rB) ){ - goto arithmetic_result_is_null; - } - pOut->r = u.ah.rB; - MemSetTypeFlag(pOut, MEM_Real); - if( (u.ah.flags & MEM_Real)==0 && !u.ah.bIntint ){ - sqlite3VdbeIntegerAffinity(pOut); - } -#endif - } - break; - -arithmetic_result_is_null: - sqlite3VdbeMemSetNull(pOut); - break; -} - -/* Opcode: CollSeq P1 * * P4 -** -** P4 is a pointer to a CollSeq struct. If the next call to a user function -** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will -** be returned. This is used by the built-in min(), max() and nullif() -** functions. -** -** If P1 is not zero, then it is a register that a subsequent min() or -** max() aggregate will set to 1 if the current row is not the minimum or -** maximum. The P1 register is initialized to 0 by this instruction. -** -** The interface used by the implementation of the aforementioned functions -** to retrieve the collation sequence set by this opcode is not available -** publicly, only to user functions defined in func.c. -*/ -case OP_CollSeq: { - assert( pOp->p4type==P4_COLLSEQ ); - if( pOp->p1 ){ - sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); - } - break; -} - -/* Opcode: Function P1 P2 P3 P4 P5 -** -** Invoke a user function (P4 is a pointer to a Function structure that -** defines the function) with P5 arguments taken from register P2 and -** successors. The result of the function is stored in register P3. -** Register P3 must not be one of the function inputs. -** -** P1 is a 32-bit bitmask indicating whether or not each argument to the -** function was determined to be constant at compile time. If the first -** argument was constant then bit 0 of P1 is set. This is used to determine -** whether meta data associated with a user function argument using the -** sqlite3_set_auxdata() API may be safely retained until the next -** invocation of this opcode. -** -** See also: AggStep and AggFinal -*/ -case OP_Function: { -#if 0 /* local variables moved into u.ai */ - int i; - Mem *pArg; - sqlite3_context ctx; - sqlite3_value **apVal; - int n; -#endif /* local variables moved into u.ai */ - - u.ai.n = pOp->p5; - u.ai.apVal = p->apArg; - assert( u.ai.apVal || u.ai.n==0 ); - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - pOut = &aMem[pOp->p3]; - memAboutToChange(p, pOut); - - assert( u.ai.n==0 || (pOp->p2>0 && pOp->p2+u.ai.n<=p->nMem+1) ); - assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+u.ai.n ); - u.ai.pArg = &aMem[pOp->p2]; - for(u.ai.i=0; u.ai.i<u.ai.n; u.ai.i++, u.ai.pArg++){ - assert( memIsValid(u.ai.pArg) ); - u.ai.apVal[u.ai.i] = u.ai.pArg; - Deephemeralize(u.ai.pArg); - sqlite3VdbeMemStoreType(u.ai.pArg); - REGISTER_TRACE(pOp->p2+u.ai.i, u.ai.pArg); - } - - assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); - if( pOp->p4type==P4_FUNCDEF ){ - u.ai.ctx.pFunc = pOp->p4.pFunc; - u.ai.ctx.pVdbeFunc = 0; - }else{ - u.ai.ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; - u.ai.ctx.pFunc = u.ai.ctx.pVdbeFunc->pFunc; - } - - u.ai.ctx.s.flags = MEM_Null; - u.ai.ctx.s.db = db; - u.ai.ctx.s.xDel = 0; - u.ai.ctx.s.zMalloc = 0; - - /* The output cell may already have a buffer allocated. Move - ** the pointer to u.ai.ctx.s so in case the user-function can use - ** the already allocated buffer instead of allocating a new one. - */ - sqlite3VdbeMemMove(&u.ai.ctx.s, pOut); - MemSetTypeFlag(&u.ai.ctx.s, MEM_Null); - - u.ai.ctx.isError = 0; - if( u.ai.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ - assert( pOp>aOp ); - assert( pOp[-1].p4type==P4_COLLSEQ ); - assert( pOp[-1].opcode==OP_CollSeq ); - u.ai.ctx.pColl = pOp[-1].p4.pColl; - } - db->lastRowid = lastRowid; - (*u.ai.ctx.pFunc->xFunc)(&u.ai.ctx, u.ai.n, u.ai.apVal); /* IMP: R-24505-23230 */ - lastRowid = db->lastRowid; - - /* If any auxiliary data functions have been called by this user function, - ** immediately call the destructor for any non-static values. - */ - if( u.ai.ctx.pVdbeFunc ){ - sqlite3VdbeDeleteAuxData(u.ai.ctx.pVdbeFunc, pOp->p1); - pOp->p4.pVdbeFunc = u.ai.ctx.pVdbeFunc; - pOp->p4type = P4_VDBEFUNC; - } - - if( db->mallocFailed ){ - /* Even though a malloc() has failed, the implementation of the - ** user function may have called an sqlite3_result_XXX() function - ** to return a value. The following call releases any resources - ** associated with such a value. - */ - sqlite3VdbeMemRelease(&u.ai.ctx.s); - goto no_mem; - } - - /* If the function returned an error, throw an exception */ - if( u.ai.ctx.isError ){ - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.ai.ctx.s)); - rc = u.ai.ctx.isError; - } - - /* Copy the result of the function into register P3 */ - sqlite3VdbeChangeEncoding(&u.ai.ctx.s, encoding); - sqlite3VdbeMemMove(pOut, &u.ai.ctx.s); - if( sqlite3VdbeMemTooBig(pOut) ){ - goto too_big; - } - -#if 0 - /* The app-defined function has done something that as caused this - ** statement to expire. (Perhaps the function called sqlite3_exec() - ** with a CREATE TABLE statement.) - */ - if( p->expired ) rc = SQLITE_ABORT; -#endif - - REGISTER_TRACE(pOp->p3, pOut); - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: BitAnd P1 P2 P3 * * -** -** Take the bit-wise AND of the values in register P1 and P2 and -** store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: BitOr P1 P2 P3 * * -** -** Take the bit-wise OR of the values in register P1 and P2 and -** store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: ShiftLeft P1 P2 P3 * * -** -** Shift the integer value in register P2 to the left by the -** number of bits specified by the integer in register P1. -** Store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -/* Opcode: ShiftRight P1 P2 P3 * * -** -** Shift the integer value in register P2 to the right by the -** number of bits specified by the integer in register P1. -** Store the result in register P3. -** If either input is NULL, the result is NULL. -*/ -case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ -case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ -case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ -case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ -#if 0 /* local variables moved into u.aj */ - i64 iA; - u64 uA; - i64 iB; - u8 op; -#endif /* local variables moved into u.aj */ - - pIn1 = &aMem[pOp->p1]; - pIn2 = &aMem[pOp->p2]; - pOut = &aMem[pOp->p3]; - if( (pIn1->flags | pIn2->flags) & MEM_Null ){ - sqlite3VdbeMemSetNull(pOut); - break; - } - u.aj.iA = sqlite3VdbeIntValue(pIn2); - u.aj.iB = sqlite3VdbeIntValue(pIn1); - u.aj.op = pOp->opcode; - if( u.aj.op==OP_BitAnd ){ - u.aj.iA &= u.aj.iB; - }else if( u.aj.op==OP_BitOr ){ - u.aj.iA |= u.aj.iB; - }else if( u.aj.iB!=0 ){ - assert( u.aj.op==OP_ShiftRight || u.aj.op==OP_ShiftLeft ); - - /* If shifting by a negative amount, shift in the other direction */ - if( u.aj.iB<0 ){ - assert( OP_ShiftRight==OP_ShiftLeft+1 ); - u.aj.op = 2*OP_ShiftLeft + 1 - u.aj.op; - u.aj.iB = u.aj.iB>(-64) ? -u.aj.iB : 64; - } - - if( u.aj.iB>=64 ){ - u.aj.iA = (u.aj.iA>=0 || u.aj.op==OP_ShiftLeft) ? 0 : -1; - }else{ - memcpy(&u.aj.uA, &u.aj.iA, sizeof(u.aj.uA)); - if( u.aj.op==OP_ShiftLeft ){ - u.aj.uA <<= u.aj.iB; - }else{ - u.aj.uA >>= u.aj.iB; - /* Sign-extend on a right shift of a negative number */ - if( u.aj.iA<0 ) u.aj.uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-u.aj.iB); - } - memcpy(&u.aj.iA, &u.aj.uA, sizeof(u.aj.iA)); - } - } - pOut->u.i = u.aj.iA; - MemSetTypeFlag(pOut, MEM_Int); - break; -} - -/* Opcode: AddImm P1 P2 * * * -** -** Add the constant P2 to the value in register P1. -** The result is always an integer. -** -** To force any register to be an integer, just add 0. -*/ -case OP_AddImm: { /* in1 */ - pIn1 = &aMem[pOp->p1]; - memAboutToChange(p, pIn1); - sqlite3VdbeMemIntegerify(pIn1); - pIn1->u.i += pOp->p2; - break; -} - -/* Opcode: MustBeInt P1 P2 * * * -** -** Force the value in register P1 to be an integer. If the value -** in P1 is not an integer and cannot be converted into an integer -** without data loss, then jump immediately to P2, or if P2==0 -** raise an SQLITE_MISMATCH exception. -*/ -case OP_MustBeInt: { /* jump, in1 */ - pIn1 = &aMem[pOp->p1]; - applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); - if( (pIn1->flags & MEM_Int)==0 ){ - if( pOp->p2==0 ){ - rc = SQLITE_MISMATCH; - goto abort_due_to_error; - }else{ - pc = pOp->p2 - 1; - } - }else{ - MemSetTypeFlag(pIn1, MEM_Int); - } - break; -} - -#ifndef SQLITE_OMIT_FLOATING_POINT -/* Opcode: RealAffinity P1 * * * * -** -** If register P1 holds an integer convert it to a real value. -** -** This opcode is used when extracting information from a column that -** has REAL affinity. Such column values may still be stored as -** integers, for space efficiency, but after extraction we want them -** to have only a real value. -*/ -case OP_RealAffinity: { /* in1 */ - pIn1 = &aMem[pOp->p1]; - if( pIn1->flags & MEM_Int ){ - sqlite3VdbeMemRealify(pIn1); - } - break; -} -#endif - -#ifndef SQLITE_OMIT_CAST -/* Opcode: ToText P1 * * * * -** -** Force the value in register P1 to be text. -** If the value is numeric, convert it to a string using the -** equivalent of printf(). Blob values are unchanged and -** are afterwards simply interpreted as text. -** -** A NULL value is not changed by this routine. It remains NULL. -*/ -case OP_ToText: { /* same as TK_TO_TEXT, in1 */ - pIn1 = &aMem[pOp->p1]; - memAboutToChange(p, pIn1); - if( pIn1->flags & MEM_Null ) break; - assert( MEM_Str==(MEM_Blob>>3) ); - pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; - applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); - rc = ExpandBlob(pIn1); - assert( pIn1->flags & MEM_Str || db->mallocFailed ); - pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); - UPDATE_MAX_BLOBSIZE(pIn1); - break; -} - -/* Opcode: ToBlob P1 * * * * -** -** Force the value in register P1 to be a BLOB. -** If the value is numeric, convert it to a string first. -** Strings are simply reinterpreted as blobs with no change -** to the underlying data. -** -** A NULL value is not changed by this routine. It remains NULL. -*/ -case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ - pIn1 = &aMem[pOp->p1]; - if( pIn1->flags & MEM_Null ) break; - if( (pIn1->flags & MEM_Blob)==0 ){ - applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); - assert( pIn1->flags & MEM_Str || db->mallocFailed ); - MemSetTypeFlag(pIn1, MEM_Blob); - }else{ - pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); - } - UPDATE_MAX_BLOBSIZE(pIn1); - break; -} - -/* Opcode: ToNumeric P1 * * * * -** -** Force the value in register P1 to be numeric (either an -** integer or a floating-point number.) -** If the value is text or blob, try to convert it to an using the -** equivalent of atoi() or atof() and store 0 if no such conversion -** is possible. -** -** A NULL value is not changed by this routine. It remains NULL. -*/ -case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ - pIn1 = &aMem[pOp->p1]; - sqlite3VdbeMemNumerify(pIn1); - break; -} -#endif /* SQLITE_OMIT_CAST */ - -/* Opcode: ToInt P1 * * * * -** -** Force the value in register P1 to be an integer. If -** The value is currently a real number, drop its fractional part. -** If the value is text or blob, try to convert it to an integer using the -** equivalent of atoi() and store 0 if no such conversion is possible. -** -** A NULL value is not changed by this routine. It remains NULL. -*/ -case OP_ToInt: { /* same as TK_TO_INT, in1 */ - pIn1 = &aMem[pOp->p1]; - if( (pIn1->flags & MEM_Null)==0 ){ - sqlite3VdbeMemIntegerify(pIn1); - } - break; -} - -#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) -/* Opcode: ToReal P1 * * * * -** -** Force the value in register P1 to be a floating point number. -** If The value is currently an integer, convert it. -** If the value is text or blob, try to convert it to an integer using the -** equivalent of atoi() and store 0.0 if no such conversion is possible. -** -** A NULL value is not changed by this routine. It remains NULL. -*/ -case OP_ToReal: { /* same as TK_TO_REAL, in1 */ - pIn1 = &aMem[pOp->p1]; - memAboutToChange(p, pIn1); - if( (pIn1->flags & MEM_Null)==0 ){ - sqlite3VdbeMemRealify(pIn1); - } - break; -} -#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ - -/* Opcode: Lt P1 P2 P3 P4 P5 -** -** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then -** jump to address P2. -** -** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or -** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL -** bit is clear then fall through if either operand is NULL. -** -** The SQLITE_AFF_MASK portion of P5 must be an affinity character - -** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made -** to coerce both inputs according to this affinity before the -** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric -** affinity is used. Note that the affinity conversions are stored -** back into the input registers P1 and P3. So this opcode can cause -** persistent changes to registers P1 and P3. -** -** Once any conversions have taken place, and neither value is NULL, -** the values are compared. If both values are blobs then memcmp() is -** used to determine the results of the comparison. If both values -** are text, then the appropriate collating function specified in -** P4 is used to do the comparison. If P4 is not specified then -** memcmp() is used to compare text string. If both values are -** numeric, then a numeric comparison is used. If the two values -** are of different types, then numbers are considered less than -** strings and strings are considered less than blobs. -** -** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, -** store a boolean result (either 0, or 1, or NULL) in register P2. -** -** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered -** equal to one another, provided that they do not have their MEM_Cleared -** bit set. -*/ -/* Opcode: Ne P1 P2 P3 P4 P5 -** -** This works just like the Lt opcode except that the jump is taken if -** the operands in registers P1 and P3 are not equal. See the Lt opcode for -** additional information. -** -** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either -** true or false and is never NULL. If both operands are NULL then the result -** of comparison is false. If either operand is NULL then the result is true. -** If neither operand is NULL the result is the same as it would be if -** the SQLITE_NULLEQ flag were omitted from P5. -*/ -/* Opcode: Eq P1 P2 P3 P4 P5 -** -** This works just like the Lt opcode except that the jump is taken if -** the operands in registers P1 and P3 are equal. -** See the Lt opcode for additional information. -** -** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either -** true or false and is never NULL. If both operands are NULL then the result -** of comparison is true. If either operand is NULL then the result is false. -** If neither operand is NULL the result is the same as it would be if -** the SQLITE_NULLEQ flag were omitted from P5. -*/ -/* Opcode: Le P1 P2 P3 P4 P5 -** -** This works just like the Lt opcode except that the jump is taken if -** the content of register P3 is less than or equal to the content of -** register P1. See the Lt opcode for additional information. -*/ -/* Opcode: Gt P1 P2 P3 P4 P5 -** -** This works just like the Lt opcode except that the jump is taken if -** the content of register P3 is greater than the content of -** register P1. See the Lt opcode for additional information. -*/ -/* Opcode: Ge P1 P2 P3 P4 P5 -** -** This works just like the Lt opcode except that the jump is taken if -** the content of register P3 is greater than or equal to the content of -** register P1. See the Lt opcode for additional information. -*/ -case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ -case OP_Ne: /* same as TK_NE, jump, in1, in3 */ -case OP_Lt: /* same as TK_LT, jump, in1, in3 */ -case OP_Le: /* same as TK_LE, jump, in1, in3 */ -case OP_Gt: /* same as TK_GT, jump, in1, in3 */ -case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ -#if 0 /* local variables moved into u.ak */ - int res; /* Result of the comparison of pIn1 against pIn3 */ - char affinity; /* Affinity to use for comparison */ - u16 flags1; /* Copy of initial value of pIn1->flags */ - u16 flags3; /* Copy of initial value of pIn3->flags */ -#endif /* local variables moved into u.ak */ - - pIn1 = &aMem[pOp->p1]; - pIn3 = &aMem[pOp->p3]; - u.ak.flags1 = pIn1->flags; - u.ak.flags3 = pIn3->flags; - if( (u.ak.flags1 | u.ak.flags3)&MEM_Null ){ - /* One or both operands are NULL */ - if( pOp->p5 & SQLITE_NULLEQ ){ - /* If SQLITE_NULLEQ is set (which will only happen if the operator is - ** OP_Eq or OP_Ne) then take the jump or not depending on whether - ** or not both operands are null. - */ - assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); - assert( (u.ak.flags1 & MEM_Cleared)==0 ); - if( (u.ak.flags1&MEM_Null)!=0 - && (u.ak.flags3&MEM_Null)!=0 - && (u.ak.flags3&MEM_Cleared)==0 - ){ - u.ak.res = 0; /* Results are equal */ - }else{ - u.ak.res = 1; /* Results are not equal */ - } - }else{ - /* SQLITE_NULLEQ is clear and at least one operand is NULL, - ** then the result is always NULL. - ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. - */ - if( pOp->p5 & SQLITE_STOREP2 ){ - pOut = &aMem[pOp->p2]; - MemSetTypeFlag(pOut, MEM_Null); - REGISTER_TRACE(pOp->p2, pOut); - }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ - pc = pOp->p2-1; - } - break; - } - }else{ - /* Neither operand is NULL. Do a comparison. */ - u.ak.affinity = pOp->p5 & SQLITE_AFF_MASK; - if( u.ak.affinity ){ - applyAffinity(pIn1, u.ak.affinity, encoding); - applyAffinity(pIn3, u.ak.affinity, encoding); - if( db->mallocFailed ) goto no_mem; - } - - assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); - ExpandBlob(pIn1); - ExpandBlob(pIn3); - u.ak.res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); - } - switch( pOp->opcode ){ - case OP_Eq: u.ak.res = u.ak.res==0; break; - case OP_Ne: u.ak.res = u.ak.res!=0; break; - case OP_Lt: u.ak.res = u.ak.res<0; break; - case OP_Le: u.ak.res = u.ak.res<=0; break; - case OP_Gt: u.ak.res = u.ak.res>0; break; - default: u.ak.res = u.ak.res>=0; break; - } - - if( pOp->p5 & SQLITE_STOREP2 ){ - pOut = &aMem[pOp->p2]; - memAboutToChange(p, pOut); - MemSetTypeFlag(pOut, MEM_Int); - pOut->u.i = u.ak.res; - REGISTER_TRACE(pOp->p2, pOut); - }else if( u.ak.res ){ - pc = pOp->p2-1; - } - - /* Undo any changes made by applyAffinity() to the input registers. */ - pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (u.ak.flags1&MEM_TypeMask); - pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (u.ak.flags3&MEM_TypeMask); - break; -} - -/* Opcode: Permutation * * * P4 * -** -** Set the permutation used by the OP_Compare operator to be the array -** of integers in P4. -** -** The permutation is only valid until the next OP_Compare that has -** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should -** occur immediately prior to the OP_Compare. -*/ -case OP_Permutation: { - assert( pOp->p4type==P4_INTARRAY ); - assert( pOp->p4.ai ); - aPermute = pOp->p4.ai; - break; -} - -/* Opcode: Compare P1 P2 P3 P4 P5 -** -** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this -** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of -** the comparison for use by the next OP_Jump instruct. -** -** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is -** determined by the most recent OP_Permutation operator. If the -** OPFLAG_PERMUTE bit is clear, then register are compared in sequential -** order. -** -** P4 is a KeyInfo structure that defines collating sequences and sort -** orders for the comparison. The permutation applies to registers -** only. The KeyInfo elements are used sequentially. -** -** The comparison is a sort comparison, so NULLs compare equal, -** NULLs are less than numbers, numbers are less than strings, -** and strings are less than blobs. -*/ -case OP_Compare: { -#if 0 /* local variables moved into u.al */ - int n; - int i; - int p1; - int p2; - const KeyInfo *pKeyInfo; - int idx; - CollSeq *pColl; /* Collating sequence to use on this term */ - int bRev; /* True for DESCENDING sort order */ -#endif /* local variables moved into u.al */ - - if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; - u.al.n = pOp->p3; - u.al.pKeyInfo = pOp->p4.pKeyInfo; - assert( u.al.n>0 ); - assert( u.al.pKeyInfo!=0 ); - u.al.p1 = pOp->p1; - u.al.p2 = pOp->p2; -#if SQLITE_DEBUG - if( aPermute ){ - int k, mx = 0; - for(k=0; k<u.al.n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; - assert( u.al.p1>0 && u.al.p1+mx<=p->nMem+1 ); - assert( u.al.p2>0 && u.al.p2+mx<=p->nMem+1 ); - }else{ - assert( u.al.p1>0 && u.al.p1+u.al.n<=p->nMem+1 ); - assert( u.al.p2>0 && u.al.p2+u.al.n<=p->nMem+1 ); - } -#endif /* SQLITE_DEBUG */ - for(u.al.i=0; u.al.i<u.al.n; u.al.i++){ - u.al.idx = aPermute ? aPermute[u.al.i] : u.al.i; - assert( memIsValid(&aMem[u.al.p1+u.al.idx]) ); - assert( memIsValid(&aMem[u.al.p2+u.al.idx]) ); - REGISTER_TRACE(u.al.p1+u.al.idx, &aMem[u.al.p1+u.al.idx]); - REGISTER_TRACE(u.al.p2+u.al.idx, &aMem[u.al.p2+u.al.idx]); - assert( u.al.i<u.al.pKeyInfo->nField ); - u.al.pColl = u.al.pKeyInfo->aColl[u.al.i]; - u.al.bRev = u.al.pKeyInfo->aSortOrder[u.al.i]; - iCompare = sqlite3MemCompare(&aMem[u.al.p1+u.al.idx], &aMem[u.al.p2+u.al.idx], u.al.pColl); - if( iCompare ){ - if( u.al.bRev ) iCompare = -iCompare; - break; - } - } - aPermute = 0; - break; -} - -/* Opcode: Jump P1 P2 P3 * * -** -** Jump to the instruction at address P1, P2, or P3 depending on whether -** in the most recent OP_Compare instruction the P1 vector was less than -** equal to, or greater than the P2 vector, respectively. -*/ -case OP_Jump: { /* jump */ - if( iCompare<0 ){ - pc = pOp->p1 - 1; - }else if( iCompare==0 ){ - pc = pOp->p2 - 1; - }else{ - pc = pOp->p3 - 1; - } - break; -} - -/* Opcode: And P1 P2 P3 * * -** -** Take the logical AND of the values in registers P1 and P2 and -** write the result into register P3. -** -** If either P1 or P2 is 0 (false) then the result is 0 even if -** the other input is NULL. A NULL and true or two NULLs give -** a NULL output. -*/ -/* Opcode: Or P1 P2 P3 * * -** -** Take the logical OR of the values in register P1 and P2 and -** store the answer in register P3. -** -** If either P1 or P2 is nonzero (true) then the result is 1 (true) -** even if the other input is NULL. A NULL and false or two NULLs -** give a NULL output. -*/ -case OP_And: /* same as TK_AND, in1, in2, out3 */ -case OP_Or: { /* same as TK_OR, in1, in2, out3 */ -#if 0 /* local variables moved into u.am */ - int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ - int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ -#endif /* local variables moved into u.am */ - - pIn1 = &aMem[pOp->p1]; - if( pIn1->flags & MEM_Null ){ - u.am.v1 = 2; - }else{ - u.am.v1 = sqlite3VdbeIntValue(pIn1)!=0; - } - pIn2 = &aMem[pOp->p2]; - if( pIn2->flags & MEM_Null ){ - u.am.v2 = 2; - }else{ - u.am.v2 = sqlite3VdbeIntValue(pIn2)!=0; - } - if( pOp->opcode==OP_And ){ - static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; - u.am.v1 = and_logic[u.am.v1*3+u.am.v2]; - }else{ - static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; - u.am.v1 = or_logic[u.am.v1*3+u.am.v2]; - } - pOut = &aMem[pOp->p3]; - if( u.am.v1==2 ){ - MemSetTypeFlag(pOut, MEM_Null); - }else{ - pOut->u.i = u.am.v1; - MemSetTypeFlag(pOut, MEM_Int); - } - break; -} - -/* Opcode: Not P1 P2 * * * -** -** Interpret the value in register P1 as a boolean value. Store the -** boolean complement in register P2. If the value in register P1 is -** NULL, then a NULL is stored in P2. -*/ -case OP_Not: { /* same as TK_NOT, in1, out2 */ - pIn1 = &aMem[pOp->p1]; - pOut = &aMem[pOp->p2]; - if( pIn1->flags & MEM_Null ){ - sqlite3VdbeMemSetNull(pOut); - }else{ - sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); - } - break; -} - -/* Opcode: BitNot P1 P2 * * * -** -** Interpret the content of register P1 as an integer. Store the -** ones-complement of the P1 value into register P2. If P1 holds -** a NULL then store a NULL in P2. -*/ -case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ - pIn1 = &aMem[pOp->p1]; - pOut = &aMem[pOp->p2]; - if( pIn1->flags & MEM_Null ){ - sqlite3VdbeMemSetNull(pOut); - }else{ - sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); - } - break; -} - -/* Opcode: Once P1 P2 * * * -** -** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, -** set the flag and fall through to the next instruction. -*/ -case OP_Once: { /* jump */ - assert( pOp->p1<p->nOnceFlag ); - if( p->aOnceFlag[pOp->p1] ){ - pc = pOp->p2-1; - }else{ - p->aOnceFlag[pOp->p1] = 1; - } - break; -} - -/* Opcode: If P1 P2 P3 * * -** -** Jump to P2 if the value in register P1 is true. The value -** is considered true if it is numeric and non-zero. If the value -** in P1 is NULL then take the jump if P3 is non-zero. -*/ -/* Opcode: IfNot P1 P2 P3 * * -** -** Jump to P2 if the value in register P1 is False. The value -** is considered false if it has a numeric value of zero. If the value -** in P1 is NULL then take the jump if P3 is zero. -*/ -case OP_If: /* jump, in1 */ -case OP_IfNot: { /* jump, in1 */ -#if 0 /* local variables moved into u.an */ - int c; -#endif /* local variables moved into u.an */ - pIn1 = &aMem[pOp->p1]; - if( pIn1->flags & MEM_Null ){ - u.an.c = pOp->p3; - }else{ -#ifdef SQLITE_OMIT_FLOATING_POINT - u.an.c = sqlite3VdbeIntValue(pIn1)!=0; -#else - u.an.c = sqlite3VdbeRealValue(pIn1)!=0.0; -#endif - if( pOp->opcode==OP_IfNot ) u.an.c = !u.an.c; - } - if( u.an.c ){ - pc = pOp->p2-1; - } - break; -} - -/* Opcode: IsNull P1 P2 * * * -** -** Jump to P2 if the value in register P1 is NULL. -*/ -case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ - pIn1 = &aMem[pOp->p1]; - if( (pIn1->flags & MEM_Null)!=0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: NotNull P1 P2 * * * -** -** Jump to P2 if the value in register P1 is not NULL. -*/ -case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ - pIn1 = &aMem[pOp->p1]; - if( (pIn1->flags & MEM_Null)==0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: Column P1 P2 P3 P4 P5 -** -** Interpret the data that cursor P1 points to as a structure built using -** the MakeRecord instruction. (See the MakeRecord opcode for additional -** information about the format of the data.) Extract the P2-th column -** from this record. If there are less that (P2+1) -** values in the record, extract a NULL. -** -** The value extracted is stored in register P3. -** -** If the column contains fewer than P2 fields, then extract a NULL. Or, -** if the P4 argument is a P4_MEM use the value of the P4 argument as -** the result. -** -** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, -** then the cache of the cursor is reset prior to extracting the column. -** The first OP_Column against a pseudo-table after the value of the content -** register has changed should have this bit set. -** -** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when -** the result is guaranteed to only be used as the argument of a length() -** or typeof() function, respectively. The loading of large blobs can be -** skipped for length() and all content loading can be skipped for typeof(). -*/ -case OP_Column: { -#if 0 /* local variables moved into u.ao */ - u32 payloadSize; /* Number of bytes in the record */ - i64 payloadSize64; /* Number of bytes in the record */ - int p1; /* P1 value of the opcode */ - int p2; /* column number to retrieve */ - VdbeCursor *pC; /* The VDBE cursor */ - char *zRec; /* Pointer to complete record-data */ - BtCursor *pCrsr; /* The BTree cursor */ - u32 *aType; /* aType[i] holds the numeric type of the i-th column */ - u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ - int nField; /* number of fields in the record */ - int len; /* The length of the serialized data for the column */ - int i; /* Loop counter */ - char *zData; /* Part of the record being decoded */ - Mem *pDest; /* Where to write the extracted value */ - Mem sMem; /* For storing the record being decoded */ - u8 *zIdx; /* Index into header */ - u8 *zEndHdr; /* Pointer to first byte after the header */ - u32 offset; /* Offset into the data */ - u32 szField; /* Number of bytes in the content of a field */ - int szHdr; /* Size of the header size field at start of record */ - int avail; /* Number of bytes of available data */ - u32 t; /* A type code from the record header */ - Mem *pReg; /* PseudoTable input register */ -#endif /* local variables moved into u.ao */ - - - u.ao.p1 = pOp->p1; - u.ao.p2 = pOp->p2; - u.ao.pC = 0; - memset(&u.ao.sMem, 0, sizeof(u.ao.sMem)); - assert( u.ao.p1<p->nCursor ); - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - u.ao.pDest = &aMem[pOp->p3]; - memAboutToChange(p, u.ao.pDest); - u.ao.zRec = 0; - - /* This block sets the variable u.ao.payloadSize to be the total number of - ** bytes in the record. - ** - ** u.ao.zRec is set to be the complete text of the record if it is available. - ** The complete record text is always available for pseudo-tables - ** If the record is stored in a cursor, the complete record text - ** might be available in the u.ao.pC->aRow cache. Or it might not be. - ** If the data is unavailable, u.ao.zRec is set to NULL. - ** - ** We also compute the number of columns in the record. For cursors, - ** the number of columns is stored in the VdbeCursor.nField element. - */ - u.ao.pC = p->apCsr[u.ao.p1]; - assert( u.ao.pC!=0 ); -#ifndef SQLITE_OMIT_VIRTUALTABLE - assert( u.ao.pC->pVtabCursor==0 ); -#endif - u.ao.pCrsr = u.ao.pC->pCursor; - if( u.ao.pCrsr!=0 ){ - /* The record is stored in a B-Tree */ - rc = sqlite3VdbeCursorMoveto(u.ao.pC); - if( rc ) goto abort_due_to_error; - if( u.ao.pC->nullRow ){ - u.ao.payloadSize = 0; - }else if( u.ao.pC->cacheStatus==p->cacheCtr ){ - u.ao.payloadSize = u.ao.pC->payloadSize; - u.ao.zRec = (char*)u.ao.pC->aRow; - }else if( u.ao.pC->isIndex ){ - assert( sqlite3BtreeCursorIsValid(u.ao.pCrsr) ); - VVA_ONLY(rc =) sqlite3BtreeKeySize(u.ao.pCrsr, &u.ao.payloadSize64); - assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ - /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the - ** payload size, so it is impossible for u.ao.payloadSize64 to be - ** larger than 32 bits. */ - assert( (u.ao.payloadSize64 & SQLITE_MAX_U32)==(u64)u.ao.payloadSize64 ); - u.ao.payloadSize = (u32)u.ao.payloadSize64; - }else{ - assert( sqlite3BtreeCursorIsValid(u.ao.pCrsr) ); - VVA_ONLY(rc =) sqlite3BtreeDataSize(u.ao.pCrsr, &u.ao.payloadSize); - assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ - } - }else if( ALWAYS(u.ao.pC->pseudoTableReg>0) ){ - u.ao.pReg = &aMem[u.ao.pC->pseudoTableReg]; - if( u.ao.pC->multiPseudo ){ - sqlite3VdbeMemShallowCopy(u.ao.pDest, u.ao.pReg+u.ao.p2, MEM_Ephem); - Deephemeralize(u.ao.pDest); - goto op_column_out; - } - assert( u.ao.pReg->flags & MEM_Blob ); - assert( memIsValid(u.ao.pReg) ); - u.ao.payloadSize = u.ao.pReg->n; - u.ao.zRec = u.ao.pReg->z; - u.ao.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; - assert( u.ao.payloadSize==0 || u.ao.zRec!=0 ); - }else{ - /* Consider the row to be NULL */ - u.ao.payloadSize = 0; - } - - /* If u.ao.payloadSize is 0, then just store a NULL. This can happen because of - ** nullRow or because of a corrupt database. */ - if( u.ao.payloadSize==0 ){ - MemSetTypeFlag(u.ao.pDest, MEM_Null); - goto op_column_out; - } - assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); - if( u.ao.payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - - u.ao.nField = u.ao.pC->nField; - assert( u.ao.p2<u.ao.nField ); - - /* Read and parse the table header. Store the results of the parse - ** into the record header cache fields of the cursor. - */ - u.ao.aType = u.ao.pC->aType; - if( u.ao.pC->cacheStatus==p->cacheCtr ){ - u.ao.aOffset = u.ao.pC->aOffset; - }else{ - assert(u.ao.aType); - u.ao.avail = 0; - u.ao.pC->aOffset = u.ao.aOffset = &u.ao.aType[u.ao.nField]; - u.ao.pC->payloadSize = u.ao.payloadSize; - u.ao.pC->cacheStatus = p->cacheCtr; - - /* Figure out how many bytes are in the header */ - if( u.ao.zRec ){ - u.ao.zData = u.ao.zRec; - }else{ - if( u.ao.pC->isIndex ){ - u.ao.zData = (char*)sqlite3BtreeKeyFetch(u.ao.pCrsr, &u.ao.avail); - }else{ - u.ao.zData = (char*)sqlite3BtreeDataFetch(u.ao.pCrsr, &u.ao.avail); - } - /* If KeyFetch()/DataFetch() managed to get the entire payload, - ** save the payload in the u.ao.pC->aRow cache. That will save us from - ** having to make additional calls to fetch the content portion of - ** the record. - */ - assert( u.ao.avail>=0 ); - if( u.ao.payloadSize <= (u32)u.ao.avail ){ - u.ao.zRec = u.ao.zData; - u.ao.pC->aRow = (u8*)u.ao.zData; - }else{ - u.ao.pC->aRow = 0; - } - } - /* The following assert is true in all cases except when - ** the database file has been corrupted externally. - ** assert( u.ao.zRec!=0 || u.ao.avail>=u.ao.payloadSize || u.ao.avail>=9 ); */ - u.ao.szHdr = getVarint32((u8*)u.ao.zData, u.ao.offset); - - /* Make sure a corrupt database has not given us an oversize header. - ** Do this now to avoid an oversize memory allocation. - ** - ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte - ** types use so much data space that there can only be 4096 and 32 of - ** them, respectively. So the maximum header length results from a - ** 3-byte type for each of the maximum of 32768 columns plus three - ** extra bytes for the header length itself. 32768*3 + 3 = 98307. - */ - if( u.ao.offset > 98307 ){ - rc = SQLITE_CORRUPT_BKPT; - goto op_column_out; - } - - /* Compute in u.ao.len the number of bytes of data we need to read in order - ** to get u.ao.nField type values. u.ao.offset is an upper bound on this. But - ** u.ao.nField might be significantly less than the true number of columns - ** in the table, and in that case, 5*u.ao.nField+3 might be smaller than u.ao.offset. - ** We want to minimize u.ao.len in order to limit the size of the memory - ** allocation, especially if a corrupt database file has caused u.ao.offset - ** to be oversized. Offset is limited to 98307 above. But 98307 might - ** still exceed Robson memory allocation limits on some configurations. - ** On systems that cannot tolerate large memory allocations, u.ao.nField*5+3 - ** will likely be much smaller since u.ao.nField will likely be less than - ** 20 or so. This insures that Robson memory allocation limits are - ** not exceeded even for corrupt database files. - */ - u.ao.len = u.ao.nField*5 + 3; - if( u.ao.len > (int)u.ao.offset ) u.ao.len = (int)u.ao.offset; - - /* The KeyFetch() or DataFetch() above are fast and will get the entire - ** record header in most cases. But they will fail to get the complete - ** record header if the record header does not fit on a single page - ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to - ** acquire the complete header text. - */ - if( !u.ao.zRec && u.ao.avail<u.ao.len ){ - u.ao.sMem.flags = 0; - u.ao.sMem.db = 0; - rc = sqlite3VdbeMemFromBtree(u.ao.pCrsr, 0, u.ao.len, u.ao.pC->isIndex, &u.ao.sMem); - if( rc!=SQLITE_OK ){ - goto op_column_out; - } - u.ao.zData = u.ao.sMem.z; - } - u.ao.zEndHdr = (u8 *)&u.ao.zData[u.ao.len]; - u.ao.zIdx = (u8 *)&u.ao.zData[u.ao.szHdr]; - - /* Scan the header and use it to fill in the u.ao.aType[] and u.ao.aOffset[] - ** arrays. u.ao.aType[u.ao.i] will contain the type integer for the u.ao.i-th - ** column and u.ao.aOffset[u.ao.i] will contain the u.ao.offset from the beginning - ** of the record to the start of the data for the u.ao.i-th column - */ - for(u.ao.i=0; u.ao.i<u.ao.nField; u.ao.i++){ - if( u.ao.zIdx<u.ao.zEndHdr ){ - u.ao.aOffset[u.ao.i] = u.ao.offset; - if( u.ao.zIdx[0]<0x80 ){ - u.ao.t = u.ao.zIdx[0]; - u.ao.zIdx++; - }else{ - u.ao.zIdx += sqlite3GetVarint32(u.ao.zIdx, &u.ao.t); - } - u.ao.aType[u.ao.i] = u.ao.t; - u.ao.szField = sqlite3VdbeSerialTypeLen(u.ao.t); - u.ao.offset += u.ao.szField; - if( u.ao.offset<u.ao.szField ){ /* True if u.ao.offset overflows */ - u.ao.zIdx = &u.ao.zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ - break; - } - }else{ - /* If u.ao.i is less that u.ao.nField, then there are fewer fields in this - ** record than SetNumColumns indicated there are columns in the - ** table. Set the u.ao.offset for any extra columns not present in - ** the record to 0. This tells code below to store the default value - ** for the column instead of deserializing a value from the record. - */ - u.ao.aOffset[u.ao.i] = 0; - } - } - sqlite3VdbeMemRelease(&u.ao.sMem); - u.ao.sMem.flags = MEM_Null; - - /* If we have read more header data than was contained in the header, - ** or if the end of the last field appears to be past the end of the - ** record, or if the end of the last field appears to be before the end - ** of the record (when all fields present), then we must be dealing - ** with a corrupt database. - */ - if( (u.ao.zIdx > u.ao.zEndHdr) || (u.ao.offset > u.ao.payloadSize) - || (u.ao.zIdx==u.ao.zEndHdr && u.ao.offset!=u.ao.payloadSize) ){ - rc = SQLITE_CORRUPT_BKPT; - goto op_column_out; - } - } - - /* Get the column information. If u.ao.aOffset[u.ao.p2] is non-zero, then - ** deserialize the value from the record. If u.ao.aOffset[u.ao.p2] is zero, - ** then there are not enough fields in the record to satisfy the - ** request. In this case, set the value NULL or to P4 if P4 is - ** a pointer to a Mem object. - */ - if( u.ao.aOffset[u.ao.p2] ){ - assert( rc==SQLITE_OK ); - if( u.ao.zRec ){ - /* This is the common case where the whole row fits on a single page */ - VdbeMemRelease(u.ao.pDest); - sqlite3VdbeSerialGet((u8 *)&u.ao.zRec[u.ao.aOffset[u.ao.p2]], u.ao.aType[u.ao.p2], u.ao.pDest); - }else{ - /* This branch happens only when the row overflows onto multiple pages */ - u.ao.t = u.ao.aType[u.ao.p2]; - if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 - && ((u.ao.t>=12 && (u.ao.t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0) - ){ - /* Content is irrelevant for the typeof() function and for - ** the length(X) function if X is a blob. So we might as well use - ** bogus content rather than reading content from disk. NULL works - ** for text and blob and whatever is in the u.ao.payloadSize64 variable - ** will work for everything else. */ - u.ao.zData = u.ao.t<12 ? (char*)&u.ao.payloadSize64 : 0; - }else{ - u.ao.len = sqlite3VdbeSerialTypeLen(u.ao.t); - sqlite3VdbeMemMove(&u.ao.sMem, u.ao.pDest); - rc = sqlite3VdbeMemFromBtree(u.ao.pCrsr, u.ao.aOffset[u.ao.p2], u.ao.len, u.ao.pC->isIndex, - &u.ao.sMem); - if( rc!=SQLITE_OK ){ - goto op_column_out; - } - u.ao.zData = u.ao.sMem.z; - } - sqlite3VdbeSerialGet((u8*)u.ao.zData, u.ao.t, u.ao.pDest); - } - u.ao.pDest->enc = encoding; - }else{ - if( pOp->p4type==P4_MEM ){ - sqlite3VdbeMemShallowCopy(u.ao.pDest, pOp->p4.pMem, MEM_Static); - }else{ - MemSetTypeFlag(u.ao.pDest, MEM_Null); - } - } - - /* If we dynamically allocated space to hold the data (in the - ** sqlite3VdbeMemFromBtree() call above) then transfer control of that - ** dynamically allocated space over to the u.ao.pDest structure. - ** This prevents a memory copy. - */ - if( u.ao.sMem.zMalloc ){ - assert( u.ao.sMem.z==u.ao.sMem.zMalloc ); - assert( !(u.ao.pDest->flags & MEM_Dyn) ); - assert( !(u.ao.pDest->flags & (MEM_Blob|MEM_Str)) || u.ao.pDest->z==u.ao.sMem.z ); - u.ao.pDest->flags &= ~(MEM_Ephem|MEM_Static); - u.ao.pDest->flags |= MEM_Term; - u.ao.pDest->z = u.ao.sMem.z; - u.ao.pDest->zMalloc = u.ao.sMem.zMalloc; - } - - rc = sqlite3VdbeMemMakeWriteable(u.ao.pDest); - -op_column_out: - UPDATE_MAX_BLOBSIZE(u.ao.pDest); - REGISTER_TRACE(pOp->p3, u.ao.pDest); - break; -} - -/* Opcode: Affinity P1 P2 * P4 * -** -** Apply affinities to a range of P2 registers starting with P1. -** -** P4 is a string that is P2 characters long. The nth character of the -** string indicates the column affinity that should be used for the nth -** memory cell in the range. -*/ -case OP_Affinity: { -#if 0 /* local variables moved into u.ap */ - const char *zAffinity; /* The affinity to be applied */ - char cAff; /* A single character of affinity */ -#endif /* local variables moved into u.ap */ - - u.ap.zAffinity = pOp->p4.z; - assert( u.ap.zAffinity!=0 ); - assert( u.ap.zAffinity[pOp->p2]==0 ); - pIn1 = &aMem[pOp->p1]; - while( (u.ap.cAff = *(u.ap.zAffinity++))!=0 ){ - assert( pIn1 <= &p->aMem[p->nMem] ); - assert( memIsValid(pIn1) ); - ExpandBlob(pIn1); - applyAffinity(pIn1, u.ap.cAff, encoding); - pIn1++; - } - break; -} - -/* Opcode: MakeRecord P1 P2 P3 P4 * -** -** Convert P2 registers beginning with P1 into the [record format] -** use as a data record in a database table or as a key -** in an index. The OP_Column opcode can decode the record later. -** -** P4 may be a string that is P2 characters long. The nth character of the -** string indicates the column affinity that should be used for the nth -** field of the index key. -** -** The mapping from character to affinity is given by the SQLITE_AFF_ -** macros defined in sqliteInt.h. -** -** If P4 is NULL then all index fields have the affinity NONE. -*/ -case OP_MakeRecord: { -#if 0 /* local variables moved into u.aq */ - u8 *zNewRecord; /* A buffer to hold the data for the new record */ - Mem *pRec; /* The new record */ - u64 nData; /* Number of bytes of data space */ - int nHdr; /* Number of bytes of header space */ - i64 nByte; /* Data space required for this record */ - int nZero; /* Number of zero bytes at the end of the record */ - int nVarint; /* Number of bytes in a varint */ - u32 serial_type; /* Type field */ - Mem *pData0; /* First field to be combined into the record */ - Mem *pLast; /* Last field of the record */ - int nField; /* Number of fields in the record */ - char *zAffinity; /* The affinity string for the record */ - int file_format; /* File format to use for encoding */ - int i; /* Space used in zNewRecord[] */ - int len; /* Length of a field */ -#endif /* local variables moved into u.aq */ - - /* Assuming the record contains N fields, the record format looks - ** like this: - ** - ** ------------------------------------------------------------------------ - ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | - ** ------------------------------------------------------------------------ - ** - ** Data(0) is taken from register P1. Data(1) comes from register P1+1 - ** and so froth. - ** - ** Each type field is a varint representing the serial type of the - ** corresponding data element (see sqlite3VdbeSerialType()). The - ** hdr-size field is also a varint which is the offset from the beginning - ** of the record to data0. - */ - u.aq.nData = 0; /* Number of bytes of data space */ - u.aq.nHdr = 0; /* Number of bytes of header space */ - u.aq.nZero = 0; /* Number of zero bytes at the end of the record */ - u.aq.nField = pOp->p1; - u.aq.zAffinity = pOp->p4.z; - assert( u.aq.nField>0 && pOp->p2>0 && pOp->p2+u.aq.nField<=p->nMem+1 ); - u.aq.pData0 = &aMem[u.aq.nField]; - u.aq.nField = pOp->p2; - u.aq.pLast = &u.aq.pData0[u.aq.nField-1]; - u.aq.file_format = p->minWriteFileFormat; - - /* Identify the output register */ - assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); - pOut = &aMem[pOp->p3]; - memAboutToChange(p, pOut); - - /* Loop through the elements that will make up the record to figure - ** out how much space is required for the new record. - */ - for(u.aq.pRec=u.aq.pData0; u.aq.pRec<=u.aq.pLast; u.aq.pRec++){ - assert( memIsValid(u.aq.pRec) ); - if( u.aq.zAffinity ){ - applyAffinity(u.aq.pRec, u.aq.zAffinity[u.aq.pRec-u.aq.pData0], encoding); - } - if( u.aq.pRec->flags&MEM_Zero && u.aq.pRec->n>0 ){ - sqlite3VdbeMemExpandBlob(u.aq.pRec); - } - u.aq.serial_type = sqlite3VdbeSerialType(u.aq.pRec, u.aq.file_format); - u.aq.len = sqlite3VdbeSerialTypeLen(u.aq.serial_type); - u.aq.nData += u.aq.len; - u.aq.nHdr += sqlite3VarintLen(u.aq.serial_type); - if( u.aq.pRec->flags & MEM_Zero ){ - /* Only pure zero-filled BLOBs can be input to this Opcode. - ** We do not allow blobs with a prefix and a zero-filled tail. */ - u.aq.nZero += u.aq.pRec->u.nZero; - }else if( u.aq.len ){ - u.aq.nZero = 0; - } - } - - /* Add the initial header varint and total the size */ - u.aq.nHdr += u.aq.nVarint = sqlite3VarintLen(u.aq.nHdr); - if( u.aq.nVarint<sqlite3VarintLen(u.aq.nHdr) ){ - u.aq.nHdr++; - } - u.aq.nByte = u.aq.nHdr+u.aq.nData-u.aq.nZero; - if( u.aq.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - - /* Make sure the output register has a buffer large enough to store - ** the new record. The output register (pOp->p3) is not allowed to - ** be one of the input registers (because the following call to - ** sqlite3VdbeMemGrow() could clobber the value before it is used). - */ - if( sqlite3VdbeMemGrow(pOut, (int)u.aq.nByte, 0) ){ - goto no_mem; - } - u.aq.zNewRecord = (u8 *)pOut->z; - - /* Write the record */ - u.aq.i = putVarint32(u.aq.zNewRecord, u.aq.nHdr); - for(u.aq.pRec=u.aq.pData0; u.aq.pRec<=u.aq.pLast; u.aq.pRec++){ - u.aq.serial_type = sqlite3VdbeSerialType(u.aq.pRec, u.aq.file_format); - u.aq.i += putVarint32(&u.aq.zNewRecord[u.aq.i], u.aq.serial_type); /* serial type */ - } - for(u.aq.pRec=u.aq.pData0; u.aq.pRec<=u.aq.pLast; u.aq.pRec++){ /* serial data */ - u.aq.i += sqlite3VdbeSerialPut(&u.aq.zNewRecord[u.aq.i], (int)(u.aq.nByte-u.aq.i), u.aq.pRec,u.aq.file_format); - } - assert( u.aq.i==u.aq.nByte ); - - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - pOut->n = (int)u.aq.nByte; - pOut->flags = MEM_Blob | MEM_Dyn; - pOut->xDel = 0; - if( u.aq.nZero ){ - pOut->u.nZero = u.aq.nZero; - pOut->flags |= MEM_Zero; - } - pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ - REGISTER_TRACE(pOp->p3, pOut); - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Count P1 P2 * * * -** -** Store the number of entries (an integer value) in the table or index -** opened by cursor P1 in register P2 -*/ -#ifndef SQLITE_OMIT_BTREECOUNT -case OP_Count: { /* out2-prerelease */ -#if 0 /* local variables moved into u.ar */ - i64 nEntry; - BtCursor *pCrsr; -#endif /* local variables moved into u.ar */ - - u.ar.pCrsr = p->apCsr[pOp->p1]->pCursor; - if( ALWAYS(u.ar.pCrsr) ){ - rc = sqlite3BtreeCount(u.ar.pCrsr, &u.ar.nEntry); - }else{ - u.ar.nEntry = 0; - } - pOut->u.i = u.ar.nEntry; - break; -} -#endif - -/* Opcode: Savepoint P1 * * P4 * -** -** Open, release or rollback the savepoint named by parameter P4, depending -** on the value of P1. To open a new savepoint, P1==0. To release (commit) an -** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. -*/ -case OP_Savepoint: { -#if 0 /* local variables moved into u.as */ - int p1; /* Value of P1 operand */ - char *zName; /* Name of savepoint */ - int nName; - Savepoint *pNew; - Savepoint *pSavepoint; - Savepoint *pTmp; - int iSavepoint; - int ii; -#endif /* local variables moved into u.as */ - - u.as.p1 = pOp->p1; - u.as.zName = pOp->p4.z; - - /* Assert that the u.as.p1 parameter is valid. Also that if there is no open - ** transaction, then there cannot be any savepoints. - */ - assert( db->pSavepoint==0 || db->autoCommit==0 ); - assert( u.as.p1==SAVEPOINT_BEGIN||u.as.p1==SAVEPOINT_RELEASE||u.as.p1==SAVEPOINT_ROLLBACK ); - assert( db->pSavepoint || db->isTransactionSavepoint==0 ); - assert( checkSavepointCount(db) ); - - if( u.as.p1==SAVEPOINT_BEGIN ){ - if( db->writeVdbeCnt>0 ){ - /* A new savepoint cannot be created if there are active write - ** statements (i.e. open read/write incremental blob handles). - */ - sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " - "SQL statements in progress"); - rc = SQLITE_BUSY; - }else{ - u.as.nName = sqlite3Strlen30(u.as.zName); - -#ifndef SQLITE_OMIT_VIRTUALTABLE - /* This call is Ok even if this savepoint is actually a transaction - ** savepoint (and therefore should not prompt xSavepoint()) callbacks. - ** If this is a transaction savepoint being opened, it is guaranteed - ** that the db->aVTrans[] array is empty. */ - assert( db->autoCommit==0 || db->nVTrans==0 ); - rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, - db->nStatement+db->nSavepoint); - if( rc!=SQLITE_OK ) goto abort_due_to_error; -#endif - - /* Create a new savepoint structure. */ - u.as.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.as.nName+1); - if( u.as.pNew ){ - u.as.pNew->zName = (char *)&u.as.pNew[1]; - memcpy(u.as.pNew->zName, u.as.zName, u.as.nName+1); - - /* If there is no open transaction, then mark this as a special - ** "transaction savepoint". */ - if( db->autoCommit ){ - db->autoCommit = 0; - db->isTransactionSavepoint = 1; - }else{ - db->nSavepoint++; - } - - /* Link the new savepoint into the database handle's list. */ - u.as.pNew->pNext = db->pSavepoint; - db->pSavepoint = u.as.pNew; - u.as.pNew->nDeferredCons = db->nDeferredCons; - } - } - }else{ - u.as.iSavepoint = 0; - - /* Find the named savepoint. If there is no such savepoint, then an - ** an error is returned to the user. */ - for( - u.as.pSavepoint = db->pSavepoint; - u.as.pSavepoint && sqlite3StrICmp(u.as.pSavepoint->zName, u.as.zName); - u.as.pSavepoint = u.as.pSavepoint->pNext - ){ - u.as.iSavepoint++; - } - if( !u.as.pSavepoint ){ - sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.as.zName); - rc = SQLITE_ERROR; - }else if( db->writeVdbeCnt>0 && u.as.p1==SAVEPOINT_RELEASE ){ - /* It is not possible to release (commit) a savepoint if there are - ** active write statements. - */ - sqlite3SetString(&p->zErrMsg, db, - "cannot release savepoint - SQL statements in progress" - ); - rc = SQLITE_BUSY; - }else{ - - /* Determine whether or not this is a transaction savepoint. If so, - ** and this is a RELEASE command, then the current transaction - ** is committed. - */ - int isTransaction = u.as.pSavepoint->pNext==0 && db->isTransactionSavepoint; - if( isTransaction && u.as.p1==SAVEPOINT_RELEASE ){ - if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ - goto vdbe_return; - } - db->autoCommit = 1; - if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ - p->pc = pc; - db->autoCommit = 0; - p->rc = rc = SQLITE_BUSY; - goto vdbe_return; - } - db->isTransactionSavepoint = 0; - rc = p->rc; - }else{ - u.as.iSavepoint = db->nSavepoint - u.as.iSavepoint - 1; - if( u.as.p1==SAVEPOINT_ROLLBACK ){ - for(u.as.ii=0; u.as.ii<db->nDb; u.as.ii++){ - sqlite3BtreeTripAllCursors(db->aDb[u.as.ii].pBt, SQLITE_ABORT); - } - } - for(u.as.ii=0; u.as.ii<db->nDb; u.as.ii++){ - rc = sqlite3BtreeSavepoint(db->aDb[u.as.ii].pBt, u.as.p1, u.as.iSavepoint); - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - } - if( u.as.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ - sqlite3ExpirePreparedStatements(db); - sqlite3ResetAllSchemasOfConnection(db); - db->flags = (db->flags | SQLITE_InternChanges); - } - } - - /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all - ** savepoints nested inside of the savepoint being operated on. */ - while( db->pSavepoint!=u.as.pSavepoint ){ - u.as.pTmp = db->pSavepoint; - db->pSavepoint = u.as.pTmp->pNext; - sqlite3DbFree(db, u.as.pTmp); - db->nSavepoint--; - } - - /* If it is a RELEASE, then destroy the savepoint being operated on - ** too. If it is a ROLLBACK TO, then set the number of deferred - ** constraint violations present in the database to the value stored - ** when the savepoint was created. */ - if( u.as.p1==SAVEPOINT_RELEASE ){ - assert( u.as.pSavepoint==db->pSavepoint ); - db->pSavepoint = u.as.pSavepoint->pNext; - sqlite3DbFree(db, u.as.pSavepoint); - if( !isTransaction ){ - db->nSavepoint--; - } - }else{ - db->nDeferredCons = u.as.pSavepoint->nDeferredCons; - } - - if( !isTransaction ){ - rc = sqlite3VtabSavepoint(db, u.as.p1, u.as.iSavepoint); - if( rc!=SQLITE_OK ) goto abort_due_to_error; - } - } - } - - break; -} - -/* Opcode: AutoCommit P1 P2 * * * -** -** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll -** back any currently active btree transactions. If there are any active -** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if -** there are active writing VMs or active VMs that use shared cache. -** -** This instruction causes the VM to halt. -*/ -case OP_AutoCommit: { -#if 0 /* local variables moved into u.at */ - int desiredAutoCommit; - int iRollback; - int turnOnAC; -#endif /* local variables moved into u.at */ - - u.at.desiredAutoCommit = pOp->p1; - u.at.iRollback = pOp->p2; - u.at.turnOnAC = u.at.desiredAutoCommit && !db->autoCommit; - assert( u.at.desiredAutoCommit==1 || u.at.desiredAutoCommit==0 ); - assert( u.at.desiredAutoCommit==1 || u.at.iRollback==0 ); - assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ - -#if 0 - if( u.at.turnOnAC && u.at.iRollback && db->activeVdbeCnt>1 ){ - /* If this instruction implements a ROLLBACK and other VMs are - ** still running, and a transaction is active, return an error indicating - ** that the other VMs must complete first. - */ - sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " - "SQL statements in progress"); - rc = SQLITE_BUSY; - }else -#endif - if( u.at.turnOnAC && !u.at.iRollback && db->writeVdbeCnt>0 ){ - /* If this instruction implements a COMMIT and other VMs are writing - ** return an error indicating that the other VMs must complete first. - */ - sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " - "SQL statements in progress"); - rc = SQLITE_BUSY; - }else if( u.at.desiredAutoCommit!=db->autoCommit ){ - if( u.at.iRollback ){ - assert( u.at.desiredAutoCommit==1 ); - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); - db->autoCommit = 1; - }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ - goto vdbe_return; - }else{ - db->autoCommit = (u8)u.at.desiredAutoCommit; - if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ - p->pc = pc; - db->autoCommit = (u8)(1-u.at.desiredAutoCommit); - p->rc = rc = SQLITE_BUSY; - goto vdbe_return; - } - } - assert( db->nStatement==0 ); - sqlite3CloseSavepoints(db); - if( p->rc==SQLITE_OK ){ - rc = SQLITE_DONE; - }else{ - rc = SQLITE_ERROR; - } - goto vdbe_return; - }else{ - sqlite3SetString(&p->zErrMsg, db, - (!u.at.desiredAutoCommit)?"cannot start a transaction within a transaction":( - (u.at.iRollback)?"cannot rollback - no transaction is active": - "cannot commit - no transaction is active")); - - rc = SQLITE_ERROR; - } - break; -} - -/* Opcode: Transaction P1 P2 * * * -** -** Begin a transaction. The transaction ends when a Commit or Rollback -** opcode is encountered. Depending on the ON CONFLICT setting, the -** transaction might also be rolled back if an error is encountered. -** -** P1 is the index of the database file on which the transaction is -** started. Index 0 is the main database file and index 1 is the -** file used for temporary tables. Indices of 2 or more are used for -** attached databases. -** -** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is -** obtained on the database file when a write-transaction is started. No -** other process can start another write transaction while this transaction is -** underway. Starting a write transaction also creates a rollback journal. A -** write transaction must be started before any changes can be made to the -** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained -** on the file. -** -** If a write-transaction is started and the Vdbe.usesStmtJournal flag is -** true (this flag is set if the Vdbe may modify more than one row and may -** throw an ABORT exception), a statement transaction may also be opened. -** More specifically, a statement transaction is opened iff the database -** connection is currently not in autocommit mode, or if there are other -** active statements. A statement transaction allows the changes made by this -** VDBE to be rolled back after an error without having to roll back the -** entire transaction. If no error is encountered, the statement transaction -** will automatically commit when the VDBE halts. -** -** If P2 is zero, then a read-lock is obtained on the database file. -*/ -case OP_Transaction: { -#if 0 /* local variables moved into u.au */ - Btree *pBt; -#endif /* local variables moved into u.au */ - - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); - u.au.pBt = db->aDb[pOp->p1].pBt; - - if( u.au.pBt ){ - rc = sqlite3BtreeBeginTrans(u.au.pBt, pOp->p2); - if( rc==SQLITE_BUSY ){ - p->pc = pc; - p->rc = rc = SQLITE_BUSY; - goto vdbe_return; - } - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - - if( pOp->p2 && p->usesStmtJournal - && (db->autoCommit==0 || db->activeVdbeCnt>1) - ){ - assert( sqlite3BtreeIsInTrans(u.au.pBt) ); - if( p->iStatement==0 ){ - assert( db->nStatement>=0 && db->nSavepoint>=0 ); - db->nStatement++; - p->iStatement = db->nSavepoint + db->nStatement; - } - - rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); - if( rc==SQLITE_OK ){ - rc = sqlite3BtreeBeginStmt(u.au.pBt, p->iStatement); - } - - /* Store the current value of the database handles deferred constraint - ** counter. If the statement transaction needs to be rolled back, - ** the value of this counter needs to be restored too. */ - p->nStmtDefCons = db->nDeferredCons; - } - } - break; -} - -/* Opcode: ReadCookie P1 P2 P3 * * -** -** Read cookie number P3 from database P1 and write it into register P2. -** P3==1 is the schema version. P3==2 is the database format. -** P3==3 is the recommended pager cache size, and so forth. P1==0 is -** the main database file and P1==1 is the database file used to store -** temporary tables. -** -** There must be a read-lock on the database (either a transaction -** must be started or there must be an open cursor) before -** executing this instruction. -*/ -case OP_ReadCookie: { /* out2-prerelease */ -#if 0 /* local variables moved into u.av */ - int iMeta; - int iDb; - int iCookie; -#endif /* local variables moved into u.av */ - - u.av.iDb = pOp->p1; - u.av.iCookie = pOp->p3; - assert( pOp->p3<SQLITE_N_BTREE_META ); - assert( u.av.iDb>=0 && u.av.iDb<db->nDb ); - assert( db->aDb[u.av.iDb].pBt!=0 ); - assert( (p->btreeMask & (((yDbMask)1)<<u.av.iDb))!=0 ); - - sqlite3BtreeGetMeta(db->aDb[u.av.iDb].pBt, u.av.iCookie, (u32 *)&u.av.iMeta); - pOut->u.i = u.av.iMeta; - break; -} - -/* Opcode: SetCookie P1 P2 P3 * * -** -** Write the content of register P3 (interpreted as an integer) -** into cookie number P2 of database P1. P2==1 is the schema version. -** P2==2 is the database format. P2==3 is the recommended pager cache -** size, and so forth. P1==0 is the main database file and P1==1 is the -** database file used to store temporary tables. -** -** A transaction must be started before executing this opcode. -*/ -case OP_SetCookie: { /* in3 */ -#if 0 /* local variables moved into u.aw */ - Db *pDb; -#endif /* local variables moved into u.aw */ - assert( pOp->p2<SQLITE_N_BTREE_META ); - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); - u.aw.pDb = &db->aDb[pOp->p1]; - assert( u.aw.pDb->pBt!=0 ); - assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); - pIn3 = &aMem[pOp->p3]; - sqlite3VdbeMemIntegerify(pIn3); - /* See note about index shifting on OP_ReadCookie */ - rc = sqlite3BtreeUpdateMeta(u.aw.pDb->pBt, pOp->p2, (int)pIn3->u.i); - if( pOp->p2==BTREE_SCHEMA_VERSION ){ - /* When the schema cookie changes, record the new cookie internally */ - u.aw.pDb->pSchema->schema_cookie = (int)pIn3->u.i; - db->flags |= SQLITE_InternChanges; - }else if( pOp->p2==BTREE_FILE_FORMAT ){ - /* Record changes in the file format */ - u.aw.pDb->pSchema->file_format = (u8)pIn3->u.i; - } - if( pOp->p1==1 ){ - /* Invalidate all prepared statements whenever the TEMP database - ** schema is changed. Ticket #1644 */ - sqlite3ExpirePreparedStatements(db); - p->expired = 0; - } - break; -} - -/* Opcode: VerifyCookie P1 P2 P3 * * -** -** Check the value of global database parameter number 0 (the -** schema version) and make sure it is equal to P2 and that the -** generation counter on the local schema parse equals P3. -** -** P1 is the database number which is 0 for the main database file -** and 1 for the file holding temporary tables and some higher number -** for auxiliary databases. -** -** The cookie changes its value whenever the database schema changes. -** This operation is used to detect when that the cookie has changed -** and that the current process needs to reread the schema. -** -** Either a transaction needs to have been started or an OP_Open needs -** to be executed (to establish a read lock) before this opcode is -** invoked. -*/ -case OP_VerifyCookie: { -#if 0 /* local variables moved into u.ax */ - int iMeta; - int iGen; - Btree *pBt; -#endif /* local variables moved into u.ax */ - - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); - assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); - u.ax.pBt = db->aDb[pOp->p1].pBt; - if( u.ax.pBt ){ - sqlite3BtreeGetMeta(u.ax.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.ax.iMeta); - u.ax.iGen = db->aDb[pOp->p1].pSchema->iGeneration; - }else{ - u.ax.iGen = u.ax.iMeta = 0; - } - if( u.ax.iMeta!=pOp->p2 || u.ax.iGen!=pOp->p3 ){ - sqlite3DbFree(db, p->zErrMsg); - p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); - /* If the schema-cookie from the database file matches the cookie - ** stored with the in-memory representation of the schema, do - ** not reload the schema from the database file. - ** - ** If virtual-tables are in use, this is not just an optimization. - ** Often, v-tables store their data in other SQLite tables, which - ** are queried from within xNext() and other v-table methods using - ** prepared queries. If such a query is out-of-date, we do not want to - ** discard the database schema, as the user code implementing the - ** v-table would have to be ready for the sqlite3_vtab structure itself - ** to be invalidated whenever sqlite3_step() is called from within - ** a v-table method. - */ - if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.ax.iMeta ){ - sqlite3ResetOneSchema(db, pOp->p1); - } - - p->expired = 1; - rc = SQLITE_SCHEMA; - } - break; -} - -/* Opcode: OpenRead P1 P2 P3 P4 P5 -** -** Open a read-only cursor for the database table whose root page is -** P2 in a database file. The database file is determined by P3. -** P3==0 means the main database, P3==1 means the database used for -** temporary tables, and P3>1 means used the corresponding attached -** database. Give the new cursor an identifier of P1. The P1 -** values need not be contiguous but all P1 values should be small integers. -** It is an error for P1 to be negative. -** -** If P5!=0 then use the content of register P2 as the root page, not -** the value of P2 itself. -** -** There will be a read lock on the database whenever there is an -** open cursor. If the database was unlocked prior to this instruction -** then a read lock is acquired as part of this instruction. A read -** lock allows other processes to read the database but prohibits -** any other process from modifying the database. The read lock is -** released when all cursors are closed. If this instruction attempts -** to get a read lock but fails, the script terminates with an -** SQLITE_BUSY error code. -** -** The P4 value may be either an integer (P4_INT32) or a pointer to -** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo -** structure, then said structure defines the content and collating -** sequence of the index being opened. Otherwise, if P4 is an integer -** value, it is set to the number of columns in the table. -** -** See also OpenWrite. -*/ -/* Opcode: OpenWrite P1 P2 P3 P4 P5 -** -** Open a read/write cursor named P1 on the table or index whose root -** page is P2. Or if P5!=0 use the content of register P2 to find the -** root page. -** -** The P4 value may be either an integer (P4_INT32) or a pointer to -** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo -** structure, then said structure defines the content and collating -** sequence of the index being opened. Otherwise, if P4 is an integer -** value, it is set to the number of columns in the table, or to the -** largest index of any column of the table that is actually used. -** -** This instruction works just like OpenRead except that it opens the cursor -** in read/write mode. For a given table, there can be one or more read-only -** cursors or a single read/write cursor but not both. -** -** See also OpenRead. -*/ -case OP_OpenRead: -case OP_OpenWrite: { -#if 0 /* local variables moved into u.ay */ - int nField; - KeyInfo *pKeyInfo; - int p2; - int iDb; - int wrFlag; - Btree *pX; - VdbeCursor *pCur; - Db *pDb; -#endif /* local variables moved into u.ay */ - - assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); - assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); - - if( p->expired ){ - rc = SQLITE_ABORT; - break; - } - - u.ay.nField = 0; - u.ay.pKeyInfo = 0; - u.ay.p2 = pOp->p2; - u.ay.iDb = pOp->p3; - assert( u.ay.iDb>=0 && u.ay.iDb<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<u.ay.iDb))!=0 ); - u.ay.pDb = &db->aDb[u.ay.iDb]; - u.ay.pX = u.ay.pDb->pBt; - assert( u.ay.pX!=0 ); - if( pOp->opcode==OP_OpenWrite ){ - u.ay.wrFlag = 1; - assert( sqlite3SchemaMutexHeld(db, u.ay.iDb, 0) ); - if( u.ay.pDb->pSchema->file_format < p->minWriteFileFormat ){ - p->minWriteFileFormat = u.ay.pDb->pSchema->file_format; - } - }else{ - u.ay.wrFlag = 0; - } - if( pOp->p5 & OPFLAG_P2ISREG ){ - assert( u.ay.p2>0 ); - assert( u.ay.p2<=p->nMem ); - pIn2 = &aMem[u.ay.p2]; - assert( memIsValid(pIn2) ); - assert( (pIn2->flags & MEM_Int)!=0 ); - sqlite3VdbeMemIntegerify(pIn2); - u.ay.p2 = (int)pIn2->u.i; - /* The u.ay.p2 value always comes from a prior OP_CreateTable opcode and - ** that opcode will always set the u.ay.p2 value to 2 or more or else fail. - ** If there were a failure, the prepared statement would have halted - ** before reaching this instruction. */ - if( NEVER(u.ay.p2<2) ) { - rc = SQLITE_CORRUPT_BKPT; - goto abort_due_to_error; - } - } - if( pOp->p4type==P4_KEYINFO ){ - u.ay.pKeyInfo = pOp->p4.pKeyInfo; - u.ay.pKeyInfo->enc = ENC(p->db); - u.ay.nField = u.ay.pKeyInfo->nField+1; - }else if( pOp->p4type==P4_INT32 ){ - u.ay.nField = pOp->p4.i; - } - assert( pOp->p1>=0 ); - u.ay.pCur = allocateCursor(p, pOp->p1, u.ay.nField, u.ay.iDb, 1); - if( u.ay.pCur==0 ) goto no_mem; - u.ay.pCur->nullRow = 1; - u.ay.pCur->isOrdered = 1; - rc = sqlite3BtreeCursor(u.ay.pX, u.ay.p2, u.ay.wrFlag, u.ay.pKeyInfo, u.ay.pCur->pCursor); - u.ay.pCur->pKeyInfo = u.ay.pKeyInfo; - assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); - sqlite3BtreeCursorHints(u.ay.pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); - - /* Since it performs no memory allocation or IO, the only value that - ** sqlite3BtreeCursor() may return is SQLITE_OK. */ - assert( rc==SQLITE_OK ); - - /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of - ** SQLite used to check if the root-page flags were sane at this point - ** and report database corruption if they were not, but this check has - ** since moved into the btree layer. */ - u.ay.pCur->isTable = pOp->p4type!=P4_KEYINFO; - u.ay.pCur->isIndex = !u.ay.pCur->isTable; - break; -} - -/* Opcode: OpenEphemeral P1 P2 * P4 P5 -** -** Open a new cursor P1 to a transient table. -** The cursor is always opened read/write even if -** the main database is read-only. The ephemeral -** table is deleted automatically when the cursor is closed. -** -** P2 is the number of columns in the ephemeral table. -** The cursor points to a BTree table if P4==0 and to a BTree index -** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure -** that defines the format of keys in the index. -** -** This opcode was once called OpenTemp. But that created -** confusion because the term "temp table", might refer either -** to a TEMP table at the SQL level, or to a table opened by -** this opcode. Then this opcode was call OpenVirtual. But -** that created confusion with the whole virtual-table idea. -** -** The P5 parameter can be a mask of the BTREE_* flags defined -** in btree.h. These flags control aspects of the operation of -** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are -** added automatically. -*/ -/* Opcode: OpenAutoindex P1 P2 * P4 * -** -** This opcode works the same as OP_OpenEphemeral. It has a -** different name to distinguish its use. Tables created using -** by this opcode will be used for automatically created transient -** indices in joins. -*/ -case OP_OpenAutoindex: -case OP_OpenEphemeral: { -#if 0 /* local variables moved into u.az */ - VdbeCursor *pCx; -#endif /* local variables moved into u.az */ - static const int vfsFlags = - SQLITE_OPEN_READWRITE | - SQLITE_OPEN_CREATE | - SQLITE_OPEN_EXCLUSIVE | - SQLITE_OPEN_DELETEONCLOSE | - SQLITE_OPEN_TRANSIENT_DB; - - assert( pOp->p1>=0 ); - u.az.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); - if( u.az.pCx==0 ) goto no_mem; - u.az.pCx->nullRow = 1; - rc = sqlite3BtreeOpen(db->pVfs, 0, db, &u.az.pCx->pBt, - BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); - if( rc==SQLITE_OK ){ - rc = sqlite3BtreeBeginTrans(u.az.pCx->pBt, 1); - } - if( rc==SQLITE_OK ){ - /* If a transient index is required, create it by calling - ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before - ** opening it. If a transient table is required, just use the - ** automatically created table with root-page 1 (an BLOB_INTKEY table). - */ - if( pOp->p4.pKeyInfo ){ - int pgno; - assert( pOp->p4type==P4_KEYINFO ); - rc = sqlite3BtreeCreateTable(u.az.pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); - if( rc==SQLITE_OK ){ - assert( pgno==MASTER_ROOT+1 ); - rc = sqlite3BtreeCursor(u.az.pCx->pBt, pgno, 1, - (KeyInfo*)pOp->p4.z, u.az.pCx->pCursor); - u.az.pCx->pKeyInfo = pOp->p4.pKeyInfo; - u.az.pCx->pKeyInfo->enc = ENC(p->db); - } - u.az.pCx->isTable = 0; - }else{ - rc = sqlite3BtreeCursor(u.az.pCx->pBt, MASTER_ROOT, 1, 0, u.az.pCx->pCursor); - u.az.pCx->isTable = 1; - } - } - u.az.pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); - u.az.pCx->isIndex = !u.az.pCx->isTable; - break; -} - -/* Opcode: SorterOpen P1 P2 * P4 * -** -** This opcode works like OP_OpenEphemeral except that it opens -** a transient index that is specifically designed to sort large -** tables using an external merge-sort algorithm. -*/ -case OP_SorterOpen: { -#if 0 /* local variables moved into u.ba */ - VdbeCursor *pCx; -#endif /* local variables moved into u.ba */ - - u.ba.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); - if( u.ba.pCx==0 ) goto no_mem; - u.ba.pCx->pKeyInfo = pOp->p4.pKeyInfo; - u.ba.pCx->pKeyInfo->enc = ENC(p->db); - u.ba.pCx->isSorter = 1; - rc = sqlite3VdbeSorterInit(db, u.ba.pCx); - break; -} - -/* Opcode: OpenPseudo P1 P2 P3 * P5 -** -** Open a new cursor that points to a fake table that contains a single -** row of data. The content of that one row in the content of memory -** register P2 when P5==0. In other words, cursor P1 becomes an alias for the -** MEM_Blob content contained in register P2. When P5==1, then the -** row is represented by P3 consecutive registers beginning with P2. -** -** A pseudo-table created by this opcode is used to hold a single -** row output from the sorter so that the row can be decomposed into -** individual columns using the OP_Column opcode. The OP_Column opcode -** is the only cursor opcode that works with a pseudo-table. -** -** P3 is the number of fields in the records that will be stored by -** the pseudo-table. -*/ -case OP_OpenPseudo: { -#if 0 /* local variables moved into u.bb */ - VdbeCursor *pCx; -#endif /* local variables moved into u.bb */ - - assert( pOp->p1>=0 ); - u.bb.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); - if( u.bb.pCx==0 ) goto no_mem; - u.bb.pCx->nullRow = 1; - u.bb.pCx->pseudoTableReg = pOp->p2; - u.bb.pCx->isTable = 1; - u.bb.pCx->isIndex = 0; - u.bb.pCx->multiPseudo = pOp->p5; - break; -} - -/* Opcode: Close P1 * * * * -** -** Close a cursor previously opened as P1. If P1 is not -** currently open, this instruction is a no-op. -*/ -case OP_Close: { - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); - p->apCsr[pOp->p1] = 0; - break; -} - -/* Opcode: SeekGe P1 P2 P3 P4 * -** -** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), -** use the value in register P3 as the key. If cursor P1 refers -** to an SQL index, then P3 is the first in an array of P4 registers -** that are used as an unpacked index key. -** -** Reposition cursor P1 so that it points to the smallest entry that -** is greater than or equal to the key value. If there are no records -** greater than or equal to the key and P2 is not zero, then jump to P2. -** -** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe -*/ -/* Opcode: SeekGt P1 P2 P3 P4 * -** -** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), -** use the value in register P3 as a key. If cursor P1 refers -** to an SQL index, then P3 is the first in an array of P4 registers -** that are used as an unpacked index key. -** -** Reposition cursor P1 so that it points to the smallest entry that -** is greater than the key value. If there are no records greater than -** the key and P2 is not zero, then jump to P2. -** -** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe -*/ -/* Opcode: SeekLt P1 P2 P3 P4 * -** -** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), -** use the value in register P3 as a key. If cursor P1 refers -** to an SQL index, then P3 is the first in an array of P4 registers -** that are used as an unpacked index key. -** -** Reposition cursor P1 so that it points to the largest entry that -** is less than the key value. If there are no records less than -** the key and P2 is not zero, then jump to P2. -** -** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe -*/ -/* Opcode: SeekLe P1 P2 P3 P4 * -** -** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), -** use the value in register P3 as a key. If cursor P1 refers -** to an SQL index, then P3 is the first in an array of P4 registers -** that are used as an unpacked index key. -** -** Reposition cursor P1 so that it points to the largest entry that -** is less than or equal to the key value. If there are no records -** less than or equal to the key and P2 is not zero, then jump to P2. -** -** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt -*/ -case OP_SeekLt: /* jump, in3 */ -case OP_SeekLe: /* jump, in3 */ -case OP_SeekGe: /* jump, in3 */ -case OP_SeekGt: { /* jump, in3 */ -#if 0 /* local variables moved into u.bc */ - int res; - int oc; - VdbeCursor *pC; - UnpackedRecord r; - int nField; - i64 iKey; /* The rowid we are to seek to */ -#endif /* local variables moved into u.bc */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - assert( pOp->p2!=0 ); - u.bc.pC = p->apCsr[pOp->p1]; - assert( u.bc.pC!=0 ); - assert( u.bc.pC->pseudoTableReg==0 ); - assert( OP_SeekLe == OP_SeekLt+1 ); - assert( OP_SeekGe == OP_SeekLt+2 ); - assert( OP_SeekGt == OP_SeekLt+3 ); - assert( u.bc.pC->isOrdered ); - if( ALWAYS(u.bc.pC->pCursor!=0) ){ - u.bc.oc = pOp->opcode; - u.bc.pC->nullRow = 0; - if( u.bc.pC->isTable ){ - /* The input value in P3 might be of any type: integer, real, string, - ** blob, or NULL. But it needs to be an integer before we can do - ** the seek, so covert it. */ - pIn3 = &aMem[pOp->p3]; - applyNumericAffinity(pIn3); - u.bc.iKey = sqlite3VdbeIntValue(pIn3); - u.bc.pC->rowidIsValid = 0; - - /* If the P3 value could not be converted into an integer without - ** loss of information, then special processing is required... */ - if( (pIn3->flags & MEM_Int)==0 ){ - if( (pIn3->flags & MEM_Real)==0 ){ - /* If the P3 value cannot be converted into any kind of a number, - ** then the seek is not possible, so jump to P2 */ - pc = pOp->p2 - 1; - break; - } - /* If we reach this point, then the P3 value must be a floating - ** point number. */ - assert( (pIn3->flags & MEM_Real)!=0 ); - - if( u.bc.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.bc.iKey || pIn3->r>0) ){ - /* The P3 value is too large in magnitude to be expressed as an - ** integer. */ - u.bc.res = 1; - if( pIn3->r<0 ){ - if( u.bc.oc>=OP_SeekGe ){ assert( u.bc.oc==OP_SeekGe || u.bc.oc==OP_SeekGt ); - rc = sqlite3BtreeFirst(u.bc.pC->pCursor, &u.bc.res); - if( rc!=SQLITE_OK ) goto abort_due_to_error; - } - }else{ - if( u.bc.oc<=OP_SeekLe ){ assert( u.bc.oc==OP_SeekLt || u.bc.oc==OP_SeekLe ); - rc = sqlite3BtreeLast(u.bc.pC->pCursor, &u.bc.res); - if( rc!=SQLITE_OK ) goto abort_due_to_error; - } - } - if( u.bc.res ){ - pc = pOp->p2 - 1; - } - break; - }else if( u.bc.oc==OP_SeekLt || u.bc.oc==OP_SeekGe ){ - /* Use the ceiling() function to convert real->int */ - if( pIn3->r > (double)u.bc.iKey ) u.bc.iKey++; - }else{ - /* Use the floor() function to convert real->int */ - assert( u.bc.oc==OP_SeekLe || u.bc.oc==OP_SeekGt ); - if( pIn3->r < (double)u.bc.iKey ) u.bc.iKey--; - } - } - rc = sqlite3BtreeMovetoUnpacked(u.bc.pC->pCursor, 0, (u64)u.bc.iKey, 0, &u.bc.res); - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - if( u.bc.res==0 ){ - u.bc.pC->rowidIsValid = 1; - u.bc.pC->lastRowid = u.bc.iKey; - } - }else{ - u.bc.nField = pOp->p4.i; - assert( pOp->p4type==P4_INT32 ); - assert( u.bc.nField>0 ); - u.bc.r.pKeyInfo = u.bc.pC->pKeyInfo; - u.bc.r.nField = (u16)u.bc.nField; - - /* The next line of code computes as follows, only faster: - ** if( u.bc.oc==OP_SeekGt || u.bc.oc==OP_SeekLe ){ - ** u.bc.r.flags = UNPACKED_INCRKEY; - ** }else{ - ** u.bc.r.flags = 0; - ** } - */ - u.bc.r.flags = (u16)(UNPACKED_INCRKEY * (1 & (u.bc.oc - OP_SeekLt))); - assert( u.bc.oc!=OP_SeekGt || u.bc.r.flags==UNPACKED_INCRKEY ); - assert( u.bc.oc!=OP_SeekLe || u.bc.r.flags==UNPACKED_INCRKEY ); - assert( u.bc.oc!=OP_SeekGe || u.bc.r.flags==0 ); - assert( u.bc.oc!=OP_SeekLt || u.bc.r.flags==0 ); - - u.bc.r.aMem = &aMem[pOp->p3]; -#ifdef SQLITE_DEBUG - { int i; for(i=0; i<u.bc.r.nField; i++) assert( memIsValid(&u.bc.r.aMem[i]) ); } -#endif - ExpandBlob(u.bc.r.aMem); - rc = sqlite3BtreeMovetoUnpacked(u.bc.pC->pCursor, &u.bc.r, 0, 0, &u.bc.res); - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - u.bc.pC->rowidIsValid = 0; - } - u.bc.pC->deferredMoveto = 0; - u.bc.pC->cacheStatus = CACHE_STALE; -#ifdef SQLITE_TEST - sqlite3_search_count++; -#endif - if( u.bc.oc>=OP_SeekGe ){ assert( u.bc.oc==OP_SeekGe || u.bc.oc==OP_SeekGt ); - if( u.bc.res<0 || (u.bc.res==0 && u.bc.oc==OP_SeekGt) ){ - rc = sqlite3BtreeNext(u.bc.pC->pCursor, &u.bc.res); - if( rc!=SQLITE_OK ) goto abort_due_to_error; - u.bc.pC->rowidIsValid = 0; - }else{ - u.bc.res = 0; - } - }else{ - assert( u.bc.oc==OP_SeekLt || u.bc.oc==OP_SeekLe ); - if( u.bc.res>0 || (u.bc.res==0 && u.bc.oc==OP_SeekLt) ){ - rc = sqlite3BtreePrevious(u.bc.pC->pCursor, &u.bc.res); - if( rc!=SQLITE_OK ) goto abort_due_to_error; - u.bc.pC->rowidIsValid = 0; - }else{ - /* u.bc.res might be negative because the table is empty. Check to - ** see if this is the case. - */ - u.bc.res = sqlite3BtreeEof(u.bc.pC->pCursor); - } - } - assert( pOp->p2>0 ); - if( u.bc.res ){ - pc = pOp->p2 - 1; - } - }else{ - /* This happens when attempting to open the sqlite3_master table - ** for read access returns SQLITE_EMPTY. In this case always - ** take the jump (since there are no records in the table). - */ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: Seek P1 P2 * * * -** -** P1 is an open table cursor and P2 is a rowid integer. Arrange -** for P1 to move so that it points to the rowid given by P2. -** -** This is actually a deferred seek. Nothing actually happens until -** the cursor is used to read a record. That way, if no reads -** occur, no unnecessary I/O happens. -*/ -case OP_Seek: { /* in2 */ -#if 0 /* local variables moved into u.bd */ - VdbeCursor *pC; -#endif /* local variables moved into u.bd */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bd.pC = p->apCsr[pOp->p1]; - assert( u.bd.pC!=0 ); - if( ALWAYS(u.bd.pC->pCursor!=0) ){ - assert( u.bd.pC->isTable ); - u.bd.pC->nullRow = 0; - pIn2 = &aMem[pOp->p2]; - u.bd.pC->movetoTarget = sqlite3VdbeIntValue(pIn2); - u.bd.pC->rowidIsValid = 0; - u.bd.pC->deferredMoveto = 1; - } - break; -} - - -/* Opcode: Found P1 P2 P3 P4 * -** -** If P4==0 then register P3 holds a blob constructed by MakeRecord. If -** P4>0 then register P3 is the first of P4 registers that form an unpacked -** record. -** -** Cursor P1 is on an index btree. If the record identified by P3 and P4 -** is a prefix of any entry in P1 then a jump is made to P2 and -** P1 is left pointing at the matching entry. -*/ -/* Opcode: NotFound P1 P2 P3 P4 * -** -** If P4==0 then register P3 holds a blob constructed by MakeRecord. If -** P4>0 then register P3 is the first of P4 registers that form an unpacked -** record. -** -** Cursor P1 is on an index btree. If the record identified by P3 and P4 -** is not the prefix of any entry in P1 then a jump is made to P2. If P1 -** does contain an entry whose prefix matches the P3/P4 record then control -** falls through to the next instruction and P1 is left pointing at the -** matching entry. -** -** See also: Found, NotExists, IsUnique -*/ -case OP_NotFound: /* jump, in3 */ -case OP_Found: { /* jump, in3 */ -#if 0 /* local variables moved into u.be */ - int alreadyExists; - VdbeCursor *pC; - int res; - char *pFree; - UnpackedRecord *pIdxKey; - UnpackedRecord r; - char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; -#endif /* local variables moved into u.be */ - -#ifdef SQLITE_TEST - sqlite3_found_count++; -#endif - - u.be.alreadyExists = 0; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - assert( pOp->p4type==P4_INT32 ); - u.be.pC = p->apCsr[pOp->p1]; - assert( u.be.pC!=0 ); - pIn3 = &aMem[pOp->p3]; - if( ALWAYS(u.be.pC->pCursor!=0) ){ - - assert( u.be.pC->isTable==0 ); - if( pOp->p4.i>0 ){ - u.be.r.pKeyInfo = u.be.pC->pKeyInfo; - u.be.r.nField = (u16)pOp->p4.i; - u.be.r.aMem = pIn3; -#ifdef SQLITE_DEBUG - { int i; for(i=0; i<u.be.r.nField; i++) assert( memIsValid(&u.be.r.aMem[i]) ); } -#endif - u.be.r.flags = UNPACKED_PREFIX_MATCH; - u.be.pIdxKey = &u.be.r; - }else{ - u.be.pIdxKey = sqlite3VdbeAllocUnpackedRecord( - u.be.pC->pKeyInfo, u.be.aTempRec, sizeof(u.be.aTempRec), &u.be.pFree - ); - if( u.be.pIdxKey==0 ) goto no_mem; - assert( pIn3->flags & MEM_Blob ); - assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ - sqlite3VdbeRecordUnpack(u.be.pC->pKeyInfo, pIn3->n, pIn3->z, u.be.pIdxKey); - u.be.pIdxKey->flags |= UNPACKED_PREFIX_MATCH; - } - rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, u.be.pIdxKey, 0, 0, &u.be.res); - if( pOp->p4.i==0 ){ - sqlite3DbFree(db, u.be.pFree); - } - if( rc!=SQLITE_OK ){ - break; - } - u.be.alreadyExists = (u.be.res==0); - u.be.pC->deferredMoveto = 0; - u.be.pC->cacheStatus = CACHE_STALE; - } - if( pOp->opcode==OP_Found ){ - if( u.be.alreadyExists ) pc = pOp->p2 - 1; - }else{ - if( !u.be.alreadyExists ) pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: IsUnique P1 P2 P3 P4 * -** -** Cursor P1 is open on an index b-tree - that is to say, a btree which -** no data and where the key are records generated by OP_MakeRecord with -** the list field being the integer ROWID of the entry that the index -** entry refers to. -** -** The P3 register contains an integer record number. Call this record -** number R. Register P4 is the first in a set of N contiguous registers -** that make up an unpacked index key that can be used with cursor P1. -** The value of N can be inferred from the cursor. N includes the rowid -** value appended to the end of the index record. This rowid value may -** or may not be the same as R. -** -** If any of the N registers beginning with register P4 contains a NULL -** value, jump immediately to P2. -** -** Otherwise, this instruction checks if cursor P1 contains an entry -** where the first (N-1) fields match but the rowid value at the end -** of the index entry is not R. If there is no such entry, control jumps -** to instruction P2. Otherwise, the rowid of the conflicting index -** entry is copied to register P3 and control falls through to the next -** instruction. -** -** See also: NotFound, NotExists, Found -*/ -case OP_IsUnique: { /* jump, in3 */ -#if 0 /* local variables moved into u.bf */ - u16 ii; - VdbeCursor *pCx; - BtCursor *pCrsr; - u16 nField; - Mem *aMx; - UnpackedRecord r; /* B-Tree index search key */ - i64 R; /* Rowid stored in register P3 */ -#endif /* local variables moved into u.bf */ - - pIn3 = &aMem[pOp->p3]; - u.bf.aMx = &aMem[pOp->p4.i]; - /* Assert that the values of parameters P1 and P4 are in range. */ - assert( pOp->p4type==P4_INT32 ); - assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - - /* Find the index cursor. */ - u.bf.pCx = p->apCsr[pOp->p1]; - assert( u.bf.pCx->deferredMoveto==0 ); - u.bf.pCx->seekResult = 0; - u.bf.pCx->cacheStatus = CACHE_STALE; - u.bf.pCrsr = u.bf.pCx->pCursor; - - /* If any of the values are NULL, take the jump. */ - u.bf.nField = u.bf.pCx->pKeyInfo->nField; - for(u.bf.ii=0; u.bf.ii<u.bf.nField; u.bf.ii++){ - if( u.bf.aMx[u.bf.ii].flags & MEM_Null ){ - pc = pOp->p2 - 1; - u.bf.pCrsr = 0; - break; - } - } - assert( (u.bf.aMx[u.bf.nField].flags & MEM_Null)==0 ); - - if( u.bf.pCrsr!=0 ){ - /* Populate the index search key. */ - u.bf.r.pKeyInfo = u.bf.pCx->pKeyInfo; - u.bf.r.nField = u.bf.nField + 1; - u.bf.r.flags = UNPACKED_PREFIX_SEARCH; - u.bf.r.aMem = u.bf.aMx; -#ifdef SQLITE_DEBUG - { int i; for(i=0; i<u.bf.r.nField; i++) assert( memIsValid(&u.bf.r.aMem[i]) ); } -#endif - - /* Extract the value of u.bf.R from register P3. */ - sqlite3VdbeMemIntegerify(pIn3); - u.bf.R = pIn3->u.i; - - /* Search the B-Tree index. If no conflicting record is found, jump - ** to P2. Otherwise, copy the rowid of the conflicting record to - ** register P3 and fall through to the next instruction. */ - rc = sqlite3BtreeMovetoUnpacked(u.bf.pCrsr, &u.bf.r, 0, 0, &u.bf.pCx->seekResult); - if( (u.bf.r.flags & UNPACKED_PREFIX_SEARCH) || u.bf.r.rowid==u.bf.R ){ - pc = pOp->p2 - 1; - }else{ - pIn3->u.i = u.bf.r.rowid; - } - } - break; -} - -/* Opcode: NotExists P1 P2 P3 * * -** -** Use the content of register P3 as an integer key. If a record -** with that key does not exist in table of P1, then jump to P2. -** If the record does exist, then fall through. The cursor is left -** pointing to the record if it exists. -** -** The difference between this operation and NotFound is that this -** operation assumes the key is an integer and that P1 is a table whereas -** NotFound assumes key is a blob constructed from MakeRecord and -** P1 is an index. -** -** See also: Found, NotFound, IsUnique -*/ -case OP_NotExists: { /* jump, in3 */ -#if 0 /* local variables moved into u.bg */ - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - u64 iKey; -#endif /* local variables moved into u.bg */ - - pIn3 = &aMem[pOp->p3]; - assert( pIn3->flags & MEM_Int ); - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bg.pC = p->apCsr[pOp->p1]; - assert( u.bg.pC!=0 ); - assert( u.bg.pC->isTable ); - assert( u.bg.pC->pseudoTableReg==0 ); - u.bg.pCrsr = u.bg.pC->pCursor; - if( ALWAYS(u.bg.pCrsr!=0) ){ - u.bg.res = 0; - u.bg.iKey = pIn3->u.i; - rc = sqlite3BtreeMovetoUnpacked(u.bg.pCrsr, 0, u.bg.iKey, 0, &u.bg.res); - u.bg.pC->lastRowid = pIn3->u.i; - u.bg.pC->rowidIsValid = u.bg.res==0 ?1:0; - u.bg.pC->nullRow = 0; - u.bg.pC->cacheStatus = CACHE_STALE; - u.bg.pC->deferredMoveto = 0; - if( u.bg.res!=0 ){ - pc = pOp->p2 - 1; - assert( u.bg.pC->rowidIsValid==0 ); - } - u.bg.pC->seekResult = u.bg.res; - }else{ - /* This happens when an attempt to open a read cursor on the - ** sqlite_master table returns SQLITE_EMPTY. - */ - pc = pOp->p2 - 1; - assert( u.bg.pC->rowidIsValid==0 ); - u.bg.pC->seekResult = 0; - } - break; -} - -/* Opcode: Sequence P1 P2 * * * -** -** Find the next available sequence number for cursor P1. -** Write the sequence number into register P2. -** The sequence number on the cursor is incremented after this -** instruction. -*/ -case OP_Sequence: { /* out2-prerelease */ - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - assert( p->apCsr[pOp->p1]!=0 ); - pOut->u.i = p->apCsr[pOp->p1]->seqCount++; - break; -} - - -/* Opcode: NewRowid P1 P2 P3 * * -** -** Get a new integer record number (a.k.a "rowid") used as the key to a table. -** The record number is not previously used as a key in the database -** table that cursor P1 points to. The new record number is written -** written to register P2. -** -** If P3>0 then P3 is a register in the root frame of this VDBE that holds -** the largest previously generated record number. No new record numbers are -** allowed to be less than this value. When this value reaches its maximum, -** an SQLITE_FULL error is generated. The P3 register is updated with the ' -** generated record number. This P3 mechanism is used to help implement the -** AUTOINCREMENT feature. -*/ -case OP_NewRowid: { /* out2-prerelease */ -#if 0 /* local variables moved into u.bh */ - i64 v; /* The new rowid */ - VdbeCursor *pC; /* Cursor of table to get the new rowid */ - int res; /* Result of an sqlite3BtreeLast() */ - int cnt; /* Counter to limit the number of searches */ - Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ - VdbeFrame *pFrame; /* Root frame of VDBE */ -#endif /* local variables moved into u.bh */ - - u.bh.v = 0; - u.bh.res = 0; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bh.pC = p->apCsr[pOp->p1]; - assert( u.bh.pC!=0 ); - if( NEVER(u.bh.pC->pCursor==0) ){ - /* The zero initialization above is all that is needed */ - }else{ - /* The next rowid or record number (different terms for the same - ** thing) is obtained in a two-step algorithm. - ** - ** First we attempt to find the largest existing rowid and add one - ** to that. But if the largest existing rowid is already the maximum - ** positive integer, we have to fall through to the second - ** probabilistic algorithm - ** - ** The second algorithm is to select a rowid at random and see if - ** it already exists in the table. If it does not exist, we have - ** succeeded. If the random rowid does exist, we select a new one - ** and try again, up to 100 times. - */ - assert( u.bh.pC->isTable ); - -#ifdef SQLITE_32BIT_ROWID -# define MAX_ROWID 0x7fffffff -#else - /* Some compilers complain about constants of the form 0x7fffffffffffffff. - ** Others complain about 0x7ffffffffffffffffLL. The following macro seems - ** to provide the constant while making all compilers happy. - */ -# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) -#endif - - if( !u.bh.pC->useRandomRowid ){ - u.bh.v = sqlite3BtreeGetCachedRowid(u.bh.pC->pCursor); - if( u.bh.v==0 ){ - rc = sqlite3BtreeLast(u.bh.pC->pCursor, &u.bh.res); - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - if( u.bh.res ){ - u.bh.v = 1; /* IMP: R-61914-48074 */ - }else{ - assert( sqlite3BtreeCursorIsValid(u.bh.pC->pCursor) ); - rc = sqlite3BtreeKeySize(u.bh.pC->pCursor, &u.bh.v); - assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ - if( u.bh.v>=MAX_ROWID ){ - u.bh.pC->useRandomRowid = 1; - }else{ - u.bh.v++; /* IMP: R-29538-34987 */ - } - } - } - -#ifndef SQLITE_OMIT_AUTOINCREMENT - if( pOp->p3 ){ - /* Assert that P3 is a valid memory cell. */ - assert( pOp->p3>0 ); - if( p->pFrame ){ - for(u.bh.pFrame=p->pFrame; u.bh.pFrame->pParent; u.bh.pFrame=u.bh.pFrame->pParent); - /* Assert that P3 is a valid memory cell. */ - assert( pOp->p3<=u.bh.pFrame->nMem ); - u.bh.pMem = &u.bh.pFrame->aMem[pOp->p3]; - }else{ - /* Assert that P3 is a valid memory cell. */ - assert( pOp->p3<=p->nMem ); - u.bh.pMem = &aMem[pOp->p3]; - memAboutToChange(p, u.bh.pMem); - } - assert( memIsValid(u.bh.pMem) ); - - REGISTER_TRACE(pOp->p3, u.bh.pMem); - sqlite3VdbeMemIntegerify(u.bh.pMem); - assert( (u.bh.pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ - if( u.bh.pMem->u.i==MAX_ROWID || u.bh.pC->useRandomRowid ){ - rc = SQLITE_FULL; /* IMP: R-12275-61338 */ - goto abort_due_to_error; - } - if( u.bh.v<u.bh.pMem->u.i+1 ){ - u.bh.v = u.bh.pMem->u.i + 1; - } - u.bh.pMem->u.i = u.bh.v; - } -#endif - - sqlite3BtreeSetCachedRowid(u.bh.pC->pCursor, u.bh.v<MAX_ROWID ? u.bh.v+1 : 0); - } - if( u.bh.pC->useRandomRowid ){ - /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the - ** largest possible integer (9223372036854775807) then the database - ** engine starts picking positive candidate ROWIDs at random until - ** it finds one that is not previously used. */ - assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is - ** an AUTOINCREMENT table. */ - /* on the first attempt, simply do one more than previous */ - u.bh.v = lastRowid; - u.bh.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ - u.bh.v++; /* ensure non-zero */ - u.bh.cnt = 0; - while( ((rc = sqlite3BtreeMovetoUnpacked(u.bh.pC->pCursor, 0, (u64)u.bh.v, - 0, &u.bh.res))==SQLITE_OK) - && (u.bh.res==0) - && (++u.bh.cnt<100)){ - /* collision - try another random rowid */ - sqlite3_randomness(sizeof(u.bh.v), &u.bh.v); - if( u.bh.cnt<5 ){ - /* try "small" random rowids for the initial attempts */ - u.bh.v &= 0xffffff; - }else{ - u.bh.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ - } - u.bh.v++; /* ensure non-zero */ - } - if( rc==SQLITE_OK && u.bh.res==0 ){ - rc = SQLITE_FULL; /* IMP: R-38219-53002 */ - goto abort_due_to_error; - } - assert( u.bh.v>0 ); /* EV: R-40812-03570 */ - } - u.bh.pC->rowidIsValid = 0; - u.bh.pC->deferredMoveto = 0; - u.bh.pC->cacheStatus = CACHE_STALE; - } - pOut->u.i = u.bh.v; - break; -} - -/* Opcode: Insert P1 P2 P3 P4 P5 -** -** Write an entry into the table of cursor P1. A new entry is -** created if it doesn't already exist or the data for an existing -** entry is overwritten. The data is the value MEM_Blob stored in register -** number P2. The key is stored in register P3. The key must -** be a MEM_Int. -** -** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is -** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, -** then rowid is stored for subsequent return by the -** sqlite3_last_insert_rowid() function (otherwise it is unmodified). -** -** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of -** the last seek operation (OP_NotExists) was a success, then this -** operation will not attempt to find the appropriate row before doing -** the insert but will instead overwrite the row that the cursor is -** currently pointing to. Presumably, the prior OP_NotExists opcode -** has already positioned the cursor correctly. This is an optimization -** that boosts performance by avoiding redundant seeks. -** -** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an -** UPDATE operation. Otherwise (if the flag is clear) then this opcode -** is part of an INSERT operation. The difference is only important to -** the update hook. -** -** Parameter P4 may point to a string containing the table-name, or -** may be NULL. If it is not NULL, then the update-hook -** (sqlite3.xUpdateCallback) is invoked following a successful insert. -** -** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically -** allocated, then ownership of P2 is transferred to the pseudo-cursor -** and register P2 becomes ephemeral. If the cursor is changed, the -** value of register P2 will then change. Make sure this does not -** cause any problems.) -** -** This instruction only works on tables. The equivalent instruction -** for indices is OP_IdxInsert. -*/ -/* Opcode: InsertInt P1 P2 P3 P4 P5 -** -** This works exactly like OP_Insert except that the key is the -** integer value P3, not the value of the integer stored in register P3. -*/ -case OP_Insert: -case OP_InsertInt: { -#if 0 /* local variables moved into u.bi */ - Mem *pData; /* MEM cell holding data for the record to be inserted */ - Mem *pKey; /* MEM cell holding key for the record */ - i64 iKey; /* The integer ROWID or key for the record to be inserted */ - VdbeCursor *pC; /* Cursor to table into which insert is written */ - int nZero; /* Number of zero-bytes to append */ - int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ - const char *zDb; /* database name - used by the update hook */ - const char *zTbl; /* Table name - used by the opdate hook */ - int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ -#endif /* local variables moved into u.bi */ - - u.bi.pData = &aMem[pOp->p2]; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - assert( memIsValid(u.bi.pData) ); - u.bi.pC = p->apCsr[pOp->p1]; - assert( u.bi.pC!=0 ); - assert( u.bi.pC->pCursor!=0 ); - assert( u.bi.pC->pseudoTableReg==0 ); - assert( u.bi.pC->isTable ); - REGISTER_TRACE(pOp->p2, u.bi.pData); - - if( pOp->opcode==OP_Insert ){ - u.bi.pKey = &aMem[pOp->p3]; - assert( u.bi.pKey->flags & MEM_Int ); - assert( memIsValid(u.bi.pKey) ); - REGISTER_TRACE(pOp->p3, u.bi.pKey); - u.bi.iKey = u.bi.pKey->u.i; - }else{ - assert( pOp->opcode==OP_InsertInt ); - u.bi.iKey = pOp->p3; - } - - if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; - if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = u.bi.iKey; - if( u.bi.pData->flags & MEM_Null ){ - u.bi.pData->z = 0; - u.bi.pData->n = 0; - }else{ - assert( u.bi.pData->flags & (MEM_Blob|MEM_Str) ); - } - u.bi.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bi.pC->seekResult : 0); - if( u.bi.pData->flags & MEM_Zero ){ - u.bi.nZero = u.bi.pData->u.nZero; - }else{ - u.bi.nZero = 0; - } - sqlite3BtreeSetCachedRowid(u.bi.pC->pCursor, 0); - rc = sqlite3BtreeInsert(u.bi.pC->pCursor, 0, u.bi.iKey, - u.bi.pData->z, u.bi.pData->n, u.bi.nZero, - pOp->p5 & OPFLAG_APPEND, u.bi.seekResult - ); - u.bi.pC->rowidIsValid = 0; - u.bi.pC->deferredMoveto = 0; - u.bi.pC->cacheStatus = CACHE_STALE; - - /* Invoke the update-hook if required. */ - if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ - u.bi.zDb = db->aDb[u.bi.pC->iDb].zName; - u.bi.zTbl = pOp->p4.z; - u.bi.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); - assert( u.bi.pC->isTable ); - db->xUpdateCallback(db->pUpdateArg, u.bi.op, u.bi.zDb, u.bi.zTbl, u.bi.iKey); - assert( u.bi.pC->iDb>=0 ); - } - break; -} - -/* Opcode: Delete P1 P2 * P4 * -** -** Delete the record at which the P1 cursor is currently pointing. -** -** The cursor will be left pointing at either the next or the previous -** record in the table. If it is left pointing at the next record, then -** the next Next instruction will be a no-op. Hence it is OK to delete -** a record from within an Next loop. -** -** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is -** incremented (otherwise not). -** -** P1 must not be pseudo-table. It has to be a real table with -** multiple rows. -** -** If P4 is not NULL, then it is the name of the table that P1 is -** pointing to. The update hook will be invoked, if it exists. -** If P4 is not NULL then the P1 cursor must have been positioned -** using OP_NotFound prior to invoking this opcode. -*/ -case OP_Delete: { -#if 0 /* local variables moved into u.bj */ - i64 iKey; - VdbeCursor *pC; -#endif /* local variables moved into u.bj */ - - u.bj.iKey = 0; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bj.pC = p->apCsr[pOp->p1]; - assert( u.bj.pC!=0 ); - assert( u.bj.pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ - - /* If the update-hook will be invoked, set u.bj.iKey to the rowid of the - ** row being deleted. - */ - if( db->xUpdateCallback && pOp->p4.z ){ - assert( u.bj.pC->isTable ); - assert( u.bj.pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ - u.bj.iKey = u.bj.pC->lastRowid; - } - - /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or - ** OP_Column on the same table without any intervening operations that - ** might move or invalidate the cursor. Hence cursor u.bj.pC is always pointing - ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation - ** below is always a no-op and cannot fail. We will run it anyhow, though, - ** to guard against future changes to the code generator. - **/ - assert( u.bj.pC->deferredMoveto==0 ); - rc = sqlite3VdbeCursorMoveto(u.bj.pC); - if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; - - sqlite3BtreeSetCachedRowid(u.bj.pC->pCursor, 0); - rc = sqlite3BtreeDelete(u.bj.pC->pCursor); - u.bj.pC->cacheStatus = CACHE_STALE; - - /* Invoke the update-hook if required. */ - if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ - const char *zDb = db->aDb[u.bj.pC->iDb].zName; - const char *zTbl = pOp->p4.z; - db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bj.iKey); - assert( u.bj.pC->iDb>=0 ); - } - if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; - break; -} -/* Opcode: ResetCount * * * * * -** -** The value of the change counter is copied to the database handle -** change counter (returned by subsequent calls to sqlite3_changes()). -** Then the VMs internal change counter resets to 0. -** This is used by trigger programs. -*/ -case OP_ResetCount: { - sqlite3VdbeSetChanges(db, p->nChange); - p->nChange = 0; - break; -} - -/* Opcode: SorterCompare P1 P2 P3 -** -** P1 is a sorter cursor. This instruction compares the record blob in -** register P3 with the entry that the sorter cursor currently points to. -** If, excluding the rowid fields at the end, the two records are a match, -** fall through to the next instruction. Otherwise, jump to instruction P2. -*/ -case OP_SorterCompare: { -#if 0 /* local variables moved into u.bk */ - VdbeCursor *pC; - int res; -#endif /* local variables moved into u.bk */ - - u.bk.pC = p->apCsr[pOp->p1]; - assert( isSorter(u.bk.pC) ); - pIn3 = &aMem[pOp->p3]; - rc = sqlite3VdbeSorterCompare(u.bk.pC, pIn3, &u.bk.res); - if( u.bk.res ){ - pc = pOp->p2-1; - } - break; -}; - -/* Opcode: SorterData P1 P2 * * * -** -** Write into register P2 the current sorter data for sorter cursor P1. -*/ -case OP_SorterData: { -#if 0 /* local variables moved into u.bl */ - VdbeCursor *pC; -#endif /* local variables moved into u.bl */ - - pOut = &aMem[pOp->p2]; - u.bl.pC = p->apCsr[pOp->p1]; - assert( u.bl.pC->isSorter ); - rc = sqlite3VdbeSorterRowkey(u.bl.pC, pOut); - break; -} - -/* Opcode: RowData P1 P2 * * * -** -** Write into register P2 the complete row data for cursor P1. -** There is no interpretation of the data. -** It is just copied onto the P2 register exactly as -** it is found in the database file. -** -** If the P1 cursor must be pointing to a valid row (not a NULL row) -** of a real table, not a pseudo-table. -*/ -/* Opcode: RowKey P1 P2 * * * -** -** Write into register P2 the complete row key for cursor P1. -** There is no interpretation of the data. -** The key is copied onto the P3 register exactly as -** it is found in the database file. -** -** If the P1 cursor must be pointing to a valid row (not a NULL row) -** of a real table, not a pseudo-table. -*/ -case OP_RowKey: -case OP_RowData: { -#if 0 /* local variables moved into u.bm */ - VdbeCursor *pC; - BtCursor *pCrsr; - u32 n; - i64 n64; -#endif /* local variables moved into u.bm */ - - pOut = &aMem[pOp->p2]; - memAboutToChange(p, pOut); - - /* Note that RowKey and RowData are really exactly the same instruction */ - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bm.pC = p->apCsr[pOp->p1]; - assert( u.bm.pC->isSorter==0 ); - assert( u.bm.pC->isTable || pOp->opcode!=OP_RowData ); - assert( u.bm.pC->isIndex || pOp->opcode==OP_RowData ); - assert( u.bm.pC!=0 ); - assert( u.bm.pC->nullRow==0 ); - assert( u.bm.pC->pseudoTableReg==0 ); - assert( u.bm.pC->pCursor!=0 ); - u.bm.pCrsr = u.bm.pC->pCursor; - assert( sqlite3BtreeCursorIsValid(u.bm.pCrsr) ); - - /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or - ** OP_Rewind/Op_Next with no intervening instructions that might invalidate - ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always - ** a no-op and can never fail. But we leave it in place as a safety. - */ - assert( u.bm.pC->deferredMoveto==0 ); - rc = sqlite3VdbeCursorMoveto(u.bm.pC); - if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; - - if( u.bm.pC->isIndex ){ - assert( !u.bm.pC->isTable ); - VVA_ONLY(rc =) sqlite3BtreeKeySize(u.bm.pCrsr, &u.bm.n64); - assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ - if( u.bm.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - u.bm.n = (u32)u.bm.n64; - }else{ - VVA_ONLY(rc =) sqlite3BtreeDataSize(u.bm.pCrsr, &u.bm.n); - assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ - if( u.bm.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ - goto too_big; - } - } - if( sqlite3VdbeMemGrow(pOut, u.bm.n, 0) ){ - goto no_mem; - } - pOut->n = u.bm.n; - MemSetTypeFlag(pOut, MEM_Blob); - if( u.bm.pC->isIndex ){ - rc = sqlite3BtreeKey(u.bm.pCrsr, 0, u.bm.n, pOut->z); - }else{ - rc = sqlite3BtreeData(u.bm.pCrsr, 0, u.bm.n, pOut->z); - } - pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ - UPDATE_MAX_BLOBSIZE(pOut); - break; -} - -/* Opcode: Rowid P1 P2 * * * -** -** Store in register P2 an integer which is the key of the table entry that -** P1 is currently point to. -** -** P1 can be either an ordinary table or a virtual table. There used to -** be a separate OP_VRowid opcode for use with virtual tables, but this -** one opcode now works for both table types. -*/ -case OP_Rowid: { /* out2-prerelease */ -#if 0 /* local variables moved into u.bn */ - VdbeCursor *pC; - i64 v; - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; -#endif /* local variables moved into u.bn */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bn.pC = p->apCsr[pOp->p1]; - assert( u.bn.pC!=0 ); - assert( u.bn.pC->pseudoTableReg==0 || u.bn.pC->nullRow ); - if( u.bn.pC->nullRow ){ - pOut->flags = MEM_Null; - break; - }else if( u.bn.pC->deferredMoveto ){ - u.bn.v = u.bn.pC->movetoTarget; -#ifndef SQLITE_OMIT_VIRTUALTABLE - }else if( u.bn.pC->pVtabCursor ){ - u.bn.pVtab = u.bn.pC->pVtabCursor->pVtab; - u.bn.pModule = u.bn.pVtab->pModule; - assert( u.bn.pModule->xRowid ); - rc = u.bn.pModule->xRowid(u.bn.pC->pVtabCursor, &u.bn.v); - importVtabErrMsg(p, u.bn.pVtab); -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - }else{ - assert( u.bn.pC->pCursor!=0 ); - rc = sqlite3VdbeCursorMoveto(u.bn.pC); - if( rc ) goto abort_due_to_error; - if( u.bn.pC->rowidIsValid ){ - u.bn.v = u.bn.pC->lastRowid; - }else{ - rc = sqlite3BtreeKeySize(u.bn.pC->pCursor, &u.bn.v); - assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ - } - } - pOut->u.i = u.bn.v; - break; -} - -/* Opcode: NullRow P1 * * * * -** -** Move the cursor P1 to a null row. Any OP_Column operations -** that occur while the cursor is on the null row will always -** write a NULL. -*/ -case OP_NullRow: { -#if 0 /* local variables moved into u.bo */ - VdbeCursor *pC; -#endif /* local variables moved into u.bo */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bo.pC = p->apCsr[pOp->p1]; - assert( u.bo.pC!=0 ); - u.bo.pC->nullRow = 1; - u.bo.pC->rowidIsValid = 0; - assert( u.bo.pC->pCursor || u.bo.pC->pVtabCursor ); - if( u.bo.pC->pCursor ){ - sqlite3BtreeClearCursor(u.bo.pC->pCursor); - } - break; -} - -/* Opcode: Last P1 P2 * * * -** -** The next use of the Rowid or Column or Next instruction for P1 -** will refer to the last entry in the database table or index. -** If the table or index is empty and P2>0, then jump immediately to P2. -** If P2 is 0 or if the table or index is not empty, fall through -** to the following instruction. -*/ -case OP_Last: { /* jump */ -#if 0 /* local variables moved into u.bp */ - VdbeCursor *pC; - BtCursor *pCrsr; - int res; -#endif /* local variables moved into u.bp */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bp.pC = p->apCsr[pOp->p1]; - assert( u.bp.pC!=0 ); - u.bp.pCrsr = u.bp.pC->pCursor; - u.bp.res = 0; - if( ALWAYS(u.bp.pCrsr!=0) ){ - rc = sqlite3BtreeLast(u.bp.pCrsr, &u.bp.res); - } - u.bp.pC->nullRow = (u8)u.bp.res; - u.bp.pC->deferredMoveto = 0; - u.bp.pC->rowidIsValid = 0; - u.bp.pC->cacheStatus = CACHE_STALE; - if( pOp->p2>0 && u.bp.res ){ - pc = pOp->p2 - 1; - } - break; -} - - -/* Opcode: Sort P1 P2 * * * -** -** This opcode does exactly the same thing as OP_Rewind except that -** it increments an undocumented global variable used for testing. -** -** Sorting is accomplished by writing records into a sorting index, -** then rewinding that index and playing it back from beginning to -** end. We use the OP_Sort opcode instead of OP_Rewind to do the -** rewinding so that the global variable will be incremented and -** regression tests can determine whether or not the optimizer is -** correctly optimizing out sorts. -*/ -case OP_SorterSort: /* jump */ -case OP_Sort: { /* jump */ -#ifdef SQLITE_TEST - sqlite3_sort_count++; - sqlite3_search_count--; -#endif - p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; - /* Fall through into OP_Rewind */ -} -/* Opcode: Rewind P1 P2 * * * -** -** The next use of the Rowid or Column or Next instruction for P1 -** will refer to the first entry in the database table or index. -** If the table or index is empty and P2>0, then jump immediately to P2. -** If P2 is 0 or if the table or index is not empty, fall through -** to the following instruction. -*/ -case OP_Rewind: { /* jump */ -#if 0 /* local variables moved into u.bq */ - VdbeCursor *pC; - BtCursor *pCrsr; - int res; -#endif /* local variables moved into u.bq */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bq.pC = p->apCsr[pOp->p1]; - assert( u.bq.pC!=0 ); - assert( u.bq.pC->isSorter==(pOp->opcode==OP_SorterSort) ); - u.bq.res = 1; - if( isSorter(u.bq.pC) ){ - rc = sqlite3VdbeSorterRewind(db, u.bq.pC, &u.bq.res); - }else{ - u.bq.pCrsr = u.bq.pC->pCursor; - assert( u.bq.pCrsr ); - rc = sqlite3BtreeFirst(u.bq.pCrsr, &u.bq.res); - u.bq.pC->atFirst = u.bq.res==0 ?1:0; - u.bq.pC->deferredMoveto = 0; - u.bq.pC->cacheStatus = CACHE_STALE; - u.bq.pC->rowidIsValid = 0; - } - u.bq.pC->nullRow = (u8)u.bq.res; - assert( pOp->p2>0 && pOp->p2<p->nOp ); - if( u.bq.res ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: Next P1 P2 * P4 P5 -** -** Advance cursor P1 so that it points to the next key/data pair in its -** table or index. If there are no more key/value pairs then fall through -** to the following instruction. But if the cursor advance was successful, -** jump immediately to P2. -** -** The P1 cursor must be for a real table, not a pseudo-table. -** -** P4 is always of type P4_ADVANCE. The function pointer points to -** sqlite3BtreeNext(). -** -** If P5 is positive and the jump is taken, then event counter -** number P5-1 in the prepared statement is incremented. -** -** See also: Prev -*/ -/* Opcode: Prev P1 P2 * * P5 -** -** Back up cursor P1 so that it points to the previous key/data pair in its -** table or index. If there is no previous key/value pairs then fall through -** to the following instruction. But if the cursor backup was successful, -** jump immediately to P2. -** -** The P1 cursor must be for a real table, not a pseudo-table. -** -** P4 is always of type P4_ADVANCE. The function pointer points to -** sqlite3BtreePrevious(). -** -** If P5 is positive and the jump is taken, then event counter -** number P5-1 in the prepared statement is incremented. -*/ -case OP_SorterNext: /* jump */ -case OP_Prev: /* jump */ -case OP_Next: { /* jump */ -#if 0 /* local variables moved into u.br */ - VdbeCursor *pC; - int res; -#endif /* local variables moved into u.br */ - - CHECK_FOR_INTERRUPT; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - assert( pOp->p5<=ArraySize(p->aCounter) ); - u.br.pC = p->apCsr[pOp->p1]; - if( u.br.pC==0 ){ - break; /* See ticket #2273 */ - } - assert( u.br.pC->isSorter==(pOp->opcode==OP_SorterNext) ); - if( isSorter(u.br.pC) ){ - assert( pOp->opcode==OP_SorterNext ); - rc = sqlite3VdbeSorterNext(db, u.br.pC, &u.br.res); - }else{ - u.br.res = 1; - assert( u.br.pC->deferredMoveto==0 ); - assert( u.br.pC->pCursor ); - assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); - assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); - rc = pOp->p4.xAdvance(u.br.pC->pCursor, &u.br.res); - } - u.br.pC->nullRow = (u8)u.br.res; - u.br.pC->cacheStatus = CACHE_STALE; - if( u.br.res==0 ){ - pc = pOp->p2 - 1; - if( pOp->p5 ) p->aCounter[pOp->p5-1]++; -#ifdef SQLITE_TEST - sqlite3_search_count++; -#endif - } - u.br.pC->rowidIsValid = 0; - break; -} - -/* Opcode: IdxInsert P1 P2 P3 * P5 -** -** Register P2 holds an SQL index key made using the -** MakeRecord instructions. This opcode writes that key -** into the index P1. Data for the entry is nil. -** -** P3 is a flag that provides a hint to the b-tree layer that this -** insert is likely to be an append. -** -** This instruction only works for indices. The equivalent instruction -** for tables is OP_Insert. -*/ -case OP_SorterInsert: /* in2 */ -case OP_IdxInsert: { /* in2 */ -#if 0 /* local variables moved into u.bs */ - VdbeCursor *pC; - BtCursor *pCrsr; - int nKey; - const char *zKey; -#endif /* local variables moved into u.bs */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bs.pC = p->apCsr[pOp->p1]; - assert( u.bs.pC!=0 ); - assert( u.bs.pC->isSorter==(pOp->opcode==OP_SorterInsert) ); - pIn2 = &aMem[pOp->p2]; - assert( pIn2->flags & MEM_Blob ); - u.bs.pCrsr = u.bs.pC->pCursor; - if( ALWAYS(u.bs.pCrsr!=0) ){ - assert( u.bs.pC->isTable==0 ); - rc = ExpandBlob(pIn2); - if( rc==SQLITE_OK ){ - if( isSorter(u.bs.pC) ){ - rc = sqlite3VdbeSorterWrite(db, u.bs.pC, pIn2); - }else{ - u.bs.nKey = pIn2->n; - u.bs.zKey = pIn2->z; - rc = sqlite3BtreeInsert(u.bs.pCrsr, u.bs.zKey, u.bs.nKey, "", 0, 0, pOp->p3, - ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bs.pC->seekResult : 0) - ); - assert( u.bs.pC->deferredMoveto==0 ); - u.bs.pC->cacheStatus = CACHE_STALE; - } - } - } - break; -} - -/* Opcode: IdxDelete P1 P2 P3 * * -** -** The content of P3 registers starting at register P2 form -** an unpacked index key. This opcode removes that entry from the -** index opened by cursor P1. -*/ -case OP_IdxDelete: { -#if 0 /* local variables moved into u.bt */ - VdbeCursor *pC; - BtCursor *pCrsr; - int res; - UnpackedRecord r; -#endif /* local variables moved into u.bt */ - - assert( pOp->p3>0 ); - assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bt.pC = p->apCsr[pOp->p1]; - assert( u.bt.pC!=0 ); - u.bt.pCrsr = u.bt.pC->pCursor; - if( ALWAYS(u.bt.pCrsr!=0) ){ - u.bt.r.pKeyInfo = u.bt.pC->pKeyInfo; - u.bt.r.nField = (u16)pOp->p3; - u.bt.r.flags = 0; - u.bt.r.aMem = &aMem[pOp->p2]; -#ifdef SQLITE_DEBUG - { int i; for(i=0; i<u.bt.r.nField; i++) assert( memIsValid(&u.bt.r.aMem[i]) ); } -#endif - rc = sqlite3BtreeMovetoUnpacked(u.bt.pCrsr, &u.bt.r, 0, 0, &u.bt.res); - if( rc==SQLITE_OK && u.bt.res==0 ){ - rc = sqlite3BtreeDelete(u.bt.pCrsr); - } - assert( u.bt.pC->deferredMoveto==0 ); - u.bt.pC->cacheStatus = CACHE_STALE; - } - break; -} - -/* Opcode: IdxRowid P1 P2 * * * -** -** Write into register P2 an integer which is the last entry in the record at -** the end of the index key pointed to by cursor P1. This integer should be -** the rowid of the table entry to which this index entry points. -** -** See also: Rowid, MakeRecord. -*/ -case OP_IdxRowid: { /* out2-prerelease */ -#if 0 /* local variables moved into u.bu */ - BtCursor *pCrsr; - VdbeCursor *pC; - i64 rowid; -#endif /* local variables moved into u.bu */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bu.pC = p->apCsr[pOp->p1]; - assert( u.bu.pC!=0 ); - u.bu.pCrsr = u.bu.pC->pCursor; - pOut->flags = MEM_Null; - if( ALWAYS(u.bu.pCrsr!=0) ){ - rc = sqlite3VdbeCursorMoveto(u.bu.pC); - if( NEVER(rc) ) goto abort_due_to_error; - assert( u.bu.pC->deferredMoveto==0 ); - assert( u.bu.pC->isTable==0 ); - if( !u.bu.pC->nullRow ){ - rc = sqlite3VdbeIdxRowid(db, u.bu.pCrsr, &u.bu.rowid); - if( rc!=SQLITE_OK ){ - goto abort_due_to_error; - } - pOut->u.i = u.bu.rowid; - pOut->flags = MEM_Int; - } - } - break; -} - -/* Opcode: IdxGE P1 P2 P3 P4 P5 -** -** The P4 register values beginning with P3 form an unpacked index -** key that omits the ROWID. Compare this key value against the index -** that P1 is currently pointing to, ignoring the ROWID on the P1 index. -** -** If the P1 index entry is greater than or equal to the key value -** then jump to P2. Otherwise fall through to the next instruction. -** -** If P5 is non-zero then the key value is increased by an epsilon -** prior to the comparison. This make the opcode work like IdxGT except -** that if the key from register P3 is a prefix of the key in the cursor, -** the result is false whereas it would be true with IdxGT. -*/ -/* Opcode: IdxLT P1 P2 P3 P4 P5 -** -** The P4 register values beginning with P3 form an unpacked index -** key that omits the ROWID. Compare this key value against the index -** that P1 is currently pointing to, ignoring the ROWID on the P1 index. -** -** If the P1 index entry is less than the key value then jump to P2. -** Otherwise fall through to the next instruction. -** -** If P5 is non-zero then the key value is increased by an epsilon prior -** to the comparison. This makes the opcode work like IdxLE. -*/ -case OP_IdxLT: /* jump */ -case OP_IdxGE: { /* jump */ -#if 0 /* local variables moved into u.bv */ - VdbeCursor *pC; - int res; - UnpackedRecord r; -#endif /* local variables moved into u.bv */ - - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - u.bv.pC = p->apCsr[pOp->p1]; - assert( u.bv.pC!=0 ); - assert( u.bv.pC->isOrdered ); - if( ALWAYS(u.bv.pC->pCursor!=0) ){ - assert( u.bv.pC->deferredMoveto==0 ); - assert( pOp->p5==0 || pOp->p5==1 ); - assert( pOp->p4type==P4_INT32 ); - u.bv.r.pKeyInfo = u.bv.pC->pKeyInfo; - u.bv.r.nField = (u16)pOp->p4.i; - if( pOp->p5 ){ - u.bv.r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH; - }else{ - u.bv.r.flags = UNPACKED_PREFIX_MATCH; - } - u.bv.r.aMem = &aMem[pOp->p3]; -#ifdef SQLITE_DEBUG - { int i; for(i=0; i<u.bv.r.nField; i++) assert( memIsValid(&u.bv.r.aMem[i]) ); } -#endif - rc = sqlite3VdbeIdxKeyCompare(u.bv.pC, &u.bv.r, &u.bv.res); - if( pOp->opcode==OP_IdxLT ){ - u.bv.res = -u.bv.res; - }else{ - assert( pOp->opcode==OP_IdxGE ); - u.bv.res++; - } - if( u.bv.res>0 ){ - pc = pOp->p2 - 1 ; - } - } - break; -} - -/* Opcode: Destroy P1 P2 P3 * * -** -** Delete an entire database table or index whose root page in the database -** file is given by P1. -** -** The table being destroyed is in the main database file if P3==0. If -** P3==1 then the table to be clear is in the auxiliary database file -** that is used to store tables create using CREATE TEMPORARY TABLE. -** -** If AUTOVACUUM is enabled then it is possible that another root page -** might be moved into the newly deleted root page in order to keep all -** root pages contiguous at the beginning of the database. The former -** value of the root page that moved - its value before the move occurred - -** is stored in register P2. If no page -** movement was required (because the table being dropped was already -** the last one in the database) then a zero is stored in register P2. -** If AUTOVACUUM is disabled then a zero is stored in register P2. -** -** See also: Clear -*/ -case OP_Destroy: { /* out2-prerelease */ -#if 0 /* local variables moved into u.bw */ - int iMoved; - int iCnt; - Vdbe *pVdbe; - int iDb; -#endif /* local variables moved into u.bw */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE - u.bw.iCnt = 0; - for(u.bw.pVdbe=db->pVdbe; u.bw.pVdbe; u.bw.pVdbe = u.bw.pVdbe->pNext){ - if( u.bw.pVdbe->magic==VDBE_MAGIC_RUN && u.bw.pVdbe->inVtabMethod<2 && u.bw.pVdbe->pc>=0 ){ - u.bw.iCnt++; - } - } -#else - u.bw.iCnt = db->activeVdbeCnt; -#endif - pOut->flags = MEM_Null; - if( u.bw.iCnt>1 ){ - rc = SQLITE_LOCKED; - p->errorAction = OE_Abort; - }else{ - u.bw.iDb = pOp->p3; - assert( u.bw.iCnt==1 ); - assert( (p->btreeMask & (((yDbMask)1)<<u.bw.iDb))!=0 ); - rc = sqlite3BtreeDropTable(db->aDb[u.bw.iDb].pBt, pOp->p1, &u.bw.iMoved); - pOut->flags = MEM_Int; - pOut->u.i = u.bw.iMoved; -#ifndef SQLITE_OMIT_AUTOVACUUM - if( rc==SQLITE_OK && u.bw.iMoved!=0 ){ - sqlite3RootPageMoved(db, u.bw.iDb, u.bw.iMoved, pOp->p1); - /* All OP_Destroy operations occur on the same btree */ - assert( resetSchemaOnFault==0 || resetSchemaOnFault==u.bw.iDb+1 ); - resetSchemaOnFault = u.bw.iDb+1; - } -#endif - } - break; -} - -/* Opcode: Clear P1 P2 P3 -** -** Delete all contents of the database table or index whose root page -** in the database file is given by P1. But, unlike Destroy, do not -** remove the table or index from the database file. -** -** The table being clear is in the main database file if P2==0. If -** P2==1 then the table to be clear is in the auxiliary database file -** that is used to store tables create using CREATE TEMPORARY TABLE. -** -** If the P3 value is non-zero, then the table referred to must be an -** intkey table (an SQL table, not an index). In this case the row change -** count is incremented by the number of rows in the table being cleared. -** If P3 is greater than zero, then the value stored in register P3 is -** also incremented by the number of rows in the table being cleared. -** -** See also: Destroy -*/ -case OP_Clear: { -#if 0 /* local variables moved into u.bx */ - int nChange; -#endif /* local variables moved into u.bx */ - - u.bx.nChange = 0; - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); - rc = sqlite3BtreeClearTable( - db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bx.nChange : 0) - ); - if( pOp->p3 ){ - p->nChange += u.bx.nChange; - if( pOp->p3>0 ){ - assert( memIsValid(&aMem[pOp->p3]) ); - memAboutToChange(p, &aMem[pOp->p3]); - aMem[pOp->p3].u.i += u.bx.nChange; - } - } - break; -} - -/* Opcode: CreateTable P1 P2 * * * -** -** Allocate a new table in the main database file if P1==0 or in the -** auxiliary database file if P1==1 or in an attached database if -** P1>1. Write the root page number of the new table into -** register P2 -** -** The difference between a table and an index is this: A table must -** have a 4-byte integer key and can have arbitrary data. An index -** has an arbitrary key but no data. -** -** See also: CreateIndex -*/ -/* Opcode: CreateIndex P1 P2 * * * -** -** Allocate a new index in the main database file if P1==0 or in the -** auxiliary database file if P1==1 or in an attached database if -** P1>1. Write the root page number of the new table into -** register P2. -** -** See documentation on OP_CreateTable for additional information. -*/ -case OP_CreateIndex: /* out2-prerelease */ -case OP_CreateTable: { /* out2-prerelease */ -#if 0 /* local variables moved into u.by */ - int pgno; - int flags; - Db *pDb; -#endif /* local variables moved into u.by */ - - u.by.pgno = 0; - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); - u.by.pDb = &db->aDb[pOp->p1]; - assert( u.by.pDb->pBt!=0 ); - if( pOp->opcode==OP_CreateTable ){ - /* u.by.flags = BTREE_INTKEY; */ - u.by.flags = BTREE_INTKEY; - }else{ - u.by.flags = BTREE_BLOBKEY; - } - rc = sqlite3BtreeCreateTable(u.by.pDb->pBt, &u.by.pgno, u.by.flags); - pOut->u.i = u.by.pgno; - break; -} - -/* Opcode: ParseSchema P1 * * P4 * -** -** Read and parse all entries from the SQLITE_MASTER table of database P1 -** that match the WHERE clause P4. -** -** This opcode invokes the parser to create a new virtual machine, -** then runs the new virtual machine. It is thus a re-entrant opcode. -*/ -case OP_ParseSchema: { -#if 0 /* local variables moved into u.bz */ - int iDb; - const char *zMaster; - char *zSql; - InitData initData; -#endif /* local variables moved into u.bz */ - - /* Any prepared statement that invokes this opcode will hold mutexes - ** on every btree. This is a prerequisite for invoking - ** sqlite3InitCallback(). - */ -#ifdef SQLITE_DEBUG - for(u.bz.iDb=0; u.bz.iDb<db->nDb; u.bz.iDb++){ - assert( u.bz.iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[u.bz.iDb].pBt) ); - } -#endif - - u.bz.iDb = pOp->p1; - assert( u.bz.iDb>=0 && u.bz.iDb<db->nDb ); - assert( DbHasProperty(db, u.bz.iDb, DB_SchemaLoaded) ); - /* Used to be a conditional */ { - u.bz.zMaster = SCHEMA_TABLE(u.bz.iDb); - u.bz.initData.db = db; - u.bz.initData.iDb = pOp->p1; - u.bz.initData.pzErrMsg = &p->zErrMsg; - u.bz.zSql = sqlite3MPrintf(db, - "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", - db->aDb[u.bz.iDb].zName, u.bz.zMaster, pOp->p4.z); - if( u.bz.zSql==0 ){ - rc = SQLITE_NOMEM; - }else{ - assert( db->init.busy==0 ); - db->init.busy = 1; - u.bz.initData.rc = SQLITE_OK; - assert( !db->mallocFailed ); - rc = sqlite3_exec(db, u.bz.zSql, sqlite3InitCallback, &u.bz.initData, 0); - if( rc==SQLITE_OK ) rc = u.bz.initData.rc; - sqlite3DbFree(db, u.bz.zSql); - db->init.busy = 0; - } - } - if( rc ) sqlite3ResetAllSchemasOfConnection(db); - if( rc==SQLITE_NOMEM ){ - goto no_mem; - } - break; -} - -#if !defined(SQLITE_OMIT_ANALYZE) -/* Opcode: LoadAnalysis P1 * * * * -** -** Read the sqlite_stat1 table for database P1 and load the content -** of that table into the internal index hash table. This will cause -** the analysis to be used when preparing all subsequent queries. -*/ -case OP_LoadAnalysis: { - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - rc = sqlite3AnalysisLoad(db, pOp->p1); - break; -} -#endif /* !defined(SQLITE_OMIT_ANALYZE) */ - -/* Opcode: DropTable P1 * * P4 * -** -** Remove the internal (in-memory) data structures that describe -** the table named P4 in database P1. This is called after a table -** is dropped in order to keep the internal representation of the -** schema consistent with what is on disk. -*/ -case OP_DropTable: { - sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); - break; -} - -/* Opcode: DropIndex P1 * * P4 * -** -** Remove the internal (in-memory) data structures that describe -** the index named P4 in database P1. This is called after an index -** is dropped in order to keep the internal representation of the -** schema consistent with what is on disk. -*/ -case OP_DropIndex: { - sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); - break; -} - -/* Opcode: DropTrigger P1 * * P4 * -** -** Remove the internal (in-memory) data structures that describe -** the trigger named P4 in database P1. This is called after a trigger -** is dropped in order to keep the internal representation of the -** schema consistent with what is on disk. -*/ -case OP_DropTrigger: { - sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); - break; -} - - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK -/* Opcode: IntegrityCk P1 P2 P3 * P5 -** -** Do an analysis of the currently open database. Store in -** register P1 the text of an error message describing any problems. -** If no problems are found, store a NULL in register P1. -** -** The register P3 contains the maximum number of allowed errors. -** At most reg(P3) errors will be reported. -** In other words, the analysis stops as soon as reg(P1) errors are -** seen. Reg(P1) is updated with the number of errors remaining. -** -** The root page numbers of all tables in the database are integer -** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables -** total. -** -** If P5 is not zero, the check is done on the auxiliary database -** file, not the main database file. -** -** This opcode is used to implement the integrity_check pragma. -*/ -case OP_IntegrityCk: { -#if 0 /* local variables moved into u.ca */ - int nRoot; /* Number of tables to check. (Number of root pages.) */ - int *aRoot; /* Array of rootpage numbers for tables to be checked */ - int j; /* Loop counter */ - int nErr; /* Number of errors reported */ - char *z; /* Text of the error report */ - Mem *pnErr; /* Register keeping track of errors remaining */ -#endif /* local variables moved into u.ca */ - - u.ca.nRoot = pOp->p2; - assert( u.ca.nRoot>0 ); - u.ca.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.ca.nRoot+1) ); - if( u.ca.aRoot==0 ) goto no_mem; - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - u.ca.pnErr = &aMem[pOp->p3]; - assert( (u.ca.pnErr->flags & MEM_Int)!=0 ); - assert( (u.ca.pnErr->flags & (MEM_Str|MEM_Blob))==0 ); - pIn1 = &aMem[pOp->p1]; - for(u.ca.j=0; u.ca.j<u.ca.nRoot; u.ca.j++){ - u.ca.aRoot[u.ca.j] = (int)sqlite3VdbeIntValue(&pIn1[u.ca.j]); - } - u.ca.aRoot[u.ca.j] = 0; - assert( pOp->p5<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); - u.ca.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.ca.aRoot, u.ca.nRoot, - (int)u.ca.pnErr->u.i, &u.ca.nErr); - sqlite3DbFree(db, u.ca.aRoot); - u.ca.pnErr->u.i -= u.ca.nErr; - sqlite3VdbeMemSetNull(pIn1); - if( u.ca.nErr==0 ){ - assert( u.ca.z==0 ); - }else if( u.ca.z==0 ){ - goto no_mem; - }else{ - sqlite3VdbeMemSetStr(pIn1, u.ca.z, -1, SQLITE_UTF8, sqlite3_free); - } - UPDATE_MAX_BLOBSIZE(pIn1); - sqlite3VdbeChangeEncoding(pIn1, encoding); - break; -} -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -/* Opcode: RowSetAdd P1 P2 * * * -** -** Insert the integer value held by register P2 into a boolean index -** held in register P1. -** -** An assertion fails if P2 is not an integer. -*/ -case OP_RowSetAdd: { /* in1, in2 */ - pIn1 = &aMem[pOp->p1]; - pIn2 = &aMem[pOp->p2]; - assert( (pIn2->flags & MEM_Int)!=0 ); - if( (pIn1->flags & MEM_RowSet)==0 ){ - sqlite3VdbeMemSetRowSet(pIn1); - if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; - } - sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); - break; -} - -/* Opcode: RowSetRead P1 P2 P3 * * -** -** Extract the smallest value from boolean index P1 and put that value into -** register P3. Or, if boolean index P1 is initially empty, leave P3 -** unchanged and jump to instruction P2. -*/ -case OP_RowSetRead: { /* jump, in1, out3 */ -#if 0 /* local variables moved into u.cb */ - i64 val; -#endif /* local variables moved into u.cb */ - CHECK_FOR_INTERRUPT; - pIn1 = &aMem[pOp->p1]; - if( (pIn1->flags & MEM_RowSet)==0 - || sqlite3RowSetNext(pIn1->u.pRowSet, &u.cb.val)==0 - ){ - /* The boolean index is empty */ - sqlite3VdbeMemSetNull(pIn1); - pc = pOp->p2 - 1; - }else{ - /* A value was pulled from the index */ - sqlite3VdbeMemSetInt64(&aMem[pOp->p3], u.cb.val); - } - break; -} - -/* Opcode: RowSetTest P1 P2 P3 P4 -** -** Register P3 is assumed to hold a 64-bit integer value. If register P1 -** contains a RowSet object and that RowSet object contains -** the value held in P3, jump to register P2. Otherwise, insert the -** integer in P3 into the RowSet and continue on to the -** next opcode. -** -** The RowSet object is optimized for the case where successive sets -** of integers, where each set contains no duplicates. Each set -** of values is identified by a unique P4 value. The first set -** must have P4==0, the final set P4=-1. P4 must be either -1 or -** non-negative. For non-negative values of P4 only the lower 4 -** bits are significant. -** -** This allows optimizations: (a) when P4==0 there is no need to test -** the rowset object for P3, as it is guaranteed not to contain it, -** (b) when P4==-1 there is no need to insert the value, as it will -** never be tested for, and (c) when a value that is part of set X is -** inserted, there is no need to search to see if the same value was -** previously inserted as part of set X (only if it was previously -** inserted as part of some other set). -*/ -case OP_RowSetTest: { /* jump, in1, in3 */ -#if 0 /* local variables moved into u.cc */ - int iSet; - int exists; -#endif /* local variables moved into u.cc */ - - pIn1 = &aMem[pOp->p1]; - pIn3 = &aMem[pOp->p3]; - u.cc.iSet = pOp->p4.i; - assert( pIn3->flags&MEM_Int ); - - /* If there is anything other than a rowset object in memory cell P1, - ** delete it now and initialize P1 with an empty rowset - */ - if( (pIn1->flags & MEM_RowSet)==0 ){ - sqlite3VdbeMemSetRowSet(pIn1); - if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; - } - - assert( pOp->p4type==P4_INT32 ); - assert( u.cc.iSet==-1 || u.cc.iSet>=0 ); - if( u.cc.iSet ){ - u.cc.exists = sqlite3RowSetTest(pIn1->u.pRowSet, - (u8)(u.cc.iSet>=0 ? u.cc.iSet & 0xf : 0xff), - pIn3->u.i); - if( u.cc.exists ){ - pc = pOp->p2 - 1; - break; - } - } - if( u.cc.iSet>=0 ){ - sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); - } - break; -} - - -#ifndef SQLITE_OMIT_TRIGGER - -/* Opcode: Program P1 P2 P3 P4 * -** -** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). -** -** P1 contains the address of the memory cell that contains the first memory -** cell in an array of values used as arguments to the sub-program. P2 -** contains the address to jump to if the sub-program throws an IGNORE -** exception using the RAISE() function. Register P3 contains the address -** of a memory cell in this (the parent) VM that is used to allocate the -** memory required by the sub-vdbe at runtime. -** -** P4 is a pointer to the VM containing the trigger program. -*/ -case OP_Program: { /* jump */ -#if 0 /* local variables moved into u.cd */ - int nMem; /* Number of memory registers for sub-program */ - int nByte; /* Bytes of runtime space required for sub-program */ - Mem *pRt; /* Register to allocate runtime space */ - Mem *pMem; /* Used to iterate through memory cells */ - Mem *pEnd; /* Last memory cell in new array */ - VdbeFrame *pFrame; /* New vdbe frame to execute in */ - SubProgram *pProgram; /* Sub-program to execute */ - void *t; /* Token identifying trigger */ -#endif /* local variables moved into u.cd */ - - u.cd.pProgram = pOp->p4.pProgram; - u.cd.pRt = &aMem[pOp->p3]; - assert( u.cd.pProgram->nOp>0 ); - - /* If the p5 flag is clear, then recursive invocation of triggers is - ** disabled for backwards compatibility (p5 is set if this sub-program - ** is really a trigger, not a foreign key action, and the flag set - ** and cleared by the "PRAGMA recursive_triggers" command is clear). - ** - ** It is recursive invocation of triggers, at the SQL level, that is - ** disabled. In some cases a single trigger may generate more than one - ** SubProgram (if the trigger may be executed with more than one different - ** ON CONFLICT algorithm). SubProgram structures associated with a - ** single trigger all have the same value for the SubProgram.token - ** variable. */ - if( pOp->p5 ){ - u.cd.t = u.cd.pProgram->token; - for(u.cd.pFrame=p->pFrame; u.cd.pFrame && u.cd.pFrame->token!=u.cd.t; u.cd.pFrame=u.cd.pFrame->pParent); - if( u.cd.pFrame ) break; - } - - if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ - rc = SQLITE_ERROR; - sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); - break; - } - - /* Register u.cd.pRt is used to store the memory required to save the state - ** of the current program, and the memory required at runtime to execute - ** the trigger program. If this trigger has been fired before, then u.cd.pRt - ** is already allocated. Otherwise, it must be initialized. */ - if( (u.cd.pRt->flags&MEM_Frame)==0 ){ - /* SubProgram.nMem is set to the number of memory cells used by the - ** program stored in SubProgram.aOp. As well as these, one memory - ** cell is required for each cursor used by the program. Set local - ** variable u.cd.nMem (and later, VdbeFrame.nChildMem) to this value. - */ - u.cd.nMem = u.cd.pProgram->nMem + u.cd.pProgram->nCsr; - u.cd.nByte = ROUND8(sizeof(VdbeFrame)) - + u.cd.nMem * sizeof(Mem) - + u.cd.pProgram->nCsr * sizeof(VdbeCursor *) - + u.cd.pProgram->nOnce * sizeof(u8); - u.cd.pFrame = sqlite3DbMallocZero(db, u.cd.nByte); - if( !u.cd.pFrame ){ - goto no_mem; - } - sqlite3VdbeMemRelease(u.cd.pRt); - u.cd.pRt->flags = MEM_Frame; - u.cd.pRt->u.pFrame = u.cd.pFrame; - - u.cd.pFrame->v = p; - u.cd.pFrame->nChildMem = u.cd.nMem; - u.cd.pFrame->nChildCsr = u.cd.pProgram->nCsr; - u.cd.pFrame->pc = pc; - u.cd.pFrame->aMem = p->aMem; - u.cd.pFrame->nMem = p->nMem; - u.cd.pFrame->apCsr = p->apCsr; - u.cd.pFrame->nCursor = p->nCursor; - u.cd.pFrame->aOp = p->aOp; - u.cd.pFrame->nOp = p->nOp; - u.cd.pFrame->token = u.cd.pProgram->token; - u.cd.pFrame->aOnceFlag = p->aOnceFlag; - u.cd.pFrame->nOnceFlag = p->nOnceFlag; - - u.cd.pEnd = &VdbeFrameMem(u.cd.pFrame)[u.cd.pFrame->nChildMem]; - for(u.cd.pMem=VdbeFrameMem(u.cd.pFrame); u.cd.pMem!=u.cd.pEnd; u.cd.pMem++){ - u.cd.pMem->flags = MEM_Invalid; - u.cd.pMem->db = db; - } - }else{ - u.cd.pFrame = u.cd.pRt->u.pFrame; - assert( u.cd.pProgram->nMem+u.cd.pProgram->nCsr==u.cd.pFrame->nChildMem ); - assert( u.cd.pProgram->nCsr==u.cd.pFrame->nChildCsr ); - assert( pc==u.cd.pFrame->pc ); - } - - p->nFrame++; - u.cd.pFrame->pParent = p->pFrame; - u.cd.pFrame->lastRowid = lastRowid; - u.cd.pFrame->nChange = p->nChange; - p->nChange = 0; - p->pFrame = u.cd.pFrame; - p->aMem = aMem = &VdbeFrameMem(u.cd.pFrame)[-1]; - p->nMem = u.cd.pFrame->nChildMem; - p->nCursor = (u16)u.cd.pFrame->nChildCsr; - p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; - p->aOp = aOp = u.cd.pProgram->aOp; - p->nOp = u.cd.pProgram->nOp; - p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; - p->nOnceFlag = u.cd.pProgram->nOnce; - pc = -1; - memset(p->aOnceFlag, 0, p->nOnceFlag); - - break; -} - -/* Opcode: Param P1 P2 * * * -** -** This opcode is only ever present in sub-programs called via the -** OP_Program instruction. Copy a value currently stored in a memory -** cell of the calling (parent) frame to cell P2 in the current frames -** address space. This is used by trigger programs to access the new.* -** and old.* values. -** -** The address of the cell in the parent frame is determined by adding -** the value of the P1 argument to the value of the P1 argument to the -** calling OP_Program instruction. -*/ -case OP_Param: { /* out2-prerelease */ -#if 0 /* local variables moved into u.ce */ - VdbeFrame *pFrame; - Mem *pIn; -#endif /* local variables moved into u.ce */ - u.ce.pFrame = p->pFrame; - u.ce.pIn = &u.ce.pFrame->aMem[pOp->p1 + u.ce.pFrame->aOp[u.ce.pFrame->pc].p1]; - sqlite3VdbeMemShallowCopy(pOut, u.ce.pIn, MEM_Ephem); - break; -} - -#endif /* #ifndef SQLITE_OMIT_TRIGGER */ - -#ifndef SQLITE_OMIT_FOREIGN_KEY -/* Opcode: FkCounter P1 P2 * * * -** -** Increment a "constraint counter" by P2 (P2 may be negative or positive). -** If P1 is non-zero, the database constraint counter is incremented -** (deferred foreign key constraints). Otherwise, if P1 is zero, the -** statement counter is incremented (immediate foreign key constraints). -*/ -case OP_FkCounter: { - if( pOp->p1 ){ - db->nDeferredCons += pOp->p2; - }else{ - p->nFkConstraint += pOp->p2; - } - break; -} - -/* Opcode: FkIfZero P1 P2 * * * -** -** This opcode tests if a foreign key constraint-counter is currently zero. -** If so, jump to instruction P2. Otherwise, fall through to the next -** instruction. -** -** If P1 is non-zero, then the jump is taken if the database constraint-counter -** is zero (the one that counts deferred constraint violations). If P1 is -** zero, the jump is taken if the statement constraint-counter is zero -** (immediate foreign key constraint violations). -*/ -case OP_FkIfZero: { /* jump */ - if( pOp->p1 ){ - if( db->nDeferredCons==0 ) pc = pOp->p2-1; - }else{ - if( p->nFkConstraint==0 ) pc = pOp->p2-1; - } - break; -} -#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ - -#ifndef SQLITE_OMIT_AUTOINCREMENT -/* Opcode: MemMax P1 P2 * * * -** -** P1 is a register in the root frame of this VM (the root frame is -** different from the current frame if this instruction is being executed -** within a sub-program). Set the value of register P1 to the maximum of -** its current value and the value in register P2. -** -** This instruction throws an error if the memory cell is not initially -** an integer. -*/ -case OP_MemMax: { /* in2 */ -#if 0 /* local variables moved into u.cf */ - Mem *pIn1; - VdbeFrame *pFrame; -#endif /* local variables moved into u.cf */ - if( p->pFrame ){ - for(u.cf.pFrame=p->pFrame; u.cf.pFrame->pParent; u.cf.pFrame=u.cf.pFrame->pParent); - u.cf.pIn1 = &u.cf.pFrame->aMem[pOp->p1]; - }else{ - u.cf.pIn1 = &aMem[pOp->p1]; - } - assert( memIsValid(u.cf.pIn1) ); - sqlite3VdbeMemIntegerify(u.cf.pIn1); - pIn2 = &aMem[pOp->p2]; - sqlite3VdbeMemIntegerify(pIn2); - if( u.cf.pIn1->u.i<pIn2->u.i){ - u.cf.pIn1->u.i = pIn2->u.i; - } - break; -} -#endif /* SQLITE_OMIT_AUTOINCREMENT */ - -/* Opcode: IfPos P1 P2 * * * -** -** If the value of register P1 is 1 or greater, jump to P2. -** -** It is illegal to use this instruction on a register that does -** not contain an integer. An assertion fault will result if you try. -*/ -case OP_IfPos: { /* jump, in1 */ - pIn1 = &aMem[pOp->p1]; - assert( pIn1->flags&MEM_Int ); - if( pIn1->u.i>0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: IfNeg P1 P2 * * * -** -** If the value of register P1 is less than zero, jump to P2. -** -** It is illegal to use this instruction on a register that does -** not contain an integer. An assertion fault will result if you try. -*/ -case OP_IfNeg: { /* jump, in1 */ - pIn1 = &aMem[pOp->p1]; - assert( pIn1->flags&MEM_Int ); - if( pIn1->u.i<0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: IfZero P1 P2 P3 * * -** -** The register P1 must contain an integer. Add literal P3 to the -** value in register P1. If the result is exactly 0, jump to P2. -** -** It is illegal to use this instruction on a register that does -** not contain an integer. An assertion fault will result if you try. -*/ -case OP_IfZero: { /* jump, in1 */ - pIn1 = &aMem[pOp->p1]; - assert( pIn1->flags&MEM_Int ); - pIn1->u.i += pOp->p3; - if( pIn1->u.i==0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: AggStep * P2 P3 P4 P5 -** -** Execute the step function for an aggregate. The -** function has P5 arguments. P4 is a pointer to the FuncDef -** structure that specifies the function. Use register -** P3 as the accumulator. -** -** The P5 arguments are taken from register P2 and its -** successors. -*/ -case OP_AggStep: { -#if 0 /* local variables moved into u.cg */ - int n; - int i; - Mem *pMem; - Mem *pRec; - sqlite3_context ctx; - sqlite3_value **apVal; -#endif /* local variables moved into u.cg */ - - u.cg.n = pOp->p5; - assert( u.cg.n>=0 ); - u.cg.pRec = &aMem[pOp->p2]; - u.cg.apVal = p->apArg; - assert( u.cg.apVal || u.cg.n==0 ); - for(u.cg.i=0; u.cg.i<u.cg.n; u.cg.i++, u.cg.pRec++){ - assert( memIsValid(u.cg.pRec) ); - u.cg.apVal[u.cg.i] = u.cg.pRec; - memAboutToChange(p, u.cg.pRec); - sqlite3VdbeMemStoreType(u.cg.pRec); - } - u.cg.ctx.pFunc = pOp->p4.pFunc; - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - u.cg.ctx.pMem = u.cg.pMem = &aMem[pOp->p3]; - u.cg.pMem->n++; - u.cg.ctx.s.flags = MEM_Null; - u.cg.ctx.s.z = 0; - u.cg.ctx.s.zMalloc = 0; - u.cg.ctx.s.xDel = 0; - u.cg.ctx.s.db = db; - u.cg.ctx.isError = 0; - u.cg.ctx.pColl = 0; - u.cg.ctx.skipFlag = 0; - if( u.cg.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ - assert( pOp>p->aOp ); - assert( pOp[-1].p4type==P4_COLLSEQ ); - assert( pOp[-1].opcode==OP_CollSeq ); - u.cg.ctx.pColl = pOp[-1].p4.pColl; - } - (u.cg.ctx.pFunc->xStep)(&u.cg.ctx, u.cg.n, u.cg.apVal); /* IMP: R-24505-23230 */ - if( u.cg.ctx.isError ){ - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cg.ctx.s)); - rc = u.cg.ctx.isError; - } - if( u.cg.ctx.skipFlag ){ - assert( pOp[-1].opcode==OP_CollSeq ); - u.cg.i = pOp[-1].p1; - if( u.cg.i ) sqlite3VdbeMemSetInt64(&aMem[u.cg.i], 1); - } - - sqlite3VdbeMemRelease(&u.cg.ctx.s); - - break; -} - -/* Opcode: AggFinal P1 P2 * P4 * -** -** Execute the finalizer function for an aggregate. P1 is -** the memory location that is the accumulator for the aggregate. -** -** P2 is the number of arguments that the step function takes and -** P4 is a pointer to the FuncDef for this function. The P2 -** argument is not used by this opcode. It is only there to disambiguate -** functions that can take varying numbers of arguments. The -** P4 argument is only needed for the degenerate case where -** the step function was not previously called. -*/ -case OP_AggFinal: { -#if 0 /* local variables moved into u.ch */ - Mem *pMem; -#endif /* local variables moved into u.ch */ - assert( pOp->p1>0 && pOp->p1<=p->nMem ); - u.ch.pMem = &aMem[pOp->p1]; - assert( (u.ch.pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); - rc = sqlite3VdbeMemFinalize(u.ch.pMem, pOp->p4.pFunc); - if( rc ){ - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(u.ch.pMem)); - } - sqlite3VdbeChangeEncoding(u.ch.pMem, encoding); - UPDATE_MAX_BLOBSIZE(u.ch.pMem); - if( sqlite3VdbeMemTooBig(u.ch.pMem) ){ - goto too_big; - } - break; -} - -#ifndef SQLITE_OMIT_WAL -/* Opcode: Checkpoint P1 P2 P3 * * -** -** Checkpoint database P1. This is a no-op if P1 is not currently in -** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL -** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns -** SQLITE_BUSY or not, respectively. Write the number of pages in the -** WAL after the checkpoint into mem[P3+1] and the number of pages -** in the WAL that have been checkpointed after the checkpoint -** completes into mem[P3+2]. However on an error, mem[P3+1] and -** mem[P3+2] are initialized to -1. -*/ -case OP_Checkpoint: { -#if 0 /* local variables moved into u.ci */ - int i; /* Loop counter */ - int aRes[3]; /* Results */ - Mem *pMem; /* Write results here */ -#endif /* local variables moved into u.ci */ - - u.ci.aRes[0] = 0; - u.ci.aRes[1] = u.ci.aRes[2] = -1; - assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE - || pOp->p2==SQLITE_CHECKPOINT_FULL - || pOp->p2==SQLITE_CHECKPOINT_RESTART - ); - rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &u.ci.aRes[1], &u.ci.aRes[2]); - if( rc==SQLITE_BUSY ){ - rc = SQLITE_OK; - u.ci.aRes[0] = 1; - } - for(u.ci.i=0, u.ci.pMem = &aMem[pOp->p3]; u.ci.i<3; u.ci.i++, u.ci.pMem++){ - sqlite3VdbeMemSetInt64(u.ci.pMem, (i64)u.ci.aRes[u.ci.i]); - } - break; -}; -#endif - -#ifndef SQLITE_OMIT_PRAGMA -/* Opcode: JournalMode P1 P2 P3 * P5 -** -** Change the journal mode of database P1 to P3. P3 must be one of the -** PAGER_JOURNALMODE_XXX values. If changing between the various rollback -** modes (delete, truncate, persist, off and memory), this is a simple -** operation. No IO is required. -** -** If changing into or out of WAL mode the procedure is more complicated. -** -** Write a string containing the final journal-mode to register P2. -*/ -case OP_JournalMode: { /* out2-prerelease */ -#if 0 /* local variables moved into u.cj */ - Btree *pBt; /* Btree to change journal mode of */ - Pager *pPager; /* Pager associated with pBt */ - int eNew; /* New journal mode */ - int eOld; /* The old journal mode */ -#ifndef SQLITE_OMIT_WAL - const char *zFilename; /* Name of database file for pPager */ -#endif -#endif /* local variables moved into u.cj */ - - u.cj.eNew = pOp->p3; - assert( u.cj.eNew==PAGER_JOURNALMODE_DELETE - || u.cj.eNew==PAGER_JOURNALMODE_TRUNCATE - || u.cj.eNew==PAGER_JOURNALMODE_PERSIST - || u.cj.eNew==PAGER_JOURNALMODE_OFF - || u.cj.eNew==PAGER_JOURNALMODE_MEMORY - || u.cj.eNew==PAGER_JOURNALMODE_WAL - || u.cj.eNew==PAGER_JOURNALMODE_QUERY - ); - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - - u.cj.pBt = db->aDb[pOp->p1].pBt; - u.cj.pPager = sqlite3BtreePager(u.cj.pBt); - u.cj.eOld = sqlite3PagerGetJournalMode(u.cj.pPager); - if( u.cj.eNew==PAGER_JOURNALMODE_QUERY ) u.cj.eNew = u.cj.eOld; - if( !sqlite3PagerOkToChangeJournalMode(u.cj.pPager) ) u.cj.eNew = u.cj.eOld; - -#ifndef SQLITE_OMIT_WAL - u.cj.zFilename = sqlite3PagerFilename(u.cj.pPager, 1); - - /* Do not allow a transition to journal_mode=WAL for a database - ** in temporary storage or if the VFS does not support shared memory - */ - if( u.cj.eNew==PAGER_JOURNALMODE_WAL - && (sqlite3Strlen30(u.cj.zFilename)==0 /* Temp file */ - || !sqlite3PagerWalSupported(u.cj.pPager)) /* No shared-memory support */ - ){ - u.cj.eNew = u.cj.eOld; - } - - if( (u.cj.eNew!=u.cj.eOld) - && (u.cj.eOld==PAGER_JOURNALMODE_WAL || u.cj.eNew==PAGER_JOURNALMODE_WAL) - ){ - if( !db->autoCommit || db->activeVdbeCnt>1 ){ - rc = SQLITE_ERROR; - sqlite3SetString(&p->zErrMsg, db, - "cannot change %s wal mode from within a transaction", - (u.cj.eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") - ); - break; - }else{ - - if( u.cj.eOld==PAGER_JOURNALMODE_WAL ){ - /* If leaving WAL mode, close the log file. If successful, the call - ** to PagerCloseWal() checkpoints and deletes the write-ahead-log - ** file. An EXCLUSIVE lock may still be held on the database file - ** after a successful return. - */ - rc = sqlite3PagerCloseWal(u.cj.pPager); - if( rc==SQLITE_OK ){ - sqlite3PagerSetJournalMode(u.cj.pPager, u.cj.eNew); - } - }else if( u.cj.eOld==PAGER_JOURNALMODE_MEMORY ){ - /* Cannot transition directly from MEMORY to WAL. Use mode OFF - ** as an intermediate */ - sqlite3PagerSetJournalMode(u.cj.pPager, PAGER_JOURNALMODE_OFF); - } - - /* Open a transaction on the database file. Regardless of the journal - ** mode, this transaction always uses a rollback journal. - */ - assert( sqlite3BtreeIsInTrans(u.cj.pBt)==0 ); - if( rc==SQLITE_OK ){ - rc = sqlite3BtreeSetVersion(u.cj.pBt, (u.cj.eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); - } - } - } -#endif /* ifndef SQLITE_OMIT_WAL */ - - if( rc ){ - u.cj.eNew = u.cj.eOld; - } - u.cj.eNew = sqlite3PagerSetJournalMode(u.cj.pPager, u.cj.eNew); - - pOut = &aMem[pOp->p2]; - pOut->flags = MEM_Str|MEM_Static|MEM_Term; - pOut->z = (char *)sqlite3JournalModename(u.cj.eNew); - pOut->n = sqlite3Strlen30(pOut->z); - pOut->enc = SQLITE_UTF8; - sqlite3VdbeChangeEncoding(pOut, encoding); - break; -}; -#endif /* SQLITE_OMIT_PRAGMA */ - -#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) -/* Opcode: Vacuum * * * * * -** -** Vacuum the entire database. This opcode will cause other virtual -** machines to be created and run. It may not be called from within -** a transaction. -*/ -case OP_Vacuum: { - rc = sqlite3RunVacuum(&p->zErrMsg, db); - break; -} -#endif - -#if !defined(SQLITE_OMIT_AUTOVACUUM) -/* Opcode: IncrVacuum P1 P2 * * * -** -** Perform a single step of the incremental vacuum procedure on -** the P1 database. If the vacuum has finished, jump to instruction -** P2. Otherwise, fall through to the next instruction. -*/ -case OP_IncrVacuum: { /* jump */ -#if 0 /* local variables moved into u.ck */ - Btree *pBt; -#endif /* local variables moved into u.ck */ - - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); - u.ck.pBt = db->aDb[pOp->p1].pBt; - rc = sqlite3BtreeIncrVacuum(u.ck.pBt); - if( rc==SQLITE_DONE ){ - pc = pOp->p2 - 1; - rc = SQLITE_OK; - } - break; -} -#endif - -/* Opcode: Expire P1 * * * * -** -** Cause precompiled statements to become expired. An expired statement -** fails with an error code of SQLITE_SCHEMA if it is ever executed -** (via sqlite3_step()). -** -** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, -** then only the currently executing statement is affected. -*/ -case OP_Expire: { - if( !pOp->p1 ){ - sqlite3ExpirePreparedStatements(db); - }else{ - p->expired = 1; - } - break; -} - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* Opcode: TableLock P1 P2 P3 P4 * -** -** Obtain a lock on a particular table. This instruction is only used when -** the shared-cache feature is enabled. -** -** P1 is the index of the database in sqlite3.aDb[] of the database -** on which the lock is acquired. A readlock is obtained if P3==0 or -** a write lock if P3==1. -** -** P2 contains the root-page of the table to lock. -** -** P4 contains a pointer to the name of the table being locked. This is only -** used to generate an error message if the lock cannot be obtained. -*/ -case OP_TableLock: { - u8 isWriteLock = (u8)pOp->p3; - if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ - int p1 = pOp->p1; - assert( p1>=0 && p1<db->nDb ); - assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); - assert( isWriteLock==0 || isWriteLock==1 ); - rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); - if( (rc&0xFF)==SQLITE_LOCKED ){ - const char *z = pOp->p4.z; - sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); - } - } - break; -} -#endif /* SQLITE_OMIT_SHARED_CACHE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VBegin * * * P4 * -** -** P4 may be a pointer to an sqlite3_vtab structure. If so, call the -** xBegin method for that table. -** -** Also, whether or not P4 is set, check that this is not being called from -** within a callback to a virtual table xSync() method. If it is, the error -** code will be set to SQLITE_LOCKED. -*/ -case OP_VBegin: { -#if 0 /* local variables moved into u.cl */ - VTable *pVTab; -#endif /* local variables moved into u.cl */ - u.cl.pVTab = pOp->p4.pVtab; - rc = sqlite3VtabBegin(db, u.cl.pVTab); - if( u.cl.pVTab ) importVtabErrMsg(p, u.cl.pVTab->pVtab); - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VCreate P1 * * P4 * -** -** P4 is the name of a virtual table in database P1. Call the xCreate method -** for that table. -*/ -case OP_VCreate: { - rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VDestroy P1 * * P4 * -** -** P4 is the name of a virtual table in database P1. Call the xDestroy method -** of that table. -*/ -case OP_VDestroy: { - p->inVtabMethod = 2; - rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); - p->inVtabMethod = 0; - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VOpen P1 * * P4 * -** -** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. -** P1 is a cursor number. This opcode opens a cursor to the virtual -** table and stores that cursor in P1. -*/ -case OP_VOpen: { -#if 0 /* local variables moved into u.cm */ - VdbeCursor *pCur; - sqlite3_vtab_cursor *pVtabCursor; - sqlite3_vtab *pVtab; - sqlite3_module *pModule; -#endif /* local variables moved into u.cm */ - - u.cm.pCur = 0; - u.cm.pVtabCursor = 0; - u.cm.pVtab = pOp->p4.pVtab->pVtab; - u.cm.pModule = (sqlite3_module *)u.cm.pVtab->pModule; - assert(u.cm.pVtab && u.cm.pModule); - rc = u.cm.pModule->xOpen(u.cm.pVtab, &u.cm.pVtabCursor); - importVtabErrMsg(p, u.cm.pVtab); - if( SQLITE_OK==rc ){ - /* Initialize sqlite3_vtab_cursor base class */ - u.cm.pVtabCursor->pVtab = u.cm.pVtab; - - /* Initialize vdbe cursor object */ - u.cm.pCur = allocateCursor(p, pOp->p1, 0, -1, 0); - if( u.cm.pCur ){ - u.cm.pCur->pVtabCursor = u.cm.pVtabCursor; - u.cm.pCur->pModule = u.cm.pVtabCursor->pVtab->pModule; - }else{ - db->mallocFailed = 1; - u.cm.pModule->xClose(u.cm.pVtabCursor); - } - } - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VFilter P1 P2 P3 P4 * -** -** P1 is a cursor opened using VOpen. P2 is an address to jump to if -** the filtered result set is empty. -** -** P4 is either NULL or a string that was generated by the xBestIndex -** method of the module. The interpretation of the P4 string is left -** to the module implementation. -** -** This opcode invokes the xFilter method on the virtual table specified -** by P1. The integer query plan parameter to xFilter is stored in register -** P3. Register P3+1 stores the argc parameter to be passed to the -** xFilter method. Registers P3+2..P3+1+argc are the argc -** additional parameters which are passed to -** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. -** -** A jump is made to P2 if the result set after filtering would be empty. -*/ -case OP_VFilter: { /* jump */ -#if 0 /* local variables moved into u.cn */ - int nArg; - int iQuery; - const sqlite3_module *pModule; - Mem *pQuery; - Mem *pArgc; - sqlite3_vtab_cursor *pVtabCursor; - sqlite3_vtab *pVtab; - VdbeCursor *pCur; - int res; - int i; - Mem **apArg; -#endif /* local variables moved into u.cn */ - - u.cn.pQuery = &aMem[pOp->p3]; - u.cn.pArgc = &u.cn.pQuery[1]; - u.cn.pCur = p->apCsr[pOp->p1]; - assert( memIsValid(u.cn.pQuery) ); - REGISTER_TRACE(pOp->p3, u.cn.pQuery); - assert( u.cn.pCur->pVtabCursor ); - u.cn.pVtabCursor = u.cn.pCur->pVtabCursor; - u.cn.pVtab = u.cn.pVtabCursor->pVtab; - u.cn.pModule = u.cn.pVtab->pModule; - - /* Grab the index number and argc parameters */ - assert( (u.cn.pQuery->flags&MEM_Int)!=0 && u.cn.pArgc->flags==MEM_Int ); - u.cn.nArg = (int)u.cn.pArgc->u.i; - u.cn.iQuery = (int)u.cn.pQuery->u.i; - - /* Invoke the xFilter method */ - { - u.cn.res = 0; - u.cn.apArg = p->apArg; - for(u.cn.i = 0; u.cn.i<u.cn.nArg; u.cn.i++){ - u.cn.apArg[u.cn.i] = &u.cn.pArgc[u.cn.i+1]; - sqlite3VdbeMemStoreType(u.cn.apArg[u.cn.i]); - } - - p->inVtabMethod = 1; - rc = u.cn.pModule->xFilter(u.cn.pVtabCursor, u.cn.iQuery, pOp->p4.z, u.cn.nArg, u.cn.apArg); - p->inVtabMethod = 0; - importVtabErrMsg(p, u.cn.pVtab); - if( rc==SQLITE_OK ){ - u.cn.res = u.cn.pModule->xEof(u.cn.pVtabCursor); - } - - if( u.cn.res ){ - pc = pOp->p2 - 1; - } - } - u.cn.pCur->nullRow = 0; - - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VColumn P1 P2 P3 * * -** -** Store the value of the P2-th column of -** the row of the virtual-table that the -** P1 cursor is pointing to into register P3. -*/ -case OP_VColumn: { -#if 0 /* local variables moved into u.co */ - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; - Mem *pDest; - sqlite3_context sContext; -#endif /* local variables moved into u.co */ - - VdbeCursor *pCur = p->apCsr[pOp->p1]; - assert( pCur->pVtabCursor ); - assert( pOp->p3>0 && pOp->p3<=p->nMem ); - u.co.pDest = &aMem[pOp->p3]; - memAboutToChange(p, u.co.pDest); - if( pCur->nullRow ){ - sqlite3VdbeMemSetNull(u.co.pDest); - break; - } - u.co.pVtab = pCur->pVtabCursor->pVtab; - u.co.pModule = u.co.pVtab->pModule; - assert( u.co.pModule->xColumn ); - memset(&u.co.sContext, 0, sizeof(u.co.sContext)); - - /* The output cell may already have a buffer allocated. Move - ** the current contents to u.co.sContext.s so in case the user-function - ** can use the already allocated buffer instead of allocating a - ** new one. - */ - sqlite3VdbeMemMove(&u.co.sContext.s, u.co.pDest); - MemSetTypeFlag(&u.co.sContext.s, MEM_Null); - - rc = u.co.pModule->xColumn(pCur->pVtabCursor, &u.co.sContext, pOp->p2); - importVtabErrMsg(p, u.co.pVtab); - if( u.co.sContext.isError ){ - rc = u.co.sContext.isError; - } - - /* Copy the result of the function to the P3 register. We - ** do this regardless of whether or not an error occurred to ensure any - ** dynamic allocation in u.co.sContext.s (a Mem struct) is released. - */ - sqlite3VdbeChangeEncoding(&u.co.sContext.s, encoding); - sqlite3VdbeMemMove(u.co.pDest, &u.co.sContext.s); - REGISTER_TRACE(pOp->p3, u.co.pDest); - UPDATE_MAX_BLOBSIZE(u.co.pDest); - - if( sqlite3VdbeMemTooBig(u.co.pDest) ){ - goto too_big; - } - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VNext P1 P2 * * * -** -** Advance virtual table P1 to the next row in its result set and -** jump to instruction P2. Or, if the virtual table has reached -** the end of its result set, then fall through to the next instruction. -*/ -case OP_VNext: { /* jump */ -#if 0 /* local variables moved into u.cp */ - sqlite3_vtab *pVtab; - const sqlite3_module *pModule; - int res; - VdbeCursor *pCur; -#endif /* local variables moved into u.cp */ - - u.cp.res = 0; - u.cp.pCur = p->apCsr[pOp->p1]; - assert( u.cp.pCur->pVtabCursor ); - if( u.cp.pCur->nullRow ){ - break; - } - u.cp.pVtab = u.cp.pCur->pVtabCursor->pVtab; - u.cp.pModule = u.cp.pVtab->pModule; - assert( u.cp.pModule->xNext ); - - /* Invoke the xNext() method of the module. There is no way for the - ** underlying implementation to return an error if one occurs during - ** xNext(). Instead, if an error occurs, true is returned (indicating that - ** data is available) and the error code returned when xColumn or - ** some other method is next invoked on the save virtual table cursor. - */ - p->inVtabMethod = 1; - rc = u.cp.pModule->xNext(u.cp.pCur->pVtabCursor); - p->inVtabMethod = 0; - importVtabErrMsg(p, u.cp.pVtab); - if( rc==SQLITE_OK ){ - u.cp.res = u.cp.pModule->xEof(u.cp.pCur->pVtabCursor); - } - - if( !u.cp.res ){ - /* If there is data, jump to P2 */ - pc = pOp->p2 - 1; - } - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VRename P1 * * P4 * -** -** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. -** This opcode invokes the corresponding xRename method. The value -** in register P1 is passed as the zName argument to the xRename method. -*/ -case OP_VRename: { -#if 0 /* local variables moved into u.cq */ - sqlite3_vtab *pVtab; - Mem *pName; -#endif /* local variables moved into u.cq */ - - u.cq.pVtab = pOp->p4.pVtab->pVtab; - u.cq.pName = &aMem[pOp->p1]; - assert( u.cq.pVtab->pModule->xRename ); - assert( memIsValid(u.cq.pName) ); - REGISTER_TRACE(pOp->p1, u.cq.pName); - assert( u.cq.pName->flags & MEM_Str ); - testcase( u.cq.pName->enc==SQLITE_UTF8 ); - testcase( u.cq.pName->enc==SQLITE_UTF16BE ); - testcase( u.cq.pName->enc==SQLITE_UTF16LE ); - rc = sqlite3VdbeChangeEncoding(u.cq.pName, SQLITE_UTF8); - if( rc==SQLITE_OK ){ - rc = u.cq.pVtab->pModule->xRename(u.cq.pVtab, u.cq.pName->z); - importVtabErrMsg(p, u.cq.pVtab); - p->expired = 0; - } - break; -} -#endif - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Opcode: VUpdate P1 P2 P3 P4 * -** -** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. -** This opcode invokes the corresponding xUpdate method. P2 values -** are contiguous memory cells starting at P3 to pass to the xUpdate -** invocation. The value in register (P3+P2-1) corresponds to the -** p2th element of the argv array passed to xUpdate. -** -** The xUpdate method will do a DELETE or an INSERT or both. -** The argv[0] element (which corresponds to memory cell P3) -** is the rowid of a row to delete. If argv[0] is NULL then no -** deletion occurs. The argv[1] element is the rowid of the new -** row. This can be NULL to have the virtual table select the new -** rowid for itself. The subsequent elements in the array are -** the values of columns in the new row. -** -** If P2==1 then no insert is performed. argv[0] is the rowid of -** a row to delete. -** -** P1 is a boolean flag. If it is set to true and the xUpdate call -** is successful, then the value returned by sqlite3_last_insert_rowid() -** is set to the value of the rowid for the row just inserted. -*/ -case OP_VUpdate: { -#if 0 /* local variables moved into u.cr */ - sqlite3_vtab *pVtab; - sqlite3_module *pModule; - int nArg; - int i; - sqlite_int64 rowid; - Mem **apArg; - Mem *pX; -#endif /* local variables moved into u.cr */ - - assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback - || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace - ); - u.cr.pVtab = pOp->p4.pVtab->pVtab; - u.cr.pModule = (sqlite3_module *)u.cr.pVtab->pModule; - u.cr.nArg = pOp->p2; - assert( pOp->p4type==P4_VTAB ); - if( ALWAYS(u.cr.pModule->xUpdate) ){ - u8 vtabOnConflict = db->vtabOnConflict; - u.cr.apArg = p->apArg; - u.cr.pX = &aMem[pOp->p3]; - for(u.cr.i=0; u.cr.i<u.cr.nArg; u.cr.i++){ - assert( memIsValid(u.cr.pX) ); - memAboutToChange(p, u.cr.pX); - sqlite3VdbeMemStoreType(u.cr.pX); - u.cr.apArg[u.cr.i] = u.cr.pX; - u.cr.pX++; - } - db->vtabOnConflict = pOp->p5; - rc = u.cr.pModule->xUpdate(u.cr.pVtab, u.cr.nArg, u.cr.apArg, &u.cr.rowid); - db->vtabOnConflict = vtabOnConflict; - importVtabErrMsg(p, u.cr.pVtab); - if( rc==SQLITE_OK && pOp->p1 ){ - assert( u.cr.nArg>1 && u.cr.apArg[0] && (u.cr.apArg[0]->flags&MEM_Null) ); - db->lastRowid = lastRowid = u.cr.rowid; - } - if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ - if( pOp->p5==OE_Ignore ){ - rc = SQLITE_OK; - }else{ - p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); - } - }else{ - p->nChange++; - } - } - break; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -/* Opcode: Pagecount P1 P2 * * * -** -** Write the current number of pages in database P1 to memory cell P2. -*/ -case OP_Pagecount: { /* out2-prerelease */ - pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); - break; -} -#endif - - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -/* Opcode: MaxPgcnt P1 P2 P3 * * -** -** Try to set the maximum page count for database P1 to the value in P3. -** Do not let the maximum page count fall below the current page count and -** do not change the maximum page count value if P3==0. -** -** Store the maximum page count after the change in register P2. -*/ -case OP_MaxPgcnt: { /* out2-prerelease */ - unsigned int newMax; - Btree *pBt; - - pBt = db->aDb[pOp->p1].pBt; - newMax = 0; - if( pOp->p3 ){ - newMax = sqlite3BtreeLastPage(pBt); - if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; - } - pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); - break; -} -#endif - - -#ifndef SQLITE_OMIT_TRACE -/* Opcode: Trace * * * P4 * -** -** If tracing is enabled (by the sqlite3_trace()) interface, then -** the UTF-8 string contained in P4 is emitted on the trace callback. -*/ -case OP_Trace: { -#if 0 /* local variables moved into u.cs */ - char *zTrace; - char *z; -#endif /* local variables moved into u.cs */ - - if( db->xTrace - && !p->doingRerun - && (u.cs.zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 - ){ - u.cs.z = sqlite3VdbeExpandSql(p, u.cs.zTrace); - db->xTrace(db->pTraceArg, u.cs.z); - sqlite3DbFree(db, u.cs.z); - } -#ifdef SQLITE_DEBUG - if( (db->flags & SQLITE_SqlTrace)!=0 - && (u.cs.zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 - ){ - sqlite3DebugPrintf("SQL-trace: %s\n", u.cs.zTrace); - } -#endif /* SQLITE_DEBUG */ - break; -} -#endif - - -/* Opcode: Noop * * * * * -** -** Do nothing. This instruction is often useful as a jump -** destination. -*/ -/* -** The magic Explain opcode are only inserted when explain==2 (which -** is to say when the EXPLAIN QUERY PLAN syntax is used.) -** This opcode records information from the optimizer. It is the -** the same as a no-op. This opcodesnever appears in a real VM program. -*/ -default: { /* This is really OP_Noop and OP_Explain */ - assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); - break; -} - -/***************************************************************************** -** The cases of the switch statement above this line should all be indented -** by 6 spaces. But the left-most 6 spaces have been removed to improve the -** readability. From this point on down, the normal indentation rules are -** restored. -*****************************************************************************/ - } - -#ifdef VDBE_PROFILE - { - u64 elapsed = sqlite3Hwtime() - start; - pOp->cycles += elapsed; - pOp->cnt++; -#if 0 - fprintf(stdout, "%10llu ", elapsed); - sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); -#endif - } -#endif - - /* The following code adds nothing to the actual functionality - ** of the program. It is only here for testing and debugging. - ** On the other hand, it does burn CPU cycles every time through - ** the evaluator loop. So we can leave it out when NDEBUG is defined. - */ -#ifndef NDEBUG - assert( pc>=-1 && pc<p->nOp ); - -#ifdef SQLITE_DEBUG - if( p->trace ){ - if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); - if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ - registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); - } - if( pOp->opflags & OPFLG_OUT3 ){ - registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); - } - } -#endif /* SQLITE_DEBUG */ -#endif /* NDEBUG */ - } /* The end of the for(;;) loop the loops through opcodes */ - - /* If we reach this point, it means that execution is finished with - ** an error of some kind. - */ -vdbe_error_halt: - assert( rc ); - p->rc = rc; - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(rc, "statement aborts at %d: [%s] %s", - pc, p->zSql, p->zErrMsg); - sqlite3VdbeHalt(p); - if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; - rc = SQLITE_ERROR; - if( resetSchemaOnFault>0 ){ - sqlite3ResetOneSchema(db, resetSchemaOnFault-1); - } - - /* This is the only way out of this procedure. We have to - ** release the mutexes on btrees that were acquired at the - ** top. */ -vdbe_return: - db->lastRowid = lastRowid; - sqlite3VdbeLeave(p); - return rc; - - /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH - ** is encountered. - */ -too_big: - sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); - rc = SQLITE_TOOBIG; - goto vdbe_error_halt; - - /* Jump to here if a malloc() fails. - */ -no_mem: - db->mallocFailed = 1; - sqlite3SetString(&p->zErrMsg, db, "out of memory"); - rc = SQLITE_NOMEM; - goto vdbe_error_halt; - - /* Jump to here for any other kind of fatal error. The "rc" variable - ** should hold the error number. - */ -abort_due_to_error: - assert( p->zErrMsg==0 ); - if( db->mallocFailed ) rc = SQLITE_NOMEM; - if( rc!=SQLITE_IOERR_NOMEM ){ - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); - } - goto vdbe_error_halt; - - /* Jump to here if the sqlite3_interrupt() API sets the interrupt - ** flag. - */ -abort_due_to_interrupt: - assert( db->u1.isInterrupted ); - rc = SQLITE_INTERRUPT; - p->rc = rc; - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); - goto vdbe_error_halt; -} - -/************** End of vdbe.c ************************************************/ -/************** Begin file vdbeblob.c ****************************************/ -/* -** 2007 May 1 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code used to implement incremental BLOB I/O. -*/ - - -#ifndef SQLITE_OMIT_INCRBLOB - -/* -** Valid sqlite3_blob* handles point to Incrblob structures. -*/ -typedef struct Incrblob Incrblob; -struct Incrblob { - int flags; /* Copy of "flags" passed to sqlite3_blob_open() */ - int nByte; /* Size of open blob, in bytes */ - int iOffset; /* Byte offset of blob in cursor data */ - int iCol; /* Table column this handle is open on */ - BtCursor *pCsr; /* Cursor pointing at blob row */ - sqlite3_stmt *pStmt; /* Statement holding cursor open */ - sqlite3 *db; /* The associated database */ -}; - - -/* -** This function is used by both blob_open() and blob_reopen(). It seeks -** the b-tree cursor associated with blob handle p to point to row iRow. -** If successful, SQLITE_OK is returned and subsequent calls to -** sqlite3_blob_read() or sqlite3_blob_write() access the specified row. -** -** If an error occurs, or if the specified row does not exist or does not -** contain a value of type TEXT or BLOB in the column nominated when the -** blob handle was opened, then an error code is returned and *pzErr may -** be set to point to a buffer containing an error message. It is the -** responsibility of the caller to free the error message buffer using -** sqlite3DbFree(). -** -** If an error does occur, then the b-tree cursor is closed. All subsequent -** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will -** immediately return SQLITE_ABORT. -*/ -static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){ - int rc; /* Error code */ - char *zErr = 0; /* Error message */ - Vdbe *v = (Vdbe *)p->pStmt; - - /* Set the value of the SQL statements only variable to integer iRow. - ** This is done directly instead of using sqlite3_bind_int64() to avoid - ** triggering asserts related to mutexes. - */ - assert( v->aVar[0].flags&MEM_Int ); - v->aVar[0].u.i = iRow; - - rc = sqlite3_step(p->pStmt); - if( rc==SQLITE_ROW ){ - u32 type = v->apCsr[0]->aType[p->iCol]; - if( type<12 ){ - zErr = sqlite3MPrintf(p->db, "cannot open value of type %s", - type==0?"null": type==7?"real": "integer" - ); - rc = SQLITE_ERROR; - sqlite3_finalize(p->pStmt); - p->pStmt = 0; - }else{ - p->iOffset = v->apCsr[0]->aOffset[p->iCol]; - p->nByte = sqlite3VdbeSerialTypeLen(type); - p->pCsr = v->apCsr[0]->pCursor; - sqlite3BtreeEnterCursor(p->pCsr); - sqlite3BtreeCacheOverflow(p->pCsr); - sqlite3BtreeLeaveCursor(p->pCsr); - } - } - - if( rc==SQLITE_ROW ){ - rc = SQLITE_OK; - }else if( p->pStmt ){ - rc = sqlite3_finalize(p->pStmt); - p->pStmt = 0; - if( rc==SQLITE_OK ){ - zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow); - rc = SQLITE_ERROR; - }else{ - zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db)); - } - } - - assert( rc!=SQLITE_OK || zErr==0 ); - assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE ); - - *pzErr = zErr; - return rc; -} - -/* -** Open a blob handle. -*/ -SQLITE_API int sqlite3_blob_open( - sqlite3* db, /* The database connection */ - const char *zDb, /* The attached database containing the blob */ - const char *zTable, /* The table containing the blob */ - const char *zColumn, /* The column containing the blob */ - sqlite_int64 iRow, /* The row containing the glob */ - int flags, /* True -> read/write access, false -> read-only */ - sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */ -){ - int nAttempt = 0; - int iCol; /* Index of zColumn in row-record */ - - /* This VDBE program seeks a btree cursor to the identified - ** db/table/row entry. The reason for using a vdbe program instead - ** of writing code to use the b-tree layer directly is that the - ** vdbe program will take advantage of the various transaction, - ** locking and error handling infrastructure built into the vdbe. - ** - ** After seeking the cursor, the vdbe executes an OP_ResultRow. - ** Code external to the Vdbe then "borrows" the b-tree cursor and - ** uses it to implement the blob_read(), blob_write() and - ** blob_bytes() functions. - ** - ** The sqlite3_blob_close() function finalizes the vdbe program, - ** which closes the b-tree cursor and (possibly) commits the - ** transaction. - */ - static const VdbeOpList openBlob[] = { - {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */ - {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */ - {OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */ - - /* One of the following two instructions is replaced by an OP_Noop. */ - {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */ - {OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */ - - {OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */ - {OP_NotExists, 0, 10, 1}, /* 6: Seek the cursor */ - {OP_Column, 0, 0, 1}, /* 7 */ - {OP_ResultRow, 1, 0, 0}, /* 8 */ - {OP_Goto, 0, 5, 0}, /* 9 */ - {OP_Close, 0, 0, 0}, /* 10 */ - {OP_Halt, 0, 0, 0}, /* 11 */ - }; - - int rc = SQLITE_OK; - char *zErr = 0; - Table *pTab; - Parse *pParse = 0; - Incrblob *pBlob = 0; - - flags = !!flags; /* flags = (flags ? 1 : 0); */ - *ppBlob = 0; - - sqlite3_mutex_enter(db->mutex); - - pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); - if( !pBlob ) goto blob_open_out; - pParse = sqlite3StackAllocRaw(db, sizeof(*pParse)); - if( !pParse ) goto blob_open_out; - - do { - memset(pParse, 0, sizeof(Parse)); - pParse->db = db; - sqlite3DbFree(db, zErr); - zErr = 0; - - sqlite3BtreeEnterAll(db); - pTab = sqlite3LocateTable(pParse, 0, zTable, zDb); - if( pTab && IsVirtual(pTab) ){ - pTab = 0; - sqlite3ErrorMsg(pParse, "cannot open virtual table: %s", zTable); - } -#ifndef SQLITE_OMIT_VIEW - if( pTab && pTab->pSelect ){ - pTab = 0; - sqlite3ErrorMsg(pParse, "cannot open view: %s", zTable); - } -#endif - if( !pTab ){ - if( pParse->zErrMsg ){ - sqlite3DbFree(db, zErr); - zErr = pParse->zErrMsg; - pParse->zErrMsg = 0; - } - rc = SQLITE_ERROR; - sqlite3BtreeLeaveAll(db); - goto blob_open_out; - } - - /* Now search pTab for the exact column. */ - for(iCol=0; iCol<pTab->nCol; iCol++) { - if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){ - break; - } - } - if( iCol==pTab->nCol ){ - sqlite3DbFree(db, zErr); - zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn); - rc = SQLITE_ERROR; - sqlite3BtreeLeaveAll(db); - goto blob_open_out; - } - - /* If the value is being opened for writing, check that the - ** column is not indexed, and that it is not part of a foreign key. - ** It is against the rules to open a column to which either of these - ** descriptions applies for writing. */ - if( flags ){ - const char *zFault = 0; - Index *pIdx; -#ifndef SQLITE_OMIT_FOREIGN_KEY - if( db->flags&SQLITE_ForeignKeys ){ - /* Check that the column is not part of an FK child key definition. It - ** is not necessary to check if it is part of a parent key, as parent - ** key columns must be indexed. The check below will pick up this - ** case. */ - FKey *pFKey; - for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ - int j; - for(j=0; j<pFKey->nCol; j++){ - if( pFKey->aCol[j].iFrom==iCol ){ - zFault = "foreign key"; - } - } - } - } -#endif - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int j; - for(j=0; j<pIdx->nColumn; j++){ - if( pIdx->aiColumn[j]==iCol ){ - zFault = "indexed"; - } - } - } - if( zFault ){ - sqlite3DbFree(db, zErr); - zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault); - rc = SQLITE_ERROR; - sqlite3BtreeLeaveAll(db); - goto blob_open_out; - } - } - - pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(db); - assert( pBlob->pStmt || db->mallocFailed ); - if( pBlob->pStmt ){ - Vdbe *v = (Vdbe *)pBlob->pStmt; - int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - - sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob); - - - /* Configure the OP_Transaction */ - sqlite3VdbeChangeP1(v, 0, iDb); - sqlite3VdbeChangeP2(v, 0, flags); - - /* Configure the OP_VerifyCookie */ - sqlite3VdbeChangeP1(v, 1, iDb); - sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie); - sqlite3VdbeChangeP3(v, 1, pTab->pSchema->iGeneration); - - /* Make sure a mutex is held on the table to be accessed */ - sqlite3VdbeUsesBtree(v, iDb); - - /* Configure the OP_TableLock instruction */ -#ifdef SQLITE_OMIT_SHARED_CACHE - sqlite3VdbeChangeToNoop(v, 2); -#else - sqlite3VdbeChangeP1(v, 2, iDb); - sqlite3VdbeChangeP2(v, 2, pTab->tnum); - sqlite3VdbeChangeP3(v, 2, flags); - sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT); -#endif - - /* Remove either the OP_OpenWrite or OpenRead. Set the P2 - ** parameter of the other to pTab->tnum. */ - sqlite3VdbeChangeToNoop(v, 4 - flags); - sqlite3VdbeChangeP2(v, 3 + flags, pTab->tnum); - sqlite3VdbeChangeP3(v, 3 + flags, iDb); - - /* Configure the number of columns. Configure the cursor to - ** think that the table has one more column than it really - ** does. An OP_Column to retrieve this imaginary column will - ** always return an SQL NULL. This is useful because it means - ** we can invoke OP_Column to fill in the vdbe cursors type - ** and offset cache without causing any IO. - */ - sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); - sqlite3VdbeChangeP2(v, 7, pTab->nCol); - if( !db->mallocFailed ){ - pParse->nVar = 1; - pParse->nMem = 1; - pParse->nTab = 1; - sqlite3VdbeMakeReady(v, pParse); - } - } - - pBlob->flags = flags; - pBlob->iCol = iCol; - pBlob->db = db; - sqlite3BtreeLeaveAll(db); - if( db->mallocFailed ){ - goto blob_open_out; - } - sqlite3_bind_int64(pBlob->pStmt, 1, iRow); - rc = blobSeekToRow(pBlob, iRow, &zErr); - } while( (++nAttempt)<5 && rc==SQLITE_SCHEMA ); - -blob_open_out: - if( rc==SQLITE_OK && db->mallocFailed==0 ){ - *ppBlob = (sqlite3_blob *)pBlob; - }else{ - if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); - sqlite3DbFree(db, pBlob); - } - sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); - sqlite3DbFree(db, zErr); - sqlite3StackFree(db, pParse); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Close a blob handle that was previously created using -** sqlite3_blob_open(). -*/ -SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){ - Incrblob *p = (Incrblob *)pBlob; - int rc; - sqlite3 *db; - - if( p ){ - db = p->db; - sqlite3_mutex_enter(db->mutex); - rc = sqlite3_finalize(p->pStmt); - sqlite3DbFree(db, p); - sqlite3_mutex_leave(db->mutex); - }else{ - rc = SQLITE_OK; - } - return rc; -} - -/* -** Perform a read or write operation on a blob -*/ -static int blobReadWrite( - sqlite3_blob *pBlob, - void *z, - int n, - int iOffset, - int (*xCall)(BtCursor*, u32, u32, void*) -){ - int rc; - Incrblob *p = (Incrblob *)pBlob; - Vdbe *v; - sqlite3 *db; - - if( p==0 ) return SQLITE_MISUSE_BKPT; - db = p->db; - sqlite3_mutex_enter(db->mutex); - v = (Vdbe*)p->pStmt; - - if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){ - /* Request is out of range. Return a transient error. */ - rc = SQLITE_ERROR; - sqlite3Error(db, SQLITE_ERROR, 0); - }else if( v==0 ){ - /* If there is no statement handle, then the blob-handle has - ** already been invalidated. Return SQLITE_ABORT in this case. - */ - rc = SQLITE_ABORT; - }else{ - /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is - ** returned, clean-up the statement handle. - */ - assert( db == v->db ); - sqlite3BtreeEnterCursor(p->pCsr); - rc = xCall(p->pCsr, iOffset+p->iOffset, n, z); - sqlite3BtreeLeaveCursor(p->pCsr); - if( rc==SQLITE_ABORT ){ - sqlite3VdbeFinalize(v); - p->pStmt = 0; - }else{ - db->errCode = rc; - v->rc = rc; - } - } - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Read data from a blob handle. -*/ -SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ - return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData); -} - -/* -** Write data to a blob handle. -*/ -SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){ - return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData); -} - -/* -** Query a blob handle for the size of the data. -** -** The Incrblob.nByte field is fixed for the lifetime of the Incrblob -** so no mutex is required for access. -*/ -SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){ - Incrblob *p = (Incrblob *)pBlob; - return (p && p->pStmt) ? p->nByte : 0; -} - -/* -** Move an existing blob handle to point to a different row of the same -** database table. -** -** If an error occurs, or if the specified row does not exist or does not -** contain a blob or text value, then an error code is returned and the -** database handle error code and message set. If this happens, then all -** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) -** immediately return SQLITE_ABORT. -*/ -SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){ - int rc; - Incrblob *p = (Incrblob *)pBlob; - sqlite3 *db; - - if( p==0 ) return SQLITE_MISUSE_BKPT; - db = p->db; - sqlite3_mutex_enter(db->mutex); - - if( p->pStmt==0 ){ - /* If there is no statement handle, then the blob-handle has - ** already been invalidated. Return SQLITE_ABORT in this case. - */ - rc = SQLITE_ABORT; - }else{ - char *zErr; - rc = blobSeekToRow(p, iRow, &zErr); - if( rc!=SQLITE_OK ){ - sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr); - sqlite3DbFree(db, zErr); - } - assert( rc!=SQLITE_SCHEMA ); - } - - rc = sqlite3ApiExit(db, rc); - assert( rc==SQLITE_OK || p->pStmt==0 ); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -#endif /* #ifndef SQLITE_OMIT_INCRBLOB */ - -/************** End of vdbeblob.c ********************************************/ -/************** Begin file vdbesort.c ****************************************/ -/* -** 2011 July 9 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code for the VdbeSorter object, used in concert with -** a VdbeCursor to sort large numbers of keys (as may be required, for -** example, by CREATE INDEX statements on tables too large to fit in main -** memory). -*/ - - - -typedef struct VdbeSorterIter VdbeSorterIter; -typedef struct SorterRecord SorterRecord; -typedef struct FileWriter FileWriter; - -/* -** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES: -** -** As keys are added to the sorter, they are written to disk in a series -** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly -** the same as the cache-size allowed for temporary databases. In order -** to allow the caller to extract keys from the sorter in sorted order, -** all PMAs currently stored on disk must be merged together. This comment -** describes the data structure used to do so. The structure supports -** merging any number of arrays in a single pass with no redundant comparison -** operations. -** -** The aIter[] array contains an iterator for each of the PMAs being merged. -** An aIter[] iterator either points to a valid key or else is at EOF. For -** the purposes of the paragraphs below, we assume that the array is actually -** N elements in size, where N is the smallest power of 2 greater to or equal -** to the number of iterators being merged. The extra aIter[] elements are -** treated as if they are empty (always at EOF). -** -** The aTree[] array is also N elements in size. The value of N is stored in -** the VdbeSorter.nTree variable. -** -** The final (N/2) elements of aTree[] contain the results of comparing -** pairs of iterator keys together. Element i contains the result of -** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the -** aTree element is set to the index of it. -** -** For the purposes of this comparison, EOF is considered greater than any -** other key value. If the keys are equal (only possible with two EOF -** values), it doesn't matter which index is stored. -** -** The (N/4) elements of aTree[] that preceed the final (N/2) described -** above contains the index of the smallest of each block of 4 iterators. -** And so on. So that aTree[1] contains the index of the iterator that -** currently points to the smallest key value. aTree[0] is unused. -** -** Example: -** -** aIter[0] -> Banana -** aIter[1] -> Feijoa -** aIter[2] -> Elderberry -** aIter[3] -> Currant -** aIter[4] -> Grapefruit -** aIter[5] -> Apple -** aIter[6] -> Durian -** aIter[7] -> EOF -** -** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } -** -** The current element is "Apple" (the value of the key indicated by -** iterator 5). When the Next() operation is invoked, iterator 5 will -** be advanced to the next key in its segment. Say the next key is -** "Eggplant": -** -** aIter[5] -> Eggplant -** -** The contents of aTree[] are updated first by comparing the new iterator -** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator -** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. -** The value of iterator 6 - "Durian" - is now smaller than that of iterator -** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), -** so the value written into element 1 of the array is 0. As follows: -** -** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } -** -** In other words, each time we advance to the next sorter element, log2(N) -** key comparison operations are required, where N is the number of segments -** being merged (rounded up to the next power of 2). -*/ -struct VdbeSorter { - i64 iWriteOff; /* Current write offset within file pTemp1 */ - i64 iReadOff; /* Current read offset within file pTemp1 */ - int nInMemory; /* Current size of pRecord list as PMA */ - int nTree; /* Used size of aTree/aIter (power of 2) */ - int nPMA; /* Number of PMAs stored in pTemp1 */ - int mnPmaSize; /* Minimum PMA size, in bytes */ - int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */ - VdbeSorterIter *aIter; /* Array of iterators to merge */ - int *aTree; /* Current state of incremental merge */ - sqlite3_file *pTemp1; /* PMA file 1 */ - SorterRecord *pRecord; /* Head of in-memory record list */ - UnpackedRecord *pUnpacked; /* Used to unpack keys */ -}; - -/* -** The following type is an iterator for a PMA. It caches the current key in -** variables nKey/aKey. If the iterator is at EOF, pFile==0. -*/ -struct VdbeSorterIter { - i64 iReadOff; /* Current read offset */ - i64 iEof; /* 1 byte past EOF for this iterator */ - int nAlloc; /* Bytes of space at aAlloc */ - int nKey; /* Number of bytes in key */ - sqlite3_file *pFile; /* File iterator is reading from */ - u8 *aAlloc; /* Allocated space */ - u8 *aKey; /* Pointer to current key */ - u8 *aBuffer; /* Current read buffer */ - int nBuffer; /* Size of read buffer in bytes */ -}; - -/* -** An instance of this structure is used to organize the stream of records -** being written to files by the merge-sort code into aligned, page-sized -** blocks. Doing all I/O in aligned page-sized blocks helps I/O to go -** faster on many operating systems. -*/ -struct FileWriter { - int eFWErr; /* Non-zero if in an error state */ - u8 *aBuffer; /* Pointer to write buffer */ - int nBuffer; /* Size of write buffer in bytes */ - int iBufStart; /* First byte of buffer to write */ - int iBufEnd; /* Last byte of buffer to write */ - i64 iWriteOff; /* Offset of start of buffer in file */ - sqlite3_file *pFile; /* File to write to */ -}; - -/* -** A structure to store a single record. All in-memory records are connected -** together into a linked list headed at VdbeSorter.pRecord using the -** SorterRecord.pNext pointer. -*/ -struct SorterRecord { - void *pVal; - int nVal; - SorterRecord *pNext; -}; - -/* Minimum allowable value for the VdbeSorter.nWorking variable */ -#define SORTER_MIN_WORKING 10 - -/* Maximum number of segments to merge in a single pass. */ -#define SORTER_MAX_MERGE_COUNT 16 - -/* -** Free all memory belonging to the VdbeSorterIter object passed as the second -** argument. All structure fields are set to zero before returning. -*/ -static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){ - sqlite3DbFree(db, pIter->aAlloc); - sqlite3DbFree(db, pIter->aBuffer); - memset(pIter, 0, sizeof(VdbeSorterIter)); -} - -/* -** Read nByte bytes of data from the stream of data iterated by object p. -** If successful, set *ppOut to point to a buffer containing the data -** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite -** error code. -** -** The buffer indicated by *ppOut may only be considered valid until the -** next call to this function. -*/ -static int vdbeSorterIterRead( - sqlite3 *db, /* Database handle (for malloc) */ - VdbeSorterIter *p, /* Iterator */ - int nByte, /* Bytes of data to read */ - u8 **ppOut /* OUT: Pointer to buffer containing data */ -){ - int iBuf; /* Offset within buffer to read from */ - int nAvail; /* Bytes of data available in buffer */ - assert( p->aBuffer ); - - /* If there is no more data to be read from the buffer, read the next - ** p->nBuffer bytes of data from the file into it. Or, if there are less - ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ - iBuf = p->iReadOff % p->nBuffer; - if( iBuf==0 ){ - int nRead; /* Bytes to read from disk */ - int rc; /* sqlite3OsRead() return code */ - - /* Determine how many bytes of data to read. */ - if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ - nRead = p->nBuffer; - }else{ - nRead = (int)(p->iEof - p->iReadOff); - } - assert( nRead>0 ); - - /* Read data from the file. Return early if an error occurs. */ - rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff); - assert( rc!=SQLITE_IOERR_SHORT_READ ); - if( rc!=SQLITE_OK ) return rc; - } - nAvail = p->nBuffer - iBuf; - - if( nByte<=nAvail ){ - /* The requested data is available in the in-memory buffer. In this - ** case there is no need to make a copy of the data, just return a - ** pointer into the buffer to the caller. */ - *ppOut = &p->aBuffer[iBuf]; - p->iReadOff += nByte; - }else{ - /* The requested data is not all available in the in-memory buffer. - ** In this case, allocate space at p->aAlloc[] to copy the requested - ** range into. Then return a copy of pointer p->aAlloc to the caller. */ - int nRem; /* Bytes remaining to copy */ - - /* Extend the p->aAlloc[] allocation if required. */ - if( p->nAlloc<nByte ){ - int nNew = p->nAlloc*2; - while( nByte>nNew ) nNew = nNew*2; - p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew); - if( !p->aAlloc ) return SQLITE_NOMEM; - p->nAlloc = nNew; - } - - /* Copy as much data as is available in the buffer into the start of - ** p->aAlloc[]. */ - memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); - p->iReadOff += nAvail; - nRem = nByte - nAvail; - - /* The following loop copies up to p->nBuffer bytes per iteration into - ** the p->aAlloc[] buffer. */ - while( nRem>0 ){ - int rc; /* vdbeSorterIterRead() return code */ - int nCopy; /* Number of bytes to copy */ - u8 *aNext; /* Pointer to buffer to copy data from */ - - nCopy = nRem; - if( nRem>p->nBuffer ) nCopy = p->nBuffer; - rc = vdbeSorterIterRead(db, p, nCopy, &aNext); - if( rc!=SQLITE_OK ) return rc; - assert( aNext!=p->aAlloc ); - memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); - nRem -= nCopy; - } - - *ppOut = p->aAlloc; - } - - return SQLITE_OK; -} - -/* -** Read a varint from the stream of data accessed by p. Set *pnOut to -** the value read. -*/ -static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){ - int iBuf; - - iBuf = p->iReadOff % p->nBuffer; - if( iBuf && (p->nBuffer-iBuf)>=9 ){ - p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); - }else{ - u8 aVarint[16], *a; - int i = 0, rc; - do{ - rc = vdbeSorterIterRead(db, p, 1, &a); - if( rc ) return rc; - aVarint[(i++)&0xf] = a[0]; - }while( (a[0]&0x80)!=0 ); - sqlite3GetVarint(aVarint, pnOut); - } - - return SQLITE_OK; -} - - -/* -** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if -** no error occurs, or an SQLite error code if one does. -*/ -static int vdbeSorterIterNext( - sqlite3 *db, /* Database handle (for sqlite3DbMalloc() ) */ - VdbeSorterIter *pIter /* Iterator to advance */ -){ - int rc; /* Return Code */ - u64 nRec = 0; /* Size of record in bytes */ - - if( pIter->iReadOff>=pIter->iEof ){ - /* This is an EOF condition */ - vdbeSorterIterZero(db, pIter); - return SQLITE_OK; - } - - rc = vdbeSorterIterVarint(db, pIter, &nRec); - if( rc==SQLITE_OK ){ - pIter->nKey = (int)nRec; - rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey); - } - - return rc; -} - -/* -** Initialize iterator pIter to scan through the PMA stored in file pFile -** starting at offset iStart and ending at offset iEof-1. This function -** leaves the iterator pointing to the first key in the PMA (or EOF if the -** PMA is empty). -*/ -static int vdbeSorterIterInit( - sqlite3 *db, /* Database handle */ - const VdbeSorter *pSorter, /* Sorter object */ - i64 iStart, /* Start offset in pFile */ - VdbeSorterIter *pIter, /* Iterator to populate */ - i64 *pnByte /* IN/OUT: Increment this value by PMA size */ -){ - int rc = SQLITE_OK; - int nBuf; - - nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); - - assert( pSorter->iWriteOff>iStart ); - assert( pIter->aAlloc==0 ); - assert( pIter->aBuffer==0 ); - pIter->pFile = pSorter->pTemp1; - pIter->iReadOff = iStart; - pIter->nAlloc = 128; - pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc); - pIter->nBuffer = nBuf; - pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); - - if( !pIter->aBuffer ){ - rc = SQLITE_NOMEM; - }else{ - int iBuf; - - iBuf = iStart % nBuf; - if( iBuf ){ - int nRead = nBuf - iBuf; - if( (iStart + nRead) > pSorter->iWriteOff ){ - nRead = (int)(pSorter->iWriteOff - iStart); - } - rc = sqlite3OsRead( - pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart - ); - assert( rc!=SQLITE_IOERR_SHORT_READ ); - } - - if( rc==SQLITE_OK ){ - u64 nByte; /* Size of PMA in bytes */ - pIter->iEof = pSorter->iWriteOff; - rc = vdbeSorterIterVarint(db, pIter, &nByte); - pIter->iEof = pIter->iReadOff + nByte; - *pnByte += nByte; - } - } - - if( rc==SQLITE_OK ){ - rc = vdbeSorterIterNext(db, pIter); - } - return rc; -} - - -/* -** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, -** size nKey2 bytes). Argument pKeyInfo supplies the collation functions -** used by the comparison. If an error occurs, return an SQLite error code. -** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive -** value, depending on whether key1 is smaller, equal to or larger than key2. -** -** If the bOmitRowid argument is non-zero, assume both keys end in a rowid -** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid -** is true and key1 contains even a single NULL value, it is considered to -** be less than key2. Even if key2 also contains NULL values. -** -** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace -** has been allocated and contains an unpacked record that is used as key2. -*/ -static void vdbeSorterCompare( - const VdbeCursor *pCsr, /* Cursor object (for pKeyInfo) */ - int bOmitRowid, /* Ignore rowid field at end of keys */ - const void *pKey1, int nKey1, /* Left side of comparison */ - const void *pKey2, int nKey2, /* Right side of comparison */ - int *pRes /* OUT: Result of comparison */ -){ - KeyInfo *pKeyInfo = pCsr->pKeyInfo; - VdbeSorter *pSorter = pCsr->pSorter; - UnpackedRecord *r2 = pSorter->pUnpacked; - int i; - - if( pKey2 ){ - sqlite3VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2); - } - - if( bOmitRowid ){ - r2->nField = pKeyInfo->nField; - assert( r2->nField>0 ); - for(i=0; i<r2->nField; i++){ - if( r2->aMem[i].flags & MEM_Null ){ - *pRes = -1; - return; - } - } - r2->flags |= UNPACKED_PREFIX_MATCH; - } - - *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2); -} - -/* -** This function is called to compare two iterator keys when merging -** multiple b-tree segments. Parameter iOut is the index of the aTree[] -** value to recalculate. -*/ -static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){ - VdbeSorter *pSorter = pCsr->pSorter; - int i1; - int i2; - int iRes; - VdbeSorterIter *p1; - VdbeSorterIter *p2; - - assert( iOut<pSorter->nTree && iOut>0 ); - - if( iOut>=(pSorter->nTree/2) ){ - i1 = (iOut - pSorter->nTree/2) * 2; - i2 = i1 + 1; - }else{ - i1 = pSorter->aTree[iOut*2]; - i2 = pSorter->aTree[iOut*2+1]; - } - - p1 = &pSorter->aIter[i1]; - p2 = &pSorter->aIter[i2]; - - if( p1->pFile==0 ){ - iRes = i2; - }else if( p2->pFile==0 ){ - iRes = i1; - }else{ - int res; - assert( pCsr->pSorter->pUnpacked!=0 ); /* allocated in vdbeSorterMerge() */ - vdbeSorterCompare( - pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res - ); - if( res<=0 ){ - iRes = i1; - }else{ - iRes = i2; - } - } - - pSorter->aTree[iOut] = iRes; - return SQLITE_OK; -} - -/* -** Initialize the temporary index cursor just opened as a sorter cursor. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){ - int pgsz; /* Page size of main database */ - int mxCache; /* Cache size */ - VdbeSorter *pSorter; /* The new sorter */ - char *d; /* Dummy */ - - assert( pCsr->pKeyInfo && pCsr->pBt==0 ); - pCsr->pSorter = pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter)); - if( pSorter==0 ){ - return SQLITE_NOMEM; - } - - pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d); - if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM; - assert( pSorter->pUnpacked==(UnpackedRecord *)d ); - - if( !sqlite3TempInMemory(db) ){ - pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt); - pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz; - mxCache = db->aDb[0].pSchema->cache_size; - if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING; - pSorter->mxPmaSize = mxCache * pgsz; - } - - return SQLITE_OK; -} - -/* -** Free the list of sorted records starting at pRecord. -*/ -static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ - SorterRecord *p; - SorterRecord *pNext; - for(p=pRecord; p; p=pNext){ - pNext = p->pNext; - sqlite3DbFree(db, p); - } -} - -/* -** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. -*/ -SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ - VdbeSorter *pSorter = pCsr->pSorter; - if( pSorter ){ - if( pSorter->aIter ){ - int i; - for(i=0; i<pSorter->nTree; i++){ - vdbeSorterIterZero(db, &pSorter->aIter[i]); - } - sqlite3DbFree(db, pSorter->aIter); - } - if( pSorter->pTemp1 ){ - sqlite3OsCloseFree(pSorter->pTemp1); - } - vdbeSorterRecordFree(db, pSorter->pRecord); - sqlite3DbFree(db, pSorter->pUnpacked); - sqlite3DbFree(db, pSorter); - pCsr->pSorter = 0; - } -} - -/* -** Allocate space for a file-handle and open a temporary file. If successful, -** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK. -** Otherwise, set *ppFile to 0 and return an SQLite error code. -*/ -static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){ - int dummy; - return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile, - SQLITE_OPEN_TEMP_JOURNAL | - SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | - SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &dummy - ); -} - -/* -** Merge the two sorted lists p1 and p2 into a single list. -** Set *ppOut to the head of the new list. -*/ -static void vdbeSorterMerge( - const VdbeCursor *pCsr, /* For pKeyInfo */ - SorterRecord *p1, /* First list to merge */ - SorterRecord *p2, /* Second list to merge */ - SorterRecord **ppOut /* OUT: Head of merged list */ -){ - SorterRecord *pFinal = 0; - SorterRecord **pp = &pFinal; - void *pVal2 = p2 ? p2->pVal : 0; - - while( p1 && p2 ){ - int res; - vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res); - if( res<=0 ){ - *pp = p1; - pp = &p1->pNext; - p1 = p1->pNext; - pVal2 = 0; - }else{ - *pp = p2; - pp = &p2->pNext; - p2 = p2->pNext; - if( p2==0 ) break; - pVal2 = p2->pVal; - } - } - *pp = p1 ? p1 : p2; - *ppOut = pFinal; -} - -/* -** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK -** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error -** occurs. -*/ -static int vdbeSorterSort(const VdbeCursor *pCsr){ - int i; - SorterRecord **aSlot; - SorterRecord *p; - VdbeSorter *pSorter = pCsr->pSorter; - - aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); - if( !aSlot ){ - return SQLITE_NOMEM; - } - - p = pSorter->pRecord; - while( p ){ - SorterRecord *pNext = p->pNext; - p->pNext = 0; - for(i=0; aSlot[i]; i++){ - vdbeSorterMerge(pCsr, p, aSlot[i], &p); - aSlot[i] = 0; - } - aSlot[i] = p; - p = pNext; - } - - p = 0; - for(i=0; i<64; i++){ - vdbeSorterMerge(pCsr, p, aSlot[i], &p); - } - pSorter->pRecord = p; - - sqlite3_free(aSlot); - return SQLITE_OK; -} - -/* -** Initialize a file-writer object. -*/ -static void fileWriterInit( - sqlite3 *db, /* Database (for malloc) */ - sqlite3_file *pFile, /* File to write to */ - FileWriter *p, /* Object to populate */ - i64 iStart /* Offset of pFile to begin writing at */ -){ - int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); - - memset(p, 0, sizeof(FileWriter)); - p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); - if( !p->aBuffer ){ - p->eFWErr = SQLITE_NOMEM; - }else{ - p->iBufEnd = p->iBufStart = (iStart % nBuf); - p->iWriteOff = iStart - p->iBufStart; - p->nBuffer = nBuf; - p->pFile = pFile; - } -} - -/* -** Write nData bytes of data to the file-write object. Return SQLITE_OK -** if successful, or an SQLite error code if an error occurs. -*/ -static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){ - int nRem = nData; - while( nRem>0 && p->eFWErr==0 ){ - int nCopy = nRem; - if( nCopy>(p->nBuffer - p->iBufEnd) ){ - nCopy = p->nBuffer - p->iBufEnd; - } - - memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); - p->iBufEnd += nCopy; - if( p->iBufEnd==p->nBuffer ){ - p->eFWErr = sqlite3OsWrite(p->pFile, - &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, - p->iWriteOff + p->iBufStart - ); - p->iBufStart = p->iBufEnd = 0; - p->iWriteOff += p->nBuffer; - } - assert( p->iBufEnd<p->nBuffer ); - - nRem -= nCopy; - } -} - -/* -** Flush any buffered data to disk and clean up the file-writer object. -** The results of using the file-writer after this call are undefined. -** Return SQLITE_OK if flushing the buffered data succeeds or is not -** required. Otherwise, return an SQLite error code. -** -** Before returning, set *piEof to the offset immediately following the -** last byte written to the file. -*/ -static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){ - int rc; - if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ - p->eFWErr = sqlite3OsWrite(p->pFile, - &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, - p->iWriteOff + p->iBufStart - ); - } - *piEof = (p->iWriteOff + p->iBufEnd); - sqlite3DbFree(db, p->aBuffer); - rc = p->eFWErr; - memset(p, 0, sizeof(FileWriter)); - return rc; -} - -/* -** Write value iVal encoded as a varint to the file-write object. Return -** SQLITE_OK if successful, or an SQLite error code if an error occurs. -*/ -static void fileWriterWriteVarint(FileWriter *p, u64 iVal){ - int nByte; - u8 aByte[10]; - nByte = sqlite3PutVarint(aByte, iVal); - fileWriterWrite(p, aByte, nByte); -} - -/* -** Write the current contents of the in-memory linked-list to a PMA. Return -** SQLITE_OK if successful, or an SQLite error code otherwise. -** -** The format of a PMA is: -** -** * A varint. This varint contains the total number of bytes of content -** in the PMA (not including the varint itself). -** -** * One or more records packed end-to-end in order of ascending keys. -** Each record consists of a varint followed by a blob of data (the -** key). The varint is the number of bytes in the blob of data. -*/ -static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){ - int rc = SQLITE_OK; /* Return code */ - VdbeSorter *pSorter = pCsr->pSorter; - FileWriter writer; - - memset(&writer, 0, sizeof(FileWriter)); - - if( pSorter->nInMemory==0 ){ - assert( pSorter->pRecord==0 ); - return rc; - } - - rc = vdbeSorterSort(pCsr); - - /* If the first temporary PMA file has not been opened, open it now. */ - if( rc==SQLITE_OK && pSorter->pTemp1==0 ){ - rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1); - assert( rc!=SQLITE_OK || pSorter->pTemp1 ); - assert( pSorter->iWriteOff==0 ); - assert( pSorter->nPMA==0 ); - } - - if( rc==SQLITE_OK ){ - SorterRecord *p; - SorterRecord *pNext = 0; - - fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff); - pSorter->nPMA++; - fileWriterWriteVarint(&writer, pSorter->nInMemory); - for(p=pSorter->pRecord; p; p=pNext){ - pNext = p->pNext; - fileWriterWriteVarint(&writer, p->nVal); - fileWriterWrite(&writer, p->pVal, p->nVal); - sqlite3DbFree(db, p); - } - pSorter->pRecord = p; - rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff); - } - - return rc; -} - -/* -** Add a record to the sorter. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterWrite( - sqlite3 *db, /* Database handle */ - const VdbeCursor *pCsr, /* Sorter cursor */ - Mem *pVal /* Memory cell containing record */ -){ - VdbeSorter *pSorter = pCsr->pSorter; - int rc = SQLITE_OK; /* Return Code */ - SorterRecord *pNew; /* New list element */ - - assert( pSorter ); - pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n; - - pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord)); - if( pNew==0 ){ - rc = SQLITE_NOMEM; - }else{ - pNew->pVal = (void *)&pNew[1]; - memcpy(pNew->pVal, pVal->z, pVal->n); - pNew->nVal = pVal->n; - pNew->pNext = pSorter->pRecord; - pSorter->pRecord = pNew; - } - - /* See if the contents of the sorter should now be written out. They - ** are written out when either of the following are true: - ** - ** * The total memory allocated for the in-memory list is greater - ** than (page-size * cache-size), or - ** - ** * The total memory allocated for the in-memory list is greater - ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. - */ - if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && ( - (pSorter->nInMemory>pSorter->mxPmaSize) - || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull()) - )){ -#ifdef SQLITE_DEBUG - i64 nExpect = pSorter->iWriteOff - + sqlite3VarintLen(pSorter->nInMemory) - + pSorter->nInMemory; -#endif - rc = vdbeSorterListToPMA(db, pCsr); - pSorter->nInMemory = 0; - assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) ); - } - - return rc; -} - -/* -** Helper function for sqlite3VdbeSorterRewind(). -*/ -static int vdbeSorterInitMerge( - sqlite3 *db, /* Database handle */ - const VdbeCursor *pCsr, /* Cursor handle for this sorter */ - i64 *pnByte /* Sum of bytes in all opened PMAs */ -){ - VdbeSorter *pSorter = pCsr->pSorter; - int rc = SQLITE_OK; /* Return code */ - int i; /* Used to iterator through aIter[] */ - i64 nByte = 0; /* Total bytes in all opened PMAs */ - - /* Initialize the iterators. */ - for(i=0; i<SORTER_MAX_MERGE_COUNT; i++){ - VdbeSorterIter *pIter = &pSorter->aIter[i]; - rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte); - pSorter->iReadOff = pIter->iEof; - assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff ); - if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break; - } - - /* Initialize the aTree[] array. */ - for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){ - rc = vdbeSorterDoCompare(pCsr, i); - } - - *pnByte = nByte; - return rc; -} - -/* -** Once the sorter has been populated, this function is called to prepare -** for iterating through its contents in sorted order. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ - VdbeSorter *pSorter = pCsr->pSorter; - int rc; /* Return code */ - sqlite3_file *pTemp2 = 0; /* Second temp file to use */ - i64 iWrite2 = 0; /* Write offset for pTemp2 */ - int nIter; /* Number of iterators used */ - int nByte; /* Bytes of space required for aIter/aTree */ - int N = 2; /* Power of 2 >= nIter */ - - assert( pSorter ); - - /* If no data has been written to disk, then do not do so now. Instead, - ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly - ** from the in-memory list. */ - if( pSorter->nPMA==0 ){ - *pbEof = !pSorter->pRecord; - assert( pSorter->aTree==0 ); - return vdbeSorterSort(pCsr); - } - - /* Write the current in-memory list to a PMA. */ - rc = vdbeSorterListToPMA(db, pCsr); - if( rc!=SQLITE_OK ) return rc; - - /* Allocate space for aIter[] and aTree[]. */ - nIter = pSorter->nPMA; - if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT; - assert( nIter>0 ); - while( N<nIter ) N += N; - nByte = N * (sizeof(int) + sizeof(VdbeSorterIter)); - pSorter->aIter = (VdbeSorterIter *)sqlite3DbMallocZero(db, nByte); - if( !pSorter->aIter ) return SQLITE_NOMEM; - pSorter->aTree = (int *)&pSorter->aIter[N]; - pSorter->nTree = N; - - do { - int iNew; /* Index of new, merged, PMA */ - - for(iNew=0; - rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; - iNew++ - ){ - int rc2; /* Return code from fileWriterFinish() */ - FileWriter writer; /* Object used to write to disk */ - i64 nWrite; /* Number of bytes in new PMA */ - - memset(&writer, 0, sizeof(FileWriter)); - - /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1, - ** initialize an iterator for each of them and break out of the loop. - ** These iterators will be incrementally merged as the VDBE layer calls - ** sqlite3VdbeSorterNext(). - ** - ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs, - ** initialize interators for SORTER_MAX_MERGE_COUNT of them. These PMAs - ** are merged into a single PMA that is written to file pTemp2. - */ - rc = vdbeSorterInitMerge(db, pCsr, &nWrite); - assert( rc!=SQLITE_OK || pSorter->aIter[ pSorter->aTree[1] ].pFile ); - if( rc!=SQLITE_OK || pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){ - break; - } - - /* Open the second temp file, if it is not already open. */ - if( pTemp2==0 ){ - assert( iWrite2==0 ); - rc = vdbeSorterOpenTempFile(db, &pTemp2); - } - - if( rc==SQLITE_OK ){ - int bEof = 0; - fileWriterInit(db, pTemp2, &writer, iWrite2); - fileWriterWriteVarint(&writer, nWrite); - while( rc==SQLITE_OK && bEof==0 ){ - VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ]; - assert( pIter->pFile ); - - fileWriterWriteVarint(&writer, pIter->nKey); - fileWriterWrite(&writer, pIter->aKey, pIter->nKey); - rc = sqlite3VdbeSorterNext(db, pCsr, &bEof); - } - rc2 = fileWriterFinish(db, &writer, &iWrite2); - if( rc==SQLITE_OK ) rc = rc2; - } - } - - if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){ - break; - }else{ - sqlite3_file *pTmp = pSorter->pTemp1; - pSorter->nPMA = iNew; - pSorter->pTemp1 = pTemp2; - pTemp2 = pTmp; - pSorter->iWriteOff = iWrite2; - pSorter->iReadOff = 0; - iWrite2 = 0; - } - }while( rc==SQLITE_OK ); - - if( pTemp2 ){ - sqlite3OsCloseFree(pTemp2); - } - *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); - return rc; -} - -/* -** Advance to the next element in the sorter. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ - VdbeSorter *pSorter = pCsr->pSorter; - int rc; /* Return code */ - - if( pSorter->aTree ){ - int iPrev = pSorter->aTree[1];/* Index of iterator to advance */ - int i; /* Index of aTree[] to recalculate */ - - rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]); - for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){ - rc = vdbeSorterDoCompare(pCsr, i); - } - - *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); - }else{ - SorterRecord *pFree = pSorter->pRecord; - pSorter->pRecord = pFree->pNext; - pFree->pNext = 0; - vdbeSorterRecordFree(db, pFree); - *pbEof = !pSorter->pRecord; - rc = SQLITE_OK; - } - return rc; -} - -/* -** Return a pointer to a buffer owned by the sorter that contains the -** current key. -*/ -static void *vdbeSorterRowkey( - const VdbeSorter *pSorter, /* Sorter object */ - int *pnKey /* OUT: Size of current key in bytes */ -){ - void *pKey; - if( pSorter->aTree ){ - VdbeSorterIter *pIter; - pIter = &pSorter->aIter[ pSorter->aTree[1] ]; - *pnKey = pIter->nKey; - pKey = pIter->aKey; - }else{ - *pnKey = pSorter->pRecord->nVal; - pKey = pSorter->pRecord->pVal; - } - return pKey; -} - -/* -** Copy the current sorter key into the memory cell pOut. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ - VdbeSorter *pSorter = pCsr->pSorter; - void *pKey; int nKey; /* Sorter key to copy into pOut */ - - pKey = vdbeSorterRowkey(pSorter, &nKey); - if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){ - return SQLITE_NOMEM; - } - pOut->n = nKey; - MemSetTypeFlag(pOut, MEM_Blob); - memcpy(pOut->z, pKey, nKey); - - return SQLITE_OK; -} - -/* -** Compare the key in memory cell pVal with the key that the sorter cursor -** passed as the first argument currently points to. For the purposes of -** the comparison, ignore the rowid field at the end of each record. -** -** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). -** Otherwise, set *pRes to a negative, zero or positive value if the -** key in pVal is smaller than, equal to or larger than the current sorter -** key. -*/ -SQLITE_PRIVATE int sqlite3VdbeSorterCompare( - const VdbeCursor *pCsr, /* Sorter cursor */ - Mem *pVal, /* Value to compare to current sorter key */ - int *pRes /* OUT: Result of comparison */ -){ - VdbeSorter *pSorter = pCsr->pSorter; - void *pKey; int nKey; /* Sorter key to compare pVal with */ - - pKey = vdbeSorterRowkey(pSorter, &nKey); - vdbeSorterCompare(pCsr, 1, pVal->z, pVal->n, pKey, nKey, pRes); - return SQLITE_OK; -} - -/************** End of vdbesort.c ********************************************/ -/************** Begin file journal.c *****************************************/ -/* -** 2007 August 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file implements a special kind of sqlite3_file object used -** by SQLite to create journal files if the atomic-write optimization -** is enabled. -** -** The distinctive characteristic of this sqlite3_file is that the -** actual on disk file is created lazily. When the file is created, -** the caller specifies a buffer size for an in-memory buffer to -** be used to service read() and write() requests. The actual file -** on disk is not created or populated until either: -** -** 1) The in-memory representation grows too large for the allocated -** buffer, or -** 2) The sqlite3JournalCreate() function is called. -*/ -#ifdef SQLITE_ENABLE_ATOMIC_WRITE - - -/* -** A JournalFile object is a subclass of sqlite3_file used by -** as an open file handle for journal files. -*/ -struct JournalFile { - sqlite3_io_methods *pMethod; /* I/O methods on journal files */ - int nBuf; /* Size of zBuf[] in bytes */ - char *zBuf; /* Space to buffer journal writes */ - int iSize; /* Amount of zBuf[] currently used */ - int flags; /* xOpen flags */ - sqlite3_vfs *pVfs; /* The "real" underlying VFS */ - sqlite3_file *pReal; /* The "real" underlying file descriptor */ - const char *zJournal; /* Name of the journal file */ -}; -typedef struct JournalFile JournalFile; - -/* -** If it does not already exists, create and populate the on-disk file -** for JournalFile p. -*/ -static int createFile(JournalFile *p){ - int rc = SQLITE_OK; - if( !p->pReal ){ - sqlite3_file *pReal = (sqlite3_file *)&p[1]; - rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0); - if( rc==SQLITE_OK ){ - p->pReal = pReal; - if( p->iSize>0 ){ - assert(p->iSize<=p->nBuf); - rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0); - } - if( rc!=SQLITE_OK ){ - /* If an error occurred while writing to the file, close it before - ** returning. This way, SQLite uses the in-memory journal data to - ** roll back changes made to the internal page-cache before this - ** function was called. */ - sqlite3OsClose(pReal); - p->pReal = 0; - } - } - } - return rc; -} - -/* -** Close the file. -*/ -static int jrnlClose(sqlite3_file *pJfd){ - JournalFile *p = (JournalFile *)pJfd; - if( p->pReal ){ - sqlite3OsClose(p->pReal); - } - sqlite3_free(p->zBuf); - return SQLITE_OK; -} - -/* -** Read data from the file. -*/ -static int jrnlRead( - sqlite3_file *pJfd, /* The journal file from which to read */ - void *zBuf, /* Put the results here */ - int iAmt, /* Number of bytes to read */ - sqlite_int64 iOfst /* Begin reading at this offset */ -){ - int rc = SQLITE_OK; - JournalFile *p = (JournalFile *)pJfd; - if( p->pReal ){ - rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst); - }else if( (iAmt+iOfst)>p->iSize ){ - rc = SQLITE_IOERR_SHORT_READ; - }else{ - memcpy(zBuf, &p->zBuf[iOfst], iAmt); - } - return rc; -} - -/* -** Write data to the file. -*/ -static int jrnlWrite( - sqlite3_file *pJfd, /* The journal file into which to write */ - const void *zBuf, /* Take data to be written from here */ - int iAmt, /* Number of bytes to write */ - sqlite_int64 iOfst /* Begin writing at this offset into the file */ -){ - int rc = SQLITE_OK; - JournalFile *p = (JournalFile *)pJfd; - if( !p->pReal && (iOfst+iAmt)>p->nBuf ){ - rc = createFile(p); - } - if( rc==SQLITE_OK ){ - if( p->pReal ){ - rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst); - }else{ - memcpy(&p->zBuf[iOfst], zBuf, iAmt); - if( p->iSize<(iOfst+iAmt) ){ - p->iSize = (iOfst+iAmt); - } - } - } - return rc; -} - -/* -** Truncate the file. -*/ -static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ - int rc = SQLITE_OK; - JournalFile *p = (JournalFile *)pJfd; - if( p->pReal ){ - rc = sqlite3OsTruncate(p->pReal, size); - }else if( size<p->iSize ){ - p->iSize = size; - } - return rc; -} - -/* -** Sync the file. -*/ -static int jrnlSync(sqlite3_file *pJfd, int flags){ - int rc; - JournalFile *p = (JournalFile *)pJfd; - if( p->pReal ){ - rc = sqlite3OsSync(p->pReal, flags); - }else{ - rc = SQLITE_OK; - } - return rc; -} - -/* -** Query the size of the file in bytes. -*/ -static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ - int rc = SQLITE_OK; - JournalFile *p = (JournalFile *)pJfd; - if( p->pReal ){ - rc = sqlite3OsFileSize(p->pReal, pSize); - }else{ - *pSize = (sqlite_int64) p->iSize; - } - return rc; -} - -/* -** Table of methods for JournalFile sqlite3_file object. -*/ -static struct sqlite3_io_methods JournalFileMethods = { - 1, /* iVersion */ - jrnlClose, /* xClose */ - jrnlRead, /* xRead */ - jrnlWrite, /* xWrite */ - jrnlTruncate, /* xTruncate */ - jrnlSync, /* xSync */ - jrnlFileSize, /* xFileSize */ - 0, /* xLock */ - 0, /* xUnlock */ - 0, /* xCheckReservedLock */ - 0, /* xFileControl */ - 0, /* xSectorSize */ - 0, /* xDeviceCharacteristics */ - 0, /* xShmMap */ - 0, /* xShmLock */ - 0, /* xShmBarrier */ - 0 /* xShmUnmap */ -}; - -/* -** Open a journal file. -*/ -SQLITE_PRIVATE int sqlite3JournalOpen( - sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ - const char *zName, /* Name of the journal file */ - sqlite3_file *pJfd, /* Preallocated, blank file handle */ - int flags, /* Opening flags */ - int nBuf /* Bytes buffered before opening the file */ -){ - JournalFile *p = (JournalFile *)pJfd; - memset(p, 0, sqlite3JournalSize(pVfs)); - if( nBuf>0 ){ - p->zBuf = sqlite3MallocZero(nBuf); - if( !p->zBuf ){ - return SQLITE_NOMEM; - } - }else{ - return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); - } - p->pMethod = &JournalFileMethods; - p->nBuf = nBuf; - p->flags = flags; - p->zJournal = zName; - p->pVfs = pVfs; - return SQLITE_OK; -} - -/* -** If the argument p points to a JournalFile structure, and the underlying -** file has not yet been created, create it now. -*/ -SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){ - if( p->pMethods!=&JournalFileMethods ){ - return SQLITE_OK; - } - return createFile((JournalFile *)p); -} - -/* -** The file-handle passed as the only argument is guaranteed to be an open -** file. It may or may not be of class JournalFile. If the file is a -** JournalFile, and the underlying file on disk has not yet been opened, -** return 0. Otherwise, return 1. -*/ -SQLITE_PRIVATE int sqlite3JournalExists(sqlite3_file *p){ - return (p->pMethods!=&JournalFileMethods || ((JournalFile *)p)->pReal!=0); -} - -/* -** Return the number of bytes required to store a JournalFile that uses vfs -** pVfs to create the underlying on-disk files. -*/ -SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){ - return (pVfs->szOsFile+sizeof(JournalFile)); -} -#endif - -/************** End of journal.c *********************************************/ -/************** Begin file memjournal.c **************************************/ -/* -** 2008 October 7 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains code use to implement an in-memory rollback journal. -** The in-memory rollback journal is used to journal transactions for -** ":memory:" databases and when the journal_mode=MEMORY pragma is used. -*/ - -/* Forward references to internal structures */ -typedef struct MemJournal MemJournal; -typedef struct FilePoint FilePoint; -typedef struct FileChunk FileChunk; - -/* Space to hold the rollback journal is allocated in increments of -** this many bytes. -** -** The size chosen is a little less than a power of two. That way, -** the FileChunk object will have a size that almost exactly fills -** a power-of-two allocation. This mimimizes wasted space in power-of-two -** memory allocators. -*/ -#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*))) - -/* Macro to find the minimum of two numeric values. -*/ -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -/* -** The rollback journal is composed of a linked list of these structures. -*/ -struct FileChunk { - FileChunk *pNext; /* Next chunk in the journal */ - u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */ -}; - -/* -** An instance of this object serves as a cursor into the rollback journal. -** The cursor can be either for reading or writing. -*/ -struct FilePoint { - sqlite3_int64 iOffset; /* Offset from the beginning of the file */ - FileChunk *pChunk; /* Specific chunk into which cursor points */ -}; - -/* -** This subclass is a subclass of sqlite3_file. Each open memory-journal -** is an instance of this class. -*/ -struct MemJournal { - sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */ - FileChunk *pFirst; /* Head of in-memory chunk-list */ - FilePoint endpoint; /* Pointer to the end of the file */ - FilePoint readpoint; /* Pointer to the end of the last xRead() */ -}; - -/* -** Read data from the in-memory journal file. This is the implementation -** of the sqlite3_vfs.xRead method. -*/ -static int memjrnlRead( - sqlite3_file *pJfd, /* The journal file from which to read */ - void *zBuf, /* Put the results here */ - int iAmt, /* Number of bytes to read */ - sqlite_int64 iOfst /* Begin reading at this offset */ -){ - MemJournal *p = (MemJournal *)pJfd; - u8 *zOut = zBuf; - int nRead = iAmt; - int iChunkOffset; - FileChunk *pChunk; - - /* SQLite never tries to read past the end of a rollback journal file */ - assert( iOfst+iAmt<=p->endpoint.iOffset ); - - if( p->readpoint.iOffset!=iOfst || iOfst==0 ){ - sqlite3_int64 iOff = 0; - for(pChunk=p->pFirst; - ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst; - pChunk=pChunk->pNext - ){ - iOff += JOURNAL_CHUNKSIZE; - } - }else{ - pChunk = p->readpoint.pChunk; - } - - iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE); - do { - int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset; - int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset)); - memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy); - zOut += nCopy; - nRead -= iSpace; - iChunkOffset = 0; - } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 ); - p->readpoint.iOffset = iOfst+iAmt; - p->readpoint.pChunk = pChunk; - - return SQLITE_OK; -} - -/* -** Write data to the file. -*/ -static int memjrnlWrite( - sqlite3_file *pJfd, /* The journal file into which to write */ - const void *zBuf, /* Take data to be written from here */ - int iAmt, /* Number of bytes to write */ - sqlite_int64 iOfst /* Begin writing at this offset into the file */ -){ - MemJournal *p = (MemJournal *)pJfd; - int nWrite = iAmt; - u8 *zWrite = (u8 *)zBuf; - - /* An in-memory journal file should only ever be appended to. Random - ** access writes are not required by sqlite. - */ - assert( iOfst==p->endpoint.iOffset ); - UNUSED_PARAMETER(iOfst); - - while( nWrite>0 ){ - FileChunk *pChunk = p->endpoint.pChunk; - int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE); - int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset); - - if( iChunkOffset==0 ){ - /* New chunk is required to extend the file. */ - FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk)); - if( !pNew ){ - return SQLITE_IOERR_NOMEM; - } - pNew->pNext = 0; - if( pChunk ){ - assert( p->pFirst ); - pChunk->pNext = pNew; - }else{ - assert( !p->pFirst ); - p->pFirst = pNew; - } - p->endpoint.pChunk = pNew; - } - - memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace); - zWrite += iSpace; - nWrite -= iSpace; - p->endpoint.iOffset += iSpace; - } - - return SQLITE_OK; -} - -/* -** Truncate the file. -*/ -static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ - MemJournal *p = (MemJournal *)pJfd; - FileChunk *pChunk; - assert(size==0); - UNUSED_PARAMETER(size); - pChunk = p->pFirst; - while( pChunk ){ - FileChunk *pTmp = pChunk; - pChunk = pChunk->pNext; - sqlite3_free(pTmp); - } - sqlite3MemJournalOpen(pJfd); - return SQLITE_OK; -} - -/* -** Close the file. -*/ -static int memjrnlClose(sqlite3_file *pJfd){ - memjrnlTruncate(pJfd, 0); - return SQLITE_OK; -} - - -/* -** Sync the file. -** -** Syncing an in-memory journal is a no-op. And, in fact, this routine -** is never called in a working implementation. This implementation -** exists purely as a contingency, in case some malfunction in some other -** part of SQLite causes Sync to be called by mistake. -*/ -static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - return SQLITE_OK; -} - -/* -** Query the size of the file in bytes. -*/ -static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ - MemJournal *p = (MemJournal *)pJfd; - *pSize = (sqlite_int64) p->endpoint.iOffset; - return SQLITE_OK; -} - -/* -** Table of methods for MemJournal sqlite3_file object. -*/ -static const struct sqlite3_io_methods MemJournalMethods = { - 1, /* iVersion */ - memjrnlClose, /* xClose */ - memjrnlRead, /* xRead */ - memjrnlWrite, /* xWrite */ - memjrnlTruncate, /* xTruncate */ - memjrnlSync, /* xSync */ - memjrnlFileSize, /* xFileSize */ - 0, /* xLock */ - 0, /* xUnlock */ - 0, /* xCheckReservedLock */ - 0, /* xFileControl */ - 0, /* xSectorSize */ - 0, /* xDeviceCharacteristics */ - 0, /* xShmMap */ - 0, /* xShmLock */ - 0, /* xShmBarrier */ - 0 /* xShmUnlock */ -}; - -/* -** Open a journal file. -*/ -SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){ - MemJournal *p = (MemJournal *)pJfd; - assert( EIGHT_BYTE_ALIGNMENT(p) ); - memset(p, 0, sqlite3MemJournalSize()); - p->pMethod = (sqlite3_io_methods*)&MemJournalMethods; -} - -/* -** Return true if the file-handle passed as an argument is -** an in-memory journal -*/ -SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *pJfd){ - return pJfd->pMethods==&MemJournalMethods; -} - -/* -** Return the number of bytes required to store a MemJournal file descriptor. -*/ -SQLITE_PRIVATE int sqlite3MemJournalSize(void){ - return sizeof(MemJournal); -} - -/************** End of memjournal.c ******************************************/ -/************** Begin file walker.c ******************************************/ -/* -** 2008 August 16 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains routines used for walking the parser tree for -** an SQL statement. -*/ -/* #include <stdlib.h> */ -/* #include <string.h> */ - - -/* -** Walk an expression tree. Invoke the callback once for each node -** of the expression, while decending. (In other words, the callback -** is invoked before visiting children.) -** -** The return value from the callback should be one of the WRC_* -** constants to specify how to proceed with the walk. -** -** WRC_Continue Continue descending down the tree. -** -** WRC_Prune Do not descend into child nodes. But allow -** the walk to continue with sibling nodes. -** -** WRC_Abort Do no more callbacks. Unwind the stack and -** return the top-level walk call. -** -** The return value from this routine is WRC_Abort to abandon the tree walk -** and WRC_Continue to continue. -*/ -SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){ - int rc; - if( pExpr==0 ) return WRC_Continue; - testcase( ExprHasProperty(pExpr, EP_TokenOnly) ); - testcase( ExprHasProperty(pExpr, EP_Reduced) ); - rc = pWalker->xExprCallback(pWalker, pExpr); - if( rc==WRC_Continue - && !ExprHasAnyProperty(pExpr,EP_TokenOnly) ){ - if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort; - if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort; - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; - }else{ - if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort; - } - } - return rc & WRC_Abort; -} - -/* -** Call sqlite3WalkExpr() for every expression in list p or until -** an abort request is seen. -*/ -SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){ - int i; - struct ExprList_item *pItem; - if( p ){ - for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ - if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort; - } - } - return WRC_Continue; -} - -/* -** Walk all expressions associated with SELECT statement p. Do -** not invoke the SELECT callback on p, but do (of course) invoke -** any expr callbacks and SELECT callbacks that come from subqueries. -** Return WRC_Abort or WRC_Continue. -*/ -SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){ - if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort; - if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort; - if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort; - if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort; - if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort; - if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort; - if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort; - return WRC_Continue; -} - -/* -** Walk the parse trees associated with all subqueries in the -** FROM clause of SELECT statement p. Do not invoke the select -** callback on p, but do invoke it on each FROM clause subquery -** and on any subqueries further down in the tree. Return -** WRC_Abort or WRC_Continue; -*/ -SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){ - SrcList *pSrc; - int i; - struct SrcList_item *pItem; - - pSrc = p->pSrc; - if( ALWAYS(pSrc) ){ - for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ - if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){ - return WRC_Abort; - } - } - } - return WRC_Continue; -} - -/* -** Call sqlite3WalkExpr() for every expression in Select statement p. -** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and -** on the compound select chain, p->pPrior. -** -** Return WRC_Continue under normal conditions. Return WRC_Abort if -** there is an abort request. -** -** If the Walker does not have an xSelectCallback() then this routine -** is a no-op returning WRC_Continue. -*/ -SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){ - int rc; - if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue; - rc = WRC_Continue; - pWalker->walkerDepth++; - while( p ){ - rc = pWalker->xSelectCallback(pWalker, p); - if( rc ) break; - if( sqlite3WalkSelectExpr(pWalker, p) - || sqlite3WalkSelectFrom(pWalker, p) - ){ - pWalker->walkerDepth--; - return WRC_Abort; - } - p = p->pPrior; - } - pWalker->walkerDepth--; - return rc & WRC_Abort; -} - -/************** End of walker.c **********************************************/ -/************** Begin file resolve.c *****************************************/ -/* -** 2008 August 18 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains routines used for walking the parser tree and -** resolve all identifiers by associating them with a particular -** table and column. -*/ -/* #include <stdlib.h> */ -/* #include <string.h> */ - -/* -** Walk the expression tree pExpr and increase the aggregate function -** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node. -** This needs to occur when copying a TK_AGG_FUNCTION node from an -** outer query into an inner subquery. -** -** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) -** is a helper function - a callback for the tree walker. -*/ -static int incrAggDepth(Walker *pWalker, Expr *pExpr){ - if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.i; - return WRC_Continue; -} -static void incrAggFunctionDepth(Expr *pExpr, int N){ - if( N>0 ){ - Walker w; - memset(&w, 0, sizeof(w)); - w.xExprCallback = incrAggDepth; - w.u.i = N; - sqlite3WalkExpr(&w, pExpr); - } -} - -/* -** Turn the pExpr expression into an alias for the iCol-th column of the -** result set in pEList. -** -** If the result set column is a simple column reference, then this routine -** makes an exact copy. But for any other kind of expression, this -** routine make a copy of the result set column as the argument to the -** TK_AS operator. The TK_AS operator causes the expression to be -** evaluated just once and then reused for each alias. -** -** The reason for suppressing the TK_AS term when the expression is a simple -** column reference is so that the column reference will be recognized as -** usable by indices within the WHERE clause processing logic. -** -** Hack: The TK_AS operator is inhibited if zType[0]=='G'. This means -** that in a GROUP BY clause, the expression is evaluated twice. Hence: -** -** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x -** -** Is equivalent to: -** -** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 -** -** The result of random()%5 in the GROUP BY clause is probably different -** from the result in the result-set. We might fix this someday. Or -** then again, we might not... -** -** If the reference is followed by a COLLATE operator, then make sure -** the COLLATE operator is preserved. For example: -** -** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; -** -** Should be transformed into: -** -** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; -** -** The nSubquery parameter specifies how many levels of subquery the -** alias is removed from the original expression. The usually value is -** zero but it might be more if the alias is contained within a subquery -** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION -** structures must be increased by the nSubquery amount. -*/ -static void resolveAlias( - Parse *pParse, /* Parsing context */ - ExprList *pEList, /* A result set */ - int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ - Expr *pExpr, /* Transform this into an alias to the result set */ - const char *zType, /* "GROUP" or "ORDER" or "" */ - int nSubquery /* Number of subqueries that the label is moving */ -){ - Expr *pOrig; /* The iCol-th column of the result set */ - Expr *pDup; /* Copy of pOrig */ - sqlite3 *db; /* The database connection */ - - assert( iCol>=0 && iCol<pEList->nExpr ); - pOrig = pEList->a[iCol].pExpr; - assert( pOrig!=0 ); - assert( pOrig->flags & EP_Resolved ); - db = pParse->db; - pDup = sqlite3ExprDup(db, pOrig, 0); - if( pDup==0 ) return; - if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ - incrAggFunctionDepth(pDup, nSubquery); - pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); - if( pDup==0 ) return; - if( pEList->a[iCol].iAlias==0 ){ - pEList->a[iCol].iAlias = (u16)(++pParse->nAlias); - } - pDup->iTable = pEList->a[iCol].iAlias; - } - if( pExpr->op==TK_COLLATE ){ - pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); - } - - /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This - ** prevents ExprDelete() from deleting the Expr structure itself, - ** allowing it to be repopulated by the memcpy() on the following line. - ** The pExpr->u.zToken might point into memory that will be freed by the - ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to - ** make a copy of the token before doing the sqlite3DbFree(). - */ - ExprSetProperty(pExpr, EP_Static); - sqlite3ExprDelete(db, pExpr); - memcpy(pExpr, pDup, sizeof(*pExpr)); - if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){ - assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 ); - pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken); - pExpr->flags2 |= EP2_MallocedToken; - } - sqlite3DbFree(db, pDup); -} - - -/* -** Return TRUE if the name zCol occurs anywhere in the USING clause. -** -** Return FALSE if the USING clause is NULL or if it does not contain -** zCol. -*/ -static int nameInUsingClause(IdList *pUsing, const char *zCol){ - if( pUsing ){ - int k; - for(k=0; k<pUsing->nId; k++){ - if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1; - } - } - return 0; -} - -/* -** Subqueries stores the original database, table and column names for their -** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN". -** Check to see if the zSpan given to this routine matches the zDb, zTab, -** and zCol. If any of zDb, zTab, and zCol are NULL then those fields will -** match anything. -*/ -SQLITE_PRIVATE int sqlite3MatchSpanName( - const char *zSpan, - const char *zCol, - const char *zTab, - const char *zDb -){ - int n; - for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} - if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){ - return 0; - } - zSpan += n+1; - for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} - if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){ - return 0; - } - zSpan += n+1; - if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){ - return 0; - } - return 1; -} - -/* -** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up -** that name in the set of source tables in pSrcList and make the pExpr -** expression node refer back to that source column. The following changes -** are made to pExpr: -** -** pExpr->iDb Set the index in db->aDb[] of the database X -** (even if X is implied). -** pExpr->iTable Set to the cursor number for the table obtained -** from pSrcList. -** pExpr->pTab Points to the Table structure of X.Y (even if -** X and/or Y are implied.) -** pExpr->iColumn Set to the column number within the table. -** pExpr->op Set to TK_COLUMN. -** pExpr->pLeft Any expression this points to is deleted -** pExpr->pRight Any expression this points to is deleted. -** -** The zDb variable is the name of the database (the "X"). This value may be -** NULL meaning that name is of the form Y.Z or Z. Any available database -** can be used. The zTable variable is the name of the table (the "Y"). This -** value can be NULL if zDb is also NULL. If zTable is NULL it -** means that the form of the name is Z and that columns from any table -** can be used. -** -** If the name cannot be resolved unambiguously, leave an error message -** in pParse and return WRC_Abort. Return WRC_Prune on success. -*/ -static int lookupName( - Parse *pParse, /* The parsing context */ - const char *zDb, /* Name of the database containing table, or NULL */ - const char *zTab, /* Name of table containing column, or NULL */ - const char *zCol, /* Name of the column. */ - NameContext *pNC, /* The name context used to resolve the name */ - Expr *pExpr /* Make this EXPR node point to the selected column */ -){ - int i, j; /* Loop counters */ - int cnt = 0; /* Number of matching column names */ - int cntTab = 0; /* Number of matching table names */ - int nSubquery = 0; /* How many levels of subquery */ - sqlite3 *db = pParse->db; /* The database connection */ - struct SrcList_item *pItem; /* Use for looping over pSrcList items */ - struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ - NameContext *pTopNC = pNC; /* First namecontext in the list */ - Schema *pSchema = 0; /* Schema of the expression */ - int isTrigger = 0; - - assert( pNC ); /* the name context cannot be NULL. */ - assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); - - /* Initialize the node to no-match */ - pExpr->iTable = -1; - pExpr->pTab = 0; - ExprSetIrreducible(pExpr); - - /* Translate the schema name in zDb into a pointer to the corresponding - ** schema. If not found, pSchema will remain NULL and nothing will match - ** resulting in an appropriate error message toward the end of this routine - */ - if( zDb ){ - for(i=0; i<db->nDb; i++){ - assert( db->aDb[i].zName ); - if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){ - pSchema = db->aDb[i].pSchema; - break; - } - } - } - - /* Start at the inner-most context and move outward until a match is found */ - while( pNC && cnt==0 ){ - ExprList *pEList; - SrcList *pSrcList = pNC->pSrcList; - - if( pSrcList ){ - for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ - Table *pTab; - Column *pCol; - - pTab = pItem->pTab; - assert( pTab!=0 && pTab->zName!=0 ); - assert( pTab->nCol>0 ); - if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){ - int hit = 0; - pEList = pItem->pSelect->pEList; - for(j=0; j<pEList->nExpr; j++){ - if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){ - cnt++; - cntTab = 2; - pMatch = pItem; - pExpr->iColumn = j; - hit = 1; - } - } - if( hit || zTab==0 ) continue; - } - if( zDb && pTab->pSchema!=pSchema ){ - continue; - } - if( zTab ){ - const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName; - assert( zTabName!=0 ); - if( sqlite3StrICmp(zTabName, zTab)!=0 ){ - continue; - } - } - if( 0==(cntTab++) ){ - pMatch = pItem; - } - for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ - if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ - /* If there has been exactly one prior match and this match - ** is for the right-hand table of a NATURAL JOIN or is in a - ** USING clause, then skip this match. - */ - if( cnt==1 ){ - if( pItem->jointype & JT_NATURAL ) continue; - if( nameInUsingClause(pItem->pUsing, zCol) ) continue; - } - cnt++; - pMatch = pItem; - /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ - pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; - break; - } - } - } - if( pMatch ){ - pExpr->iTable = pMatch->iCursor; - pExpr->pTab = pMatch->pTab; - pSchema = pExpr->pTab->pSchema; - } - } /* if( pSrcList ) */ - -#ifndef SQLITE_OMIT_TRIGGER - /* If we have not already resolved the name, then maybe - ** it is a new.* or old.* trigger argument reference - */ - if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){ - int op = pParse->eTriggerOp; - Table *pTab = 0; - assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); - if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ - pExpr->iTable = 1; - pTab = pParse->pTriggerTab; - }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ - pExpr->iTable = 0; - pTab = pParse->pTriggerTab; - } - - if( pTab ){ - int iCol; - pSchema = pTab->pSchema; - cntTab++; - for(iCol=0; iCol<pTab->nCol; iCol++){ - Column *pCol = &pTab->aCol[iCol]; - if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ - if( iCol==pTab->iPKey ){ - iCol = -1; - } - break; - } - } - if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) ){ - iCol = -1; /* IMP: R-44911-55124 */ - } - if( iCol<pTab->nCol ){ - cnt++; - if( iCol<0 ){ - pExpr->affinity = SQLITE_AFF_INTEGER; - }else if( pExpr->iTable==0 ){ - testcase( iCol==31 ); - testcase( iCol==32 ); - pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); - }else{ - testcase( iCol==31 ); - testcase( iCol==32 ); - pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); - } - pExpr->iColumn = (i16)iCol; - pExpr->pTab = pTab; - isTrigger = 1; - } - } - } -#endif /* !defined(SQLITE_OMIT_TRIGGER) */ - - /* - ** Perhaps the name is a reference to the ROWID - */ - if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ - cnt = 1; - pExpr->iColumn = -1; /* IMP: R-44911-55124 */ - pExpr->affinity = SQLITE_AFF_INTEGER; - } - - /* - ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z - ** might refer to an result-set alias. This happens, for example, when - ** we are resolving names in the WHERE clause of the following command: - ** - ** SELECT a+b AS x FROM table WHERE x<10; - ** - ** In cases like this, replace pExpr with a copy of the expression that - ** forms the result set entry ("a+b" in the example) and return immediately. - ** Note that the expression in the result set should have already been - ** resolved by the time the WHERE clause is resolved. - */ - if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ - for(j=0; j<pEList->nExpr; j++){ - char *zAs = pEList->a[j].zName; - if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ - Expr *pOrig; - assert( pExpr->pLeft==0 && pExpr->pRight==0 ); - assert( pExpr->x.pList==0 ); - assert( pExpr->x.pSelect==0 ); - pOrig = pEList->a[j].pExpr; - if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){ - sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); - return WRC_Abort; - } - resolveAlias(pParse, pEList, j, pExpr, "", nSubquery); - cnt = 1; - pMatch = 0; - assert( zTab==0 && zDb==0 ); - goto lookupname_end; - } - } - } - - /* Advance to the next name context. The loop will exit when either - ** we have a match (cnt>0) or when we run out of name contexts. - */ - if( cnt==0 ){ - pNC = pNC->pNext; - nSubquery++; - } - } - - /* - ** If X and Y are NULL (in other words if only the column name Z is - ** supplied) and the value of Z is enclosed in double-quotes, then - ** Z is a string literal if it doesn't match any column names. In that - ** case, we need to return right away and not make any changes to - ** pExpr. - ** - ** Because no reference was made to outer contexts, the pNC->nRef - ** fields are not changed in any context. - */ - if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){ - pExpr->op = TK_STRING; - pExpr->pTab = 0; - return WRC_Prune; - } - - /* - ** cnt==0 means there was not match. cnt>1 means there were two or - ** more matches. Either way, we have an error. - */ - if( cnt!=1 ){ - const char *zErr; - zErr = cnt==0 ? "no such column" : "ambiguous column name"; - if( zDb ){ - sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); - }else if( zTab ){ - sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); - }else{ - sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); - } - pParse->checkSchema = 1; - pTopNC->nErr++; - } - - /* If a column from a table in pSrcList is referenced, then record - ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes - ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the - ** column number is greater than the number of bits in the bitmask - ** then set the high-order bit of the bitmask. - */ - if( pExpr->iColumn>=0 && pMatch!=0 ){ - int n = pExpr->iColumn; - testcase( n==BMS-1 ); - if( n>=BMS ){ - n = BMS-1; - } - assert( pMatch->iCursor==pExpr->iTable ); - pMatch->colUsed |= ((Bitmask)1)<<n; - } - - /* Clean up and return - */ - sqlite3ExprDelete(db, pExpr->pLeft); - pExpr->pLeft = 0; - sqlite3ExprDelete(db, pExpr->pRight); - pExpr->pRight = 0; - pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN); -lookupname_end: - if( cnt==1 ){ - assert( pNC!=0 ); - sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); - /* Increment the nRef value on all name contexts from TopNC up to - ** the point where the name matched. */ - for(;;){ - assert( pTopNC!=0 ); - pTopNC->nRef++; - if( pTopNC==pNC ) break; - pTopNC = pTopNC->pNext; - } - return WRC_Prune; - } else { - return WRC_Abort; - } -} - -/* -** Allocate and return a pointer to an expression to load the column iCol -** from datasource iSrc in SrcList pSrc. -*/ -SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ - Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); - if( p ){ - struct SrcList_item *pItem = &pSrc->a[iSrc]; - p->pTab = pItem->pTab; - p->iTable = pItem->iCursor; - if( p->pTab->iPKey==iCol ){ - p->iColumn = -1; - }else{ - p->iColumn = (ynVar)iCol; - testcase( iCol==BMS ); - testcase( iCol==BMS-1 ); - pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); - } - ExprSetProperty(p, EP_Resolved); - } - return p; -} - -/* -** This routine is callback for sqlite3WalkExpr(). -** -** Resolve symbolic names into TK_COLUMN operators for the current -** node in the expression tree. Return 0 to continue the search down -** the tree or 2 to abort the tree walk. -** -** This routine also does error checking and name resolution for -** function names. The operator for aggregate functions is changed -** to TK_AGG_FUNCTION. -*/ -static int resolveExprStep(Walker *pWalker, Expr *pExpr){ - NameContext *pNC; - Parse *pParse; - - pNC = pWalker->u.pNC; - assert( pNC!=0 ); - pParse = pNC->pParse; - assert( pParse==pWalker->pParse ); - - if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune; - ExprSetProperty(pExpr, EP_Resolved); -#ifndef NDEBUG - if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ - SrcList *pSrcList = pNC->pSrcList; - int i; - for(i=0; i<pNC->pSrcList->nSrc; i++){ - assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); - } - } -#endif - switch( pExpr->op ){ - -#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) - /* The special operator TK_ROW means use the rowid for the first - ** column in the FROM clause. This is used by the LIMIT and ORDER BY - ** clause processing on UPDATE and DELETE statements. - */ - case TK_ROW: { - SrcList *pSrcList = pNC->pSrcList; - struct SrcList_item *pItem; - assert( pSrcList && pSrcList->nSrc==1 ); - pItem = pSrcList->a; - pExpr->op = TK_COLUMN; - pExpr->pTab = pItem->pTab; - pExpr->iTable = pItem->iCursor; - pExpr->iColumn = -1; - pExpr->affinity = SQLITE_AFF_INTEGER; - break; - } -#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */ - - /* A lone identifier is the name of a column. - */ - case TK_ID: { - return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr); - } - - /* A table name and column name: ID.ID - ** Or a database, table and column: ID.ID.ID - */ - case TK_DOT: { - const char *zColumn; - const char *zTable; - const char *zDb; - Expr *pRight; - - /* if( pSrcList==0 ) break; */ - pRight = pExpr->pRight; - if( pRight->op==TK_ID ){ - zDb = 0; - zTable = pExpr->pLeft->u.zToken; - zColumn = pRight->u.zToken; - }else{ - assert( pRight->op==TK_DOT ); - zDb = pExpr->pLeft->u.zToken; - zTable = pRight->pLeft->u.zToken; - zColumn = pRight->pRight->u.zToken; - } - return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); - } - - /* Resolve function names - */ - case TK_CONST_FUNC: - case TK_FUNCTION: { - ExprList *pList = pExpr->x.pList; /* The argument list */ - int n = pList ? pList->nExpr : 0; /* Number of arguments */ - int no_such_func = 0; /* True if no such function exists */ - int wrong_num_args = 0; /* True if wrong number of arguments */ - int is_agg = 0; /* True if is an aggregate function */ - int auth; /* Authorization to use the function */ - int nId; /* Number of characters in function name */ - const char *zId; /* The function name. */ - FuncDef *pDef; /* Information about the function */ - u8 enc = ENC(pParse->db); /* The database encoding */ - - testcase( pExpr->op==TK_CONST_FUNC ); - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - zId = pExpr->u.zToken; - nId = sqlite3Strlen30(zId); - pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); - if( pDef==0 ){ - pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0); - if( pDef==0 ){ - no_such_func = 1; - }else{ - wrong_num_args = 1; - } - }else{ - is_agg = pDef->xFunc==0; - } -#ifndef SQLITE_OMIT_AUTHORIZATION - if( pDef ){ - auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); - if( auth!=SQLITE_OK ){ - if( auth==SQLITE_DENY ){ - sqlite3ErrorMsg(pParse, "not authorized to use function: %s", - pDef->zName); - pNC->nErr++; - } - pExpr->op = TK_NULL; - return WRC_Prune; - } - } -#endif - if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ - sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); - pNC->nErr++; - is_agg = 0; - }else if( no_such_func && pParse->db->init.busy==0 ){ - sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); - pNC->nErr++; - }else if( wrong_num_args ){ - sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", - nId, zId); - pNC->nErr++; - } - if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg; - sqlite3WalkExprList(pWalker, pList); - if( is_agg ){ - NameContext *pNC2 = pNC; - pExpr->op = TK_AGG_FUNCTION; - pExpr->op2 = 0; - while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){ - pExpr->op2++; - pNC2 = pNC2->pNext; - } - if( pNC2 ) pNC2->ncFlags |= NC_HasAgg; - pNC->ncFlags |= NC_AllowAgg; - } - /* FIX ME: Compute pExpr->affinity based on the expected return - ** type of the function - */ - return WRC_Prune; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_SELECT: - case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); -#endif - case TK_IN: { - testcase( pExpr->op==TK_IN ); - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - int nRef = pNC->nRef; -#ifndef SQLITE_OMIT_CHECK - if( (pNC->ncFlags & NC_IsCheck)!=0 ){ - sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); - } -#endif - sqlite3WalkSelect(pWalker, pExpr->x.pSelect); - assert( pNC->nRef>=nRef ); - if( nRef!=pNC->nRef ){ - ExprSetProperty(pExpr, EP_VarSelect); - } - } - break; - } -#ifndef SQLITE_OMIT_CHECK - case TK_VARIABLE: { - if( (pNC->ncFlags & NC_IsCheck)!=0 ){ - sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); - } - break; - } -#endif - } - return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue; -} - -/* -** pEList is a list of expressions which are really the result set of the -** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. -** This routine checks to see if pE is a simple identifier which corresponds -** to the AS-name of one of the terms of the expression list. If it is, -** this routine return an integer between 1 and N where N is the number of -** elements in pEList, corresponding to the matching entry. If there is -** no match, or if pE is not a simple identifier, then this routine -** return 0. -** -** pEList has been resolved. pE has not. -*/ -static int resolveAsName( - Parse *pParse, /* Parsing context for error messages */ - ExprList *pEList, /* List of expressions to scan */ - Expr *pE /* Expression we are trying to match */ -){ - int i; /* Loop counter */ - - UNUSED_PARAMETER(pParse); - - if( pE->op==TK_ID ){ - char *zCol = pE->u.zToken; - for(i=0; i<pEList->nExpr; i++){ - char *zAs = pEList->a[i].zName; - if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ - return i+1; - } - } - } - return 0; -} - -/* -** pE is a pointer to an expression which is a single term in the -** ORDER BY of a compound SELECT. The expression has not been -** name resolved. -** -** At the point this routine is called, we already know that the -** ORDER BY term is not an integer index into the result set. That -** case is handled by the calling routine. -** -** Attempt to match pE against result set columns in the left-most -** SELECT statement. Return the index i of the matching column, -** as an indication to the caller that it should sort by the i-th column. -** The left-most column is 1. In other words, the value returned is the -** same integer value that would be used in the SQL statement to indicate -** the column. -** -** If there is no match, return 0. Return -1 if an error occurs. -*/ -static int resolveOrderByTermToExprList( - Parse *pParse, /* Parsing context for error messages */ - Select *pSelect, /* The SELECT statement with the ORDER BY clause */ - Expr *pE /* The specific ORDER BY term */ -){ - int i; /* Loop counter */ - ExprList *pEList; /* The columns of the result set */ - NameContext nc; /* Name context for resolving pE */ - sqlite3 *db; /* Database connection */ - int rc; /* Return code from subprocedures */ - u8 savedSuppErr; /* Saved value of db->suppressErr */ - - assert( sqlite3ExprIsInteger(pE, &i)==0 ); - pEList = pSelect->pEList; - - /* Resolve all names in the ORDER BY term expression - */ - memset(&nc, 0, sizeof(nc)); - nc.pParse = pParse; - nc.pSrcList = pSelect->pSrc; - nc.pEList = pEList; - nc.ncFlags = NC_AllowAgg; - nc.nErr = 0; - db = pParse->db; - savedSuppErr = db->suppressErr; - db->suppressErr = 1; - rc = sqlite3ResolveExprNames(&nc, pE); - db->suppressErr = savedSuppErr; - if( rc ) return 0; - - /* Try to match the ORDER BY expression against an expression - ** in the result set. Return an 1-based index of the matching - ** result-set entry. - */ - for(i=0; i<pEList->nExpr; i++){ - if( sqlite3ExprCompare(pEList->a[i].pExpr, pE)<2 ){ - return i+1; - } - } - - /* If no match, return 0. */ - return 0; -} - -/* -** Generate an ORDER BY or GROUP BY term out-of-range error. -*/ -static void resolveOutOfRangeError( - Parse *pParse, /* The error context into which to write the error */ - const char *zType, /* "ORDER" or "GROUP" */ - int i, /* The index (1-based) of the term out of range */ - int mx /* Largest permissible value of i */ -){ - sqlite3ErrorMsg(pParse, - "%r %s BY term out of range - should be " - "between 1 and %d", i, zType, mx); -} - -/* -** Analyze the ORDER BY clause in a compound SELECT statement. Modify -** each term of the ORDER BY clause is a constant integer between 1 -** and N where N is the number of columns in the compound SELECT. -** -** ORDER BY terms that are already an integer between 1 and N are -** unmodified. ORDER BY terms that are integers outside the range of -** 1 through N generate an error. ORDER BY terms that are expressions -** are matched against result set expressions of compound SELECT -** beginning with the left-most SELECT and working toward the right. -** At the first match, the ORDER BY expression is transformed into -** the integer column number. -** -** Return the number of errors seen. -*/ -static int resolveCompoundOrderBy( - Parse *pParse, /* Parsing context. Leave error messages here */ - Select *pSelect /* The SELECT statement containing the ORDER BY */ -){ - int i; - ExprList *pOrderBy; - ExprList *pEList; - sqlite3 *db; - int moreToDo = 1; - - pOrderBy = pSelect->pOrderBy; - if( pOrderBy==0 ) return 0; - db = pParse->db; -#if SQLITE_MAX_COLUMN - if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ - sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); - return 1; - } -#endif - for(i=0; i<pOrderBy->nExpr; i++){ - pOrderBy->a[i].done = 0; - } - pSelect->pNext = 0; - while( pSelect->pPrior ){ - pSelect->pPrior->pNext = pSelect; - pSelect = pSelect->pPrior; - } - while( pSelect && moreToDo ){ - struct ExprList_item *pItem; - moreToDo = 0; - pEList = pSelect->pEList; - assert( pEList!=0 ); - for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ - int iCol = -1; - Expr *pE, *pDup; - if( pItem->done ) continue; - pE = sqlite3ExprSkipCollate(pItem->pExpr); - if( sqlite3ExprIsInteger(pE, &iCol) ){ - if( iCol<=0 || iCol>pEList->nExpr ){ - resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr); - return 1; - } - }else{ - iCol = resolveAsName(pParse, pEList, pE); - if( iCol==0 ){ - pDup = sqlite3ExprDup(db, pE, 0); - if( !db->mallocFailed ){ - assert(pDup); - iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); - } - sqlite3ExprDelete(db, pDup); - } - } - if( iCol>0 ){ - /* Convert the ORDER BY term into an integer column number iCol, - ** taking care to preserve the COLLATE clause if it exists */ - Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); - if( pNew==0 ) return 1; - pNew->flags |= EP_IntValue; - pNew->u.iValue = iCol; - if( pItem->pExpr==pE ){ - pItem->pExpr = pNew; - }else{ - assert( pItem->pExpr->op==TK_COLLATE ); - assert( pItem->pExpr->pLeft==pE ); - pItem->pExpr->pLeft = pNew; - } - sqlite3ExprDelete(db, pE); - pItem->iOrderByCol = (u16)iCol; - pItem->done = 1; - }else{ - moreToDo = 1; - } - } - pSelect = pSelect->pNext; - } - for(i=0; i<pOrderBy->nExpr; i++){ - if( pOrderBy->a[i].done==0 ){ - sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " - "column in the result set", i+1); - return 1; - } - } - return 0; -} - -/* -** Check every term in the ORDER BY or GROUP BY clause pOrderBy of -** the SELECT statement pSelect. If any term is reference to a -** result set expression (as determined by the ExprList.a.iCol field) -** then convert that term into a copy of the corresponding result set -** column. -** -** If any errors are detected, add an error message to pParse and -** return non-zero. Return zero if no errors are seen. -*/ -SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy( - Parse *pParse, /* Parsing context. Leave error messages here */ - Select *pSelect, /* The SELECT statement containing the clause */ - ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ - const char *zType /* "ORDER" or "GROUP" */ -){ - int i; - sqlite3 *db = pParse->db; - ExprList *pEList; - struct ExprList_item *pItem; - - if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; -#if SQLITE_MAX_COLUMN - if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ - sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); - return 1; - } -#endif - pEList = pSelect->pEList; - assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ - for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ - if( pItem->iOrderByCol ){ - if( pItem->iOrderByCol>pEList->nExpr ){ - resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); - return 1; - } - resolveAlias(pParse, pEList, pItem->iOrderByCol-1, pItem->pExpr, zType,0); - } - } - return 0; -} - -/* -** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. -** The Name context of the SELECT statement is pNC. zType is either -** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. -** -** This routine resolves each term of the clause into an expression. -** If the order-by term is an integer I between 1 and N (where N is the -** number of columns in the result set of the SELECT) then the expression -** in the resolution is a copy of the I-th result-set expression. If -** the order-by term is an identify that corresponds to the AS-name of -** a result-set expression, then the term resolves to a copy of the -** result-set expression. Otherwise, the expression is resolved in -** the usual way - using sqlite3ResolveExprNames(). -** -** This routine returns the number of errors. If errors occur, then -** an appropriate error message might be left in pParse. (OOM errors -** excepted.) -*/ -static int resolveOrderGroupBy( - NameContext *pNC, /* The name context of the SELECT statement */ - Select *pSelect, /* The SELECT statement holding pOrderBy */ - ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ - const char *zType /* Either "ORDER" or "GROUP", as appropriate */ -){ - int i, j; /* Loop counters */ - int iCol; /* Column number */ - struct ExprList_item *pItem; /* A term of the ORDER BY clause */ - Parse *pParse; /* Parsing context */ - int nResult; /* Number of terms in the result set */ - - if( pOrderBy==0 ) return 0; - nResult = pSelect->pEList->nExpr; - pParse = pNC->pParse; - for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ - Expr *pE = pItem->pExpr; - iCol = resolveAsName(pParse, pSelect->pEList, pE); - if( iCol>0 ){ - /* If an AS-name match is found, mark this ORDER BY column as being - ** a copy of the iCol-th result-set column. The subsequent call to - ** sqlite3ResolveOrderGroupBy() will convert the expression to a - ** copy of the iCol-th result-set expression. */ - pItem->iOrderByCol = (u16)iCol; - continue; - } - if( sqlite3ExprIsInteger(sqlite3ExprSkipCollate(pE), &iCol) ){ - /* The ORDER BY term is an integer constant. Again, set the column - ** number so that sqlite3ResolveOrderGroupBy() will convert the - ** order-by term to a copy of the result-set expression */ - if( iCol<1 || iCol>0xffff ){ - resolveOutOfRangeError(pParse, zType, i+1, nResult); - return 1; - } - pItem->iOrderByCol = (u16)iCol; - continue; - } - - /* Otherwise, treat the ORDER BY term as an ordinary expression */ - pItem->iOrderByCol = 0; - if( sqlite3ResolveExprNames(pNC, pE) ){ - return 1; - } - for(j=0; j<pSelect->pEList->nExpr; j++){ - if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr)==0 ){ - pItem->iOrderByCol = j+1; - } - } - } - return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); -} - -/* -** Resolve names in the SELECT statement p and all of its descendents. -*/ -static int resolveSelectStep(Walker *pWalker, Select *p){ - NameContext *pOuterNC; /* Context that contains this SELECT */ - NameContext sNC; /* Name context of this SELECT */ - int isCompound; /* True if p is a compound select */ - int nCompound; /* Number of compound terms processed so far */ - Parse *pParse; /* Parsing context */ - ExprList *pEList; /* Result set expression list */ - int i; /* Loop counter */ - ExprList *pGroupBy; /* The GROUP BY clause */ - Select *pLeftmost; /* Left-most of SELECT of a compound */ - sqlite3 *db; /* Database connection */ - - - assert( p!=0 ); - if( p->selFlags & SF_Resolved ){ - return WRC_Prune; - } - pOuterNC = pWalker->u.pNC; - pParse = pWalker->pParse; - db = pParse->db; - - /* Normally sqlite3SelectExpand() will be called first and will have - ** already expanded this SELECT. However, if this is a subquery within - ** an expression, sqlite3ResolveExprNames() will be called without a - ** prior call to sqlite3SelectExpand(). When that happens, let - ** sqlite3SelectPrep() do all of the processing for this SELECT. - ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and - ** this routine in the correct order. - */ - if( (p->selFlags & SF_Expanded)==0 ){ - sqlite3SelectPrep(pParse, p, pOuterNC); - return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune; - } - - isCompound = p->pPrior!=0; - nCompound = 0; - pLeftmost = p; - while( p ){ - assert( (p->selFlags & SF_Expanded)!=0 ); - assert( (p->selFlags & SF_Resolved)==0 ); - p->selFlags |= SF_Resolved; - - /* Resolve the expressions in the LIMIT and OFFSET clauses. These - ** are not allowed to refer to any names, so pass an empty NameContext. - */ - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pParse; - if( sqlite3ResolveExprNames(&sNC, p->pLimit) || - sqlite3ResolveExprNames(&sNC, p->pOffset) ){ - return WRC_Abort; - } - - /* Recursively resolve names in all subqueries - */ - for(i=0; i<p->pSrc->nSrc; i++){ - struct SrcList_item *pItem = &p->pSrc->a[i]; - if( pItem->pSelect ){ - NameContext *pNC; /* Used to iterate name contexts */ - int nRef = 0; /* Refcount for pOuterNC and outer contexts */ - const char *zSavedContext = pParse->zAuthContext; - - /* Count the total number of references to pOuterNC and all of its - ** parent contexts. After resolving references to expressions in - ** pItem->pSelect, check if this value has changed. If so, then - ** SELECT statement pItem->pSelect must be correlated. Set the - ** pItem->isCorrelated flag if this is the case. */ - for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef; - - if( pItem->zName ) pParse->zAuthContext = pItem->zName; - sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); - pParse->zAuthContext = zSavedContext; - if( pParse->nErr || db->mallocFailed ) return WRC_Abort; - - for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef; - assert( pItem->isCorrelated==0 && nRef<=0 ); - pItem->isCorrelated = (nRef!=0); - } - } - - /* Set up the local name-context to pass to sqlite3ResolveExprNames() to - ** resolve the result-set expression list. - */ - sNC.ncFlags = NC_AllowAgg; - sNC.pSrcList = p->pSrc; - sNC.pNext = pOuterNC; - - /* Resolve names in the result set. */ - pEList = p->pEList; - assert( pEList!=0 ); - for(i=0; i<pEList->nExpr; i++){ - Expr *pX = pEList->a[i].pExpr; - if( sqlite3ResolveExprNames(&sNC, pX) ){ - return WRC_Abort; - } - } - - /* If there are no aggregate functions in the result-set, and no GROUP BY - ** expression, do not allow aggregates in any of the other expressions. - */ - assert( (p->selFlags & SF_Aggregate)==0 ); - pGroupBy = p->pGroupBy; - if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ - p->selFlags |= SF_Aggregate; - }else{ - sNC.ncFlags &= ~NC_AllowAgg; - } - - /* If a HAVING clause is present, then there must be a GROUP BY clause. - */ - if( p->pHaving && !pGroupBy ){ - sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); - return WRC_Abort; - } - - /* Add the expression list to the name-context before parsing the - ** other expressions in the SELECT statement. This is so that - ** expressions in the WHERE clause (etc.) can refer to expressions by - ** aliases in the result set. - ** - ** Minor point: If this is the case, then the expression will be - ** re-evaluated for each reference to it. - */ - sNC.pEList = p->pEList; - if( sqlite3ResolveExprNames(&sNC, p->pWhere) || - sqlite3ResolveExprNames(&sNC, p->pHaving) - ){ - return WRC_Abort; - } - - /* The ORDER BY and GROUP BY clauses may not refer to terms in - ** outer queries - */ - sNC.pNext = 0; - sNC.ncFlags |= NC_AllowAgg; - - /* Process the ORDER BY clause for singleton SELECT statements. - ** The ORDER BY clause for compounds SELECT statements is handled - ** below, after all of the result-sets for all of the elements of - ** the compound have been resolved. - */ - if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ - return WRC_Abort; - } - if( db->mallocFailed ){ - return WRC_Abort; - } - - /* Resolve the GROUP BY clause. At the same time, make sure - ** the GROUP BY clause does not contain aggregate functions. - */ - if( pGroupBy ){ - struct ExprList_item *pItem; - - if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ - return WRC_Abort; - } - for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ - if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ - sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " - "the GROUP BY clause"); - return WRC_Abort; - } - } - } - - /* Advance to the next term of the compound - */ - p = p->pPrior; - nCompound++; - } - - /* Resolve the ORDER BY on a compound SELECT after all terms of - ** the compound have been resolved. - */ - if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ - return WRC_Abort; - } - - return WRC_Prune; -} - -/* -** This routine walks an expression tree and resolves references to -** table columns and result-set columns. At the same time, do error -** checking on function usage and set a flag if any aggregate functions -** are seen. -** -** To resolve table columns references we look for nodes (or subtrees) of the -** form X.Y.Z or Y.Z or just Z where -** -** X: The name of a database. Ex: "main" or "temp" or -** the symbolic name assigned to an ATTACH-ed database. -** -** Y: The name of a table in a FROM clause. Or in a trigger -** one of the special names "old" or "new". -** -** Z: The name of a column in table Y. -** -** The node at the root of the subtree is modified as follows: -** -** Expr.op Changed to TK_COLUMN -** Expr.pTab Points to the Table object for X.Y -** Expr.iColumn The column index in X.Y. -1 for the rowid. -** Expr.iTable The VDBE cursor number for X.Y -** -** -** To resolve result-set references, look for expression nodes of the -** form Z (with no X and Y prefix) where the Z matches the right-hand -** size of an AS clause in the result-set of a SELECT. The Z expression -** is replaced by a copy of the left-hand side of the result-set expression. -** Table-name and function resolution occurs on the substituted expression -** tree. For example, in: -** -** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; -** -** The "x" term of the order by is replaced by "a+b" to render: -** -** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; -** -** Function calls are checked to make sure that the function is -** defined and that the correct number of arguments are specified. -** If the function is an aggregate function, then the NC_HasAgg flag is -** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. -** If an expression contains aggregate functions then the EP_Agg -** property on the expression is set. -** -** An error message is left in pParse if anything is amiss. The number -** if errors is returned. -*/ -SQLITE_PRIVATE int sqlite3ResolveExprNames( - NameContext *pNC, /* Namespace to resolve expressions in. */ - Expr *pExpr /* The expression to be analyzed. */ -){ - u8 savedHasAgg; - Walker w; - - if( pExpr==0 ) return 0; -#if SQLITE_MAX_EXPR_DEPTH>0 - { - Parse *pParse = pNC->pParse; - if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){ - return 1; - } - pParse->nHeight += pExpr->nHeight; - } -#endif - savedHasAgg = pNC->ncFlags & NC_HasAgg; - pNC->ncFlags &= ~NC_HasAgg; - w.xExprCallback = resolveExprStep; - w.xSelectCallback = resolveSelectStep; - w.pParse = pNC->pParse; - w.u.pNC = pNC; - sqlite3WalkExpr(&w, pExpr); -#if SQLITE_MAX_EXPR_DEPTH>0 - pNC->pParse->nHeight -= pExpr->nHeight; -#endif - if( pNC->nErr>0 || w.pParse->nErr>0 ){ - ExprSetProperty(pExpr, EP_Error); - } - if( pNC->ncFlags & NC_HasAgg ){ - ExprSetProperty(pExpr, EP_Agg); - }else if( savedHasAgg ){ - pNC->ncFlags |= NC_HasAgg; - } - return ExprHasProperty(pExpr, EP_Error); -} - - -/* -** Resolve all names in all expressions of a SELECT and in all -** decendents of the SELECT, including compounds off of p->pPrior, -** subqueries in expressions, and subqueries used as FROM clause -** terms. -** -** See sqlite3ResolveExprNames() for a description of the kinds of -** transformations that occur. -** -** All SELECT statements should have been expanded using -** sqlite3SelectExpand() prior to invoking this routine. -*/ -SQLITE_PRIVATE void sqlite3ResolveSelectNames( - Parse *pParse, /* The parser context */ - Select *p, /* The SELECT statement being coded. */ - NameContext *pOuterNC /* Name context for parent SELECT statement */ -){ - Walker w; - - assert( p!=0 ); - w.xExprCallback = resolveExprStep; - w.xSelectCallback = resolveSelectStep; - w.pParse = pParse; - w.u.pNC = pOuterNC; - sqlite3WalkSelect(&w, p); -} - -/************** End of resolve.c *********************************************/ -/************** Begin file expr.c ********************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains routines used for analyzing expressions and -** for generating VDBE code that evaluates expressions in SQLite. -*/ - -/* -** Return the 'affinity' of the expression pExpr if any. -** -** If pExpr is a column, a reference to a column via an 'AS' alias, -** or a sub-select with a column as the return value, then the -** affinity of that column is returned. Otherwise, 0x00 is returned, -** indicating no affinity for the expression. -** -** i.e. the WHERE clause expresssions in the following statements all -** have an affinity: -** -** CREATE TABLE t1(a); -** SELECT * FROM t1 WHERE a; -** SELECT a AS b FROM t1 WHERE b; -** SELECT * FROM t1 WHERE (select a from t1); -*/ -SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){ - int op; - pExpr = sqlite3ExprSkipCollate(pExpr); - op = pExpr->op; - if( op==TK_SELECT ){ - assert( pExpr->flags&EP_xIsSelect ); - return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); - } -#ifndef SQLITE_OMIT_CAST - if( op==TK_CAST ){ - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - return sqlite3AffinityType(pExpr->u.zToken); - } -#endif - if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) - && pExpr->pTab!=0 - ){ - /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally - ** a TK_COLUMN but was previously evaluated and cached in a register */ - int j = pExpr->iColumn; - if( j<0 ) return SQLITE_AFF_INTEGER; - assert( pExpr->pTab && j<pExpr->pTab->nCol ); - return pExpr->pTab->aCol[j].affinity; - } - return pExpr->affinity; -} - -/* -** Set the collating sequence for expression pExpr to be the collating -** sequence named by pToken. Return a pointer to a new Expr node that -** implements the COLLATE operator. -** -** If a memory allocation error occurs, that fact is recorded in pParse->db -** and the pExpr parameter is returned unchanged. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ - if( pCollName->n>0 ){ - Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); - if( pNew ){ - pNew->pLeft = pExpr; - pNew->flags |= EP_Collate; - pExpr = pNew; - } - } - return pExpr; -} -SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ - Token s; - assert( zC!=0 ); - s.z = zC; - s.n = sqlite3Strlen30(s.z); - return sqlite3ExprAddCollateToken(pParse, pExpr, &s); -} - -/* -** Skip over any TK_COLLATE and/or TK_AS operators at the root of -** an expression. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){ - while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ - pExpr = pExpr->pLeft; - } - return pExpr; -} - -/* -** Return the collation sequence for the expression pExpr. If -** there is no defined collating sequence, return NULL. -** -** The collating sequence might be determined by a COLLATE operator -** or by the presence of a column with a defined collating sequence. -** COLLATE operators take first precedence. Left operands take -** precedence over right operands. -*/ -SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ - sqlite3 *db = pParse->db; - CollSeq *pColl = 0; - Expr *p = pExpr; - while( p ){ - int op = p->op; - if( op==TK_CAST || op==TK_UPLUS ){ - p = p->pLeft; - continue; - } - assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); - if( op==TK_COLLATE ){ - if( db->init.busy ){ - /* Do not report errors when parsing while the schema */ - pColl = sqlite3FindCollSeq(db, ENC(db), p->u.zToken, 0); - }else{ - pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); - } - break; - } - if( p->pTab!=0 - && (op==TK_AGG_COLUMN || op==TK_COLUMN - || op==TK_REGISTER || op==TK_TRIGGER) - ){ - /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally - ** a TK_COLUMN but was previously evaluated and cached in a register */ - int j = p->iColumn; - if( j>=0 ){ - const char *zColl = p->pTab->aCol[j].zColl; - pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); - } - break; - } - if( p->flags & EP_Collate ){ - if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ - p = p->pLeft; - }else{ - p = p->pRight; - } - }else{ - break; - } - } - if( sqlite3CheckCollSeq(pParse, pColl) ){ - pColl = 0; - } - return pColl; -} - -/* -** pExpr is an operand of a comparison operator. aff2 is the -** type affinity of the other operand. This routine returns the -** type affinity that should be used for the comparison operator. -*/ -SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){ - char aff1 = sqlite3ExprAffinity(pExpr); - if( aff1 && aff2 ){ - /* Both sides of the comparison are columns. If one has numeric - ** affinity, use that. Otherwise use no affinity. - */ - if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ - return SQLITE_AFF_NUMERIC; - }else{ - return SQLITE_AFF_NONE; - } - }else if( !aff1 && !aff2 ){ - /* Neither side of the comparison is a column. Compare the - ** results directly. - */ - return SQLITE_AFF_NONE; - }else{ - /* One side is a column, the other is not. Use the columns affinity. */ - assert( aff1==0 || aff2==0 ); - return (aff1 + aff2); - } -} - -/* -** pExpr is a comparison operator. Return the type affinity that should -** be applied to both operands prior to doing the comparison. -*/ -static char comparisonAffinity(Expr *pExpr){ - char aff; - assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || - pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || - pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); - assert( pExpr->pLeft ); - aff = sqlite3ExprAffinity(pExpr->pLeft); - if( pExpr->pRight ){ - aff = sqlite3CompareAffinity(pExpr->pRight, aff); - }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); - }else if( !aff ){ - aff = SQLITE_AFF_NONE; - } - return aff; -} - -/* -** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. -** idx_affinity is the affinity of an indexed column. Return true -** if the index with affinity idx_affinity may be used to implement -** the comparison in pExpr. -*/ -SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ - char aff = comparisonAffinity(pExpr); - switch( aff ){ - case SQLITE_AFF_NONE: - return 1; - case SQLITE_AFF_TEXT: - return idx_affinity==SQLITE_AFF_TEXT; - default: - return sqlite3IsNumericAffinity(idx_affinity); - } -} - -/* -** Return the P5 value that should be used for a binary comparison -** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. -*/ -static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ - u8 aff = (char)sqlite3ExprAffinity(pExpr2); - aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; - return aff; -} - -/* -** Return a pointer to the collation sequence that should be used by -** a binary comparison operator comparing pLeft and pRight. -** -** If the left hand expression has a collating sequence type, then it is -** used. Otherwise the collation sequence for the right hand expression -** is used, or the default (BINARY) if neither expression has a collating -** type. -** -** Argument pRight (but not pLeft) may be a null pointer. In this case, -** it is not considered. -*/ -SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq( - Parse *pParse, - Expr *pLeft, - Expr *pRight -){ - CollSeq *pColl; - assert( pLeft ); - if( pLeft->flags & EP_Collate ){ - pColl = sqlite3ExprCollSeq(pParse, pLeft); - }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ - pColl = sqlite3ExprCollSeq(pParse, pRight); - }else{ - pColl = sqlite3ExprCollSeq(pParse, pLeft); - if( !pColl ){ - pColl = sqlite3ExprCollSeq(pParse, pRight); - } - } - return pColl; -} - -/* -** Generate code for a comparison operator. -*/ -static int codeCompare( - Parse *pParse, /* The parsing (and code generating) context */ - Expr *pLeft, /* The left operand */ - Expr *pRight, /* The right operand */ - int opcode, /* The comparison opcode */ - int in1, int in2, /* Register holding operands */ - int dest, /* Jump here if true. */ - int jumpIfNull /* If true, jump if either operand is NULL */ -){ - int p5; - int addr; - CollSeq *p4; - - p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); - p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); - addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, - (void*)p4, P4_COLLSEQ); - sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); - return addr; -} - -#if SQLITE_MAX_EXPR_DEPTH>0 -/* -** Check that argument nHeight is less than or equal to the maximum -** expression depth allowed. If it is not, leave an error message in -** pParse. -*/ -SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ - int rc = SQLITE_OK; - int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; - if( nHeight>mxHeight ){ - sqlite3ErrorMsg(pParse, - "Expression tree is too large (maximum depth %d)", mxHeight - ); - rc = SQLITE_ERROR; - } - return rc; -} - -/* The following three functions, heightOfExpr(), heightOfExprList() -** and heightOfSelect(), are used to determine the maximum height -** of any expression tree referenced by the structure passed as the -** first argument. -** -** If this maximum height is greater than the current value pointed -** to by pnHeight, the second parameter, then set *pnHeight to that -** value. -*/ -static void heightOfExpr(Expr *p, int *pnHeight){ - if( p ){ - if( p->nHeight>*pnHeight ){ - *pnHeight = p->nHeight; - } - } -} -static void heightOfExprList(ExprList *p, int *pnHeight){ - if( p ){ - int i; - for(i=0; i<p->nExpr; i++){ - heightOfExpr(p->a[i].pExpr, pnHeight); - } - } -} -static void heightOfSelect(Select *p, int *pnHeight){ - if( p ){ - heightOfExpr(p->pWhere, pnHeight); - heightOfExpr(p->pHaving, pnHeight); - heightOfExpr(p->pLimit, pnHeight); - heightOfExpr(p->pOffset, pnHeight); - heightOfExprList(p->pEList, pnHeight); - heightOfExprList(p->pGroupBy, pnHeight); - heightOfExprList(p->pOrderBy, pnHeight); - heightOfSelect(p->pPrior, pnHeight); - } -} - -/* -** Set the Expr.nHeight variable in the structure passed as an -** argument. An expression with no children, Expr.pList or -** Expr.pSelect member has a height of 1. Any other expression -** has a height equal to the maximum height of any other -** referenced Expr plus one. -*/ -static void exprSetHeight(Expr *p){ - int nHeight = 0; - heightOfExpr(p->pLeft, &nHeight); - heightOfExpr(p->pRight, &nHeight); - if( ExprHasProperty(p, EP_xIsSelect) ){ - heightOfSelect(p->x.pSelect, &nHeight); - }else{ - heightOfExprList(p->x.pList, &nHeight); - } - p->nHeight = nHeight + 1; -} - -/* -** Set the Expr.nHeight variable using the exprSetHeight() function. If -** the height is greater than the maximum allowed expression depth, -** leave an error in pParse. -*/ -SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ - exprSetHeight(p); - sqlite3ExprCheckHeight(pParse, p->nHeight); -} - -/* -** Return the maximum height of any expression tree referenced -** by the select statement passed as an argument. -*/ -SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){ - int nHeight = 0; - heightOfSelect(p, &nHeight); - return nHeight; -} -#else - #define exprSetHeight(y) -#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ - -/* -** This routine is the core allocator for Expr nodes. -** -** Construct a new expression node and return a pointer to it. Memory -** for this node and for the pToken argument is a single allocation -** obtained from sqlite3DbMalloc(). The calling function -** is responsible for making sure the node eventually gets freed. -** -** If dequote is true, then the token (if it exists) is dequoted. -** If dequote is false, no dequoting is performance. The deQuote -** parameter is ignored if pToken is NULL or if the token does not -** appear to be quoted. If the quotes were of the form "..." (double-quotes) -** then the EP_DblQuoted flag is set on the expression node. -** -** Special case: If op==TK_INTEGER and pToken points to a string that -** can be translated into a 32-bit integer, then the token is not -** stored in u.zToken. Instead, the integer values is written -** into u.iValue and the EP_IntValue flag is set. No extra storage -** is allocated to hold the integer text and the dequote flag is ignored. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprAlloc( - sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ - int op, /* Expression opcode */ - const Token *pToken, /* Token argument. Might be NULL */ - int dequote /* True to dequote */ -){ - Expr *pNew; - int nExtra = 0; - int iValue = 0; - - if( pToken ){ - if( op!=TK_INTEGER || pToken->z==0 - || sqlite3GetInt32(pToken->z, &iValue)==0 ){ - nExtra = pToken->n+1; - assert( iValue>=0 ); - } - } - pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); - if( pNew ){ - pNew->op = (u8)op; - pNew->iAgg = -1; - if( pToken ){ - if( nExtra==0 ){ - pNew->flags |= EP_IntValue; - pNew->u.iValue = iValue; - }else{ - int c; - pNew->u.zToken = (char*)&pNew[1]; - assert( pToken->z!=0 || pToken->n==0 ); - if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); - pNew->u.zToken[pToken->n] = 0; - if( dequote && nExtra>=3 - && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ - sqlite3Dequote(pNew->u.zToken); - if( c=='"' ) pNew->flags |= EP_DblQuoted; - } - } - } -#if SQLITE_MAX_EXPR_DEPTH>0 - pNew->nHeight = 1; -#endif - } - return pNew; -} - -/* -** Allocate a new expression node from a zero-terminated token that has -** already been dequoted. -*/ -SQLITE_PRIVATE Expr *sqlite3Expr( - sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ - int op, /* Expression opcode */ - const char *zToken /* Token argument. Might be NULL */ -){ - Token x; - x.z = zToken; - x.n = zToken ? sqlite3Strlen30(zToken) : 0; - return sqlite3ExprAlloc(db, op, &x, 0); -} - -/* -** Attach subtrees pLeft and pRight to the Expr node pRoot. -** -** If pRoot==NULL that means that a memory allocation error has occurred. -** In that case, delete the subtrees pLeft and pRight. -*/ -SQLITE_PRIVATE void sqlite3ExprAttachSubtrees( - sqlite3 *db, - Expr *pRoot, - Expr *pLeft, - Expr *pRight -){ - if( pRoot==0 ){ - assert( db->mallocFailed ); - sqlite3ExprDelete(db, pLeft); - sqlite3ExprDelete(db, pRight); - }else{ - if( pRight ){ - pRoot->pRight = pRight; - pRoot->flags |= EP_Collate & pRight->flags; - } - if( pLeft ){ - pRoot->pLeft = pLeft; - pRoot->flags |= EP_Collate & pLeft->flags; - } - exprSetHeight(pRoot); - } -} - -/* -** Allocate a Expr node which joins as many as two subtrees. -** -** One or both of the subtrees can be NULL. Return a pointer to the new -** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, -** free the subtrees and return NULL. -*/ -SQLITE_PRIVATE Expr *sqlite3PExpr( - Parse *pParse, /* Parsing context */ - int op, /* Expression opcode */ - Expr *pLeft, /* Left operand */ - Expr *pRight, /* Right operand */ - const Token *pToken /* Argument token */ -){ - Expr *p; - if( op==TK_AND && pLeft && pRight ){ - /* Take advantage of short-circuit false optimization for AND */ - p = sqlite3ExprAnd(pParse->db, pLeft, pRight); - }else{ - p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); - sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); - } - if( p ) { - sqlite3ExprCheckHeight(pParse, p->nHeight); - } - return p; -} - -/* -** Return 1 if an expression must be FALSE in all cases and 0 if the -** expression might be true. This is an optimization. If is OK to -** return 0 here even if the expression really is always false (a -** false negative). But it is a bug to return 1 if the expression -** might be true in some rare circumstances (a false positive.) -** -** Note that if the expression is part of conditional for a -** LEFT JOIN, then we cannot determine at compile-time whether or not -** is it true or false, so always return 0. -*/ -static int exprAlwaysFalse(Expr *p){ - int v = 0; - if( ExprHasProperty(p, EP_FromJoin) ) return 0; - if( !sqlite3ExprIsInteger(p, &v) ) return 0; - return v==0; -} - -/* -** Join two expressions using an AND operator. If either expression is -** NULL, then just return the other expression. -** -** If one side or the other of the AND is known to be false, then instead -** of returning an AND expression, just return a constant expression with -** a value of false. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ - if( pLeft==0 ){ - return pRight; - }else if( pRight==0 ){ - return pLeft; - }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ - sqlite3ExprDelete(db, pLeft); - sqlite3ExprDelete(db, pRight); - return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); - }else{ - Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); - sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); - return pNew; - } -} - -/* -** Construct a new expression node for a function with multiple -** arguments. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ - Expr *pNew; - sqlite3 *db = pParse->db; - assert( pToken ); - pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); - if( pNew==0 ){ - sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ - return 0; - } - pNew->x.pList = pList; - assert( !ExprHasProperty(pNew, EP_xIsSelect) ); - sqlite3ExprSetHeight(pParse, pNew); - return pNew; -} - -/* -** Assign a variable number to an expression that encodes a wildcard -** in the original SQL statement. -** -** Wildcards consisting of a single "?" are assigned the next sequential -** variable number. -** -** Wildcards of the form "?nnn" are assigned the number "nnn". We make -** sure "nnn" is not too be to avoid a denial of service attack when -** the SQL statement comes from an external source. -** -** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number -** as the previous instance of the same wildcard. Or if this is the first -** instance of the wildcard, the next sequenial variable number is -** assigned. -*/ -SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ - sqlite3 *db = pParse->db; - const char *z; - - if( pExpr==0 ) return; - assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); - z = pExpr->u.zToken; - assert( z!=0 ); - assert( z[0]!=0 ); - if( z[1]==0 ){ - /* Wildcard of the form "?". Assign the next variable number */ - assert( z[0]=='?' ); - pExpr->iColumn = (ynVar)(++pParse->nVar); - }else{ - ynVar x = 0; - u32 n = sqlite3Strlen30(z); - if( z[0]=='?' ){ - /* Wildcard of the form "?nnn". Convert "nnn" to an integer and - ** use it as the variable number */ - i64 i; - int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); - pExpr->iColumn = x = (ynVar)i; - testcase( i==0 ); - testcase( i==1 ); - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); - if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ - sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", - db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); - x = 0; - } - if( i>pParse->nVar ){ - pParse->nVar = (int)i; - } - }else{ - /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable - ** number as the prior appearance of the same name, or if the name - ** has never appeared before, reuse the same variable number - */ - ynVar i; - for(i=0; i<pParse->nzVar; i++){ - if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ - pExpr->iColumn = x = (ynVar)i+1; - break; - } - } - if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); - } - if( x>0 ){ - if( x>pParse->nzVar ){ - char **a; - a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); - if( a==0 ) return; /* Error reported through db->mallocFailed */ - pParse->azVar = a; - memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); - pParse->nzVar = x; - } - if( z[0]!='?' || pParse->azVar[x-1]==0 ){ - sqlite3DbFree(db, pParse->azVar[x-1]); - pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); - } - } - } - if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ - sqlite3ErrorMsg(pParse, "too many SQL variables"); - } -} - -/* -** Recursively delete an expression tree. -*/ -SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ - if( p==0 ) return; - /* Sanity check: Assert that the IntValue is non-negative if it exists */ - assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ - sqlite3ExprDelete(db, p->pLeft); - sqlite3ExprDelete(db, p->pRight); - if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ - sqlite3DbFree(db, p->u.zToken); - } - if( ExprHasProperty(p, EP_xIsSelect) ){ - sqlite3SelectDelete(db, p->x.pSelect); - }else{ - sqlite3ExprListDelete(db, p->x.pList); - } - } - if( !ExprHasProperty(p, EP_Static) ){ - sqlite3DbFree(db, p); - } -} - -/* -** Return the number of bytes allocated for the expression structure -** passed as the first argument. This is always one of EXPR_FULLSIZE, -** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. -*/ -static int exprStructSize(Expr *p){ - if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; - if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; - return EXPR_FULLSIZE; -} - -/* -** The dupedExpr*Size() routines each return the number of bytes required -** to store a copy of an expression or expression tree. They differ in -** how much of the tree is measured. -** -** dupedExprStructSize() Size of only the Expr structure -** dupedExprNodeSize() Size of Expr + space for token -** dupedExprSize() Expr + token + subtree components -** -*************************************************************************** -** -** The dupedExprStructSize() function returns two values OR-ed together: -** (1) the space required for a copy of the Expr structure only and -** (2) the EP_xxx flags that indicate what the structure size should be. -** The return values is always one of: -** -** EXPR_FULLSIZE -** EXPR_REDUCEDSIZE | EP_Reduced -** EXPR_TOKENONLYSIZE | EP_TokenOnly -** -** The size of the structure can be found by masking the return value -** of this routine with 0xfff. The flags can be found by masking the -** return value with EP_Reduced|EP_TokenOnly. -** -** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size -** (unreduced) Expr objects as they or originally constructed by the parser. -** During expression analysis, extra information is computed and moved into -** later parts of teh Expr object and that extra information might get chopped -** off if the expression is reduced. Note also that it does not work to -** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal -** to reduce a pristine expression tree from the parser. The implementation -** of dupedExprStructSize() contain multiple assert() statements that attempt -** to enforce this constraint. -*/ -static int dupedExprStructSize(Expr *p, int flags){ - int nSize; - assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ - if( 0==(flags&EXPRDUP_REDUCE) ){ - nSize = EXPR_FULLSIZE; - }else{ - assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); - assert( !ExprHasProperty(p, EP_FromJoin) ); - assert( (p->flags2 & EP2_MallocedToken)==0 ); - assert( (p->flags2 & EP2_Irreducible)==0 ); - if( p->pLeft || p->pRight || p->x.pList ){ - nSize = EXPR_REDUCEDSIZE | EP_Reduced; - }else{ - nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; - } - } - return nSize; -} - -/* -** This function returns the space in bytes required to store the copy -** of the Expr structure and a copy of the Expr.u.zToken string (if that -** string is defined.) -*/ -static int dupedExprNodeSize(Expr *p, int flags){ - int nByte = dupedExprStructSize(p, flags) & 0xfff; - if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ - nByte += sqlite3Strlen30(p->u.zToken)+1; - } - return ROUND8(nByte); -} - -/* -** Return the number of bytes required to create a duplicate of the -** expression passed as the first argument. The second argument is a -** mask containing EXPRDUP_XXX flags. -** -** The value returned includes space to create a copy of the Expr struct -** itself and the buffer referred to by Expr.u.zToken, if any. -** -** If the EXPRDUP_REDUCE flag is set, then the return value includes -** space to duplicate all Expr nodes in the tree formed by Expr.pLeft -** and Expr.pRight variables (but not for any structures pointed to or -** descended from the Expr.x.pList or Expr.x.pSelect variables). -*/ -static int dupedExprSize(Expr *p, int flags){ - int nByte = 0; - if( p ){ - nByte = dupedExprNodeSize(p, flags); - if( flags&EXPRDUP_REDUCE ){ - nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); - } - } - return nByte; -} - -/* -** This function is similar to sqlite3ExprDup(), except that if pzBuffer -** is not NULL then *pzBuffer is assumed to point to a buffer large enough -** to store the copy of expression p, the copies of p->u.zToken -** (if applicable), and the copies of the p->pLeft and p->pRight expressions, -** if any. Before returning, *pzBuffer is set to the first byte passed the -** portion of the buffer copied into by this function. -*/ -static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ - Expr *pNew = 0; /* Value to return */ - if( p ){ - const int isReduced = (flags&EXPRDUP_REDUCE); - u8 *zAlloc; - u32 staticFlag = 0; - - assert( pzBuffer==0 || isReduced ); - - /* Figure out where to write the new Expr structure. */ - if( pzBuffer ){ - zAlloc = *pzBuffer; - staticFlag = EP_Static; - }else{ - zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); - } - pNew = (Expr *)zAlloc; - - if( pNew ){ - /* Set nNewSize to the size allocated for the structure pointed to - ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or - ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed - ** by the copy of the p->u.zToken string (if any). - */ - const unsigned nStructSize = dupedExprStructSize(p, flags); - const int nNewSize = nStructSize & 0xfff; - int nToken; - if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ - nToken = sqlite3Strlen30(p->u.zToken) + 1; - }else{ - nToken = 0; - } - if( isReduced ){ - assert( ExprHasProperty(p, EP_Reduced)==0 ); - memcpy(zAlloc, p, nNewSize); - }else{ - int nSize = exprStructSize(p); - memcpy(zAlloc, p, nSize); - memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); - } - - /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ - pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); - pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); - pNew->flags |= staticFlag; - - /* Copy the p->u.zToken string, if any. */ - if( nToken ){ - char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; - memcpy(zToken, p->u.zToken, nToken); - } - - if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ - /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ - if( ExprHasProperty(p, EP_xIsSelect) ){ - pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); - }else{ - pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); - } - } - - /* Fill in pNew->pLeft and pNew->pRight. */ - if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ - zAlloc += dupedExprNodeSize(p, flags); - if( ExprHasProperty(pNew, EP_Reduced) ){ - pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); - pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); - } - if( pzBuffer ){ - *pzBuffer = zAlloc; - } - }else{ - pNew->flags2 = 0; - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ - pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); - pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); - } - } - - } - } - return pNew; -} - -/* -** The following group of routines make deep copies of expressions, -** expression lists, ID lists, and select statements. The copies can -** be deleted (by being passed to their respective ...Delete() routines) -** without effecting the originals. -** -** The expression list, ID, and source lists return by sqlite3ExprListDup(), -** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded -** by subsequent calls to sqlite*ListAppend() routines. -** -** Any tables that the SrcList might point to are not duplicated. -** -** The flags parameter contains a combination of the EXPRDUP_XXX flags. -** If the EXPRDUP_REDUCE flag is set, then the structure returned is a -** truncated version of the usual Expr structure that will be stored as -** part of the in-memory representation of the database schema. -*/ -SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ - return exprDup(db, p, flags, 0); -} -SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ - ExprList *pNew; - struct ExprList_item *pItem, *pOldItem; - int i; - if( p==0 ) return 0; - pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); - if( pNew==0 ) return 0; - pNew->iECursor = 0; - pNew->nExpr = i = p->nExpr; - if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} - pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); - if( pItem==0 ){ - sqlite3DbFree(db, pNew); - return 0; - } - pOldItem = p->a; - for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ - Expr *pOldExpr = pOldItem->pExpr; - pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); - pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); - pItem->sortOrder = pOldItem->sortOrder; - pItem->done = 0; - pItem->iOrderByCol = pOldItem->iOrderByCol; - pItem->iAlias = pOldItem->iAlias; - } - return pNew; -} - -/* -** If cursors, triggers, views and subqueries are all omitted from -** the build, then none of the following routines, except for -** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes -** called with a NULL argument. -*/ -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ - || !defined(SQLITE_OMIT_SUBQUERY) -SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ - SrcList *pNew; - int i; - int nByte; - if( p==0 ) return 0; - nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); - pNew = sqlite3DbMallocRaw(db, nByte ); - if( pNew==0 ) return 0; - pNew->nSrc = pNew->nAlloc = p->nSrc; - for(i=0; i<p->nSrc; i++){ - struct SrcList_item *pNewItem = &pNew->a[i]; - struct SrcList_item *pOldItem = &p->a[i]; - Table *pTab; - pNewItem->pSchema = pOldItem->pSchema; - pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); - pNewItem->jointype = pOldItem->jointype; - pNewItem->iCursor = pOldItem->iCursor; - pNewItem->addrFillSub = pOldItem->addrFillSub; - pNewItem->regReturn = pOldItem->regReturn; - pNewItem->isCorrelated = pOldItem->isCorrelated; - pNewItem->viaCoroutine = pOldItem->viaCoroutine; - pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); - pNewItem->notIndexed = pOldItem->notIndexed; - pNewItem->pIndex = pOldItem->pIndex; - pTab = pNewItem->pTab = pOldItem->pTab; - if( pTab ){ - pTab->nRef++; - } - pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); - pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); - pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); - pNewItem->colUsed = pOldItem->colUsed; - } - return pNew; -} -SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ - IdList *pNew; - int i; - if( p==0 ) return 0; - pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); - if( pNew==0 ) return 0; - pNew->nId = p->nId; - pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); - if( pNew->a==0 ){ - sqlite3DbFree(db, pNew); - return 0; - } - /* Note that because the size of the allocation for p->a[] is not - ** necessarily a power of two, sqlite3IdListAppend() may not be called - ** on the duplicate created by this function. */ - for(i=0; i<p->nId; i++){ - struct IdList_item *pNewItem = &pNew->a[i]; - struct IdList_item *pOldItem = &p->a[i]; - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pNewItem->idx = pOldItem->idx; - } - return pNew; -} -SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ - Select *pNew, *pPrior; - if( p==0 ) return 0; - pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); - if( pNew==0 ) return 0; - pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); - pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); - pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); - pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); - pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); - pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); - pNew->op = p->op; - pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); - if( pPrior ) pPrior->pNext = pNew; - pNew->pNext = 0; - pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); - pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); - pNew->iLimit = 0; - pNew->iOffset = 0; - pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; - pNew->pRightmost = 0; - pNew->addrOpenEphm[0] = -1; - pNew->addrOpenEphm[1] = -1; - pNew->addrOpenEphm[2] = -1; - return pNew; -} -#else -SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ - assert( p==0 ); - return 0; -} -#endif - - -/* -** Add a new element to the end of an expression list. If pList is -** initially NULL, then create a new expression list. -** -** If a memory allocation error occurs, the entire list is freed and -** NULL is returned. If non-NULL is returned, then it is guaranteed -** that the new entry was successfully appended. -*/ -SQLITE_PRIVATE ExprList *sqlite3ExprListAppend( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* List to which to append. Might be NULL */ - Expr *pExpr /* Expression to be appended. Might be NULL */ -){ - sqlite3 *db = pParse->db; - if( pList==0 ){ - pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); - if( pList==0 ){ - goto no_mem; - } - pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); - if( pList->a==0 ) goto no_mem; - }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ - struct ExprList_item *a; - assert( pList->nExpr>0 ); - a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); - if( a==0 ){ - goto no_mem; - } - pList->a = a; - } - assert( pList->a!=0 ); - if( 1 ){ - struct ExprList_item *pItem = &pList->a[pList->nExpr++]; - memset(pItem, 0, sizeof(*pItem)); - pItem->pExpr = pExpr; - } - return pList; - -no_mem: - /* Avoid leaking memory if malloc has failed. */ - sqlite3ExprDelete(db, pExpr); - sqlite3ExprListDelete(db, pList); - return 0; -} - -/* -** Set the ExprList.a[].zName element of the most recently added item -** on the expression list. -** -** pList might be NULL following an OOM error. But pName should never be -** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag -** is set. -*/ -SQLITE_PRIVATE void sqlite3ExprListSetName( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* List to which to add the span. */ - Token *pName, /* Name to be added */ - int dequote /* True to cause the name to be dequoted */ -){ - assert( pList!=0 || pParse->db->mallocFailed!=0 ); - if( pList ){ - struct ExprList_item *pItem; - assert( pList->nExpr>0 ); - pItem = &pList->a[pList->nExpr-1]; - assert( pItem->zName==0 ); - pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); - if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); - } -} - -/* -** Set the ExprList.a[].zSpan element of the most recently added item -** on the expression list. -** -** pList might be NULL following an OOM error. But pSpan should never be -** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag -** is set. -*/ -SQLITE_PRIVATE void sqlite3ExprListSetSpan( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* List to which to add the span. */ - ExprSpan *pSpan /* The span to be added */ -){ - sqlite3 *db = pParse->db; - assert( pList!=0 || db->mallocFailed!=0 ); - if( pList ){ - struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; - assert( pList->nExpr>0 ); - assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); - sqlite3DbFree(db, pItem->zSpan); - pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, - (int)(pSpan->zEnd - pSpan->zStart)); - } -} - -/* -** If the expression list pEList contains more than iLimit elements, -** leave an error message in pParse. -*/ -SQLITE_PRIVATE void sqlite3ExprListCheckLength( - Parse *pParse, - ExprList *pEList, - const char *zObject -){ - int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; - testcase( pEList && pEList->nExpr==mx ); - testcase( pEList && pEList->nExpr==mx+1 ); - if( pEList && pEList->nExpr>mx ){ - sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); - } -} - -/* -** Delete an entire expression list. -*/ -SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ - int i; - struct ExprList_item *pItem; - if( pList==0 ) return; - assert( pList->a!=0 || pList->nExpr==0 ); - for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ - sqlite3ExprDelete(db, pItem->pExpr); - sqlite3DbFree(db, pItem->zName); - sqlite3DbFree(db, pItem->zSpan); - } - sqlite3DbFree(db, pList->a); - sqlite3DbFree(db, pList); -} - -/* -** These routines are Walker callbacks. Walker.u.pi is a pointer -** to an integer. These routines are checking an expression to see -** if it is a constant. Set *Walker.u.pi to 0 if the expression is -** not constant. -** -** These callback routines are used to implement the following: -** -** sqlite3ExprIsConstant() -** sqlite3ExprIsConstantNotJoin() -** sqlite3ExprIsConstantOrFunction() -** -*/ -static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ - - /* If pWalker->u.i is 3 then any term of the expression that comes from - ** the ON or USING clauses of a join disqualifies the expression - ** from being considered constant. */ - if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ - pWalker->u.i = 0; - return WRC_Abort; - } - - switch( pExpr->op ){ - /* Consider functions to be constant if all their arguments are constant - ** and pWalker->u.i==2 */ - case TK_FUNCTION: - if( pWalker->u.i==2 ) return 0; - /* Fall through */ - case TK_ID: - case TK_COLUMN: - case TK_AGG_FUNCTION: - case TK_AGG_COLUMN: - testcase( pExpr->op==TK_ID ); - testcase( pExpr->op==TK_COLUMN ); - testcase( pExpr->op==TK_AGG_FUNCTION ); - testcase( pExpr->op==TK_AGG_COLUMN ); - pWalker->u.i = 0; - return WRC_Abort; - default: - testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ - testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ - return WRC_Continue; - } -} -static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ - UNUSED_PARAMETER(NotUsed); - pWalker->u.i = 0; - return WRC_Abort; -} -static int exprIsConst(Expr *p, int initFlag){ - Walker w; - w.u.i = initFlag; - w.xExprCallback = exprNodeIsConstant; - w.xSelectCallback = selectNodeIsConstant; - sqlite3WalkExpr(&w, p); - return w.u.i; -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** and 0 if it involves variables or function calls. -** -** For the purposes of this function, a double-quoted string (ex: "abc") -** is considered a variable but a single-quoted string (ex: 'abc') is -** a constant. -*/ -SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){ - return exprIsConst(p, 1); -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** that does no originate from the ON or USING clauses of a join. -** Return 0 if it involves variables or function calls or terms from -** an ON or USING clause. -*/ -SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ - return exprIsConst(p, 3); -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** or a function call with constant arguments. Return and 0 if there -** are any variables. -** -** For the purposes of this function, a double-quoted string (ex: "abc") -** is considered a variable but a single-quoted string (ex: 'abc') is -** a constant. -*/ -SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){ - return exprIsConst(p, 2); -} - -/* -** If the expression p codes a constant integer that is small enough -** to fit in a 32-bit integer, return 1 and put the value of the integer -** in *pValue. If the expression is not an integer or if it is too big -** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. -*/ -SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){ - int rc = 0; - - /* If an expression is an integer literal that fits in a signed 32-bit - ** integer, then the EP_IntValue flag will have already been set */ - assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 - || sqlite3GetInt32(p->u.zToken, &rc)==0 ); - - if( p->flags & EP_IntValue ){ - *pValue = p->u.iValue; - return 1; - } - switch( p->op ){ - case TK_UPLUS: { - rc = sqlite3ExprIsInteger(p->pLeft, pValue); - break; - } - case TK_UMINUS: { - int v; - if( sqlite3ExprIsInteger(p->pLeft, &v) ){ - *pValue = -v; - rc = 1; - } - break; - } - default: break; - } - return rc; -} - -/* -** Return FALSE if there is no chance that the expression can be NULL. -** -** If the expression might be NULL or if the expression is too complex -** to tell return TRUE. -** -** This routine is used as an optimization, to skip OP_IsNull opcodes -** when we know that a value cannot be NULL. Hence, a false positive -** (returning TRUE when in fact the expression can never be NULL) might -** be a small performance hit but is otherwise harmless. On the other -** hand, a false negative (returning FALSE when the result could be NULL) -** will likely result in an incorrect answer. So when in doubt, return -** TRUE. -*/ -SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){ - u8 op; - while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } - op = p->op; - if( op==TK_REGISTER ) op = p->op2; - switch( op ){ - case TK_INTEGER: - case TK_STRING: - case TK_FLOAT: - case TK_BLOB: - return 0; - default: - return 1; - } -} - -/* -** Generate an OP_IsNull instruction that tests register iReg and jumps -** to location iDest if the value in iReg is NULL. The value in iReg -** was computed by pExpr. If we can look at pExpr at compile-time and -** determine that it can never generate a NULL, then the OP_IsNull operation -** can be omitted. -*/ -SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump( - Vdbe *v, /* The VDBE under construction */ - const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ - int iReg, /* Test the value in this register for NULL */ - int iDest /* Jump here if the value is null */ -){ - if( sqlite3ExprCanBeNull(pExpr) ){ - sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); - } -} - -/* -** Return TRUE if the given expression is a constant which would be -** unchanged by OP_Affinity with the affinity given in the second -** argument. -** -** This routine is used to determine if the OP_Affinity operation -** can be omitted. When in doubt return FALSE. A false negative -** is harmless. A false positive, however, can result in the wrong -** answer. -*/ -SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ - u8 op; - if( aff==SQLITE_AFF_NONE ) return 1; - while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } - op = p->op; - if( op==TK_REGISTER ) op = p->op2; - switch( op ){ - case TK_INTEGER: { - return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; - } - case TK_FLOAT: { - return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; - } - case TK_STRING: { - return aff==SQLITE_AFF_TEXT; - } - case TK_BLOB: { - return 1; - } - case TK_COLUMN: { - assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ - return p->iColumn<0 - && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); - } - default: { - return 0; - } - } -} - -/* -** Return TRUE if the given string is a row-id column name. -*/ -SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ - if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; - if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; - if( sqlite3StrICmp(z, "OID")==0 ) return 1; - return 0; -} - -/* -** Return true if we are able to the IN operator optimization on a -** query of the form -** -** x IN (SELECT ...) -** -** Where the SELECT... clause is as specified by the parameter to this -** routine. -** -** The Select object passed in has already been preprocessed and no -** errors have been found. -*/ -#ifndef SQLITE_OMIT_SUBQUERY -static int isCandidateForInOpt(Select *p){ - SrcList *pSrc; - ExprList *pEList; - Table *pTab; - if( p==0 ) return 0; /* right-hand side of IN is SELECT */ - if( p->pPrior ) return 0; /* Not a compound SELECT */ - if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ - testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); - testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); - return 0; /* No DISTINCT keyword and no aggregate functions */ - } - assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ - if( p->pLimit ) return 0; /* Has no LIMIT clause */ - assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ - if( p->pWhere ) return 0; /* Has no WHERE clause */ - pSrc = p->pSrc; - assert( pSrc!=0 ); - if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ - if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ - pTab = pSrc->a[0].pTab; - if( NEVER(pTab==0) ) return 0; - assert( pTab->pSelect==0 ); /* FROM clause is not a view */ - if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ - pEList = p->pEList; - if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ - if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ - return 1; -} -#endif /* SQLITE_OMIT_SUBQUERY */ - -/* -** Code an OP_Once instruction and allocate space for its flag. Return the -** address of the new instruction. -*/ -SQLITE_PRIVATE int sqlite3CodeOnce(Parse *pParse){ - Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ - return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); -} - -/* -** This function is used by the implementation of the IN (...) operator. -** The pX parameter is the expression on the RHS of the IN operator, which -** might be either a list of expressions or a subquery. -** -** The job of this routine is to find or create a b-tree object that can -** be used either to test for membership in the RHS set or to iterate through -** all members of the RHS set, skipping duplicates. -** -** A cursor is opened on the b-tree object that the RHS of the IN operator -** and pX->iTable is set to the index of that cursor. -** -** The returned value of this function indicates the b-tree type, as follows: -** -** IN_INDEX_ROWID - The cursor was opened on a database table. -** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. -** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. -** IN_INDEX_EPH - The cursor was opened on a specially created and -** populated epheremal table. -** -** An existing b-tree might be used if the RHS expression pX is a simple -** subquery such as: -** -** SELECT <column> FROM <table> -** -** If the RHS of the IN operator is a list or a more complex subquery, then -** an ephemeral table might need to be generated from the RHS and then -** pX->iTable made to point to the ephermeral table instead of an -** existing table. -** -** If the prNotFound parameter is 0, then the b-tree will be used to iterate -** through the set members, skipping any duplicates. In this case an -** epheremal table must be used unless the selected <column> is guaranteed -** to be unique - either because it is an INTEGER PRIMARY KEY or it -** has a UNIQUE constraint or UNIQUE index. -** -** If the prNotFound parameter is not 0, then the b-tree will be used -** for fast set membership tests. In this case an epheremal table must -** be used unless <column> is an INTEGER PRIMARY KEY or an index can -** be found with <column> as its left-most column. -** -** When the b-tree is being used for membership tests, the calling function -** needs to know whether or not the structure contains an SQL NULL -** value in order to correctly evaluate expressions like "X IN (Y, Z)". -** If there is any chance that the (...) might contain a NULL value at -** runtime, then a register is allocated and the register number written -** to *prNotFound. If there is no chance that the (...) contains a -** NULL value, then *prNotFound is left unchanged. -** -** If a register is allocated and its location stored in *prNotFound, then -** its initial value is NULL. If the (...) does not remain constant -** for the duration of the query (i.e. the SELECT within the (...) -** is a correlated subquery) then the value of the allocated register is -** reset to NULL each time the subquery is rerun. This allows the -** caller to use vdbe code equivalent to the following: -** -** if( register==NULL ){ -** has_null = <test if data structure contains null> -** register = 1 -** } -** -** in order to avoid running the <test if data structure contains null> -** test more often than is necessary. -*/ -#ifndef SQLITE_OMIT_SUBQUERY -SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ - Select *p; /* SELECT to the right of IN operator */ - int eType = 0; /* Type of RHS table. IN_INDEX_* */ - int iTab = pParse->nTab++; /* Cursor of the RHS table */ - int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ - Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ - - assert( pX->op==TK_IN ); - - /* Check to see if an existing table or index can be used to - ** satisfy the query. This is preferable to generating a new - ** ephemeral table. - */ - p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); - if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ - sqlite3 *db = pParse->db; /* Database connection */ - Table *pTab; /* Table <table>. */ - Expr *pExpr; /* Expression <column> */ - int iCol; /* Index of column <column> */ - int iDb; /* Database idx for pTab */ - - assert( p ); /* Because of isCandidateForInOpt(p) */ - assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ - assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ - assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ - pTab = p->pSrc->a[0].pTab; - pExpr = p->pEList->a[0].pExpr; - iCol = pExpr->iColumn; - - /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - - /* This function is only called from two places. In both cases the vdbe - ** has already been allocated. So assume sqlite3GetVdbe() is always - ** successful here. - */ - assert(v); - if( iCol<0 ){ - int iAddr; - - iAddr = sqlite3CodeOnce(pParse); - - sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); - eType = IN_INDEX_ROWID; - - sqlite3VdbeJumpHere(v, iAddr); - }else{ - Index *pIdx; /* Iterator variable */ - - /* The collation sequence used by the comparison. If an index is to - ** be used in place of a temp-table, it must be ordered according - ** to this collation sequence. */ - CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); - - /* Check that the affinity that will be used to perform the - ** comparison is the same as the affinity of the column. If - ** it is not, it is not possible to use any index. - */ - int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); - - for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ - if( (pIdx->aiColumn[0]==iCol) - && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq - && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) - ){ - int iAddr; - char *pKey; - - pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); - iAddr = sqlite3CodeOnce(pParse); - - sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, - pKey,P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pIdx->zName)); - assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); - eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; - - sqlite3VdbeJumpHere(v, iAddr); - if( prNotFound && !pTab->aCol[iCol].notNull ){ - *prNotFound = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); - } - } - } - } - } - - if( eType==0 ){ - /* Could not found an existing table or index to use as the RHS b-tree. - ** We will have to generate an ephemeral table to do the job. - */ - double savedNQueryLoop = pParse->nQueryLoop; - int rMayHaveNull = 0; - eType = IN_INDEX_EPH; - if( prNotFound ){ - *prNotFound = rMayHaveNull = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); - }else{ - testcase( pParse->nQueryLoop>(double)1 ); - pParse->nQueryLoop = (double)1; - if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ - eType = IN_INDEX_ROWID; - } - } - sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); - pParse->nQueryLoop = savedNQueryLoop; - }else{ - pX->iTable = iTab; - } - return eType; -} -#endif - -/* -** Generate code for scalar subqueries used as a subquery expression, EXISTS, -** or IN operators. Examples: -** -** (SELECT a FROM b) -- subquery -** EXISTS (SELECT a FROM b) -- EXISTS subquery -** x IN (4,5,11) -- IN operator with list on right-hand side -** x IN (SELECT a FROM b) -- IN operator with subquery on the right -** -** The pExpr parameter describes the expression that contains the IN -** operator or subquery. -** -** If parameter isRowid is non-zero, then expression pExpr is guaranteed -** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference -** to some integer key column of a table B-Tree. In this case, use an -** intkey B-Tree to store the set of IN(...) values instead of the usual -** (slower) variable length keys B-Tree. -** -** If rMayHaveNull is non-zero, that means that the operation is an IN -** (not a SELECT or EXISTS) and that the RHS might contains NULLs. -** Furthermore, the IN is in a WHERE clause and that we really want -** to iterate over the RHS of the IN operator in order to quickly locate -** all corresponding LHS elements. All this routine does is initialize -** the register given by rMayHaveNull to NULL. Calling routines will take -** care of changing this register value to non-NULL if the RHS is NULL-free. -** -** If rMayHaveNull is zero, that means that the subquery is being used -** for membership testing only. There is no need to initialize any -** registers to indicate the presense or absence of NULLs on the RHS. -** -** For a SELECT or EXISTS operator, return the register that holds the -** result. For IN operators or if an error occurs, the return value is 0. -*/ -#ifndef SQLITE_OMIT_SUBQUERY -SQLITE_PRIVATE int sqlite3CodeSubselect( - Parse *pParse, /* Parsing context */ - Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ - int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ - int isRowid /* If true, LHS of IN operator is a rowid */ -){ - int testAddr = -1; /* One-time test address */ - int rReg = 0; /* Register storing resulting */ - Vdbe *v = sqlite3GetVdbe(pParse); - if( NEVER(v==0) ) return 0; - sqlite3ExprCachePush(pParse); - - /* This code must be run in its entirety every time it is encountered - ** if any of the following is true: - ** - ** * The right-hand side is a correlated subquery - ** * The right-hand side is an expression list containing variables - ** * We are inside a trigger - ** - ** If all of the above are false, then we can run this code just once - ** save the results, and reuse the same result on subsequent invocations. - */ - if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ - testAddr = sqlite3CodeOnce(pParse); - } - -#ifndef SQLITE_OMIT_EXPLAIN - if( pParse->explain==2 ){ - char *zMsg = sqlite3MPrintf( - pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", - pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId - ); - sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); - } -#endif - - switch( pExpr->op ){ - case TK_IN: { - char affinity; /* Affinity of the LHS of the IN */ - KeyInfo keyInfo; /* Keyinfo for the generated table */ - static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ - int addr; /* Address of OP_OpenEphemeral instruction */ - Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ - - if( rMayHaveNull ){ - sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); - } - - affinity = sqlite3ExprAffinity(pLeft); - - /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' - ** expression it is handled the same way. An ephemeral table is - ** filled with single-field index keys representing the results - ** from the SELECT or the <exprlist>. - ** - ** If the 'x' expression is a column value, or the SELECT... - ** statement returns a column value, then the affinity of that - ** column is used to build the index keys. If both 'x' and the - ** SELECT... statement are columns, then numeric affinity is used - ** if either column has NUMERIC or INTEGER affinity. If neither - ** 'x' nor the SELECT... statement are columns, then numeric affinity - ** is used. - */ - pExpr->iTable = pParse->nTab++; - addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); - if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); - memset(&keyInfo, 0, sizeof(keyInfo)); - keyInfo.nField = 1; - keyInfo.aSortOrder = &sortOrder; - - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - /* Case 1: expr IN (SELECT ...) - ** - ** Generate code to write the results of the select into the temporary - ** table allocated and opened above. - */ - SelectDest dest; - ExprList *pEList; - - assert( !isRowid ); - sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); - dest.affSdst = (u8)affinity; - assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); - pExpr->x.pSelect->iLimit = 0; - if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ - return 0; - } - pEList = pExpr->x.pSelect->pEList; - if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ - keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, - pEList->a[0].pExpr); - } - }else if( ALWAYS(pExpr->x.pList!=0) ){ - /* Case 2: expr IN (exprlist) - ** - ** For each expression, build an index key from the evaluation and - ** store it in the temporary table. If <expr> is a column, then use - ** that columns affinity when building index keys. If <expr> is not - ** a column, use numeric affinity. - */ - int i; - ExprList *pList = pExpr->x.pList; - struct ExprList_item *pItem; - int r1, r2, r3; - - if( !affinity ){ - affinity = SQLITE_AFF_NONE; - } - keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); - keyInfo.aSortOrder = &sortOrder; - - /* Loop through each expression in <exprlist>. */ - r1 = sqlite3GetTempReg(pParse); - r2 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_Null, 0, r2); - for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ - Expr *pE2 = pItem->pExpr; - int iValToIns; - - /* If the expression is not constant then we will need to - ** disable the test that was generated above that makes sure - ** this code only executes once. Because for a non-constant - ** expression we need to rerun this code each time. - */ - if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ - sqlite3VdbeChangeToNoop(v, testAddr); - testAddr = -1; - } - - /* Evaluate the expression and insert it into the temp table */ - if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ - sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); - }else{ - r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); - if( isRowid ){ - sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, - sqlite3VdbeCurrentAddr(v)+2); - sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); - }else{ - sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); - sqlite3ExprCacheAffinityChange(pParse, r3, 1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); - } - } - } - sqlite3ReleaseTempReg(pParse, r1); - sqlite3ReleaseTempReg(pParse, r2); - } - if( !isRowid ){ - sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); - } - break; - } - - case TK_EXISTS: - case TK_SELECT: - default: { - /* If this has to be a scalar SELECT. Generate code to put the - ** value of this select in a memory cell and record the number - ** of the memory cell in iColumn. If this is an EXISTS, write - ** an integer 0 (not exists) or 1 (exists) into a memory cell - ** and record that memory cell in iColumn. - */ - Select *pSel; /* SELECT statement to encode */ - SelectDest dest; /* How to deal with SELECt result */ - - testcase( pExpr->op==TK_EXISTS ); - testcase( pExpr->op==TK_SELECT ); - assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); - - assert( ExprHasProperty(pExpr, EP_xIsSelect) ); - pSel = pExpr->x.pSelect; - sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); - if( pExpr->op==TK_SELECT ){ - dest.eDest = SRT_Mem; - sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); - VdbeComment((v, "Init subquery result")); - }else{ - dest.eDest = SRT_Exists; - sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); - VdbeComment((v, "Init EXISTS result")); - } - sqlite3ExprDelete(pParse->db, pSel->pLimit); - pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, - &sqlite3IntTokens[1]); - pSel->iLimit = 0; - if( sqlite3Select(pParse, pSel, &dest) ){ - return 0; - } - rReg = dest.iSDParm; - ExprSetIrreducible(pExpr); - break; - } - } - - if( testAddr>=0 ){ - sqlite3VdbeJumpHere(v, testAddr); - } - sqlite3ExprCachePop(pParse, 1); - - return rReg; -} -#endif /* SQLITE_OMIT_SUBQUERY */ - -#ifndef SQLITE_OMIT_SUBQUERY -/* -** Generate code for an IN expression. -** -** x IN (SELECT ...) -** x IN (value, value, ...) -** -** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) -** is an array of zero or more values. The expression is true if the LHS is -** contained within the RHS. The value of the expression is unknown (NULL) -** if the LHS is NULL or if the LHS is not contained within the RHS and the -** RHS contains one or more NULL values. -** -** This routine generates code will jump to destIfFalse if the LHS is not -** contained within the RHS. If due to NULLs we cannot determine if the LHS -** is contained in the RHS then jump to destIfNull. If the LHS is contained -** within the RHS then fall through. -*/ -static void sqlite3ExprCodeIN( - Parse *pParse, /* Parsing and code generating context */ - Expr *pExpr, /* The IN expression */ - int destIfFalse, /* Jump here if LHS is not contained in the RHS */ - int destIfNull /* Jump here if the results are unknown due to NULLs */ -){ - int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ - char affinity; /* Comparison affinity to use */ - int eType; /* Type of the RHS */ - int r1; /* Temporary use register */ - Vdbe *v; /* Statement under construction */ - - /* Compute the RHS. After this step, the table with cursor - ** pExpr->iTable will contains the values that make up the RHS. - */ - v = pParse->pVdbe; - assert( v!=0 ); /* OOM detected prior to this routine */ - VdbeNoopComment((v, "begin IN expr")); - eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); - - /* Figure out the affinity to use to create a key from the results - ** of the expression. affinityStr stores a static string suitable for - ** P4 of OP_MakeRecord. - */ - affinity = comparisonAffinity(pExpr); - - /* Code the LHS, the <expr> from "<expr> IN (...)". - */ - sqlite3ExprCachePush(pParse); - r1 = sqlite3GetTempReg(pParse); - sqlite3ExprCode(pParse, pExpr->pLeft, r1); - - /* If the LHS is NULL, then the result is either false or NULL depending - ** on whether the RHS is empty or not, respectively. - */ - if( destIfNull==destIfFalse ){ - /* Shortcut for the common case where the false and NULL outcomes are - ** the same. */ - sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); - }else{ - int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); - sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); - sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); - sqlite3VdbeJumpHere(v, addr1); - } - - if( eType==IN_INDEX_ROWID ){ - /* In this case, the RHS is the ROWID of table b-tree - */ - sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); - sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); - }else{ - /* In this case, the RHS is an index b-tree. - */ - sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); - - /* If the set membership test fails, then the result of the - ** "x IN (...)" expression must be either 0 or NULL. If the set - ** contains no NULL values, then the result is 0. If the set - ** contains one or more NULL values, then the result of the - ** expression is also NULL. - */ - if( rRhsHasNull==0 || destIfFalse==destIfNull ){ - /* This branch runs if it is known at compile time that the RHS - ** cannot contain NULL values. This happens as the result - ** of a "NOT NULL" constraint in the database schema. - ** - ** Also run this branch if NULL is equivalent to FALSE - ** for this particular IN operator. - */ - sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); - - }else{ - /* In this branch, the RHS of the IN might contain a NULL and - ** the presence of a NULL on the RHS makes a difference in the - ** outcome. - */ - int j1, j2, j3; - - /* First check to see if the LHS is contained in the RHS. If so, - ** then the presence of NULLs in the RHS does not matter, so jump - ** over all of the code that follows. - */ - j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); - - /* Here we begin generating code that runs if the LHS is not - ** contained within the RHS. Generate additional code that - ** tests the RHS for NULLs. If the RHS contains a NULL then - ** jump to destIfNull. If there are no NULLs in the RHS then - ** jump to destIfFalse. - */ - j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); - j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); - sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); - sqlite3VdbeJumpHere(v, j3); - sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); - sqlite3VdbeJumpHere(v, j2); - - /* Jump to the appropriate target depending on whether or not - ** the RHS contains a NULL - */ - sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); - sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); - - /* The OP_Found at the top of this branch jumps here when true, - ** causing the overall IN expression evaluation to fall through. - */ - sqlite3VdbeJumpHere(v, j1); - } - } - sqlite3ReleaseTempReg(pParse, r1); - sqlite3ExprCachePop(pParse, 1); - VdbeComment((v, "end IN expr")); -} -#endif /* SQLITE_OMIT_SUBQUERY */ - -/* -** Duplicate an 8-byte value -*/ -static char *dup8bytes(Vdbe *v, const char *in){ - char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); - if( out ){ - memcpy(out, in, 8); - } - return out; -} - -#ifndef SQLITE_OMIT_FLOATING_POINT -/* -** Generate an instruction that will put the floating point -** value described by z[0..n-1] into register iMem. -** -** The z[] string will probably not be zero-terminated. But the -** z[n] character is guaranteed to be something that does not look -** like the continuation of the number. -*/ -static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ - if( ALWAYS(z!=0) ){ - double value; - char *zV; - sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); - assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ - if( negateFlag ) value = -value; - zV = dup8bytes(v, (char*)&value); - sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); - } -} -#endif - - -/* -** Generate an instruction that will put the integer describe by -** text z[0..n-1] into register iMem. -** -** Expr.u.zToken is always UTF8 and zero-terminated. -*/ -static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ - Vdbe *v = pParse->pVdbe; - if( pExpr->flags & EP_IntValue ){ - int i = pExpr->u.iValue; - assert( i>=0 ); - if( negFlag ) i = -i; - sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); - }else{ - int c; - i64 value; - const char *z = pExpr->u.zToken; - assert( z!=0 ); - c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); - if( c==0 || (c==2 && negFlag) ){ - char *zV; - if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } - zV = dup8bytes(v, (char*)&value); - sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); - }else{ -#ifdef SQLITE_OMIT_FLOATING_POINT - sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); -#else - codeReal(v, z, negFlag, iMem); -#endif - } - } -} - -/* -** Clear a cache entry. -*/ -static void cacheEntryClear(Parse *pParse, struct yColCache *p){ - if( p->tempReg ){ - if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ - pParse->aTempReg[pParse->nTempReg++] = p->iReg; - } - p->tempReg = 0; - } -} - - -/* -** Record in the column cache that a particular column from a -** particular table is stored in a particular register. -*/ -SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ - int i; - int minLru; - int idxLru; - struct yColCache *p; - - assert( iReg>0 ); /* Register numbers are always positive */ - assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ - - /* The SQLITE_ColumnCache flag disables the column cache. This is used - ** for testing only - to verify that SQLite always gets the same answer - ** with and without the column cache. - */ - if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; - - /* First replace any existing entry. - ** - ** Actually, the way the column cache is currently used, we are guaranteed - ** that the object will never already be in cache. Verify this guarantee. - */ -#ifndef NDEBUG - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); - } -#endif - - /* Find an empty slot and replace it */ - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg==0 ){ - p->iLevel = pParse->iCacheLevel; - p->iTable = iTab; - p->iColumn = iCol; - p->iReg = iReg; - p->tempReg = 0; - p->lru = pParse->iCacheCnt++; - return; - } - } - - /* Replace the last recently used */ - minLru = 0x7fffffff; - idxLru = -1; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->lru<minLru ){ - idxLru = i; - minLru = p->lru; - } - } - if( ALWAYS(idxLru>=0) ){ - p = &pParse->aColCache[idxLru]; - p->iLevel = pParse->iCacheLevel; - p->iTable = iTab; - p->iColumn = iCol; - p->iReg = iReg; - p->tempReg = 0; - p->lru = pParse->iCacheCnt++; - return; - } -} - -/* -** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. -** Purge the range of registers from the column cache. -*/ -SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ - int i; - int iLast = iReg + nReg - 1; - struct yColCache *p; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - int r = p->iReg; - if( r>=iReg && r<=iLast ){ - cacheEntryClear(pParse, p); - p->iReg = 0; - } - } -} - -/* -** Remember the current column cache context. Any new entries added -** added to the column cache after this call are removed when the -** corresponding pop occurs. -*/ -SQLITE_PRIVATE void sqlite3ExprCachePush(Parse *pParse){ - pParse->iCacheLevel++; -} - -/* -** Remove from the column cache any entries that were added since the -** the previous N Push operations. In other words, restore the cache -** to the state it was in N Pushes ago. -*/ -SQLITE_PRIVATE void sqlite3ExprCachePop(Parse *pParse, int N){ - int i; - struct yColCache *p; - assert( N>0 ); - assert( pParse->iCacheLevel>=N ); - pParse->iCacheLevel -= N; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg && p->iLevel>pParse->iCacheLevel ){ - cacheEntryClear(pParse, p); - p->iReg = 0; - } - } -} - -/* -** When a cached column is reused, make sure that its register is -** no longer available as a temp register. ticket #3879: that same -** register might be in the cache in multiple places, so be sure to -** get them all. -*/ -static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ - int i; - struct yColCache *p; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg==iReg ){ - p->tempReg = 0; - } - } -} - -/* -** Generate code to extract the value of the iCol-th column of a table. -*/ -SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable( - Vdbe *v, /* The VDBE under construction */ - Table *pTab, /* The table containing the value */ - int iTabCur, /* The cursor for this table */ - int iCol, /* Index of the column to extract */ - int regOut /* Extract the valud into this register */ -){ - if( iCol<0 || iCol==pTab->iPKey ){ - sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); - }else{ - int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; - sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); - } - if( iCol>=0 ){ - sqlite3ColumnDefault(v, pTab, iCol, regOut); - } -} - -/* -** Generate code that will extract the iColumn-th column from -** table pTab and store the column value in a register. An effort -** is made to store the column value in register iReg, but this is -** not guaranteed. The location of the column value is returned. -** -** There must be an open cursor to pTab in iTable when this routine -** is called. If iColumn<0 then code is generated that extracts the rowid. -*/ -SQLITE_PRIVATE int sqlite3ExprCodeGetColumn( - Parse *pParse, /* Parsing and code generating context */ - Table *pTab, /* Description of the table we are reading from */ - int iColumn, /* Index of the table column */ - int iTable, /* The cursor pointing to the table */ - int iReg, /* Store results here */ - u8 p5 /* P5 value for OP_Column */ -){ - Vdbe *v = pParse->pVdbe; - int i; - struct yColCache *p; - - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ - p->lru = pParse->iCacheCnt++; - sqlite3ExprCachePinRegister(pParse, p->iReg); - return p->iReg; - } - } - assert( v!=0 ); - sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); - if( p5 ){ - sqlite3VdbeChangeP5(v, p5); - }else{ - sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); - } - return iReg; -} - -/* -** Clear all column cache entries. -*/ -SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){ - int i; - struct yColCache *p; - - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg ){ - cacheEntryClear(pParse, p); - p->iReg = 0; - } - } -} - -/* -** Record the fact that an affinity change has occurred on iCount -** registers starting with iStart. -*/ -SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ - sqlite3ExprCacheRemove(pParse, iStart, iCount); -} - -/* -** Generate code to move content from registers iFrom...iFrom+nReg-1 -** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. -*/ -SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ - int i; - struct yColCache *p; - assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); - sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - int x = p->iReg; - if( x>=iFrom && x<iFrom+nReg ){ - p->iReg += iTo-iFrom; - } - } -} - -#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) -/* -** Return true if any register in the range iFrom..iTo (inclusive) -** is used as part of the column cache. -** -** This routine is used within assert() and testcase() macros only -** and does not appear in a normal build. -*/ -static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ - int i; - struct yColCache *p; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - int r = p->iReg; - if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ - } - return 0; -} -#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ - -/* -** Generate code into the current Vdbe to evaluate the given -** expression. Attempt to store the results in register "target". -** Return the register where results are stored. -** -** With this routine, there is no guarantee that results will -** be stored in target. The result might be stored in some other -** register if it is convenient to do so. The calling function -** must check the return code and move the results to the desired -** register. -*/ -SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ - Vdbe *v = pParse->pVdbe; /* The VM under construction */ - int op; /* The opcode being coded */ - int inReg = target; /* Results stored in register inReg */ - int regFree1 = 0; /* If non-zero free this temporary register */ - int regFree2 = 0; /* If non-zero free this temporary register */ - int r1, r2, r3, r4; /* Various register numbers */ - sqlite3 *db = pParse->db; /* The database connection */ - - assert( target>0 && target<=pParse->nMem ); - if( v==0 ){ - assert( pParse->db->mallocFailed ); - return 0; - } - - if( pExpr==0 ){ - op = TK_NULL; - }else{ - op = pExpr->op; - } - switch( op ){ - case TK_AGG_COLUMN: { - AggInfo *pAggInfo = pExpr->pAggInfo; - struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; - if( !pAggInfo->directMode ){ - assert( pCol->iMem>0 ); - inReg = pCol->iMem; - break; - }else if( pAggInfo->useSortingIdx ){ - sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, - pCol->iSorterColumn, target); - break; - } - /* Otherwise, fall thru into the TK_COLUMN case */ - } - case TK_COLUMN: { - if( pExpr->iTable<0 ){ - /* This only happens when coding check constraints */ - assert( pParse->ckBase>0 ); - inReg = pExpr->iColumn + pParse->ckBase; - }else{ - inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, - pExpr->iColumn, pExpr->iTable, target, - pExpr->op2); - } - break; - } - case TK_INTEGER: { - codeInteger(pParse, pExpr, 0, target); - break; - } -#ifndef SQLITE_OMIT_FLOATING_POINT - case TK_FLOAT: { - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - codeReal(v, pExpr->u.zToken, 0, target); - break; - } -#endif - case TK_STRING: { - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); - break; - } - case TK_NULL: { - sqlite3VdbeAddOp2(v, OP_Null, 0, target); - break; - } -#ifndef SQLITE_OMIT_BLOB_LITERAL - case TK_BLOB: { - int n; - const char *z; - char *zBlob; - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); - assert( pExpr->u.zToken[1]=='\'' ); - z = &pExpr->u.zToken[2]; - n = sqlite3Strlen30(z) - 1; - assert( z[n]=='\'' ); - zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); - sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); - break; - } -#endif - case TK_VARIABLE: { - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - assert( pExpr->u.zToken!=0 ); - assert( pExpr->u.zToken[0]!=0 ); - sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); - if( pExpr->u.zToken[1]!=0 ){ - assert( pExpr->u.zToken[0]=='?' - || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); - sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); - } - break; - } - case TK_REGISTER: { - inReg = pExpr->iTable; - break; - } - case TK_AS: { - inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); - break; - } -#ifndef SQLITE_OMIT_CAST - case TK_CAST: { - /* Expressions of the form: CAST(pLeft AS token) */ - int aff, to_op; - inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - aff = sqlite3AffinityType(pExpr->u.zToken); - to_op = aff - SQLITE_AFF_TEXT + OP_ToText; - assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); - assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); - assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); - assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); - assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); - testcase( to_op==OP_ToText ); - testcase( to_op==OP_ToBlob ); - testcase( to_op==OP_ToNumeric ); - testcase( to_op==OP_ToInt ); - testcase( to_op==OP_ToReal ); - if( inReg!=target ){ - sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); - inReg = target; - } - sqlite3VdbeAddOp1(v, to_op, inReg); - testcase( usedAsColumnCache(pParse, inReg, inReg) ); - sqlite3ExprCacheAffinityChange(pParse, inReg, 1); - break; - } -#endif /* SQLITE_OMIT_CAST */ - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - assert( TK_LT==OP_Lt ); - assert( TK_LE==OP_Le ); - assert( TK_GT==OP_Gt ); - assert( TK_GE==OP_Ge ); - assert( TK_EQ==OP_Eq ); - assert( TK_NE==OP_Ne ); - testcase( op==TK_LT ); - testcase( op==TK_LE ); - testcase( op==TK_GT ); - testcase( op==TK_GE ); - testcase( op==TK_EQ ); - testcase( op==TK_NE ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, inReg, SQLITE_STOREP2); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_IS: - case TK_ISNOT: { - testcase( op==TK_IS ); - testcase( op==TK_ISNOT ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - op = (op==TK_IS) ? TK_EQ : TK_NE; - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_AND: - case TK_OR: - case TK_PLUS: - case TK_STAR: - case TK_MINUS: - case TK_REM: - case TK_BITAND: - case TK_BITOR: - case TK_SLASH: - case TK_LSHIFT: - case TK_RSHIFT: - case TK_CONCAT: { - assert( TK_AND==OP_And ); - assert( TK_OR==OP_Or ); - assert( TK_PLUS==OP_Add ); - assert( TK_MINUS==OP_Subtract ); - assert( TK_REM==OP_Remainder ); - assert( TK_BITAND==OP_BitAnd ); - assert( TK_BITOR==OP_BitOr ); - assert( TK_SLASH==OP_Divide ); - assert( TK_LSHIFT==OP_ShiftLeft ); - assert( TK_RSHIFT==OP_ShiftRight ); - assert( TK_CONCAT==OP_Concat ); - testcase( op==TK_AND ); - testcase( op==TK_OR ); - testcase( op==TK_PLUS ); - testcase( op==TK_MINUS ); - testcase( op==TK_REM ); - testcase( op==TK_BITAND ); - testcase( op==TK_BITOR ); - testcase( op==TK_SLASH ); - testcase( op==TK_LSHIFT ); - testcase( op==TK_RSHIFT ); - testcase( op==TK_CONCAT ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - sqlite3VdbeAddOp3(v, op, r2, r1, target); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_UMINUS: { - Expr *pLeft = pExpr->pLeft; - assert( pLeft ); - if( pLeft->op==TK_INTEGER ){ - codeInteger(pParse, pLeft, 1, target); -#ifndef SQLITE_OMIT_FLOATING_POINT - }else if( pLeft->op==TK_FLOAT ){ - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - codeReal(v, pLeft->u.zToken, 1, target); -#endif - }else{ - regFree1 = r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); - sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); - testcase( regFree2==0 ); - } - inReg = target; - break; - } - case TK_BITNOT: - case TK_NOT: { - assert( TK_BITNOT==OP_BitNot ); - assert( TK_NOT==OP_Not ); - testcase( op==TK_BITNOT ); - testcase( op==TK_NOT ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - testcase( regFree1==0 ); - inReg = target; - sqlite3VdbeAddOp2(v, op, r1, inReg); - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - int addr; - assert( TK_ISNULL==OP_IsNull ); - assert( TK_NOTNULL==OP_NotNull ); - testcase( op==TK_ISNULL ); - testcase( op==TK_NOTNULL ); - sqlite3VdbeAddOp2(v, OP_Integer, 1, target); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - testcase( regFree1==0 ); - addr = sqlite3VdbeAddOp1(v, op, r1); - sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); - sqlite3VdbeJumpHere(v, addr); - break; - } - case TK_AGG_FUNCTION: { - AggInfo *pInfo = pExpr->pAggInfo; - if( pInfo==0 ){ - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); - }else{ - inReg = pInfo->aFunc[pExpr->iAgg].iMem; - } - break; - } - case TK_CONST_FUNC: - case TK_FUNCTION: { - ExprList *pFarg; /* List of function arguments */ - int nFarg; /* Number of function arguments */ - FuncDef *pDef; /* The function definition object */ - int nId; /* Length of the function name in bytes */ - const char *zId; /* The function name */ - int constMask = 0; /* Mask of function arguments that are constant */ - int i; /* Loop counter */ - u8 enc = ENC(db); /* The text encoding used by this database */ - CollSeq *pColl = 0; /* A collating sequence */ - - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - testcase( op==TK_CONST_FUNC ); - testcase( op==TK_FUNCTION ); - if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ - pFarg = 0; - }else{ - pFarg = pExpr->x.pList; - } - nFarg = pFarg ? pFarg->nExpr : 0; - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - zId = pExpr->u.zToken; - nId = sqlite3Strlen30(zId); - pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); - if( pDef==0 ){ - sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); - break; - } - - /* Attempt a direct implementation of the built-in COALESCE() and - ** IFNULL() functions. This avoids unnecessary evalation of - ** arguments past the first non-NULL argument. - */ - if( pDef->flags & SQLITE_FUNC_COALESCE ){ - int endCoalesce = sqlite3VdbeMakeLabel(v); - assert( nFarg>=2 ); - sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); - for(i=1; i<nFarg; i++){ - sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); - sqlite3ExprCacheRemove(pParse, target, 1); - sqlite3ExprCachePush(pParse); - sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); - sqlite3ExprCachePop(pParse, 1); - } - sqlite3VdbeResolveLabel(v, endCoalesce); - break; - } - - - if( pFarg ){ - r1 = sqlite3GetTempRange(pParse, nFarg); - - /* For length() and typeof() functions with a column argument, - ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG - ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data - ** loading. - */ - if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ - u8 exprOp; - assert( nFarg==1 ); - assert( pFarg->a[0].pExpr!=0 ); - exprOp = pFarg->a[0].pExpr->op; - if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ - assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); - assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); - testcase( pDef->flags==SQLITE_FUNC_LENGTH ); - pFarg->a[0].pExpr->op2 = pDef->flags; - } - } - - sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ - sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); - sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ - }else{ - r1 = 0; - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - /* Possibly overload the function if the first argument is - ** a virtual table column. - ** - ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the - ** second argument, not the first, as the argument to test to - ** see if it is a column in a virtual table. This is done because - ** the left operand of infix functions (the operand we want to - ** control overloading) ends up as the second argument to the - ** function. The expression "A glob B" is equivalent to - ** "glob(B,A). We want to use the A in "A glob B" to test - ** for function overloading. But we use the B term in "glob(B,A)". - */ - if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ - pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); - }else if( nFarg>0 ){ - pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); - } -#endif - for(i=0; i<nFarg; i++){ - if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ - constMask |= (1<<i); - } - if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ - pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); - } - } - if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ - if( !pColl ) pColl = db->pDfltColl; - sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); - } - sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, - (char*)pDef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, (u8)nFarg); - if( nFarg ){ - sqlite3ReleaseTempRange(pParse, r1, nFarg); - } - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_EXISTS: - case TK_SELECT: { - testcase( op==TK_EXISTS ); - testcase( op==TK_SELECT ); - inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); - break; - } - case TK_IN: { - int destIfFalse = sqlite3VdbeMakeLabel(v); - int destIfNull = sqlite3VdbeMakeLabel(v); - sqlite3VdbeAddOp2(v, OP_Null, 0, target); - sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); - sqlite3VdbeAddOp2(v, OP_Integer, 1, target); - sqlite3VdbeResolveLabel(v, destIfFalse); - sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); - sqlite3VdbeResolveLabel(v, destIfNull); - break; - } -#endif /* SQLITE_OMIT_SUBQUERY */ - - - /* - ** x BETWEEN y AND z - ** - ** This is equivalent to - ** - ** x>=y AND x<=z - ** - ** X is stored in pExpr->pLeft. - ** Y is stored in pExpr->pList->a[0].pExpr. - ** Z is stored in pExpr->pList->a[1].pExpr. - */ - case TK_BETWEEN: { - Expr *pLeft = pExpr->pLeft; - struct ExprList_item *pLItem = pExpr->x.pList->a; - Expr *pRight = pLItem->pExpr; - - r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - r3 = sqlite3GetTempReg(pParse); - r4 = sqlite3GetTempReg(pParse); - codeCompare(pParse, pLeft, pRight, OP_Ge, - r1, r2, r3, SQLITE_STOREP2); - pLItem++; - pRight = pLItem->pExpr; - sqlite3ReleaseTempReg(pParse, regFree2); - r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); - testcase( regFree2==0 ); - codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); - sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); - sqlite3ReleaseTempReg(pParse, r3); - sqlite3ReleaseTempReg(pParse, r4); - break; - } - case TK_COLLATE: - case TK_UPLUS: { - inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); - break; - } - - case TK_TRIGGER: { - /* If the opcode is TK_TRIGGER, then the expression is a reference - ** to a column in the new.* or old.* pseudo-tables available to - ** trigger programs. In this case Expr.iTable is set to 1 for the - ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn - ** is set to the column of the pseudo-table to read, or to -1 to - ** read the rowid field. - ** - ** The expression is implemented using an OP_Param opcode. The p1 - ** parameter is set to 0 for an old.rowid reference, or to (i+1) - ** to reference another column of the old.* pseudo-table, where - ** i is the index of the column. For a new.rowid reference, p1 is - ** set to (n+1), where n is the number of columns in each pseudo-table. - ** For a reference to any other column in the new.* pseudo-table, p1 - ** is set to (n+2+i), where n and i are as defined previously. For - ** example, if the table on which triggers are being fired is - ** declared as: - ** - ** CREATE TABLE t1(a, b); - ** - ** Then p1 is interpreted as follows: - ** - ** p1==0 -> old.rowid p1==3 -> new.rowid - ** p1==1 -> old.a p1==4 -> new.a - ** p1==2 -> old.b p1==5 -> new.b - */ - Table *pTab = pExpr->pTab; - int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; - - assert( pExpr->iTable==0 || pExpr->iTable==1 ); - assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); - assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); - assert( p1>=0 && p1<(pTab->nCol*2+2) ); - - sqlite3VdbeAddOp2(v, OP_Param, p1, target); - VdbeComment((v, "%s.%s -> $%d", - (pExpr->iTable ? "new" : "old"), - (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), - target - )); - -#ifndef SQLITE_OMIT_FLOATING_POINT - /* If the column has REAL affinity, it may currently be stored as an - ** integer. Use OP_RealAffinity to make sure it is really real. */ - if( pExpr->iColumn>=0 - && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL - ){ - sqlite3VdbeAddOp1(v, OP_RealAffinity, target); - } -#endif - break; - } - - - /* - ** Form A: - ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END - ** - ** Form B: - ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END - ** - ** Form A is can be transformed into the equivalent form B as follows: - ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... - ** WHEN x=eN THEN rN ELSE y END - ** - ** X (if it exists) is in pExpr->pLeft. - ** Y is in pExpr->pRight. The Y is also optional. If there is no - ** ELSE clause and no other term matches, then the result of the - ** exprssion is NULL. - ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. - ** - ** The result of the expression is the Ri for the first matching Ei, - ** or if there is no matching Ei, the ELSE term Y, or if there is - ** no ELSE term, NULL. - */ - default: assert( op==TK_CASE ); { - int endLabel; /* GOTO label for end of CASE stmt */ - int nextCase; /* GOTO label for next WHEN clause */ - int nExpr; /* 2x number of WHEN terms */ - int i; /* Loop counter */ - ExprList *pEList; /* List of WHEN terms */ - struct ExprList_item *aListelem; /* Array of WHEN terms */ - Expr opCompare; /* The X==Ei expression */ - Expr cacheX; /* Cached expression X */ - Expr *pX; /* The X expression */ - Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ - VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) - - assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); - assert((pExpr->x.pList->nExpr % 2) == 0); - assert(pExpr->x.pList->nExpr > 0); - pEList = pExpr->x.pList; - aListelem = pEList->a; - nExpr = pEList->nExpr; - endLabel = sqlite3VdbeMakeLabel(v); - if( (pX = pExpr->pLeft)!=0 ){ - cacheX = *pX; - testcase( pX->op==TK_COLUMN ); - testcase( pX->op==TK_REGISTER ); - cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); - testcase( regFree1==0 ); - cacheX.op = TK_REGISTER; - opCompare.op = TK_EQ; - opCompare.pLeft = &cacheX; - pTest = &opCompare; - /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: - ** The value in regFree1 might get SCopy-ed into the file result. - ** So make sure that the regFree1 register is not reused for other - ** purposes and possibly overwritten. */ - regFree1 = 0; - } - for(i=0; i<nExpr; i=i+2){ - sqlite3ExprCachePush(pParse); - if( pX ){ - assert( pTest!=0 ); - opCompare.pRight = aListelem[i].pExpr; - }else{ - pTest = aListelem[i].pExpr; - } - nextCase = sqlite3VdbeMakeLabel(v); - testcase( pTest->op==TK_COLUMN ); - sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); - testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); - testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); - sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); - sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); - sqlite3ExprCachePop(pParse, 1); - sqlite3VdbeResolveLabel(v, nextCase); - } - if( pExpr->pRight ){ - sqlite3ExprCachePush(pParse); - sqlite3ExprCode(pParse, pExpr->pRight, target); - sqlite3ExprCachePop(pParse, 1); - }else{ - sqlite3VdbeAddOp2(v, OP_Null, 0, target); - } - assert( db->mallocFailed || pParse->nErr>0 - || pParse->iCacheLevel==iCacheLevel ); - sqlite3VdbeResolveLabel(v, endLabel); - break; - } -#ifndef SQLITE_OMIT_TRIGGER - case TK_RAISE: { - assert( pExpr->affinity==OE_Rollback - || pExpr->affinity==OE_Abort - || pExpr->affinity==OE_Fail - || pExpr->affinity==OE_Ignore - ); - if( !pParse->pTriggerTab ){ - sqlite3ErrorMsg(pParse, - "RAISE() may only be used within a trigger-program"); - return 0; - } - if( pExpr->affinity==OE_Abort ){ - sqlite3MayAbort(pParse); - } - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - if( pExpr->affinity==OE_Ignore ){ - sqlite3VdbeAddOp4( - v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); - }else{ - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, - pExpr->affinity, pExpr->u.zToken, 0); - } - - break; - } -#endif - } - sqlite3ReleaseTempReg(pParse, regFree1); - sqlite3ReleaseTempReg(pParse, regFree2); - return inReg; -} - -/* -** Generate code to evaluate an expression and store the results -** into a register. Return the register number where the results -** are stored. -** -** If the register is a temporary register that can be deallocated, -** then write its number into *pReg. If the result register is not -** a temporary, then set *pReg to zero. -*/ -SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ - int r1 = sqlite3GetTempReg(pParse); - int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); - if( r2==r1 ){ - *pReg = r1; - }else{ - sqlite3ReleaseTempReg(pParse, r1); - *pReg = 0; - } - return r2; -} - -/* -** Generate code that will evaluate expression pExpr and store the -** results in register target. The results are guaranteed to appear -** in register target. -*/ -SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ - int inReg; - - assert( target>0 && target<=pParse->nMem ); - if( pExpr && pExpr->op==TK_REGISTER ){ - sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); - }else{ - inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); - assert( pParse->pVdbe || pParse->db->mallocFailed ); - if( inReg!=target && pParse->pVdbe ){ - sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); - } - } - return target; -} - -/* -** Generate code that evalutes the given expression and puts the result -** in register target. -** -** Also make a copy of the expression results into another "cache" register -** and modify the expression so that the next time it is evaluated, -** the result is a copy of the cache register. -** -** This routine is used for expressions that are used multiple -** times. They are evaluated once and the results of the expression -** are reused. -*/ -SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ - Vdbe *v = pParse->pVdbe; - int inReg; - inReg = sqlite3ExprCode(pParse, pExpr, target); - assert( target>0 ); - /* This routine is called for terms to INSERT or UPDATE. And the only - ** other place where expressions can be converted into TK_REGISTER is - ** in WHERE clause processing. So as currently implemented, there is - ** no way for a TK_REGISTER to exist here. But it seems prudent to - ** keep the ALWAYS() in case the conditions above change with future - ** modifications or enhancements. */ - if( ALWAYS(pExpr->op!=TK_REGISTER) ){ - int iMem; - iMem = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); - pExpr->iTable = iMem; - pExpr->op2 = pExpr->op; - pExpr->op = TK_REGISTER; - } - return inReg; -} - -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) -/* -** Generate a human-readable explanation of an expression tree. -*/ -SQLITE_PRIVATE void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ - int op; /* The opcode being coded */ - const char *zBinOp = 0; /* Binary operator */ - const char *zUniOp = 0; /* Unary operator */ - if( pExpr==0 ){ - op = TK_NULL; - }else{ - op = pExpr->op; - } - switch( op ){ - case TK_AGG_COLUMN: { - sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", - pExpr->iTable, pExpr->iColumn); - break; - } - case TK_COLUMN: { - if( pExpr->iTable<0 ){ - /* This only happens when coding check constraints */ - sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); - }else{ - sqlite3ExplainPrintf(pOut, "{%d:%d}", - pExpr->iTable, pExpr->iColumn); - } - break; - } - case TK_INTEGER: { - if( pExpr->flags & EP_IntValue ){ - sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); - }else{ - sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); - } - break; - } -#ifndef SQLITE_OMIT_FLOATING_POINT - case TK_FLOAT: { - sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); - break; - } -#endif - case TK_STRING: { - sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); - break; - } - case TK_NULL: { - sqlite3ExplainPrintf(pOut,"NULL"); - break; - } -#ifndef SQLITE_OMIT_BLOB_LITERAL - case TK_BLOB: { - sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); - break; - } -#endif - case TK_VARIABLE: { - sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", - pExpr->u.zToken, pExpr->iColumn); - break; - } - case TK_REGISTER: { - sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); - break; - } - case TK_AS: { - sqlite3ExplainExpr(pOut, pExpr->pLeft); - break; - } -#ifndef SQLITE_OMIT_CAST - case TK_CAST: { - /* Expressions of the form: CAST(pLeft AS token) */ - const char *zAff = "unk"; - switch( sqlite3AffinityType(pExpr->u.zToken) ){ - case SQLITE_AFF_TEXT: zAff = "TEXT"; break; - case SQLITE_AFF_NONE: zAff = "NONE"; break; - case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; - case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; - case SQLITE_AFF_REAL: zAff = "REAL"; break; - } - sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut, ")"); - break; - } -#endif /* SQLITE_OMIT_CAST */ - case TK_LT: zBinOp = "LT"; break; - case TK_LE: zBinOp = "LE"; break; - case TK_GT: zBinOp = "GT"; break; - case TK_GE: zBinOp = "GE"; break; - case TK_NE: zBinOp = "NE"; break; - case TK_EQ: zBinOp = "EQ"; break; - case TK_IS: zBinOp = "IS"; break; - case TK_ISNOT: zBinOp = "ISNOT"; break; - case TK_AND: zBinOp = "AND"; break; - case TK_OR: zBinOp = "OR"; break; - case TK_PLUS: zBinOp = "ADD"; break; - case TK_STAR: zBinOp = "MUL"; break; - case TK_MINUS: zBinOp = "SUB"; break; - case TK_REM: zBinOp = "REM"; break; - case TK_BITAND: zBinOp = "BITAND"; break; - case TK_BITOR: zBinOp = "BITOR"; break; - case TK_SLASH: zBinOp = "DIV"; break; - case TK_LSHIFT: zBinOp = "LSHIFT"; break; - case TK_RSHIFT: zBinOp = "RSHIFT"; break; - case TK_CONCAT: zBinOp = "CONCAT"; break; - - case TK_UMINUS: zUniOp = "UMINUS"; break; - case TK_UPLUS: zUniOp = "UPLUS"; break; - case TK_BITNOT: zUniOp = "BITNOT"; break; - case TK_NOT: zUniOp = "NOT"; break; - case TK_ISNULL: zUniOp = "ISNULL"; break; - case TK_NOTNULL: zUniOp = "NOTNULL"; break; - - case TK_COLLATE: { - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); - break; - } - - case TK_AGG_FUNCTION: - case TK_CONST_FUNC: - case TK_FUNCTION: { - ExprList *pFarg; /* List of function arguments */ - if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ - pFarg = 0; - }else{ - pFarg = pExpr->x.pList; - } - if( op==TK_AGG_FUNCTION ){ - sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", - pExpr->op2, pExpr->u.zToken); - }else{ - sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); - } - if( pFarg ){ - sqlite3ExplainExprList(pOut, pFarg); - } - sqlite3ExplainPrintf(pOut, ")"); - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_EXISTS: { - sqlite3ExplainPrintf(pOut, "EXISTS("); - sqlite3ExplainSelect(pOut, pExpr->x.pSelect); - sqlite3ExplainPrintf(pOut,")"); - break; - } - case TK_SELECT: { - sqlite3ExplainPrintf(pOut, "("); - sqlite3ExplainSelect(pOut, pExpr->x.pSelect); - sqlite3ExplainPrintf(pOut, ")"); - break; - } - case TK_IN: { - sqlite3ExplainPrintf(pOut, "IN("); - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut, ","); - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - sqlite3ExplainSelect(pOut, pExpr->x.pSelect); - }else{ - sqlite3ExplainExprList(pOut, pExpr->x.pList); - } - sqlite3ExplainPrintf(pOut, ")"); - break; - } -#endif /* SQLITE_OMIT_SUBQUERY */ - - /* - ** x BETWEEN y AND z - ** - ** This is equivalent to - ** - ** x>=y AND x<=z - ** - ** X is stored in pExpr->pLeft. - ** Y is stored in pExpr->pList->a[0].pExpr. - ** Z is stored in pExpr->pList->a[1].pExpr. - */ - case TK_BETWEEN: { - Expr *pX = pExpr->pLeft; - Expr *pY = pExpr->x.pList->a[0].pExpr; - Expr *pZ = pExpr->x.pList->a[1].pExpr; - sqlite3ExplainPrintf(pOut, "BETWEEN("); - sqlite3ExplainExpr(pOut, pX); - sqlite3ExplainPrintf(pOut, ","); - sqlite3ExplainExpr(pOut, pY); - sqlite3ExplainPrintf(pOut, ","); - sqlite3ExplainExpr(pOut, pZ); - sqlite3ExplainPrintf(pOut, ")"); - break; - } - case TK_TRIGGER: { - /* If the opcode is TK_TRIGGER, then the expression is a reference - ** to a column in the new.* or old.* pseudo-tables available to - ** trigger programs. In this case Expr.iTable is set to 1 for the - ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn - ** is set to the column of the pseudo-table to read, or to -1 to - ** read the rowid field. - */ - sqlite3ExplainPrintf(pOut, "%s(%d)", - pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); - break; - } - case TK_CASE: { - sqlite3ExplainPrintf(pOut, "CASE("); - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut, ","); - sqlite3ExplainExprList(pOut, pExpr->x.pList); - break; - } -#ifndef SQLITE_OMIT_TRIGGER - case TK_RAISE: { - const char *zType = "unk"; - switch( pExpr->affinity ){ - case OE_Rollback: zType = "rollback"; break; - case OE_Abort: zType = "abort"; break; - case OE_Fail: zType = "fail"; break; - case OE_Ignore: zType = "ignore"; break; - } - sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); - break; - } -#endif - } - if( zBinOp ){ - sqlite3ExplainPrintf(pOut,"%s(", zBinOp); - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut,","); - sqlite3ExplainExpr(pOut, pExpr->pRight); - sqlite3ExplainPrintf(pOut,")"); - }else if( zUniOp ){ - sqlite3ExplainPrintf(pOut,"%s(", zUniOp); - sqlite3ExplainExpr(pOut, pExpr->pLeft); - sqlite3ExplainPrintf(pOut,")"); - } -} -#endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ - -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) -/* -** Generate a human-readable explanation of an expression list. -*/ -SQLITE_PRIVATE void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ - int i; - if( pList==0 || pList->nExpr==0 ){ - sqlite3ExplainPrintf(pOut, "(empty-list)"); - return; - }else if( pList->nExpr==1 ){ - sqlite3ExplainExpr(pOut, pList->a[0].pExpr); - }else{ - sqlite3ExplainPush(pOut); - for(i=0; i<pList->nExpr; i++){ - sqlite3ExplainPrintf(pOut, "item[%d] = ", i); - sqlite3ExplainPush(pOut); - sqlite3ExplainExpr(pOut, pList->a[i].pExpr); - sqlite3ExplainPop(pOut); - if( pList->a[i].zName ){ - sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); - } - if( pList->a[i].bSpanIsTab ){ - sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); - } - if( i<pList->nExpr-1 ){ - sqlite3ExplainNL(pOut); - } - } - sqlite3ExplainPop(pOut); - } -} -#endif /* SQLITE_DEBUG */ - -/* -** Return TRUE if pExpr is an constant expression that is appropriate -** for factoring out of a loop. Appropriate expressions are: -** -** * Any expression that evaluates to two or more opcodes. -** -** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, -** or OP_Variable that does not need to be placed in a -** specific register. -** -** There is no point in factoring out single-instruction constant -** expressions that need to be placed in a particular register. -** We could factor them out, but then we would end up adding an -** OP_SCopy instruction to move the value into the correct register -** later. We might as well just use the original instruction and -** avoid the OP_SCopy. -*/ -static int isAppropriateForFactoring(Expr *p){ - if( !sqlite3ExprIsConstantNotJoin(p) ){ - return 0; /* Only constant expressions are appropriate for factoring */ - } - if( (p->flags & EP_FixedDest)==0 ){ - return 1; /* Any constant without a fixed destination is appropriate */ - } - while( p->op==TK_UPLUS ) p = p->pLeft; - switch( p->op ){ -#ifndef SQLITE_OMIT_BLOB_LITERAL - case TK_BLOB: -#endif - case TK_VARIABLE: - case TK_INTEGER: - case TK_FLOAT: - case TK_NULL: - case TK_STRING: { - testcase( p->op==TK_BLOB ); - testcase( p->op==TK_VARIABLE ); - testcase( p->op==TK_INTEGER ); - testcase( p->op==TK_FLOAT ); - testcase( p->op==TK_NULL ); - testcase( p->op==TK_STRING ); - /* Single-instruction constants with a fixed destination are - ** better done in-line. If we factor them, they will just end - ** up generating an OP_SCopy to move the value to the destination - ** register. */ - return 0; - } - case TK_UMINUS: { - if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ - return 0; - } - break; - } - default: { - break; - } - } - return 1; -} - -/* -** If pExpr is a constant expression that is appropriate for -** factoring out of a loop, then evaluate the expression -** into a register and convert the expression into a TK_REGISTER -** expression. -*/ -static int evalConstExpr(Walker *pWalker, Expr *pExpr){ - Parse *pParse = pWalker->pParse; - switch( pExpr->op ){ - case TK_IN: - case TK_REGISTER: { - return WRC_Prune; - } - case TK_COLLATE: { - return WRC_Continue; - } - case TK_FUNCTION: - case TK_AGG_FUNCTION: - case TK_CONST_FUNC: { - /* The arguments to a function have a fixed destination. - ** Mark them this way to avoid generated unneeded OP_SCopy - ** instructions. - */ - ExprList *pList = pExpr->x.pList; - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - if( pList ){ - int i = pList->nExpr; - struct ExprList_item *pItem = pList->a; - for(; i>0; i--, pItem++){ - if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; - } - } - break; - } - } - if( isAppropriateForFactoring(pExpr) ){ - int r1 = ++pParse->nMem; - int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); - /* If r2!=r1, it means that register r1 is never used. That is harmless - ** but suboptimal, so we want to know about the situation to fix it. - ** Hence the following assert: */ - assert( r2==r1 ); - pExpr->op2 = pExpr->op; - pExpr->op = TK_REGISTER; - pExpr->iTable = r2; - return WRC_Prune; - } - return WRC_Continue; -} - -/* -** Preevaluate constant subexpressions within pExpr and store the -** results in registers. Modify pExpr so that the constant subexpresions -** are TK_REGISTER opcodes that refer to the precomputed values. -** -** This routine is a no-op if the jump to the cookie-check code has -** already occur. Since the cookie-check jump is generated prior to -** any other serious processing, this check ensures that there is no -** way to accidently bypass the constant initializations. -** -** This routine is also a no-op if the SQLITE_FactorOutConst optimization -** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) -** interface. This allows test logic to verify that the same answer is -** obtained for queries regardless of whether or not constants are -** precomputed into registers or if they are inserted in-line. -*/ -SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ - Walker w; - if( pParse->cookieGoto ) return; - if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; - w.xExprCallback = evalConstExpr; - w.xSelectCallback = 0; - w.pParse = pParse; - sqlite3WalkExpr(&w, pExpr); -} - - -/* -** Generate code that pushes the value of every element of the given -** expression list into a sequence of registers beginning at target. -** -** Return the number of elements evaluated. -*/ -SQLITE_PRIVATE int sqlite3ExprCodeExprList( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* The expression list to be coded */ - int target, /* Where to write results */ - int doHardCopy /* Make a hard copy of every element */ -){ - struct ExprList_item *pItem; - int i, n; - assert( pList!=0 ); - assert( target>0 ); - assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ - n = pList->nExpr; - for(pItem=pList->a, i=0; i<n; i++, pItem++){ - Expr *pExpr = pItem->pExpr; - int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); - if( inReg!=target+i ){ - sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, - inReg, target+i); - } - } - return n; -} - -/* -** Generate code for a BETWEEN operator. -** -** x BETWEEN y AND z -** -** The above is equivalent to -** -** x>=y AND x<=z -** -** Code it as such, taking care to do the common subexpression -** elementation of x. -*/ -static void exprCodeBetween( - Parse *pParse, /* Parsing and code generating context */ - Expr *pExpr, /* The BETWEEN expression */ - int dest, /* Jump here if the jump is taken */ - int jumpIfTrue, /* Take the jump if the BETWEEN is true */ - int jumpIfNull /* Take the jump if the BETWEEN is NULL */ -){ - Expr exprAnd; /* The AND operator in x>=y AND x<=z */ - Expr compLeft; /* The x>=y term */ - Expr compRight; /* The x<=z term */ - Expr exprX; /* The x subexpression */ - int regFree1 = 0; /* Temporary use register */ - - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - exprX = *pExpr->pLeft; - exprAnd.op = TK_AND; - exprAnd.pLeft = &compLeft; - exprAnd.pRight = &compRight; - compLeft.op = TK_GE; - compLeft.pLeft = &exprX; - compLeft.pRight = pExpr->x.pList->a[0].pExpr; - compRight.op = TK_LE; - compRight.pLeft = &exprX; - compRight.pRight = pExpr->x.pList->a[1].pExpr; - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); - exprX.op = TK_REGISTER; - if( jumpIfTrue ){ - sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); - }else{ - sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); - } - sqlite3ReleaseTempReg(pParse, regFree1); - - /* Ensure adequate test coverage */ - testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); - testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); - testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); - testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); - testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); - testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); - testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); - testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); -} - -/* -** Generate code for a boolean expression such that a jump is made -** to the label "dest" if the expression is true but execution -** continues straight thru if the expression is false. -** -** If the expression evaluates to NULL (neither true nor false), then -** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. -** -** This code depends on the fact that certain token values (ex: TK_EQ) -** are the same as opcode values (ex: OP_Eq) that implement the corresponding -** operation. Special comments in vdbe.c and the mkopcodeh.awk script in -** the make process cause these values to align. Assert()s in the code -** below verify that the numbers are aligned correctly. -*/ -SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ - Vdbe *v = pParse->pVdbe; - int op = 0; - int regFree1 = 0; - int regFree2 = 0; - int r1, r2; - - assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); - if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ - if( NEVER(pExpr==0) ) return; /* No way this can happen */ - op = pExpr->op; - switch( op ){ - case TK_AND: { - int d2 = sqlite3VdbeMakeLabel(v); - testcase( jumpIfNull==0 ); - sqlite3ExprCachePush(pParse); - sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); - sqlite3VdbeResolveLabel(v, d2); - sqlite3ExprCachePop(pParse, 1); - break; - } - case TK_OR: { - testcase( jumpIfNull==0 ); - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); - break; - } - case TK_NOT: { - testcase( jumpIfNull==0 ); - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); - break; - } - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - assert( TK_LT==OP_Lt ); - assert( TK_LE==OP_Le ); - assert( TK_GT==OP_Gt ); - assert( TK_GE==OP_Ge ); - assert( TK_EQ==OP_Eq ); - assert( TK_NE==OP_Ne ); - testcase( op==TK_LT ); - testcase( op==TK_LE ); - testcase( op==TK_GT ); - testcase( op==TK_GE ); - testcase( op==TK_EQ ); - testcase( op==TK_NE ); - testcase( jumpIfNull==0 ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, dest, jumpIfNull); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_IS: - case TK_ISNOT: { - testcase( op==TK_IS ); - testcase( op==TK_ISNOT ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - op = (op==TK_IS) ? TK_EQ : TK_NE; - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, dest, SQLITE_NULLEQ); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - assert( TK_ISNULL==OP_IsNull ); - assert( TK_NOTNULL==OP_NotNull ); - testcase( op==TK_ISNULL ); - testcase( op==TK_NOTNULL ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - sqlite3VdbeAddOp2(v, op, r1, dest); - testcase( regFree1==0 ); - break; - } - case TK_BETWEEN: { - testcase( jumpIfNull==0 ); - exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_IN: { - int destIfFalse = sqlite3VdbeMakeLabel(v); - int destIfNull = jumpIfNull ? dest : destIfFalse; - sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); - sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); - sqlite3VdbeResolveLabel(v, destIfFalse); - break; - } -#endif - default: { - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); - sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); - testcase( regFree1==0 ); - testcase( jumpIfNull==0 ); - break; - } - } - sqlite3ReleaseTempReg(pParse, regFree1); - sqlite3ReleaseTempReg(pParse, regFree2); -} - -/* -** Generate code for a boolean expression such that a jump is made -** to the label "dest" if the expression is false but execution -** continues straight thru if the expression is true. -** -** If the expression evaluates to NULL (neither true nor false) then -** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull -** is 0. -*/ -SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ - Vdbe *v = pParse->pVdbe; - int op = 0; - int regFree1 = 0; - int regFree2 = 0; - int r1, r2; - - assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); - if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ - if( pExpr==0 ) return; - - /* The value of pExpr->op and op are related as follows: - ** - ** pExpr->op op - ** --------- ---------- - ** TK_ISNULL OP_NotNull - ** TK_NOTNULL OP_IsNull - ** TK_NE OP_Eq - ** TK_EQ OP_Ne - ** TK_GT OP_Le - ** TK_LE OP_Gt - ** TK_GE OP_Lt - ** TK_LT OP_Ge - ** - ** For other values of pExpr->op, op is undefined and unused. - ** The value of TK_ and OP_ constants are arranged such that we - ** can compute the mapping above using the following expression. - ** Assert()s verify that the computation is correct. - */ - op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); - - /* Verify correct alignment of TK_ and OP_ constants - */ - assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); - assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); - assert( pExpr->op!=TK_NE || op==OP_Eq ); - assert( pExpr->op!=TK_EQ || op==OP_Ne ); - assert( pExpr->op!=TK_LT || op==OP_Ge ); - assert( pExpr->op!=TK_LE || op==OP_Gt ); - assert( pExpr->op!=TK_GT || op==OP_Le ); - assert( pExpr->op!=TK_GE || op==OP_Lt ); - - switch( pExpr->op ){ - case TK_AND: { - testcase( jumpIfNull==0 ); - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); - break; - } - case TK_OR: { - int d2 = sqlite3VdbeMakeLabel(v); - testcase( jumpIfNull==0 ); - sqlite3ExprCachePush(pParse); - sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); - sqlite3VdbeResolveLabel(v, d2); - sqlite3ExprCachePop(pParse, 1); - break; - } - case TK_NOT: { - testcase( jumpIfNull==0 ); - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); - break; - } - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - testcase( op==TK_LT ); - testcase( op==TK_LE ); - testcase( op==TK_GT ); - testcase( op==TK_GE ); - testcase( op==TK_EQ ); - testcase( op==TK_NE ); - testcase( jumpIfNull==0 ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, dest, jumpIfNull); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_IS: - case TK_ISNOT: { - testcase( pExpr->op==TK_IS ); - testcase( pExpr->op==TK_ISNOT ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); - op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, - r1, r2, dest, SQLITE_NULLEQ); - testcase( regFree1==0 ); - testcase( regFree2==0 ); - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - testcase( op==TK_ISNULL ); - testcase( op==TK_NOTNULL ); - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); - sqlite3VdbeAddOp2(v, op, r1, dest); - testcase( regFree1==0 ); - break; - } - case TK_BETWEEN: { - testcase( jumpIfNull==0 ); - exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_IN: { - if( jumpIfNull ){ - sqlite3ExprCodeIN(pParse, pExpr, dest, dest); - }else{ - int destIfNull = sqlite3VdbeMakeLabel(v); - sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); - sqlite3VdbeResolveLabel(v, destIfNull); - } - break; - } -#endif - default: { - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); - sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); - testcase( regFree1==0 ); - testcase( jumpIfNull==0 ); - break; - } - } - sqlite3ReleaseTempReg(pParse, regFree1); - sqlite3ReleaseTempReg(pParse, regFree2); -} - -/* -** Do a deep comparison of two expression trees. Return 0 if the two -** expressions are completely identical. Return 1 if they differ only -** by a COLLATE operator at the top level. Return 2 if there are differences -** other than the top-level COLLATE operator. -** -** Sometimes this routine will return 2 even if the two expressions -** really are equivalent. If we cannot prove that the expressions are -** identical, we return 2 just to be safe. So if this routine -** returns 2, then you do not really know for certain if the two -** expressions are the same. But if you get a 0 or 1 return, then you -** can be sure the expressions are the same. In the places where -** this routine is used, it does not hurt to get an extra 2 - that -** just might result in some slightly slower code. But returning -** an incorrect 0 or 1 could lead to a malfunction. -*/ -SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){ - if( pA==0||pB==0 ){ - return pB==pA ? 0 : 2; - } - assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); - assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); - if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ - return 2; - } - if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; - if( pA->op!=pB->op ){ - if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ - return 1; - } - if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ - return 1; - } - return 2; - } - if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; - if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; - if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; - if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; - if( ExprHasProperty(pA, EP_IntValue) ){ - if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ - return 2; - } - }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ - if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; - if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ - return pA->op==TK_COLLATE ? 1 : 2; - } - } - return 0; -} - -/* -** Compare two ExprList objects. Return 0 if they are identical and -** non-zero if they differ in any way. -** -** This routine might return non-zero for equivalent ExprLists. The -** only consequence will be disabled optimizations. But this routine -** must never return 0 if the two ExprList objects are different, or -** a malfunction will result. -** -** Two NULL pointers are considered to be the same. But a NULL pointer -** always differs from a non-NULL pointer. -*/ -SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ - int i; - if( pA==0 && pB==0 ) return 0; - if( pA==0 || pB==0 ) return 1; - if( pA->nExpr!=pB->nExpr ) return 1; - for(i=0; i<pA->nExpr; i++){ - Expr *pExprA = pA->a[i].pExpr; - Expr *pExprB = pB->a[i].pExpr; - if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; - if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; - } - return 0; -} - -/* -** An instance of the following structure is used by the tree walker -** to count references to table columns in the arguments of an -** aggregate function, in order to implement the -** sqlite3FunctionThisSrc() routine. -*/ -struct SrcCount { - SrcList *pSrc; /* One particular FROM clause in a nested query */ - int nThis; /* Number of references to columns in pSrcList */ - int nOther; /* Number of references to columns in other FROM clauses */ -}; - -/* -** Count the number of references to columns. -*/ -static int exprSrcCount(Walker *pWalker, Expr *pExpr){ - /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() - ** is always called before sqlite3ExprAnalyzeAggregates() and so the - ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If - ** sqlite3FunctionUsesThisSrc() is used differently in the future, the - ** NEVER() will need to be removed. */ - if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ - int i; - struct SrcCount *p = pWalker->u.pSrcCount; - SrcList *pSrc = p->pSrc; - for(i=0; i<pSrc->nSrc; i++){ - if( pExpr->iTable==pSrc->a[i].iCursor ) break; - } - if( i<pSrc->nSrc ){ - p->nThis++; - }else{ - p->nOther++; - } - } - return WRC_Continue; -} - -/* -** Determine if any of the arguments to the pExpr Function reference -** pSrcList. Return true if they do. Also return true if the function -** has no arguments or has only constant arguments. Return false if pExpr -** references columns but not columns of tables found in pSrcList. -*/ -SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ - Walker w; - struct SrcCount cnt; - assert( pExpr->op==TK_AGG_FUNCTION ); - memset(&w, 0, sizeof(w)); - w.xExprCallback = exprSrcCount; - w.u.pSrcCount = &cnt; - cnt.pSrc = pSrcList; - cnt.nThis = 0; - cnt.nOther = 0; - sqlite3WalkExprList(&w, pExpr->x.pList); - return cnt.nThis>0 || cnt.nOther==0; -} - -/* -** Add a new element to the pAggInfo->aCol[] array. Return the index of -** the new element. Return a negative number if malloc fails. -*/ -static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ - int i; - pInfo->aCol = sqlite3ArrayAllocate( - db, - pInfo->aCol, - sizeof(pInfo->aCol[0]), - &pInfo->nColumn, - &i - ); - return i; -} - -/* -** Add a new element to the pAggInfo->aFunc[] array. Return the index of -** the new element. Return a negative number if malloc fails. -*/ -static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ - int i; - pInfo->aFunc = sqlite3ArrayAllocate( - db, - pInfo->aFunc, - sizeof(pInfo->aFunc[0]), - &pInfo->nFunc, - &i - ); - return i; -} - -/* -** This is the xExprCallback for a tree walker. It is used to -** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates -** for additional information. -*/ -static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ - int i; - NameContext *pNC = pWalker->u.pNC; - Parse *pParse = pNC->pParse; - SrcList *pSrcList = pNC->pSrcList; - AggInfo *pAggInfo = pNC->pAggInfo; - - switch( pExpr->op ){ - case TK_AGG_COLUMN: - case TK_COLUMN: { - testcase( pExpr->op==TK_AGG_COLUMN ); - testcase( pExpr->op==TK_COLUMN ); - /* Check to see if the column is in one of the tables in the FROM - ** clause of the aggregate query */ - if( ALWAYS(pSrcList!=0) ){ - struct SrcList_item *pItem = pSrcList->a; - for(i=0; i<pSrcList->nSrc; i++, pItem++){ - struct AggInfo_col *pCol; - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); - if( pExpr->iTable==pItem->iCursor ){ - /* If we reach this point, it means that pExpr refers to a table - ** that is in the FROM clause of the aggregate query. - ** - ** Make an entry for the column in pAggInfo->aCol[] if there - ** is not an entry there already. - */ - int k; - pCol = pAggInfo->aCol; - for(k=0; k<pAggInfo->nColumn; k++, pCol++){ - if( pCol->iTable==pExpr->iTable && - pCol->iColumn==pExpr->iColumn ){ - break; - } - } - if( (k>=pAggInfo->nColumn) - && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 - ){ - pCol = &pAggInfo->aCol[k]; - pCol->pTab = pExpr->pTab; - pCol->iTable = pExpr->iTable; - pCol->iColumn = pExpr->iColumn; - pCol->iMem = ++pParse->nMem; - pCol->iSorterColumn = -1; - pCol->pExpr = pExpr; - if( pAggInfo->pGroupBy ){ - int j, n; - ExprList *pGB = pAggInfo->pGroupBy; - struct ExprList_item *pTerm = pGB->a; - n = pGB->nExpr; - for(j=0; j<n; j++, pTerm++){ - Expr *pE = pTerm->pExpr; - if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && - pE->iColumn==pExpr->iColumn ){ - pCol->iSorterColumn = j; - break; - } - } - } - if( pCol->iSorterColumn<0 ){ - pCol->iSorterColumn = pAggInfo->nSortingColumn++; - } - } - /* There is now an entry for pExpr in pAggInfo->aCol[] (either - ** because it was there before or because we just created it). - ** Convert the pExpr to be a TK_AGG_COLUMN referring to that - ** pAggInfo->aCol[] entry. - */ - ExprSetIrreducible(pExpr); - pExpr->pAggInfo = pAggInfo; - pExpr->op = TK_AGG_COLUMN; - pExpr->iAgg = (i16)k; - break; - } /* endif pExpr->iTable==pItem->iCursor */ - } /* end loop over pSrcList */ - } - return WRC_Prune; - } - case TK_AGG_FUNCTION: { - if( (pNC->ncFlags & NC_InAggFunc)==0 - && pWalker->walkerDepth==pExpr->op2 - ){ - /* Check to see if pExpr is a duplicate of another aggregate - ** function that is already in the pAggInfo structure - */ - struct AggInfo_func *pItem = pAggInfo->aFunc; - for(i=0; i<pAggInfo->nFunc; i++, pItem++){ - if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ - break; - } - } - if( i>=pAggInfo->nFunc ){ - /* pExpr is original. Make a new entry in pAggInfo->aFunc[] - */ - u8 enc = ENC(pParse->db); - i = addAggInfoFunc(pParse->db, pAggInfo); - if( i>=0 ){ - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - pItem = &pAggInfo->aFunc[i]; - pItem->pExpr = pExpr; - pItem->iMem = ++pParse->nMem; - assert( !ExprHasProperty(pExpr, EP_IntValue) ); - pItem->pFunc = sqlite3FindFunction(pParse->db, - pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), - pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); - if( pExpr->flags & EP_Distinct ){ - pItem->iDistinct = pParse->nTab++; - }else{ - pItem->iDistinct = -1; - } - } - } - /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry - */ - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); - ExprSetIrreducible(pExpr); - pExpr->iAgg = (i16)i; - pExpr->pAggInfo = pAggInfo; - return WRC_Prune; - }else{ - return WRC_Continue; - } - } - } - return WRC_Continue; -} -static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ - UNUSED_PARAMETER(pWalker); - UNUSED_PARAMETER(pSelect); - return WRC_Continue; -} - -/* -** Analyze the pExpr expression looking for aggregate functions and -** for variables that need to be added to AggInfo object that pNC->pAggInfo -** points to. Additional entries are made on the AggInfo object as -** necessary. -** -** This routine should only be called after the expression has been -** analyzed by sqlite3ResolveExprNames(). -*/ -SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ - Walker w; - memset(&w, 0, sizeof(w)); - w.xExprCallback = analyzeAggregate; - w.xSelectCallback = analyzeAggregatesInSelect; - w.u.pNC = pNC; - assert( pNC->pSrcList!=0 ); - sqlite3WalkExpr(&w, pExpr); -} - -/* -** Call sqlite3ExprAnalyzeAggregates() for every expression in an -** expression list. Return the number of errors. -** -** If an error is found, the analysis is cut short. -*/ -SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ - struct ExprList_item *pItem; - int i; - if( pList ){ - for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ - sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); - } - } -} - -/* -** Allocate a single new register for use to hold some intermediate result. -*/ -SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){ - if( pParse->nTempReg==0 ){ - return ++pParse->nMem; - } - return pParse->aTempReg[--pParse->nTempReg]; -} - -/* -** Deallocate a register, making available for reuse for some other -** purpose. -** -** If a register is currently being used by the column cache, then -** the dallocation is deferred until the column cache line that uses -** the register becomes stale. -*/ -SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ - if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ - int i; - struct yColCache *p; - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ - if( p->iReg==iReg ){ - p->tempReg = 1; - return; - } - } - pParse->aTempReg[pParse->nTempReg++] = iReg; - } -} - -/* -** Allocate or deallocate a block of nReg consecutive registers -*/ -SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){ - int i, n; - i = pParse->iRangeReg; - n = pParse->nRangeReg; - if( nReg<=n ){ - assert( !usedAsColumnCache(pParse, i, i+n-1) ); - pParse->iRangeReg += nReg; - pParse->nRangeReg -= nReg; - }else{ - i = pParse->nMem+1; - pParse->nMem += nReg; - } - return i; -} -SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ - sqlite3ExprCacheRemove(pParse, iReg, nReg); - if( nReg>pParse->nRangeReg ){ - pParse->nRangeReg = nReg; - pParse->iRangeReg = iReg; - } -} - -/* -** Mark all temporary registers as being unavailable for reuse. -*/ -SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){ - pParse->nTempReg = 0; - pParse->nRangeReg = 0; -} - -/************** End of expr.c ************************************************/ -/************** Begin file alter.c *******************************************/ -/* -** 2005 February 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that used to generate VDBE code -** that implements the ALTER TABLE command. -*/ - -/* -** The code in this file only exists if we are not omitting the -** ALTER TABLE logic from the build. -*/ -#ifndef SQLITE_OMIT_ALTERTABLE - - -/* -** This function is used by SQL generated to implement the -** ALTER TABLE command. The first argument is the text of a CREATE TABLE or -** CREATE INDEX command. The second is a table name. The table name in -** the CREATE TABLE or CREATE INDEX statement is replaced with the third -** argument and the result returned. Examples: -** -** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def') -** -> 'CREATE TABLE def(a, b, c)' -** -** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def') -** -> 'CREATE INDEX i ON def(a, b, c)' -*/ -static void renameTableFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - unsigned char const *zSql = sqlite3_value_text(argv[0]); - unsigned char const *zTableName = sqlite3_value_text(argv[1]); - - int token; - Token tname; - unsigned char const *zCsr = zSql; - int len = 0; - char *zRet; - - sqlite3 *db = sqlite3_context_db_handle(context); - - UNUSED_PARAMETER(NotUsed); - - /* The principle used to locate the table name in the CREATE TABLE - ** statement is that the table name is the first non-space token that - ** is immediately followed by a TK_LP or TK_USING token. - */ - if( zSql ){ - do { - if( !*zCsr ){ - /* Ran out of input before finding an opening bracket. Return NULL. */ - return; - } - - /* Store the token that zCsr points to in tname. */ - tname.z = (char*)zCsr; - tname.n = len; - - /* Advance zCsr to the next token. Store that token type in 'token', - ** and its length in 'len' (to be used next iteration of this loop). - */ - do { - zCsr += len; - len = sqlite3GetToken(zCsr, &token); - } while( token==TK_SPACE ); - assert( len>0 ); - } while( token!=TK_LP && token!=TK_USING ); - - zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql, - zTableName, tname.z+tname.n); - sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); - } -} - -/* -** This C function implements an SQL user function that is used by SQL code -** generated by the ALTER TABLE ... RENAME command to modify the definition -** of any foreign key constraints that use the table being renamed as the -** parent table. It is passed three arguments: -** -** 1) The complete text of the CREATE TABLE statement being modified, -** 2) The old name of the table being renamed, and -** 3) The new name of the table being renamed. -** -** It returns the new CREATE TABLE statement. For example: -** -** sqlite_rename_parent('CREATE TABLE t1(a REFERENCES t2)', 't2', 't3') -** -> 'CREATE TABLE t1(a REFERENCES t3)' -*/ -#ifndef SQLITE_OMIT_FOREIGN_KEY -static void renameParentFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - sqlite3 *db = sqlite3_context_db_handle(context); - char *zOutput = 0; - char *zResult; - unsigned char const *zInput = sqlite3_value_text(argv[0]); - unsigned char const *zOld = sqlite3_value_text(argv[1]); - unsigned char const *zNew = sqlite3_value_text(argv[2]); - - unsigned const char *z; /* Pointer to token */ - int n; /* Length of token z */ - int token; /* Type of token */ - - UNUSED_PARAMETER(NotUsed); - for(z=zInput; *z; z=z+n){ - n = sqlite3GetToken(z, &token); - if( token==TK_REFERENCES ){ - char *zParent; - do { - z += n; - n = sqlite3GetToken(z, &token); - }while( token==TK_SPACE ); - - zParent = sqlite3DbStrNDup(db, (const char *)z, n); - if( zParent==0 ) break; - sqlite3Dequote(zParent); - if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ - char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", - (zOutput?zOutput:""), z-zInput, zInput, (const char *)zNew - ); - sqlite3DbFree(db, zOutput); - zOutput = zOut; - zInput = &z[n]; - } - sqlite3DbFree(db, zParent); - } - } - - zResult = sqlite3MPrintf(db, "%s%s", (zOutput?zOutput:""), zInput), - sqlite3_result_text(context, zResult, -1, SQLITE_DYNAMIC); - sqlite3DbFree(db, zOutput); -} -#endif - -#ifndef SQLITE_OMIT_TRIGGER -/* This function is used by SQL generated to implement the -** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER -** statement. The second is a table name. The table name in the CREATE -** TRIGGER statement is replaced with the third argument and the result -** returned. This is analagous to renameTableFunc() above, except for CREATE -** TRIGGER, not CREATE INDEX and CREATE TABLE. -*/ -static void renameTriggerFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - unsigned char const *zSql = sqlite3_value_text(argv[0]); - unsigned char const *zTableName = sqlite3_value_text(argv[1]); - - int token; - Token tname; - int dist = 3; - unsigned char const *zCsr = zSql; - int len = 0; - char *zRet; - sqlite3 *db = sqlite3_context_db_handle(context); - - UNUSED_PARAMETER(NotUsed); - - /* The principle used to locate the table name in the CREATE TRIGGER - ** statement is that the table name is the first token that is immediatedly - ** preceded by either TK_ON or TK_DOT and immediatedly followed by one - ** of TK_WHEN, TK_BEGIN or TK_FOR. - */ - if( zSql ){ - do { - - if( !*zCsr ){ - /* Ran out of input before finding the table name. Return NULL. */ - return; - } - - /* Store the token that zCsr points to in tname. */ - tname.z = (char*)zCsr; - tname.n = len; - - /* Advance zCsr to the next token. Store that token type in 'token', - ** and its length in 'len' (to be used next iteration of this loop). - */ - do { - zCsr += len; - len = sqlite3GetToken(zCsr, &token); - }while( token==TK_SPACE ); - assert( len>0 ); - - /* Variable 'dist' stores the number of tokens read since the most - ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN - ** token is read and 'dist' equals 2, the condition stated above - ** to be met. - ** - ** Note that ON cannot be a database, table or column name, so - ** there is no need to worry about syntax like - ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc. - */ - dist++; - if( token==TK_DOT || token==TK_ON ){ - dist = 0; - } - } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); - - /* Variable tname now contains the token that is the old table-name - ** in the CREATE TRIGGER statement. - */ - zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql, - zTableName, tname.z+tname.n); - sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); - } -} -#endif /* !SQLITE_OMIT_TRIGGER */ - -/* -** Register built-in functions used to help implement ALTER TABLE -*/ -SQLITE_PRIVATE void sqlite3AlterFunctions(void){ - static SQLITE_WSD FuncDef aAlterTableFuncs[] = { - FUNCTION(sqlite_rename_table, 2, 0, 0, renameTableFunc), -#ifndef SQLITE_OMIT_TRIGGER - FUNCTION(sqlite_rename_trigger, 2, 0, 0, renameTriggerFunc), -#endif -#ifndef SQLITE_OMIT_FOREIGN_KEY - FUNCTION(sqlite_rename_parent, 3, 0, 0, renameParentFunc), -#endif - }; - int i; - FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); - FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAlterTableFuncs); - - for(i=0; i<ArraySize(aAlterTableFuncs); i++){ - sqlite3FuncDefInsert(pHash, &aFunc[i]); - } -} - -/* -** This function is used to create the text of expressions of the form: -** -** name=<constant1> OR name=<constant2> OR ... -** -** If argument zWhere is NULL, then a pointer string containing the text -** "name=<constant>" is returned, where <constant> is the quoted version -** of the string passed as argument zConstant. The returned buffer is -** allocated using sqlite3DbMalloc(). It is the responsibility of the -** caller to ensure that it is eventually freed. -** -** If argument zWhere is not NULL, then the string returned is -** "<where> OR name=<constant>", where <where> is the contents of zWhere. -** In this case zWhere is passed to sqlite3DbFree() before returning. -** -*/ -static char *whereOrName(sqlite3 *db, char *zWhere, char *zConstant){ - char *zNew; - if( !zWhere ){ - zNew = sqlite3MPrintf(db, "name=%Q", zConstant); - }else{ - zNew = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, zConstant); - sqlite3DbFree(db, zWhere); - } - return zNew; -} - -#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) -/* -** Generate the text of a WHERE expression which can be used to select all -** tables that have foreign key constraints that refer to table pTab (i.e. -** constraints for which pTab is the parent table) from the sqlite_master -** table. -*/ -static char *whereForeignKeys(Parse *pParse, Table *pTab){ - FKey *p; - char *zWhere = 0; - for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ - zWhere = whereOrName(pParse->db, zWhere, p->pFrom->zName); - } - return zWhere; -} -#endif - -/* -** Generate the text of a WHERE expression which can be used to select all -** temporary triggers on table pTab from the sqlite_temp_master table. If -** table pTab has no temporary triggers, or is itself stored in the -** temporary database, NULL is returned. -*/ -static char *whereTempTriggers(Parse *pParse, Table *pTab){ - Trigger *pTrig; - char *zWhere = 0; - const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */ - - /* If the table is not located in the temp-db (in which case NULL is - ** returned, loop through the tables list of triggers. For each trigger - ** that is not part of the temp-db schema, add a clause to the WHERE - ** expression being built up in zWhere. - */ - if( pTab->pSchema!=pTempSchema ){ - sqlite3 *db = pParse->db; - for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ - if( pTrig->pSchema==pTempSchema ){ - zWhere = whereOrName(db, zWhere, pTrig->zName); - } - } - } - if( zWhere ){ - char *zNew = sqlite3MPrintf(pParse->db, "type='trigger' AND (%s)", zWhere); - sqlite3DbFree(pParse->db, zWhere); - zWhere = zNew; - } - return zWhere; -} - -/* -** Generate code to drop and reload the internal representation of table -** pTab from the database, including triggers and temporary triggers. -** Argument zName is the name of the table in the database schema at -** the time the generated code is executed. This can be different from -** pTab->zName if this function is being called to code part of an -** "ALTER TABLE RENAME TO" statement. -*/ -static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){ - Vdbe *v; - char *zWhere; - int iDb; /* Index of database containing pTab */ -#ifndef SQLITE_OMIT_TRIGGER - Trigger *pTrig; -#endif - - v = sqlite3GetVdbe(pParse); - if( NEVER(v==0) ) return; - assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); - iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - assert( iDb>=0 ); - -#ifndef SQLITE_OMIT_TRIGGER - /* Drop any table triggers from the internal schema. */ - for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ - int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); - assert( iTrigDb==iDb || iTrigDb==1 ); - sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0); - } -#endif - - /* Drop the table and index from the internal schema. */ - sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); - - /* Reload the table, index and permanent trigger schemas. */ - zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName); - if( !zWhere ) return; - sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); - -#ifndef SQLITE_OMIT_TRIGGER - /* Now, if the table is not stored in the temp database, reload any temp - ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. - */ - if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ - sqlite3VdbeAddParseSchemaOp(v, 1, zWhere); - } -#endif -} - -/* -** Parameter zName is the name of a table that is about to be altered -** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN). -** If the table is a system table, this function leaves an error message -** in pParse->zErr (system tables may not be altered) and returns non-zero. -** -** Or, if zName is not a system table, zero is returned. -*/ -static int isSystemTable(Parse *pParse, const char *zName){ - if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ - sqlite3ErrorMsg(pParse, "table %s may not be altered", zName); - return 1; - } - return 0; -} - -/* -** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" -** command. -*/ -SQLITE_PRIVATE void sqlite3AlterRenameTable( - Parse *pParse, /* Parser context. */ - SrcList *pSrc, /* The table to rename. */ - Token *pName /* The new table name. */ -){ - int iDb; /* Database that contains the table */ - char *zDb; /* Name of database iDb */ - Table *pTab; /* Table being renamed */ - char *zName = 0; /* NULL-terminated version of pName */ - sqlite3 *db = pParse->db; /* Database connection */ - int nTabName; /* Number of UTF-8 characters in zTabName */ - const char *zTabName; /* Original name of the table */ - Vdbe *v; -#ifndef SQLITE_OMIT_TRIGGER - char *zWhere = 0; /* Where clause to locate temp triggers */ -#endif - VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */ - int savedDbFlags; /* Saved value of db->flags */ - - savedDbFlags = db->flags; - if( NEVER(db->mallocFailed) ) goto exit_rename_table; - assert( pSrc->nSrc==1 ); - assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); - - pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); - if( !pTab ) goto exit_rename_table; - iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - zDb = db->aDb[iDb].zName; - db->flags |= SQLITE_PreferBuiltin; - - /* Get a NULL terminated version of the new table name. */ - zName = sqlite3NameFromToken(db, pName); - if( !zName ) goto exit_rename_table; - - /* Check that a table or index named 'zName' does not already exist - ** in database iDb. If so, this is an error. - */ - if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){ - sqlite3ErrorMsg(pParse, - "there is already another table or index with this name: %s", zName); - goto exit_rename_table; - } - - /* Make sure it is not a system table being altered, or a reserved name - ** that the table is being renamed to. - */ - if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ - goto exit_rename_table; - } - if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto - exit_rename_table; - } - -#ifndef SQLITE_OMIT_VIEW - if( pTab->pSelect ){ - sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); - goto exit_rename_table; - } -#endif - -#ifndef SQLITE_OMIT_AUTHORIZATION - /* Invoke the authorization callback. */ - if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ - goto exit_rename_table; - } -#endif - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( sqlite3ViewGetColumnNames(pParse, pTab) ){ - goto exit_rename_table; - } - if( IsVirtual(pTab) ){ - pVTab = sqlite3GetVTable(db, pTab); - if( pVTab->pVtab->pModule->xRename==0 ){ - pVTab = 0; - } - } -#endif - - /* Begin a transaction and code the VerifyCookie for database iDb. - ** Then modify the schema cookie (since the ALTER TABLE modifies the - ** schema). Open a statement transaction if the table is a virtual - ** table. - */ - v = sqlite3GetVdbe(pParse); - if( v==0 ){ - goto exit_rename_table; - } - sqlite3BeginWriteOperation(pParse, pVTab!=0, iDb); - sqlite3ChangeCookie(pParse, iDb); - - /* If this is a virtual table, invoke the xRename() function if - ** one is defined. The xRename() callback will modify the names - ** of any resources used by the v-table implementation (including other - ** SQLite tables) that are identified by the name of the virtual table. - */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pVTab ){ - int i = ++pParse->nMem; - sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0); - sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); - sqlite3MayAbort(pParse); - } -#endif - - /* figure out how many UTF-8 characters are in zName */ - zTabName = pTab->zName; - nTabName = sqlite3Utf8CharLen(zTabName, -1); - -#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) - if( db->flags&SQLITE_ForeignKeys ){ - /* If foreign-key support is enabled, rewrite the CREATE TABLE - ** statements corresponding to all child tables of foreign key constraints - ** for which the renamed table is the parent table. */ - if( (zWhere=whereForeignKeys(pParse, pTab))!=0 ){ - sqlite3NestedParse(pParse, - "UPDATE \"%w\".%s SET " - "sql = sqlite_rename_parent(sql, %Q, %Q) " - "WHERE %s;", zDb, SCHEMA_TABLE(iDb), zTabName, zName, zWhere); - sqlite3DbFree(db, zWhere); - } - } -#endif - - /* Modify the sqlite_master table to use the new table name. */ - sqlite3NestedParse(pParse, - "UPDATE %Q.%s SET " -#ifdef SQLITE_OMIT_TRIGGER - "sql = sqlite_rename_table(sql, %Q), " -#else - "sql = CASE " - "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)" - "ELSE sqlite_rename_table(sql, %Q) END, " -#endif - "tbl_name = %Q, " - "name = CASE " - "WHEN type='table' THEN %Q " - "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN " - "'sqlite_autoindex_' || %Q || substr(name,%d+18) " - "ELSE name END " - "WHERE tbl_name=%Q COLLATE nocase AND " - "(type='table' OR type='index' OR type='trigger');", - zDb, SCHEMA_TABLE(iDb), zName, zName, zName, -#ifndef SQLITE_OMIT_TRIGGER - zName, -#endif - zName, nTabName, zTabName - ); - -#ifndef SQLITE_OMIT_AUTOINCREMENT - /* If the sqlite_sequence table exists in this database, then update - ** it with the new table name. - */ - if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){ - sqlite3NestedParse(pParse, - "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q", - zDb, zName, pTab->zName); - } -#endif - -#ifndef SQLITE_OMIT_TRIGGER - /* If there are TEMP triggers on this table, modify the sqlite_temp_master - ** table. Don't do this if the table being ALTERed is itself located in - ** the temp database. - */ - if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ - sqlite3NestedParse(pParse, - "UPDATE sqlite_temp_master SET " - "sql = sqlite_rename_trigger(sql, %Q), " - "tbl_name = %Q " - "WHERE %s;", zName, zName, zWhere); - sqlite3DbFree(db, zWhere); - } -#endif - -#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) - if( db->flags&SQLITE_ForeignKeys ){ - FKey *p; - for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ - Table *pFrom = p->pFrom; - if( pFrom!=pTab ){ - reloadTableSchema(pParse, p->pFrom, pFrom->zName); - } - } - } -#endif - - /* Drop and reload the internal table schema. */ - reloadTableSchema(pParse, pTab, zName); - -exit_rename_table: - sqlite3SrcListDelete(db, pSrc); - sqlite3DbFree(db, zName); - db->flags = savedDbFlags; -} - - -/* -** Generate code to make sure the file format number is at least minFormat. -** The generated code will increase the file format number if necessary. -*/ -SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ - Vdbe *v; - v = sqlite3GetVdbe(pParse); - /* The VDBE should have been allocated before this routine is called. - ** If that allocation failed, we would have quit before reaching this - ** point */ - if( ALWAYS(v) ){ - int r1 = sqlite3GetTempReg(pParse); - int r2 = sqlite3GetTempReg(pParse); - int j1; - sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); - sqlite3VdbeUsesBtree(v, iDb); - sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); - j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); - sqlite3VdbeJumpHere(v, j1); - sqlite3ReleaseTempReg(pParse, r1); - sqlite3ReleaseTempReg(pParse, r2); - } -} - -/* -** This function is called after an "ALTER TABLE ... ADD" statement -** has been parsed. Argument pColDef contains the text of the new -** column definition. -** -** The Table structure pParse->pNewTable was extended to include -** the new column during parsing. -*/ -SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ - Table *pNew; /* Copy of pParse->pNewTable */ - Table *pTab; /* Table being altered */ - int iDb; /* Database number */ - const char *zDb; /* Database name */ - const char *zTab; /* Table name */ - char *zCol; /* Null-terminated column definition */ - Column *pCol; /* The new column */ - Expr *pDflt; /* Default value for the new column */ - sqlite3 *db; /* The database connection; */ - - db = pParse->db; - if( pParse->nErr || db->mallocFailed ) return; - pNew = pParse->pNewTable; - assert( pNew ); - - assert( sqlite3BtreeHoldsAllMutexes(db) ); - iDb = sqlite3SchemaToIndex(db, pNew->pSchema); - zDb = db->aDb[iDb].zName; - zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ - pCol = &pNew->aCol[pNew->nCol-1]; - pDflt = pCol->pDflt; - pTab = sqlite3FindTable(db, zTab, zDb); - assert( pTab ); - -#ifndef SQLITE_OMIT_AUTHORIZATION - /* Invoke the authorization callback. */ - if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ - return; - } -#endif - - /* If the default value for the new column was specified with a - ** literal NULL, then set pDflt to 0. This simplifies checking - ** for an SQL NULL default below. - */ - if( pDflt && pDflt->op==TK_NULL ){ - pDflt = 0; - } - - /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. - ** If there is a NOT NULL constraint, then the default value for the - ** column must not be NULL. - */ - if( pCol->colFlags & COLFLAG_PRIMKEY ){ - sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); - return; - } - if( pNew->pIndex ){ - sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); - return; - } - if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){ - sqlite3ErrorMsg(pParse, - "Cannot add a REFERENCES column with non-NULL default value"); - return; - } - if( pCol->notNull && !pDflt ){ - sqlite3ErrorMsg(pParse, - "Cannot add a NOT NULL column with default value NULL"); - return; - } - - /* Ensure the default expression is something that sqlite3ValueFromExpr() - ** can handle (i.e. not CURRENT_TIME etc.) - */ - if( pDflt ){ - sqlite3_value *pVal; - if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){ - db->mallocFailed = 1; - return; - } - if( !pVal ){ - sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); - return; - } - sqlite3ValueFree(pVal); - } - - /* Modify the CREATE TABLE statement. */ - zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); - if( zCol ){ - char *zEnd = &zCol[pColDef->n-1]; - int savedDbFlags = db->flags; - while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ - *zEnd-- = '\0'; - } - db->flags |= SQLITE_PreferBuiltin; - sqlite3NestedParse(pParse, - "UPDATE \"%w\".%s SET " - "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " - "WHERE type = 'table' AND name = %Q", - zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, - zTab - ); - sqlite3DbFree(db, zCol); - db->flags = savedDbFlags; - } - - /* If the default value of the new column is NULL, then set the file - ** format to 2. If the default value of the new column is not NULL, - ** the file format becomes 3. - */ - sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2); - - /* Reload the schema of the modified table. */ - reloadTableSchema(pParse, pTab, pTab->zName); -} - -/* -** This function is called by the parser after the table-name in -** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument -** pSrc is the full-name of the table being altered. -** -** This routine makes a (partial) copy of the Table structure -** for the table being altered and sets Parse.pNewTable to point -** to it. Routines called by the parser as the column definition -** is parsed (i.e. sqlite3AddColumn()) add the new Column data to -** the copy. The copy of the Table structure is deleted by tokenize.c -** after parsing is finished. -** -** Routine sqlite3AlterFinishAddColumn() will be called to complete -** coding the "ALTER TABLE ... ADD" statement. -*/ -SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){ - Table *pNew; - Table *pTab; - Vdbe *v; - int iDb; - int i; - int nAlloc; - sqlite3 *db = pParse->db; - - /* Look up the table being altered. */ - assert( pParse->pNewTable==0 ); - assert( sqlite3BtreeHoldsAllMutexes(db) ); - if( db->mallocFailed ) goto exit_begin_add_column; - pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); - if( !pTab ) goto exit_begin_add_column; - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(pTab) ){ - sqlite3ErrorMsg(pParse, "virtual tables may not be altered"); - goto exit_begin_add_column; - } -#endif - - /* Make sure this is not an attempt to ALTER a view. */ - if( pTab->pSelect ){ - sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); - goto exit_begin_add_column; - } - if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ - goto exit_begin_add_column; - } - - assert( pTab->addColOffset>0 ); - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - - /* Put a copy of the Table struct in Parse.pNewTable for the - ** sqlite3AddColumn() function and friends to modify. But modify - ** the name by adding an "sqlite_altertab_" prefix. By adding this - ** prefix, we insure that the name will not collide with an existing - ** table because user table are not allowed to have the "sqlite_" - ** prefix on their name. - */ - pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); - if( !pNew ) goto exit_begin_add_column; - pParse->pNewTable = pNew; - pNew->nRef = 1; - pNew->nCol = pTab->nCol; - assert( pNew->nCol>0 ); - nAlloc = (((pNew->nCol-1)/8)*8)+8; - assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); - pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); - pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName); - if( !pNew->aCol || !pNew->zName ){ - db->mallocFailed = 1; - goto exit_begin_add_column; - } - memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); - for(i=0; i<pNew->nCol; i++){ - Column *pCol = &pNew->aCol[i]; - pCol->zName = sqlite3DbStrDup(db, pCol->zName); - pCol->zColl = 0; - pCol->zType = 0; - pCol->pDflt = 0; - pCol->zDflt = 0; - } - pNew->pSchema = db->aDb[iDb].pSchema; - pNew->addColOffset = pTab->addColOffset; - pNew->nRef = 1; - - /* Begin a transaction and increment the schema cookie. */ - sqlite3BeginWriteOperation(pParse, 0, iDb); - v = sqlite3GetVdbe(pParse); - if( !v ) goto exit_begin_add_column; - sqlite3ChangeCookie(pParse, iDb); - -exit_begin_add_column: - sqlite3SrcListDelete(db, pSrc); - return; -} -#endif /* SQLITE_ALTER_TABLE */ - -/************** End of alter.c ***********************************************/ -/************** Begin file analyze.c *****************************************/ -/* -** 2005 July 8 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code associated with the ANALYZE command. -** -** The ANALYZE command gather statistics about the content of tables -** and indices. These statistics are made available to the query planner -** to help it make better decisions about how to perform queries. -** -** The following system tables are or have been supported: -** -** CREATE TABLE sqlite_stat1(tbl, idx, stat); -** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); -** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); -** -** Additional tables might be added in future releases of SQLite. -** The sqlite_stat2 table is not created or used unless the SQLite version -** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled -** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. -** The sqlite_stat2 table is superceded by sqlite_stat3, which is only -** created and used by SQLite versions 3.7.9 and later and with -** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3 -** is a superset of sqlite_stat2. -** -** Format of sqlite_stat1: -** -** There is normally one row per index, with the index identified by the -** name in the idx column. The tbl column is the name of the table to -** which the index belongs. In each such row, the stat column will be -** a string consisting of a list of integers. The first integer in this -** list is the number of rows in the index and in the table. The second -** integer is the average number of rows in the index that have the same -** value in the first column of the index. The third integer is the average -** number of rows in the index that have the same value for the first two -** columns. The N-th integer (for N>1) is the average number of rows in -** the index which have the same value for the first N-1 columns. For -** a K-column index, there will be K+1 integers in the stat column. If -** the index is unique, then the last integer will be 1. -** -** The list of integers in the stat column can optionally be followed -** by the keyword "unordered". The "unordered" keyword, if it is present, -** must be separated from the last integer by a single space. If the -** "unordered" keyword is present, then the query planner assumes that -** the index is unordered and will not use the index for a range query. -** -** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat -** column contains a single integer which is the (estimated) number of -** rows in the table identified by sqlite_stat1.tbl. -** -** Format of sqlite_stat2: -** -** The sqlite_stat2 is only created and is only used if SQLite is compiled -** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between -** 3.6.18 and 3.7.8. The "stat2" table contains additional information -** about the distribution of keys within an index. The index is identified by -** the "idx" column and the "tbl" column is the name of the table to which -** the index belongs. There are usually 10 rows in the sqlite_stat2 -** table for each index. -** -** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 -** inclusive are samples of the left-most key value in the index taken at -** evenly spaced points along the index. Let the number of samples be S -** (10 in the standard build) and let C be the number of rows in the index. -** Then the sampled rows are given by: -** -** rownumber = (i*C*2 + C)/(S*2) -** -** For i between 0 and S-1. Conceptually, the index space is divided into -** S uniform buckets and the samples are the middle row from each bucket. -** -** The format for sqlite_stat2 is recorded here for legacy reference. This -** version of SQLite does not support sqlite_stat2. It neither reads nor -** writes the sqlite_stat2 table. This version of SQLite only supports -** sqlite_stat3. -** -** Format for sqlite_stat3: -** -** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is -** used to avoid compatibility problems. -** -** The format of the sqlite_stat3 table is similar to the format of -** the sqlite_stat2 table. There are multiple entries for each index. -** The idx column names the index and the tbl column is the table of the -** index. If the idx and tbl columns are the same, then the sample is -** of the INTEGER PRIMARY KEY. The sample column is a value taken from -** the left-most column of the index. The nEq column is the approximate -** number of entires in the index whose left-most column exactly matches -** the sample. nLt is the approximate number of entires whose left-most -** column is less than the sample. The nDLt column is the approximate -** number of distinct left-most entries in the index that are less than -** the sample. -** -** Future versions of SQLite might change to store a string containing -** multiple integers values in the nDLt column of sqlite_stat3. The first -** integer will be the number of prior index entires that are distinct in -** the left-most column. The second integer will be the number of prior index -** entries that are distinct in the first two columns. The third integer -** will be the number of prior index entries that are distinct in the first -** three columns. And so forth. With that extension, the nDLt field is -** similar in function to the sqlite_stat1.stat field. -** -** There can be an arbitrary number of sqlite_stat3 entries per index. -** The ANALYZE command will typically generate sqlite_stat3 tables -** that contain between 10 and 40 samples which are distributed across -** the key space, though not uniformly, and which include samples with -** largest possible nEq values. -*/ -#ifndef SQLITE_OMIT_ANALYZE - -/* -** This routine generates code that opens the sqlite_stat1 table for -** writing with cursor iStatCur. If the library was built with the -** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is -** opened for writing using cursor (iStatCur+1) -** -** If the sqlite_stat1 tables does not previously exist, it is created. -** Similarly, if the sqlite_stat3 table does not exist and the library -** is compiled with SQLITE_ENABLE_STAT3 defined, it is created. -** -** Argument zWhere may be a pointer to a buffer containing a table name, -** or it may be a NULL pointer. If it is not NULL, then all entries in -** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated -** with the named table are deleted. If zWhere==0, then code is generated -** to delete all stat table entries. -*/ -static void openStatTable( - Parse *pParse, /* Parsing context */ - int iDb, /* The database we are looking in */ - int iStatCur, /* Open the sqlite_stat1 table on this cursor */ - const char *zWhere, /* Delete entries for this table or index */ - const char *zWhereType /* Either "tbl" or "idx" */ -){ - static const struct { - const char *zName; - const char *zCols; - } aTable[] = { - { "sqlite_stat1", "tbl,idx,stat" }, -#ifdef SQLITE_ENABLE_STAT3 - { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, -#endif - }; - - int aRoot[] = {0, 0}; - u8 aCreateTbl[] = {0, 0}; - - int i; - sqlite3 *db = pParse->db; - Db *pDb; - Vdbe *v = sqlite3GetVdbe(pParse); - if( v==0 ) return; - assert( sqlite3BtreeHoldsAllMutexes(db) ); - assert( sqlite3VdbeDb(v)==db ); - pDb = &db->aDb[iDb]; - - /* Create new statistic tables if they do not exist, or clear them - ** if they do already exist. - */ - for(i=0; i<ArraySize(aTable); i++){ - const char *zTab = aTable[i].zName; - Table *pStat; - if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ - /* The sqlite_stat[12] table does not exist. Create it. Note that a - ** side-effect of the CREATE TABLE statement is to leave the rootpage - ** of the new table in register pParse->regRoot. This is important - ** because the OpenWrite opcode below will be needing it. */ - sqlite3NestedParse(pParse, - "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols - ); - aRoot[i] = pParse->regRoot; - aCreateTbl[i] = OPFLAG_P2ISREG; - }else{ - /* The table already exists. If zWhere is not NULL, delete all entries - ** associated with the table zWhere. If zWhere is NULL, delete the - ** entire contents of the table. */ - aRoot[i] = pStat->tnum; - sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); - if( zWhere ){ - sqlite3NestedParse(pParse, - "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere - ); - }else{ - /* The sqlite_stat[12] table already exists. Delete all rows. */ - sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); - } - } - } - - /* Open the sqlite_stat[13] tables for writing. */ - for(i=0; i<ArraySize(aTable); i++){ - sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb); - sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32); - sqlite3VdbeChangeP5(v, aCreateTbl[i]); - } -} - -/* -** Recommended number of samples for sqlite_stat3 -*/ -#ifndef SQLITE_STAT3_SAMPLES -# define SQLITE_STAT3_SAMPLES 24 -#endif - -/* -** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() - -** share an instance of the following structure to hold their state -** information. -*/ -typedef struct Stat3Accum Stat3Accum; -struct Stat3Accum { - tRowcnt nRow; /* Number of rows in the entire table */ - tRowcnt nPSample; /* How often to do a periodic sample */ - int iMin; /* Index of entry with minimum nEq and hash */ - int mxSample; /* Maximum number of samples to accumulate */ - int nSample; /* Current number of samples */ - u32 iPrn; /* Pseudo-random number used for sampling */ - struct Stat3Sample { - i64 iRowid; /* Rowid in main table of the key */ - tRowcnt nEq; /* sqlite_stat3.nEq */ - tRowcnt nLt; /* sqlite_stat3.nLt */ - tRowcnt nDLt; /* sqlite_stat3.nDLt */ - u8 isPSample; /* True if a periodic sample */ - u32 iHash; /* Tiebreaker hash */ - } *a; /* An array of samples */ -}; - -#ifdef SQLITE_ENABLE_STAT3 -/* -** Implementation of the stat3_init(C,S) SQL function. The two parameters -** are the number of rows in the table or index (C) and the number of samples -** to accumulate (S). -** -** This routine allocates the Stat3Accum object. -** -** The return value is the Stat3Accum object (P). -*/ -static void stat3Init( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - Stat3Accum *p; - tRowcnt nRow; - int mxSample; - int n; - - UNUSED_PARAMETER(argc); - nRow = (tRowcnt)sqlite3_value_int64(argv[0]); - mxSample = sqlite3_value_int(argv[1]); - n = sizeof(*p) + sizeof(p->a[0])*mxSample; - p = sqlite3MallocZero( n ); - if( p==0 ){ - sqlite3_result_error_nomem(context); - return; - } - p->a = (struct Stat3Sample*)&p[1]; - p->nRow = nRow; - p->mxSample = mxSample; - p->nPSample = p->nRow/(mxSample/3+1) + 1; - sqlite3_randomness(sizeof(p->iPrn), &p->iPrn); - sqlite3_result_blob(context, p, sizeof(p), sqlite3_free); -} -static const FuncDef stat3InitFuncdef = { - 2, /* nArg */ - SQLITE_UTF8, /* iPrefEnc */ - 0, /* flags */ - 0, /* pUserData */ - 0, /* pNext */ - stat3Init, /* xFunc */ - 0, /* xStep */ - 0, /* xFinalize */ - "stat3_init", /* zName */ - 0, /* pHash */ - 0 /* pDestructor */ -}; - - -/* -** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The -** arguments describe a single key instance. This routine makes the -** decision about whether or not to retain this key for the sqlite_stat3 -** table. -** -** The return value is NULL. -*/ -static void stat3Push( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]); - tRowcnt nEq = sqlite3_value_int64(argv[0]); - tRowcnt nLt = sqlite3_value_int64(argv[1]); - tRowcnt nDLt = sqlite3_value_int64(argv[2]); - i64 rowid = sqlite3_value_int64(argv[3]); - u8 isPSample = 0; - u8 doInsert = 0; - int iMin = p->iMin; - struct Stat3Sample *pSample; - int i; - u32 h; - - UNUSED_PARAMETER(context); - UNUSED_PARAMETER(argc); - if( nEq==0 ) return; - h = p->iPrn = p->iPrn*1103515245 + 12345; - if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){ - doInsert = isPSample = 1; - }else if( p->nSample<p->mxSample ){ - doInsert = 1; - }else{ - if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){ - doInsert = 1; - } - } - if( !doInsert ) return; - if( p->nSample==p->mxSample ){ - assert( p->nSample - iMin - 1 >= 0 ); - memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1)); - pSample = &p->a[p->nSample-1]; - }else{ - pSample = &p->a[p->nSample++]; - } - pSample->iRowid = rowid; - pSample->nEq = nEq; - pSample->nLt = nLt; - pSample->nDLt = nDLt; - pSample->iHash = h; - pSample->isPSample = isPSample; - - /* Find the new minimum */ - if( p->nSample==p->mxSample ){ - pSample = p->a; - i = 0; - while( pSample->isPSample ){ - i++; - pSample++; - assert( i<p->nSample ); - } - nEq = pSample->nEq; - h = pSample->iHash; - iMin = i; - for(i++, pSample++; i<p->nSample; i++, pSample++){ - if( pSample->isPSample ) continue; - if( pSample->nEq<nEq - || (pSample->nEq==nEq && pSample->iHash<h) - ){ - iMin = i; - nEq = pSample->nEq; - h = pSample->iHash; - } - } - p->iMin = iMin; - } -} -static const FuncDef stat3PushFuncdef = { - 5, /* nArg */ - SQLITE_UTF8, /* iPrefEnc */ - 0, /* flags */ - 0, /* pUserData */ - 0, /* pNext */ - stat3Push, /* xFunc */ - 0, /* xStep */ - 0, /* xFinalize */ - "stat3_push", /* zName */ - 0, /* pHash */ - 0 /* pDestructor */ -}; - -/* -** Implementation of the stat3_get(P,N,...) SQL function. This routine is -** used to query the results. Content is returned for the Nth sqlite_stat3 -** row where N is between 0 and S-1 and S is the number of samples. The -** value returned depends on the number of arguments. -** -** argc==2 result: rowid -** argc==3 result: nEq -** argc==4 result: nLt -** argc==5 result: nDLt -*/ -static void stat3Get( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int n = sqlite3_value_int(argv[1]); - Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]); - - assert( p!=0 ); - if( p->nSample<=n ) return; - switch( argc ){ - case 2: sqlite3_result_int64(context, p->a[n].iRowid); break; - case 3: sqlite3_result_int64(context, p->a[n].nEq); break; - case 4: sqlite3_result_int64(context, p->a[n].nLt); break; - default: sqlite3_result_int64(context, p->a[n].nDLt); break; - } -} -static const FuncDef stat3GetFuncdef = { - -1, /* nArg */ - SQLITE_UTF8, /* iPrefEnc */ - 0, /* flags */ - 0, /* pUserData */ - 0, /* pNext */ - stat3Get, /* xFunc */ - 0, /* xStep */ - 0, /* xFinalize */ - "stat3_get", /* zName */ - 0, /* pHash */ - 0 /* pDestructor */ -}; -#endif /* SQLITE_ENABLE_STAT3 */ - - - - -/* -** Generate code to do an analysis of all indices associated with -** a single table. -*/ -static void analyzeOneTable( - Parse *pParse, /* Parser context */ - Table *pTab, /* Table whose indices are to be analyzed */ - Index *pOnlyIdx, /* If not NULL, only analyze this one index */ - int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ - int iMem /* Available memory locations begin here */ -){ - sqlite3 *db = pParse->db; /* Database handle */ - Index *pIdx; /* An index to being analyzed */ - int iIdxCur; /* Cursor open on index being analyzed */ - Vdbe *v; /* The virtual machine being built up */ - int i; /* Loop counter */ - int topOfLoop; /* The top of the loop */ - int endOfLoop; /* The end of the loop */ - int jZeroRows = -1; /* Jump from here if number of rows is zero */ - int iDb; /* Index of database containing pTab */ - int regTabname = iMem++; /* Register containing table name */ - int regIdxname = iMem++; /* Register containing index name */ - int regStat1 = iMem++; /* The stat column of sqlite_stat1 */ -#ifdef SQLITE_ENABLE_STAT3 - int regNumEq = regStat1; /* Number of instances. Same as regStat1 */ - int regNumLt = iMem++; /* Number of keys less than regSample */ - int regNumDLt = iMem++; /* Number of distinct keys less than regSample */ - int regSample = iMem++; /* The next sample value */ - int regRowid = regSample; /* Rowid of a sample */ - int regAccum = iMem++; /* Register to hold Stat3Accum object */ - int regLoop = iMem++; /* Loop counter */ - int regCount = iMem++; /* Number of rows in the table or index */ - int regTemp1 = iMem++; /* Intermediate register */ - int regTemp2 = iMem++; /* Intermediate register */ - int once = 1; /* One-time initialization */ - int shortJump = 0; /* Instruction address */ - int iTabCur = pParse->nTab++; /* Table cursor */ -#endif - int regCol = iMem++; /* Content of a column in analyzed table */ - int regRec = iMem++; /* Register holding completed record */ - int regTemp = iMem++; /* Temporary use register */ - int regNewRowid = iMem++; /* Rowid for the inserted record */ - - - v = sqlite3GetVdbe(pParse); - if( v==0 || NEVER(pTab==0) ){ - return; - } - if( pTab->tnum==0 ){ - /* Do not gather statistics on views or virtual tables */ - return; - } - if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ - /* Do not gather statistics on system tables */ - return; - } - assert( sqlite3BtreeHoldsAllMutexes(db) ); - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - assert( iDb>=0 ); - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); -#ifndef SQLITE_OMIT_AUTHORIZATION - if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, - db->aDb[iDb].zName ) ){ - return; - } -#endif - - /* Establish a read-lock on the table at the shared-cache level. */ - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - - iIdxCur = pParse->nTab++; - sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int nCol; - KeyInfo *pKey; - int addrIfNot = 0; /* address of OP_IfNot */ - int *aChngAddr; /* Array of jump instruction addresses */ - - if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; - VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); - nCol = pIdx->nColumn; - aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol); - if( aChngAddr==0 ) continue; - pKey = sqlite3IndexKeyinfo(pParse, pIdx); - if( iMem+1+(nCol*2)>pParse->nMem ){ - pParse->nMem = iMem+1+(nCol*2); - } - - /* Open a cursor to the index to be analyzed. */ - assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); - sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, - (char *)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pIdx->zName)); - - /* Populate the register containing the index name. */ - sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); - -#ifdef SQLITE_ENABLE_STAT3 - if( once ){ - once = 0; - sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); - } - sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); - sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt); - sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt); - sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum); - sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum, - (char*)&stat3InitFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 2); -#endif /* SQLITE_ENABLE_STAT3 */ - - /* The block of memory cells initialized here is used as follows. - ** - ** iMem: - ** The total number of rows in the table. - ** - ** iMem+1 .. iMem+nCol: - ** Number of distinct entries in index considering the - ** left-most N columns only, where N is between 1 and nCol, - ** inclusive. - ** - ** iMem+nCol+1 .. Mem+2*nCol: - ** Previous value of indexed columns, from left to right. - ** - ** Cells iMem through iMem+nCol are initialized to 0. The others are - ** initialized to contain an SQL NULL. - */ - for(i=0; i<=nCol; i++){ - sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); - } - for(i=0; i<nCol; i++){ - sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); - } - - /* Start the analysis loop. This loop runs through all the entries in - ** the index b-tree. */ - endOfLoop = sqlite3VdbeMakeLabel(v); - sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); - topOfLoop = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); /* Increment row counter */ - - for(i=0; i<nCol; i++){ - CollSeq *pColl; - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); - if( i==0 ){ - /* Always record the very first row */ - addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1); - } - assert( pIdx->azColl!=0 ); - assert( pIdx->azColl[i]!=0 ); - pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); - aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1, - (char*)pColl, P4_COLLSEQ); - sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); - VdbeComment((v, "jump if column %d changed", i)); -#ifdef SQLITE_ENABLE_STAT3 - if( i==0 ){ - sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1); - VdbeComment((v, "incr repeat count")); - } -#endif - } - sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); - for(i=0; i<nCol; i++){ - sqlite3VdbeJumpHere(v, aChngAddr[i]); /* Set jump dest for the OP_Ne */ - if( i==0 ){ - sqlite3VdbeJumpHere(v, addrIfNot); /* Jump dest for OP_IfNot */ -#ifdef SQLITE_ENABLE_STAT3 - sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2, - (char*)&stat3PushFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 5); - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid); - sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt); - sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1); - sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq); -#endif - } - sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); - } - sqlite3DbFree(db, aChngAddr); - - /* Always jump here after updating the iMem+1...iMem+1+nCol counters */ - sqlite3VdbeResolveLabel(v, endOfLoop); - - sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); - sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); -#ifdef SQLITE_ENABLE_STAT3 - sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2, - (char*)&stat3PushFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 5); - sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop); - shortJump = - sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1); - sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1, - (char*)&stat3GetFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 2); - sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1); - sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1); - sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample); - sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample); - sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq, - (char*)&stat3GetFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 3); - sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt, - (char*)&stat3GetFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 4); - sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt, - (char*)&stat3GetFuncdef, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, 5); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid); - sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump); - sqlite3VdbeJumpHere(v, shortJump+2); -#endif - - /* Store the results in sqlite_stat1. - ** - ** The result is a single row of the sqlite_stat1 table. The first - ** two columns are the names of the table and index. The third column - ** is a string composed of a list of integer statistics about the - ** index. The first integer in the list is the total number of entries - ** in the index. There is one additional integer in the list for each - ** column of the table. This additional integer is a guess of how many - ** rows of the table the index will select. If D is the count of distinct - ** values and K is the total number of rows, then the integer is computed - ** as: - ** - ** I = (K+D-1)/D - ** - ** If K==0 then no entry is made into the sqlite_stat1 table. - ** If K>0 then it is always the case the D>0 so division by zero - ** is never possible. - */ - sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1); - if( jZeroRows<0 ){ - jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); - } - for(i=0; i<nCol; i++){ - sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); - sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); - sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); - sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); - sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); - sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); - sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); - } - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - } - - /* If the table has no indices, create a single sqlite_stat1 entry - ** containing NULL as the index name and the row count as the content. - */ - if( pTab->pIndex==0 ){ - sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); - VdbeComment((v, "%s", pTab->zName)); - sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1); - sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); - jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); - }else{ - sqlite3VdbeJumpHere(v, jZeroRows); - jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); - } - sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - if( pParse->nMem<regRec ) pParse->nMem = regRec; - sqlite3VdbeJumpHere(v, jZeroRows); -} - - -/* -** Generate code that will cause the most recent index analysis to -** be loaded into internal hash tables where is can be used. -*/ -static void loadAnalysis(Parse *pParse, int iDb){ - Vdbe *v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); - } -} - -/* -** Generate code that will do an analysis of an entire database -*/ -static void analyzeDatabase(Parse *pParse, int iDb){ - sqlite3 *db = pParse->db; - Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ - HashElem *k; - int iStatCur; - int iMem; - - sqlite3BeginWriteOperation(pParse, 0, iDb); - iStatCur = pParse->nTab; - pParse->nTab += 3; - openStatTable(pParse, iDb, iStatCur, 0, 0); - iMem = pParse->nMem+1; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ - Table *pTab = (Table*)sqliteHashData(k); - analyzeOneTable(pParse, pTab, 0, iStatCur, iMem); - } - loadAnalysis(pParse, iDb); -} - -/* -** Generate code that will do an analysis of a single table in -** a database. If pOnlyIdx is not NULL then it is a single index -** in pTab that should be analyzed. -*/ -static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ - int iDb; - int iStatCur; - - assert( pTab!=0 ); - assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); - iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - sqlite3BeginWriteOperation(pParse, 0, iDb); - iStatCur = pParse->nTab; - pParse->nTab += 3; - if( pOnlyIdx ){ - openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); - }else{ - openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); - } - analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1); - loadAnalysis(pParse, iDb); -} - -/* -** Generate code for the ANALYZE command. The parser calls this routine -** when it recognizes an ANALYZE command. -** -** ANALYZE -- 1 -** ANALYZE <database> -- 2 -** ANALYZE ?<database>.?<tablename> -- 3 -** -** Form 1 causes all indices in all attached databases to be analyzed. -** Form 2 analyzes all indices the single database named. -** Form 3 analyzes all indices associated with the named table. -*/ -SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ - sqlite3 *db = pParse->db; - int iDb; - int i; - char *z, *zDb; - Table *pTab; - Index *pIdx; - Token *pTableName; - - /* Read the database schema. If an error occurs, leave an error message - ** and code in pParse and return NULL. */ - assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - return; - } - - assert( pName2!=0 || pName1==0 ); - if( pName1==0 ){ - /* Form 1: Analyze everything */ - for(i=0; i<db->nDb; i++){ - if( i==1 ) continue; /* Do not analyze the TEMP database */ - analyzeDatabase(pParse, i); - } - }else if( pName2->n==0 ){ - /* Form 2: Analyze the database or table named */ - iDb = sqlite3FindDb(db, pName1); - if( iDb>=0 ){ - analyzeDatabase(pParse, iDb); - }else{ - z = sqlite3NameFromToken(db, pName1); - if( z ){ - if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ - analyzeTable(pParse, pIdx->pTable, pIdx); - }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ - analyzeTable(pParse, pTab, 0); - } - sqlite3DbFree(db, z); - } - } - }else{ - /* Form 3: Analyze the fully qualified table name */ - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); - if( iDb>=0 ){ - zDb = db->aDb[iDb].zName; - z = sqlite3NameFromToken(db, pTableName); - if( z ){ - if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ - analyzeTable(pParse, pIdx->pTable, pIdx); - }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ - analyzeTable(pParse, pTab, 0); - } - sqlite3DbFree(db, z); - } - } - } -} - -/* -** Used to pass information from the analyzer reader through to the -** callback routine. -*/ -typedef struct analysisInfo analysisInfo; -struct analysisInfo { - sqlite3 *db; - const char *zDatabase; -}; - -/* -** This callback is invoked once for each index when reading the -** sqlite_stat1 table. -** -** argv[0] = name of the table -** argv[1] = name of the index (might be NULL) -** argv[2] = results of analysis - on integer for each column -** -** Entries for which argv[1]==NULL simply record the number of rows in -** the table. -*/ -static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ - analysisInfo *pInfo = (analysisInfo*)pData; - Index *pIndex; - Table *pTable; - int i, c, n; - tRowcnt v; - const char *z; - - assert( argc==3 ); - UNUSED_PARAMETER2(NotUsed, argc); - - if( argv==0 || argv[0]==0 || argv[2]==0 ){ - return 0; - } - pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); - if( pTable==0 ){ - return 0; - } - if( argv[1] ){ - pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); - }else{ - pIndex = 0; - } - n = pIndex ? pIndex->nColumn : 0; - z = argv[2]; - for(i=0; *z && i<=n; i++){ - v = 0; - while( (c=z[0])>='0' && c<='9' ){ - v = v*10 + c - '0'; - z++; - } - if( i==0 ) pTable->nRowEst = v; - if( pIndex==0 ) break; - pIndex->aiRowEst[i] = v; - if( *z==' ' ) z++; - if( strcmp(z, "unordered")==0 ){ - pIndex->bUnordered = 1; - break; - } - } - return 0; -} - -/* -** If the Index.aSample variable is not NULL, delete the aSample[] array -** and its contents. -*/ -SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ -#ifdef SQLITE_ENABLE_STAT3 - if( pIdx->aSample ){ - int j; - for(j=0; j<pIdx->nSample; j++){ - IndexSample *p = &pIdx->aSample[j]; - if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ - sqlite3DbFree(db, p->u.z); - } - } - sqlite3DbFree(db, pIdx->aSample); - } - if( db && db->pnBytesFreed==0 ){ - pIdx->nSample = 0; - pIdx->aSample = 0; - } -#else - UNUSED_PARAMETER(db); - UNUSED_PARAMETER(pIdx); -#endif -} - -#ifdef SQLITE_ENABLE_STAT3 -/* -** Load content from the sqlite_stat3 table into the Index.aSample[] -** arrays of all indices. -*/ -static int loadStat3(sqlite3 *db, const char *zDb){ - int rc; /* Result codes from subroutines */ - sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ - char *zSql; /* Text of the SQL statement */ - Index *pPrevIdx = 0; /* Previous index in the loop */ - int idx = 0; /* slot in pIdx->aSample[] for next sample */ - int eType; /* Datatype of a sample */ - IndexSample *pSample; /* A slot in pIdx->aSample[] */ - - assert( db->lookaside.bEnabled==0 ); - if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){ - return SQLITE_OK; - } - - zSql = sqlite3MPrintf(db, - "SELECT idx,count(*) FROM %Q.sqlite_stat3" - " GROUP BY idx", zDb); - if( !zSql ){ - return SQLITE_NOMEM; - } - rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); - sqlite3DbFree(db, zSql); - if( rc ) return rc; - - while( sqlite3_step(pStmt)==SQLITE_ROW ){ - char *zIndex; /* Index name */ - Index *pIdx; /* Pointer to the index object */ - int nSample; /* Number of samples */ - - zIndex = (char *)sqlite3_column_text(pStmt, 0); - if( zIndex==0 ) continue; - nSample = sqlite3_column_int(pStmt, 1); - pIdx = sqlite3FindIndex(db, zIndex, zDb); - if( pIdx==0 ) continue; - assert( pIdx->nSample==0 ); - pIdx->nSample = nSample; - pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample)); - pIdx->avgEq = pIdx->aiRowEst[1]; - if( pIdx->aSample==0 ){ - db->mallocFailed = 1; - sqlite3_finalize(pStmt); - return SQLITE_NOMEM; - } - } - rc = sqlite3_finalize(pStmt); - if( rc ) return rc; - - zSql = sqlite3MPrintf(db, - "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb); - if( !zSql ){ - return SQLITE_NOMEM; - } - rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); - sqlite3DbFree(db, zSql); - if( rc ) return rc; - - while( sqlite3_step(pStmt)==SQLITE_ROW ){ - char *zIndex; /* Index name */ - Index *pIdx; /* Pointer to the index object */ - int i; /* Loop counter */ - tRowcnt sumEq; /* Sum of the nEq values */ - - zIndex = (char *)sqlite3_column_text(pStmt, 0); - if( zIndex==0 ) continue; - pIdx = sqlite3FindIndex(db, zIndex, zDb); - if( pIdx==0 ) continue; - if( pIdx==pPrevIdx ){ - idx++; - }else{ - pPrevIdx = pIdx; - idx = 0; - } - assert( idx<pIdx->nSample ); - pSample = &pIdx->aSample[idx]; - pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1); - pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2); - pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3); - if( idx==pIdx->nSample-1 ){ - if( pSample->nDLt>0 ){ - for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq; - pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt; - } - if( pIdx->avgEq<=0 ) pIdx->avgEq = 1; - } - eType = sqlite3_column_type(pStmt, 4); - pSample->eType = (u8)eType; - switch( eType ){ - case SQLITE_INTEGER: { - pSample->u.i = sqlite3_column_int64(pStmt, 4); - break; - } - case SQLITE_FLOAT: { - pSample->u.r = sqlite3_column_double(pStmt, 4); - break; - } - case SQLITE_NULL: { - break; - } - default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); { - const char *z = (const char *)( - (eType==SQLITE_BLOB) ? - sqlite3_column_blob(pStmt, 4): - sqlite3_column_text(pStmt, 4) - ); - int n = z ? sqlite3_column_bytes(pStmt, 4) : 0; - pSample->nByte = n; - if( n < 1){ - pSample->u.z = 0; - }else{ - pSample->u.z = sqlite3DbMallocRaw(db, n); - if( pSample->u.z==0 ){ - db->mallocFailed = 1; - sqlite3_finalize(pStmt); - return SQLITE_NOMEM; - } - memcpy(pSample->u.z, z, n); - } - } - } - } - return sqlite3_finalize(pStmt); -} -#endif /* SQLITE_ENABLE_STAT3 */ - -/* -** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The -** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] -** arrays. The contents of sqlite_stat3 are used to populate the -** Index.aSample[] arrays. -** -** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR -** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined -** during compilation and the sqlite_stat3 table is present, no data is -** read from it. -** -** If SQLITE_ENABLE_STAT3 was defined during compilation and the -** sqlite_stat3 table is not present in the database, SQLITE_ERROR is -** returned. However, in this case, data is read from the sqlite_stat1 -** table (if it is present) before returning. -** -** If an OOM error occurs, this function always sets db->mallocFailed. -** This means if the caller does not care about other errors, the return -** code may be ignored. -*/ -SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ - analysisInfo sInfo; - HashElem *i; - char *zSql; - int rc; - - assert( iDb>=0 && iDb<db->nDb ); - assert( db->aDb[iDb].pBt!=0 ); - - /* Clear any prior statistics */ - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ - Index *pIdx = sqliteHashData(i); - sqlite3DefaultRowEst(pIdx); -#ifdef SQLITE_ENABLE_STAT3 - sqlite3DeleteIndexSamples(db, pIdx); - pIdx->aSample = 0; -#endif - } - - /* Check to make sure the sqlite_stat1 table exists */ - sInfo.db = db; - sInfo.zDatabase = db->aDb[iDb].zName; - if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ - return SQLITE_ERROR; - } - - /* Load new statistics out of the sqlite_stat1 table */ - zSql = sqlite3MPrintf(db, - "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); - if( zSql==0 ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); - sqlite3DbFree(db, zSql); - } - - - /* Load the statistics from the sqlite_stat3 table. */ -#ifdef SQLITE_ENABLE_STAT3 - if( rc==SQLITE_OK ){ - int lookasideEnabled = db->lookaside.bEnabled; - db->lookaside.bEnabled = 0; - rc = loadStat3(db, sInfo.zDatabase); - db->lookaside.bEnabled = lookasideEnabled; - } -#endif - - if( rc==SQLITE_NOMEM ){ - db->mallocFailed = 1; - } - return rc; -} - - -#endif /* SQLITE_OMIT_ANALYZE */ - -/************** End of analyze.c *********************************************/ -/************** Begin file attach.c ******************************************/ -/* -** 2003 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to implement the ATTACH and DETACH commands. -*/ - -#ifndef SQLITE_OMIT_ATTACH -/* -** Resolve an expression that was part of an ATTACH or DETACH statement. This -** is slightly different from resolving a normal SQL expression, because simple -** identifiers are treated as strings, not possible column names or aliases. -** -** i.e. if the parser sees: -** -** ATTACH DATABASE abc AS def -** -** it treats the two expressions as literal strings 'abc' and 'def' instead of -** looking for columns of the same name. -** -** This only applies to the root node of pExpr, so the statement: -** -** ATTACH DATABASE abc||def AS 'db2' -** -** will fail because neither abc or def can be resolved. -*/ -static int resolveAttachExpr(NameContext *pName, Expr *pExpr) -{ - int rc = SQLITE_OK; - if( pExpr ){ - if( pExpr->op!=TK_ID ){ - rc = sqlite3ResolveExprNames(pName, pExpr); - if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){ - sqlite3ErrorMsg(pName->pParse, "invalid name: \"%s\"", pExpr->u.zToken); - return SQLITE_ERROR; - } - }else{ - pExpr->op = TK_STRING; - } - } - return rc; -} - -/* -** An SQL user-function registered to do the work of an ATTACH statement. The -** three arguments to the function come directly from an attach statement: -** -** ATTACH DATABASE x AS y KEY z -** -** SELECT sqlite_attach(x, y, z) -** -** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the -** third argument. -*/ -static void attachFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - int i; - int rc = 0; - sqlite3 *db = sqlite3_context_db_handle(context); - const char *zName; - const char *zFile; - char *zPath = 0; - char *zErr = 0; - unsigned int flags; - Db *aNew; - char *zErrDyn = 0; - sqlite3_vfs *pVfs; - - UNUSED_PARAMETER(NotUsed); - - zFile = (const char *)sqlite3_value_text(argv[0]); - zName = (const char *)sqlite3_value_text(argv[1]); - if( zFile==0 ) zFile = ""; - if( zName==0 ) zName = ""; - - /* Check for the following errors: - ** - ** * Too many attached databases, - ** * Transaction currently open - ** * Specified database name already being used. - */ - if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ - zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d", - db->aLimit[SQLITE_LIMIT_ATTACHED] - ); - goto attach_error; - } - if( !db->autoCommit ){ - zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction"); - goto attach_error; - } - for(i=0; i<db->nDb; i++){ - char *z = db->aDb[i].zName; - assert( z && zName ); - if( sqlite3StrICmp(z, zName)==0 ){ - zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName); - goto attach_error; - } - } - - /* Allocate the new entry in the db->aDb[] array and initialize the schema - ** hash tables. - */ - if( db->aDb==db->aDbStatic ){ - aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 ); - if( aNew==0 ) return; - memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); - }else{ - aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); - if( aNew==0 ) return; - } - db->aDb = aNew; - aNew = &db->aDb[db->nDb]; - memset(aNew, 0, sizeof(*aNew)); - - /* Open the database file. If the btree is successfully opened, use - ** it to obtain the database schema. At this point the schema may - ** or may not be initialized. - */ - flags = db->openFlags; - rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; - sqlite3_result_error(context, zErr, -1); - sqlite3_free(zErr); - return; - } - assert( pVfs ); - flags |= SQLITE_OPEN_MAIN_DB; - rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags); - sqlite3_free( zPath ); - db->nDb++; - if( rc==SQLITE_CONSTRAINT ){ - rc = SQLITE_ERROR; - zErrDyn = sqlite3MPrintf(db, "database is already attached"); - }else if( rc==SQLITE_OK ){ - Pager *pPager; - aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt); - if( !aNew->pSchema ){ - rc = SQLITE_NOMEM; - }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){ - zErrDyn = sqlite3MPrintf(db, - "attached databases must use the same text encoding as main database"); - rc = SQLITE_ERROR; - } - pPager = sqlite3BtreePager(aNew->pBt); - sqlite3PagerLockingMode(pPager, db->dfltLockMode); - sqlite3BtreeSecureDelete(aNew->pBt, - sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); - } - aNew->safety_level = 3; - aNew->zName = sqlite3DbStrDup(db, zName); - if( rc==SQLITE_OK && aNew->zName==0 ){ - rc = SQLITE_NOMEM; - } - - -#ifdef SQLITE_HAS_CODEC - if( rc==SQLITE_OK ){ - extern int sqlite3CodecAttach(sqlite3*, int, const void*, int); - extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); - int nKey; - char *zKey; - int t = sqlite3_value_type(argv[2]); - switch( t ){ - case SQLITE_INTEGER: - case SQLITE_FLOAT: - zErrDyn = sqlite3DbStrDup(db, "Invalid key value"); - rc = SQLITE_ERROR; - break; - - case SQLITE_TEXT: - case SQLITE_BLOB: - nKey = sqlite3_value_bytes(argv[2]); - zKey = (char *)sqlite3_value_blob(argv[2]); - rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); - break; - - case SQLITE_NULL: - /* No key specified. Use the key from the main database */ - sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); - if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){ - rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); - } - break; - } - } -#endif - - /* If the file was opened successfully, read the schema for the new database. - ** If this fails, or if opening the file failed, then close the file and - ** remove the entry from the db->aDb[] array. i.e. put everything back the way - ** we found it. - */ - if( rc==SQLITE_OK ){ - sqlite3BtreeEnterAll(db); - rc = sqlite3Init(db, &zErrDyn); - sqlite3BtreeLeaveAll(db); - } - if( rc ){ - int iDb = db->nDb - 1; - assert( iDb>=2 ); - if( db->aDb[iDb].pBt ){ - sqlite3BtreeClose(db->aDb[iDb].pBt); - db->aDb[iDb].pBt = 0; - db->aDb[iDb].pSchema = 0; - } - sqlite3ResetAllSchemasOfConnection(db); - db->nDb = iDb; - if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ - db->mallocFailed = 1; - sqlite3DbFree(db, zErrDyn); - zErrDyn = sqlite3MPrintf(db, "out of memory"); - }else if( zErrDyn==0 ){ - zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); - } - goto attach_error; - } - - return; - -attach_error: - /* Return an error if we get here */ - if( zErrDyn ){ - sqlite3_result_error(context, zErrDyn, -1); - sqlite3DbFree(db, zErrDyn); - } - if( rc ) sqlite3_result_error_code(context, rc); -} - -/* -** An SQL user-function registered to do the work of an DETACH statement. The -** three arguments to the function come directly from a detach statement: -** -** DETACH DATABASE x -** -** SELECT sqlite_detach(x) -*/ -static void detachFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - const char *zName = (const char *)sqlite3_value_text(argv[0]); - sqlite3 *db = sqlite3_context_db_handle(context); - int i; - Db *pDb = 0; - char zErr[128]; - - UNUSED_PARAMETER(NotUsed); - - if( zName==0 ) zName = ""; - for(i=0; i<db->nDb; i++){ - pDb = &db->aDb[i]; - if( pDb->pBt==0 ) continue; - if( sqlite3StrICmp(pDb->zName, zName)==0 ) break; - } - - if( i>=db->nDb ){ - sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName); - goto detach_error; - } - if( i<2 ){ - sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName); - goto detach_error; - } - if( !db->autoCommit ){ - sqlite3_snprintf(sizeof(zErr), zErr, - "cannot DETACH database within transaction"); - goto detach_error; - } - if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){ - sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); - goto detach_error; - } - - sqlite3BtreeClose(pDb->pBt); - pDb->pBt = 0; - pDb->pSchema = 0; - sqlite3ResetAllSchemasOfConnection(db); - return; - -detach_error: - sqlite3_result_error(context, zErr, -1); -} - -/* -** This procedure generates VDBE code for a single invocation of either the -** sqlite_detach() or sqlite_attach() SQL user functions. -*/ -static void codeAttach( - Parse *pParse, /* The parser context */ - int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */ - FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */ - Expr *pAuthArg, /* Expression to pass to authorization callback */ - Expr *pFilename, /* Name of database file */ - Expr *pDbname, /* Name of the database to use internally */ - Expr *pKey /* Database key for encryption extension */ -){ - int rc; - NameContext sName; - Vdbe *v; - sqlite3* db = pParse->db; - int regArgs; - - memset(&sName, 0, sizeof(NameContext)); - sName.pParse = pParse; - - if( - SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) || - SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) || - SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) - ){ - pParse->nErr++; - goto attach_end; - } - -#ifndef SQLITE_OMIT_AUTHORIZATION - if( pAuthArg ){ - char *zAuthArg; - if( pAuthArg->op==TK_STRING ){ - zAuthArg = pAuthArg->u.zToken; - }else{ - zAuthArg = 0; - } - rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); - if(rc!=SQLITE_OK ){ - goto attach_end; - } - } -#endif /* SQLITE_OMIT_AUTHORIZATION */ - - - v = sqlite3GetVdbe(pParse); - regArgs = sqlite3GetTempRange(pParse, 4); - sqlite3ExprCode(pParse, pFilename, regArgs); - sqlite3ExprCode(pParse, pDbname, regArgs+1); - sqlite3ExprCode(pParse, pKey, regArgs+2); - - assert( v || db->mallocFailed ); - if( v ){ - sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3); - assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg ); - sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg)); - sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); - - /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this - ** statement only). For DETACH, set it to false (expire all existing - ** statements). - */ - sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH)); - } - -attach_end: - sqlite3ExprDelete(db, pFilename); - sqlite3ExprDelete(db, pDbname); - sqlite3ExprDelete(db, pKey); -} - -/* -** Called by the parser to compile a DETACH statement. -** -** DETACH pDbname -*/ -SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){ - static const FuncDef detach_func = { - 1, /* nArg */ - SQLITE_UTF8, /* iPrefEnc */ - 0, /* flags */ - 0, /* pUserData */ - 0, /* pNext */ - detachFunc, /* xFunc */ - 0, /* xStep */ - 0, /* xFinalize */ - "sqlite_detach", /* zName */ - 0, /* pHash */ - 0 /* pDestructor */ - }; - codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname); -} - -/* -** Called by the parser to compile an ATTACH statement. -** -** ATTACH p AS pDbname KEY pKey -*/ -SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){ - static const FuncDef attach_func = { - 3, /* nArg */ - SQLITE_UTF8, /* iPrefEnc */ - 0, /* flags */ - 0, /* pUserData */ - 0, /* pNext */ - attachFunc, /* xFunc */ - 0, /* xStep */ - 0, /* xFinalize */ - "sqlite_attach", /* zName */ - 0, /* pHash */ - 0 /* pDestructor */ - }; - codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey); -} -#endif /* SQLITE_OMIT_ATTACH */ - -/* -** Initialize a DbFixer structure. This routine must be called prior -** to passing the structure to one of the sqliteFixAAAA() routines below. -** -** The return value indicates whether or not fixation is required. TRUE -** means we do need to fix the database references, FALSE means we do not. -*/ -SQLITE_PRIVATE int sqlite3FixInit( - DbFixer *pFix, /* The fixer to be initialized */ - Parse *pParse, /* Error messages will be written here */ - int iDb, /* This is the database that must be used */ - const char *zType, /* "view", "trigger", or "index" */ - const Token *pName /* Name of the view, trigger, or index */ -){ - sqlite3 *db; - - if( NEVER(iDb<0) || iDb==1 ) return 0; - db = pParse->db; - assert( db->nDb>iDb ); - pFix->pParse = pParse; - pFix->zDb = db->aDb[iDb].zName; - pFix->pSchema = db->aDb[iDb].pSchema; - pFix->zType = zType; - pFix->pName = pName; - return 1; -} - -/* -** The following set of routines walk through the parse tree and assign -** a specific database to all table references where the database name -** was left unspecified in the original SQL statement. The pFix structure -** must have been initialized by a prior call to sqlite3FixInit(). -** -** These routines are used to make sure that an index, trigger, or -** view in one database does not refer to objects in a different database. -** (Exception: indices, triggers, and views in the TEMP database are -** allowed to refer to anything.) If a reference is explicitly made -** to an object in a different database, an error message is added to -** pParse->zErrMsg and these routines return non-zero. If everything -** checks out, these routines return 0. -*/ -SQLITE_PRIVATE int sqlite3FixSrcList( - DbFixer *pFix, /* Context of the fixation */ - SrcList *pList /* The Source list to check and modify */ -){ - int i; - const char *zDb; - struct SrcList_item *pItem; - - if( NEVER(pList==0) ) return 0; - zDb = pFix->zDb; - for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ - if( pItem->zDatabase && sqlite3StrICmp(pItem->zDatabase, zDb) ){ - sqlite3ErrorMsg(pFix->pParse, - "%s %T cannot reference objects in database %s", - pFix->zType, pFix->pName, pItem->zDatabase); - return 1; - } - sqlite3DbFree(pFix->pParse->db, pItem->zDatabase); - pItem->zDatabase = 0; - pItem->pSchema = pFix->pSchema; -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) - if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; - if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; -#endif - } - return 0; -} -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) -SQLITE_PRIVATE int sqlite3FixSelect( - DbFixer *pFix, /* Context of the fixation */ - Select *pSelect /* The SELECT statement to be fixed to one database */ -){ - while( pSelect ){ - if( sqlite3FixExprList(pFix, pSelect->pEList) ){ - return 1; - } - if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){ - return 1; - } - if( sqlite3FixExpr(pFix, pSelect->pWhere) ){ - return 1; - } - if( sqlite3FixExpr(pFix, pSelect->pHaving) ){ - return 1; - } - pSelect = pSelect->pPrior; - } - return 0; -} -SQLITE_PRIVATE int sqlite3FixExpr( - DbFixer *pFix, /* Context of the fixation */ - Expr *pExpr /* The expression to be fixed to one database */ -){ - while( pExpr ){ - if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break; - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1; - }else{ - if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1; - } - if( sqlite3FixExpr(pFix, pExpr->pRight) ){ - return 1; - } - pExpr = pExpr->pLeft; - } - return 0; -} -SQLITE_PRIVATE int sqlite3FixExprList( - DbFixer *pFix, /* Context of the fixation */ - ExprList *pList /* The expression to be fixed to one database */ -){ - int i; - struct ExprList_item *pItem; - if( pList==0 ) return 0; - for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){ - if( sqlite3FixExpr(pFix, pItem->pExpr) ){ - return 1; - } - } - return 0; -} -#endif - -#ifndef SQLITE_OMIT_TRIGGER -SQLITE_PRIVATE int sqlite3FixTriggerStep( - DbFixer *pFix, /* Context of the fixation */ - TriggerStep *pStep /* The trigger step be fixed to one database */ -){ - while( pStep ){ - if( sqlite3FixSelect(pFix, pStep->pSelect) ){ - return 1; - } - if( sqlite3FixExpr(pFix, pStep->pWhere) ){ - return 1; - } - if( sqlite3FixExprList(pFix, pStep->pExprList) ){ - return 1; - } - pStep = pStep->pNext; - } - return 0; -} -#endif - -/************** End of attach.c **********************************************/ -/************** Begin file auth.c ********************************************/ -/* -** 2003 January 11 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to implement the sqlite3_set_authorizer() -** API. This facility is an optional feature of the library. Embedded -** systems that do not need this facility may omit it by recompiling -** the library with -DSQLITE_OMIT_AUTHORIZATION=1 -*/ - -/* -** All of the code in this file may be omitted by defining a single -** macro. -*/ -#ifndef SQLITE_OMIT_AUTHORIZATION - -/* -** Set or clear the access authorization function. -** -** The access authorization function is be called during the compilation -** phase to verify that the user has read and/or write access permission on -** various fields of the database. The first argument to the auth function -** is a copy of the 3rd argument to this routine. The second argument -** to the auth function is one of these constants: -** -** SQLITE_CREATE_INDEX -** SQLITE_CREATE_TABLE -** SQLITE_CREATE_TEMP_INDEX -** SQLITE_CREATE_TEMP_TABLE -** SQLITE_CREATE_TEMP_TRIGGER -** SQLITE_CREATE_TEMP_VIEW -** SQLITE_CREATE_TRIGGER -** SQLITE_CREATE_VIEW -** SQLITE_DELETE -** SQLITE_DROP_INDEX -** SQLITE_DROP_TABLE -** SQLITE_DROP_TEMP_INDEX -** SQLITE_DROP_TEMP_TABLE -** SQLITE_DROP_TEMP_TRIGGER -** SQLITE_DROP_TEMP_VIEW -** SQLITE_DROP_TRIGGER -** SQLITE_DROP_VIEW -** SQLITE_INSERT -** SQLITE_PRAGMA -** SQLITE_READ -** SQLITE_SELECT -** SQLITE_TRANSACTION -** SQLITE_UPDATE -** -** The third and fourth arguments to the auth function are the name of -** the table and the column that are being accessed. The auth function -** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If -** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY -** means that the SQL statement will never-run - the sqlite3_exec() call -** will return with an error. SQLITE_IGNORE means that the SQL statement -** should run but attempts to read the specified column will return NULL -** and attempts to write the column will be ignored. -** -** Setting the auth function to NULL disables this hook. The default -** setting of the auth function is NULL. -*/ -SQLITE_API int sqlite3_set_authorizer( - sqlite3 *db, - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), - void *pArg -){ - sqlite3_mutex_enter(db->mutex); - db->xAuth = xAuth; - db->pAuthArg = pArg; - sqlite3ExpirePreparedStatements(db); - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -/* -** Write an error message into pParse->zErrMsg that explains that the -** user-supplied authorization function returned an illegal value. -*/ -static void sqliteAuthBadReturnCode(Parse *pParse){ - sqlite3ErrorMsg(pParse, "authorizer malfunction"); - pParse->rc = SQLITE_ERROR; -} - -/* -** Invoke the authorization callback for permission to read column zCol from -** table zTab in database zDb. This function assumes that an authorization -** callback has been registered (i.e. that sqlite3.xAuth is not NULL). -** -** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed -** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE -** is treated as SQLITE_DENY. In this case an error is left in pParse. -*/ -SQLITE_PRIVATE int sqlite3AuthReadCol( - Parse *pParse, /* The parser context */ - const char *zTab, /* Table name */ - const char *zCol, /* Column name */ - int iDb /* Index of containing database. */ -){ - sqlite3 *db = pParse->db; /* Database handle */ - char *zDb = db->aDb[iDb].zName; /* Name of attached database */ - int rc; /* Auth callback return code */ - - rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext); - if( rc==SQLITE_DENY ){ - if( db->nDb>2 || iDb!=0 ){ - sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol); - }else{ - sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol); - } - pParse->rc = SQLITE_AUTH; - }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){ - sqliteAuthBadReturnCode(pParse); - } - return rc; -} - -/* -** The pExpr should be a TK_COLUMN expression. The table referred to -** is in pTabList or else it is the NEW or OLD table of a trigger. -** Check to see if it is OK to read this particular column. -** -** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN -** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, -** then generate an error. -*/ -SQLITE_PRIVATE void sqlite3AuthRead( - Parse *pParse, /* The parser context */ - Expr *pExpr, /* The expression to check authorization on */ - Schema *pSchema, /* The schema of the expression */ - SrcList *pTabList /* All table that pExpr might refer to */ -){ - sqlite3 *db = pParse->db; - Table *pTab = 0; /* The table being read */ - const char *zCol; /* Name of the column of the table */ - int iSrc; /* Index in pTabList->a[] of table being read */ - int iDb; /* The index of the database the expression refers to */ - int iCol; /* Index of column in table */ - - if( db->xAuth==0 ) return; - iDb = sqlite3SchemaToIndex(pParse->db, pSchema); - if( iDb<0 ){ - /* An attempt to read a column out of a subquery or other - ** temporary table. */ - return; - } - - assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); - if( pExpr->op==TK_TRIGGER ){ - pTab = pParse->pTriggerTab; - }else{ - assert( pTabList ); - for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){ - if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ - pTab = pTabList->a[iSrc].pTab; - break; - } - } - } - iCol = pExpr->iColumn; - if( NEVER(pTab==0) ) return; - - if( iCol>=0 ){ - assert( iCol<pTab->nCol ); - zCol = pTab->aCol[iCol].zName; - }else if( pTab->iPKey>=0 ){ - assert( pTab->iPKey<pTab->nCol ); - zCol = pTab->aCol[pTab->iPKey].zName; - }else{ - zCol = "ROWID"; - } - assert( iDb>=0 && iDb<db->nDb ); - if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){ - pExpr->op = TK_NULL; - } -} - -/* -** Do an authorization check using the code and arguments given. Return -** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY -** is returned, then the error count and error message in pParse are -** modified appropriately. -*/ -SQLITE_PRIVATE int sqlite3AuthCheck( - Parse *pParse, - int code, - const char *zArg1, - const char *zArg2, - const char *zArg3 -){ - sqlite3 *db = pParse->db; - int rc; - - /* Don't do any authorization checks if the database is initialising - ** or if the parser is being invoked from within sqlite3_declare_vtab. - */ - if( db->init.busy || IN_DECLARE_VTAB ){ - return SQLITE_OK; - } - - if( db->xAuth==0 ){ - return SQLITE_OK; - } - rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext); - if( rc==SQLITE_DENY ){ - sqlite3ErrorMsg(pParse, "not authorized"); - pParse->rc = SQLITE_AUTH; - }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ - rc = SQLITE_DENY; - sqliteAuthBadReturnCode(pParse); - } - return rc; -} - -/* -** Push an authorization context. After this routine is called, the -** zArg3 argument to authorization callbacks will be zContext until -** popped. Or if pParse==0, this routine is a no-op. -*/ -SQLITE_PRIVATE void sqlite3AuthContextPush( - Parse *pParse, - AuthContext *pContext, - const char *zContext -){ - assert( pParse ); - pContext->pParse = pParse; - pContext->zAuthContext = pParse->zAuthContext; - pParse->zAuthContext = zContext; -} - -/* -** Pop an authorization context that was previously pushed -** by sqlite3AuthContextPush -*/ -SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){ - if( pContext->pParse ){ - pContext->pParse->zAuthContext = pContext->zAuthContext; - pContext->pParse = 0; - } -} - -#endif /* SQLITE_OMIT_AUTHORIZATION */ - -/************** End of auth.c ************************************************/ -/************** Begin file build.c *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the SQLite parser -** when syntax rules are reduced. The routines in this file handle the -** following kinds of SQL syntax: -** -** CREATE TABLE -** DROP TABLE -** CREATE INDEX -** DROP INDEX -** creating ID lists -** BEGIN TRANSACTION -** COMMIT -** ROLLBACK -*/ - -/* -** This routine is called when a new SQL statement is beginning to -** be parsed. Initialize the pParse structure as needed. -*/ -SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){ - pParse->explain = (u8)explainFlag; - pParse->nVar = 0; -} - -#ifndef SQLITE_OMIT_SHARED_CACHE -/* -** The TableLock structure is only used by the sqlite3TableLock() and -** codeTableLocks() functions. -*/ -struct TableLock { - int iDb; /* The database containing the table to be locked */ - int iTab; /* The root page of the table to be locked */ - u8 isWriteLock; /* True for write lock. False for a read lock */ - const char *zName; /* Name of the table */ -}; - -/* -** Record the fact that we want to lock a table at run-time. -** -** The table to be locked has root page iTab and is found in database iDb. -** A read or a write lock can be taken depending on isWritelock. -** -** This routine just records the fact that the lock is desired. The -** code to make the lock occur is generated by a later call to -** codeTableLocks() which occurs during sqlite3FinishCoding(). -*/ -SQLITE_PRIVATE void sqlite3TableLock( - Parse *pParse, /* Parsing context */ - int iDb, /* Index of the database containing the table to lock */ - int iTab, /* Root page number of the table to be locked */ - u8 isWriteLock, /* True for a write lock */ - const char *zName /* Name of the table to be locked */ -){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - int i; - int nBytes; - TableLock *p; - assert( iDb>=0 ); - - for(i=0; i<pToplevel->nTableLock; i++){ - p = &pToplevel->aTableLock[i]; - if( p->iDb==iDb && p->iTab==iTab ){ - p->isWriteLock = (p->isWriteLock || isWriteLock); - return; - } - } - - nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); - pToplevel->aTableLock = - sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); - if( pToplevel->aTableLock ){ - p = &pToplevel->aTableLock[pToplevel->nTableLock++]; - p->iDb = iDb; - p->iTab = iTab; - p->isWriteLock = isWriteLock; - p->zName = zName; - }else{ - pToplevel->nTableLock = 0; - pToplevel->db->mallocFailed = 1; - } -} - -/* -** Code an OP_TableLock instruction for each table locked by the -** statement (configured by calls to sqlite3TableLock()). -*/ -static void codeTableLocks(Parse *pParse){ - int i; - Vdbe *pVdbe; - - pVdbe = sqlite3GetVdbe(pParse); - assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ - - for(i=0; i<pParse->nTableLock; i++){ - TableLock *p = &pParse->aTableLock[i]; - int p1 = p->iDb; - sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, - p->zName, P4_STATIC); - } -} -#else - #define codeTableLocks(x) -#endif - -/* -** This routine is called after a single SQL statement has been -** parsed and a VDBE program to execute that statement has been -** prepared. This routine puts the finishing touches on the -** VDBE program and resets the pParse structure for the next -** parse. -** -** Note that if an error occurred, it might be the case that -** no VDBE code was generated. -*/ -SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){ - sqlite3 *db; - Vdbe *v; - - assert( pParse->pToplevel==0 ); - db = pParse->db; - if( db->mallocFailed ) return; - if( pParse->nested ) return; - if( pParse->nErr ) return; - - /* Begin by generating some termination code at the end of the - ** vdbe program - */ - v = sqlite3GetVdbe(pParse); - assert( !pParse->isMultiWrite - || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); - if( v ){ - sqlite3VdbeAddOp0(v, OP_Halt); - - /* The cookie mask contains one bit for each database file open. - ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are - ** set for each database that is used. Generate code to start a - ** transaction on each used database and to verify the schema cookie - ** on each used database. - */ - if( pParse->cookieGoto>0 ){ - yDbMask mask; - int iDb; - sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); - for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ - if( (mask & pParse->cookieMask)==0 ) continue; - sqlite3VdbeUsesBtree(v, iDb); - sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); - if( db->init.busy==0 ){ - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - sqlite3VdbeAddOp3(v, OP_VerifyCookie, - iDb, pParse->cookieValue[iDb], - db->aDb[iDb].pSchema->iGeneration); - } - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - { - int i; - for(i=0; i<pParse->nVtabLock; i++){ - char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); - sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); - } - pParse->nVtabLock = 0; - } -#endif - - /* Once all the cookies have been verified and transactions opened, - ** obtain the required table-locks. This is a no-op unless the - ** shared-cache feature is enabled. - */ - codeTableLocks(pParse); - - /* Initialize any AUTOINCREMENT data structures required. - */ - sqlite3AutoincrementBegin(pParse); - - /* Finally, jump back to the beginning of the executable code. */ - sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); - } - } - - - /* Get the VDBE program ready for execution - */ - if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ -#ifdef SQLITE_DEBUG - FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; - sqlite3VdbeTrace(v, trace); -#endif - assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ - /* A minimum of one cursor is required if autoincrement is used - * See ticket [a696379c1f08866] */ - if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; - sqlite3VdbeMakeReady(v, pParse); - pParse->rc = SQLITE_DONE; - pParse->colNamesSet = 0; - }else{ - pParse->rc = SQLITE_ERROR; - } - pParse->nTab = 0; - pParse->nMem = 0; - pParse->nSet = 0; - pParse->nVar = 0; - pParse->cookieMask = 0; - pParse->cookieGoto = 0; -} - -/* -** Run the parser and code generator recursively in order to generate -** code for the SQL statement given onto the end of the pParse context -** currently under construction. When the parser is run recursively -** this way, the final OP_Halt is not appended and other initialization -** and finalization steps are omitted because those are handling by the -** outermost parser. -** -** Not everything is nestable. This facility is designed to permit -** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use -** care if you decide to try to use this routine for some other purposes. -*/ -SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ - va_list ap; - char *zSql; - char *zErrMsg = 0; - sqlite3 *db = pParse->db; -# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) - char saveBuf[SAVE_SZ]; - - if( pParse->nErr ) return; - assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ - va_start(ap, zFormat); - zSql = sqlite3VMPrintf(db, zFormat, ap); - va_end(ap); - if( zSql==0 ){ - return; /* A malloc must have failed */ - } - pParse->nested++; - memcpy(saveBuf, &pParse->nVar, SAVE_SZ); - memset(&pParse->nVar, 0, SAVE_SZ); - sqlite3RunParser(pParse, zSql, &zErrMsg); - sqlite3DbFree(db, zErrMsg); - sqlite3DbFree(db, zSql); - memcpy(&pParse->nVar, saveBuf, SAVE_SZ); - pParse->nested--; -} - -/* -** Locate the in-memory structure that describes a particular database -** table given the name of that table and (optionally) the name of the -** database containing the table. Return NULL if not found. -** -** If zDatabase is 0, all databases are searched for the table and the -** first matching table is returned. (No checking for duplicate table -** names is done.) The search order is TEMP first, then MAIN, then any -** auxiliary databases added using the ATTACH command. -** -** See also sqlite3LocateTable(). -*/ -SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ - Table *p = 0; - int i; - int nName; - assert( zName!=0 ); - nName = sqlite3Strlen30(zName); - /* All mutexes are required for schema access. Make sure we hold them. */ - assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); - for(i=OMIT_TEMPDB; i<db->nDb; i++){ - int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ - if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; - assert( sqlite3SchemaMutexHeld(db, j, 0) ); - p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); - if( p ) break; - } - return p; -} - -/* -** Locate the in-memory structure that describes a particular database -** table given the name of that table and (optionally) the name of the -** database containing the table. Return NULL if not found. Also leave an -** error message in pParse->zErrMsg. -** -** The difference between this routine and sqlite3FindTable() is that this -** routine leaves an error message in pParse->zErrMsg where -** sqlite3FindTable() does not. -*/ -SQLITE_PRIVATE Table *sqlite3LocateTable( - Parse *pParse, /* context in which to report errors */ - int isView, /* True if looking for a VIEW rather than a TABLE */ - const char *zName, /* Name of the table we are looking for */ - const char *zDbase /* Name of the database. Might be NULL */ -){ - Table *p; - - /* Read the database schema. If an error occurs, leave an error message - ** and code in pParse and return NULL. */ - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - return 0; - } - - p = sqlite3FindTable(pParse->db, zName, zDbase); - if( p==0 ){ - const char *zMsg = isView ? "no such view" : "no such table"; - if( zDbase ){ - sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); - }else{ - sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); - } - pParse->checkSchema = 1; - } - return p; -} - -/* -** Locate the table identified by *p. -** -** This is a wrapper around sqlite3LocateTable(). The difference between -** sqlite3LocateTable() and this function is that this function restricts -** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be -** non-NULL if it is part of a view or trigger program definition. See -** sqlite3FixSrcList() for details. -*/ -SQLITE_PRIVATE Table *sqlite3LocateTableItem( - Parse *pParse, - int isView, - struct SrcList_item *p -){ - const char *zDb; - assert( p->pSchema==0 || p->zDatabase==0 ); - if( p->pSchema ){ - int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); - zDb = pParse->db->aDb[iDb].zName; - }else{ - zDb = p->zDatabase; - } - return sqlite3LocateTable(pParse, isView, p->zName, zDb); -} - -/* -** Locate the in-memory structure that describes -** a particular index given the name of that index -** and the name of the database that contains the index. -** Return NULL if not found. -** -** If zDatabase is 0, all databases are searched for the -** table and the first matching index is returned. (No checking -** for duplicate index names is done.) The search order is -** TEMP first, then MAIN, then any auxiliary databases added -** using the ATTACH command. -*/ -SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ - Index *p = 0; - int i; - int nName = sqlite3Strlen30(zName); - /* All mutexes are required for schema access. Make sure we hold them. */ - assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); - for(i=OMIT_TEMPDB; i<db->nDb; i++){ - int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ - Schema *pSchema = db->aDb[j].pSchema; - assert( pSchema ); - if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; - assert( sqlite3SchemaMutexHeld(db, j, 0) ); - p = sqlite3HashFind(&pSchema->idxHash, zName, nName); - if( p ) break; - } - return p; -} - -/* -** Reclaim the memory used by an index -*/ -static void freeIndex(sqlite3 *db, Index *p){ -#ifndef SQLITE_OMIT_ANALYZE - sqlite3DeleteIndexSamples(db, p); -#endif - sqlite3DbFree(db, p->zColAff); - sqlite3DbFree(db, p); -} - -/* -** For the index called zIdxName which is found in the database iDb, -** unlike that index from its Table then remove the index from -** the index hash table and free all memory structures associated -** with the index. -*/ -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ - Index *pIndex; - int len; - Hash *pHash; - - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pHash = &db->aDb[iDb].pSchema->idxHash; - len = sqlite3Strlen30(zIdxName); - pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); - if( ALWAYS(pIndex) ){ - if( pIndex->pTable->pIndex==pIndex ){ - pIndex->pTable->pIndex = pIndex->pNext; - }else{ - Index *p; - /* Justification of ALWAYS(); The index must be on the list of - ** indices. */ - p = pIndex->pTable->pIndex; - while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } - if( ALWAYS(p && p->pNext==pIndex) ){ - p->pNext = pIndex->pNext; - } - } - freeIndex(db, pIndex); - } - db->flags |= SQLITE_InternChanges; -} - -/* -** Look through the list of open database files in db->aDb[] and if -** any have been closed, remove them from the list. Reallocate the -** db->aDb[] structure to a smaller size, if possible. -** -** Entry 0 (the "main" database) and entry 1 (the "temp" database) -** are never candidates for being collapsed. -*/ -SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){ - int i, j; - for(i=j=2; i<db->nDb; i++){ - struct Db *pDb = &db->aDb[i]; - if( pDb->pBt==0 ){ - sqlite3DbFree(db, pDb->zName); - pDb->zName = 0; - continue; - } - if( j<i ){ - db->aDb[j] = db->aDb[i]; - } - j++; - } - memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); - db->nDb = j; - if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ - memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); - sqlite3DbFree(db, db->aDb); - db->aDb = db->aDbStatic; - } -} - -/* -** Reset the schema for the database at index iDb. Also reset the -** TEMP schema. -*/ -SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ - Db *pDb; - assert( iDb<db->nDb ); - - /* Case 1: Reset the single schema identified by iDb */ - pDb = &db->aDb[iDb]; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - assert( pDb->pSchema!=0 ); - sqlite3SchemaClear(pDb->pSchema); - - /* If any database other than TEMP is reset, then also reset TEMP - ** since TEMP might be holding triggers that reference tables in the - ** other database. - */ - if( iDb!=1 ){ - pDb = &db->aDb[1]; - assert( pDb->pSchema!=0 ); - sqlite3SchemaClear(pDb->pSchema); - } - return; -} - -/* -** Erase all schema information from all attached databases (including -** "main" and "temp") for a single database connection. -*/ -SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ - int i; - sqlite3BtreeEnterAll(db); - for(i=0; i<db->nDb; i++){ - Db *pDb = &db->aDb[i]; - if( pDb->pSchema ){ - sqlite3SchemaClear(pDb->pSchema); - } - } - db->flags &= ~SQLITE_InternChanges; - sqlite3VtabUnlockList(db); - sqlite3BtreeLeaveAll(db); - sqlite3CollapseDatabaseArray(db); -} - -/* -** This routine is called when a commit occurs. -*/ -SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){ - db->flags &= ~SQLITE_InternChanges; -} - -/* -** Delete memory allocated for the column names of a table or view (the -** Table.aCol[] array). -*/ -static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ - int i; - Column *pCol; - assert( pTable!=0 ); - if( (pCol = pTable->aCol)!=0 ){ - for(i=0; i<pTable->nCol; i++, pCol++){ - sqlite3DbFree(db, pCol->zName); - sqlite3ExprDelete(db, pCol->pDflt); - sqlite3DbFree(db, pCol->zDflt); - sqlite3DbFree(db, pCol->zType); - sqlite3DbFree(db, pCol->zColl); - } - sqlite3DbFree(db, pTable->aCol); - } -} - -/* -** Remove the memory data structures associated with the given -** Table. No changes are made to disk by this routine. -** -** This routine just deletes the data structure. It does not unlink -** the table data structure from the hash table. But it does destroy -** memory structures of the indices and foreign keys associated with -** the table. -** -** The db parameter is optional. It is needed if the Table object -** contains lookaside memory. (Table objects in the schema do not use -** lookaside memory, but some ephemeral Table objects do.) Or the -** db parameter can be used with db->pnBytesFreed to measure the memory -** used by the Table object. -*/ -SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ - Index *pIndex, *pNext; - TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ - - assert( !pTable || pTable->nRef>0 ); - - /* Do not delete the table until the reference count reaches zero. */ - if( !pTable ) return; - if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; - - /* Record the number of outstanding lookaside allocations in schema Tables - ** prior to doing any free() operations. Since schema Tables do not use - ** lookaside, this number should not change. */ - TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? - db->lookaside.nOut : 0 ); - - /* Delete all indices associated with this table. */ - for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ - pNext = pIndex->pNext; - assert( pIndex->pSchema==pTable->pSchema ); - if( !db || db->pnBytesFreed==0 ){ - char *zName = pIndex->zName; - TESTONLY ( Index *pOld = ) sqlite3HashInsert( - &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 - ); - assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); - assert( pOld==pIndex || pOld==0 ); - } - freeIndex(db, pIndex); - } - - /* Delete any foreign keys attached to this table. */ - sqlite3FkDelete(db, pTable); - - /* Delete the Table structure itself. - */ - sqliteDeleteColumnNames(db, pTable); - sqlite3DbFree(db, pTable->zName); - sqlite3DbFree(db, pTable->zColAff); - sqlite3SelectDelete(db, pTable->pSelect); -#ifndef SQLITE_OMIT_CHECK - sqlite3ExprListDelete(db, pTable->pCheck); -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - sqlite3VtabClear(db, pTable); -#endif - sqlite3DbFree(db, pTable); - - /* Verify that no lookaside memory was used by schema tables */ - assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); -} - -/* -** Unlink the given table from the hash tables and the delete the -** table structure with all its indices and foreign keys. -*/ -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ - Table *p; - Db *pDb; - - assert( db!=0 ); - assert( iDb>=0 && iDb<db->nDb ); - assert( zTabName ); - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ - pDb = &db->aDb[iDb]; - p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, - sqlite3Strlen30(zTabName),0); - sqlite3DeleteTable(db, p); - db->flags |= SQLITE_InternChanges; -} - -/* -** Given a token, return a string that consists of the text of that -** token. Space to hold the returned string -** is obtained from sqliteMalloc() and must be freed by the calling -** function. -** -** Any quotation marks (ex: "name", 'name', [name], or `name`) that -** surround the body of the token are removed. -** -** Tokens are often just pointers into the original SQL text and so -** are not \000 terminated and are not persistent. The returned string -** is \000 terminated and is persistent. -*/ -SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ - char *zName; - if( pName ){ - zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); - sqlite3Dequote(zName); - }else{ - zName = 0; - } - return zName; -} - -/* -** Open the sqlite_master table stored in database number iDb for -** writing. The table is opened using cursor 0. -*/ -SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){ - Vdbe *v = sqlite3GetVdbe(p); - sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); - sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); - sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ - if( p->nTab==0 ){ - p->nTab = 1; - } -} - -/* -** Parameter zName points to a nul-terminated buffer containing the name -** of a database ("main", "temp" or the name of an attached db). This -** function returns the index of the named database in db->aDb[], or -** -1 if the named db cannot be found. -*/ -SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){ - int i = -1; /* Database number */ - if( zName ){ - Db *pDb; - int n = sqlite3Strlen30(zName); - for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ - if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && - 0==sqlite3StrICmp(pDb->zName, zName) ){ - break; - } - } - } - return i; -} - -/* -** The token *pName contains the name of a database (either "main" or -** "temp" or the name of an attached db). This routine returns the -** index of the named database in db->aDb[], or -1 if the named db -** does not exist. -*/ -SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){ - int i; /* Database number */ - char *zName; /* Name we are searching for */ - zName = sqlite3NameFromToken(db, pName); - i = sqlite3FindDbName(db, zName); - sqlite3DbFree(db, zName); - return i; -} - -/* The table or view or trigger name is passed to this routine via tokens -** pName1 and pName2. If the table name was fully qualified, for example: -** -** CREATE TABLE xxx.yyy (...); -** -** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if -** the table name is not fully qualified, i.e.: -** -** CREATE TABLE yyy(...); -** -** Then pName1 is set to "yyy" and pName2 is "". -** -** This routine sets the *ppUnqual pointer to point at the token (pName1 or -** pName2) that stores the unqualified table name. The index of the -** database "xxx" is returned. -*/ -SQLITE_PRIVATE int sqlite3TwoPartName( - Parse *pParse, /* Parsing and code generating context */ - Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ - Token *pName2, /* The "yyy" in the name "xxx.yyy" */ - Token **pUnqual /* Write the unqualified object name here */ -){ - int iDb; /* Database holding the object */ - sqlite3 *db = pParse->db; - - if( ALWAYS(pName2!=0) && pName2->n>0 ){ - if( db->init.busy ) { - sqlite3ErrorMsg(pParse, "corrupt database"); - pParse->nErr++; - return -1; - } - *pUnqual = pName2; - iDb = sqlite3FindDb(db, pName1); - if( iDb<0 ){ - sqlite3ErrorMsg(pParse, "unknown database %T", pName1); - pParse->nErr++; - return -1; - } - }else{ - assert( db->init.iDb==0 || db->init.busy ); - iDb = db->init.iDb; - *pUnqual = pName1; - } - return iDb; -} - -/* -** This routine is used to check if the UTF-8 string zName is a legal -** unqualified name for a new schema object (table, index, view or -** trigger). All names are legal except those that begin with the string -** "sqlite_" (in upper, lower or mixed case). This portion of the namespace -** is reserved for internal use. -*/ -SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){ - if( !pParse->db->init.busy && pParse->nested==0 - && (pParse->db->flags & SQLITE_WriteSchema)==0 - && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ - sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); - return SQLITE_ERROR; - } - return SQLITE_OK; -} - -/* -** Begin constructing a new table representation in memory. This is -** the first of several action routines that get called in response -** to a CREATE TABLE statement. In particular, this routine is called -** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp -** flag is true if the table should be stored in the auxiliary database -** file instead of in the main database file. This is normally the case -** when the "TEMP" or "TEMPORARY" keyword occurs in between -** CREATE and TABLE. -** -** The new table record is initialized and put in pParse->pNewTable. -** As more of the CREATE TABLE statement is parsed, additional action -** routines will be called to add more information to this record. -** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine -** is called to complete the construction of the new table record. -*/ -SQLITE_PRIVATE void sqlite3StartTable( - Parse *pParse, /* Parser context */ - Token *pName1, /* First part of the name of the table or view */ - Token *pName2, /* Second part of the name of the table or view */ - int isTemp, /* True if this is a TEMP table */ - int isView, /* True if this is a VIEW */ - int isVirtual, /* True if this is a VIRTUAL table */ - int noErr /* Do nothing if table already exists */ -){ - Table *pTable; - char *zName = 0; /* The name of the new table */ - sqlite3 *db = pParse->db; - Vdbe *v; - int iDb; /* Database number to create the table in */ - Token *pName; /* Unqualified name of the table to create */ - - /* The table or view name to create is passed to this routine via tokens - ** pName1 and pName2. If the table name was fully qualified, for example: - ** - ** CREATE TABLE xxx.yyy (...); - ** - ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if - ** the table name is not fully qualified, i.e.: - ** - ** CREATE TABLE yyy(...); - ** - ** Then pName1 is set to "yyy" and pName2 is "". - ** - ** The call below sets the pName pointer to point at the token (pName1 or - ** pName2) that stores the unqualified table name. The variable iDb is - ** set to the index of the database that the table or view is to be - ** created in. - */ - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); - if( iDb<0 ) return; - if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ - /* If creating a temp table, the name may not be qualified. Unless - ** the database name is "temp" anyway. */ - sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); - return; - } - if( !OMIT_TEMPDB && isTemp ) iDb = 1; - - pParse->sNameToken = *pName; - zName = sqlite3NameFromToken(db, pName); - if( zName==0 ) return; - if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ - goto begin_table_error; - } - if( db->init.iDb==1 ) isTemp = 1; -#ifndef SQLITE_OMIT_AUTHORIZATION - assert( (isTemp & 1)==isTemp ); - { - int code; - char *zDb = db->aDb[iDb].zName; - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ - goto begin_table_error; - } - if( isView ){ - if( !OMIT_TEMPDB && isTemp ){ - code = SQLITE_CREATE_TEMP_VIEW; - }else{ - code = SQLITE_CREATE_VIEW; - } - }else{ - if( !OMIT_TEMPDB && isTemp ){ - code = SQLITE_CREATE_TEMP_TABLE; - }else{ - code = SQLITE_CREATE_TABLE; - } - } - if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ - goto begin_table_error; - } - } -#endif - - /* Make sure the new table name does not collide with an existing - ** index or table name in the same database. Issue an error message if - ** it does. The exception is if the statement being parsed was passed - ** to an sqlite3_declare_vtab() call. In that case only the column names - ** and types will be used, so there is no need to test for namespace - ** collisions. - */ - if( !IN_DECLARE_VTAB ){ - char *zDb = db->aDb[iDb].zName; - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - goto begin_table_error; - } - pTable = sqlite3FindTable(db, zName, zDb); - if( pTable ){ - if( !noErr ){ - sqlite3ErrorMsg(pParse, "table %T already exists", pName); - }else{ - assert( !db->init.busy ); - sqlite3CodeVerifySchema(pParse, iDb); - } - goto begin_table_error; - } - if( sqlite3FindIndex(db, zName, zDb)!=0 ){ - sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); - goto begin_table_error; - } - } - - pTable = sqlite3DbMallocZero(db, sizeof(Table)); - if( pTable==0 ){ - db->mallocFailed = 1; - pParse->rc = SQLITE_NOMEM; - pParse->nErr++; - goto begin_table_error; - } - pTable->zName = zName; - pTable->iPKey = -1; - pTable->pSchema = db->aDb[iDb].pSchema; - pTable->nRef = 1; - pTable->nRowEst = 1000000; - assert( pParse->pNewTable==0 ); - pParse->pNewTable = pTable; - - /* If this is the magic sqlite_sequence table used by autoincrement, - ** then record a pointer to this table in the main database structure - ** so that INSERT can find the table easily. - */ -#ifndef SQLITE_OMIT_AUTOINCREMENT - if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pTable->pSchema->pSeqTab = pTable; - } -#endif - - /* Begin generating the code that will insert the table record into - ** the SQLITE_MASTER table. Note in particular that we must go ahead - ** and allocate the record number for the table entry now. Before any - ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause - ** indices to be created and the table record must come before the - ** indices. Hence, the record number for the table must be allocated - ** now. - */ - if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ - int j1; - int fileFormat; - int reg1, reg2, reg3; - sqlite3BeginWriteOperation(pParse, 0, iDb); - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( isVirtual ){ - sqlite3VdbeAddOp0(v, OP_VBegin); - } -#endif - - /* If the file format and encoding in the database have not been set, - ** set them now. - */ - reg1 = pParse->regRowid = ++pParse->nMem; - reg2 = pParse->regRoot = ++pParse->nMem; - reg3 = ++pParse->nMem; - sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); - sqlite3VdbeUsesBtree(v, iDb); - j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); - fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? - 1 : SQLITE_MAX_FILE_FORMAT; - sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); - sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); - sqlite3VdbeJumpHere(v, j1); - - /* This just creates a place-holder record in the sqlite_master table. - ** The record created does not contain anything yet. It will be replaced - ** by the real entry in code generated at sqlite3EndTable(). - ** - ** The rowid for the new entry is left in register pParse->regRowid. - ** The root page number of the new table is left in reg pParse->regRoot. - ** The rowid and root page number values are needed by the code that - ** sqlite3EndTable will generate. - */ -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) - if( isView || isVirtual ){ - sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); - }else -#endif - { - sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); - } - sqlite3OpenMasterTable(pParse, iDb); - sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); - sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); - sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - sqlite3VdbeAddOp0(v, OP_Close); - } - - /* Normal (non-error) return. */ - return; - - /* If an error occurs, we jump here */ -begin_table_error: - sqlite3DbFree(db, zName); - return; -} - -/* -** This macro is used to compare two strings in a case-insensitive manner. -** It is slightly faster than calling sqlite3StrICmp() directly, but -** produces larger code. -** -** WARNING: This macro is not compatible with the strcmp() family. It -** returns true if the two strings are equal, otherwise false. -*/ -#define STRICMP(x, y) (\ -sqlite3UpperToLower[*(unsigned char *)(x)]== \ -sqlite3UpperToLower[*(unsigned char *)(y)] \ -&& sqlite3StrICmp((x)+1,(y)+1)==0 ) - -/* -** Add a new column to the table currently being constructed. -** -** The parser calls this routine once for each column declaration -** in a CREATE TABLE statement. sqlite3StartTable() gets called -** first to get things going. Then this routine is called for each -** column. -*/ -SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){ - Table *p; - int i; - char *z; - Column *pCol; - sqlite3 *db = pParse->db; - if( (p = pParse->pNewTable)==0 ) return; -#if SQLITE_MAX_COLUMN - if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ - sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); - return; - } -#endif - z = sqlite3NameFromToken(db, pName); - if( z==0 ) return; - for(i=0; i<p->nCol; i++){ - if( STRICMP(z, p->aCol[i].zName) ){ - sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); - sqlite3DbFree(db, z); - return; - } - } - if( (p->nCol & 0x7)==0 ){ - Column *aNew; - aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); - if( aNew==0 ){ - sqlite3DbFree(db, z); - return; - } - p->aCol = aNew; - } - pCol = &p->aCol[p->nCol]; - memset(pCol, 0, sizeof(p->aCol[0])); - pCol->zName = z; - - /* If there is no type specified, columns have the default affinity - ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will - ** be called next to set pCol->affinity correctly. - */ - pCol->affinity = SQLITE_AFF_NONE; - p->nCol++; -} - -/* -** This routine is called by the parser while in the middle of -** parsing a CREATE TABLE statement. A "NOT NULL" constraint has -** been seen on a column. This routine sets the notNull flag on -** the column currently under construction. -*/ -SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){ - Table *p; - p = pParse->pNewTable; - if( p==0 || NEVER(p->nCol<1) ) return; - p->aCol[p->nCol-1].notNull = (u8)onError; -} - -/* -** Scan the column type name zType (length nType) and return the -** associated affinity type. -** -** This routine does a case-independent search of zType for the -** substrings in the following table. If one of the substrings is -** found, the corresponding affinity is returned. If zType contains -** more than one of the substrings, entries toward the top of -** the table take priority. For example, if zType is 'BLOBINT', -** SQLITE_AFF_INTEGER is returned. -** -** Substring | Affinity -** -------------------------------- -** 'INT' | SQLITE_AFF_INTEGER -** 'CHAR' | SQLITE_AFF_TEXT -** 'CLOB' | SQLITE_AFF_TEXT -** 'TEXT' | SQLITE_AFF_TEXT -** 'BLOB' | SQLITE_AFF_NONE -** 'REAL' | SQLITE_AFF_REAL -** 'FLOA' | SQLITE_AFF_REAL -** 'DOUB' | SQLITE_AFF_REAL -** -** If none of the substrings in the above table are found, -** SQLITE_AFF_NUMERIC is returned. -*/ -SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn){ - u32 h = 0; - char aff = SQLITE_AFF_NUMERIC; - - if( zIn ) while( zIn[0] ){ - h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; - zIn++; - if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ - aff = SQLITE_AFF_TEXT; - }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ - aff = SQLITE_AFF_TEXT; - }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ - aff = SQLITE_AFF_TEXT; - }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ - && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ - aff = SQLITE_AFF_NONE; -#ifndef SQLITE_OMIT_FLOATING_POINT - }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ - && aff==SQLITE_AFF_NUMERIC ){ - aff = SQLITE_AFF_REAL; - }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ - && aff==SQLITE_AFF_NUMERIC ){ - aff = SQLITE_AFF_REAL; - }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ - && aff==SQLITE_AFF_NUMERIC ){ - aff = SQLITE_AFF_REAL; -#endif - }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ - aff = SQLITE_AFF_INTEGER; - break; - } - } - - return aff; -} - -/* -** This routine is called by the parser while in the middle of -** parsing a CREATE TABLE statement. The pFirst token is the first -** token in the sequence of tokens that describe the type of the -** column currently under construction. pLast is the last token -** in the sequence. Use this information to construct a string -** that contains the typename of the column and store that string -** in zType. -*/ -SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){ - Table *p; - Column *pCol; - - p = pParse->pNewTable; - if( p==0 || NEVER(p->nCol<1) ) return; - pCol = &p->aCol[p->nCol-1]; - assert( pCol->zType==0 ); - pCol->zType = sqlite3NameFromToken(pParse->db, pType); - pCol->affinity = sqlite3AffinityType(pCol->zType); -} - -/* -** The expression is the default value for the most recently added column -** of the table currently under construction. -** -** Default value expressions must be constant. Raise an exception if this -** is not the case. -** -** This routine is called by the parser while in the middle of -** parsing a CREATE TABLE statement. -*/ -SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ - Table *p; - Column *pCol; - sqlite3 *db = pParse->db; - p = pParse->pNewTable; - if( p!=0 ){ - pCol = &(p->aCol[p->nCol-1]); - if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ - sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", - pCol->zName); - }else{ - /* A copy of pExpr is used instead of the original, as pExpr contains - ** tokens that point to volatile memory. The 'span' of the expression - ** is required by pragma table_info. - */ - sqlite3ExprDelete(db, pCol->pDflt); - pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); - sqlite3DbFree(db, pCol->zDflt); - pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, - (int)(pSpan->zEnd - pSpan->zStart)); - } - } - sqlite3ExprDelete(db, pSpan->pExpr); -} - -/* -** Designate the PRIMARY KEY for the table. pList is a list of names -** of columns that form the primary key. If pList is NULL, then the -** most recently added column of the table is the primary key. -** -** A table can have at most one primary key. If the table already has -** a primary key (and this is the second primary key) then create an -** error. -** -** If the PRIMARY KEY is on a single column whose datatype is INTEGER, -** then we will try to use that column as the rowid. Set the Table.iPKey -** field of the table under construction to be the index of the -** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is -** no INTEGER PRIMARY KEY. -** -** If the key is not an INTEGER PRIMARY KEY, then create a unique -** index for the key. No index is created for INTEGER PRIMARY KEYs. -*/ -SQLITE_PRIVATE void sqlite3AddPrimaryKey( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* List of field names to be indexed */ - int onError, /* What to do with a uniqueness conflict */ - int autoInc, /* True if the AUTOINCREMENT keyword is present */ - int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ -){ - Table *pTab = pParse->pNewTable; - char *zType = 0; - int iCol = -1, i; - if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; - if( pTab->tabFlags & TF_HasPrimaryKey ){ - sqlite3ErrorMsg(pParse, - "table \"%s\" has more than one primary key", pTab->zName); - goto primary_key_exit; - } - pTab->tabFlags |= TF_HasPrimaryKey; - if( pList==0 ){ - iCol = pTab->nCol - 1; - pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; - }else{ - for(i=0; i<pList->nExpr; i++){ - for(iCol=0; iCol<pTab->nCol; iCol++){ - if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ - break; - } - } - if( iCol<pTab->nCol ){ - pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; - } - } - if( pList->nExpr>1 ) iCol = -1; - } - if( iCol>=0 && iCol<pTab->nCol ){ - zType = pTab->aCol[iCol].zType; - } - if( zType && sqlite3StrICmp(zType, "INTEGER")==0 - && sortOrder==SQLITE_SO_ASC ){ - pTab->iPKey = iCol; - pTab->keyConf = (u8)onError; - assert( autoInc==0 || autoInc==1 ); - pTab->tabFlags |= autoInc*TF_Autoincrement; - }else if( autoInc ){ -#ifndef SQLITE_OMIT_AUTOINCREMENT - sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " - "INTEGER PRIMARY KEY"); -#endif - }else{ - Index *p; - p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); - if( p ){ - p->autoIndex = 2; - } - pList = 0; - } - -primary_key_exit: - sqlite3ExprListDelete(pParse->db, pList); - return; -} - -/* -** Add a new CHECK constraint to the table currently under construction. -*/ -SQLITE_PRIVATE void sqlite3AddCheckConstraint( - Parse *pParse, /* Parsing context */ - Expr *pCheckExpr /* The check expression */ -){ -#ifndef SQLITE_OMIT_CHECK - Table *pTab = pParse->pNewTable; - if( pTab && !IN_DECLARE_VTAB ){ - pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); - if( pParse->constraintName.n ){ - sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); - } - }else -#endif - { - sqlite3ExprDelete(pParse->db, pCheckExpr); - } -} - -/* -** Set the collation function of the most recently parsed table column -** to the CollSeq given. -*/ -SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){ - Table *p; - int i; - char *zColl; /* Dequoted name of collation sequence */ - sqlite3 *db; - - if( (p = pParse->pNewTable)==0 ) return; - i = p->nCol-1; - db = pParse->db; - zColl = sqlite3NameFromToken(db, pToken); - if( !zColl ) return; - - if( sqlite3LocateCollSeq(pParse, zColl) ){ - Index *pIdx; - p->aCol[i].zColl = zColl; - - /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", - ** then an index may have been created on this column before the - ** collation type was added. Correct this if it is the case. - */ - for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ - assert( pIdx->nColumn==1 ); - if( pIdx->aiColumn[0]==i ){ - pIdx->azColl[0] = p->aCol[i].zColl; - } - } - }else{ - sqlite3DbFree(db, zColl); - } -} - -/* -** This function returns the collation sequence for database native text -** encoding identified by the string zName, length nName. -** -** If the requested collation sequence is not available, or not available -** in the database native encoding, the collation factory is invoked to -** request it. If the collation factory does not supply such a sequence, -** and the sequence is available in another text encoding, then that is -** returned instead. -** -** If no versions of the requested collations sequence are available, or -** another error occurs, NULL is returned and an error message written into -** pParse. -** -** This routine is a wrapper around sqlite3FindCollSeq(). This routine -** invokes the collation factory if the named collation cannot be found -** and generates an error message. -** -** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() -*/ -SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ - sqlite3 *db = pParse->db; - u8 enc = ENC(db); - u8 initbusy = db->init.busy; - CollSeq *pColl; - - pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); - if( !initbusy && (!pColl || !pColl->xCmp) ){ - pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); - } - - return pColl; -} - - -/* -** Generate code that will increment the schema cookie. -** -** The schema cookie is used to determine when the schema for the -** database changes. After each schema change, the cookie value -** changes. When a process first reads the schema it records the -** cookie. Thereafter, whenever it goes to access the database, -** it checks the cookie to make sure the schema has not changed -** since it was last read. -** -** This plan is not completely bullet-proof. It is possible for -** the schema to change multiple times and for the cookie to be -** set back to prior value. But schema changes are infrequent -** and the probability of hitting the same cookie value is only -** 1 chance in 2^32. So we're safe enough. -*/ -SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ - int r1 = sqlite3GetTempReg(pParse); - sqlite3 *db = pParse->db; - Vdbe *v = pParse->pVdbe; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); - sqlite3ReleaseTempReg(pParse, r1); -} - -/* -** Measure the number of characters needed to output the given -** identifier. The number returned includes any quotes used -** but does not include the null terminator. -** -** The estimate is conservative. It might be larger that what is -** really needed. -*/ -static int identLength(const char *z){ - int n; - for(n=0; *z; n++, z++){ - if( *z=='"' ){ n++; } - } - return n + 2; -} - -/* -** The first parameter is a pointer to an output buffer. The second -** parameter is a pointer to an integer that contains the offset at -** which to write into the output buffer. This function copies the -** nul-terminated string pointed to by the third parameter, zSignedIdent, -** to the specified offset in the buffer and updates *pIdx to refer -** to the first byte after the last byte written before returning. -** -** If the string zSignedIdent consists entirely of alpha-numeric -** characters, does not begin with a digit and is not an SQL keyword, -** then it is copied to the output buffer exactly as it is. Otherwise, -** it is quoted using double-quotes. -*/ -static void identPut(char *z, int *pIdx, char *zSignedIdent){ - unsigned char *zIdent = (unsigned char*)zSignedIdent; - int i, j, needQuote; - i = *pIdx; - - for(j=0; zIdent[j]; j++){ - if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; - } - needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; - if( !needQuote ){ - needQuote = zIdent[j]; - } - - if( needQuote ) z[i++] = '"'; - for(j=0; zIdent[j]; j++){ - z[i++] = zIdent[j]; - if( zIdent[j]=='"' ) z[i++] = '"'; - } - if( needQuote ) z[i++] = '"'; - z[i] = 0; - *pIdx = i; -} - -/* -** Generate a CREATE TABLE statement appropriate for the given -** table. Memory to hold the text of the statement is obtained -** from sqliteMalloc() and must be freed by the calling function. -*/ -static char *createTableStmt(sqlite3 *db, Table *p){ - int i, k, n; - char *zStmt; - char *zSep, *zSep2, *zEnd; - Column *pCol; - n = 0; - for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ - n += identLength(pCol->zName) + 5; - } - n += identLength(p->zName); - if( n<50 ){ - zSep = ""; - zSep2 = ","; - zEnd = ")"; - }else{ - zSep = "\n "; - zSep2 = ",\n "; - zEnd = "\n)"; - } - n += 35 + 6*p->nCol; - zStmt = sqlite3DbMallocRaw(0, n); - if( zStmt==0 ){ - db->mallocFailed = 1; - return 0; - } - sqlite3_snprintf(n, zStmt, "CREATE TABLE "); - k = sqlite3Strlen30(zStmt); - identPut(zStmt, &k, p->zName); - zStmt[k++] = '('; - for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ - static const char * const azType[] = { - /* SQLITE_AFF_TEXT */ " TEXT", - /* SQLITE_AFF_NONE */ "", - /* SQLITE_AFF_NUMERIC */ " NUM", - /* SQLITE_AFF_INTEGER */ " INT", - /* SQLITE_AFF_REAL */ " REAL" - }; - int len; - const char *zType; - - sqlite3_snprintf(n-k, &zStmt[k], zSep); - k += sqlite3Strlen30(&zStmt[k]); - zSep = zSep2; - identPut(zStmt, &k, pCol->zName); - assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); - assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); - testcase( pCol->affinity==SQLITE_AFF_TEXT ); - testcase( pCol->affinity==SQLITE_AFF_NONE ); - testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); - testcase( pCol->affinity==SQLITE_AFF_INTEGER ); - testcase( pCol->affinity==SQLITE_AFF_REAL ); - - zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; - len = sqlite3Strlen30(zType); - assert( pCol->affinity==SQLITE_AFF_NONE - || pCol->affinity==sqlite3AffinityType(zType) ); - memcpy(&zStmt[k], zType, len); - k += len; - assert( k<=n ); - } - sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); - return zStmt; -} - -/* -** This routine is called to report the final ")" that terminates -** a CREATE TABLE statement. -** -** The table structure that other action routines have been building -** is added to the internal hash tables, assuming no errors have -** occurred. -** -** An entry for the table is made in the master table on disk, unless -** this is a temporary table or db->init.busy==1. When db->init.busy==1 -** it means we are reading the sqlite_master table because we just -** connected to the database or because the sqlite_master table has -** recently changed, so the entry for this table already exists in -** the sqlite_master table. We do not want to create it again. -** -** If the pSelect argument is not NULL, it means that this routine -** was called to create a table generated from a -** "CREATE TABLE ... AS SELECT ..." statement. The column names of -** the new table will match the result set of the SELECT. -*/ -SQLITE_PRIVATE void sqlite3EndTable( - Parse *pParse, /* Parse context */ - Token *pCons, /* The ',' token after the last column defn. */ - Token *pEnd, /* The final ')' token in the CREATE TABLE */ - Select *pSelect /* Select from a "CREATE ... AS SELECT" */ -){ - Table *p; - sqlite3 *db = pParse->db; - int iDb; - - if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ - return; - } - p = pParse->pNewTable; - if( p==0 ) return; - - assert( !db->init.busy || !pSelect ); - - iDb = sqlite3SchemaToIndex(db, p->pSchema); - -#ifndef SQLITE_OMIT_CHECK - /* Resolve names in all CHECK constraint expressions. - */ - if( p->pCheck ){ - SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ - NameContext sNC; /* Name context for pParse->pNewTable */ - ExprList *pList; /* List of all CHECK constraints */ - int i; /* Loop counter */ - - memset(&sNC, 0, sizeof(sNC)); - memset(&sSrc, 0, sizeof(sSrc)); - sSrc.nSrc = 1; - sSrc.a[0].zName = p->zName; - sSrc.a[0].pTab = p; - sSrc.a[0].iCursor = -1; - sNC.pParse = pParse; - sNC.pSrcList = &sSrc; - sNC.ncFlags = NC_IsCheck; - pList = p->pCheck; - for(i=0; i<pList->nExpr; i++){ - if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ - return; - } - } - } -#endif /* !defined(SQLITE_OMIT_CHECK) */ - - /* If the db->init.busy is 1 it means we are reading the SQL off the - ** "sqlite_master" or "sqlite_temp_master" table on the disk. - ** So do not write to the disk again. Extract the root page number - ** for the table from the db->init.newTnum field. (The page number - ** should have been put there by the sqliteOpenCb routine.) - */ - if( db->init.busy ){ - p->tnum = db->init.newTnum; - } - - /* If not initializing, then create a record for the new table - ** in the SQLITE_MASTER table of the database. - ** - ** If this is a TEMPORARY table, write the entry into the auxiliary - ** file instead of into the main database file. - */ - if( !db->init.busy ){ - int n; - Vdbe *v; - char *zType; /* "view" or "table" */ - char *zType2; /* "VIEW" or "TABLE" */ - char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ - - v = sqlite3GetVdbe(pParse); - if( NEVER(v==0) ) return; - - sqlite3VdbeAddOp1(v, OP_Close, 0); - - /* - ** Initialize zType for the new view or table. - */ - if( p->pSelect==0 ){ - /* A regular table */ - zType = "table"; - zType2 = "TABLE"; -#ifndef SQLITE_OMIT_VIEW - }else{ - /* A view */ - zType = "view"; - zType2 = "VIEW"; -#endif - } - - /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT - ** statement to populate the new table. The root-page number for the - ** new table is in register pParse->regRoot. - ** - ** Once the SELECT has been coded by sqlite3Select(), it is in a - ** suitable state to query for the column names and types to be used - ** by the new table. - ** - ** A shared-cache write-lock is not required to write to the new table, - ** as a schema-lock must have already been obtained to create it. Since - ** a schema-lock excludes all other database users, the write-lock would - ** be redundant. - */ - if( pSelect ){ - SelectDest dest; - Table *pSelTab; - - assert(pParse->nTab==1); - sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); - sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); - pParse->nTab = 2; - sqlite3SelectDestInit(&dest, SRT_Table, 1); - sqlite3Select(pParse, pSelect, &dest); - sqlite3VdbeAddOp1(v, OP_Close, 1); - if( pParse->nErr==0 ){ - pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); - if( pSelTab==0 ) return; - assert( p->aCol==0 ); - p->nCol = pSelTab->nCol; - p->aCol = pSelTab->aCol; - pSelTab->nCol = 0; - pSelTab->aCol = 0; - sqlite3DeleteTable(db, pSelTab); - } - } - - /* Compute the complete text of the CREATE statement */ - if( pSelect ){ - zStmt = createTableStmt(db, p); - }else{ - n = (int)(pEnd->z - pParse->sNameToken.z) + 1; - zStmt = sqlite3MPrintf(db, - "CREATE %s %.*s", zType2, n, pParse->sNameToken.z - ); - } - - /* A slot for the record has already been allocated in the - ** SQLITE_MASTER table. We just need to update that slot with all - ** the information we've collected. - */ - sqlite3NestedParse(pParse, - "UPDATE %Q.%s " - "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " - "WHERE rowid=#%d", - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), - zType, - p->zName, - p->zName, - pParse->regRoot, - zStmt, - pParse->regRowid - ); - sqlite3DbFree(db, zStmt); - sqlite3ChangeCookie(pParse, iDb); - -#ifndef SQLITE_OMIT_AUTOINCREMENT - /* Check to see if we need to create an sqlite_sequence table for - ** keeping track of autoincrement keys. - */ - if( p->tabFlags & TF_Autoincrement ){ - Db *pDb = &db->aDb[iDb]; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - if( pDb->pSchema->pSeqTab==0 ){ - sqlite3NestedParse(pParse, - "CREATE TABLE %Q.sqlite_sequence(name,seq)", - pDb->zName - ); - } - } -#endif - - /* Reparse everything to update our internal data structures */ - sqlite3VdbeAddParseSchemaOp(v, iDb, - sqlite3MPrintf(db, "tbl_name='%q'", p->zName)); - } - - - /* Add the table to the in-memory representation of the database. - */ - if( db->init.busy ){ - Table *pOld; - Schema *pSchema = p->pSchema; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, - sqlite3Strlen30(p->zName),p); - if( pOld ){ - assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ - db->mallocFailed = 1; - return; - } - pParse->pNewTable = 0; - db->flags |= SQLITE_InternChanges; - -#ifndef SQLITE_OMIT_ALTERTABLE - if( !p->pSelect ){ - const char *zName = (const char *)pParse->sNameToken.z; - int nName; - assert( !pSelect && pCons && pEnd ); - if( pCons->z==0 ){ - pCons = pEnd; - } - nName = (int)((const char *)pCons->z - zName); - p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); - } -#endif - } -} - -#ifndef SQLITE_OMIT_VIEW -/* -** The parser calls this routine in order to create a new VIEW -*/ -SQLITE_PRIVATE void sqlite3CreateView( - Parse *pParse, /* The parsing context */ - Token *pBegin, /* The CREATE token that begins the statement */ - Token *pName1, /* The token that holds the name of the view */ - Token *pName2, /* The token that holds the name of the view */ - Select *pSelect, /* A SELECT statement that will become the new view */ - int isTemp, /* TRUE for a TEMPORARY view */ - int noErr /* Suppress error messages if VIEW already exists */ -){ - Table *p; - int n; - const char *z; - Token sEnd; - DbFixer sFix; - Token *pName = 0; - int iDb; - sqlite3 *db = pParse->db; - - if( pParse->nVar>0 ){ - sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); - sqlite3SelectDelete(db, pSelect); - return; - } - sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); - p = pParse->pNewTable; - if( p==0 || pParse->nErr ){ - sqlite3SelectDelete(db, pSelect); - return; - } - sqlite3TwoPartName(pParse, pName1, pName2, &pName); - iDb = sqlite3SchemaToIndex(db, p->pSchema); - if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) - && sqlite3FixSelect(&sFix, pSelect) - ){ - sqlite3SelectDelete(db, pSelect); - return; - } - - /* Make a copy of the entire SELECT statement that defines the view. - ** This will force all the Expr.token.z values to be dynamically - ** allocated rather than point to the input string - which means that - ** they will persist after the current sqlite3_exec() call returns. - */ - p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); - sqlite3SelectDelete(db, pSelect); - if( db->mallocFailed ){ - return; - } - if( !db->init.busy ){ - sqlite3ViewGetColumnNames(pParse, p); - } - - /* Locate the end of the CREATE VIEW statement. Make sEnd point to - ** the end. - */ - sEnd = pParse->sLastToken; - if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ - sEnd.z += sEnd.n; - } - sEnd.n = 0; - n = (int)(sEnd.z - pBegin->z); - z = pBegin->z; - while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } - sEnd.z = &z[n-1]; - sEnd.n = 1; - - /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ - sqlite3EndTable(pParse, 0, &sEnd, 0); - return; -} -#endif /* SQLITE_OMIT_VIEW */ - -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) -/* -** The Table structure pTable is really a VIEW. Fill in the names of -** the columns of the view in the pTable structure. Return the number -** of errors. If an error is seen leave an error message in pParse->zErrMsg. -*/ -SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ - Table *pSelTab; /* A fake table from which we get the result set */ - Select *pSel; /* Copy of the SELECT that implements the view */ - int nErr = 0; /* Number of errors encountered */ - int n; /* Temporarily holds the number of cursors assigned */ - sqlite3 *db = pParse->db; /* Database connection for malloc errors */ - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); - - assert( pTable ); - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( sqlite3VtabCallConnect(pParse, pTable) ){ - return SQLITE_ERROR; - } - if( IsVirtual(pTable) ) return 0; -#endif - -#ifndef SQLITE_OMIT_VIEW - /* A positive nCol means the columns names for this view are - ** already known. - */ - if( pTable->nCol>0 ) return 0; - - /* A negative nCol is a special marker meaning that we are currently - ** trying to compute the column names. If we enter this routine with - ** a negative nCol, it means two or more views form a loop, like this: - ** - ** CREATE VIEW one AS SELECT * FROM two; - ** CREATE VIEW two AS SELECT * FROM one; - ** - ** Actually, the error above is now caught prior to reaching this point. - ** But the following test is still important as it does come up - ** in the following: - ** - ** CREATE TABLE main.ex1(a); - ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; - ** SELECT * FROM temp.ex1; - */ - if( pTable->nCol<0 ){ - sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); - return 1; - } - assert( pTable->nCol>=0 ); - - /* If we get this far, it means we need to compute the table names. - ** Note that the call to sqlite3ResultSetOfSelect() will expand any - ** "*" elements in the results set of the view and will assign cursors - ** to the elements of the FROM clause. But we do not want these changes - ** to be permanent. So the computation is done on a copy of the SELECT - ** statement that defines the view. - */ - assert( pTable->pSelect ); - pSel = sqlite3SelectDup(db, pTable->pSelect, 0); - if( pSel ){ - u8 enableLookaside = db->lookaside.bEnabled; - n = pParse->nTab; - sqlite3SrcListAssignCursors(pParse, pSel->pSrc); - pTable->nCol = -1; - db->lookaside.bEnabled = 0; -#ifndef SQLITE_OMIT_AUTHORIZATION - xAuth = db->xAuth; - db->xAuth = 0; - pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); - db->xAuth = xAuth; -#else - pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); -#endif - db->lookaside.bEnabled = enableLookaside; - pParse->nTab = n; - if( pSelTab ){ - assert( pTable->aCol==0 ); - pTable->nCol = pSelTab->nCol; - pTable->aCol = pSelTab->aCol; - pSelTab->nCol = 0; - pSelTab->aCol = 0; - sqlite3DeleteTable(db, pSelTab); - assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); - pTable->pSchema->flags |= DB_UnresetViews; - }else{ - pTable->nCol = 0; - nErr++; - } - sqlite3SelectDelete(db, pSel); - } else { - nErr++; - } -#endif /* SQLITE_OMIT_VIEW */ - return nErr; -} -#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ - -#ifndef SQLITE_OMIT_VIEW -/* -** Clear the column names from every VIEW in database idx. -*/ -static void sqliteViewResetAll(sqlite3 *db, int idx){ - HashElem *i; - assert( sqlite3SchemaMutexHeld(db, idx, 0) ); - if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; - for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ - Table *pTab = sqliteHashData(i); - if( pTab->pSelect ){ - sqliteDeleteColumnNames(db, pTab); - pTab->aCol = 0; - pTab->nCol = 0; - } - } - DbClearProperty(db, idx, DB_UnresetViews); -} -#else -# define sqliteViewResetAll(A,B) -#endif /* SQLITE_OMIT_VIEW */ - -/* -** This function is called by the VDBE to adjust the internal schema -** used by SQLite when the btree layer moves a table root page. The -** root-page of a table or index in database iDb has changed from iFrom -** to iTo. -** -** Ticket #1728: The symbol table might still contain information -** on tables and/or indices that are the process of being deleted. -** If you are unlucky, one of those deleted indices or tables might -** have the same rootpage number as the real table or index that is -** being moved. So we cannot stop searching after the first match -** because the first match might be for one of the deleted indices -** or tables and not the table/index that is actually being moved. -** We must continue looping until all tables and indices with -** rootpage==iFrom have been converted to have a rootpage of iTo -** in order to be certain that we got the right one. -*/ -#ifndef SQLITE_OMIT_AUTOVACUUM -SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ - HashElem *pElem; - Hash *pHash; - Db *pDb; - - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pDb = &db->aDb[iDb]; - pHash = &pDb->pSchema->tblHash; - for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ - Table *pTab = sqliteHashData(pElem); - if( pTab->tnum==iFrom ){ - pTab->tnum = iTo; - } - } - pHash = &pDb->pSchema->idxHash; - for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ - Index *pIdx = sqliteHashData(pElem); - if( pIdx->tnum==iFrom ){ - pIdx->tnum = iTo; - } - } -} -#endif - -/* -** Write code to erase the table with root-page iTable from database iDb. -** Also write code to modify the sqlite_master table and internal schema -** if a root-page of another table is moved by the btree-layer whilst -** erasing iTable (this can happen with an auto-vacuum database). -*/ -static void destroyRootPage(Parse *pParse, int iTable, int iDb){ - Vdbe *v = sqlite3GetVdbe(pParse); - int r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); - sqlite3MayAbort(pParse); -#ifndef SQLITE_OMIT_AUTOVACUUM - /* OP_Destroy stores an in integer r1. If this integer - ** is non-zero, then it is the root page number of a table moved to - ** location iTable. The following code modifies the sqlite_master table to - ** reflect this. - ** - ** The "#NNN" in the SQL is a special constant that means whatever value - ** is in register NNN. See grammar rules associated with the TK_REGISTER - ** token for additional information. - */ - sqlite3NestedParse(pParse, - "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", - pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); -#endif - sqlite3ReleaseTempReg(pParse, r1); -} - -/* -** Write VDBE code to erase table pTab and all associated indices on disk. -** Code to update the sqlite_master tables and internal schema definitions -** in case a root-page belonging to another table is moved by the btree layer -** is also added (this can happen with an auto-vacuum database). -*/ -static void destroyTable(Parse *pParse, Table *pTab){ -#ifdef SQLITE_OMIT_AUTOVACUUM - Index *pIdx; - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - destroyRootPage(pParse, pTab->tnum, iDb); - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - destroyRootPage(pParse, pIdx->tnum, iDb); - } -#else - /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM - ** is not defined), then it is important to call OP_Destroy on the - ** table and index root-pages in order, starting with the numerically - ** largest root-page number. This guarantees that none of the root-pages - ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the - ** following were coded: - ** - ** OP_Destroy 4 0 - ** ... - ** OP_Destroy 5 0 - ** - ** and root page 5 happened to be the largest root-page number in the - ** database, then root page 5 would be moved to page 4 by the - ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit - ** a free-list page. - */ - int iTab = pTab->tnum; - int iDestroyed = 0; - - while( 1 ){ - Index *pIdx; - int iLargest = 0; - - if( iDestroyed==0 || iTab<iDestroyed ){ - iLargest = iTab; - } - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int iIdx = pIdx->tnum; - assert( pIdx->pSchema==pTab->pSchema ); - if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ - iLargest = iIdx; - } - } - if( iLargest==0 ){ - return; - }else{ - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - assert( iDb>=0 && iDb<pParse->db->nDb ); - destroyRootPage(pParse, iLargest, iDb); - iDestroyed = iLargest; - } - } -#endif -} - -/* -** Remove entries from the sqlite_statN tables (for N in (1,2,3)) -** after a DROP INDEX or DROP TABLE command. -*/ -static void sqlite3ClearStatTables( - Parse *pParse, /* The parsing context */ - int iDb, /* The database number */ - const char *zType, /* "idx" or "tbl" */ - const char *zName /* Name of index or table */ -){ - int i; - const char *zDbName = pParse->db->aDb[iDb].zName; - for(i=1; i<=3; i++){ - char zTab[24]; - sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); - if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ - sqlite3NestedParse(pParse, - "DELETE FROM %Q.%s WHERE %s=%Q", - zDbName, zTab, zType, zName - ); - } - } -} - -/* -** Generate code to drop a table. -*/ -SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ - Vdbe *v; - sqlite3 *db = pParse->db; - Trigger *pTrigger; - Db *pDb = &db->aDb[iDb]; - - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); - sqlite3BeginWriteOperation(pParse, 1, iDb); - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(pTab) ){ - sqlite3VdbeAddOp0(v, OP_VBegin); - } -#endif - - /* Drop all triggers associated with the table being dropped. Code - ** is generated to remove entries from sqlite_master and/or - ** sqlite_temp_master if required. - */ - pTrigger = sqlite3TriggerList(pParse, pTab); - while( pTrigger ){ - assert( pTrigger->pSchema==pTab->pSchema || - pTrigger->pSchema==db->aDb[1].pSchema ); - sqlite3DropTriggerPtr(pParse, pTrigger); - pTrigger = pTrigger->pNext; - } - -#ifndef SQLITE_OMIT_AUTOINCREMENT - /* Remove any entries of the sqlite_sequence table associated with - ** the table being dropped. This is done before the table is dropped - ** at the btree level, in case the sqlite_sequence table needs to - ** move as a result of the drop (can happen in auto-vacuum mode). - */ - if( pTab->tabFlags & TF_Autoincrement ){ - sqlite3NestedParse(pParse, - "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", - pDb->zName, pTab->zName - ); - } -#endif - - /* Drop all SQLITE_MASTER table and index entries that refer to the - ** table. The program name loops through the master table and deletes - ** every row that refers to a table of the same name as the one being - ** dropped. Triggers are handled separately because a trigger can be - ** created in the temp database that refers to a table in another - ** database. - */ - sqlite3NestedParse(pParse, - "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", - pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); - if( !isView && !IsVirtual(pTab) ){ - destroyTable(pParse, pTab); - } - - /* Remove the table entry from SQLite's internal schema and modify - ** the schema cookie. - */ - if( IsVirtual(pTab) ){ - sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); - } - sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); - sqlite3ChangeCookie(pParse, iDb); - sqliteViewResetAll(db, iDb); -} - -/* -** This routine is called to do the work of a DROP TABLE statement. -** pName is the name of the table to be dropped. -*/ -SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ - Table *pTab; - Vdbe *v; - sqlite3 *db = pParse->db; - int iDb; - - if( db->mallocFailed ){ - goto exit_drop_table; - } - assert( pParse->nErr==0 ); - assert( pName->nSrc==1 ); - if( noErr ) db->suppressErr++; - pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); - if( noErr ) db->suppressErr--; - - if( pTab==0 ){ - if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); - goto exit_drop_table; - } - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - assert( iDb>=0 && iDb<db->nDb ); - - /* If pTab is a virtual table, call ViewGetColumnNames() to ensure - ** it is initialized. - */ - if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ - goto exit_drop_table; - } -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int code; - const char *zTab = SCHEMA_TABLE(iDb); - const char *zDb = db->aDb[iDb].zName; - const char *zArg2 = 0; - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ - goto exit_drop_table; - } - if( isView ){ - if( !OMIT_TEMPDB && iDb==1 ){ - code = SQLITE_DROP_TEMP_VIEW; - }else{ - code = SQLITE_DROP_VIEW; - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - }else if( IsVirtual(pTab) ){ - code = SQLITE_DROP_VTABLE; - zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; -#endif - }else{ - if( !OMIT_TEMPDB && iDb==1 ){ - code = SQLITE_DROP_TEMP_TABLE; - }else{ - code = SQLITE_DROP_TABLE; - } - } - if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ - goto exit_drop_table; - } - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ - goto exit_drop_table; - } - } -#endif - if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 - && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ - sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); - goto exit_drop_table; - } - -#ifndef SQLITE_OMIT_VIEW - /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used - ** on a table. - */ - if( isView && pTab->pSelect==0 ){ - sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); - goto exit_drop_table; - } - if( !isView && pTab->pSelect ){ - sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); - goto exit_drop_table; - } -#endif - - /* Generate code to remove the table from the master table - ** on disk. - */ - v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3BeginWriteOperation(pParse, 1, iDb); - sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); - sqlite3FkDropTable(pParse, pName, pTab); - sqlite3CodeDropTable(pParse, pTab, iDb, isView); - } - -exit_drop_table: - sqlite3SrcListDelete(db, pName); -} - -/* -** This routine is called to create a new foreign key on the table -** currently under construction. pFromCol determines which columns -** in the current table point to the foreign key. If pFromCol==0 then -** connect the key to the last column inserted. pTo is the name of -** the table referred to. pToCol is a list of tables in the other -** pTo table that the foreign key points to. flags contains all -** information about the conflict resolution algorithms specified -** in the ON DELETE, ON UPDATE and ON INSERT clauses. -** -** An FKey structure is created and added to the table currently -** under construction in the pParse->pNewTable field. -** -** The foreign key is set for IMMEDIATE processing. A subsequent call -** to sqlite3DeferForeignKey() might change this to DEFERRED. -*/ -SQLITE_PRIVATE void sqlite3CreateForeignKey( - Parse *pParse, /* Parsing context */ - ExprList *pFromCol, /* Columns in this table that point to other table */ - Token *pTo, /* Name of the other table */ - ExprList *pToCol, /* Columns in the other table */ - int flags /* Conflict resolution algorithms. */ -){ - sqlite3 *db = pParse->db; -#ifndef SQLITE_OMIT_FOREIGN_KEY - FKey *pFKey = 0; - FKey *pNextTo; - Table *p = pParse->pNewTable; - int nByte; - int i; - int nCol; - char *z; - - assert( pTo!=0 ); - if( p==0 || IN_DECLARE_VTAB ) goto fk_end; - if( pFromCol==0 ){ - int iCol = p->nCol-1; - if( NEVER(iCol<0) ) goto fk_end; - if( pToCol && pToCol->nExpr!=1 ){ - sqlite3ErrorMsg(pParse, "foreign key on %s" - " should reference only one column of table %T", - p->aCol[iCol].zName, pTo); - goto fk_end; - } - nCol = 1; - }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ - sqlite3ErrorMsg(pParse, - "number of columns in foreign key does not match the number of " - "columns in the referenced table"); - goto fk_end; - }else{ - nCol = pFromCol->nExpr; - } - nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; - if( pToCol ){ - for(i=0; i<pToCol->nExpr; i++){ - nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; - } - } - pFKey = sqlite3DbMallocZero(db, nByte ); - if( pFKey==0 ){ - goto fk_end; - } - pFKey->pFrom = p; - pFKey->pNextFrom = p->pFKey; - z = (char*)&pFKey->aCol[nCol]; - pFKey->zTo = z; - memcpy(z, pTo->z, pTo->n); - z[pTo->n] = 0; - sqlite3Dequote(z); - z += pTo->n+1; - pFKey->nCol = nCol; - if( pFromCol==0 ){ - pFKey->aCol[0].iFrom = p->nCol-1; - }else{ - for(i=0; i<nCol; i++){ - int j; - for(j=0; j<p->nCol; j++){ - if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ - pFKey->aCol[i].iFrom = j; - break; - } - } - if( j>=p->nCol ){ - sqlite3ErrorMsg(pParse, - "unknown column \"%s\" in foreign key definition", - pFromCol->a[i].zName); - goto fk_end; - } - } - } - if( pToCol ){ - for(i=0; i<nCol; i++){ - int n = sqlite3Strlen30(pToCol->a[i].zName); - pFKey->aCol[i].zCol = z; - memcpy(z, pToCol->a[i].zName, n); - z[n] = 0; - z += n+1; - } - } - pFKey->isDeferred = 0; - pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ - pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ - - assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); - pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, - pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey - ); - if( pNextTo==pFKey ){ - db->mallocFailed = 1; - goto fk_end; - } - if( pNextTo ){ - assert( pNextTo->pPrevTo==0 ); - pFKey->pNextTo = pNextTo; - pNextTo->pPrevTo = pFKey; - } - - /* Link the foreign key to the table as the last step. - */ - p->pFKey = pFKey; - pFKey = 0; - -fk_end: - sqlite3DbFree(db, pFKey); -#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ - sqlite3ExprListDelete(db, pFromCol); - sqlite3ExprListDelete(db, pToCol); -} - -/* -** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED -** clause is seen as part of a foreign key definition. The isDeferred -** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. -** The behavior of the most recently created foreign key is adjusted -** accordingly. -*/ -SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ -#ifndef SQLITE_OMIT_FOREIGN_KEY - Table *pTab; - FKey *pFKey; - if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; - assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ - pFKey->isDeferred = (u8)isDeferred; -#endif -} - -/* -** Generate code that will erase and refill index *pIdx. This is -** used to initialize a newly created index or to recompute the -** content of an index in response to a REINDEX command. -** -** if memRootPage is not negative, it means that the index is newly -** created. The register specified by memRootPage contains the -** root page number of the index. If memRootPage is negative, then -** the index already exists and must be cleared before being refilled and -** the root page number of the index is taken from pIndex->tnum. -*/ -static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ - Table *pTab = pIndex->pTable; /* The table that is indexed */ - int iTab = pParse->nTab++; /* Btree cursor used for pTab */ - int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ - int iSorter; /* Cursor opened by OpenSorter (if in use) */ - int addr1; /* Address of top of loop */ - int addr2; /* Address to jump to for next iteration */ - int tnum; /* Root page of index */ - Vdbe *v; /* Generate code into this virtual machine */ - KeyInfo *pKey; /* KeyInfo for index */ - int regRecord; /* Register holding assemblied index record */ - sqlite3 *db = pParse->db; /* The database connection */ - int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); - -#ifndef SQLITE_OMIT_AUTHORIZATION - if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, - db->aDb[iDb].zName ) ){ - return; - } -#endif - - /* Require a write-lock on the table to perform this operation */ - sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); - - v = sqlite3GetVdbe(pParse); - if( v==0 ) return; - if( memRootPage>=0 ){ - tnum = memRootPage; - }else{ - tnum = pIndex->tnum; - sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); - } - pKey = sqlite3IndexKeyinfo(pParse, pIndex); - sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, - (char *)pKey, P4_KEYINFO_HANDOFF); - sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); - - /* Open the sorter cursor if we are to use one. */ - iSorter = pParse->nTab++; - sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); - - /* Open the table. Loop through all rows of the table, inserting index - ** records into the sorter. */ - sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); - addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); - regRecord = sqlite3GetTempReg(pParse); - - sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); - sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); - sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); - sqlite3VdbeJumpHere(v, addr1); - addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); - if( pIndex->onError!=OE_None ){ - int j2 = sqlite3VdbeCurrentAddr(v) + 3; - sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); - addr2 = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord); - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE, - OE_Abort, "indexed columns are not unique", P4_STATIC - ); - }else{ - addr2 = sqlite3VdbeCurrentAddr(v); - } - sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); - sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); - sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); - sqlite3ReleaseTempReg(pParse, regRecord); - sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); - sqlite3VdbeJumpHere(v, addr1); - - sqlite3VdbeAddOp1(v, OP_Close, iTab); - sqlite3VdbeAddOp1(v, OP_Close, iIdx); - sqlite3VdbeAddOp1(v, OP_Close, iSorter); -} - -/* -** Create a new index for an SQL table. pName1.pName2 is the name of the index -** and pTblList is the name of the table that is to be indexed. Both will -** be NULL for a primary key or an index that is created to satisfy a -** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable -** as the table to be indexed. pParse->pNewTable is a table that is -** currently being constructed by a CREATE TABLE statement. -** -** pList is a list of columns to be indexed. pList will be NULL if this -** is a primary key or unique-constraint on the most recent column added -** to the table currently under construction. -** -** If the index is created successfully, return a pointer to the new Index -** structure. This is used by sqlite3AddPrimaryKey() to mark the index -** as the tables primary key (Index.autoIndex==2). -*/ -SQLITE_PRIVATE Index *sqlite3CreateIndex( - Parse *pParse, /* All information about this parse */ - Token *pName1, /* First part of index name. May be NULL */ - Token *pName2, /* Second part of index name. May be NULL */ - SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ - ExprList *pList, /* A list of columns to be indexed */ - int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ - Token *pStart, /* The CREATE token that begins this statement */ - Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ - int sortOrder, /* Sort order of primary key when pList==NULL */ - int ifNotExist /* Omit error if index already exists */ -){ - Index *pRet = 0; /* Pointer to return */ - Table *pTab = 0; /* Table to be indexed */ - Index *pIndex = 0; /* The index to be created */ - char *zName = 0; /* Name of the index */ - int nName; /* Number of characters in zName */ - int i, j; - Token nullId; /* Fake token for an empty ID list */ - DbFixer sFix; /* For assigning database names to pTable */ - int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ - sqlite3 *db = pParse->db; - Db *pDb; /* The specific table containing the indexed database */ - int iDb; /* Index of the database that is being written */ - Token *pName = 0; /* Unqualified name of the index to create */ - struct ExprList_item *pListItem; /* For looping over pList */ - int nCol; - int nExtra = 0; - char *zExtra; - - assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ - assert( pParse->nErr==0 ); /* Never called with prior errors */ - if( db->mallocFailed || IN_DECLARE_VTAB ){ - goto exit_create_index; - } - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - goto exit_create_index; - } - - /* - ** Find the table that is to be indexed. Return early if not found. - */ - if( pTblName!=0 ){ - - /* Use the two-part index name to determine the database - ** to search for the table. 'Fix' the table name to this db - ** before looking up the table. - */ - assert( pName1 && pName2 ); - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); - if( iDb<0 ) goto exit_create_index; - assert( pName && pName->z ); - -#ifndef SQLITE_OMIT_TEMPDB - /* If the index name was unqualified, check if the table - ** is a temp table. If so, set the database to 1. Do not do this - ** if initialising a database schema. - */ - if( !db->init.busy ){ - pTab = sqlite3SrcListLookup(pParse, pTblName); - if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ - iDb = 1; - } - } -#endif - - if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && - sqlite3FixSrcList(&sFix, pTblName) - ){ - /* Because the parser constructs pTblName from a single identifier, - ** sqlite3FixSrcList can never fail. */ - assert(0); - } - pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); - assert( db->mallocFailed==0 || pTab==0 ); - if( pTab==0 ) goto exit_create_index; - assert( db->aDb[iDb].pSchema==pTab->pSchema ); - }else{ - assert( pName==0 ); - assert( pStart==0 ); - pTab = pParse->pNewTable; - if( !pTab ) goto exit_create_index; - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - } - pDb = &db->aDb[iDb]; - - assert( pTab!=0 ); - assert( pParse->nErr==0 ); - if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 - && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ - sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); - goto exit_create_index; - } -#ifndef SQLITE_OMIT_VIEW - if( pTab->pSelect ){ - sqlite3ErrorMsg(pParse, "views may not be indexed"); - goto exit_create_index; - } -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(pTab) ){ - sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); - goto exit_create_index; - } -#endif - - /* - ** Find the name of the index. Make sure there is not already another - ** index or table with the same name. - ** - ** Exception: If we are reading the names of permanent indices from the - ** sqlite_master table (because some other process changed the schema) and - ** one of the index names collides with the name of a temporary table or - ** index, then we will continue to process this index. - ** - ** If pName==0 it means that we are - ** dealing with a primary key or UNIQUE constraint. We have to invent our - ** own name. - */ - if( pName ){ - zName = sqlite3NameFromToken(db, pName); - if( zName==0 ) goto exit_create_index; - assert( pName->z!=0 ); - if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ - goto exit_create_index; - } - if( !db->init.busy ){ - if( sqlite3FindTable(db, zName, 0)!=0 ){ - sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); - goto exit_create_index; - } - } - if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ - if( !ifNotExist ){ - sqlite3ErrorMsg(pParse, "index %s already exists", zName); - }else{ - assert( !db->init.busy ); - sqlite3CodeVerifySchema(pParse, iDb); - } - goto exit_create_index; - } - }else{ - int n; - Index *pLoop; - for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} - zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); - if( zName==0 ){ - goto exit_create_index; - } - } - - /* Check for authorization to create an index. - */ -#ifndef SQLITE_OMIT_AUTHORIZATION - { - const char *zDb = pDb->zName; - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ - goto exit_create_index; - } - i = SQLITE_CREATE_INDEX; - if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; - if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ - goto exit_create_index; - } - } -#endif - - /* If pList==0, it means this routine was called to make a primary - ** key out of the last column added to the table under construction. - ** So create a fake list to simulate this. - */ - if( pList==0 ){ - nullId.z = pTab->aCol[pTab->nCol-1].zName; - nullId.n = sqlite3Strlen30((char*)nullId.z); - pList = sqlite3ExprListAppend(pParse, 0, 0); - if( pList==0 ) goto exit_create_index; - sqlite3ExprListSetName(pParse, pList, &nullId, 0); - pList->a[0].sortOrder = (u8)sortOrder; - } - - /* Figure out how many bytes of space are required to store explicitly - ** specified collation sequence names. - */ - for(i=0; i<pList->nExpr; i++){ - Expr *pExpr = pList->a[i].pExpr; - if( pExpr ){ - CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); - if( pColl ){ - nExtra += (1 + sqlite3Strlen30(pColl->zName)); - } - } - } - - /* - ** Allocate the index structure. - */ - nName = sqlite3Strlen30(zName); - nCol = pList->nExpr; - pIndex = sqlite3DbMallocZero(db, - ROUND8(sizeof(Index)) + /* Index structure */ - ROUND8(sizeof(tRowcnt)*(nCol+1)) + /* Index.aiRowEst */ - sizeof(char *)*nCol + /* Index.azColl */ - sizeof(int)*nCol + /* Index.aiColumn */ - sizeof(u8)*nCol + /* Index.aSortOrder */ - nName + 1 + /* Index.zName */ - nExtra /* Collation sequence names */ - ); - if( db->mallocFailed ){ - goto exit_create_index; - } - zExtra = (char*)pIndex; - pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))]; - pIndex->azColl = (char**) - ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1)); - assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) ); - assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); - pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); - pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); - pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); - zExtra = (char *)(&pIndex->zName[nName+1]); - memcpy(pIndex->zName, zName, nName+1); - pIndex->pTable = pTab; - pIndex->nColumn = pList->nExpr; - pIndex->onError = (u8)onError; - pIndex->autoIndex = (u8)(pName==0); - pIndex->pSchema = db->aDb[iDb].pSchema; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - - /* Check to see if we should honor DESC requests on index columns - */ - if( pDb->pSchema->file_format>=4 ){ - sortOrderMask = -1; /* Honor DESC */ - }else{ - sortOrderMask = 0; /* Ignore DESC */ - } - - /* Scan the names of the columns of the table to be indexed and - ** load the column indices into the Index structure. Report an error - ** if any column is not found. - ** - ** TODO: Add a test to make sure that the same column is not named - ** more than once within the same index. Only the first instance of - ** the column will ever be used by the optimizer. Note that using the - ** same column more than once cannot be an error because that would - ** break backwards compatibility - it needs to be a warning. - */ - for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ - const char *zColName = pListItem->zName; - Column *pTabCol; - int requestedSortOrder; - CollSeq *pColl; /* Collating sequence */ - char *zColl; /* Collation sequence name */ - - for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ - if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; - } - if( j>=pTab->nCol ){ - sqlite3ErrorMsg(pParse, "table %s has no column named %s", - pTab->zName, zColName); - pParse->checkSchema = 1; - goto exit_create_index; - } - pIndex->aiColumn[i] = j; - if( pListItem->pExpr - && (pColl = sqlite3ExprCollSeq(pParse, pListItem->pExpr))!=0 - ){ - int nColl; - zColl = pColl->zName; - nColl = sqlite3Strlen30(zColl) + 1; - assert( nExtra>=nColl ); - memcpy(zExtra, zColl, nColl); - zColl = zExtra; - zExtra += nColl; - nExtra -= nColl; - }else{ - zColl = pTab->aCol[j].zColl; - if( !zColl ){ - zColl = "BINARY"; - } - } - if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ - goto exit_create_index; - } - pIndex->azColl[i] = zColl; - requestedSortOrder = pListItem->sortOrder & sortOrderMask; - pIndex->aSortOrder[i] = (u8)requestedSortOrder; - } - sqlite3DefaultRowEst(pIndex); - - if( pTab==pParse->pNewTable ){ - /* This routine has been called to create an automatic index as a - ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or - ** a PRIMARY KEY or UNIQUE clause following the column definitions. - ** i.e. one of: - ** - ** CREATE TABLE t(x PRIMARY KEY, y); - ** CREATE TABLE t(x, y, UNIQUE(x, y)); - ** - ** Either way, check to see if the table already has such an index. If - ** so, don't bother creating this one. This only applies to - ** automatically created indices. Users can do as they wish with - ** explicit indices. - ** - ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent - ** (and thus suppressing the second one) even if they have different - ** sort orders. - ** - ** If there are different collating sequences or if the columns of - ** the constraint occur in different orders, then the constraints are - ** considered distinct and both result in separate indices. - */ - Index *pIdx; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int k; - assert( pIdx->onError!=OE_None ); - assert( pIdx->autoIndex ); - assert( pIndex->onError!=OE_None ); - - if( pIdx->nColumn!=pIndex->nColumn ) continue; - for(k=0; k<pIdx->nColumn; k++){ - const char *z1; - const char *z2; - if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; - z1 = pIdx->azColl[k]; - z2 = pIndex->azColl[k]; - if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; - } - if( k==pIdx->nColumn ){ - if( pIdx->onError!=pIndex->onError ){ - /* This constraint creates the same index as a previous - ** constraint specified somewhere in the CREATE TABLE statement. - ** However the ON CONFLICT clauses are different. If both this - ** constraint and the previous equivalent constraint have explicit - ** ON CONFLICT clauses this is an error. Otherwise, use the - ** explicitly specified behavior for the index. - */ - if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ - sqlite3ErrorMsg(pParse, - "conflicting ON CONFLICT clauses specified", 0); - } - if( pIdx->onError==OE_Default ){ - pIdx->onError = pIndex->onError; - } - } - goto exit_create_index; - } - } - } - - /* Link the new Index structure to its table and to the other - ** in-memory database structures. - */ - if( db->init.busy ){ - Index *p; - assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); - p = sqlite3HashInsert(&pIndex->pSchema->idxHash, - pIndex->zName, sqlite3Strlen30(pIndex->zName), - pIndex); - if( p ){ - assert( p==pIndex ); /* Malloc must have failed */ - db->mallocFailed = 1; - goto exit_create_index; - } - db->flags |= SQLITE_InternChanges; - if( pTblName!=0 ){ - pIndex->tnum = db->init.newTnum; - } - } - - /* If the db->init.busy is 0 then create the index on disk. This - ** involves writing the index into the master table and filling in the - ** index with the current table contents. - ** - ** The db->init.busy is 0 when the user first enters a CREATE INDEX - ** command. db->init.busy is 1 when a database is opened and - ** CREATE INDEX statements are read out of the master table. In - ** the latter case the index already exists on disk, which is why - ** we don't want to recreate it. - ** - ** If pTblName==0 it means this index is generated as a primary key - ** or UNIQUE constraint of a CREATE TABLE statement. Since the table - ** has just been created, it contains no data and the index initialization - ** step can be skipped. - */ - else{ /* if( db->init.busy==0 ) */ - Vdbe *v; - char *zStmt; - int iMem = ++pParse->nMem; - - v = sqlite3GetVdbe(pParse); - if( v==0 ) goto exit_create_index; - - - /* Create the rootpage for the index - */ - sqlite3BeginWriteOperation(pParse, 1, iDb); - sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); - - /* Gather the complete text of the CREATE INDEX statement into - ** the zStmt variable - */ - if( pStart ){ - assert( pEnd!=0 ); - /* A named index with an explicit CREATE INDEX statement */ - zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", - onError==OE_None ? "" : " UNIQUE", - (int)(pEnd->z - pName->z) + 1, - pName->z); - }else{ - /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ - /* zStmt = sqlite3MPrintf(""); */ - zStmt = 0; - } - - /* Add an entry in sqlite_master for this index - */ - sqlite3NestedParse(pParse, - "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), - pIndex->zName, - pTab->zName, - iMem, - zStmt - ); - sqlite3DbFree(db, zStmt); - - /* Fill the index with data and reparse the schema. Code an OP_Expire - ** to invalidate all pre-compiled statements. - */ - if( pTblName ){ - sqlite3RefillIndex(pParse, pIndex, iMem); - sqlite3ChangeCookie(pParse, iDb); - sqlite3VdbeAddParseSchemaOp(v, iDb, - sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); - sqlite3VdbeAddOp1(v, OP_Expire, 0); - } - } - - /* When adding an index to the list of indices for a table, make - ** sure all indices labeled OE_Replace come after all those labeled - ** OE_Ignore. This is necessary for the correct constraint check - ** processing (in sqlite3GenerateConstraintChecks()) as part of - ** UPDATE and INSERT statements. - */ - if( db->init.busy || pTblName==0 ){ - if( onError!=OE_Replace || pTab->pIndex==0 - || pTab->pIndex->onError==OE_Replace){ - pIndex->pNext = pTab->pIndex; - pTab->pIndex = pIndex; - }else{ - Index *pOther = pTab->pIndex; - while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ - pOther = pOther->pNext; - } - pIndex->pNext = pOther->pNext; - pOther->pNext = pIndex; - } - pRet = pIndex; - pIndex = 0; - } - - /* Clean up before exiting */ -exit_create_index: - if( pIndex ){ - sqlite3DbFree(db, pIndex->zColAff); - sqlite3DbFree(db, pIndex); - } - sqlite3ExprListDelete(db, pList); - sqlite3SrcListDelete(db, pTblName); - sqlite3DbFree(db, zName); - return pRet; -} - -/* -** Fill the Index.aiRowEst[] array with default information - information -** to be used when we have not run the ANALYZE command. -** -** aiRowEst[0] is suppose to contain the number of elements in the index. -** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the -** number of rows in the table that match any particular value of the -** first column of the index. aiRowEst[2] is an estimate of the number -** of rows that match any particular combiniation of the first 2 columns -** of the index. And so forth. It must always be the case that -* -** aiRowEst[N]<=aiRowEst[N-1] -** aiRowEst[N]>=1 -** -** Apart from that, we have little to go on besides intuition as to -** how aiRowEst[] should be initialized. The numbers generated here -** are based on typical values found in actual indices. -*/ -SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){ - tRowcnt *a = pIdx->aiRowEst; - int i; - tRowcnt n; - assert( a!=0 ); - a[0] = pIdx->pTable->nRowEst; - if( a[0]<10 ) a[0] = 10; - n = 10; - for(i=1; i<=pIdx->nColumn; i++){ - a[i] = n; - if( n>5 ) n--; - } - if( pIdx->onError!=OE_None ){ - a[pIdx->nColumn] = 1; - } -} - -/* -** This routine will drop an existing named index. This routine -** implements the DROP INDEX statement. -*/ -SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ - Index *pIndex; - Vdbe *v; - sqlite3 *db = pParse->db; - int iDb; - - assert( pParse->nErr==0 ); /* Never called with prior errors */ - if( db->mallocFailed ){ - goto exit_drop_index; - } - assert( pName->nSrc==1 ); - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - goto exit_drop_index; - } - pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); - if( pIndex==0 ){ - if( !ifExists ){ - sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); - }else{ - sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); - } - pParse->checkSchema = 1; - goto exit_drop_index; - } - if( pIndex->autoIndex ){ - sqlite3ErrorMsg(pParse, "index associated with UNIQUE " - "or PRIMARY KEY constraint cannot be dropped", 0); - goto exit_drop_index; - } - iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int code = SQLITE_DROP_INDEX; - Table *pTab = pIndex->pTable; - const char *zDb = db->aDb[iDb].zName; - const char *zTab = SCHEMA_TABLE(iDb); - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ - goto exit_drop_index; - } - if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; - if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ - goto exit_drop_index; - } - } -#endif - - /* Generate code to remove the index and from the master table */ - v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3BeginWriteOperation(pParse, 1, iDb); - sqlite3NestedParse(pParse, - "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName - ); - sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); - sqlite3ChangeCookie(pParse, iDb); - destroyRootPage(pParse, pIndex->tnum, iDb); - sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); - } - -exit_drop_index: - sqlite3SrcListDelete(db, pName); -} - -/* -** pArray is a pointer to an array of objects. Each object in the -** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() -** to extend the array so that there is space for a new object at the end. -** -** When this function is called, *pnEntry contains the current size of -** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes -** in total). -** -** If the realloc() is successful (i.e. if no OOM condition occurs), the -** space allocated for the new object is zeroed, *pnEntry updated to -** reflect the new size of the array and a pointer to the new allocation -** returned. *pIdx is set to the index of the new array entry in this case. -** -** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains -** unchanged and a copy of pArray returned. -*/ -SQLITE_PRIVATE void *sqlite3ArrayAllocate( - sqlite3 *db, /* Connection to notify of malloc failures */ - void *pArray, /* Array of objects. Might be reallocated */ - int szEntry, /* Size of each object in the array */ - int *pnEntry, /* Number of objects currently in use */ - int *pIdx /* Write the index of a new slot here */ -){ - char *z; - int n = *pnEntry; - if( (n & (n-1))==0 ){ - int sz = (n==0) ? 1 : 2*n; - void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); - if( pNew==0 ){ - *pIdx = -1; - return pArray; - } - pArray = pNew; - } - z = (char*)pArray; - memset(&z[n * szEntry], 0, szEntry); - *pIdx = n; - ++*pnEntry; - return pArray; -} - -/* -** Append a new element to the given IdList. Create a new IdList if -** need be. -** -** A new IdList is returned, or NULL if malloc() fails. -*/ -SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ - int i; - if( pList==0 ){ - pList = sqlite3DbMallocZero(db, sizeof(IdList) ); - if( pList==0 ) return 0; - } - pList->a = sqlite3ArrayAllocate( - db, - pList->a, - sizeof(pList->a[0]), - &pList->nId, - &i - ); - if( i<0 ){ - sqlite3IdListDelete(db, pList); - return 0; - } - pList->a[i].zName = sqlite3NameFromToken(db, pToken); - return pList; -} - -/* -** Delete an IdList. -*/ -SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ - int i; - if( pList==0 ) return; - for(i=0; i<pList->nId; i++){ - sqlite3DbFree(db, pList->a[i].zName); - } - sqlite3DbFree(db, pList->a); - sqlite3DbFree(db, pList); -} - -/* -** Return the index in pList of the identifier named zId. Return -1 -** if not found. -*/ -SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){ - int i; - if( pList==0 ) return -1; - for(i=0; i<pList->nId; i++){ - if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; - } - return -1; -} - -/* -** Expand the space allocated for the given SrcList object by -** creating nExtra new slots beginning at iStart. iStart is zero based. -** New slots are zeroed. -** -** For example, suppose a SrcList initially contains two entries: A,B. -** To append 3 new entries onto the end, do this: -** -** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); -** -** After the call above it would contain: A, B, nil, nil, nil. -** If the iStart argument had been 1 instead of 2, then the result -** would have been: A, nil, nil, nil, B. To prepend the new slots, -** the iStart value would be 0. The result then would -** be: nil, nil, nil, A, B. -** -** If a memory allocation fails the SrcList is unchanged. The -** db->mallocFailed flag will be set to true. -*/ -SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge( - sqlite3 *db, /* Database connection to notify of OOM errors */ - SrcList *pSrc, /* The SrcList to be enlarged */ - int nExtra, /* Number of new slots to add to pSrc->a[] */ - int iStart /* Index in pSrc->a[] of first new slot */ -){ - int i; - - /* Sanity checking on calling parameters */ - assert( iStart>=0 ); - assert( nExtra>=1 ); - assert( pSrc!=0 ); - assert( iStart<=pSrc->nSrc ); - - /* Allocate additional space if needed */ - if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ - SrcList *pNew; - int nAlloc = pSrc->nSrc+nExtra; - int nGot; - pNew = sqlite3DbRealloc(db, pSrc, - sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); - if( pNew==0 ){ - assert( db->mallocFailed ); - return pSrc; - } - pSrc = pNew; - nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; - pSrc->nAlloc = (u16)nGot; - } - - /* Move existing slots that come after the newly inserted slots - ** out of the way */ - for(i=pSrc->nSrc-1; i>=iStart; i--){ - pSrc->a[i+nExtra] = pSrc->a[i]; - } - pSrc->nSrc += (i16)nExtra; - - /* Zero the newly allocated slots */ - memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); - for(i=iStart; i<iStart+nExtra; i++){ - pSrc->a[i].iCursor = -1; - } - - /* Return a pointer to the enlarged SrcList */ - return pSrc; -} - - -/* -** Append a new table name to the given SrcList. Create a new SrcList if -** need be. A new entry is created in the SrcList even if pTable is NULL. -** -** A SrcList is returned, or NULL if there is an OOM error. The returned -** SrcList might be the same as the SrcList that was input or it might be -** a new one. If an OOM error does occurs, then the prior value of pList -** that is input to this routine is automatically freed. -** -** If pDatabase is not null, it means that the table has an optional -** database name prefix. Like this: "database.table". The pDatabase -** points to the table name and the pTable points to the database name. -** The SrcList.a[].zName field is filled with the table name which might -** come from pTable (if pDatabase is NULL) or from pDatabase. -** SrcList.a[].zDatabase is filled with the database name from pTable, -** or with NULL if no database is specified. -** -** In other words, if call like this: -** -** sqlite3SrcListAppend(D,A,B,0); -** -** Then B is a table name and the database name is unspecified. If called -** like this: -** -** sqlite3SrcListAppend(D,A,B,C); -** -** Then C is the table name and B is the database name. If C is defined -** then so is B. In other words, we never have a case where: -** -** sqlite3SrcListAppend(D,A,0,C); -** -** Both pTable and pDatabase are assumed to be quoted. They are dequoted -** before being added to the SrcList. -*/ -SQLITE_PRIVATE SrcList *sqlite3SrcListAppend( - sqlite3 *db, /* Connection to notify of malloc failures */ - SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ - Token *pTable, /* Table to append */ - Token *pDatabase /* Database of the table */ -){ - struct SrcList_item *pItem; - assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ - if( pList==0 ){ - pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); - if( pList==0 ) return 0; - pList->nAlloc = 1; - } - pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); - if( db->mallocFailed ){ - sqlite3SrcListDelete(db, pList); - return 0; - } - pItem = &pList->a[pList->nSrc-1]; - if( pDatabase && pDatabase->z==0 ){ - pDatabase = 0; - } - if( pDatabase ){ - Token *pTemp = pDatabase; - pDatabase = pTable; - pTable = pTemp; - } - pItem->zName = sqlite3NameFromToken(db, pTable); - pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); - return pList; -} - -/* -** Assign VdbeCursor index numbers to all tables in a SrcList -*/ -SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ - int i; - struct SrcList_item *pItem; - assert(pList || pParse->db->mallocFailed ); - if( pList ){ - for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ - if( pItem->iCursor>=0 ) break; - pItem->iCursor = pParse->nTab++; - if( pItem->pSelect ){ - sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); - } - } - } -} - -/* -** Delete an entire SrcList including all its substructure. -*/ -SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ - int i; - struct SrcList_item *pItem; - if( pList==0 ) return; - for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ - sqlite3DbFree(db, pItem->zDatabase); - sqlite3DbFree(db, pItem->zName); - sqlite3DbFree(db, pItem->zAlias); - sqlite3DbFree(db, pItem->zIndex); - sqlite3DeleteTable(db, pItem->pTab); - sqlite3SelectDelete(db, pItem->pSelect); - sqlite3ExprDelete(db, pItem->pOn); - sqlite3IdListDelete(db, pItem->pUsing); - } - sqlite3DbFree(db, pList); -} - -/* -** This routine is called by the parser to add a new term to the -** end of a growing FROM clause. The "p" parameter is the part of -** the FROM clause that has already been constructed. "p" is NULL -** if this is the first term of the FROM clause. pTable and pDatabase -** are the name of the table and database named in the FROM clause term. -** pDatabase is NULL if the database name qualifier is missing - the -** usual case. If the term has a alias, then pAlias points to the -** alias token. If the term is a subquery, then pSubquery is the -** SELECT statement that the subquery encodes. The pTable and -** pDatabase parameters are NULL for subqueries. The pOn and pUsing -** parameters are the content of the ON and USING clauses. -** -** Return a new SrcList which encodes is the FROM with the new -** term added. -*/ -SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm( - Parse *pParse, /* Parsing context */ - SrcList *p, /* The left part of the FROM clause already seen */ - Token *pTable, /* Name of the table to add to the FROM clause */ - Token *pDatabase, /* Name of the database containing pTable */ - Token *pAlias, /* The right-hand side of the AS subexpression */ - Select *pSubquery, /* A subquery used in place of a table name */ - Expr *pOn, /* The ON clause of a join */ - IdList *pUsing /* The USING clause of a join */ -){ - struct SrcList_item *pItem; - sqlite3 *db = pParse->db; - if( !p && (pOn || pUsing) ){ - sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", - (pOn ? "ON" : "USING") - ); - goto append_from_error; - } - p = sqlite3SrcListAppend(db, p, pTable, pDatabase); - if( p==0 || NEVER(p->nSrc==0) ){ - goto append_from_error; - } - pItem = &p->a[p->nSrc-1]; - assert( pAlias!=0 ); - if( pAlias->n ){ - pItem->zAlias = sqlite3NameFromToken(db, pAlias); - } - pItem->pSelect = pSubquery; - pItem->pOn = pOn; - pItem->pUsing = pUsing; - return p; - - append_from_error: - assert( p==0 ); - sqlite3ExprDelete(db, pOn); - sqlite3IdListDelete(db, pUsing); - sqlite3SelectDelete(db, pSubquery); - return 0; -} - -/* -** Add an INDEXED BY or NOT INDEXED clause to the most recently added -** element of the source-list passed as the second argument. -*/ -SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ - assert( pIndexedBy!=0 ); - if( p && ALWAYS(p->nSrc>0) ){ - struct SrcList_item *pItem = &p->a[p->nSrc-1]; - assert( pItem->notIndexed==0 && pItem->zIndex==0 ); - if( pIndexedBy->n==1 && !pIndexedBy->z ){ - /* A "NOT INDEXED" clause was supplied. See parse.y - ** construct "indexed_opt" for details. */ - pItem->notIndexed = 1; - }else{ - pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); - } - } -} - -/* -** When building up a FROM clause in the parser, the join operator -** is initially attached to the left operand. But the code generator -** expects the join operator to be on the right operand. This routine -** Shifts all join operators from left to right for an entire FROM -** clause. -** -** Example: Suppose the join is like this: -** -** A natural cross join B -** -** The operator is "natural cross join". The A and B operands are stored -** in p->a[0] and p->a[1], respectively. The parser initially stores the -** operator with A. This routine shifts that operator over to B. -*/ -SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){ - if( p ){ - int i; - assert( p->a || p->nSrc==0 ); - for(i=p->nSrc-1; i>0; i--){ - p->a[i].jointype = p->a[i-1].jointype; - } - p->a[0].jointype = 0; - } -} - -/* -** Begin a transaction -*/ -SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){ - sqlite3 *db; - Vdbe *v; - int i; - - assert( pParse!=0 ); - db = pParse->db; - assert( db!=0 ); -/* if( db->aDb[0].pBt==0 ) return; */ - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ - return; - } - v = sqlite3GetVdbe(pParse); - if( !v ) return; - if( type!=TK_DEFERRED ){ - for(i=0; i<db->nDb; i++){ - sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); - sqlite3VdbeUsesBtree(v, i); - } - } - sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); -} - -/* -** Commit a transaction -*/ -SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){ - Vdbe *v; - - assert( pParse!=0 ); - assert( pParse->db!=0 ); - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ - return; - } - v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); - } -} - -/* -** Rollback a transaction -*/ -SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){ - Vdbe *v; - - assert( pParse!=0 ); - assert( pParse->db!=0 ); - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ - return; - } - v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); - } -} - -/* -** This function is called by the parser when it parses a command to create, -** release or rollback an SQL savepoint. -*/ -SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ - char *zName = sqlite3NameFromToken(pParse->db, pName); - if( zName ){ - Vdbe *v = sqlite3GetVdbe(pParse); -#ifndef SQLITE_OMIT_AUTHORIZATION - static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; - assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); -#endif - if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ - sqlite3DbFree(pParse->db, zName); - return; - } - sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); - } -} - -/* -** Make sure the TEMP database is open and available for use. Return -** the number of errors. Leave any error messages in the pParse structure. -*/ -SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){ - sqlite3 *db = pParse->db; - if( db->aDb[1].pBt==0 && !pParse->explain ){ - int rc; - Btree *pBt; - static const int flags = - SQLITE_OPEN_READWRITE | - SQLITE_OPEN_CREATE | - SQLITE_OPEN_EXCLUSIVE | - SQLITE_OPEN_DELETEONCLOSE | - SQLITE_OPEN_TEMP_DB; - - rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); - if( rc!=SQLITE_OK ){ - sqlite3ErrorMsg(pParse, "unable to open a temporary database " - "file for storing temporary tables"); - pParse->rc = rc; - return 1; - } - db->aDb[1].pBt = pBt; - assert( db->aDb[1].pSchema ); - if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ - db->mallocFailed = 1; - return 1; - } - } - return 0; -} - -/* -** Generate VDBE code that will verify the schema cookie and start -** a read-transaction for all named database files. -** -** It is important that all schema cookies be verified and all -** read transactions be started before anything else happens in -** the VDBE program. But this routine can be called after much other -** code has been generated. So here is what we do: -** -** The first time this routine is called, we code an OP_Goto that -** will jump to a subroutine at the end of the program. Then we -** record every database that needs its schema verified in the -** pParse->cookieMask field. Later, after all other code has been -** generated, the subroutine that does the cookie verifications and -** starts the transactions will be coded and the OP_Goto P2 value -** will be made to point to that subroutine. The generation of the -** cookie verification subroutine code happens in sqlite3FinishCoding(). -** -** If iDb<0 then code the OP_Goto only - don't set flag to verify the -** schema on any databases. This can be used to position the OP_Goto -** early in the code, before we know if any database tables will be used. -*/ -SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - -#ifndef SQLITE_OMIT_TRIGGER - if( pToplevel!=pParse ){ - /* This branch is taken if a trigger is currently being coded. In this - ** case, set cookieGoto to a non-zero value to show that this function - ** has been called. This is used by the sqlite3ExprCodeConstants() - ** function. */ - pParse->cookieGoto = -1; - } -#endif - if( pToplevel->cookieGoto==0 ){ - Vdbe *v = sqlite3GetVdbe(pToplevel); - if( v==0 ) return; /* This only happens if there was a prior error */ - pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; - } - if( iDb>=0 ){ - sqlite3 *db = pToplevel->db; - yDbMask mask; - - assert( iDb<db->nDb ); - assert( db->aDb[iDb].pBt!=0 || iDb==1 ); - assert( iDb<SQLITE_MAX_ATTACHED+2 ); - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - mask = ((yDbMask)1)<<iDb; - if( (pToplevel->cookieMask & mask)==0 ){ - pToplevel->cookieMask |= mask; - pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; - if( !OMIT_TEMPDB && iDb==1 ){ - sqlite3OpenTempDatabase(pToplevel); - } - } - } -} - -/* -** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each -** attached database. Otherwise, invoke it for the database named zDb only. -*/ -SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ - sqlite3 *db = pParse->db; - int i; - for(i=0; i<db->nDb; i++){ - Db *pDb = &db->aDb[i]; - if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ - sqlite3CodeVerifySchema(pParse, i); - } - } -} - -/* -** Generate VDBE code that prepares for doing an operation that -** might change the database. -** -** This routine starts a new transaction if we are not already within -** a transaction. If we are already within a transaction, then a checkpoint -** is set if the setStatement parameter is true. A checkpoint should -** be set for operations that might fail (due to a constraint) part of -** the way through and which will need to undo some writes without having to -** rollback the whole transaction. For operations where all constraints -** can be checked before any changes are made to the database, it is never -** necessary to undo a write and the checkpoint should not be set. -*/ -SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - sqlite3CodeVerifySchema(pParse, iDb); - pToplevel->writeMask |= ((yDbMask)1)<<iDb; - pToplevel->isMultiWrite |= setStatement; -} - -/* -** Indicate that the statement currently under construction might write -** more than one entry (example: deleting one row then inserting another, -** inserting multiple rows in a table, or inserting a row and index entries.) -** If an abort occurs after some of these writes have completed, then it will -** be necessary to undo the completed writes. -*/ -SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - pToplevel->isMultiWrite = 1; -} - -/* -** The code generator calls this routine if is discovers that it is -** possible to abort a statement prior to completion. In order to -** perform this abort without corrupting the database, we need to make -** sure that the statement is protected by a statement transaction. -** -** Technically, we only need to set the mayAbort flag if the -** isMultiWrite flag was previously set. There is a time dependency -** such that the abort must occur after the multiwrite. This makes -** some statements involving the REPLACE conflict resolution algorithm -** go a little faster. But taking advantage of this time dependency -** makes it more difficult to prove that the code is correct (in -** particular, it prevents us from writing an effective -** implementation of sqlite3AssertMayAbort()) and so we have chosen -** to take the safe route and skip the optimization. -*/ -SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - pToplevel->mayAbort = 1; -} - -/* -** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT -** error. The onError parameter determines which (if any) of the statement -** and/or current transaction is rolled back. -*/ -SQLITE_PRIVATE void sqlite3HaltConstraint( - Parse *pParse, /* Parsing context */ - int errCode, /* extended error code */ - int onError, /* Constraint type */ - char *p4, /* Error message */ - int p4type /* P4_STATIC or P4_TRANSIENT */ -){ - Vdbe *v = sqlite3GetVdbe(pParse); - assert( (errCode&0xff)==SQLITE_CONSTRAINT ); - if( onError==OE_Abort ){ - sqlite3MayAbort(pParse); - } - sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); -} - -/* -** Check to see if pIndex uses the collating sequence pColl. Return -** true if it does and false if it does not. -*/ -#ifndef SQLITE_OMIT_REINDEX -static int collationMatch(const char *zColl, Index *pIndex){ - int i; - assert( zColl!=0 ); - for(i=0; i<pIndex->nColumn; i++){ - const char *z = pIndex->azColl[i]; - assert( z!=0 ); - if( 0==sqlite3StrICmp(z, zColl) ){ - return 1; - } - } - return 0; -} -#endif - -/* -** Recompute all indices of pTab that use the collating sequence pColl. -** If pColl==0 then recompute all indices of pTab. -*/ -#ifndef SQLITE_OMIT_REINDEX -static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ - Index *pIndex; /* An index associated with pTab */ - - for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ - if( zColl==0 || collationMatch(zColl, pIndex) ){ - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - sqlite3BeginWriteOperation(pParse, 0, iDb); - sqlite3RefillIndex(pParse, pIndex, -1); - } - } -} -#endif - -/* -** Recompute all indices of all tables in all databases where the -** indices use the collating sequence pColl. If pColl==0 then recompute -** all indices everywhere. -*/ -#ifndef SQLITE_OMIT_REINDEX -static void reindexDatabases(Parse *pParse, char const *zColl){ - Db *pDb; /* A single database */ - int iDb; /* The database index number */ - sqlite3 *db = pParse->db; /* The database connection */ - HashElem *k; /* For looping over tables in pDb */ - Table *pTab; /* A table in the database */ - - assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ - for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ - assert( pDb!=0 ); - for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ - pTab = (Table*)sqliteHashData(k); - reindexTable(pParse, pTab, zColl); - } - } -} -#endif - -/* -** Generate code for the REINDEX command. -** -** REINDEX -- 1 -** REINDEX <collation> -- 2 -** REINDEX ?<database>.?<tablename> -- 3 -** REINDEX ?<database>.?<indexname> -- 4 -** -** Form 1 causes all indices in all attached databases to be rebuilt. -** Form 2 rebuilds all indices in all databases that use the named -** collating function. Forms 3 and 4 rebuild the named index or all -** indices associated with the named table. -*/ -#ifndef SQLITE_OMIT_REINDEX -SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ - CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ - char *z; /* Name of a table or index */ - const char *zDb; /* Name of the database */ - Table *pTab; /* A table in the database */ - Index *pIndex; /* An index associated with pTab */ - int iDb; /* The database index number */ - sqlite3 *db = pParse->db; /* The database connection */ - Token *pObjName; /* Name of the table or index to be reindexed */ - - /* Read the database schema. If an error occurs, leave an error message - ** and code in pParse and return NULL. */ - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - return; - } - - if( pName1==0 ){ - reindexDatabases(pParse, 0); - return; - }else if( NEVER(pName2==0) || pName2->z==0 ){ - char *zColl; - assert( pName1->z ); - zColl = sqlite3NameFromToken(pParse->db, pName1); - if( !zColl ) return; - pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); - if( pColl ){ - reindexDatabases(pParse, zColl); - sqlite3DbFree(db, zColl); - return; - } - sqlite3DbFree(db, zColl); - } - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); - if( iDb<0 ) return; - z = sqlite3NameFromToken(db, pObjName); - if( z==0 ) return; - zDb = db->aDb[iDb].zName; - pTab = sqlite3FindTable(db, z, zDb); - if( pTab ){ - reindexTable(pParse, pTab, 0); - sqlite3DbFree(db, z); - return; - } - pIndex = sqlite3FindIndex(db, z, zDb); - sqlite3DbFree(db, z); - if( pIndex ){ - sqlite3BeginWriteOperation(pParse, 0, iDb); - sqlite3RefillIndex(pParse, pIndex, -1); - return; - } - sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); -} -#endif - -/* -** Return a dynamicly allocated KeyInfo structure that can be used -** with OP_OpenRead or OP_OpenWrite to access database index pIdx. -** -** If successful, a pointer to the new structure is returned. In this case -** the caller is responsible for calling sqlite3DbFree(db, ) on the returned -** pointer. If an error occurs (out of memory or missing collation -** sequence), NULL is returned and the state of pParse updated to reflect -** the error. -*/ -SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ - int i; - int nCol = pIdx->nColumn; - int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; - sqlite3 *db = pParse->db; - KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); - - if( pKey ){ - pKey->db = pParse->db; - pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); - assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); - for(i=0; i<nCol; i++){ - char *zColl = pIdx->azColl[i]; - assert( zColl ); - pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); - pKey->aSortOrder[i] = pIdx->aSortOrder[i]; - } - pKey->nField = (u16)nCol; - } - - if( pParse->nErr ){ - sqlite3DbFree(db, pKey); - pKey = 0; - } - return pKey; -} - -/************** End of build.c ***********************************************/ -/************** Begin file callback.c ****************************************/ -/* -** 2005 May 23 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains functions used to access the internal hash tables -** of user defined functions and collation sequences. -*/ - - -/* -** Invoke the 'collation needed' callback to request a collation sequence -** in the encoding enc of name zName, length nName. -*/ -static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ - assert( !db->xCollNeeded || !db->xCollNeeded16 ); - if( db->xCollNeeded ){ - char *zExternal = sqlite3DbStrDup(db, zName); - if( !zExternal ) return; - db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); - sqlite3DbFree(db, zExternal); - } -#ifndef SQLITE_OMIT_UTF16 - if( db->xCollNeeded16 ){ - char const *zExternal; - sqlite3_value *pTmp = sqlite3ValueNew(db); - sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); - zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); - if( zExternal ){ - db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); - } - sqlite3ValueFree(pTmp); - } -#endif -} - -/* -** This routine is called if the collation factory fails to deliver a -** collation function in the best encoding but there may be other versions -** of this collation function (for other text encodings) available. Use one -** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if -** possible. -*/ -static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ - CollSeq *pColl2; - char *z = pColl->zName; - int i; - static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; - for(i=0; i<3; i++){ - pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); - if( pColl2->xCmp!=0 ){ - memcpy(pColl, pColl2, sizeof(CollSeq)); - pColl->xDel = 0; /* Do not copy the destructor */ - return SQLITE_OK; - } - } - return SQLITE_ERROR; -} - -/* -** This function is responsible for invoking the collation factory callback -** or substituting a collation sequence of a different encoding when the -** requested collation sequence is not available in the desired encoding. -** -** If it is not NULL, then pColl must point to the database native encoding -** collation sequence with name zName, length nName. -** -** The return value is either the collation sequence to be used in database -** db for collation type name zName, length nName, or NULL, if no collation -** sequence can be found. If no collation is found, leave an error message. -** -** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() -*/ -SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq( - Parse *pParse, /* Parsing context */ - u8 enc, /* The desired encoding for the collating sequence */ - CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ - const char *zName /* Collating sequence name */ -){ - CollSeq *p; - sqlite3 *db = pParse->db; - - p = pColl; - if( !p ){ - p = sqlite3FindCollSeq(db, enc, zName, 0); - } - if( !p || !p->xCmp ){ - /* No collation sequence of this type for this encoding is registered. - ** Call the collation factory to see if it can supply us with one. - */ - callCollNeeded(db, enc, zName); - p = sqlite3FindCollSeq(db, enc, zName, 0); - } - if( p && !p->xCmp && synthCollSeq(db, p) ){ - p = 0; - } - assert( !p || p->xCmp ); - if( p==0 ){ - sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); - } - return p; -} - -/* -** This routine is called on a collation sequence before it is used to -** check that it is defined. An undefined collation sequence exists when -** a database is loaded that contains references to collation sequences -** that have not been defined by sqlite3_create_collation() etc. -** -** If required, this routine calls the 'collation needed' callback to -** request a definition of the collating sequence. If this doesn't work, -** an equivalent collating sequence that uses a text encoding different -** from the main database is substituted, if one is available. -*/ -SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ - if( pColl ){ - const char *zName = pColl->zName; - sqlite3 *db = pParse->db; - CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName); - if( !p ){ - return SQLITE_ERROR; - } - assert( p==pColl ); - } - return SQLITE_OK; -} - - - -/* -** Locate and return an entry from the db.aCollSeq hash table. If the entry -** specified by zName and nName is not found and parameter 'create' is -** true, then create a new entry. Otherwise return NULL. -** -** Each pointer stored in the sqlite3.aCollSeq hash table contains an -** array of three CollSeq structures. The first is the collation sequence -** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. -** -** Stored immediately after the three collation sequences is a copy of -** the collation sequence name. A pointer to this string is stored in -** each collation sequence structure. -*/ -static CollSeq *findCollSeqEntry( - sqlite3 *db, /* Database connection */ - const char *zName, /* Name of the collating sequence */ - int create /* Create a new entry if true */ -){ - CollSeq *pColl; - int nName = sqlite3Strlen30(zName); - pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); - - if( 0==pColl && create ){ - pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 ); - if( pColl ){ - CollSeq *pDel = 0; - pColl[0].zName = (char*)&pColl[3]; - pColl[0].enc = SQLITE_UTF8; - pColl[1].zName = (char*)&pColl[3]; - pColl[1].enc = SQLITE_UTF16LE; - pColl[2].zName = (char*)&pColl[3]; - pColl[2].enc = SQLITE_UTF16BE; - memcpy(pColl[0].zName, zName, nName); - pColl[0].zName[nName] = 0; - pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); - - /* If a malloc() failure occurred in sqlite3HashInsert(), it will - ** return the pColl pointer to be deleted (because it wasn't added - ** to the hash table). - */ - assert( pDel==0 || pDel==pColl ); - if( pDel!=0 ){ - db->mallocFailed = 1; - sqlite3DbFree(db, pDel); - pColl = 0; - } - } - } - return pColl; -} - -/* -** Parameter zName points to a UTF-8 encoded string nName bytes long. -** Return the CollSeq* pointer for the collation sequence named zName -** for the encoding 'enc' from the database 'db'. -** -** If the entry specified is not found and 'create' is true, then create a -** new entry. Otherwise return NULL. -** -** A separate function sqlite3LocateCollSeq() is a wrapper around -** this routine. sqlite3LocateCollSeq() invokes the collation factory -** if necessary and generates an error message if the collating sequence -** cannot be found. -** -** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() -*/ -SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq( - sqlite3 *db, - u8 enc, - const char *zName, - int create -){ - CollSeq *pColl; - if( zName ){ - pColl = findCollSeqEntry(db, zName, create); - }else{ - pColl = db->pDfltColl; - } - assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); - assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); - if( pColl ) pColl += enc-1; - return pColl; -} - -/* During the search for the best function definition, this procedure -** is called to test how well the function passed as the first argument -** matches the request for a function with nArg arguments in a system -** that uses encoding enc. The value returned indicates how well the -** request is matched. A higher value indicates a better match. -** -** If nArg is -1 that means to only return a match (non-zero) if p->nArg -** is also -1. In other words, we are searching for a function that -** takes a variable number of arguments. -** -** If nArg is -2 that means that we are searching for any function -** regardless of the number of arguments it uses, so return a positive -** match score for any -** -** The returned value is always between 0 and 6, as follows: -** -** 0: Not a match. -** 1: UTF8/16 conversion required and function takes any number of arguments. -** 2: UTF16 byte order change required and function takes any number of args. -** 3: encoding matches and function takes any number of arguments -** 4: UTF8/16 conversion required - argument count matches exactly -** 5: UTF16 byte order conversion required - argument count matches exactly -** 6: Perfect match: encoding and argument count match exactly. -** -** If nArg==(-2) then any function with a non-null xStep or xFunc is -** a perfect match and any function with both xStep and xFunc NULL is -** a non-match. -*/ -#define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */ -static int matchQuality( - FuncDef *p, /* The function we are evaluating for match quality */ - int nArg, /* Desired number of arguments. (-1)==any */ - u8 enc /* Desired text encoding */ -){ - int match; - - /* nArg of -2 is a special case */ - if( nArg==(-2) ) return (p->xFunc==0 && p->xStep==0) ? 0 : FUNC_PERFECT_MATCH; - - /* Wrong number of arguments means "no match" */ - if( p->nArg!=nArg && p->nArg>=0 ) return 0; - - /* Give a better score to a function with a specific number of arguments - ** than to function that accepts any number of arguments. */ - if( p->nArg==nArg ){ - match = 4; - }else{ - match = 1; - } - - /* Bonus points if the text encoding matches */ - if( enc==p->iPrefEnc ){ - match += 2; /* Exact encoding match */ - }else if( (enc & p->iPrefEnc & 2)!=0 ){ - match += 1; /* Both are UTF16, but with different byte orders */ - } - - return match; -} - -/* -** Search a FuncDefHash for a function with the given name. Return -** a pointer to the matching FuncDef if found, or 0 if there is no match. -*/ -static FuncDef *functionSearch( - FuncDefHash *pHash, /* Hash table to search */ - int h, /* Hash of the name */ - const char *zFunc, /* Name of function */ - int nFunc /* Number of bytes in zFunc */ -){ - FuncDef *p; - for(p=pHash->a[h]; p; p=p->pHash){ - if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){ - return p; - } - } - return 0; -} - -/* -** Insert a new FuncDef into a FuncDefHash hash table. -*/ -SQLITE_PRIVATE void sqlite3FuncDefInsert( - FuncDefHash *pHash, /* The hash table into which to insert */ - FuncDef *pDef /* The function definition to insert */ -){ - FuncDef *pOther; - int nName = sqlite3Strlen30(pDef->zName); - u8 c1 = (u8)pDef->zName[0]; - int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a); - pOther = functionSearch(pHash, h, pDef->zName, nName); - if( pOther ){ - assert( pOther!=pDef && pOther->pNext!=pDef ); - pDef->pNext = pOther->pNext; - pOther->pNext = pDef; - }else{ - pDef->pNext = 0; - pDef->pHash = pHash->a[h]; - pHash->a[h] = pDef; - } -} - - - -/* -** Locate a user function given a name, a number of arguments and a flag -** indicating whether the function prefers UTF-16 over UTF-8. Return a -** pointer to the FuncDef structure that defines that function, or return -** NULL if the function does not exist. -** -** If the createFlag argument is true, then a new (blank) FuncDef -** structure is created and liked into the "db" structure if a -** no matching function previously existed. -** -** If nArg is -2, then the first valid function found is returned. A -** function is valid if either xFunc or xStep is non-zero. The nArg==(-2) -** case is used to see if zName is a valid function name for some number -** of arguments. If nArg is -2, then createFlag must be 0. -** -** If createFlag is false, then a function with the required name and -** number of arguments may be returned even if the eTextRep flag does not -** match that requested. -*/ -SQLITE_PRIVATE FuncDef *sqlite3FindFunction( - sqlite3 *db, /* An open database */ - const char *zName, /* Name of the function. Not null-terminated */ - int nName, /* Number of characters in the name */ - int nArg, /* Number of arguments. -1 means any number */ - u8 enc, /* Preferred text encoding */ - u8 createFlag /* Create new entry if true and does not otherwise exist */ -){ - FuncDef *p; /* Iterator variable */ - FuncDef *pBest = 0; /* Best match found so far */ - int bestScore = 0; /* Score of best match */ - int h; /* Hash value */ - - assert( nArg>=(-2) ); - assert( nArg>=(-1) || createFlag==0 ); - assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); - h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a); - - /* First search for a match amongst the application-defined functions. - */ - p = functionSearch(&db->aFunc, h, zName, nName); - while( p ){ - int score = matchQuality(p, nArg, enc); - if( score>bestScore ){ - pBest = p; - bestScore = score; - } - p = p->pNext; - } - - /* If no match is found, search the built-in functions. - ** - ** If the SQLITE_PreferBuiltin flag is set, then search the built-in - ** functions even if a prior app-defined function was found. And give - ** priority to built-in functions. - ** - ** Except, if createFlag is true, that means that we are trying to - ** install a new function. Whatever FuncDef structure is returned it will - ** have fields overwritten with new information appropriate for the - ** new function. But the FuncDefs for built-in functions are read-only. - ** So we must not search for built-ins when creating a new function. - */ - if( !createFlag && (pBest==0 || (db->flags & SQLITE_PreferBuiltin)!=0) ){ - FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); - bestScore = 0; - p = functionSearch(pHash, h, zName, nName); - while( p ){ - int score = matchQuality(p, nArg, enc); - if( score>bestScore ){ - pBest = p; - bestScore = score; - } - p = p->pNext; - } - } - - /* If the createFlag parameter is true and the search did not reveal an - ** exact match for the name, number of arguments and encoding, then add a - ** new entry to the hash table and return it. - */ - if( createFlag && bestScore<FUNC_PERFECT_MATCH && - (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ - pBest->zName = (char *)&pBest[1]; - pBest->nArg = (u16)nArg; - pBest->iPrefEnc = enc; - memcpy(pBest->zName, zName, nName); - pBest->zName[nName] = 0; - sqlite3FuncDefInsert(&db->aFunc, pBest); - } - - if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ - return pBest; - } - return 0; -} - -/* -** Free all resources held by the schema structure. The void* argument points -** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the -** pointer itself, it just cleans up subsidiary resources (i.e. the contents -** of the schema hash tables). -** -** The Schema.cache_size variable is not cleared. -*/ -SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ - Hash temp1; - Hash temp2; - HashElem *pElem; - Schema *pSchema = (Schema *)p; - - temp1 = pSchema->tblHash; - temp2 = pSchema->trigHash; - sqlite3HashInit(&pSchema->trigHash); - sqlite3HashClear(&pSchema->idxHash); - for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ - sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); - } - sqlite3HashClear(&temp2); - sqlite3HashInit(&pSchema->tblHash); - for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ - Table *pTab = sqliteHashData(pElem); - sqlite3DeleteTable(0, pTab); - } - sqlite3HashClear(&temp1); - sqlite3HashClear(&pSchema->fkeyHash); - pSchema->pSeqTab = 0; - if( pSchema->flags & DB_SchemaLoaded ){ - pSchema->iGeneration++; - pSchema->flags &= ~DB_SchemaLoaded; - } -} - -/* -** Find and return the schema associated with a BTree. Create -** a new one if necessary. -*/ -SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ - Schema * p; - if( pBt ){ - p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); - }else{ - p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); - } - if( !p ){ - db->mallocFailed = 1; - }else if ( 0==p->file_format ){ - sqlite3HashInit(&p->tblHash); - sqlite3HashInit(&p->idxHash); - sqlite3HashInit(&p->trigHash); - sqlite3HashInit(&p->fkeyHash); - p->enc = SQLITE_UTF8; - } - return p; -} - -/************** End of callback.c ********************************************/ -/************** Begin file delete.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the parser -** in order to generate code for DELETE FROM statements. -*/ - -/* -** While a SrcList can in general represent multiple tables and subqueries -** (as in the FROM clause of a SELECT statement) in this case it contains -** the name of a single table, as one might find in an INSERT, DELETE, -** or UPDATE statement. Look up that table in the symbol table and -** return a pointer. Set an error message and return NULL if the table -** name is not found or if any other error occurs. -** -** The following fields are initialized appropriate in pSrc: -** -** pSrc->a[0].pTab Pointer to the Table object -** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one -** -*/ -SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ - struct SrcList_item *pItem = pSrc->a; - Table *pTab; - assert( pItem && pSrc->nSrc==1 ); - pTab = sqlite3LocateTableItem(pParse, 0, pItem); - sqlite3DeleteTable(pParse->db, pItem->pTab); - pItem->pTab = pTab; - if( pTab ){ - pTab->nRef++; - } - if( sqlite3IndexedByLookup(pParse, pItem) ){ - pTab = 0; - } - return pTab; -} - -/* -** Check to make sure the given table is writable. If it is not -** writable, generate an error message and return 1. If it is -** writable return 0; -*/ -SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ - /* A table is not writable under the following circumstances: - ** - ** 1) It is a virtual table and no implementation of the xUpdate method - ** has been provided, or - ** 2) It is a system table (i.e. sqlite_master), this call is not - ** part of a nested parse and writable_schema pragma has not - ** been specified. - ** - ** In either case leave an error message in pParse and return non-zero. - */ - if( ( IsVirtual(pTab) - && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ) - || ( (pTab->tabFlags & TF_Readonly)!=0 - && (pParse->db->flags & SQLITE_WriteSchema)==0 - && pParse->nested==0 ) - ){ - sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); - return 1; - } - -#ifndef SQLITE_OMIT_VIEW - if( !viewOk && pTab->pSelect ){ - sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); - return 1; - } -#endif - return 0; -} - - -#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) -/* -** Evaluate a view and store its result in an ephemeral table. The -** pWhere argument is an optional WHERE clause that restricts the -** set of rows in the view that are to be added to the ephemeral table. -*/ -SQLITE_PRIVATE void sqlite3MaterializeView( - Parse *pParse, /* Parsing context */ - Table *pView, /* View definition */ - Expr *pWhere, /* Optional WHERE clause to be added */ - int iCur /* Cursor number for ephemerial table */ -){ - SelectDest dest; - Select *pSel; - SrcList *pFrom; - sqlite3 *db = pParse->db; - int iDb = sqlite3SchemaToIndex(db, pView->pSchema); - - pWhere = sqlite3ExprDup(db, pWhere, 0); - pFrom = sqlite3SrcListAppend(db, 0, 0, 0); - - if( pFrom ){ - assert( pFrom->nSrc==1 ); - pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName); - pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); - assert( pFrom->a[0].pOn==0 ); - assert( pFrom->a[0].pUsing==0 ); - } - - pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0); - if( pSel ) pSel->selFlags |= SF_Materialize; - - sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); - sqlite3Select(pParse, pSel, &dest); - sqlite3SelectDelete(db, pSel); -} -#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ - -#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) -/* -** Generate an expression tree to implement the WHERE, ORDER BY, -** and LIMIT/OFFSET portion of DELETE and UPDATE statements. -** -** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1; -** \__________________________/ -** pLimitWhere (pInClause) -*/ -SQLITE_PRIVATE Expr *sqlite3LimitWhere( - Parse *pParse, /* The parser context */ - SrcList *pSrc, /* the FROM clause -- which tables to scan */ - Expr *pWhere, /* The WHERE clause. May be null */ - ExprList *pOrderBy, /* The ORDER BY clause. May be null */ - Expr *pLimit, /* The LIMIT clause. May be null */ - Expr *pOffset, /* The OFFSET clause. May be null */ - char *zStmtType /* Either DELETE or UPDATE. For error messages. */ -){ - Expr *pWhereRowid = NULL; /* WHERE rowid .. */ - Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ - Expr *pSelectRowid = NULL; /* SELECT rowid ... */ - ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */ - SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */ - Select *pSelect = NULL; /* Complete SELECT tree */ - - /* Check that there isn't an ORDER BY without a LIMIT clause. - */ - if( pOrderBy && (pLimit == 0) ) { - sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType); - goto limit_where_cleanup_2; - } - - /* We only need to generate a select expression if there - ** is a limit/offset term to enforce. - */ - if( pLimit == 0 ) { - /* if pLimit is null, pOffset will always be null as well. */ - assert( pOffset == 0 ); - return pWhere; - } - - /* Generate a select expression tree to enforce the limit/offset - ** term for the DELETE or UPDATE statement. For example: - ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 - ** becomes: - ** DELETE FROM table_a WHERE rowid IN ( - ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 - ** ); - */ - - pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0); - if( pSelectRowid == 0 ) goto limit_where_cleanup_2; - pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid); - if( pEList == 0 ) goto limit_where_cleanup_2; - - /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree - ** and the SELECT subtree. */ - pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0); - if( pSelectSrc == 0 ) { - sqlite3ExprListDelete(pParse->db, pEList); - goto limit_where_cleanup_2; - } - - /* generate the SELECT expression tree. */ - pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0, - pOrderBy,0,pLimit,pOffset); - if( pSelect == 0 ) return 0; - - /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */ - pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0); - if( pWhereRowid == 0 ) goto limit_where_cleanup_1; - pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0); - if( pInClause == 0 ) goto limit_where_cleanup_1; - - pInClause->x.pSelect = pSelect; - pInClause->flags |= EP_xIsSelect; - sqlite3ExprSetHeight(pParse, pInClause); - return pInClause; - - /* something went wrong. clean up anything allocated. */ -limit_where_cleanup_1: - sqlite3SelectDelete(pParse->db, pSelect); - return 0; - -limit_where_cleanup_2: - sqlite3ExprDelete(pParse->db, pWhere); - sqlite3ExprListDelete(pParse->db, pOrderBy); - sqlite3ExprDelete(pParse->db, pLimit); - sqlite3ExprDelete(pParse->db, pOffset); - return 0; -} -#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */ - -/* -** Generate code for a DELETE FROM statement. -** -** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL; -** \________/ \________________/ -** pTabList pWhere -*/ -SQLITE_PRIVATE void sqlite3DeleteFrom( - Parse *pParse, /* The parser context */ - SrcList *pTabList, /* The table from which we should delete things */ - Expr *pWhere /* The WHERE clause. May be null */ -){ - Vdbe *v; /* The virtual database engine */ - Table *pTab; /* The table from which records will be deleted */ - const char *zDb; /* Name of database holding pTab */ - int end, addr = 0; /* A couple addresses of generated code */ - int i; /* Loop counter */ - WhereInfo *pWInfo; /* Information about the WHERE clause */ - Index *pIdx; /* For looping over indices of the table */ - int iCur; /* VDBE Cursor number for pTab */ - sqlite3 *db; /* Main database structure */ - AuthContext sContext; /* Authorization context */ - NameContext sNC; /* Name context to resolve expressions in */ - int iDb; /* Database number */ - int memCnt = -1; /* Memory cell used for change counting */ - int rcauth; /* Value returned by authorization callback */ - -#ifndef SQLITE_OMIT_TRIGGER - int isView; /* True if attempting to delete from a view */ - Trigger *pTrigger; /* List of table triggers, if required */ -#endif - - memset(&sContext, 0, sizeof(sContext)); - db = pParse->db; - if( pParse->nErr || db->mallocFailed ){ - goto delete_from_cleanup; - } - assert( pTabList->nSrc==1 ); - - /* Locate the table which we want to delete. This table has to be - ** put in an SrcList structure because some of the subroutines we - ** will be calling are designed to work with multiple tables and expect - ** an SrcList* parameter instead of just a Table* parameter. - */ - pTab = sqlite3SrcListLookup(pParse, pTabList); - if( pTab==0 ) goto delete_from_cleanup; - - /* Figure out if we have any triggers and if the table being - ** deleted from is a view - */ -#ifndef SQLITE_OMIT_TRIGGER - pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); - isView = pTab->pSelect!=0; -#else -# define pTrigger 0 -# define isView 0 -#endif -#ifdef SQLITE_OMIT_VIEW -# undef isView -# define isView 0 -#endif - - /* If pTab is really a view, make sure it has been initialized. - */ - if( sqlite3ViewGetColumnNames(pParse, pTab) ){ - goto delete_from_cleanup; - } - - if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){ - goto delete_from_cleanup; - } - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - assert( iDb<db->nDb ); - zDb = db->aDb[iDb].zName; - rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); - assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); - if( rcauth==SQLITE_DENY ){ - goto delete_from_cleanup; - } - assert(!isView || pTrigger); - - /* Assign cursor number to the table and all its indices. - */ - assert( pTabList->nSrc==1 ); - iCur = pTabList->a[0].iCursor = pParse->nTab++; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - pParse->nTab++; - } - - /* Start the view context - */ - if( isView ){ - sqlite3AuthContextPush(pParse, &sContext, pTab->zName); - } - - /* Begin generating code. - */ - v = sqlite3GetVdbe(pParse); - if( v==0 ){ - goto delete_from_cleanup; - } - if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); - sqlite3BeginWriteOperation(pParse, 1, iDb); - - /* If we are trying to delete from a view, realize that view into - ** a ephemeral table. - */ -#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) - if( isView ){ - sqlite3MaterializeView(pParse, pTab, pWhere, iCur); - } -#endif - - /* Resolve the column names in the WHERE clause. - */ - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pParse; - sNC.pSrcList = pTabList; - if( sqlite3ResolveExprNames(&sNC, pWhere) ){ - goto delete_from_cleanup; - } - - /* Initialize the counter of the number of rows deleted, if - ** we are counting rows. - */ - if( db->flags & SQLITE_CountRows ){ - memCnt = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); - } - -#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION - /* Special case: A DELETE without a WHERE clause deletes everything. - ** It is easier just to erase the whole table. Prior to version 3.6.5, - ** this optimization caused the row change count (the value returned by - ** API function sqlite3_count_changes) to be set incorrectly. */ - if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) - && 0==sqlite3FkRequired(pParse, pTab, 0, 0) - ){ - assert( !isView ); - sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt, - pTab->zName, P4_STATIC); - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - assert( pIdx->pSchema==pTab->pSchema ); - sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); - } - }else -#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ - /* The usual case: There is a WHERE clause so we have to scan through - ** the table and pick which records to delete. - */ - { - int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */ - int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ - int regRowid; /* Actual register containing rowids */ - - /* Collect rowids of every row to be deleted. - */ - sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); - pWInfo = sqlite3WhereBegin( - pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK, 0 - ); - if( pWInfo==0 ) goto delete_from_cleanup; - regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0); - sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid); - if( db->flags & SQLITE_CountRows ){ - sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); - } - sqlite3WhereEnd(pWInfo); - - /* Delete every item whose key was written to the list during the - ** database scan. We have to delete items after the scan is complete - ** because deleting an item can change the scan order. */ - end = sqlite3VdbeMakeLabel(v); - - /* Unless this is a view, open cursors for the table we are - ** deleting from and all its indices. If this is a view, then the - ** only effect this statement has is to fire the INSTEAD OF - ** triggers. */ - if( !isView ){ - sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite); - } - - addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid); - - /* Delete the row */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(pTab) ){ - const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); - sqlite3VtabMakeWritable(pParse, pTab); - sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB); - sqlite3VdbeChangeP5(v, OE_Abort); - sqlite3MayAbort(pParse); - }else -#endif - { - int count = (pParse->nested==0); /* True to count changes */ - sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default); - } - - /* End of the delete loop */ - sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); - sqlite3VdbeResolveLabel(v, end); - - /* Close the cursors open on the table and its indexes. */ - if( !isView && !IsVirtual(pTab) ){ - for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ - sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum); - } - sqlite3VdbeAddOp1(v, OP_Close, iCur); - } - } - - /* Update the sqlite_sequence table by storing the content of the - ** maximum rowid counter values recorded while inserting into - ** autoincrement tables. - */ - if( pParse->nested==0 && pParse->pTriggerTab==0 ){ - sqlite3AutoincrementEnd(pParse); - } - - /* Return the number of rows that were deleted. If this routine is - ** generating code because of a call to sqlite3NestedParse(), do not - ** invoke the callback function. - */ - if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ - sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); - } - -delete_from_cleanup: - sqlite3AuthContextPop(&sContext); - sqlite3SrcListDelete(db, pTabList); - sqlite3ExprDelete(db, pWhere); - return; -} -/* Make sure "isView" and other macros defined above are undefined. Otherwise -** thely may interfere with compilation of other functions in this file -** (or in another file, if this file becomes part of the amalgamation). */ -#ifdef isView - #undef isView -#endif -#ifdef pTrigger - #undef pTrigger -#endif - -/* -** This routine generates VDBE code that causes a single row of a -** single table to be deleted. -** -** The VDBE must be in a particular state when this routine is called. -** These are the requirements: -** -** 1. A read/write cursor pointing to pTab, the table containing the row -** to be deleted, must be opened as cursor number $iCur. -** -** 2. Read/write cursors for all indices of pTab must be open as -** cursor number base+i for the i-th index. -** -** 3. The record number of the row to be deleted must be stored in -** memory cell iRowid. -** -** This routine generates code to remove both the table record and all -** index entries that point to that record. -*/ -SQLITE_PRIVATE void sqlite3GenerateRowDelete( - Parse *pParse, /* Parsing context */ - Table *pTab, /* Table containing the row to be deleted */ - int iCur, /* Cursor number for the table */ - int iRowid, /* Memory cell that contains the rowid to delete */ - int count, /* If non-zero, increment the row change counter */ - Trigger *pTrigger, /* List of triggers to (potentially) fire */ - int onconf /* Default ON CONFLICT policy for triggers */ -){ - Vdbe *v = pParse->pVdbe; /* Vdbe */ - int iOld = 0; /* First register in OLD.* array */ - int iLabel; /* Label resolved to end of generated code */ - - /* Vdbe is guaranteed to have been allocated by this stage. */ - assert( v ); - - /* Seek cursor iCur to the row to delete. If this row no longer exists - ** (this can happen if a trigger program has already deleted it), do - ** not attempt to delete it or fire any DELETE triggers. */ - iLabel = sqlite3VdbeMakeLabel(v); - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid); - - /* If there are any triggers to fire, allocate a range of registers to - ** use for the old.* references in the triggers. */ - if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ - u32 mask; /* Mask of OLD.* columns in use */ - int iCol; /* Iterator used while populating OLD.* */ - - /* TODO: Could use temporary registers here. Also could attempt to - ** avoid copying the contents of the rowid register. */ - mask = sqlite3TriggerColmask( - pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf - ); - mask |= sqlite3FkOldmask(pParse, pTab); - iOld = pParse->nMem+1; - pParse->nMem += (1 + pTab->nCol); - - /* Populate the OLD.* pseudo-table register array. These values will be - ** used by any BEFORE and AFTER triggers that exist. */ - sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld); - for(iCol=0; iCol<pTab->nCol; iCol++){ - if( mask==0xffffffff || mask&(1<<iCol) ){ - sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol, iOld+iCol+1); - } - } - - /* Invoke BEFORE DELETE trigger programs. */ - sqlite3CodeRowTrigger(pParse, pTrigger, - TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel - ); - - /* Seek the cursor to the row to be deleted again. It may be that - ** the BEFORE triggers coded above have already removed the row - ** being deleted. Do not attempt to delete the row a second time, and - ** do not fire AFTER triggers. */ - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid); - - /* Do FK processing. This call checks that any FK constraints that - ** refer to this table (i.e. constraints attached to other tables) - ** are not violated by deleting this row. */ - sqlite3FkCheck(pParse, pTab, iOld, 0); - } - - /* Delete the index and table entries. Skip this step if pTab is really - ** a view (in which case the only effect of the DELETE statement is to - ** fire the INSTEAD OF triggers). */ - if( pTab->pSelect==0 ){ - sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); - sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); - if( count ){ - sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); - } - } - - /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to - ** handle rows (possibly in other tables) that refer via a foreign key - ** to the row just deleted. */ - sqlite3FkActions(pParse, pTab, 0, iOld); - - /* Invoke AFTER DELETE trigger programs. */ - sqlite3CodeRowTrigger(pParse, pTrigger, - TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel - ); - - /* Jump here if the row had already been deleted before any BEFORE - ** trigger programs were invoked. Or if a trigger program throws a - ** RAISE(IGNORE) exception. */ - sqlite3VdbeResolveLabel(v, iLabel); -} - -/* -** This routine generates VDBE code that causes the deletion of all -** index entries associated with a single row of a single table. -** -** The VDBE must be in a particular state when this routine is called. -** These are the requirements: -** -** 1. A read/write cursor pointing to pTab, the table containing the row -** to be deleted, must be opened as cursor number "iCur". -** -** 2. Read/write cursors for all indices of pTab must be open as -** cursor number iCur+i for the i-th index. -** -** 3. The "iCur" cursor must be pointing to the row that is to be -** deleted. -*/ -SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete( - Parse *pParse, /* Parsing and code generating context */ - Table *pTab, /* Table containing the row to be deleted */ - int iCur, /* Cursor number for the table */ - int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ -){ - int i; - Index *pIdx; - int r1; - - for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ - if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue; - r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0); - sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1); - } -} - -/* -** Generate code that will assemble an index key and put it in register -** regOut. The key with be for index pIdx which is an index on pTab. -** iCur is the index of a cursor open on the pTab table and pointing to -** the entry that needs indexing. -** -** Return a register number which is the first in a block of -** registers that holds the elements of the index key. The -** block of registers has already been deallocated by the time -** this routine returns. -*/ -SQLITE_PRIVATE int sqlite3GenerateIndexKey( - Parse *pParse, /* Parsing context */ - Index *pIdx, /* The index for which to generate a key */ - int iCur, /* Cursor number for the pIdx->pTable table */ - int regOut, /* Write the new index key to this register */ - int doMakeRec /* Run the OP_MakeRecord instruction if true */ -){ - Vdbe *v = pParse->pVdbe; - int j; - Table *pTab = pIdx->pTable; - int regBase; - int nCol; - - nCol = pIdx->nColumn; - regBase = sqlite3GetTempRange(pParse, nCol+1); - sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol); - for(j=0; j<nCol; j++){ - int idx = pIdx->aiColumn[j]; - if( idx==pTab->iPKey ){ - sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j); - }else{ - sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); - sqlite3ColumnDefault(v, pTab, idx, -1); - } - } - if( doMakeRec ){ - const char *zAff; - if( pTab->pSelect - || OptimizationDisabled(pParse->db, SQLITE_IdxRealAsInt) - ){ - zAff = 0; - }else{ - zAff = sqlite3IndexAffinityStr(v, pIdx); - } - sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); - sqlite3VdbeChangeP4(v, -1, zAff, P4_TRANSIENT); - } - sqlite3ReleaseTempRange(pParse, regBase, nCol+1); - return regBase; -} - -/************** End of delete.c **********************************************/ -/************** Begin file func.c ********************************************/ -/* -** 2002 February 23 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the C functions that implement various SQL -** functions of SQLite. -** -** There is only one exported symbol in this file - the function -** sqliteRegisterBuildinFunctions() found at the bottom of the file. -** All other code has file scope. -*/ -/* #include <stdlib.h> */ -/* #include <assert.h> */ - -/* -** Return the collating function associated with a function. -*/ -static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ - return context->pColl; -} - -/* -** Indicate that the accumulator load should be skipped on this -** iteration of the aggregate loop. -*/ -static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ - context->skipFlag = 1; -} - -/* -** Implementation of the non-aggregate min() and max() functions -*/ -static void minmaxFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int i; - int mask; /* 0 for min() or 0xffffffff for max() */ - int iBest; - CollSeq *pColl; - - assert( argc>1 ); - mask = sqlite3_user_data(context)==0 ? 0 : -1; - pColl = sqlite3GetFuncCollSeq(context); - assert( pColl ); - assert( mask==-1 || mask==0 ); - iBest = 0; - if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; - for(i=1; i<argc; i++){ - if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; - if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ - testcase( mask==0 ); - iBest = i; - } - } - sqlite3_result_value(context, argv[iBest]); -} - -/* -** Return the type of the argument. -*/ -static void typeofFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - const char *z = 0; - UNUSED_PARAMETER(NotUsed); - switch( sqlite3_value_type(argv[0]) ){ - case SQLITE_INTEGER: z = "integer"; break; - case SQLITE_TEXT: z = "text"; break; - case SQLITE_FLOAT: z = "real"; break; - case SQLITE_BLOB: z = "blob"; break; - default: z = "null"; break; - } - sqlite3_result_text(context, z, -1, SQLITE_STATIC); -} - - -/* -** Implementation of the length() function -*/ -static void lengthFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int len; - - assert( argc==1 ); - UNUSED_PARAMETER(argc); - switch( sqlite3_value_type(argv[0]) ){ - case SQLITE_BLOB: - case SQLITE_INTEGER: - case SQLITE_FLOAT: { - sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); - break; - } - case SQLITE_TEXT: { - const unsigned char *z = sqlite3_value_text(argv[0]); - if( z==0 ) return; - len = 0; - while( *z ){ - len++; - SQLITE_SKIP_UTF8(z); - } - sqlite3_result_int(context, len); - break; - } - default: { - sqlite3_result_null(context); - break; - } - } -} - -/* -** Implementation of the abs() function. -** -** IMP: R-23979-26855 The abs(X) function returns the absolute value of -** the numeric argument X. -*/ -static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ - assert( argc==1 ); - UNUSED_PARAMETER(argc); - switch( sqlite3_value_type(argv[0]) ){ - case SQLITE_INTEGER: { - i64 iVal = sqlite3_value_int64(argv[0]); - if( iVal<0 ){ - if( (iVal<<1)==0 ){ - /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then - ** abs(X) throws an integer overflow error since there is no - ** equivalent positive 64-bit two complement value. */ - sqlite3_result_error(context, "integer overflow", -1); - return; - } - iVal = -iVal; - } - sqlite3_result_int64(context, iVal); - break; - } - case SQLITE_NULL: { - /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ - sqlite3_result_null(context); - break; - } - default: { - /* Because sqlite3_value_double() returns 0.0 if the argument is not - ** something that can be converted into a number, we have: - ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that - ** cannot be converted to a numeric value. - */ - double rVal = sqlite3_value_double(argv[0]); - if( rVal<0 ) rVal = -rVal; - sqlite3_result_double(context, rVal); - break; - } - } -} - -/* -** Implementation of the instr() function. -** -** instr(haystack,needle) finds the first occurrence of needle -** in haystack and returns the number of previous characters plus 1, -** or 0 if needle does not occur within haystack. -** -** If both haystack and needle are BLOBs, then the result is one more than -** the number of bytes in haystack prior to the first occurrence of needle, -** or 0 if needle never occurs in haystack. -*/ -static void instrFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *zHaystack; - const unsigned char *zNeedle; - int nHaystack; - int nNeedle; - int typeHaystack, typeNeedle; - int N = 1; - int isText; - - UNUSED_PARAMETER(argc); - typeHaystack = sqlite3_value_type(argv[0]); - typeNeedle = sqlite3_value_type(argv[1]); - if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; - nHaystack = sqlite3_value_bytes(argv[0]); - nNeedle = sqlite3_value_bytes(argv[1]); - if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ - zHaystack = sqlite3_value_blob(argv[0]); - zNeedle = sqlite3_value_blob(argv[1]); - isText = 0; - }else{ - zHaystack = sqlite3_value_text(argv[0]); - zNeedle = sqlite3_value_text(argv[1]); - isText = 1; - } - while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){ - N++; - do{ - nHaystack--; - zHaystack++; - }while( isText && (zHaystack[0]&0xc0)==0x80 ); - } - if( nNeedle>nHaystack ) N = 0; - sqlite3_result_int(context, N); -} - -/* -** Implementation of the substr() function. -** -** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. -** p1 is 1-indexed. So substr(x,1,1) returns the first character -** of x. If x is text, then we actually count UTF-8 characters. -** If x is a blob, then we count bytes. -** -** If p1 is negative, then we begin abs(p1) from the end of x[]. -** -** If p2 is negative, return the p2 characters preceeding p1. -*/ -static void substrFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *z; - const unsigned char *z2; - int len; - int p0type; - i64 p1, p2; - int negP2 = 0; - - assert( argc==3 || argc==2 ); - if( sqlite3_value_type(argv[1])==SQLITE_NULL - || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) - ){ - return; - } - p0type = sqlite3_value_type(argv[0]); - p1 = sqlite3_value_int(argv[1]); - if( p0type==SQLITE_BLOB ){ - len = sqlite3_value_bytes(argv[0]); - z = sqlite3_value_blob(argv[0]); - if( z==0 ) return; - assert( len==sqlite3_value_bytes(argv[0]) ); - }else{ - z = sqlite3_value_text(argv[0]); - if( z==0 ) return; - len = 0; - if( p1<0 ){ - for(z2=z; *z2; len++){ - SQLITE_SKIP_UTF8(z2); - } - } - } - if( argc==3 ){ - p2 = sqlite3_value_int(argv[2]); - if( p2<0 ){ - p2 = -p2; - negP2 = 1; - } - }else{ - p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; - } - if( p1<0 ){ - p1 += len; - if( p1<0 ){ - p2 += p1; - if( p2<0 ) p2 = 0; - p1 = 0; - } - }else if( p1>0 ){ - p1--; - }else if( p2>0 ){ - p2--; - } - if( negP2 ){ - p1 -= p2; - if( p1<0 ){ - p2 += p1; - p1 = 0; - } - } - assert( p1>=0 && p2>=0 ); - if( p0type!=SQLITE_BLOB ){ - while( *z && p1 ){ - SQLITE_SKIP_UTF8(z); - p1--; - } - for(z2=z; *z2 && p2; p2--){ - SQLITE_SKIP_UTF8(z2); - } - sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT); - }else{ - if( p1+p2>len ){ - p2 = len-p1; - if( p2<0 ) p2 = 0; - } - sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT); - } -} - -/* -** Implementation of the round() function -*/ -#ifndef SQLITE_OMIT_FLOATING_POINT -static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ - int n = 0; - double r; - char *zBuf; - assert( argc==1 || argc==2 ); - if( argc==2 ){ - if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; - n = sqlite3_value_int(argv[1]); - if( n>30 ) n = 30; - if( n<0 ) n = 0; - } - if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; - r = sqlite3_value_double(argv[0]); - /* If Y==0 and X will fit in a 64-bit int, - ** handle the rounding directly, - ** otherwise use printf. - */ - if( n==0 && r>=0 && r<LARGEST_INT64-1 ){ - r = (double)((sqlite_int64)(r+0.5)); - }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){ - r = -(double)((sqlite_int64)((-r)+0.5)); - }else{ - zBuf = sqlite3_mprintf("%.*f",n,r); - if( zBuf==0 ){ - sqlite3_result_error_nomem(context); - return; - } - sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); - sqlite3_free(zBuf); - } - sqlite3_result_double(context, r); -} -#endif - -/* -** Allocate nByte bytes of space using sqlite3_malloc(). If the -** allocation fails, call sqlite3_result_error_nomem() to notify -** the database handle that malloc() has failed and return NULL. -** If nByte is larger than the maximum string or blob length, then -** raise an SQLITE_TOOBIG exception and return NULL. -*/ -static void *contextMalloc(sqlite3_context *context, i64 nByte){ - char *z; - sqlite3 *db = sqlite3_context_db_handle(context); - assert( nByte>0 ); - testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); - testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); - if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - sqlite3_result_error_toobig(context); - z = 0; - }else{ - z = sqlite3Malloc((int)nByte); - if( !z ){ - sqlite3_result_error_nomem(context); - } - } - return z; -} - -/* -** Implementation of the upper() and lower() SQL functions. -*/ -static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ - char *z1; - const char *z2; - int i, n; - UNUSED_PARAMETER(argc); - z2 = (char*)sqlite3_value_text(argv[0]); - n = sqlite3_value_bytes(argv[0]); - /* Verify that the call to _bytes() does not invalidate the _text() pointer */ - assert( z2==(char*)sqlite3_value_text(argv[0]) ); - if( z2 ){ - z1 = contextMalloc(context, ((i64)n)+1); - if( z1 ){ - for(i=0; i<n; i++){ - z1[i] = (char)sqlite3Toupper(z2[i]); - } - sqlite3_result_text(context, z1, n, sqlite3_free); - } - } -} -static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ - char *z1; - const char *z2; - int i, n; - UNUSED_PARAMETER(argc); - z2 = (char*)sqlite3_value_text(argv[0]); - n = sqlite3_value_bytes(argv[0]); - /* Verify that the call to _bytes() does not invalidate the _text() pointer */ - assert( z2==(char*)sqlite3_value_text(argv[0]) ); - if( z2 ){ - z1 = contextMalloc(context, ((i64)n)+1); - if( z1 ){ - for(i=0; i<n; i++){ - z1[i] = sqlite3Tolower(z2[i]); - } - sqlite3_result_text(context, z1, n, sqlite3_free); - } - } -} - -/* -** The COALESCE() and IFNULL() functions are implemented as VDBE code so -** that unused argument values do not have to be computed. However, we -** still need some kind of function implementation for this routines in -** the function table. That function implementation will never be called -** so it doesn't matter what the implementation is. We might as well use -** the "version()" function as a substitute. -*/ -#define ifnullFunc versionFunc /* Substitute function - never called */ - -/* -** Implementation of random(). Return a random integer. -*/ -static void randomFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - sqlite_int64 r; - UNUSED_PARAMETER2(NotUsed, NotUsed2); - sqlite3_randomness(sizeof(r), &r); - if( r<0 ){ - /* We need to prevent a random number of 0x8000000000000000 - ** (or -9223372036854775808) since when you do abs() of that - ** number of you get the same value back again. To do this - ** in a way that is testable, mask the sign bit off of negative - ** values, resulting in a positive value. Then take the - ** 2s complement of that positive value. The end result can - ** therefore be no less than -9223372036854775807. - */ - r = -(r & LARGEST_INT64); - } - sqlite3_result_int64(context, r); -} - -/* -** Implementation of randomblob(N). Return a random blob -** that is N bytes long. -*/ -static void randomBlob( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int n; - unsigned char *p; - assert( argc==1 ); - UNUSED_PARAMETER(argc); - n = sqlite3_value_int(argv[0]); - if( n<1 ){ - n = 1; - } - p = contextMalloc(context, n); - if( p ){ - sqlite3_randomness(n, p); - sqlite3_result_blob(context, (char*)p, n, sqlite3_free); - } -} - -/* -** Implementation of the last_insert_rowid() SQL function. The return -** value is the same as the sqlite3_last_insert_rowid() API function. -*/ -static void last_insert_rowid( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - sqlite3 *db = sqlite3_context_db_handle(context); - UNUSED_PARAMETER2(NotUsed, NotUsed2); - /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a - ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface - ** function. */ - sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); -} - -/* -** Implementation of the changes() SQL function. -** -** IMP: R-62073-11209 The changes() SQL function is a wrapper -** around the sqlite3_changes() C/C++ function and hence follows the same -** rules for counting changes. -*/ -static void changes( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - sqlite3 *db = sqlite3_context_db_handle(context); - UNUSED_PARAMETER2(NotUsed, NotUsed2); - sqlite3_result_int(context, sqlite3_changes(db)); -} - -/* -** Implementation of the total_changes() SQL function. The return value is -** the same as the sqlite3_total_changes() API function. -*/ -static void total_changes( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - sqlite3 *db = sqlite3_context_db_handle(context); - UNUSED_PARAMETER2(NotUsed, NotUsed2); - /* IMP: R-52756-41993 This function is a wrapper around the - ** sqlite3_total_changes() C/C++ interface. */ - sqlite3_result_int(context, sqlite3_total_changes(db)); -} - -/* -** A structure defining how to do GLOB-style comparisons. -*/ -struct compareInfo { - u8 matchAll; - u8 matchOne; - u8 matchSet; - u8 noCase; -}; - -/* -** For LIKE and GLOB matching on EBCDIC machines, assume that every -** character is exactly one byte in size. Also, all characters are -** able to participate in upper-case-to-lower-case mappings in EBCDIC -** whereas only characters less than 0x80 do in ASCII. -*/ -#if defined(SQLITE_EBCDIC) -# define sqlite3Utf8Read(A) (*((*A)++)) -# define GlogUpperToLower(A) A = sqlite3UpperToLower[A] -#else -# define GlogUpperToLower(A) if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; } -#endif - -static const struct compareInfo globInfo = { '*', '?', '[', 0 }; -/* The correct SQL-92 behavior is for the LIKE operator to ignore -** case. Thus 'a' LIKE 'A' would be true. */ -static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; -/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator -** is case sensitive causing 'a' LIKE 'A' to be false */ -static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; - -/* -** Compare two UTF-8 strings for equality where the first string can -** potentially be a "glob" expression. Return true (1) if they -** are the same and false (0) if they are different. -** -** Globbing rules: -** -** '*' Matches any sequence of zero or more characters. -** -** '?' Matches exactly one character. -** -** [...] Matches one character from the enclosed list of -** characters. -** -** [^...] Matches one character not in the enclosed list. -** -** With the [...] and [^...] matching, a ']' character can be included -** in the list by making it the first character after '[' or '^'. A -** range of characters can be specified using '-'. Example: -** "[a-z]" matches any single lower-case letter. To match a '-', make -** it the last character in the list. -** -** This routine is usually quick, but can be N**2 in the worst case. -** -** Hints: to match '*' or '?', put them in "[]". Like this: -** -** abc[*]xyz Matches "abc*xyz" only -*/ -static int patternCompare( - const u8 *zPattern, /* The glob pattern */ - const u8 *zString, /* The string to compare against the glob */ - const struct compareInfo *pInfo, /* Information about how to do the compare */ - u32 esc /* The escape character */ -){ - u32 c, c2; - int invert; - int seen; - u8 matchOne = pInfo->matchOne; - u8 matchAll = pInfo->matchAll; - u8 matchSet = pInfo->matchSet; - u8 noCase = pInfo->noCase; - int prevEscape = 0; /* True if the previous character was 'escape' */ - - while( (c = sqlite3Utf8Read(&zPattern))!=0 ){ - if( c==matchAll && !prevEscape ){ - while( (c=sqlite3Utf8Read(&zPattern)) == matchAll - || c == matchOne ){ - if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ - return 0; - } - } - if( c==0 ){ - return 1; - }else if( c==esc ){ - c = sqlite3Utf8Read(&zPattern); - if( c==0 ){ - return 0; - } - }else if( c==matchSet ){ - assert( esc==0 ); /* This is GLOB, not LIKE */ - assert( matchSet<0x80 ); /* '[' is a single-byte character */ - while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ - SQLITE_SKIP_UTF8(zString); - } - return *zString!=0; - } - while( (c2 = sqlite3Utf8Read(&zString))!=0 ){ - if( noCase ){ - GlogUpperToLower(c2); - GlogUpperToLower(c); - while( c2 != 0 && c2 != c ){ - c2 = sqlite3Utf8Read(&zString); - GlogUpperToLower(c2); - } - }else{ - while( c2 != 0 && c2 != c ){ - c2 = sqlite3Utf8Read(&zString); - } - } - if( c2==0 ) return 0; - if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; - } - return 0; - }else if( c==matchOne && !prevEscape ){ - if( sqlite3Utf8Read(&zString)==0 ){ - return 0; - } - }else if( c==matchSet ){ - u32 prior_c = 0; - assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ - seen = 0; - invert = 0; - c = sqlite3Utf8Read(&zString); - if( c==0 ) return 0; - c2 = sqlite3Utf8Read(&zPattern); - if( c2=='^' ){ - invert = 1; - c2 = sqlite3Utf8Read(&zPattern); - } - if( c2==']' ){ - if( c==']' ) seen = 1; - c2 = sqlite3Utf8Read(&zPattern); - } - while( c2 && c2!=']' ){ - if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ - c2 = sqlite3Utf8Read(&zPattern); - if( c>=prior_c && c<=c2 ) seen = 1; - prior_c = 0; - }else{ - if( c==c2 ){ - seen = 1; - } - prior_c = c2; - } - c2 = sqlite3Utf8Read(&zPattern); - } - if( c2==0 || (seen ^ invert)==0 ){ - return 0; - } - }else if( esc==c && !prevEscape ){ - prevEscape = 1; - }else{ - c2 = sqlite3Utf8Read(&zString); - if( noCase ){ - GlogUpperToLower(c); - GlogUpperToLower(c2); - } - if( c!=c2 ){ - return 0; - } - prevEscape = 0; - } - } - return *zString==0; -} - -/* -** Count the number of times that the LIKE operator (or GLOB which is -** just a variation of LIKE) gets called. This is used for testing -** only. -*/ -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_like_count = 0; -#endif - - -/* -** Implementation of the like() SQL function. This function implements -** the build-in LIKE operator. The first argument to the function is the -** pattern and the second argument is the string. So, the SQL statements: -** -** A LIKE B -** -** is implemented as like(B,A). -** -** This same function (with a different compareInfo structure) computes -** the GLOB operator. -*/ -static void likeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *zA, *zB; - u32 escape = 0; - int nPat; - sqlite3 *db = sqlite3_context_db_handle(context); - - zB = sqlite3_value_text(argv[0]); - zA = sqlite3_value_text(argv[1]); - - /* Limit the length of the LIKE or GLOB pattern to avoid problems - ** of deep recursion and N*N behavior in patternCompare(). - */ - nPat = sqlite3_value_bytes(argv[0]); - testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); - testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); - if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ - sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); - return; - } - assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ - - if( argc==3 ){ - /* The escape character string must consist of a single UTF-8 character. - ** Otherwise, return an error. - */ - const unsigned char *zEsc = sqlite3_value_text(argv[2]); - if( zEsc==0 ) return; - if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ - sqlite3_result_error(context, - "ESCAPE expression must be a single character", -1); - return; - } - escape = sqlite3Utf8Read(&zEsc); - } - if( zA && zB ){ - struct compareInfo *pInfo = sqlite3_user_data(context); -#ifdef SQLITE_TEST - sqlite3_like_count++; -#endif - - sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); - } -} - -/* -** Implementation of the NULLIF(x,y) function. The result is the first -** argument if the arguments are different. The result is NULL if the -** arguments are equal to each other. -*/ -static void nullifFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - CollSeq *pColl = sqlite3GetFuncCollSeq(context); - UNUSED_PARAMETER(NotUsed); - if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ - sqlite3_result_value(context, argv[0]); - } -} - -/* -** Implementation of the sqlite_version() function. The result is the version -** of the SQLite library that is running. -*/ -static void versionFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - /* IMP: R-48699-48617 This function is an SQL wrapper around the - ** sqlite3_libversion() C-interface. */ - sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); -} - -/* -** Implementation of the sqlite_source_id() function. The result is a string -** that identifies the particular version of the source code used to build -** SQLite. -*/ -static void sourceidFunc( - sqlite3_context *context, - int NotUsed, - sqlite3_value **NotUsed2 -){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - /* IMP: R-24470-31136 This function is an SQL wrapper around the - ** sqlite3_sourceid() C interface. */ - sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); -} - -/* -** Implementation of the sqlite_log() function. This is a wrapper around -** sqlite3_log(). The return value is NULL. The function exists purely for -** its side-effects. -*/ -static void errlogFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - UNUSED_PARAMETER(argc); - UNUSED_PARAMETER(context); - sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); -} - -/* -** Implementation of the sqlite_compileoption_used() function. -** The result is an integer that identifies if the compiler option -** was used to build SQLite. -*/ -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS -static void compileoptionusedFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const char *zOptName; - assert( argc==1 ); - UNUSED_PARAMETER(argc); - /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL - ** function is a wrapper around the sqlite3_compileoption_used() C/C++ - ** function. - */ - if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ - sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); - } -} -#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ - -/* -** Implementation of the sqlite_compileoption_get() function. -** The result is a string that identifies the compiler options -** used to build SQLite. -*/ -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS -static void compileoptiongetFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int n; - assert( argc==1 ); - UNUSED_PARAMETER(argc); - /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function - ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. - */ - n = sqlite3_value_int(argv[0]); - sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); -} -#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ - -/* Array for converting from half-bytes (nybbles) into ASCII hex -** digits. */ -static const char hexdigits[] = { - '0', '1', '2', '3', '4', '5', '6', '7', - '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' -}; - -/* -** EXPERIMENTAL - This is not an official function. The interface may -** change. This function may disappear. Do not write code that depends -** on this function. -** -** Implementation of the QUOTE() function. This function takes a single -** argument. If the argument is numeric, the return value is the same as -** the argument. If the argument is NULL, the return value is the string -** "NULL". Otherwise, the argument is enclosed in single quotes with -** single-quote escapes. -*/ -static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ - assert( argc==1 ); - UNUSED_PARAMETER(argc); - switch( sqlite3_value_type(argv[0]) ){ - case SQLITE_FLOAT: { - double r1, r2; - char zBuf[50]; - r1 = sqlite3_value_double(argv[0]); - sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); - sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8); - if( r1!=r2 ){ - sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1); - } - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - break; - } - case SQLITE_INTEGER: { - sqlite3_result_value(context, argv[0]); - break; - } - case SQLITE_BLOB: { - char *zText = 0; - char const *zBlob = sqlite3_value_blob(argv[0]); - int nBlob = sqlite3_value_bytes(argv[0]); - assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ - zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); - if( zText ){ - int i; - for(i=0; i<nBlob; i++){ - zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; - zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; - } - zText[(nBlob*2)+2] = '\''; - zText[(nBlob*2)+3] = '\0'; - zText[0] = 'X'; - zText[1] = '\''; - sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); - sqlite3_free(zText); - } - break; - } - case SQLITE_TEXT: { - int i,j; - u64 n; - const unsigned char *zArg = sqlite3_value_text(argv[0]); - char *z; - - if( zArg==0 ) return; - for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } - z = contextMalloc(context, ((i64)i)+((i64)n)+3); - if( z ){ - z[0] = '\''; - for(i=0, j=1; zArg[i]; i++){ - z[j++] = zArg[i]; - if( zArg[i]=='\'' ){ - z[j++] = '\''; - } - } - z[j++] = '\''; - z[j] = 0; - sqlite3_result_text(context, z, j, sqlite3_free); - } - break; - } - default: { - assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); - sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); - break; - } - } -} - -/* -** The unicode() function. Return the integer unicode code-point value -** for the first character of the input string. -*/ -static void unicodeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *z = sqlite3_value_text(argv[0]); - (void)argc; - if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); -} - -/* -** The char() function takes zero or more arguments, each of which is -** an integer. It constructs a string where each character of the string -** is the unicode character for the corresponding integer argument. -*/ -static void charFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - unsigned char *z, *zOut; - int i; - zOut = z = sqlite3_malloc( argc*4 ); - if( z==0 ){ - sqlite3_result_error_nomem(context); - return; - } - for(i=0; i<argc; i++){ - sqlite3_int64 x; - unsigned c; - x = sqlite3_value_int64(argv[i]); - if( x<0 || x>0x10ffff ) x = 0xfffd; - c = (unsigned)(x & 0x1fffff); - if( c<0x00080 ){ - *zOut++ = (u8)(c&0xFF); - }else if( c<0x00800 ){ - *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); - *zOut++ = 0x80 + (u8)(c & 0x3F); - }else if( c<0x10000 ){ - *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); - *zOut++ = 0x80 + (u8)(c & 0x3F); - }else{ - *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); - *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); - *zOut++ = 0x80 + (u8)(c & 0x3F); - } \ - } - sqlite3_result_text(context, (char*)z, (int)(zOut-z), sqlite3_free); -} - -/* -** The hex() function. Interpret the argument as a blob. Return -** a hexadecimal rendering as text. -*/ -static void hexFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int i, n; - const unsigned char *pBlob; - char *zHex, *z; - assert( argc==1 ); - UNUSED_PARAMETER(argc); - pBlob = sqlite3_value_blob(argv[0]); - n = sqlite3_value_bytes(argv[0]); - assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ - z = zHex = contextMalloc(context, ((i64)n)*2 + 1); - if( zHex ){ - for(i=0; i<n; i++, pBlob++){ - unsigned char c = *pBlob; - *(z++) = hexdigits[(c>>4)&0xf]; - *(z++) = hexdigits[c&0xf]; - } - *z = 0; - sqlite3_result_text(context, zHex, n*2, sqlite3_free); - } -} - -/* -** The zeroblob(N) function returns a zero-filled blob of size N bytes. -*/ -static void zeroblobFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - i64 n; - sqlite3 *db = sqlite3_context_db_handle(context); - assert( argc==1 ); - UNUSED_PARAMETER(argc); - n = sqlite3_value_int64(argv[0]); - testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] ); - testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); - if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - sqlite3_result_error_toobig(context); - }else{ - sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ - } -} - -/* -** The replace() function. Three arguments are all strings: call -** them A, B, and C. The result is also a string which is derived -** from A by replacing every occurance of B with C. The match -** must be exact. Collating sequences are not used. -*/ -static void replaceFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *zStr; /* The input string A */ - const unsigned char *zPattern; /* The pattern string B */ - const unsigned char *zRep; /* The replacement string C */ - unsigned char *zOut; /* The output */ - int nStr; /* Size of zStr */ - int nPattern; /* Size of zPattern */ - int nRep; /* Size of zRep */ - i64 nOut; /* Maximum size of zOut */ - int loopLimit; /* Last zStr[] that might match zPattern[] */ - int i, j; /* Loop counters */ - - assert( argc==3 ); - UNUSED_PARAMETER(argc); - zStr = sqlite3_value_text(argv[0]); - if( zStr==0 ) return; - nStr = sqlite3_value_bytes(argv[0]); - assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ - zPattern = sqlite3_value_text(argv[1]); - if( zPattern==0 ){ - assert( sqlite3_value_type(argv[1])==SQLITE_NULL - || sqlite3_context_db_handle(context)->mallocFailed ); - return; - } - if( zPattern[0]==0 ){ - assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); - sqlite3_result_value(context, argv[0]); - return; - } - nPattern = sqlite3_value_bytes(argv[1]); - assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ - zRep = sqlite3_value_text(argv[2]); - if( zRep==0 ) return; - nRep = sqlite3_value_bytes(argv[2]); - assert( zRep==sqlite3_value_text(argv[2]) ); - nOut = nStr + 1; - assert( nOut<SQLITE_MAX_LENGTH ); - zOut = contextMalloc(context, (i64)nOut); - if( zOut==0 ){ - return; - } - loopLimit = nStr - nPattern; - for(i=j=0; i<=loopLimit; i++){ - if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ - zOut[j++] = zStr[i]; - }else{ - u8 *zOld; - sqlite3 *db = sqlite3_context_db_handle(context); - nOut += nRep - nPattern; - testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); - testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); - if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ - sqlite3_result_error_toobig(context); - sqlite3_free(zOut); - return; - } - zOld = zOut; - zOut = sqlite3_realloc(zOut, (int)nOut); - if( zOut==0 ){ - sqlite3_result_error_nomem(context); - sqlite3_free(zOld); - return; - } - memcpy(&zOut[j], zRep, nRep); - j += nRep; - i += nPattern-1; - } - } - assert( j+nStr-i+1==nOut ); - memcpy(&zOut[j], &zStr[i], nStr-i); - j += nStr - i; - assert( j<=nOut ); - zOut[j] = 0; - sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); -} - -/* -** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. -** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. -*/ -static void trimFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *zIn; /* Input string */ - const unsigned char *zCharSet; /* Set of characters to trim */ - int nIn; /* Number of bytes in input */ - int flags; /* 1: trimleft 2: trimright 3: trim */ - int i; /* Loop counter */ - unsigned char *aLen = 0; /* Length of each character in zCharSet */ - unsigned char **azChar = 0; /* Individual characters in zCharSet */ - int nChar; /* Number of characters in zCharSet */ - - if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ - return; - } - zIn = sqlite3_value_text(argv[0]); - if( zIn==0 ) return; - nIn = sqlite3_value_bytes(argv[0]); - assert( zIn==sqlite3_value_text(argv[0]) ); - if( argc==1 ){ - static const unsigned char lenOne[] = { 1 }; - static unsigned char * const azOne[] = { (u8*)" " }; - nChar = 1; - aLen = (u8*)lenOne; - azChar = (unsigned char **)azOne; - zCharSet = 0; - }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ - return; - }else{ - const unsigned char *z; - for(z=zCharSet, nChar=0; *z; nChar++){ - SQLITE_SKIP_UTF8(z); - } - if( nChar>0 ){ - azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); - if( azChar==0 ){ - return; - } - aLen = (unsigned char*)&azChar[nChar]; - for(z=zCharSet, nChar=0; *z; nChar++){ - azChar[nChar] = (unsigned char *)z; - SQLITE_SKIP_UTF8(z); - aLen[nChar] = (u8)(z - azChar[nChar]); - } - } - } - if( nChar>0 ){ - flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); - if( flags & 1 ){ - while( nIn>0 ){ - int len = 0; - for(i=0; i<nChar; i++){ - len = aLen[i]; - if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; - } - if( i>=nChar ) break; - zIn += len; - nIn -= len; - } - } - if( flags & 2 ){ - while( nIn>0 ){ - int len = 0; - for(i=0; i<nChar; i++){ - len = aLen[i]; - if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; - } - if( i>=nChar ) break; - nIn -= len; - } - } - if( zCharSet ){ - sqlite3_free(azChar); - } - } - sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); -} - - -/* IMP: R-25361-16150 This function is omitted from SQLite by default. It -** is only available if the SQLITE_SOUNDEX compile-time option is used -** when SQLite is built. -*/ -#ifdef SQLITE_SOUNDEX -/* -** Compute the soundex encoding of a word. -** -** IMP: R-59782-00072 The soundex(X) function returns a string that is the -** soundex encoding of the string X. -*/ -static void soundexFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - char zResult[8]; - const u8 *zIn; - int i, j; - static const unsigned char iCode[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, - 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, - 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, - 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, - }; - assert( argc==1 ); - zIn = (u8*)sqlite3_value_text(argv[0]); - if( zIn==0 ) zIn = (u8*)""; - for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} - if( zIn[i] ){ - u8 prevcode = iCode[zIn[i]&0x7f]; - zResult[0] = sqlite3Toupper(zIn[i]); - for(j=1; j<4 && zIn[i]; i++){ - int code = iCode[zIn[i]&0x7f]; - if( code>0 ){ - if( code!=prevcode ){ - prevcode = code; - zResult[j++] = code + '0'; - } - }else{ - prevcode = 0; - } - } - while( j<4 ){ - zResult[j++] = '0'; - } - zResult[j] = 0; - sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); - }else{ - /* IMP: R-64894-50321 The string "?000" is returned if the argument - ** is NULL or contains no ASCII alphabetic characters. */ - sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); - } -} -#endif /* SQLITE_SOUNDEX */ - -#ifndef SQLITE_OMIT_LOAD_EXTENSION -/* -** A function that loads a shared-library extension then returns NULL. -*/ -static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ - const char *zFile = (const char *)sqlite3_value_text(argv[0]); - const char *zProc; - sqlite3 *db = sqlite3_context_db_handle(context); - char *zErrMsg = 0; - - if( argc==2 ){ - zProc = (const char *)sqlite3_value_text(argv[1]); - }else{ - zProc = 0; - } - if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ - sqlite3_result_error(context, zErrMsg, -1); - sqlite3_free(zErrMsg); - } -} -#endif - - -/* -** An instance of the following structure holds the context of a -** sum() or avg() aggregate computation. -*/ -typedef struct SumCtx SumCtx; -struct SumCtx { - double rSum; /* Floating point sum */ - i64 iSum; /* Integer sum */ - i64 cnt; /* Number of elements summed */ - u8 overflow; /* True if integer overflow seen */ - u8 approx; /* True if non-integer value was input to the sum */ -}; - -/* -** Routines used to compute the sum, average, and total. -** -** The SUM() function follows the (broken) SQL standard which means -** that it returns NULL if it sums over no inputs. TOTAL returns -** 0.0 in that case. In addition, TOTAL always returns a float where -** SUM might return an integer if it never encounters a floating point -** value. TOTAL never fails, but SUM might through an exception if -** it overflows an integer. -*/ -static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ - SumCtx *p; - int type; - assert( argc==1 ); - UNUSED_PARAMETER(argc); - p = sqlite3_aggregate_context(context, sizeof(*p)); - type = sqlite3_value_numeric_type(argv[0]); - if( p && type!=SQLITE_NULL ){ - p->cnt++; - if( type==SQLITE_INTEGER ){ - i64 v = sqlite3_value_int64(argv[0]); - p->rSum += v; - if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ - p->overflow = 1; - } - }else{ - p->rSum += sqlite3_value_double(argv[0]); - p->approx = 1; - } - } -} -static void sumFinalize(sqlite3_context *context){ - SumCtx *p; - p = sqlite3_aggregate_context(context, 0); - if( p && p->cnt>0 ){ - if( p->overflow ){ - sqlite3_result_error(context,"integer overflow",-1); - }else if( p->approx ){ - sqlite3_result_double(context, p->rSum); - }else{ - sqlite3_result_int64(context, p->iSum); - } - } -} -static void avgFinalize(sqlite3_context *context){ - SumCtx *p; - p = sqlite3_aggregate_context(context, 0); - if( p && p->cnt>0 ){ - sqlite3_result_double(context, p->rSum/(double)p->cnt); - } -} -static void totalFinalize(sqlite3_context *context){ - SumCtx *p; - p = sqlite3_aggregate_context(context, 0); - /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ - sqlite3_result_double(context, p ? p->rSum : (double)0); -} - -/* -** The following structure keeps track of state information for the -** count() aggregate function. -*/ -typedef struct CountCtx CountCtx; -struct CountCtx { - i64 n; -}; - -/* -** Routines to implement the count() aggregate function. -*/ -static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ - CountCtx *p; - p = sqlite3_aggregate_context(context, sizeof(*p)); - if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ - p->n++; - } - -#ifndef SQLITE_OMIT_DEPRECATED - /* The sqlite3_aggregate_count() function is deprecated. But just to make - ** sure it still operates correctly, verify that its count agrees with our - ** internal count when using count(*) and when the total count can be - ** expressed as a 32-bit integer. */ - assert( argc==1 || p==0 || p->n>0x7fffffff - || p->n==sqlite3_aggregate_count(context) ); -#endif -} -static void countFinalize(sqlite3_context *context){ - CountCtx *p; - p = sqlite3_aggregate_context(context, 0); - sqlite3_result_int64(context, p ? p->n : 0); -} - -/* -** Routines to implement min() and max() aggregate functions. -*/ -static void minmaxStep( - sqlite3_context *context, - int NotUsed, - sqlite3_value **argv -){ - Mem *pArg = (Mem *)argv[0]; - Mem *pBest; - UNUSED_PARAMETER(NotUsed); - - pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); - if( !pBest ) return; - - if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ - if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); - }else if( pBest->flags ){ - int max; - int cmp; - CollSeq *pColl = sqlite3GetFuncCollSeq(context); - /* This step function is used for both the min() and max() aggregates, - ** the only difference between the two being that the sense of the - ** comparison is inverted. For the max() aggregate, the - ** sqlite3_user_data() function returns (void *)-1. For min() it - ** returns (void *)db, where db is the sqlite3* database pointer. - ** Therefore the next statement sets variable 'max' to 1 for the max() - ** aggregate, or 0 for min(). - */ - max = sqlite3_user_data(context)!=0; - cmp = sqlite3MemCompare(pBest, pArg, pColl); - if( (max && cmp<0) || (!max && cmp>0) ){ - sqlite3VdbeMemCopy(pBest, pArg); - }else{ - sqlite3SkipAccumulatorLoad(context); - } - }else{ - sqlite3VdbeMemCopy(pBest, pArg); - } -} -static void minMaxFinalize(sqlite3_context *context){ - sqlite3_value *pRes; - pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); - if( pRes ){ - if( pRes->flags ){ - sqlite3_result_value(context, pRes); - } - sqlite3VdbeMemRelease(pRes); - } -} - -/* -** group_concat(EXPR, ?SEPARATOR?) -*/ -static void groupConcatStep( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const char *zVal; - StrAccum *pAccum; - const char *zSep; - int nVal, nSep; - assert( argc==1 || argc==2 ); - if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; - pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); - - if( pAccum ){ - sqlite3 *db = sqlite3_context_db_handle(context); - int firstTerm = pAccum->useMalloc==0; - pAccum->useMalloc = 2; - pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; - if( !firstTerm ){ - if( argc==2 ){ - zSep = (char*)sqlite3_value_text(argv[1]); - nSep = sqlite3_value_bytes(argv[1]); - }else{ - zSep = ","; - nSep = 1; - } - sqlite3StrAccumAppend(pAccum, zSep, nSep); - } - zVal = (char*)sqlite3_value_text(argv[0]); - nVal = sqlite3_value_bytes(argv[0]); - sqlite3StrAccumAppend(pAccum, zVal, nVal); - } -} -static void groupConcatFinalize(sqlite3_context *context){ - StrAccum *pAccum; - pAccum = sqlite3_aggregate_context(context, 0); - if( pAccum ){ - if( pAccum->tooBig ){ - sqlite3_result_error_toobig(context); - }else if( pAccum->mallocFailed ){ - sqlite3_result_error_nomem(context); - }else{ - sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, - sqlite3_free); - } - } -} - -/* -** This routine does per-connection function registration. Most -** of the built-in functions above are part of the global function set. -** This routine only deals with those that are not global. -*/ -SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ - int rc = sqlite3_overload_function(db, "MATCH", 2); - assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); - if( rc==SQLITE_NOMEM ){ - db->mallocFailed = 1; - } -} - -/* -** Set the LIKEOPT flag on the 2-argument function with the given name. -*/ -static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){ - FuncDef *pDef; - pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName), - 2, SQLITE_UTF8, 0); - if( ALWAYS(pDef) ){ - pDef->flags = flagVal; - } -} - -/* -** Register the built-in LIKE and GLOB functions. The caseSensitive -** parameter determines whether or not the LIKE operator is case -** sensitive. GLOB is always case sensitive. -*/ -SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ - struct compareInfo *pInfo; - if( caseSensitive ){ - pInfo = (struct compareInfo*)&likeInfoAlt; - }else{ - pInfo = (struct compareInfo*)&likeInfoNorm; - } - sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); - sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); - sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, - (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0); - setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); - setLikeOptFlag(db, "like", - caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); -} - -/* -** pExpr points to an expression which implements a function. If -** it is appropriate to apply the LIKE optimization to that function -** then set aWc[0] through aWc[2] to the wildcard characters and -** return TRUE. If the function is not a LIKE-style function then -** return FALSE. -*/ -SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ - FuncDef *pDef; - if( pExpr->op!=TK_FUNCTION - || !pExpr->x.pList - || pExpr->x.pList->nExpr!=2 - ){ - return 0; - } - assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); - pDef = sqlite3FindFunction(db, pExpr->u.zToken, - sqlite3Strlen30(pExpr->u.zToken), - 2, SQLITE_UTF8, 0); - if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ - return 0; - } - - /* The memcpy() statement assumes that the wildcard characters are - ** the first three statements in the compareInfo structure. The - ** asserts() that follow verify that assumption - */ - memcpy(aWc, pDef->pUserData, 3); - assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); - assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); - assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); - *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; - return 1; -} - -/* -** All all of the FuncDef structures in the aBuiltinFunc[] array above -** to the global function hash table. This occurs at start-time (as -** a consequence of calling sqlite3_initialize()). -** -** After this routine runs -*/ -SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void){ - /* - ** The following array holds FuncDef structures for all of the functions - ** defined in this file. - ** - ** The array cannot be constant since changes are made to the - ** FuncDef.pHash elements at start-time. The elements of this array - ** are read-only after initialization is complete. - */ - static SQLITE_WSD FuncDef aBuiltinFunc[] = { - FUNCTION(ltrim, 1, 1, 0, trimFunc ), - FUNCTION(ltrim, 2, 1, 0, trimFunc ), - FUNCTION(rtrim, 1, 2, 0, trimFunc ), - FUNCTION(rtrim, 2, 2, 0, trimFunc ), - FUNCTION(trim, 1, 3, 0, trimFunc ), - FUNCTION(trim, 2, 3, 0, trimFunc ), - FUNCTION(min, -1, 0, 1, minmaxFunc ), - FUNCTION(min, 0, 0, 1, 0 ), - AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ), - FUNCTION(max, -1, 1, 1, minmaxFunc ), - FUNCTION(max, 0, 1, 1, 0 ), - AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ), - FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), - FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), - FUNCTION(instr, 2, 0, 0, instrFunc ), - FUNCTION(substr, 2, 0, 0, substrFunc ), - FUNCTION(substr, 3, 0, 0, substrFunc ), - FUNCTION(unicode, 1, 0, 0, unicodeFunc ), - FUNCTION(char, -1, 0, 0, charFunc ), - FUNCTION(abs, 1, 0, 0, absFunc ), -#ifndef SQLITE_OMIT_FLOATING_POINT - FUNCTION(round, 1, 0, 0, roundFunc ), - FUNCTION(round, 2, 0, 0, roundFunc ), -#endif - FUNCTION(upper, 1, 0, 0, upperFunc ), - FUNCTION(lower, 1, 0, 0, lowerFunc ), - FUNCTION(coalesce, 1, 0, 0, 0 ), - FUNCTION(coalesce, 0, 0, 0, 0 ), - FUNCTION2(coalesce, -1, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE), - FUNCTION(hex, 1, 0, 0, hexFunc ), - FUNCTION2(ifnull, 2, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE), - FUNCTION(random, 0, 0, 0, randomFunc ), - FUNCTION(randomblob, 1, 0, 0, randomBlob ), - FUNCTION(nullif, 2, 0, 1, nullifFunc ), - FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), - FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), - FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS - FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), - FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), -#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ - FUNCTION(quote, 1, 0, 0, quoteFunc ), - FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), - FUNCTION(changes, 0, 0, 0, changes ), - FUNCTION(total_changes, 0, 0, 0, total_changes ), - FUNCTION(replace, 3, 0, 0, replaceFunc ), - FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), - #ifdef SQLITE_SOUNDEX - FUNCTION(soundex, 1, 0, 0, soundexFunc ), - #endif - #ifndef SQLITE_OMIT_LOAD_EXTENSION - FUNCTION(load_extension, 1, 0, 0, loadExt ), - FUNCTION(load_extension, 2, 0, 0, loadExt ), - #endif - AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), - AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), - AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), - /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */ - {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0}, - AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), - AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), - AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), - - LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), - #ifdef SQLITE_CASE_SENSITIVE_LIKE - LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), - LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), - #else - LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), - LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), - #endif - }; - - int i; - FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); - FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc); - - for(i=0; i<ArraySize(aBuiltinFunc); i++){ - sqlite3FuncDefInsert(pHash, &aFunc[i]); - } - sqlite3RegisterDateTimeFunctions(); -#ifndef SQLITE_OMIT_ALTERTABLE - sqlite3AlterFunctions(); -#endif -} - -/************** End of func.c ************************************************/ -/************** Begin file fkey.c ********************************************/ -/* -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used by the compiler to add foreign key -** support to compiled SQL statements. -*/ - -#ifndef SQLITE_OMIT_FOREIGN_KEY -#ifndef SQLITE_OMIT_TRIGGER - -/* -** Deferred and Immediate FKs -** -------------------------- -** -** Foreign keys in SQLite come in two flavours: deferred and immediate. -** If an immediate foreign key constraint is violated, -** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current -** statement transaction rolled back. If a -** deferred foreign key constraint is violated, no action is taken -** immediately. However if the application attempts to commit the -** transaction before fixing the constraint violation, the attempt fails. -** -** Deferred constraints are implemented using a simple counter associated -** with the database handle. The counter is set to zero each time a -** database transaction is opened. Each time a statement is executed -** that causes a foreign key violation, the counter is incremented. Each -** time a statement is executed that removes an existing violation from -** the database, the counter is decremented. When the transaction is -** committed, the commit fails if the current value of the counter is -** greater than zero. This scheme has two big drawbacks: -** -** * When a commit fails due to a deferred foreign key constraint, -** there is no way to tell which foreign constraint is not satisfied, -** or which row it is not satisfied for. -** -** * If the database contains foreign key violations when the -** transaction is opened, this may cause the mechanism to malfunction. -** -** Despite these problems, this approach is adopted as it seems simpler -** than the alternatives. -** -** INSERT operations: -** -** I.1) For each FK for which the table is the child table, search -** the parent table for a match. If none is found increment the -** constraint counter. -** -** I.2) For each FK for which the table is the parent table, -** search the child table for rows that correspond to the new -** row in the parent table. Decrement the counter for each row -** found (as the constraint is now satisfied). -** -** DELETE operations: -** -** D.1) For each FK for which the table is the child table, -** search the parent table for a row that corresponds to the -** deleted row in the child table. If such a row is not found, -** decrement the counter. -** -** D.2) For each FK for which the table is the parent table, search -** the child table for rows that correspond to the deleted row -** in the parent table. For each found increment the counter. -** -** UPDATE operations: -** -** An UPDATE command requires that all 4 steps above are taken, but only -** for FK constraints for which the affected columns are actually -** modified (values must be compared at runtime). -** -** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. -** This simplifies the implementation a bit. -** -** For the purposes of immediate FK constraints, the OR REPLACE conflict -** resolution is considered to delete rows before the new row is inserted. -** If a delete caused by OR REPLACE violates an FK constraint, an exception -** is thrown, even if the FK constraint would be satisfied after the new -** row is inserted. -** -** Immediate constraints are usually handled similarly. The only difference -** is that the counter used is stored as part of each individual statement -** object (struct Vdbe). If, after the statement has run, its immediate -** constraint counter is greater than zero, -** it returns SQLITE_CONSTRAINT_FOREIGNKEY -** and the statement transaction is rolled back. An exception is an INSERT -** statement that inserts a single row only (no triggers). In this case, -** instead of using a counter, an exception is thrown immediately if the -** INSERT violates a foreign key constraint. This is necessary as such -** an INSERT does not open a statement transaction. -** -** TODO: How should dropping a table be handled? How should renaming a -** table be handled? -** -** -** Query API Notes -** --------------- -** -** Before coding an UPDATE or DELETE row operation, the code-generator -** for those two operations needs to know whether or not the operation -** requires any FK processing and, if so, which columns of the original -** row are required by the FK processing VDBE code (i.e. if FKs were -** implemented using triggers, which of the old.* columns would be -** accessed). No information is required by the code-generator before -** coding an INSERT operation. The functions used by the UPDATE/DELETE -** generation code to query for this information are: -** -** sqlite3FkRequired() - Test to see if FK processing is required. -** sqlite3FkOldmask() - Query for the set of required old.* columns. -** -** -** Externally accessible module functions -** -------------------------------------- -** -** sqlite3FkCheck() - Check for foreign key violations. -** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. -** sqlite3FkDelete() - Delete an FKey structure. -*/ - -/* -** VDBE Calling Convention -** ----------------------- -** -** Example: -** -** For the following INSERT statement: -** -** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); -** INSERT INTO t1 VALUES(1, 2, 3.1); -** -** Register (x): 2 (type integer) -** Register (x+1): 1 (type integer) -** Register (x+2): NULL (type NULL) -** Register (x+3): 3.1 (type real) -*/ - -/* -** A foreign key constraint requires that the key columns in the parent -** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. -** Given that pParent is the parent table for foreign key constraint pFKey, -** search the schema for a unique index on the parent key columns. -** -** If successful, zero is returned. If the parent key is an INTEGER PRIMARY -** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx -** is set to point to the unique index. -** -** If the parent key consists of a single column (the foreign key constraint -** is not a composite foreign key), output variable *paiCol is set to NULL. -** Otherwise, it is set to point to an allocated array of size N, where -** N is the number of columns in the parent key. The first element of the -** array is the index of the child table column that is mapped by the FK -** constraint to the parent table column stored in the left-most column -** of index *ppIdx. The second element of the array is the index of the -** child table column that corresponds to the second left-most column of -** *ppIdx, and so on. -** -** If the required index cannot be found, either because: -** -** 1) The named parent key columns do not exist, or -** -** 2) The named parent key columns do exist, but are not subject to a -** UNIQUE or PRIMARY KEY constraint, or -** -** 3) No parent key columns were provided explicitly as part of the -** foreign key definition, and the parent table does not have a -** PRIMARY KEY, or -** -** 4) No parent key columns were provided explicitly as part of the -** foreign key definition, and the PRIMARY KEY of the parent table -** consists of a a different number of columns to the child key in -** the child table. -** -** then non-zero is returned, and a "foreign key mismatch" error loaded -** into pParse. If an OOM error occurs, non-zero is returned and the -** pParse->db->mallocFailed flag is set. -*/ -SQLITE_PRIVATE int sqlite3FkLocateIndex( - Parse *pParse, /* Parse context to store any error in */ - Table *pParent, /* Parent table of FK constraint pFKey */ - FKey *pFKey, /* Foreign key to find index for */ - Index **ppIdx, /* OUT: Unique index on parent table */ - int **paiCol /* OUT: Map of index columns in pFKey */ -){ - Index *pIdx = 0; /* Value to return via *ppIdx */ - int *aiCol = 0; /* Value to return via *paiCol */ - int nCol = pFKey->nCol; /* Number of columns in parent key */ - char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ - - /* The caller is responsible for zeroing output parameters. */ - assert( ppIdx && *ppIdx==0 ); - assert( !paiCol || *paiCol==0 ); - assert( pParse ); - - /* If this is a non-composite (single column) foreign key, check if it - ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx - ** and *paiCol set to zero and return early. - ** - ** Otherwise, for a composite foreign key (more than one column), allocate - ** space for the aiCol array (returned via output parameter *paiCol). - ** Non-composite foreign keys do not require the aiCol array. - */ - if( nCol==1 ){ - /* The FK maps to the IPK if any of the following are true: - ** - ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly - ** mapped to the primary key of table pParent, or - ** 2) The FK is explicitly mapped to a column declared as INTEGER - ** PRIMARY KEY. - */ - if( pParent->iPKey>=0 ){ - if( !zKey ) return 0; - if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; - } - }else if( paiCol ){ - assert( nCol>1 ); - aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); - if( !aiCol ) return 1; - *paiCol = aiCol; - } - - for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ - if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ - /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number - ** of columns. If each indexed column corresponds to a foreign key - ** column of pFKey, then this index is a winner. */ - - if( zKey==0 ){ - /* If zKey is NULL, then this foreign key is implicitly mapped to - ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be - ** identified by the test (Index.autoIndex==2). */ - if( pIdx->autoIndex==2 ){ - if( aiCol ){ - int i; - for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; - } - break; - } - }else{ - /* If zKey is non-NULL, then this foreign key was declared to - ** map to an explicit list of columns in table pParent. Check if this - ** index matches those columns. Also, check that the index uses - ** the default collation sequences for each column. */ - int i, j; - for(i=0; i<nCol; i++){ - int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ - char *zDfltColl; /* Def. collation for column */ - char *zIdxCol; /* Name of indexed column */ - - /* If the index uses a collation sequence that is different from - ** the default collation sequence for the column, this index is - ** unusable. Bail out early in this case. */ - zDfltColl = pParent->aCol[iCol].zColl; - if( !zDfltColl ){ - zDfltColl = "BINARY"; - } - if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; - - zIdxCol = pParent->aCol[iCol].zName; - for(j=0; j<nCol; j++){ - if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ - if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; - break; - } - } - if( j==nCol ) break; - } - if( i==nCol ) break; /* pIdx is usable */ - } - } - } - - if( !pIdx ){ - if( !pParse->disableTriggers ){ - sqlite3ErrorMsg(pParse, - "foreign key mismatch - \"%w\" referencing \"%w\"", - pFKey->pFrom->zName, pFKey->zTo); - } - sqlite3DbFree(pParse->db, aiCol); - return 1; - } - - *ppIdx = pIdx; - return 0; -} - -/* -** This function is called when a row is inserted into or deleted from the -** child table of foreign key constraint pFKey. If an SQL UPDATE is executed -** on the child table of pFKey, this function is invoked twice for each row -** affected - once to "delete" the old row, and then again to "insert" the -** new row. -** -** Each time it is called, this function generates VDBE code to locate the -** row in the parent table that corresponds to the row being inserted into -** or deleted from the child table. If the parent row can be found, no -** special action is taken. Otherwise, if the parent row can *not* be -** found in the parent table: -** -** Operation | FK type | Action taken -** -------------------------------------------------------------------------- -** INSERT immediate Increment the "immediate constraint counter". -** -** DELETE immediate Decrement the "immediate constraint counter". -** -** INSERT deferred Increment the "deferred constraint counter". -** -** DELETE deferred Decrement the "deferred constraint counter". -** -** These operations are identified in the comment at the top of this file -** (fkey.c) as "I.1" and "D.1". -*/ -static void fkLookupParent( - Parse *pParse, /* Parse context */ - int iDb, /* Index of database housing pTab */ - Table *pTab, /* Parent table of FK pFKey */ - Index *pIdx, /* Unique index on parent key columns in pTab */ - FKey *pFKey, /* Foreign key constraint */ - int *aiCol, /* Map from parent key columns to child table columns */ - int regData, /* Address of array containing child table row */ - int nIncr, /* Increment constraint counter by this */ - int isIgnore /* If true, pretend pTab contains all NULL values */ -){ - int i; /* Iterator variable */ - Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ - int iCur = pParse->nTab - 1; /* Cursor number to use */ - int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ - - /* If nIncr is less than zero, then check at runtime if there are any - ** outstanding constraints to resolve. If there are not, there is no need - ** to check if deleting this row resolves any outstanding violations. - ** - ** Check if any of the key columns in the child table row are NULL. If - ** any are, then the constraint is considered satisfied. No need to - ** search for a matching row in the parent table. */ - if( nIncr<0 ){ - sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); - } - for(i=0; i<pFKey->nCol; i++){ - int iReg = aiCol[i] + regData + 1; - sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); - } - - if( isIgnore==0 ){ - if( pIdx==0 ){ - /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY - ** column of the parent table (table pTab). */ - int iMustBeInt; /* Address of MustBeInt instruction */ - int regTemp = sqlite3GetTempReg(pParse); - - /* Invoke MustBeInt to coerce the child key value to an integer (i.e. - ** apply the affinity of the parent key). If this fails, then there - ** is no matching parent key. Before using MustBeInt, make a copy of - ** the value. Otherwise, the value inserted into the child key column - ** will have INTEGER affinity applied to it, which may not be correct. */ - sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); - iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); - - /* If the parent table is the same as the child table, and we are about - ** to increment the constraint-counter (i.e. this is an INSERT operation), - ** then check if the row being inserted matches itself. If so, do not - ** increment the constraint-counter. */ - if( pTab==pFKey->pFrom && nIncr==1 ){ - sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); - } - - sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); - sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); - sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); - sqlite3VdbeJumpHere(v, iMustBeInt); - sqlite3ReleaseTempReg(pParse, regTemp); - }else{ - int nCol = pFKey->nCol; - int regTemp = sqlite3GetTempRange(pParse, nCol); - int regRec = sqlite3GetTempReg(pParse); - KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); - - sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); - sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); - for(i=0; i<nCol; i++){ - sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); - } - - /* If the parent table is the same as the child table, and we are about - ** to increment the constraint-counter (i.e. this is an INSERT operation), - ** then check if the row being inserted matches itself. If so, do not - ** increment the constraint-counter. - ** - ** If any of the parent-key values are NULL, then the row cannot match - ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any - ** of the parent-key values are NULL (at this point it is known that - ** none of the child key values are). - */ - if( pTab==pFKey->pFrom && nIncr==1 ){ - int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; - for(i=0; i<nCol; i++){ - int iChild = aiCol[i]+1+regData; - int iParent = pIdx->aiColumn[i]+1+regData; - assert( aiCol[i]!=pTab->iPKey ); - if( pIdx->aiColumn[i]==pTab->iPKey ){ - /* The parent key is a composite key that includes the IPK column */ - iParent = regData; - } - sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); - sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); - } - sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); - } - - sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); - sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); - sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); - - sqlite3ReleaseTempReg(pParse, regRec); - sqlite3ReleaseTempRange(pParse, regTemp, nCol); - } - } - - if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ - /* Special case: If this is an INSERT statement that will insert exactly - ** one row into the table, raise a constraint immediately instead of - ** incrementing a counter. This is necessary as the VM code is being - ** generated for will not open a statement transaction. */ - assert( nIncr==1 ); - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, - OE_Abort, "foreign key constraint failed", P4_STATIC - ); - }else{ - if( nIncr>0 && pFKey->isDeferred==0 ){ - sqlite3ParseToplevel(pParse)->mayAbort = 1; - } - sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); - } - - sqlite3VdbeResolveLabel(v, iOk); - sqlite3VdbeAddOp1(v, OP_Close, iCur); -} - -/* -** This function is called to generate code executed when a row is deleted -** from the parent table of foreign key constraint pFKey and, if pFKey is -** deferred, when a row is inserted into the same table. When generating -** code for an SQL UPDATE operation, this function may be called twice - -** once to "delete" the old row and once to "insert" the new row. -** -** The code generated by this function scans through the rows in the child -** table that correspond to the parent table row being deleted or inserted. -** For each child row found, one of the following actions is taken: -** -** Operation | FK type | Action taken -** -------------------------------------------------------------------------- -** DELETE immediate Increment the "immediate constraint counter". -** Or, if the ON (UPDATE|DELETE) action is RESTRICT, -** throw a "foreign key constraint failed" exception. -** -** INSERT immediate Decrement the "immediate constraint counter". -** -** DELETE deferred Increment the "deferred constraint counter". -** Or, if the ON (UPDATE|DELETE) action is RESTRICT, -** throw a "foreign key constraint failed" exception. -** -** INSERT deferred Decrement the "deferred constraint counter". -** -** These operations are identified in the comment at the top of this file -** (fkey.c) as "I.2" and "D.2". -*/ -static void fkScanChildren( - Parse *pParse, /* Parse context */ - SrcList *pSrc, /* SrcList containing the table to scan */ - Table *pTab, - Index *pIdx, /* Foreign key index */ - FKey *pFKey, /* Foreign key relationship */ - int *aiCol, /* Map from pIdx cols to child table cols */ - int regData, /* Referenced table data starts here */ - int nIncr /* Amount to increment deferred counter by */ -){ - sqlite3 *db = pParse->db; /* Database handle */ - int i; /* Iterator variable */ - Expr *pWhere = 0; /* WHERE clause to scan with */ - NameContext sNameContext; /* Context used to resolve WHERE clause */ - WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ - int iFkIfZero = 0; /* Address of OP_FkIfZero */ - Vdbe *v = sqlite3GetVdbe(pParse); - - assert( !pIdx || pIdx->pTable==pTab ); - - if( nIncr<0 ){ - iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); - } - - /* Create an Expr object representing an SQL expression like: - ** - ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... - ** - ** The collation sequence used for the comparison should be that of - ** the parent key columns. The affinity of the parent key column should - ** be applied to each child key value before the comparison takes place. - */ - for(i=0; i<pFKey->nCol; i++){ - Expr *pLeft; /* Value from parent table row */ - Expr *pRight; /* Column ref to child table */ - Expr *pEq; /* Expression (pLeft = pRight) */ - int iCol; /* Index of column in child table */ - const char *zCol; /* Name of column in child table */ - - pLeft = sqlite3Expr(db, TK_REGISTER, 0); - if( pLeft ){ - /* Set the collation sequence and affinity of the LHS of each TK_EQ - ** expression to the parent key column defaults. */ - if( pIdx ){ - Column *pCol; - const char *zColl; - iCol = pIdx->aiColumn[i]; - pCol = &pTab->aCol[iCol]; - if( pTab->iPKey==iCol ) iCol = -1; - pLeft->iTable = regData+iCol+1; - pLeft->affinity = pCol->affinity; - zColl = pCol->zColl; - if( zColl==0 ) zColl = db->pDfltColl->zName; - pLeft = sqlite3ExprAddCollateString(pParse, pLeft, zColl); - }else{ - pLeft->iTable = regData; - pLeft->affinity = SQLITE_AFF_INTEGER; - } - } - iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; - assert( iCol>=0 ); - zCol = pFKey->pFrom->aCol[iCol].zName; - pRight = sqlite3Expr(db, TK_ID, zCol); - pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); - pWhere = sqlite3ExprAnd(db, pWhere, pEq); - } - - /* If the child table is the same as the parent table, and this scan - ** is taking place as part of a DELETE operation (operation D.2), omit the - ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE - ** clause, where $rowid is the rowid of the row being deleted. */ - if( pTab==pFKey->pFrom && nIncr>0 ){ - Expr *pEq; /* Expression (pLeft = pRight) */ - Expr *pLeft; /* Value from parent table row */ - Expr *pRight; /* Column ref to child table */ - pLeft = sqlite3Expr(db, TK_REGISTER, 0); - pRight = sqlite3Expr(db, TK_COLUMN, 0); - if( pLeft && pRight ){ - pLeft->iTable = regData; - pLeft->affinity = SQLITE_AFF_INTEGER; - pRight->iTable = pSrc->a[0].iCursor; - pRight->iColumn = -1; - } - pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); - pWhere = sqlite3ExprAnd(db, pWhere, pEq); - } - - /* Resolve the references in the WHERE clause. */ - memset(&sNameContext, 0, sizeof(NameContext)); - sNameContext.pSrcList = pSrc; - sNameContext.pParse = pParse; - sqlite3ResolveExprNames(&sNameContext, pWhere); - - /* Create VDBE to loop through the entries in pSrc that match the WHERE - ** clause. If the constraint is not deferred, throw an exception for - ** each row found. Otherwise, for deferred constraints, increment the - ** deferred constraint counter by nIncr for each row selected. */ - pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); - if( nIncr>0 && pFKey->isDeferred==0 ){ - sqlite3ParseToplevel(pParse)->mayAbort = 1; - } - sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); - if( pWInfo ){ - sqlite3WhereEnd(pWInfo); - } - - /* Clean up the WHERE clause constructed above. */ - sqlite3ExprDelete(db, pWhere); - if( iFkIfZero ){ - sqlite3VdbeJumpHere(v, iFkIfZero); - } -} - -/* -** This function returns a pointer to the head of a linked list of FK -** constraints for which table pTab is the parent table. For example, -** given the following schema: -** -** CREATE TABLE t1(a PRIMARY KEY); -** CREATE TABLE t2(b REFERENCES t1(a); -** -** Calling this function with table "t1" as an argument returns a pointer -** to the FKey structure representing the foreign key constraint on table -** "t2". Calling this function with "t2" as the argument would return a -** NULL pointer (as there are no FK constraints for which t2 is the parent -** table). -*/ -SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){ - int nName = sqlite3Strlen30(pTab->zName); - return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); -} - -/* -** The second argument is a Trigger structure allocated by the -** fkActionTrigger() routine. This function deletes the Trigger structure -** and all of its sub-components. -** -** The Trigger structure or any of its sub-components may be allocated from -** the lookaside buffer belonging to database handle dbMem. -*/ -static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ - if( p ){ - TriggerStep *pStep = p->step_list; - sqlite3ExprDelete(dbMem, pStep->pWhere); - sqlite3ExprListDelete(dbMem, pStep->pExprList); - sqlite3SelectDelete(dbMem, pStep->pSelect); - sqlite3ExprDelete(dbMem, p->pWhen); - sqlite3DbFree(dbMem, p); - } -} - -/* -** This function is called to generate code that runs when table pTab is -** being dropped from the database. The SrcList passed as the second argument -** to this function contains a single entry guaranteed to resolve to -** table pTab. -** -** Normally, no code is required. However, if either -** -** (a) The table is the parent table of a FK constraint, or -** (b) The table is the child table of a deferred FK constraint and it is -** determined at runtime that there are outstanding deferred FK -** constraint violations in the database, -** -** then the equivalent of "DELETE FROM <tbl>" is executed before dropping -** the table from the database. Triggers are disabled while running this -** DELETE, but foreign key actions are not. -*/ -SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ - sqlite3 *db = pParse->db; - if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ - int iSkip = 0; - Vdbe *v = sqlite3GetVdbe(pParse); - - assert( v ); /* VDBE has already been allocated */ - if( sqlite3FkReferences(pTab)==0 ){ - /* Search for a deferred foreign key constraint for which this table - ** is the child table. If one cannot be found, return without - ** generating any VDBE code. If one can be found, then jump over - ** the entire DELETE if there are no outstanding deferred constraints - ** when this statement is run. */ - FKey *p; - for(p=pTab->pFKey; p; p=p->pNextFrom){ - if( p->isDeferred ) break; - } - if( !p ) return; - iSkip = sqlite3VdbeMakeLabel(v); - sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); - } - - pParse->disableTriggers = 1; - sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); - pParse->disableTriggers = 0; - - /* If the DELETE has generated immediate foreign key constraint - ** violations, halt the VDBE and return an error at this point, before - ** any modifications to the schema are made. This is because statement - ** transactions are not able to rollback schema changes. */ - sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, - OE_Abort, "foreign key constraint failed", P4_STATIC - ); - - if( iSkip ){ - sqlite3VdbeResolveLabel(v, iSkip); - } - } -} - -/* -** This function is called when inserting, deleting or updating a row of -** table pTab to generate VDBE code to perform foreign key constraint -** processing for the operation. -** -** For a DELETE operation, parameter regOld is passed the index of the -** first register in an array of (pTab->nCol+1) registers containing the -** rowid of the row being deleted, followed by each of the column values -** of the row being deleted, from left to right. Parameter regNew is passed -** zero in this case. -** -** For an INSERT operation, regOld is passed zero and regNew is passed the -** first register of an array of (pTab->nCol+1) registers containing the new -** row data. -** -** For an UPDATE operation, this function is called twice. Once before -** the original record is deleted from the table using the calling convention -** described for DELETE. Then again after the original record is deleted -** but before the new record is inserted using the INSERT convention. -*/ -SQLITE_PRIVATE void sqlite3FkCheck( - Parse *pParse, /* Parse context */ - Table *pTab, /* Row is being deleted from this table */ - int regOld, /* Previous row data is stored here */ - int regNew /* New row data is stored here */ -){ - sqlite3 *db = pParse->db; /* Database handle */ - FKey *pFKey; /* Used to iterate through FKs */ - int iDb; /* Index of database containing pTab */ - const char *zDb; /* Name of database containing pTab */ - int isIgnoreErrors = pParse->disableTriggers; - - /* Exactly one of regOld and regNew should be non-zero. */ - assert( (regOld==0)!=(regNew==0) ); - - /* If foreign-keys are disabled, this function is a no-op. */ - if( (db->flags&SQLITE_ForeignKeys)==0 ) return; - - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - zDb = db->aDb[iDb].zName; - - /* Loop through all the foreign key constraints for which pTab is the - ** child table (the table that the foreign key definition is part of). */ - for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ - Table *pTo; /* Parent table of foreign key pFKey */ - Index *pIdx = 0; /* Index on key columns in pTo */ - int *aiFree = 0; - int *aiCol; - int iCol; - int i; - int isIgnore = 0; - - /* Find the parent table of this foreign key. Also find a unique index - ** on the parent key columns in the parent table. If either of these - ** schema items cannot be located, set an error in pParse and return - ** early. */ - if( pParse->disableTriggers ){ - pTo = sqlite3FindTable(db, pFKey->zTo, zDb); - }else{ - pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); - } - if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ - assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); - if( !isIgnoreErrors || db->mallocFailed ) return; - if( pTo==0 ){ - /* If isIgnoreErrors is true, then a table is being dropped. In this - ** case SQLite runs a "DELETE FROM xxx" on the table being dropped - ** before actually dropping it in order to check FK constraints. - ** If the parent table of an FK constraint on the current table is - ** missing, behave as if it is empty. i.e. decrement the relevant - ** FK counter for each row of the current table with non-NULL keys. - */ - Vdbe *v = sqlite3GetVdbe(pParse); - int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; - for(i=0; i<pFKey->nCol; i++){ - int iReg = pFKey->aCol[i].iFrom + regOld + 1; - sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); - } - sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); - } - continue; - } - assert( pFKey->nCol==1 || (aiFree && pIdx) ); - - if( aiFree ){ - aiCol = aiFree; - }else{ - iCol = pFKey->aCol[0].iFrom; - aiCol = &iCol; - } - for(i=0; i<pFKey->nCol; i++){ - if( aiCol[i]==pTab->iPKey ){ - aiCol[i] = -1; - } -#ifndef SQLITE_OMIT_AUTHORIZATION - /* Request permission to read the parent key columns. If the - ** authorization callback returns SQLITE_IGNORE, behave as if any - ** values read from the parent table are NULL. */ - if( db->xAuth ){ - int rcauth; - char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; - rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); - isIgnore = (rcauth==SQLITE_IGNORE); - } -#endif - } - - /* Take a shared-cache advisory read-lock on the parent table. Allocate - ** a cursor to use to search the unique index on the parent key columns - ** in the parent table. */ - sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); - pParse->nTab++; - - if( regOld!=0 ){ - /* A row is being removed from the child table. Search for the parent. - ** If the parent does not exist, removing the child row resolves an - ** outstanding foreign key constraint violation. */ - fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); - } - if( regNew!=0 ){ - /* A row is being added to the child table. If a parent row cannot - ** be found, adding the child row has violated the FK constraint. */ - fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); - } - - sqlite3DbFree(db, aiFree); - } - - /* Loop through all the foreign key constraints that refer to this table */ - for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ - Index *pIdx = 0; /* Foreign key index for pFKey */ - SrcList *pSrc; - int *aiCol = 0; - - if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ - assert( regOld==0 && regNew!=0 ); - /* Inserting a single row into a parent table cannot cause an immediate - ** foreign key violation. So do nothing in this case. */ - continue; - } - - if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ - if( !isIgnoreErrors || db->mallocFailed ) return; - continue; - } - assert( aiCol || pFKey->nCol==1 ); - - /* Create a SrcList structure containing a single table (the table - ** the foreign key that refers to this table is attached to). This - ** is required for the sqlite3WhereXXX() interface. */ - pSrc = sqlite3SrcListAppend(db, 0, 0, 0); - if( pSrc ){ - struct SrcList_item *pItem = pSrc->a; - pItem->pTab = pFKey->pFrom; - pItem->zName = pFKey->pFrom->zName; - pItem->pTab->nRef++; - pItem->iCursor = pParse->nTab++; - - if( regNew!=0 ){ - fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); - } - if( regOld!=0 ){ - /* If there is a RESTRICT action configured for the current operation - ** on the parent table of this FK, then throw an exception - ** immediately if the FK constraint is violated, even if this is a - ** deferred trigger. That's what RESTRICT means. To defer checking - ** the constraint, the FK should specify NO ACTION (represented - ** using OE_None). NO ACTION is the default. */ - fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); - } - pItem->zName = 0; - sqlite3SrcListDelete(db, pSrc); - } - sqlite3DbFree(db, aiCol); - } -} - -#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) - -/* -** This function is called before generating code to update or delete a -** row contained in table pTab. -*/ -SQLITE_PRIVATE u32 sqlite3FkOldmask( - Parse *pParse, /* Parse context */ - Table *pTab /* Table being modified */ -){ - u32 mask = 0; - if( pParse->db->flags&SQLITE_ForeignKeys ){ - FKey *p; - int i; - for(p=pTab->pFKey; p; p=p->pNextFrom){ - for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); - } - for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ - Index *pIdx = 0; - sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); - if( pIdx ){ - for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); - } - } - } - return mask; -} - -/* -** This function is called before generating code to update or delete a -** row contained in table pTab. If the operation is a DELETE, then -** parameter aChange is passed a NULL value. For an UPDATE, aChange points -** to an array of size N, where N is the number of columns in table pTab. -** If the i'th column is not modified by the UPDATE, then the corresponding -** entry in the aChange[] array is set to -1. If the column is modified, -** the value is 0 or greater. Parameter chngRowid is set to true if the -** UPDATE statement modifies the rowid fields of the table. -** -** If any foreign key processing will be required, this function returns -** true. If there is no foreign key related processing, this function -** returns false. -*/ -SQLITE_PRIVATE int sqlite3FkRequired( - Parse *pParse, /* Parse context */ - Table *pTab, /* Table being modified */ - int *aChange, /* Non-NULL for UPDATE operations */ - int chngRowid /* True for UPDATE that affects rowid */ -){ - if( pParse->db->flags&SQLITE_ForeignKeys ){ - if( !aChange ){ - /* A DELETE operation. Foreign key processing is required if the - ** table in question is either the child or parent table for any - ** foreign key constraint. */ - return (sqlite3FkReferences(pTab) || pTab->pFKey); - }else{ - /* This is an UPDATE. Foreign key processing is only required if the - ** operation modifies one or more child or parent key columns. */ - int i; - FKey *p; - - /* Check if any child key columns are being modified. */ - for(p=pTab->pFKey; p; p=p->pNextFrom){ - for(i=0; i<p->nCol; i++){ - int iChildKey = p->aCol[i].iFrom; - if( aChange[iChildKey]>=0 ) return 1; - if( iChildKey==pTab->iPKey && chngRowid ) return 1; - } - } - - /* Check if any parent key columns are being modified. */ - for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ - for(i=0; i<p->nCol; i++){ - char *zKey = p->aCol[i].zCol; - int iKey; - for(iKey=0; iKey<pTab->nCol; iKey++){ - Column *pCol = &pTab->aCol[iKey]; - if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) - : (pCol->colFlags & COLFLAG_PRIMKEY)!=0) ){ - if( aChange[iKey]>=0 ) return 1; - if( iKey==pTab->iPKey && chngRowid ) return 1; - } - } - } - } - } - } - return 0; -} - -/* -** This function is called when an UPDATE or DELETE operation is being -** compiled on table pTab, which is the parent table of foreign-key pFKey. -** If the current operation is an UPDATE, then the pChanges parameter is -** passed a pointer to the list of columns being modified. If it is a -** DELETE, pChanges is passed a NULL pointer. -** -** It returns a pointer to a Trigger structure containing a trigger -** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. -** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is -** returned (these actions require no special handling by the triggers -** sub-system, code for them is created by fkScanChildren()). -** -** For example, if pFKey is the foreign key and pTab is table "p" in -** the following schema: -** -** CREATE TABLE p(pk PRIMARY KEY); -** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); -** -** then the returned trigger structure is equivalent to: -** -** CREATE TRIGGER ... DELETE ON p BEGIN -** DELETE FROM c WHERE ck = old.pk; -** END; -** -** The returned pointer is cached as part of the foreign key object. It -** is eventually freed along with the rest of the foreign key object by -** sqlite3FkDelete(). -*/ -static Trigger *fkActionTrigger( - Parse *pParse, /* Parse context */ - Table *pTab, /* Table being updated or deleted from */ - FKey *pFKey, /* Foreign key to get action for */ - ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ -){ - sqlite3 *db = pParse->db; /* Database handle */ - int action; /* One of OE_None, OE_Cascade etc. */ - Trigger *pTrigger; /* Trigger definition to return */ - int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ - - action = pFKey->aAction[iAction]; - pTrigger = pFKey->apTrigger[iAction]; - - if( action!=OE_None && !pTrigger ){ - u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ - char const *zFrom; /* Name of child table */ - int nFrom; /* Length in bytes of zFrom */ - Index *pIdx = 0; /* Parent key index for this FK */ - int *aiCol = 0; /* child table cols -> parent key cols */ - TriggerStep *pStep = 0; /* First (only) step of trigger program */ - Expr *pWhere = 0; /* WHERE clause of trigger step */ - ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ - Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ - int i; /* Iterator variable */ - Expr *pWhen = 0; /* WHEN clause for the trigger */ - - if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; - assert( aiCol || pFKey->nCol==1 ); - - for(i=0; i<pFKey->nCol; i++){ - Token tOld = { "old", 3 }; /* Literal "old" token */ - Token tNew = { "new", 3 }; /* Literal "new" token */ - Token tFromCol; /* Name of column in child table */ - Token tToCol; /* Name of column in parent table */ - int iFromCol; /* Idx of column in child table */ - Expr *pEq; /* tFromCol = OLD.tToCol */ - - iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; - assert( iFromCol>=0 ); - tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; - tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; - - tToCol.n = sqlite3Strlen30(tToCol.z); - tFromCol.n = sqlite3Strlen30(tFromCol.z); - - /* Create the expression "OLD.zToCol = zFromCol". It is important - ** that the "OLD.zToCol" term is on the LHS of the = operator, so - ** that the affinity and collation sequence associated with the - ** parent table are used for the comparison. */ - pEq = sqlite3PExpr(pParse, TK_EQ, - sqlite3PExpr(pParse, TK_DOT, - sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), - sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) - , 0), - sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) - , 0); - pWhere = sqlite3ExprAnd(db, pWhere, pEq); - - /* For ON UPDATE, construct the next term of the WHEN clause. - ** The final WHEN clause will be like this: - ** - ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) - */ - if( pChanges ){ - pEq = sqlite3PExpr(pParse, TK_IS, - sqlite3PExpr(pParse, TK_DOT, - sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), - sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), - 0), - sqlite3PExpr(pParse, TK_DOT, - sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), - sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), - 0), - 0); - pWhen = sqlite3ExprAnd(db, pWhen, pEq); - } - - if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ - Expr *pNew; - if( action==OE_Cascade ){ - pNew = sqlite3PExpr(pParse, TK_DOT, - sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), - sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) - , 0); - }else if( action==OE_SetDflt ){ - Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; - if( pDflt ){ - pNew = sqlite3ExprDup(db, pDflt, 0); - }else{ - pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); - } - }else{ - pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); - } - pList = sqlite3ExprListAppend(pParse, pList, pNew); - sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); - } - } - sqlite3DbFree(db, aiCol); - - zFrom = pFKey->pFrom->zName; - nFrom = sqlite3Strlen30(zFrom); - - if( action==OE_Restrict ){ - Token tFrom; - Expr *pRaise; - - tFrom.z = zFrom; - tFrom.n = nFrom; - pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); - if( pRaise ){ - pRaise->affinity = OE_Abort; - } - pSelect = sqlite3SelectNew(pParse, - sqlite3ExprListAppend(pParse, 0, pRaise), - sqlite3SrcListAppend(db, 0, &tFrom, 0), - pWhere, - 0, 0, 0, 0, 0, 0 - ); - pWhere = 0; - } - - /* Disable lookaside memory allocation */ - enableLookaside = db->lookaside.bEnabled; - db->lookaside.bEnabled = 0; - - pTrigger = (Trigger *)sqlite3DbMallocZero(db, - sizeof(Trigger) + /* struct Trigger */ - sizeof(TriggerStep) + /* Single step in trigger program */ - nFrom + 1 /* Space for pStep->target.z */ - ); - if( pTrigger ){ - pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; - pStep->target.z = (char *)&pStep[1]; - pStep->target.n = nFrom; - memcpy((char *)pStep->target.z, zFrom, nFrom); - - pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); - pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); - pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); - if( pWhen ){ - pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); - pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); - } - } - - /* Re-enable the lookaside buffer, if it was disabled earlier. */ - db->lookaside.bEnabled = enableLookaside; - - sqlite3ExprDelete(db, pWhere); - sqlite3ExprDelete(db, pWhen); - sqlite3ExprListDelete(db, pList); - sqlite3SelectDelete(db, pSelect); - if( db->mallocFailed==1 ){ - fkTriggerDelete(db, pTrigger); - return 0; - } - assert( pStep!=0 ); - - switch( action ){ - case OE_Restrict: - pStep->op = TK_SELECT; - break; - case OE_Cascade: - if( !pChanges ){ - pStep->op = TK_DELETE; - break; - } - default: - pStep->op = TK_UPDATE; - } - pStep->pTrig = pTrigger; - pTrigger->pSchema = pTab->pSchema; - pTrigger->pTabSchema = pTab->pSchema; - pFKey->apTrigger[iAction] = pTrigger; - pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); - } - - return pTrigger; -} - -/* -** This function is called when deleting or updating a row to implement -** any required CASCADE, SET NULL or SET DEFAULT actions. -*/ -SQLITE_PRIVATE void sqlite3FkActions( - Parse *pParse, /* Parse context */ - Table *pTab, /* Table being updated or deleted from */ - ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ - int regOld /* Address of array containing old row */ -){ - /* If foreign-key support is enabled, iterate through all FKs that - ** refer to table pTab. If there is an action associated with the FK - ** for this operation (either update or delete), invoke the associated - ** trigger sub-program. */ - if( pParse->db->flags&SQLITE_ForeignKeys ){ - FKey *pFKey; /* Iterator variable */ - for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ - Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); - if( pAction ){ - sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); - } - } - } -} - -#endif /* ifndef SQLITE_OMIT_TRIGGER */ - -/* -** Free all memory associated with foreign key definitions attached to -** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash -** hash table. -*/ -SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ - FKey *pFKey; /* Iterator variable */ - FKey *pNext; /* Copy of pFKey->pNextFrom */ - - assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); - for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ - - /* Remove the FK from the fkeyHash hash table. */ - if( !db || db->pnBytesFreed==0 ){ - if( pFKey->pPrevTo ){ - pFKey->pPrevTo->pNextTo = pFKey->pNextTo; - }else{ - void *p = (void *)pFKey->pNextTo; - const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); - sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); - } - if( pFKey->pNextTo ){ - pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; - } - } - - /* EV: R-30323-21917 Each foreign key constraint in SQLite is - ** classified as either immediate or deferred. - */ - assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); - - /* Delete any triggers created to implement actions for this FK. */ -#ifndef SQLITE_OMIT_TRIGGER - fkTriggerDelete(db, pFKey->apTrigger[0]); - fkTriggerDelete(db, pFKey->apTrigger[1]); -#endif - - pNext = pFKey->pNextFrom; - sqlite3DbFree(db, pFKey); - } -} -#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ - -/************** End of fkey.c ************************************************/ -/************** Begin file insert.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the parser -** to handle INSERT statements in SQLite. -*/ - -/* -** Generate code that will open a table for reading. -*/ -SQLITE_PRIVATE void sqlite3OpenTable( - Parse *p, /* Generate code into this VDBE */ - int iCur, /* The cursor number of the table */ - int iDb, /* The database index in sqlite3.aDb[] */ - Table *pTab, /* The table to be opened */ - int opcode /* OP_OpenRead or OP_OpenWrite */ -){ - Vdbe *v; - assert( !IsVirtual(pTab) ); - v = sqlite3GetVdbe(p); - assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); - sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); - sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); - sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); - VdbeComment((v, "%s", pTab->zName)); -} - -/* -** Return a pointer to the column affinity string associated with index -** pIdx. A column affinity string has one character for each column in -** the table, according to the affinity of the column: -** -** Character Column affinity -** ------------------------------ -** 'a' TEXT -** 'b' NONE -** 'c' NUMERIC -** 'd' INTEGER -** 'e' REAL -** -** An extra 'd' is appended to the end of the string to cover the -** rowid that appears as the last column in every index. -** -** Memory for the buffer containing the column index affinity string -** is managed along with the rest of the Index structure. It will be -** released when sqlite3DeleteIndex() is called. -*/ -SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ - if( !pIdx->zColAff ){ - /* The first time a column affinity string for a particular index is - ** required, it is allocated and populated here. It is then stored as - ** a member of the Index structure for subsequent use. - ** - ** The column affinity string will eventually be deleted by - ** sqliteDeleteIndex() when the Index structure itself is cleaned - ** up. - */ - int n; - Table *pTab = pIdx->pTable; - sqlite3 *db = sqlite3VdbeDb(v); - pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); - if( !pIdx->zColAff ){ - db->mallocFailed = 1; - return 0; - } - for(n=0; n<pIdx->nColumn; n++){ - pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; - } - pIdx->zColAff[n++] = SQLITE_AFF_INTEGER; - pIdx->zColAff[n] = 0; - } - - return pIdx->zColAff; -} - -/* -** Set P4 of the most recently inserted opcode to a column affinity -** string for table pTab. A column affinity string has one character -** for each column indexed by the index, according to the affinity of the -** column: -** -** Character Column affinity -** ------------------------------ -** 'a' TEXT -** 'b' NONE -** 'c' NUMERIC -** 'd' INTEGER -** 'e' REAL -*/ -SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ - /* The first time a column affinity string for a particular table - ** is required, it is allocated and populated here. It is then - ** stored as a member of the Table structure for subsequent use. - ** - ** The column affinity string will eventually be deleted by - ** sqlite3DeleteTable() when the Table structure itself is cleaned up. - */ - if( !pTab->zColAff ){ - char *zColAff; - int i; - sqlite3 *db = sqlite3VdbeDb(v); - - zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); - if( !zColAff ){ - db->mallocFailed = 1; - return; - } - - for(i=0; i<pTab->nCol; i++){ - zColAff[i] = pTab->aCol[i].affinity; - } - zColAff[pTab->nCol] = '\0'; - - pTab->zColAff = zColAff; - } - - sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); -} - -/* -** Return non-zero if the table pTab in database iDb or any of its indices -** have been opened at any point in the VDBE program beginning at location -** iStartAddr throught the end of the program. This is used to see if -** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can -** run without using temporary table for the results of the SELECT. -*/ -static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ - Vdbe *v = sqlite3GetVdbe(p); - int i; - int iEnd = sqlite3VdbeCurrentAddr(v); -#ifndef SQLITE_OMIT_VIRTUALTABLE - VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; -#endif - - for(i=iStartAddr; i<iEnd; i++){ - VdbeOp *pOp = sqlite3VdbeGetOp(v, i); - assert( pOp!=0 ); - if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ - Index *pIndex; - int tnum = pOp->p2; - if( tnum==pTab->tnum ){ - return 1; - } - for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ - if( tnum==pIndex->tnum ){ - return 1; - } - } - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ - assert( pOp->p4.pVtab!=0 ); - assert( pOp->p4type==P4_VTAB ); - return 1; - } -#endif - } - return 0; -} - -#ifndef SQLITE_OMIT_AUTOINCREMENT -/* -** Locate or create an AutoincInfo structure associated with table pTab -** which is in database iDb. Return the register number for the register -** that holds the maximum rowid. -** -** There is at most one AutoincInfo structure per table even if the -** same table is autoincremented multiple times due to inserts within -** triggers. A new AutoincInfo structure is created if this is the -** first use of table pTab. On 2nd and subsequent uses, the original -** AutoincInfo structure is used. -** -** Three memory locations are allocated: -** -** (1) Register to hold the name of the pTab table. -** (2) Register to hold the maximum ROWID of pTab. -** (3) Register to hold the rowid in sqlite_sequence of pTab -** -** The 2nd register is the one that is returned. That is all the -** insert routine needs to know about. -*/ -static int autoIncBegin( - Parse *pParse, /* Parsing context */ - int iDb, /* Index of the database holding pTab */ - Table *pTab /* The table we are writing to */ -){ - int memId = 0; /* Register holding maximum rowid */ - if( pTab->tabFlags & TF_Autoincrement ){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - AutoincInfo *pInfo; - - pInfo = pToplevel->pAinc; - while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } - if( pInfo==0 ){ - pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); - if( pInfo==0 ) return 0; - pInfo->pNext = pToplevel->pAinc; - pToplevel->pAinc = pInfo; - pInfo->pTab = pTab; - pInfo->iDb = iDb; - pToplevel->nMem++; /* Register to hold name of table */ - pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ - pToplevel->nMem++; /* Rowid in sqlite_sequence */ - } - memId = pInfo->regCtr; - } - return memId; -} - -/* -** This routine generates code that will initialize all of the -** register used by the autoincrement tracker. -*/ -SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){ - AutoincInfo *p; /* Information about an AUTOINCREMENT */ - sqlite3 *db = pParse->db; /* The database connection */ - Db *pDb; /* Database only autoinc table */ - int memId; /* Register holding max rowid */ - int addr; /* A VDBE address */ - Vdbe *v = pParse->pVdbe; /* VDBE under construction */ - - /* This routine is never called during trigger-generation. It is - ** only called from the top-level */ - assert( pParse->pTriggerTab==0 ); - assert( pParse==sqlite3ParseToplevel(pParse) ); - - assert( v ); /* We failed long ago if this is not so */ - for(p = pParse->pAinc; p; p = p->pNext){ - pDb = &db->aDb[p->iDb]; - memId = p->regCtr; - assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); - sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); - sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); - addr = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); - sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); - sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); - sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); - sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); - sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); - sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); - sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); - sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); - sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); - sqlite3VdbeAddOp0(v, OP_Close); - } -} - -/* -** Update the maximum rowid for an autoincrement calculation. -** -** This routine should be called when the top of the stack holds a -** new rowid that is about to be inserted. If that new rowid is -** larger than the maximum rowid in the memId memory cell, then the -** memory cell is updated. The stack is unchanged. -*/ -static void autoIncStep(Parse *pParse, int memId, int regRowid){ - if( memId>0 ){ - sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); - } -} - -/* -** This routine generates the code needed to write autoincrement -** maximum rowid values back into the sqlite_sequence register. -** Every statement that might do an INSERT into an autoincrement -** table (either directly or through triggers) needs to call this -** routine just before the "exit" code. -*/ -SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){ - AutoincInfo *p; - Vdbe *v = pParse->pVdbe; - sqlite3 *db = pParse->db; - - assert( v ); - for(p = pParse->pAinc; p; p = p->pNext){ - Db *pDb = &db->aDb[p->iDb]; - int j1, j2, j3, j4, j5; - int iRec; - int memId = p->regCtr; - - iRec = sqlite3GetTempReg(pParse); - assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); - sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); - j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); - j2 = sqlite3VdbeAddOp0(v, OP_Rewind); - j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); - j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); - sqlite3VdbeAddOp2(v, OP_Next, 0, j3); - sqlite3VdbeJumpHere(v, j2); - sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); - j5 = sqlite3VdbeAddOp0(v, OP_Goto); - sqlite3VdbeJumpHere(v, j4); - sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); - sqlite3VdbeJumpHere(v, j1); - sqlite3VdbeJumpHere(v, j5); - sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); - sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - sqlite3VdbeAddOp0(v, OP_Close); - sqlite3ReleaseTempReg(pParse, iRec); - } -} -#else -/* -** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines -** above are all no-ops -*/ -# define autoIncBegin(A,B,C) (0) -# define autoIncStep(A,B,C) -#endif /* SQLITE_OMIT_AUTOINCREMENT */ - - -/* -** Generate code for a co-routine that will evaluate a subquery one -** row at a time. -** -** The pSelect parameter is the subquery that the co-routine will evaluation. -** Information about the location of co-routine and the registers it will use -** is returned by filling in the pDest object. -** -** Registers are allocated as follows: -** -** pDest->iSDParm The register holding the next entry-point of the -** co-routine. Run the co-routine to its next breakpoint -** by calling "OP_Yield $X" where $X is pDest->iSDParm. -** -** pDest->iSDParm+1 The register holding the "completed" flag for the -** co-routine. This register is 0 if the previous Yield -** generated a new result row, or 1 if the subquery -** has completed. If the Yield is called again -** after this register becomes 1, then the VDBE will -** halt with an SQLITE_INTERNAL error. -** -** pDest->iSdst First result register. -** -** pDest->nSdst Number of result registers. -** -** This routine handles all of the register allocation and fills in the -** pDest structure appropriately. -** -** Here is a schematic of the generated code assuming that X is the -** co-routine entry-point register reg[pDest->iSDParm], that EOF is the -** completed flag reg[pDest->iSDParm+1], and R and S are the range of -** registers that hold the result set, reg[pDest->iSdst] through -** reg[pDest->iSdst+pDest->nSdst-1]: -** -** X <- A -** EOF <- 0 -** goto B -** A: setup for the SELECT -** loop rows in the SELECT -** load results into registers R..S -** yield X -** end loop -** cleanup after the SELECT -** EOF <- 1 -** yield X -** halt-error -** B: -** -** To use this subroutine, the caller generates code as follows: -** -** [ Co-routine generated by this subroutine, shown above ] -** S: yield X -** if EOF goto E -** if skip this row, goto C -** if terminate loop, goto E -** deal with this row -** C: goto S -** E: -*/ -SQLITE_PRIVATE int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){ - int regYield; /* Register holding co-routine entry-point */ - int regEof; /* Register holding co-routine completion flag */ - int addrTop; /* Top of the co-routine */ - int j1; /* Jump instruction */ - int rc; /* Result code */ - Vdbe *v; /* VDBE under construction */ - - regYield = ++pParse->nMem; - regEof = ++pParse->nMem; - v = sqlite3GetVdbe(pParse); - addrTop = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */ - VdbeComment((v, "Co-routine entry point")); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ - VdbeComment((v, "Co-routine completion flag")); - sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield); - j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); - rc = sqlite3Select(pParse, pSelect, pDest); - assert( pParse->nErr==0 || rc ); - if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM; - if( rc ) return rc; - sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ - sqlite3VdbeAddOp1(v, OP_Yield, regYield); /* yield X */ - sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); - VdbeComment((v, "End of coroutine")); - sqlite3VdbeJumpHere(v, j1); /* label B: */ - return rc; -} - - - -/* Forward declaration */ -static int xferOptimization( - Parse *pParse, /* Parser context */ - Table *pDest, /* The table we are inserting into */ - Select *pSelect, /* A SELECT statement to use as the data source */ - int onError, /* How to handle constraint errors */ - int iDbDest /* The database of pDest */ -); - -/* -** This routine is call to handle SQL of the following forms: -** -** insert into TABLE (IDLIST) values(EXPRLIST) -** insert into TABLE (IDLIST) select -** -** The IDLIST following the table name is always optional. If omitted, -** then a list of all columns for the table is substituted. The IDLIST -** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. -** -** The pList parameter holds EXPRLIST in the first form of the INSERT -** statement above, and pSelect is NULL. For the second form, pList is -** NULL and pSelect is a pointer to the select statement used to generate -** data for the insert. -** -** The code generated follows one of four templates. For a simple -** select with data coming from a VALUES clause, the code executes -** once straight down through. Pseudo-code follows (we call this -** the "1st template"): -** -** open write cursor to <table> and its indices -** puts VALUES clause expressions onto the stack -** write the resulting record into <table> -** cleanup -** -** The three remaining templates assume the statement is of the form -** -** INSERT INTO <table> SELECT ... -** -** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - -** in other words if the SELECT pulls all columns from a single table -** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and -** if <table2> and <table1> are distinct tables but have identical -** schemas, including all the same indices, then a special optimization -** is invoked that copies raw records from <table2> over to <table1>. -** See the xferOptimization() function for the implementation of this -** template. This is the 2nd template. -** -** open a write cursor to <table> -** open read cursor on <table2> -** transfer all records in <table2> over to <table> -** close cursors -** foreach index on <table> -** open a write cursor on the <table> index -** open a read cursor on the corresponding <table2> index -** transfer all records from the read to the write cursors -** close cursors -** end foreach -** -** The 3rd template is for when the second template does not apply -** and the SELECT clause does not read from <table> at any time. -** The generated code follows this template: -** -** EOF <- 0 -** X <- A -** goto B -** A: setup for the SELECT -** loop over the rows in the SELECT -** load values into registers R..R+n -** yield X -** end loop -** cleanup after the SELECT -** EOF <- 1 -** yield X -** goto A -** B: open write cursor to <table> and its indices -** C: yield X -** if EOF goto D -** insert the select result into <table> from R..R+n -** goto C -** D: cleanup -** -** The 4th template is used if the insert statement takes its -** values from a SELECT but the data is being inserted into a table -** that is also read as part of the SELECT. In the third form, -** we have to use a intermediate table to store the results of -** the select. The template is like this: -** -** EOF <- 0 -** X <- A -** goto B -** A: setup for the SELECT -** loop over the tables in the SELECT -** load value into register R..R+n -** yield X -** end loop -** cleanup after the SELECT -** EOF <- 1 -** yield X -** halt-error -** B: open temp table -** L: yield X -** if EOF goto M -** insert row from R..R+n into temp table -** goto L -** M: open write cursor to <table> and its indices -** rewind temp table -** C: loop over rows of intermediate table -** transfer values form intermediate table into <table> -** end loop -** D: cleanup -*/ -SQLITE_PRIVATE void sqlite3Insert( - Parse *pParse, /* Parser context */ - SrcList *pTabList, /* Name of table into which we are inserting */ - ExprList *pList, /* List of values to be inserted */ - Select *pSelect, /* A SELECT statement to use as the data source */ - IdList *pColumn, /* Column names corresponding to IDLIST. */ - int onError /* How to handle constraint errors */ -){ - sqlite3 *db; /* The main database structure */ - Table *pTab; /* The table to insert into. aka TABLE */ - char *zTab; /* Name of the table into which we are inserting */ - const char *zDb; /* Name of the database holding this table */ - int i, j, idx; /* Loop counters */ - Vdbe *v; /* Generate code into this virtual machine */ - Index *pIdx; /* For looping over indices of the table */ - int nColumn; /* Number of columns in the data */ - int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ - int baseCur = 0; /* VDBE Cursor number for pTab */ - int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ - int endOfLoop; /* Label for the end of the insertion loop */ - int useTempTable = 0; /* Store SELECT results in intermediate table */ - int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ - int addrInsTop = 0; /* Jump to label "D" */ - int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ - int addrSelect = 0; /* Address of coroutine that implements the SELECT */ - SelectDest dest; /* Destination for SELECT on rhs of INSERT */ - int iDb; /* Index of database holding TABLE */ - Db *pDb; /* The database containing table being inserted into */ - int appendFlag = 0; /* True if the insert is likely to be an append */ - - /* Register allocations */ - int regFromSelect = 0;/* Base register for data coming from SELECT */ - int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ - int regRowCount = 0; /* Memory cell used for the row counter */ - int regIns; /* Block of regs holding rowid+data being inserted */ - int regRowid; /* registers holding insert rowid */ - int regData; /* register holding first column to insert */ - int regEof = 0; /* Register recording end of SELECT data */ - int *aRegIdx = 0; /* One register allocated to each index */ - -#ifndef SQLITE_OMIT_TRIGGER - int isView; /* True if attempting to insert into a view */ - Trigger *pTrigger; /* List of triggers on pTab, if required */ - int tmask; /* Mask of trigger times */ -#endif - - db = pParse->db; - memset(&dest, 0, sizeof(dest)); - if( pParse->nErr || db->mallocFailed ){ - goto insert_cleanup; - } - - /* Locate the table into which we will be inserting new information. - */ - assert( pTabList->nSrc==1 ); - zTab = pTabList->a[0].zName; - if( NEVER(zTab==0) ) goto insert_cleanup; - pTab = sqlite3SrcListLookup(pParse, pTabList); - if( pTab==0 ){ - goto insert_cleanup; - } - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - assert( iDb<db->nDb ); - pDb = &db->aDb[iDb]; - zDb = pDb->zName; - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ - goto insert_cleanup; - } - - /* Figure out if we have any triggers and if the table being - ** inserted into is a view - */ -#ifndef SQLITE_OMIT_TRIGGER - pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); - isView = pTab->pSelect!=0; -#else -# define pTrigger 0 -# define tmask 0 -# define isView 0 -#endif -#ifdef SQLITE_OMIT_VIEW -# undef isView -# define isView 0 -#endif - assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); - - /* If pTab is really a view, make sure it has been initialized. - ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual - ** module table). - */ - if( sqlite3ViewGetColumnNames(pParse, pTab) ){ - goto insert_cleanup; - } - - /* Ensure that: - * (a) the table is not read-only, - * (b) that if it is a view then ON INSERT triggers exist - */ - if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ - goto insert_cleanup; - } - - /* Allocate a VDBE - */ - v = sqlite3GetVdbe(pParse); - if( v==0 ) goto insert_cleanup; - if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); - sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); - -#ifndef SQLITE_OMIT_XFER_OPT - /* If the statement is of the form - ** - ** INSERT INTO <table1> SELECT * FROM <table2>; - ** - ** Then special optimizations can be applied that make the transfer - ** very fast and which reduce fragmentation of indices. - ** - ** This is the 2nd template. - */ - if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ - assert( !pTrigger ); - assert( pList==0 ); - goto insert_end; - } -#endif /* SQLITE_OMIT_XFER_OPT */ - - /* If this is an AUTOINCREMENT table, look up the sequence number in the - ** sqlite_sequence table and store it in memory cell regAutoinc. - */ - regAutoinc = autoIncBegin(pParse, iDb, pTab); - - /* Figure out how many columns of data are supplied. If the data - ** is coming from a SELECT statement, then generate a co-routine that - ** produces a single row of the SELECT on each invocation. The - ** co-routine is the common header to the 3rd and 4th templates. - */ - if( pSelect ){ - /* Data is coming from a SELECT. Generate a co-routine to run that - ** SELECT. */ - int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest); - if( rc ) goto insert_cleanup; - - regEof = dest.iSDParm + 1; - regFromSelect = dest.iSdst; - assert( pSelect->pEList ); - nColumn = pSelect->pEList->nExpr; - assert( dest.nSdst==nColumn ); - - /* Set useTempTable to TRUE if the result of the SELECT statement - ** should be written into a temporary table (template 4). Set to - ** FALSE if each* row of the SELECT can be written directly into - ** the destination table (template 3). - ** - ** A temp table must be used if the table being updated is also one - ** of the tables being read by the SELECT statement. Also use a - ** temp table in the case of row triggers. - */ - if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ - useTempTable = 1; - } - - if( useTempTable ){ - /* Invoke the coroutine to extract information from the SELECT - ** and add it to a transient table srcTab. The code generated - ** here is from the 4th template: - ** - ** B: open temp table - ** L: yield X - ** if EOF goto M - ** insert row from R..R+n into temp table - ** goto L - ** M: ... - */ - int regRec; /* Register to hold packed record */ - int regTempRowid; /* Register to hold temp table ROWID */ - int addrTop; /* Label "L" */ - int addrIf; /* Address of jump to M */ - - srcTab = pParse->nTab++; - regRec = sqlite3GetTempReg(pParse); - regTempRowid = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); - addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); - addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); - sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); - sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); - sqlite3VdbeJumpHere(v, addrIf); - sqlite3ReleaseTempReg(pParse, regRec); - sqlite3ReleaseTempReg(pParse, regTempRowid); - } - }else{ - /* This is the case if the data for the INSERT is coming from a VALUES - ** clause - */ - NameContext sNC; - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pParse; - srcTab = -1; - assert( useTempTable==0 ); - nColumn = pList ? pList->nExpr : 0; - for(i=0; i<nColumn; i++){ - if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ - goto insert_cleanup; - } - } - } - - /* Make sure the number of columns in the source data matches the number - ** of columns to be inserted into the table. - */ - if( IsVirtual(pTab) ){ - for(i=0; i<pTab->nCol; i++){ - nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); - } - } - if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ - sqlite3ErrorMsg(pParse, - "table %S has %d columns but %d values were supplied", - pTabList, 0, pTab->nCol-nHidden, nColumn); - goto insert_cleanup; - } - if( pColumn!=0 && nColumn!=pColumn->nId ){ - sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); - goto insert_cleanup; - } - - /* If the INSERT statement included an IDLIST term, then make sure - ** all elements of the IDLIST really are columns of the table and - ** remember the column indices. - ** - ** If the table has an INTEGER PRIMARY KEY column and that column - ** is named in the IDLIST, then record in the keyColumn variable - ** the index into IDLIST of the primary key column. keyColumn is - ** the index of the primary key as it appears in IDLIST, not as - ** is appears in the original table. (The index of the primary - ** key in the original table is pTab->iPKey.) - */ - if( pColumn ){ - for(i=0; i<pColumn->nId; i++){ - pColumn->a[i].idx = -1; - } - for(i=0; i<pColumn->nId; i++){ - for(j=0; j<pTab->nCol; j++){ - if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ - pColumn->a[i].idx = j; - if( j==pTab->iPKey ){ - keyColumn = i; - } - break; - } - } - if( j>=pTab->nCol ){ - if( sqlite3IsRowid(pColumn->a[i].zName) ){ - keyColumn = i; - }else{ - sqlite3ErrorMsg(pParse, "table %S has no column named %s", - pTabList, 0, pColumn->a[i].zName); - pParse->checkSchema = 1; - goto insert_cleanup; - } - } - } - } - - /* If there is no IDLIST term but the table has an integer primary - ** key, the set the keyColumn variable to the primary key column index - ** in the original table definition. - */ - if( pColumn==0 && nColumn>0 ){ - keyColumn = pTab->iPKey; - } - - /* Initialize the count of rows to be inserted - */ - if( db->flags & SQLITE_CountRows ){ - regRowCount = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); - } - - /* If this is not a view, open the table and and all indices */ - if( !isView ){ - int nIdx; - - baseCur = pParse->nTab; - nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); - aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); - if( aRegIdx==0 ){ - goto insert_cleanup; - } - for(i=0; i<nIdx; i++){ - aRegIdx[i] = ++pParse->nMem; - } - } - - /* This is the top of the main insertion loop */ - if( useTempTable ){ - /* This block codes the top of loop only. The complete loop is the - ** following pseudocode (template 4): - ** - ** rewind temp table - ** C: loop over rows of intermediate table - ** transfer values form intermediate table into <table> - ** end loop - ** D: ... - */ - addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); - addrCont = sqlite3VdbeCurrentAddr(v); - }else if( pSelect ){ - /* This block codes the top of loop only. The complete loop is the - ** following pseudocode (template 3): - ** - ** C: yield X - ** if EOF goto D - ** insert the select result into <table> from R..R+n - ** goto C - ** D: ... - */ - addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); - addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); - } - - /* Allocate registers for holding the rowid of the new row, - ** the content of the new row, and the assemblied row record. - */ - regRowid = regIns = pParse->nMem+1; - pParse->nMem += pTab->nCol + 1; - if( IsVirtual(pTab) ){ - regRowid++; - pParse->nMem++; - } - regData = regRowid+1; - - /* Run the BEFORE and INSTEAD OF triggers, if there are any - */ - endOfLoop = sqlite3VdbeMakeLabel(v); - if( tmask & TRIGGER_BEFORE ){ - int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); - - /* build the NEW.* reference row. Note that if there is an INTEGER - ** PRIMARY KEY into which a NULL is being inserted, that NULL will be - ** translated into a unique ID for the row. But on a BEFORE trigger, - ** we do not know what the unique ID will be (because the insert has - ** not happened yet) so we substitute a rowid of -1 - */ - if( keyColumn<0 ){ - sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); - }else{ - int j1; - if( useTempTable ){ - sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); - }else{ - assert( pSelect==0 ); /* Otherwise useTempTable is true */ - sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); - } - j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); - sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); - sqlite3VdbeJumpHere(v, j1); - sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); - } - - /* Cannot have triggers on a virtual table. If it were possible, - ** this block would have to account for hidden column. - */ - assert( !IsVirtual(pTab) ); - - /* Create the new column data - */ - for(i=0; i<pTab->nCol; i++){ - if( pColumn==0 ){ - j = i; - }else{ - for(j=0; j<pColumn->nId; j++){ - if( pColumn->a[j].idx==i ) break; - } - } - if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ - sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); - }else if( useTempTable ){ - sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); - }else{ - assert( pSelect==0 ); /* Otherwise useTempTable is true */ - sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); - } - } - - /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, - ** do not attempt any conversions before assembling the record. - ** If this is a real table, attempt conversions as required by the - ** table column affinities. - */ - if( !isView ){ - sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); - sqlite3TableAffinityStr(v, pTab); - } - - /* Fire BEFORE or INSTEAD OF triggers */ - sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, - pTab, regCols-pTab->nCol-1, onError, endOfLoop); - - sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); - } - - /* Push the record number for the new entry onto the stack. The - ** record number is a randomly generate integer created by NewRowid - ** except when the table has an INTEGER PRIMARY KEY column, in which - ** case the record number is the same as that column. - */ - if( !isView ){ - if( IsVirtual(pTab) ){ - /* The row that the VUpdate opcode will delete: none */ - sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); - } - if( keyColumn>=0 ){ - if( useTempTable ){ - sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); - }else if( pSelect ){ - sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); - }else{ - VdbeOp *pOp; - sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); - pOp = sqlite3VdbeGetOp(v, -1); - if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ - appendFlag = 1; - pOp->opcode = OP_NewRowid; - pOp->p1 = baseCur; - pOp->p2 = regRowid; - pOp->p3 = regAutoinc; - } - } - /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid - ** to generate a unique primary key value. - */ - if( !appendFlag ){ - int j1; - if( !IsVirtual(pTab) ){ - j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); - sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); - sqlite3VdbeJumpHere(v, j1); - }else{ - j1 = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); - } - sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); - } - }else if( IsVirtual(pTab) ){ - sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); - }else{ - sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); - appendFlag = 1; - } - autoIncStep(pParse, regAutoinc, regRowid); - - /* Push onto the stack, data for all columns of the new entry, beginning - ** with the first column. - */ - nHidden = 0; - for(i=0; i<pTab->nCol; i++){ - int iRegStore = regRowid+1+i; - if( i==pTab->iPKey ){ - /* The value of the INTEGER PRIMARY KEY column is always a NULL. - ** Whenever this column is read, the record number will be substituted - ** in its place. So will fill this column with a NULL to avoid - ** taking up data space with information that will never be used. */ - sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); - continue; - } - if( pColumn==0 ){ - if( IsHiddenColumn(&pTab->aCol[i]) ){ - assert( IsVirtual(pTab) ); - j = -1; - nHidden++; - }else{ - j = i - nHidden; - } - }else{ - for(j=0; j<pColumn->nId; j++){ - if( pColumn->a[j].idx==i ) break; - } - } - if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ - sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); - }else if( useTempTable ){ - sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); - }else if( pSelect ){ - sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); - }else{ - sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); - } - } - - /* Generate code to check constraints and generate index keys and - ** do the insertion. - */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(pTab) ){ - const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); - sqlite3VtabMakeWritable(pParse, pTab); - sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); - sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); - sqlite3MayAbort(pParse); - }else -#endif - { - int isReplace; /* Set to true if constraints may cause a replace */ - sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, - keyColumn>=0, 0, onError, endOfLoop, &isReplace - ); - sqlite3FkCheck(pParse, pTab, 0, regIns); - sqlite3CompleteInsertion( - pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 - ); - } - } - - /* Update the count of rows that are inserted - */ - if( (db->flags & SQLITE_CountRows)!=0 ){ - sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); - } - - if( pTrigger ){ - /* Code AFTER triggers */ - sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, - pTab, regData-2-pTab->nCol, onError, endOfLoop); - } - - /* The bottom of the main insertion loop, if the data source - ** is a SELECT statement. - */ - sqlite3VdbeResolveLabel(v, endOfLoop); - if( useTempTable ){ - sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); - sqlite3VdbeJumpHere(v, addrInsTop); - sqlite3VdbeAddOp1(v, OP_Close, srcTab); - }else if( pSelect ){ - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); - sqlite3VdbeJumpHere(v, addrInsTop); - } - - if( !IsVirtual(pTab) && !isView ){ - /* Close all tables opened */ - sqlite3VdbeAddOp1(v, OP_Close, baseCur); - for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ - sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); - } - } - -insert_end: - /* Update the sqlite_sequence table by storing the content of the - ** maximum rowid counter values recorded while inserting into - ** autoincrement tables. - */ - if( pParse->nested==0 && pParse->pTriggerTab==0 ){ - sqlite3AutoincrementEnd(pParse); - } - - /* - ** Return the number of rows inserted. If this routine is - ** generating code because of a call to sqlite3NestedParse(), do not - ** invoke the callback function. - */ - if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ - sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); - } - -insert_cleanup: - sqlite3SrcListDelete(db, pTabList); - sqlite3ExprListDelete(db, pList); - sqlite3SelectDelete(db, pSelect); - sqlite3IdListDelete(db, pColumn); - sqlite3DbFree(db, aRegIdx); -} - -/* Make sure "isView" and other macros defined above are undefined. Otherwise -** thely may interfere with compilation of other functions in this file -** (or in another file, if this file becomes part of the amalgamation). */ -#ifdef isView - #undef isView -#endif -#ifdef pTrigger - #undef pTrigger -#endif -#ifdef tmask - #undef tmask -#endif - - -/* -** Generate code to do constraint checks prior to an INSERT or an UPDATE. -** -** The input is a range of consecutive registers as follows: -** -** 1. The rowid of the row after the update. -** -** 2. The data in the first column of the entry after the update. -** -** i. Data from middle columns... -** -** N. The data in the last column of the entry after the update. -** -** The regRowid parameter is the index of the register containing (1). -** -** If isUpdate is true and rowidChng is non-zero, then rowidChng contains -** the address of a register containing the rowid before the update takes -** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate -** is false, indicating an INSERT statement, then a non-zero rowidChng -** indicates that the rowid was explicitly specified as part of the -** INSERT statement. If rowidChng is false, it means that the rowid is -** computed automatically in an insert or that the rowid value is not -** modified by an update. -** -** The code generated by this routine store new index entries into -** registers identified by aRegIdx[]. No index entry is created for -** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is -** the same as the order of indices on the linked list of indices -** attached to the table. -** -** This routine also generates code to check constraints. NOT NULL, -** CHECK, and UNIQUE constraints are all checked. If a constraint fails, -** then the appropriate action is performed. There are five possible -** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. -** -** Constraint type Action What Happens -** --------------- ---------- ---------------------------------------- -** any ROLLBACK The current transaction is rolled back and -** sqlite3_exec() returns immediately with a -** return code of SQLITE_CONSTRAINT. -** -** any ABORT Back out changes from the current command -** only (do not do a complete rollback) then -** cause sqlite3_exec() to return immediately -** with SQLITE_CONSTRAINT. -** -** any FAIL Sqlite3_exec() returns immediately with a -** return code of SQLITE_CONSTRAINT. The -** transaction is not rolled back and any -** prior changes are retained. -** -** any IGNORE The record number and data is popped from -** the stack and there is an immediate jump -** to label ignoreDest. -** -** NOT NULL REPLACE The NULL value is replace by the default -** value for that column. If the default value -** is NULL, the action is the same as ABORT. -** -** UNIQUE REPLACE The other row that conflicts with the row -** being inserted is removed. -** -** CHECK REPLACE Illegal. The results in an exception. -** -** Which action to take is determined by the overrideError parameter. -** Or if overrideError==OE_Default, then the pParse->onError parameter -** is used. Or if pParse->onError==OE_Default then the onError value -** for the constraint is used. -** -** The calling routine must open a read/write cursor for pTab with -** cursor number "baseCur". All indices of pTab must also have open -** read/write cursors with cursor number baseCur+i for the i-th cursor. -** Except, if there is no possibility of a REPLACE action then -** cursors do not need to be open for indices where aRegIdx[i]==0. -*/ -SQLITE_PRIVATE void sqlite3GenerateConstraintChecks( - Parse *pParse, /* The parser context */ - Table *pTab, /* the table into which we are inserting */ - int baseCur, /* Index of a read/write cursor pointing at pTab */ - int regRowid, /* Index of the range of input registers */ - int *aRegIdx, /* Register used by each index. 0 for unused indices */ - int rowidChng, /* True if the rowid might collide with existing entry */ - int isUpdate, /* True for UPDATE, False for INSERT */ - int overrideError, /* Override onError to this if not OE_Default */ - int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ - int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ -){ - int i; /* loop counter */ - Vdbe *v; /* VDBE under constrution */ - int nCol; /* Number of columns */ - int onError; /* Conflict resolution strategy */ - int j1; /* Addresss of jump instruction */ - int j2 = 0, j3; /* Addresses of jump instructions */ - int regData; /* Register containing first data column */ - int iCur; /* Table cursor number */ - Index *pIdx; /* Pointer to one of the indices */ - sqlite3 *db; /* Database connection */ - int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ - int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; - - db = pParse->db; - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); - assert( pTab->pSelect==0 ); /* This table is not a VIEW */ - nCol = pTab->nCol; - regData = regRowid + 1; - - /* Test all NOT NULL constraints. - */ - for(i=0; i<nCol; i++){ - if( i==pTab->iPKey ){ - continue; - } - onError = pTab->aCol[i].notNull; - if( onError==OE_None ) continue; - if( overrideError!=OE_Default ){ - onError = overrideError; - }else if( onError==OE_Default ){ - onError = OE_Abort; - } - if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ - onError = OE_Abort; - } - assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail - || onError==OE_Ignore || onError==OE_Replace ); - switch( onError ){ - case OE_Abort: - sqlite3MayAbort(pParse); - case OE_Rollback: - case OE_Fail: { - char *zMsg; - sqlite3VdbeAddOp3(v, OP_HaltIfNull, - SQLITE_CONSTRAINT_NOTNULL, onError, regData+i); - zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL", - pTab->zName, pTab->aCol[i].zName); - sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); - break; - } - case OE_Ignore: { - sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); - break; - } - default: { - assert( onError==OE_Replace ); - j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); - sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); - sqlite3VdbeJumpHere(v, j1); - break; - } - } - } - - /* Test all CHECK constraints - */ -#ifndef SQLITE_OMIT_CHECK - if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ - ExprList *pCheck = pTab->pCheck; - pParse->ckBase = regData; - onError = overrideError!=OE_Default ? overrideError : OE_Abort; - for(i=0; i<pCheck->nExpr; i++){ - int allOk = sqlite3VdbeMakeLabel(v); - sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); - if( onError==OE_Ignore ){ - sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); - }else{ - char *zConsName = pCheck->a[i].zName; - if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ - if( zConsName ){ - zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName); - }else{ - zConsName = 0; - } - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, - onError, zConsName, P4_DYNAMIC); - } - sqlite3VdbeResolveLabel(v, allOk); - } - } -#endif /* !defined(SQLITE_OMIT_CHECK) */ - - /* If we have an INTEGER PRIMARY KEY, make sure the primary key - ** of the new record does not previously exist. Except, if this - ** is an UPDATE and the primary key is not changing, that is OK. - */ - if( rowidChng ){ - onError = pTab->keyConf; - if( overrideError!=OE_Default ){ - onError = overrideError; - }else if( onError==OE_Default ){ - onError = OE_Abort; - } - - if( isUpdate ){ - j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); - } - j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); - switch( onError ){ - default: { - onError = OE_Abort; - /* Fall thru into the next case */ - } - case OE_Rollback: - case OE_Abort: - case OE_Fail: { - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY, - onError, "PRIMARY KEY must be unique", P4_STATIC); - break; - } - case OE_Replace: { - /* If there are DELETE triggers on this table and the - ** recursive-triggers flag is set, call GenerateRowDelete() to - ** remove the conflicting row from the table. This will fire - ** the triggers and remove both the table and index b-tree entries. - ** - ** Otherwise, if there are no triggers or the recursive-triggers - ** flag is not set, but the table has one or more indexes, call - ** GenerateRowIndexDelete(). This removes the index b-tree entries - ** only. The table b-tree entry will be replaced by the new entry - ** when it is inserted. - ** - ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, - ** also invoke MultiWrite() to indicate that this VDBE may require - ** statement rollback (if the statement is aborted after the delete - ** takes place). Earlier versions called sqlite3MultiWrite() regardless, - ** but being more selective here allows statements like: - ** - ** REPLACE INTO t(rowid) VALUES($newrowid) - ** - ** to run without a statement journal if there are no indexes on the - ** table. - */ - Trigger *pTrigger = 0; - if( db->flags&SQLITE_RecTriggers ){ - pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); - } - if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ - sqlite3MultiWrite(pParse); - sqlite3GenerateRowDelete( - pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace - ); - }else if( pTab->pIndex ){ - sqlite3MultiWrite(pParse); - sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); - } - seenReplace = 1; - break; - } - case OE_Ignore: { - assert( seenReplace==0 ); - sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); - break; - } - } - sqlite3VdbeJumpHere(v, j3); - if( isUpdate ){ - sqlite3VdbeJumpHere(v, j2); - } - } - - /* Test all UNIQUE constraints by creating entries for each UNIQUE - ** index and making sure that duplicate entries do not already exist. - ** Add the new records to the indices as we go. - */ - for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ - int regIdx; - int regR; - - if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ - - /* Create a key for accessing the index entry */ - regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); - for(i=0; i<pIdx->nColumn; i++){ - int idx = pIdx->aiColumn[i]; - if( idx==pTab->iPKey ){ - sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); - }else{ - sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); - } - } - sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); - sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); - sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); - - /* Find out what action to take in case there is an indexing conflict */ - onError = pIdx->onError; - if( onError==OE_None ){ - sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); - continue; /* pIdx is not a UNIQUE index */ - } - if( overrideError!=OE_Default ){ - onError = overrideError; - }else if( onError==OE_Default ){ - onError = OE_Abort; - } - if( seenReplace ){ - if( onError==OE_Ignore ) onError = OE_Replace; - else if( onError==OE_Fail ) onError = OE_Abort; - } - - /* Check to see if the new index entry will be unique */ - regR = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); - j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, - regR, SQLITE_INT_TO_PTR(regIdx), - P4_INT32); - sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); - - /* Generate code that executes if the new index entry is not unique */ - assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail - || onError==OE_Ignore || onError==OE_Replace ); - switch( onError ){ - case OE_Rollback: - case OE_Abort: - case OE_Fail: { - int j; - StrAccum errMsg; - const char *zSep; - char *zErr; - - sqlite3StrAccumInit(&errMsg, 0, 0, 200); - errMsg.db = db; - zSep = pIdx->nColumn>1 ? "columns " : "column "; - for(j=0; j<pIdx->nColumn; j++){ - char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; - sqlite3StrAccumAppend(&errMsg, zSep, -1); - zSep = ", "; - sqlite3StrAccumAppend(&errMsg, zCol, -1); - } - sqlite3StrAccumAppend(&errMsg, - pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); - zErr = sqlite3StrAccumFinish(&errMsg); - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE, - onError, zErr, 0); - sqlite3DbFree(errMsg.db, zErr); - break; - } - case OE_Ignore: { - assert( seenReplace==0 ); - sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); - break; - } - default: { - Trigger *pTrigger = 0; - assert( onError==OE_Replace ); - sqlite3MultiWrite(pParse); - if( db->flags&SQLITE_RecTriggers ){ - pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); - } - sqlite3GenerateRowDelete( - pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace - ); - seenReplace = 1; - break; - } - } - sqlite3VdbeJumpHere(v, j3); - sqlite3ReleaseTempReg(pParse, regR); - } - - if( pbMayReplace ){ - *pbMayReplace = seenReplace; - } -} - -/* -** This routine generates code to finish the INSERT or UPDATE operation -** that was started by a prior call to sqlite3GenerateConstraintChecks. -** A consecutive range of registers starting at regRowid contains the -** rowid and the content to be inserted. -** -** The arguments to this routine should be the same as the first six -** arguments to sqlite3GenerateConstraintChecks. -*/ -SQLITE_PRIVATE void sqlite3CompleteInsertion( - Parse *pParse, /* The parser context */ - Table *pTab, /* the table into which we are inserting */ - int baseCur, /* Index of a read/write cursor pointing at pTab */ - int regRowid, /* Range of content */ - int *aRegIdx, /* Register used by each index. 0 for unused indices */ - int isUpdate, /* True for UPDATE, False for INSERT */ - int appendBias, /* True if this is likely to be an append */ - int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ -){ - int i; - Vdbe *v; - int nIdx; - Index *pIdx; - u8 pik_flags; - int regData; - int regRec; - - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); - assert( pTab->pSelect==0 ); /* This table is not a VIEW */ - for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} - for(i=nIdx-1; i>=0; i--){ - if( aRegIdx[i]==0 ) continue; - sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); - if( useSeekResult ){ - sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); - } - } - regData = regRowid + 1; - regRec = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); - sqlite3TableAffinityStr(v, pTab); - sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); - if( pParse->nested ){ - pik_flags = 0; - }else{ - pik_flags = OPFLAG_NCHANGE; - pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); - } - if( appendBias ){ - pik_flags |= OPFLAG_APPEND; - } - if( useSeekResult ){ - pik_flags |= OPFLAG_USESEEKRESULT; - } - sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); - if( !pParse->nested ){ - sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); - } - sqlite3VdbeChangeP5(v, pik_flags); -} - -/* -** Generate code that will open cursors for a table and for all -** indices of that table. The "baseCur" parameter is the cursor number used -** for the table. Indices are opened on subsequent cursors. -** -** Return the number of indices on the table. -*/ -SQLITE_PRIVATE int sqlite3OpenTableAndIndices( - Parse *pParse, /* Parsing context */ - Table *pTab, /* Table to be opened */ - int baseCur, /* Cursor number assigned to the table */ - int op /* OP_OpenRead or OP_OpenWrite */ -){ - int i; - int iDb; - Index *pIdx; - Vdbe *v; - - if( IsVirtual(pTab) ) return 0; - iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); - sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); - for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ - KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); - assert( pIdx->pSchema==pTab->pSchema ); - sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, - (char*)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pIdx->zName)); - } - if( pParse->nTab<baseCur+i ){ - pParse->nTab = baseCur+i; - } - return i-1; -} - - -#ifdef SQLITE_TEST -/* -** The following global variable is incremented whenever the -** transfer optimization is used. This is used for testing -** purposes only - to make sure the transfer optimization really -** is happening when it is suppose to. -*/ -SQLITE_API int sqlite3_xferopt_count; -#endif /* SQLITE_TEST */ - - -#ifndef SQLITE_OMIT_XFER_OPT -/* -** Check to collation names to see if they are compatible. -*/ -static int xferCompatibleCollation(const char *z1, const char *z2){ - if( z1==0 ){ - return z2==0; - } - if( z2==0 ){ - return 0; - } - return sqlite3StrICmp(z1, z2)==0; -} - - -/* -** Check to see if index pSrc is compatible as a source of data -** for index pDest in an insert transfer optimization. The rules -** for a compatible index: -** -** * The index is over the same set of columns -** * The same DESC and ASC markings occurs on all columns -** * The same onError processing (OE_Abort, OE_Ignore, etc) -** * The same collating sequence on each column -*/ -static int xferCompatibleIndex(Index *pDest, Index *pSrc){ - int i; - assert( pDest && pSrc ); - assert( pDest->pTable!=pSrc->pTable ); - if( pDest->nColumn!=pSrc->nColumn ){ - return 0; /* Different number of columns */ - } - if( pDest->onError!=pSrc->onError ){ - return 0; /* Different conflict resolution strategies */ - } - for(i=0; i<pSrc->nColumn; i++){ - if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ - return 0; /* Different columns indexed */ - } - if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ - return 0; /* Different sort orders */ - } - if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ - return 0; /* Different collating sequences */ - } - } - - /* If no test above fails then the indices must be compatible */ - return 1; -} - -/* -** Attempt the transfer optimization on INSERTs of the form -** -** INSERT INTO tab1 SELECT * FROM tab2; -** -** The xfer optimization transfers raw records from tab2 over to tab1. -** Columns are not decoded and reassemblied, which greatly improves -** performance. Raw index records are transferred in the same way. -** -** The xfer optimization is only attempted if tab1 and tab2 are compatible. -** There are lots of rules for determining compatibility - see comments -** embedded in the code for details. -** -** This routine returns TRUE if the optimization is guaranteed to be used. -** Sometimes the xfer optimization will only work if the destination table -** is empty - a factor that can only be determined at run-time. In that -** case, this routine generates code for the xfer optimization but also -** does a test to see if the destination table is empty and jumps over the -** xfer optimization code if the test fails. In that case, this routine -** returns FALSE so that the caller will know to go ahead and generate -** an unoptimized transfer. This routine also returns FALSE if there -** is no chance that the xfer optimization can be applied. -** -** This optimization is particularly useful at making VACUUM run faster. -*/ -static int xferOptimization( - Parse *pParse, /* Parser context */ - Table *pDest, /* The table we are inserting into */ - Select *pSelect, /* A SELECT statement to use as the data source */ - int onError, /* How to handle constraint errors */ - int iDbDest /* The database of pDest */ -){ - ExprList *pEList; /* The result set of the SELECT */ - Table *pSrc; /* The table in the FROM clause of SELECT */ - Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ - struct SrcList_item *pItem; /* An element of pSelect->pSrc */ - int i; /* Loop counter */ - int iDbSrc; /* The database of pSrc */ - int iSrc, iDest; /* Cursors from source and destination */ - int addr1, addr2; /* Loop addresses */ - int emptyDestTest; /* Address of test for empty pDest */ - int emptySrcTest; /* Address of test for empty pSrc */ - Vdbe *v; /* The VDBE we are building */ - KeyInfo *pKey; /* Key information for an index */ - int regAutoinc; /* Memory register used by AUTOINC */ - int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ - int regData, regRowid; /* Registers holding data and rowid */ - - if( pSelect==0 ){ - return 0; /* Must be of the form INSERT INTO ... SELECT ... */ - } - if( sqlite3TriggerList(pParse, pDest) ){ - return 0; /* tab1 must not have triggers */ - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pDest->tabFlags & TF_Virtual ){ - return 0; /* tab1 must not be a virtual table */ - } -#endif - if( onError==OE_Default ){ - if( pDest->iPKey>=0 ) onError = pDest->keyConf; - if( onError==OE_Default ) onError = OE_Abort; - } - assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ - if( pSelect->pSrc->nSrc!=1 ){ - return 0; /* FROM clause must have exactly one term */ - } - if( pSelect->pSrc->a[0].pSelect ){ - return 0; /* FROM clause cannot contain a subquery */ - } - if( pSelect->pWhere ){ - return 0; /* SELECT may not have a WHERE clause */ - } - if( pSelect->pOrderBy ){ - return 0; /* SELECT may not have an ORDER BY clause */ - } - /* Do not need to test for a HAVING clause. If HAVING is present but - ** there is no ORDER BY, we will get an error. */ - if( pSelect->pGroupBy ){ - return 0; /* SELECT may not have a GROUP BY clause */ - } - if( pSelect->pLimit ){ - return 0; /* SELECT may not have a LIMIT clause */ - } - assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ - if( pSelect->pPrior ){ - return 0; /* SELECT may not be a compound query */ - } - if( pSelect->selFlags & SF_Distinct ){ - return 0; /* SELECT may not be DISTINCT */ - } - pEList = pSelect->pEList; - assert( pEList!=0 ); - if( pEList->nExpr!=1 ){ - return 0; /* The result set must have exactly one column */ - } - assert( pEList->a[0].pExpr ); - if( pEList->a[0].pExpr->op!=TK_ALL ){ - return 0; /* The result set must be the special operator "*" */ - } - - /* At this point we have established that the statement is of the - ** correct syntactic form to participate in this optimization. Now - ** we have to check the semantics. - */ - pItem = pSelect->pSrc->a; - pSrc = sqlite3LocateTableItem(pParse, 0, pItem); - if( pSrc==0 ){ - return 0; /* FROM clause does not contain a real table */ - } - if( pSrc==pDest ){ - return 0; /* tab1 and tab2 may not be the same table */ - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pSrc->tabFlags & TF_Virtual ){ - return 0; /* tab2 must not be a virtual table */ - } -#endif - if( pSrc->pSelect ){ - return 0; /* tab2 may not be a view */ - } - if( pDest->nCol!=pSrc->nCol ){ - return 0; /* Number of columns must be the same in tab1 and tab2 */ - } - if( pDest->iPKey!=pSrc->iPKey ){ - return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ - } - for(i=0; i<pDest->nCol; i++){ - if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ - return 0; /* Affinity must be the same on all columns */ - } - if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ - return 0; /* Collating sequence must be the same on all columns */ - } - if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ - return 0; /* tab2 must be NOT NULL if tab1 is */ - } - } - for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ - if( pDestIdx->onError!=OE_None ){ - destHasUniqueIdx = 1; - } - for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ - if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; - } - if( pSrcIdx==0 ){ - return 0; /* pDestIdx has no corresponding index in pSrc */ - } - } -#ifndef SQLITE_OMIT_CHECK - if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck, pDest->pCheck) ){ - return 0; /* Tables have different CHECK constraints. Ticket #2252 */ - } -#endif -#ifndef SQLITE_OMIT_FOREIGN_KEY - /* Disallow the transfer optimization if the destination table constains - ** any foreign key constraints. This is more restrictive than necessary. - ** But the main beneficiary of the transfer optimization is the VACUUM - ** command, and the VACUUM command disables foreign key constraints. So - ** the extra complication to make this rule less restrictive is probably - ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] - */ - if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ - return 0; - } -#endif - if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ - return 0; /* xfer opt does not play well with PRAGMA count_changes */ - } - - /* If we get this far, it means that the xfer optimization is at - ** least a possibility, though it might only work if the destination - ** table (tab1) is initially empty. - */ -#ifdef SQLITE_TEST - sqlite3_xferopt_count++; -#endif - iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); - v = sqlite3GetVdbe(pParse); - sqlite3CodeVerifySchema(pParse, iDbSrc); - iSrc = pParse->nTab++; - iDest = pParse->nTab++; - regAutoinc = autoIncBegin(pParse, iDbDest, pDest); - sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); - if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ - || destHasUniqueIdx /* (2) */ - || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ - ){ - /* In some circumstances, we are able to run the xfer optimization - ** only if the destination table is initially empty. This code makes - ** that determination. Conditions under which the destination must - ** be empty: - ** - ** (1) There is no INTEGER PRIMARY KEY but there are indices. - ** (If the destination is not initially empty, the rowid fields - ** of index entries might need to change.) - ** - ** (2) The destination has a unique index. (The xfer optimization - ** is unable to test uniqueness.) - ** - ** (3) onError is something other than OE_Abort and OE_Rollback. - */ - addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); - emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); - sqlite3VdbeJumpHere(v, addr1); - }else{ - emptyDestTest = 0; - } - sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); - emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); - regData = sqlite3GetTempReg(pParse); - regRowid = sqlite3GetTempReg(pParse); - if( pDest->iPKey>=0 ){ - addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); - addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); - sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY, - onError, "PRIMARY KEY must be unique", P4_STATIC); - sqlite3VdbeJumpHere(v, addr2); - autoIncStep(pParse, regAutoinc, regRowid); - }else if( pDest->pIndex==0 ){ - addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); - }else{ - addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); - assert( (pDest->tabFlags & TF_Autoincrement)==0 ); - } - sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); - sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); - sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); - sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); - sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); - for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ - for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ - if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; - } - assert( pSrcIdx ); - sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); - sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); - pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); - sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, - (char*)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pSrcIdx->zName)); - pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); - sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, - (char*)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pDestIdx->zName)); - addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); - sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); - sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); - sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); - sqlite3VdbeJumpHere(v, addr1); - } - sqlite3VdbeJumpHere(v, emptySrcTest); - sqlite3ReleaseTempReg(pParse, regRowid); - sqlite3ReleaseTempReg(pParse, regData); - sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); - sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); - if( emptyDestTest ){ - sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); - sqlite3VdbeJumpHere(v, emptyDestTest); - sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); - return 0; - }else{ - return 1; - } -} -#endif /* SQLITE_OMIT_XFER_OPT */ - -/************** End of insert.c **********************************************/ -/************** Begin file legacy.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Main file for the SQLite library. The routines in this file -** implement the programmer interface to the library. Routines in -** other files are for internal use by SQLite and should not be -** accessed by users of the library. -*/ - - -/* -** Execute SQL code. Return one of the SQLITE_ success/failure -** codes. Also write an error message into memory obtained from -** malloc() and make *pzErrMsg point to that message. -** -** If the SQL is a query, then for each row in the query result -** the xCallback() function is called. pArg becomes the first -** argument to xCallback(). If xCallback=NULL then no callback -** is invoked, even for queries. -*/ -SQLITE_API int sqlite3_exec( - sqlite3 *db, /* The database on which the SQL executes */ - const char *zSql, /* The SQL to be executed */ - sqlite3_callback xCallback, /* Invoke this callback routine */ - void *pArg, /* First argument to xCallback() */ - char **pzErrMsg /* Write error messages here */ -){ - int rc = SQLITE_OK; /* Return code */ - const char *zLeftover; /* Tail of unprocessed SQL */ - sqlite3_stmt *pStmt = 0; /* The current SQL statement */ - char **azCols = 0; /* Names of result columns */ - int nRetry = 0; /* Number of retry attempts */ - int callbackIsInit; /* True if callback data is initialized */ - - if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; - if( zSql==0 ) zSql = ""; - - sqlite3_mutex_enter(db->mutex); - sqlite3Error(db, SQLITE_OK, 0); - while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ - int nCol; - char **azVals = 0; - - pStmt = 0; - rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); - assert( rc==SQLITE_OK || pStmt==0 ); - if( rc!=SQLITE_OK ){ - continue; - } - if( !pStmt ){ - /* this happens for a comment or white-space */ - zSql = zLeftover; - continue; - } - - callbackIsInit = 0; - nCol = sqlite3_column_count(pStmt); - - while( 1 ){ - int i; - rc = sqlite3_step(pStmt); - - /* Invoke the callback function if required */ - if( xCallback && (SQLITE_ROW==rc || - (SQLITE_DONE==rc && !callbackIsInit - && db->flags&SQLITE_NullCallback)) ){ - if( !callbackIsInit ){ - azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); - if( azCols==0 ){ - goto exec_out; - } - for(i=0; i<nCol; i++){ - azCols[i] = (char *)sqlite3_column_name(pStmt, i); - /* sqlite3VdbeSetColName() installs column names as UTF8 - ** strings so there is no way for sqlite3_column_name() to fail. */ - assert( azCols[i]!=0 ); - } - callbackIsInit = 1; - } - if( rc==SQLITE_ROW ){ - azVals = &azCols[nCol]; - for(i=0; i<nCol; i++){ - azVals[i] = (char *)sqlite3_column_text(pStmt, i); - if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ - db->mallocFailed = 1; - goto exec_out; - } - } - } - if( xCallback(pArg, nCol, azVals, azCols) ){ - rc = SQLITE_ABORT; - sqlite3VdbeFinalize((Vdbe *)pStmt); - pStmt = 0; - sqlite3Error(db, SQLITE_ABORT, 0); - goto exec_out; - } - } - - if( rc!=SQLITE_ROW ){ - rc = sqlite3VdbeFinalize((Vdbe *)pStmt); - pStmt = 0; - if( rc!=SQLITE_SCHEMA ){ - nRetry = 0; - zSql = zLeftover; - while( sqlite3Isspace(zSql[0]) ) zSql++; - } - break; - } - } - - sqlite3DbFree(db, azCols); - azCols = 0; - } - -exec_out: - if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); - sqlite3DbFree(db, azCols); - - rc = sqlite3ApiExit(db, rc); - if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){ - int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); - *pzErrMsg = sqlite3Malloc(nErrMsg); - if( *pzErrMsg ){ - memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); - }else{ - rc = SQLITE_NOMEM; - sqlite3Error(db, SQLITE_NOMEM, 0); - } - }else if( pzErrMsg ){ - *pzErrMsg = 0; - } - - assert( (rc&db->errMask)==rc ); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/************** End of legacy.c **********************************************/ -/************** Begin file loadext.c *****************************************/ -/* -** 2006 June 7 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to dynamically load extensions into -** the SQLite library. -*/ - -#ifndef SQLITE_CORE - #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ -#endif -/************** Include sqlite3ext.h in the middle of loadext.c **************/ -/************** Begin file sqlite3ext.h **************************************/ -/* -** 2006 June 7 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the SQLite interface for use by -** shared libraries that want to be imported as extensions into -** an SQLite instance. Shared libraries that intend to be loaded -** as extensions by SQLite should #include this file instead of -** sqlite3.h. -*/ -#ifndef _SQLITE3EXT_H_ -#define _SQLITE3EXT_H_ - -typedef struct sqlite3_api_routines sqlite3_api_routines; - -/* -** The following structure holds pointers to all of the SQLite API -** routines. -** -** WARNING: In order to maintain backwards compatibility, add new -** interfaces to the end of this structure only. If you insert new -** interfaces in the middle of this structure, then older different -** versions of SQLite will not be able to load each others' shared -** libraries! -*/ -struct sqlite3_api_routines { - void * (*aggregate_context)(sqlite3_context*,int nBytes); - int (*aggregate_count)(sqlite3_context*); - int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); - int (*bind_double)(sqlite3_stmt*,int,double); - int (*bind_int)(sqlite3_stmt*,int,int); - int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); - int (*bind_null)(sqlite3_stmt*,int); - int (*bind_parameter_count)(sqlite3_stmt*); - int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); - const char * (*bind_parameter_name)(sqlite3_stmt*,int); - int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); - int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); - int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); - int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); - int (*busy_timeout)(sqlite3*,int ms); - int (*changes)(sqlite3*); - int (*close)(sqlite3*); - int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*, - int eTextRep,const char*)); - int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*, - int eTextRep,const void*)); - const void * (*column_blob)(sqlite3_stmt*,int iCol); - int (*column_bytes)(sqlite3_stmt*,int iCol); - int (*column_bytes16)(sqlite3_stmt*,int iCol); - int (*column_count)(sqlite3_stmt*pStmt); - const char * (*column_database_name)(sqlite3_stmt*,int); - const void * (*column_database_name16)(sqlite3_stmt*,int); - const char * (*column_decltype)(sqlite3_stmt*,int i); - const void * (*column_decltype16)(sqlite3_stmt*,int); - double (*column_double)(sqlite3_stmt*,int iCol); - int (*column_int)(sqlite3_stmt*,int iCol); - sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); - const char * (*column_name)(sqlite3_stmt*,int); - const void * (*column_name16)(sqlite3_stmt*,int); - const char * (*column_origin_name)(sqlite3_stmt*,int); - const void * (*column_origin_name16)(sqlite3_stmt*,int); - const char * (*column_table_name)(sqlite3_stmt*,int); - const void * (*column_table_name16)(sqlite3_stmt*,int); - const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); - const void * (*column_text16)(sqlite3_stmt*,int iCol); - int (*column_type)(sqlite3_stmt*,int iCol); - sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); - void * (*commit_hook)(sqlite3*,int(*)(void*),void*); - int (*complete)(const char*sql); - int (*complete16)(const void*sql); - int (*create_collation)(sqlite3*,const char*,int,void*, - int(*)(void*,int,const void*,int,const void*)); - int (*create_collation16)(sqlite3*,const void*,int,void*, - int(*)(void*,int,const void*,int,const void*)); - int (*create_function)(sqlite3*,const char*,int,int,void*, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*)); - int (*create_function16)(sqlite3*,const void*,int,int,void*, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*)); - int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); - int (*data_count)(sqlite3_stmt*pStmt); - sqlite3 * (*db_handle)(sqlite3_stmt*); - int (*declare_vtab)(sqlite3*,const char*); - int (*enable_shared_cache)(int); - int (*errcode)(sqlite3*db); - const char * (*errmsg)(sqlite3*); - const void * (*errmsg16)(sqlite3*); - int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); - int (*expired)(sqlite3_stmt*); - int (*finalize)(sqlite3_stmt*pStmt); - void (*free)(void*); - void (*free_table)(char**result); - int (*get_autocommit)(sqlite3*); - void * (*get_auxdata)(sqlite3_context*,int); - int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); - int (*global_recover)(void); - void (*interruptx)(sqlite3*); - sqlite_int64 (*last_insert_rowid)(sqlite3*); - const char * (*libversion)(void); - int (*libversion_number)(void); - void *(*malloc)(int); - char * (*mprintf)(const char*,...); - int (*open)(const char*,sqlite3**); - int (*open16)(const void*,sqlite3**); - int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); - int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); - void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); - void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); - void *(*realloc)(void*,int); - int (*reset)(sqlite3_stmt*pStmt); - void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); - void (*result_double)(sqlite3_context*,double); - void (*result_error)(sqlite3_context*,const char*,int); - void (*result_error16)(sqlite3_context*,const void*,int); - void (*result_int)(sqlite3_context*,int); - void (*result_int64)(sqlite3_context*,sqlite_int64); - void (*result_null)(sqlite3_context*); - void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); - void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); - void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); - void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); - void (*result_value)(sqlite3_context*,sqlite3_value*); - void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); - int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*, - const char*,const char*),void*); - void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); - char * (*snprintf)(int,char*,const char*,...); - int (*step)(sqlite3_stmt*); - int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*, - char const**,char const**,int*,int*,int*); - void (*thread_cleanup)(void); - int (*total_changes)(sqlite3*); - void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); - int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); - void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*, - sqlite_int64),void*); - void * (*user_data)(sqlite3_context*); - const void * (*value_blob)(sqlite3_value*); - int (*value_bytes)(sqlite3_value*); - int (*value_bytes16)(sqlite3_value*); - double (*value_double)(sqlite3_value*); - int (*value_int)(sqlite3_value*); - sqlite_int64 (*value_int64)(sqlite3_value*); - int (*value_numeric_type)(sqlite3_value*); - const unsigned char * (*value_text)(sqlite3_value*); - const void * (*value_text16)(sqlite3_value*); - const void * (*value_text16be)(sqlite3_value*); - const void * (*value_text16le)(sqlite3_value*); - int (*value_type)(sqlite3_value*); - char *(*vmprintf)(const char*,va_list); - /* Added ??? */ - int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); - /* Added by 3.3.13 */ - int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); - int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); - int (*clear_bindings)(sqlite3_stmt*); - /* Added by 3.4.1 */ - int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*, - void (*xDestroy)(void *)); - /* Added by 3.5.0 */ - int (*bind_zeroblob)(sqlite3_stmt*,int,int); - int (*blob_bytes)(sqlite3_blob*); - int (*blob_close)(sqlite3_blob*); - int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64, - int,sqlite3_blob**); - int (*blob_read)(sqlite3_blob*,void*,int,int); - int (*blob_write)(sqlite3_blob*,const void*,int,int); - int (*create_collation_v2)(sqlite3*,const char*,int,void*, - int(*)(void*,int,const void*,int,const void*), - void(*)(void*)); - int (*file_control)(sqlite3*,const char*,int,void*); - sqlite3_int64 (*memory_highwater)(int); - sqlite3_int64 (*memory_used)(void); - sqlite3_mutex *(*mutex_alloc)(int); - void (*mutex_enter)(sqlite3_mutex*); - void (*mutex_free)(sqlite3_mutex*); - void (*mutex_leave)(sqlite3_mutex*); - int (*mutex_try)(sqlite3_mutex*); - int (*open_v2)(const char*,sqlite3**,int,const char*); - int (*release_memory)(int); - void (*result_error_nomem)(sqlite3_context*); - void (*result_error_toobig)(sqlite3_context*); - int (*sleep)(int); - void (*soft_heap_limit)(int); - sqlite3_vfs *(*vfs_find)(const char*); - int (*vfs_register)(sqlite3_vfs*,int); - int (*vfs_unregister)(sqlite3_vfs*); - int (*xthreadsafe)(void); - void (*result_zeroblob)(sqlite3_context*,int); - void (*result_error_code)(sqlite3_context*,int); - int (*test_control)(int, ...); - void (*randomness)(int,void*); - sqlite3 *(*context_db_handle)(sqlite3_context*); - int (*extended_result_codes)(sqlite3*,int); - int (*limit)(sqlite3*,int,int); - sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*); - const char *(*sql)(sqlite3_stmt*); - int (*status)(int,int*,int*,int); - int (*backup_finish)(sqlite3_backup*); - sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*); - int (*backup_pagecount)(sqlite3_backup*); - int (*backup_remaining)(sqlite3_backup*); - int (*backup_step)(sqlite3_backup*,int); - const char *(*compileoption_get)(int); - int (*compileoption_used)(const char*); - int (*create_function_v2)(sqlite3*,const char*,int,int,void*, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*), - void(*xDestroy)(void*)); - int (*db_config)(sqlite3*,int,...); - sqlite3_mutex *(*db_mutex)(sqlite3*); - int (*db_status)(sqlite3*,int,int*,int*,int); - int (*extended_errcode)(sqlite3*); - void (*log)(int,const char*,...); - sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64); - const char *(*sourceid)(void); - int (*stmt_status)(sqlite3_stmt*,int,int); - int (*strnicmp)(const char*,const char*,int); - int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); - int (*wal_autocheckpoint)(sqlite3*,int); - int (*wal_checkpoint)(sqlite3*,const char*); - void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); - int (*blob_reopen)(sqlite3_blob*,sqlite3_int64); - int (*vtab_config)(sqlite3*,int op,...); - int (*vtab_on_conflict)(sqlite3*); - /* Version 3.7.16 and later */ - int (*close_v2)(sqlite3*); - const char *(*db_filename)(sqlite3*,const char*); - int (*db_readonly)(sqlite3*,const char*); - int (*db_release_memory)(sqlite3*); - const char *(*errstr)(int); - int (*stmt_busy)(sqlite3_stmt*); - int (*stmt_readonly)(sqlite3_stmt*); - int (*stricmp)(const char*,const char*); - int (*uri_boolean)(const char*,const char*,int); - sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64); - const char *(*uri_parameter)(const char*,const char*); - char *(*vsnprintf)(int,char*,const char*,va_list); - int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*); -}; - -/* -** The following macros redefine the API routines so that they are -** redirected throught the global sqlite3_api structure. -** -** This header file is also used by the loadext.c source file -** (part of the main SQLite library - not an extension) so that -** it can get access to the sqlite3_api_routines structure -** definition. But the main library does not want to redefine -** the API. So the redefinition macros are only valid if the -** SQLITE_CORE macros is undefined. -*/ -#ifndef SQLITE_CORE -#define sqlite3_aggregate_context sqlite3_api->aggregate_context -#ifndef SQLITE_OMIT_DEPRECATED -#define sqlite3_aggregate_count sqlite3_api->aggregate_count -#endif -#define sqlite3_bind_blob sqlite3_api->bind_blob -#define sqlite3_bind_double sqlite3_api->bind_double -#define sqlite3_bind_int sqlite3_api->bind_int -#define sqlite3_bind_int64 sqlite3_api->bind_int64 -#define sqlite3_bind_null sqlite3_api->bind_null -#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count -#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index -#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name -#define sqlite3_bind_text sqlite3_api->bind_text -#define sqlite3_bind_text16 sqlite3_api->bind_text16 -#define sqlite3_bind_value sqlite3_api->bind_value -#define sqlite3_busy_handler sqlite3_api->busy_handler -#define sqlite3_busy_timeout sqlite3_api->busy_timeout -#define sqlite3_changes sqlite3_api->changes -#define sqlite3_close sqlite3_api->close -#define sqlite3_collation_needed sqlite3_api->collation_needed -#define sqlite3_collation_needed16 sqlite3_api->collation_needed16 -#define sqlite3_column_blob sqlite3_api->column_blob -#define sqlite3_column_bytes sqlite3_api->column_bytes -#define sqlite3_column_bytes16 sqlite3_api->column_bytes16 -#define sqlite3_column_count sqlite3_api->column_count -#define sqlite3_column_database_name sqlite3_api->column_database_name -#define sqlite3_column_database_name16 sqlite3_api->column_database_name16 -#define sqlite3_column_decltype sqlite3_api->column_decltype -#define sqlite3_column_decltype16 sqlite3_api->column_decltype16 -#define sqlite3_column_double sqlite3_api->column_double -#define sqlite3_column_int sqlite3_api->column_int -#define sqlite3_column_int64 sqlite3_api->column_int64 -#define sqlite3_column_name sqlite3_api->column_name -#define sqlite3_column_name16 sqlite3_api->column_name16 -#define sqlite3_column_origin_name sqlite3_api->column_origin_name -#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 -#define sqlite3_column_table_name sqlite3_api->column_table_name -#define sqlite3_column_table_name16 sqlite3_api->column_table_name16 -#define sqlite3_column_text sqlite3_api->column_text -#define sqlite3_column_text16 sqlite3_api->column_text16 -#define sqlite3_column_type sqlite3_api->column_type -#define sqlite3_column_value sqlite3_api->column_value -#define sqlite3_commit_hook sqlite3_api->commit_hook -#define sqlite3_complete sqlite3_api->complete -#define sqlite3_complete16 sqlite3_api->complete16 -#define sqlite3_create_collation sqlite3_api->create_collation -#define sqlite3_create_collation16 sqlite3_api->create_collation16 -#define sqlite3_create_function sqlite3_api->create_function -#define sqlite3_create_function16 sqlite3_api->create_function16 -#define sqlite3_create_module sqlite3_api->create_module -#define sqlite3_create_module_v2 sqlite3_api->create_module_v2 -#define sqlite3_data_count sqlite3_api->data_count -#define sqlite3_db_handle sqlite3_api->db_handle -#define sqlite3_declare_vtab sqlite3_api->declare_vtab -#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache -#define sqlite3_errcode sqlite3_api->errcode -#define sqlite3_errmsg sqlite3_api->errmsg -#define sqlite3_errmsg16 sqlite3_api->errmsg16 -#define sqlite3_exec sqlite3_api->exec -#ifndef SQLITE_OMIT_DEPRECATED -#define sqlite3_expired sqlite3_api->expired -#endif -#define sqlite3_finalize sqlite3_api->finalize -#define sqlite3_free sqlite3_api->free -#define sqlite3_free_table sqlite3_api->free_table -#define sqlite3_get_autocommit sqlite3_api->get_autocommit -#define sqlite3_get_auxdata sqlite3_api->get_auxdata -#define sqlite3_get_table sqlite3_api->get_table -#ifndef SQLITE_OMIT_DEPRECATED -#define sqlite3_global_recover sqlite3_api->global_recover -#endif -#define sqlite3_interrupt sqlite3_api->interruptx -#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid -#define sqlite3_libversion sqlite3_api->libversion -#define sqlite3_libversion_number sqlite3_api->libversion_number -#define sqlite3_malloc sqlite3_api->malloc -#define sqlite3_mprintf sqlite3_api->mprintf -#define sqlite3_open sqlite3_api->open -#define sqlite3_open16 sqlite3_api->open16 -#define sqlite3_prepare sqlite3_api->prepare -#define sqlite3_prepare16 sqlite3_api->prepare16 -#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 -#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 -#define sqlite3_profile sqlite3_api->profile -#define sqlite3_progress_handler sqlite3_api->progress_handler -#define sqlite3_realloc sqlite3_api->realloc -#define sqlite3_reset sqlite3_api->reset -#define sqlite3_result_blob sqlite3_api->result_blob -#define sqlite3_result_double sqlite3_api->result_double -#define sqlite3_result_error sqlite3_api->result_error -#define sqlite3_result_error16 sqlite3_api->result_error16 -#define sqlite3_result_int sqlite3_api->result_int -#define sqlite3_result_int64 sqlite3_api->result_int64 -#define sqlite3_result_null sqlite3_api->result_null -#define sqlite3_result_text sqlite3_api->result_text -#define sqlite3_result_text16 sqlite3_api->result_text16 -#define sqlite3_result_text16be sqlite3_api->result_text16be -#define sqlite3_result_text16le sqlite3_api->result_text16le -#define sqlite3_result_value sqlite3_api->result_value -#define sqlite3_rollback_hook sqlite3_api->rollback_hook -#define sqlite3_set_authorizer sqlite3_api->set_authorizer -#define sqlite3_set_auxdata sqlite3_api->set_auxdata -#define sqlite3_snprintf sqlite3_api->snprintf -#define sqlite3_step sqlite3_api->step -#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata -#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup -#define sqlite3_total_changes sqlite3_api->total_changes -#define sqlite3_trace sqlite3_api->trace -#ifndef SQLITE_OMIT_DEPRECATED -#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings -#endif -#define sqlite3_update_hook sqlite3_api->update_hook -#define sqlite3_user_data sqlite3_api->user_data -#define sqlite3_value_blob sqlite3_api->value_blob -#define sqlite3_value_bytes sqlite3_api->value_bytes -#define sqlite3_value_bytes16 sqlite3_api->value_bytes16 -#define sqlite3_value_double sqlite3_api->value_double -#define sqlite3_value_int sqlite3_api->value_int -#define sqlite3_value_int64 sqlite3_api->value_int64 -#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type -#define sqlite3_value_text sqlite3_api->value_text -#define sqlite3_value_text16 sqlite3_api->value_text16 -#define sqlite3_value_text16be sqlite3_api->value_text16be -#define sqlite3_value_text16le sqlite3_api->value_text16le -#define sqlite3_value_type sqlite3_api->value_type -#define sqlite3_vmprintf sqlite3_api->vmprintf -#define sqlite3_overload_function sqlite3_api->overload_function -#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 -#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 -#define sqlite3_clear_bindings sqlite3_api->clear_bindings -#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob -#define sqlite3_blob_bytes sqlite3_api->blob_bytes -#define sqlite3_blob_close sqlite3_api->blob_close -#define sqlite3_blob_open sqlite3_api->blob_open -#define sqlite3_blob_read sqlite3_api->blob_read -#define sqlite3_blob_write sqlite3_api->blob_write -#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 -#define sqlite3_file_control sqlite3_api->file_control -#define sqlite3_memory_highwater sqlite3_api->memory_highwater -#define sqlite3_memory_used sqlite3_api->memory_used -#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc -#define sqlite3_mutex_enter sqlite3_api->mutex_enter -#define sqlite3_mutex_free sqlite3_api->mutex_free -#define sqlite3_mutex_leave sqlite3_api->mutex_leave -#define sqlite3_mutex_try sqlite3_api->mutex_try -#define sqlite3_open_v2 sqlite3_api->open_v2 -#define sqlite3_release_memory sqlite3_api->release_memory -#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem -#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig -#define sqlite3_sleep sqlite3_api->sleep -#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit -#define sqlite3_vfs_find sqlite3_api->vfs_find -#define sqlite3_vfs_register sqlite3_api->vfs_register -#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister -#define sqlite3_threadsafe sqlite3_api->xthreadsafe -#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob -#define sqlite3_result_error_code sqlite3_api->result_error_code -#define sqlite3_test_control sqlite3_api->test_control -#define sqlite3_randomness sqlite3_api->randomness -#define sqlite3_context_db_handle sqlite3_api->context_db_handle -#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes -#define sqlite3_limit sqlite3_api->limit -#define sqlite3_next_stmt sqlite3_api->next_stmt -#define sqlite3_sql sqlite3_api->sql -#define sqlite3_status sqlite3_api->status -#define sqlite3_backup_finish sqlite3_api->backup_finish -#define sqlite3_backup_init sqlite3_api->backup_init -#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount -#define sqlite3_backup_remaining sqlite3_api->backup_remaining -#define sqlite3_backup_step sqlite3_api->backup_step -#define sqlite3_compileoption_get sqlite3_api->compileoption_get -#define sqlite3_compileoption_used sqlite3_api->compileoption_used -#define sqlite3_create_function_v2 sqlite3_api->create_function_v2 -#define sqlite3_db_config sqlite3_api->db_config -#define sqlite3_db_mutex sqlite3_api->db_mutex -#define sqlite3_db_status sqlite3_api->db_status -#define sqlite3_extended_errcode sqlite3_api->extended_errcode -#define sqlite3_log sqlite3_api->log -#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64 -#define sqlite3_sourceid sqlite3_api->sourceid -#define sqlite3_stmt_status sqlite3_api->stmt_status -#define sqlite3_strnicmp sqlite3_api->strnicmp -#define sqlite3_unlock_notify sqlite3_api->unlock_notify -#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint -#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint -#define sqlite3_wal_hook sqlite3_api->wal_hook -#define sqlite3_blob_reopen sqlite3_api->blob_reopen -#define sqlite3_vtab_config sqlite3_api->vtab_config -#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict -/* Version 3.7.16 and later */ -#define sqlite3_close_v2 sqlite3_api->close_v2 -#define sqlite3_db_filename sqlite3_api->db_filename -#define sqlite3_db_readonly sqlite3_api->db_readonly -#define sqlite3_db_release_memory sqlite3_api->db_release_memory -#define sqlite3_errstr sqlite3_api->errstr -#define sqlite3_stmt_busy sqlite3_api->stmt_busy -#define sqlite3_stmt_readonly sqlite3_api->stmt_readonly -#define sqlite3_stricmp sqlite3_api->stricmp -#define sqlite3_uri_boolean sqlite3_api->uri_boolean -#define sqlite3_uri_int64 sqlite3_api->uri_int64 -#define sqlite3_uri_parameter sqlite3_api->uri_parameter -#define sqlite3_uri_vsnprintf sqlite3_api->vsnprintf -#define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2 -#endif /* SQLITE_CORE */ - -#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0; -#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; - -#endif /* _SQLITE3EXT_H_ */ - -/************** End of sqlite3ext.h ******************************************/ -/************** Continuing where we left off in loadext.c ********************/ -/* #include <string.h> */ - -#ifndef SQLITE_OMIT_LOAD_EXTENSION - -/* -** Some API routines are omitted when various features are -** excluded from a build of SQLite. Substitute a NULL pointer -** for any missing APIs. -*/ -#ifndef SQLITE_ENABLE_COLUMN_METADATA -# define sqlite3_column_database_name 0 -# define sqlite3_column_database_name16 0 -# define sqlite3_column_table_name 0 -# define sqlite3_column_table_name16 0 -# define sqlite3_column_origin_name 0 -# define sqlite3_column_origin_name16 0 -# define sqlite3_table_column_metadata 0 -#endif - -#ifdef SQLITE_OMIT_AUTHORIZATION -# define sqlite3_set_authorizer 0 -#endif - -#ifdef SQLITE_OMIT_UTF16 -# define sqlite3_bind_text16 0 -# define sqlite3_collation_needed16 0 -# define sqlite3_column_decltype16 0 -# define sqlite3_column_name16 0 -# define sqlite3_column_text16 0 -# define sqlite3_complete16 0 -# define sqlite3_create_collation16 0 -# define sqlite3_create_function16 0 -# define sqlite3_errmsg16 0 -# define sqlite3_open16 0 -# define sqlite3_prepare16 0 -# define sqlite3_prepare16_v2 0 -# define sqlite3_result_error16 0 -# define sqlite3_result_text16 0 -# define sqlite3_result_text16be 0 -# define sqlite3_result_text16le 0 -# define sqlite3_value_text16 0 -# define sqlite3_value_text16be 0 -# define sqlite3_value_text16le 0 -# define sqlite3_column_database_name16 0 -# define sqlite3_column_table_name16 0 -# define sqlite3_column_origin_name16 0 -#endif - -#ifdef SQLITE_OMIT_COMPLETE -# define sqlite3_complete 0 -# define sqlite3_complete16 0 -#endif - -#ifdef SQLITE_OMIT_DECLTYPE -# define sqlite3_column_decltype16 0 -# define sqlite3_column_decltype 0 -#endif - -#ifdef SQLITE_OMIT_PROGRESS_CALLBACK -# define sqlite3_progress_handler 0 -#endif - -#ifdef SQLITE_OMIT_VIRTUALTABLE -# define sqlite3_create_module 0 -# define sqlite3_create_module_v2 0 -# define sqlite3_declare_vtab 0 -# define sqlite3_vtab_config 0 -# define sqlite3_vtab_on_conflict 0 -#endif - -#ifdef SQLITE_OMIT_SHARED_CACHE -# define sqlite3_enable_shared_cache 0 -#endif - -#ifdef SQLITE_OMIT_TRACE -# define sqlite3_profile 0 -# define sqlite3_trace 0 -#endif - -#ifdef SQLITE_OMIT_GET_TABLE -# define sqlite3_free_table 0 -# define sqlite3_get_table 0 -#endif - -#ifdef SQLITE_OMIT_INCRBLOB -#define sqlite3_bind_zeroblob 0 -#define sqlite3_blob_bytes 0 -#define sqlite3_blob_close 0 -#define sqlite3_blob_open 0 -#define sqlite3_blob_read 0 -#define sqlite3_blob_write 0 -#define sqlite3_blob_reopen 0 -#endif - -/* -** The following structure contains pointers to all SQLite API routines. -** A pointer to this structure is passed into extensions when they are -** loaded so that the extension can make calls back into the SQLite -** library. -** -** When adding new APIs, add them to the bottom of this structure -** in order to preserve backwards compatibility. -** -** Extensions that use newer APIs should first call the -** sqlite3_libversion_number() to make sure that the API they -** intend to use is supported by the library. Extensions should -** also check to make sure that the pointer to the function is -** not NULL before calling it. -*/ -static const sqlite3_api_routines sqlite3Apis = { - sqlite3_aggregate_context, -#ifndef SQLITE_OMIT_DEPRECATED - sqlite3_aggregate_count, -#else - 0, -#endif - sqlite3_bind_blob, - sqlite3_bind_double, - sqlite3_bind_int, - sqlite3_bind_int64, - sqlite3_bind_null, - sqlite3_bind_parameter_count, - sqlite3_bind_parameter_index, - sqlite3_bind_parameter_name, - sqlite3_bind_text, - sqlite3_bind_text16, - sqlite3_bind_value, - sqlite3_busy_handler, - sqlite3_busy_timeout, - sqlite3_changes, - sqlite3_close, - sqlite3_collation_needed, - sqlite3_collation_needed16, - sqlite3_column_blob, - sqlite3_column_bytes, - sqlite3_column_bytes16, - sqlite3_column_count, - sqlite3_column_database_name, - sqlite3_column_database_name16, - sqlite3_column_decltype, - sqlite3_column_decltype16, - sqlite3_column_double, - sqlite3_column_int, - sqlite3_column_int64, - sqlite3_column_name, - sqlite3_column_name16, - sqlite3_column_origin_name, - sqlite3_column_origin_name16, - sqlite3_column_table_name, - sqlite3_column_table_name16, - sqlite3_column_text, - sqlite3_column_text16, - sqlite3_column_type, - sqlite3_column_value, - sqlite3_commit_hook, - sqlite3_complete, - sqlite3_complete16, - sqlite3_create_collation, - sqlite3_create_collation16, - sqlite3_create_function, - sqlite3_create_function16, - sqlite3_create_module, - sqlite3_data_count, - sqlite3_db_handle, - sqlite3_declare_vtab, - sqlite3_enable_shared_cache, - sqlite3_errcode, - sqlite3_errmsg, - sqlite3_errmsg16, - sqlite3_exec, -#ifndef SQLITE_OMIT_DEPRECATED - sqlite3_expired, -#else - 0, -#endif - sqlite3_finalize, - sqlite3_free, - sqlite3_free_table, - sqlite3_get_autocommit, - sqlite3_get_auxdata, - sqlite3_get_table, - 0, /* Was sqlite3_global_recover(), but that function is deprecated */ - sqlite3_interrupt, - sqlite3_last_insert_rowid, - sqlite3_libversion, - sqlite3_libversion_number, - sqlite3_malloc, - sqlite3_mprintf, - sqlite3_open, - sqlite3_open16, - sqlite3_prepare, - sqlite3_prepare16, - sqlite3_profile, - sqlite3_progress_handler, - sqlite3_realloc, - sqlite3_reset, - sqlite3_result_blob, - sqlite3_result_double, - sqlite3_result_error, - sqlite3_result_error16, - sqlite3_result_int, - sqlite3_result_int64, - sqlite3_result_null, - sqlite3_result_text, - sqlite3_result_text16, - sqlite3_result_text16be, - sqlite3_result_text16le, - sqlite3_result_value, - sqlite3_rollback_hook, - sqlite3_set_authorizer, - sqlite3_set_auxdata, - sqlite3_snprintf, - sqlite3_step, - sqlite3_table_column_metadata, -#ifndef SQLITE_OMIT_DEPRECATED - sqlite3_thread_cleanup, -#else - 0, -#endif - sqlite3_total_changes, - sqlite3_trace, -#ifndef SQLITE_OMIT_DEPRECATED - sqlite3_transfer_bindings, -#else - 0, -#endif - sqlite3_update_hook, - sqlite3_user_data, - sqlite3_value_blob, - sqlite3_value_bytes, - sqlite3_value_bytes16, - sqlite3_value_double, - sqlite3_value_int, - sqlite3_value_int64, - sqlite3_value_numeric_type, - sqlite3_value_text, - sqlite3_value_text16, - sqlite3_value_text16be, - sqlite3_value_text16le, - sqlite3_value_type, - sqlite3_vmprintf, - /* - ** The original API set ends here. All extensions can call any - ** of the APIs above provided that the pointer is not NULL. But - ** before calling APIs that follow, extension should check the - ** sqlite3_libversion_number() to make sure they are dealing with - ** a library that is new enough to support that API. - ************************************************************************* - */ - sqlite3_overload_function, - - /* - ** Added after 3.3.13 - */ - sqlite3_prepare_v2, - sqlite3_prepare16_v2, - sqlite3_clear_bindings, - - /* - ** Added for 3.4.1 - */ - sqlite3_create_module_v2, - - /* - ** Added for 3.5.0 - */ - sqlite3_bind_zeroblob, - sqlite3_blob_bytes, - sqlite3_blob_close, - sqlite3_blob_open, - sqlite3_blob_read, - sqlite3_blob_write, - sqlite3_create_collation_v2, - sqlite3_file_control, - sqlite3_memory_highwater, - sqlite3_memory_used, -#ifdef SQLITE_MUTEX_OMIT - 0, - 0, - 0, - 0, - 0, -#else - sqlite3_mutex_alloc, - sqlite3_mutex_enter, - sqlite3_mutex_free, - sqlite3_mutex_leave, - sqlite3_mutex_try, -#endif - sqlite3_open_v2, - sqlite3_release_memory, - sqlite3_result_error_nomem, - sqlite3_result_error_toobig, - sqlite3_sleep, - sqlite3_soft_heap_limit, - sqlite3_vfs_find, - sqlite3_vfs_register, - sqlite3_vfs_unregister, - - /* - ** Added for 3.5.8 - */ - sqlite3_threadsafe, - sqlite3_result_zeroblob, - sqlite3_result_error_code, - sqlite3_test_control, - sqlite3_randomness, - sqlite3_context_db_handle, - - /* - ** Added for 3.6.0 - */ - sqlite3_extended_result_codes, - sqlite3_limit, - sqlite3_next_stmt, - sqlite3_sql, - sqlite3_status, - - /* - ** Added for 3.7.4 - */ - sqlite3_backup_finish, - sqlite3_backup_init, - sqlite3_backup_pagecount, - sqlite3_backup_remaining, - sqlite3_backup_step, -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS - sqlite3_compileoption_get, - sqlite3_compileoption_used, -#else - 0, - 0, -#endif - sqlite3_create_function_v2, - sqlite3_db_config, - sqlite3_db_mutex, - sqlite3_db_status, - sqlite3_extended_errcode, - sqlite3_log, - sqlite3_soft_heap_limit64, - sqlite3_sourceid, - sqlite3_stmt_status, - sqlite3_strnicmp, -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY - sqlite3_unlock_notify, -#else - 0, -#endif -#ifndef SQLITE_OMIT_WAL - sqlite3_wal_autocheckpoint, - sqlite3_wal_checkpoint, - sqlite3_wal_hook, -#else - 0, - 0, - 0, -#endif - sqlite3_blob_reopen, - sqlite3_vtab_config, - sqlite3_vtab_on_conflict, - sqlite3_close_v2, - sqlite3_db_filename, - sqlite3_db_readonly, - sqlite3_db_release_memory, - sqlite3_errstr, - sqlite3_stmt_busy, - sqlite3_stmt_readonly, - sqlite3_stricmp, - sqlite3_uri_boolean, - sqlite3_uri_int64, - sqlite3_uri_parameter, - sqlite3_vsnprintf, - sqlite3_wal_checkpoint_v2 -}; - -/* -** Attempt to load an SQLite extension library contained in the file -** zFile. The entry point is zProc. zProc may be 0 in which case a -** default entry point name (sqlite3_extension_init) is used. Use -** of the default name is recommended. -** -** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. -** -** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with -** error message text. The calling function should free this memory -** by calling sqlite3DbFree(db, ). -*/ -static int sqlite3LoadExtension( - sqlite3 *db, /* Load the extension into this database connection */ - const char *zFile, /* Name of the shared library containing extension */ - const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ - char **pzErrMsg /* Put error message here if not 0 */ -){ - sqlite3_vfs *pVfs = db->pVfs; - void *handle; - int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); - char *zErrmsg = 0; - void **aHandle; - int nMsg = 300 + sqlite3Strlen30(zFile); - - if( pzErrMsg ) *pzErrMsg = 0; - - /* Ticket #1863. To avoid a creating security problems for older - ** applications that relink against newer versions of SQLite, the - ** ability to run load_extension is turned off by default. One - ** must call sqlite3_enable_load_extension() to turn on extension - ** loading. Otherwise you get the following error. - */ - if( (db->flags & SQLITE_LoadExtension)==0 ){ - if( pzErrMsg ){ - *pzErrMsg = sqlite3_mprintf("not authorized"); - } - return SQLITE_ERROR; - } - - if( zProc==0 ){ - zProc = "sqlite3_extension_init"; - } - - handle = sqlite3OsDlOpen(pVfs, zFile); - if( handle==0 ){ - if( pzErrMsg ){ - *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); - if( zErrmsg ){ - sqlite3_snprintf(nMsg, zErrmsg, - "unable to open shared library [%s]", zFile); - sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); - } - } - return SQLITE_ERROR; - } - xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) - sqlite3OsDlSym(pVfs, handle, zProc); - if( xInit==0 ){ - if( pzErrMsg ){ - nMsg += sqlite3Strlen30(zProc); - *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); - if( zErrmsg ){ - sqlite3_snprintf(nMsg, zErrmsg, - "no entry point [%s] in shared library [%s]", zProc,zFile); - sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); - } - sqlite3OsDlClose(pVfs, handle); - } - return SQLITE_ERROR; - }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){ - if( pzErrMsg ){ - *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); - } - sqlite3_free(zErrmsg); - sqlite3OsDlClose(pVfs, handle); - return SQLITE_ERROR; - } - - /* Append the new shared library handle to the db->aExtension array. */ - aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1)); - if( aHandle==0 ){ - return SQLITE_NOMEM; - } - if( db->nExtension>0 ){ - memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension); - } - sqlite3DbFree(db, db->aExtension); - db->aExtension = aHandle; - - db->aExtension[db->nExtension++] = handle; - return SQLITE_OK; -} -SQLITE_API int sqlite3_load_extension( - sqlite3 *db, /* Load the extension into this database connection */ - const char *zFile, /* Name of the shared library containing extension */ - const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ - char **pzErrMsg /* Put error message here if not 0 */ -){ - int rc; - sqlite3_mutex_enter(db->mutex); - rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Call this routine when the database connection is closing in order -** to clean up loaded extensions -*/ -SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){ - int i; - assert( sqlite3_mutex_held(db->mutex) ); - for(i=0; i<db->nExtension; i++){ - sqlite3OsDlClose(db->pVfs, db->aExtension[i]); - } - sqlite3DbFree(db, db->aExtension); -} - -/* -** Enable or disable extension loading. Extension loading is disabled by -** default so as not to open security holes in older applications. -*/ -SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ - sqlite3_mutex_enter(db->mutex); - if( onoff ){ - db->flags |= SQLITE_LoadExtension; - }else{ - db->flags &= ~SQLITE_LoadExtension; - } - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -#endif /* SQLITE_OMIT_LOAD_EXTENSION */ - -/* -** The auto-extension code added regardless of whether or not extension -** loading is supported. We need a dummy sqlite3Apis pointer for that -** code if regular extension loading is not available. This is that -** dummy pointer. -*/ -#ifdef SQLITE_OMIT_LOAD_EXTENSION -static const sqlite3_api_routines sqlite3Apis = { 0 }; -#endif - - -/* -** The following object holds the list of automatically loaded -** extensions. -** -** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER -** mutex must be held while accessing this list. -*/ -typedef struct sqlite3AutoExtList sqlite3AutoExtList; -static SQLITE_WSD struct sqlite3AutoExtList { - int nExt; /* Number of entries in aExt[] */ - void (**aExt)(void); /* Pointers to the extension init functions */ -} sqlite3Autoext = { 0, 0 }; - -/* The "wsdAutoext" macro will resolve to the autoextension -** state vector. If writable static data is unsupported on the target, -** we have to locate the state vector at run-time. In the more common -** case where writable static data is supported, wsdStat can refer directly -** to the "sqlite3Autoext" state vector declared above. -*/ -#ifdef SQLITE_OMIT_WSD -# define wsdAutoextInit \ - sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext) -# define wsdAutoext x[0] -#else -# define wsdAutoextInit -# define wsdAutoext sqlite3Autoext -#endif - - -/* -** Register a statically linked extension that is automatically -** loaded by every new database connection. -*/ -SQLITE_API int sqlite3_auto_extension(void (*xInit)(void)){ - int rc = SQLITE_OK; -#ifndef SQLITE_OMIT_AUTOINIT - rc = sqlite3_initialize(); - if( rc ){ - return rc; - }else -#endif - { - int i; -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - wsdAutoextInit; - sqlite3_mutex_enter(mutex); - for(i=0; i<wsdAutoext.nExt; i++){ - if( wsdAutoext.aExt[i]==xInit ) break; - } - if( i==wsdAutoext.nExt ){ - int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]); - void (**aNew)(void); - aNew = sqlite3_realloc(wsdAutoext.aExt, nByte); - if( aNew==0 ){ - rc = SQLITE_NOMEM; - }else{ - wsdAutoext.aExt = aNew; - wsdAutoext.aExt[wsdAutoext.nExt] = xInit; - wsdAutoext.nExt++; - } - } - sqlite3_mutex_leave(mutex); - assert( (rc&0xff)==rc ); - return rc; - } -} - -/* -** Reset the automatic extension loading mechanism. -*/ -SQLITE_API void sqlite3_reset_auto_extension(void){ -#ifndef SQLITE_OMIT_AUTOINIT - if( sqlite3_initialize()==SQLITE_OK ) -#endif - { -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - wsdAutoextInit; - sqlite3_mutex_enter(mutex); - sqlite3_free(wsdAutoext.aExt); - wsdAutoext.aExt = 0; - wsdAutoext.nExt = 0; - sqlite3_mutex_leave(mutex); - } -} - -/* -** Load all automatic extensions. -** -** If anything goes wrong, set an error in the database connection. -*/ -SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){ - int i; - int go = 1; - int rc; - int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); - - wsdAutoextInit; - if( wsdAutoext.nExt==0 ){ - /* Common case: early out without every having to acquire a mutex */ - return; - } - for(i=0; go; i++){ - char *zErrmsg; -#if SQLITE_THREADSAFE - sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); -#endif - sqlite3_mutex_enter(mutex); - if( i>=wsdAutoext.nExt ){ - xInit = 0; - go = 0; - }else{ - xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) - wsdAutoext.aExt[i]; - } - sqlite3_mutex_leave(mutex); - zErrmsg = 0; - if( xInit && (rc = xInit(db, &zErrmsg, &sqlite3Apis))!=0 ){ - sqlite3Error(db, rc, - "automatic extension loading failed: %s", zErrmsg); - go = 0; - } - sqlite3_free(zErrmsg); - } -} - -/************** End of loadext.c *********************************************/ -/************** Begin file pragma.c ******************************************/ -/* -** 2003 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to implement the PRAGMA command. -*/ - -/* -** Interpret the given string as a safety level. Return 0 for OFF, -** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or -** unrecognized string argument. The FULL option is disallowed -** if the omitFull parameter it 1. -** -** Note that the values returned are one less that the values that -** should be passed into sqlite3BtreeSetSafetyLevel(). The is done -** to support legacy SQL code. The safety level used to be boolean -** and older scripts may have used numbers 0 for OFF and 1 for ON. -*/ -static u8 getSafetyLevel(const char *z, int omitFull, int dflt){ - /* 123456789 123456789 */ - static const char zText[] = "onoffalseyestruefull"; - static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16}; - static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4}; - static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2}; - int i, n; - if( sqlite3Isdigit(*z) ){ - return (u8)sqlite3Atoi(z); - } - n = sqlite3Strlen30(z); - for(i=0; i<ArraySize(iLength)-omitFull; i++){ - if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){ - return iValue[i]; - } - } - return dflt; -} - -/* -** Interpret the given string as a boolean value. -*/ -SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z, int dflt){ - return getSafetyLevel(z,1,dflt)!=0; -} - -/* The sqlite3GetBoolean() function is used by other modules but the -** remainder of this file is specific to PRAGMA processing. So omit -** the rest of the file if PRAGMAs are omitted from the build. -*/ -#if !defined(SQLITE_OMIT_PRAGMA) - -/* -** Interpret the given string as a locking mode value. -*/ -static int getLockingMode(const char *z){ - if( z ){ - if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; - if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; - } - return PAGER_LOCKINGMODE_QUERY; -} - -#ifndef SQLITE_OMIT_AUTOVACUUM -/* -** Interpret the given string as an auto-vacuum mode value. -** -** The following strings, "none", "full" and "incremental" are -** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. -*/ -static int getAutoVacuum(const char *z){ - int i; - if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; - if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; - if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; - i = sqlite3Atoi(z); - return (u8)((i>=0&&i<=2)?i:0); -} -#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -/* -** Interpret the given string as a temp db location. Return 1 for file -** backed temporary databases, 2 for the Red-Black tree in memory database -** and 0 to use the compile-time default. -*/ -static int getTempStore(const char *z){ - if( z[0]>='0' && z[0]<='2' ){ - return z[0] - '0'; - }else if( sqlite3StrICmp(z, "file")==0 ){ - return 1; - }else if( sqlite3StrICmp(z, "memory")==0 ){ - return 2; - }else{ - return 0; - } -} -#endif /* SQLITE_PAGER_PRAGMAS */ - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -/* -** Invalidate temp storage, either when the temp storage is changed -** from default, or when 'file' and the temp_store_directory has changed -*/ -static int invalidateTempStorage(Parse *pParse){ - sqlite3 *db = pParse->db; - if( db->aDb[1].pBt!=0 ){ - if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ - sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " - "from within a transaction"); - return SQLITE_ERROR; - } - sqlite3BtreeClose(db->aDb[1].pBt); - db->aDb[1].pBt = 0; - sqlite3ResetAllSchemasOfConnection(db); - } - return SQLITE_OK; -} -#endif /* SQLITE_PAGER_PRAGMAS */ - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS -/* -** If the TEMP database is open, close it and mark the database schema -** as needing reloading. This must be done when using the SQLITE_TEMP_STORE -** or DEFAULT_TEMP_STORE pragmas. -*/ -static int changeTempStorage(Parse *pParse, const char *zStorageType){ - int ts = getTempStore(zStorageType); - sqlite3 *db = pParse->db; - if( db->temp_store==ts ) return SQLITE_OK; - if( invalidateTempStorage( pParse ) != SQLITE_OK ){ - return SQLITE_ERROR; - } - db->temp_store = (u8)ts; - return SQLITE_OK; -} -#endif /* SQLITE_PAGER_PRAGMAS */ - -/* -** Generate code to return a single integer value. -*/ -static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){ - Vdbe *v = sqlite3GetVdbe(pParse); - int mem = ++pParse->nMem; - i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value)); - if( pI64 ){ - memcpy(pI64, &value, sizeof(value)); - } - sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); - sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); -} - -#ifndef SQLITE_OMIT_FLAG_PRAGMAS -/* -** Check to see if zRight and zLeft refer to a pragma that queries -** or changes one of the flags in db->flags. Return 1 if so and 0 if not. -** Also, implement the pragma. -*/ -static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){ - static const struct sPragmaType { - const char *zName; /* Name of the pragma */ - int mask; /* Mask for the db->flags value */ - } aPragma[] = { - { "full_column_names", SQLITE_FullColNames }, - { "short_column_names", SQLITE_ShortColNames }, - { "count_changes", SQLITE_CountRows }, - { "empty_result_callbacks", SQLITE_NullCallback }, - { "legacy_file_format", SQLITE_LegacyFileFmt }, - { "fullfsync", SQLITE_FullFSync }, - { "checkpoint_fullfsync", SQLITE_CkptFullFSync }, - { "reverse_unordered_selects", SQLITE_ReverseOrder }, -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX - { "automatic_index", SQLITE_AutoIndex }, -#endif -#ifdef SQLITE_DEBUG - { "sql_trace", SQLITE_SqlTrace }, - { "vdbe_listing", SQLITE_VdbeListing }, - { "vdbe_trace", SQLITE_VdbeTrace }, - { "vdbe_addoptrace", SQLITE_VdbeAddopTrace}, - { "vdbe_debug", SQLITE_SqlTrace | SQLITE_VdbeListing - | SQLITE_VdbeTrace }, -#endif -#ifndef SQLITE_OMIT_CHECK - { "ignore_check_constraints", SQLITE_IgnoreChecks }, -#endif - /* The following is VERY experimental */ - { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, - - /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted - ** flag if there are any active statements. */ - { "read_uncommitted", SQLITE_ReadUncommitted }, - { "recursive_triggers", SQLITE_RecTriggers }, - - /* This flag may only be set if both foreign-key and trigger support - ** are present in the build. */ -#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) - { "foreign_keys", SQLITE_ForeignKeys }, -#endif - }; - int i; - const struct sPragmaType *p; - for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){ - if( sqlite3StrICmp(zLeft, p->zName)==0 ){ - sqlite3 *db = pParse->db; - Vdbe *v; - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); /* Already allocated by sqlite3Pragma() */ - if( ALWAYS(v) ){ - if( zRight==0 ){ - returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 ); - }else{ - int mask = p->mask; /* Mask of bits to set or clear. */ - if( db->autoCommit==0 ){ - /* Foreign key support may not be enabled or disabled while not - ** in auto-commit mode. */ - mask &= ~(SQLITE_ForeignKeys); - } - - if( sqlite3GetBoolean(zRight, 0) ){ - db->flags |= mask; - }else{ - db->flags &= ~mask; - } - - /* Many of the flag-pragmas modify the code generated by the SQL - ** compiler (eg. count_changes). So add an opcode to expire all - ** compiled SQL statements after modifying a pragma value. - */ - sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); - } - } - - return 1; - } - } - return 0; -} -#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ - -/* -** Return a human-readable name for a constraint resolution action. -*/ -#ifndef SQLITE_OMIT_FOREIGN_KEY -static const char *actionName(u8 action){ - const char *zName; - switch( action ){ - case OE_SetNull: zName = "SET NULL"; break; - case OE_SetDflt: zName = "SET DEFAULT"; break; - case OE_Cascade: zName = "CASCADE"; break; - case OE_Restrict: zName = "RESTRICT"; break; - default: zName = "NO ACTION"; - assert( action==OE_None ); break; - } - return zName; -} -#endif - - -/* -** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants -** defined in pager.h. This function returns the associated lowercase -** journal-mode name. -*/ -SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){ - static char * const azModeName[] = { - "delete", "persist", "off", "truncate", "memory" -#ifndef SQLITE_OMIT_WAL - , "wal" -#endif - }; - assert( PAGER_JOURNALMODE_DELETE==0 ); - assert( PAGER_JOURNALMODE_PERSIST==1 ); - assert( PAGER_JOURNALMODE_OFF==2 ); - assert( PAGER_JOURNALMODE_TRUNCATE==3 ); - assert( PAGER_JOURNALMODE_MEMORY==4 ); - assert( PAGER_JOURNALMODE_WAL==5 ); - assert( eMode>=0 && eMode<=ArraySize(azModeName) ); - - if( eMode==ArraySize(azModeName) ) return 0; - return azModeName[eMode]; -} - -/* -** Process a pragma statement. -** -** Pragmas are of this form: -** -** PRAGMA [database.]id [= value] -** -** The identifier might also be a string. The value is a string, and -** identifier, or a number. If minusFlag is true, then the value is -** a number that was preceded by a minus sign. -** -** If the left side is "database.id" then pId1 is the database name -** and pId2 is the id. If the left side is just "id" then pId1 is the -** id and pId2 is any empty string. -*/ -SQLITE_PRIVATE void sqlite3Pragma( - Parse *pParse, - Token *pId1, /* First part of [database.]id field */ - Token *pId2, /* Second part of [database.]id field, or NULL */ - Token *pValue, /* Token for <value>, or NULL */ - int minusFlag /* True if a '-' sign preceded <value> */ -){ - char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ - char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ - const char *zDb = 0; /* The database name */ - Token *pId; /* Pointer to <id> token */ - int iDb; /* Database index for <database> */ - char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ - int rc; /* return value form SQLITE_FCNTL_PRAGMA */ - sqlite3 *db = pParse->db; /* The database connection */ - Db *pDb; /* The specific database being pragmaed */ - Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db); /* Prepared statement */ - - if( v==0 ) return; - sqlite3VdbeRunOnlyOnce(v); - pParse->nMem = 2; - - /* Interpret the [database.] part of the pragma statement. iDb is the - ** index of the database this pragma is being applied to in db.aDb[]. */ - iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); - if( iDb<0 ) return; - pDb = &db->aDb[iDb]; - - /* If the temp database has been explicitly named as part of the - ** pragma, make sure it is open. - */ - if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ - return; - } - - zLeft = sqlite3NameFromToken(db, pId); - if( !zLeft ) return; - if( minusFlag ){ - zRight = sqlite3MPrintf(db, "-%T", pValue); - }else{ - zRight = sqlite3NameFromToken(db, pValue); - } - - assert( pId2 ); - zDb = pId2->n>0 ? pDb->zName : 0; - if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ - goto pragma_out; - } - - /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS - ** connection. If it returns SQLITE_OK, then assume that the VFS - ** handled the pragma and generate a no-op prepared statement. - */ - aFcntl[0] = 0; - aFcntl[1] = zLeft; - aFcntl[2] = zRight; - aFcntl[3] = 0; - db->busyHandler.nBusy = 0; - rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); - if( rc==SQLITE_OK ){ - if( aFcntl[0] ){ - int mem = ++pParse->nMem; - sqlite3VdbeAddOp4(v, OP_String8, 0, mem, 0, aFcntl[0], 0); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "result", SQLITE_STATIC); - sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); - sqlite3_free(aFcntl[0]); - } - }else if( rc!=SQLITE_NOTFOUND ){ - if( aFcntl[0] ){ - sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); - sqlite3_free(aFcntl[0]); - } - pParse->nErr++; - pParse->rc = rc; - }else - - -#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) - /* - ** PRAGMA [database.]default_cache_size - ** PRAGMA [database.]default_cache_size=N - ** - ** The first form reports the current persistent setting for the - ** page cache size. The value returned is the maximum number of - ** pages in the page cache. The second form sets both the current - ** page cache size value and the persistent page cache size value - ** stored in the database file. - ** - ** Older versions of SQLite would set the default cache size to a - ** negative number to indicate synchronous=OFF. These days, synchronous - ** is always on by default regardless of the sign of the default cache - ** size. But continue to take the absolute value of the default cache - ** size of historical compatibility. - */ - if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ - static const VdbeOpList getCacheSize[] = { - { OP_Transaction, 0, 0, 0}, /* 0 */ - { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ - { OP_IfPos, 1, 7, 0}, - { OP_Integer, 0, 2, 0}, - { OP_Subtract, 1, 2, 1}, - { OP_IfPos, 1, 7, 0}, - { OP_Integer, 0, 1, 0}, /* 6 */ - { OP_ResultRow, 1, 1, 0}, - }; - int addr; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - sqlite3VdbeUsesBtree(v, iDb); - if( !zRight ){ - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); - pParse->nMem += 2; - addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); - sqlite3VdbeChangeP1(v, addr, iDb); - sqlite3VdbeChangeP1(v, addr+1, iDb); - sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); - }else{ - int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); - sqlite3BeginWriteOperation(pParse, 0, iDb); - sqlite3VdbeAddOp2(v, OP_Integer, size, 1); - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1); - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pDb->pSchema->cache_size = size; - sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); - } - }else -#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ - -#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) - /* - ** PRAGMA [database.]page_size - ** PRAGMA [database.]page_size=N - ** - ** The first form reports the current setting for the - ** database page size in bytes. The second form sets the - ** database page size value. The value can only be set if - ** the database has not yet been created. - */ - if( sqlite3StrICmp(zLeft,"page_size")==0 ){ - Btree *pBt = pDb->pBt; - assert( pBt!=0 ); - if( !zRight ){ - int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; - returnSingleInt(pParse, "page_size", size); - }else{ - /* Malloc may fail when setting the page-size, as there is an internal - ** buffer that the pager module resizes using sqlite3_realloc(). - */ - db->nextPagesize = sqlite3Atoi(zRight); - if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ - db->mallocFailed = 1; - } - } - }else - - /* - ** PRAGMA [database.]secure_delete - ** PRAGMA [database.]secure_delete=ON/OFF - ** - ** The first form reports the current setting for the - ** secure_delete flag. The second form changes the secure_delete - ** flag setting and reports thenew value. - */ - if( sqlite3StrICmp(zLeft,"secure_delete")==0 ){ - Btree *pBt = pDb->pBt; - int b = -1; - assert( pBt!=0 ); - if( zRight ){ - b = sqlite3GetBoolean(zRight, 0); - } - if( pId2->n==0 && b>=0 ){ - int ii; - for(ii=0; ii<db->nDb; ii++){ - sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); - } - } - b = sqlite3BtreeSecureDelete(pBt, b); - returnSingleInt(pParse, "secure_delete", b); - }else - - /* - ** PRAGMA [database.]max_page_count - ** PRAGMA [database.]max_page_count=N - ** - ** The first form reports the current setting for the - ** maximum number of pages in the database file. The - ** second form attempts to change this setting. Both - ** forms return the current setting. - ** - ** The absolute value of N is used. This is undocumented and might - ** change. The only purpose is to provide an easy way to test - ** the sqlite3AbsInt32() function. - ** - ** PRAGMA [database.]page_count - ** - ** Return the number of pages in the specified database. - */ - if( sqlite3StrICmp(zLeft,"page_count")==0 - || sqlite3StrICmp(zLeft,"max_page_count")==0 - ){ - int iReg; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - sqlite3CodeVerifySchema(pParse, iDb); - iReg = ++pParse->nMem; - if( sqlite3Tolower(zLeft[0])=='p' ){ - sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); - }else{ - sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, - sqlite3AbsInt32(sqlite3Atoi(zRight))); - } - sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); - }else - - /* - ** PRAGMA [database.]locking_mode - ** PRAGMA [database.]locking_mode = (normal|exclusive) - */ - if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){ - const char *zRet = "normal"; - int eMode = getLockingMode(zRight); - - if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ - /* Simple "PRAGMA locking_mode;" statement. This is a query for - ** the current default locking mode (which may be different to - ** the locking-mode of the main database). - */ - eMode = db->dfltLockMode; - }else{ - Pager *pPager; - if( pId2->n==0 ){ - /* This indicates that no database name was specified as part - ** of the PRAGMA command. In this case the locking-mode must be - ** set on all attached databases, as well as the main db file. - ** - ** Also, the sqlite3.dfltLockMode variable is set so that - ** any subsequently attached databases also use the specified - ** locking mode. - */ - int ii; - assert(pDb==&db->aDb[0]); - for(ii=2; ii<db->nDb; ii++){ - pPager = sqlite3BtreePager(db->aDb[ii].pBt); - sqlite3PagerLockingMode(pPager, eMode); - } - db->dfltLockMode = (u8)eMode; - } - pPager = sqlite3BtreePager(pDb->pBt); - eMode = sqlite3PagerLockingMode(pPager, eMode); - } - - assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE); - if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ - zRet = "exclusive"; - } - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC); - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - }else - - /* - ** PRAGMA [database.]journal_mode - ** PRAGMA [database.]journal_mode = - ** (delete|persist|off|truncate|memory|wal|off) - */ - if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){ - int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ - int ii; /* Loop counter */ - - /* Force the schema to be loaded on all databases. This causes all - ** database files to be opened and the journal_modes set. This is - ** necessary because subsequent processing must know if the databases - ** are in WAL mode. */ - if( sqlite3ReadSchema(pParse) ){ - goto pragma_out; - } - - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC); - - if( zRight==0 ){ - /* If there is no "=MODE" part of the pragma, do a query for the - ** current mode */ - eMode = PAGER_JOURNALMODE_QUERY; - }else{ - const char *zMode; - int n = sqlite3Strlen30(zRight); - for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ - if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; - } - if( !zMode ){ - /* If the "=MODE" part does not match any known journal mode, - ** then do a query */ - eMode = PAGER_JOURNALMODE_QUERY; - } - } - if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ - /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ - iDb = 0; - pId2->n = 1; - } - for(ii=db->nDb-1; ii>=0; ii--){ - if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ - sqlite3VdbeUsesBtree(v, ii); - sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); - } - } - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - }else - - /* - ** PRAGMA [database.]journal_size_limit - ** PRAGMA [database.]journal_size_limit=N - ** - ** Get or set the size limit on rollback journal files. - */ - if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){ - Pager *pPager = sqlite3BtreePager(pDb->pBt); - i64 iLimit = -2; - if( zRight ){ - sqlite3Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8); - if( iLimit<-1 ) iLimit = -1; - } - iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); - returnSingleInt(pParse, "journal_size_limit", iLimit); - }else - -#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ - - /* - ** PRAGMA [database.]auto_vacuum - ** PRAGMA [database.]auto_vacuum=N - ** - ** Get or set the value of the database 'auto-vacuum' parameter. - ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL - */ -#ifndef SQLITE_OMIT_AUTOVACUUM - if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){ - Btree *pBt = pDb->pBt; - assert( pBt!=0 ); - if( sqlite3ReadSchema(pParse) ){ - goto pragma_out; - } - if( !zRight ){ - int auto_vacuum; - if( ALWAYS(pBt) ){ - auto_vacuum = sqlite3BtreeGetAutoVacuum(pBt); - }else{ - auto_vacuum = SQLITE_DEFAULT_AUTOVACUUM; - } - returnSingleInt(pParse, "auto_vacuum", auto_vacuum); - }else{ - int eAuto = getAutoVacuum(zRight); - assert( eAuto>=0 && eAuto<=2 ); - db->nextAutovac = (u8)eAuto; - if( ALWAYS(eAuto>=0) ){ - /* Call SetAutoVacuum() to set initialize the internal auto and - ** incr-vacuum flags. This is required in case this connection - ** creates the database file. It is important that it is created - ** as an auto-vacuum capable db. - */ - rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); - if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ - /* When setting the auto_vacuum mode to either "full" or - ** "incremental", write the value of meta[6] in the database - ** file. Before writing to meta[6], check that meta[3] indicates - ** that this really is an auto-vacuum capable database. - */ - static const VdbeOpList setMeta6[] = { - { OP_Transaction, 0, 1, 0}, /* 0 */ - { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, - { OP_If, 1, 0, 0}, /* 2 */ - { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ - { OP_Integer, 0, 1, 0}, /* 4 */ - { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ - }; - int iAddr; - iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6); - sqlite3VdbeChangeP1(v, iAddr, iDb); - sqlite3VdbeChangeP1(v, iAddr+1, iDb); - sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); - sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); - sqlite3VdbeChangeP1(v, iAddr+5, iDb); - sqlite3VdbeUsesBtree(v, iDb); - } - } - } - }else -#endif - - /* - ** PRAGMA [database.]incremental_vacuum(N) - ** - ** Do N steps of incremental vacuuming on a database. - */ -#ifndef SQLITE_OMIT_AUTOVACUUM - if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){ - int iLimit, addr; - if( sqlite3ReadSchema(pParse) ){ - goto pragma_out; - } - if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ - iLimit = 0x7fffffff; - } - sqlite3BeginWriteOperation(pParse, 0, iDb); - sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); - addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); - sqlite3VdbeAddOp1(v, OP_ResultRow, 1); - sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); - sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); - sqlite3VdbeJumpHere(v, addr); - }else -#endif - -#ifndef SQLITE_OMIT_PAGER_PRAGMAS - /* - ** PRAGMA [database.]cache_size - ** PRAGMA [database.]cache_size=N - ** - ** The first form reports the current local setting for the - ** page cache size. The second form sets the local - ** page cache size value. If N is positive then that is the - ** number of pages in the cache. If N is negative, then the - ** number of pages is adjusted so that the cache uses -N kibibytes - ** of memory. - */ - if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - if( !zRight ){ - returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); - }else{ - int size = sqlite3Atoi(zRight); - pDb->pSchema->cache_size = size; - sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); - } - }else - - /* - ** PRAGMA temp_store - ** PRAGMA temp_store = "default"|"memory"|"file" - ** - ** Return or set the local value of the temp_store flag. Changing - ** the local value does not make changes to the disk file and the default - ** value will be restored the next time the database is opened. - ** - ** Note that it is possible for the library compile-time options to - ** override this setting - */ - if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ - if( !zRight ){ - returnSingleInt(pParse, "temp_store", db->temp_store); - }else{ - changeTempStorage(pParse, zRight); - } - }else - - /* - ** PRAGMA temp_store_directory - ** PRAGMA temp_store_directory = ""|"directory_name" - ** - ** Return or set the local value of the temp_store_directory flag. Changing - ** the value sets a specific directory to be used for temporary files. - ** Setting to a null string reverts to the default temporary directory search. - ** If temporary directory is changed, then invalidateTempStorage. - ** - */ - if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){ - if( !zRight ){ - if( sqlite3_temp_directory ){ - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, - "temp_store_directory", SQLITE_STATIC); - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - } - }else{ -#ifndef SQLITE_OMIT_WSD - if( zRight[0] ){ - int res; - rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); - if( rc!=SQLITE_OK || res==0 ){ - sqlite3ErrorMsg(pParse, "not a writable directory"); - goto pragma_out; - } - } - if( SQLITE_TEMP_STORE==0 - || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) - || (SQLITE_TEMP_STORE==2 && db->temp_store==1) - ){ - invalidateTempStorage(pParse); - } - sqlite3_free(sqlite3_temp_directory); - if( zRight[0] ){ - sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); - }else{ - sqlite3_temp_directory = 0; - } -#endif /* SQLITE_OMIT_WSD */ - } - }else - -#if SQLITE_OS_WIN - /* - ** PRAGMA data_store_directory - ** PRAGMA data_store_directory = ""|"directory_name" - ** - ** Return or set the local value of the data_store_directory flag. Changing - ** the value sets a specific directory to be used for database files that - ** were specified with a relative pathname. Setting to a null string reverts - ** to the default database directory, which for database files specified with - ** a relative path will probably be based on the current directory for the - ** process. Database file specified with an absolute path are not impacted - ** by this setting, regardless of its value. - ** - */ - if( sqlite3StrICmp(zLeft, "data_store_directory")==0 ){ - if( !zRight ){ - if( sqlite3_data_directory ){ - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, - "data_store_directory", SQLITE_STATIC); - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_data_directory, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - } - }else{ -#ifndef SQLITE_OMIT_WSD - if( zRight[0] ){ - int res; - rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); - if( rc!=SQLITE_OK || res==0 ){ - sqlite3ErrorMsg(pParse, "not a writable directory"); - goto pragma_out; - } - } - sqlite3_free(sqlite3_data_directory); - if( zRight[0] ){ - sqlite3_data_directory = sqlite3_mprintf("%s", zRight); - }else{ - sqlite3_data_directory = 0; - } -#endif /* SQLITE_OMIT_WSD */ - } - }else -#endif - -#if !defined(SQLITE_ENABLE_LOCKING_STYLE) -# if defined(__APPLE__) -# define SQLITE_ENABLE_LOCKING_STYLE 1 -# else -# define SQLITE_ENABLE_LOCKING_STYLE 0 -# endif -#endif -#if SQLITE_ENABLE_LOCKING_STYLE - /* - ** PRAGMA [database.]lock_proxy_file - ** PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path" - ** - ** Return or set the value of the lock_proxy_file flag. Changing - ** the value sets a specific file to be used for database access locks. - ** - */ - if( sqlite3StrICmp(zLeft, "lock_proxy_file")==0 ){ - if( !zRight ){ - Pager *pPager = sqlite3BtreePager(pDb->pBt); - char *proxy_file_path = NULL; - sqlite3_file *pFile = sqlite3PagerFile(pPager); - sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, - &proxy_file_path); - - if( proxy_file_path ){ - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, - "lock_proxy_file", SQLITE_STATIC); - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - } - }else{ - Pager *pPager = sqlite3BtreePager(pDb->pBt); - sqlite3_file *pFile = sqlite3PagerFile(pPager); - int res; - if( zRight[0] ){ - res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, - zRight); - } else { - res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, - NULL); - } - if( res!=SQLITE_OK ){ - sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); - goto pragma_out; - } - } - }else -#endif /* SQLITE_ENABLE_LOCKING_STYLE */ - - /* - ** PRAGMA [database.]synchronous - ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL - ** - ** Return or set the local value of the synchronous flag. Changing - ** the local value does not make changes to the disk file and the - ** default value will be restored the next time the database is - ** opened. - */ - if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - if( !zRight ){ - returnSingleInt(pParse, "synchronous", pDb->safety_level-1); - }else{ - if( !db->autoCommit ){ - sqlite3ErrorMsg(pParse, - "Safety level may not be changed inside a transaction"); - }else{ - pDb->safety_level = getSafetyLevel(zRight,0,1)+1; - } - } - }else -#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ - -#ifndef SQLITE_OMIT_FLAG_PRAGMAS - if( flagPragma(pParse, zLeft, zRight) ){ - /* The flagPragma() subroutine also generates any necessary code - ** there is nothing more to do here */ - }else -#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ - -#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS - /* - ** PRAGMA table_info(<table>) - ** - ** Return a single row for each column of the named table. The columns of - ** the returned data set are: - ** - ** cid: Column id (numbered from left to right, starting at 0) - ** name: Column name - ** type: Column declaration type. - ** notnull: True if 'NOT NULL' is part of column declaration - ** dflt_value: The default value for the column, if any. - */ - if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ - Table *pTab; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - pTab = sqlite3FindTable(db, zRight, zDb); - if( pTab ){ - int i, k; - int nHidden = 0; - Column *pCol; - Index *pPk; - for(pPk=pTab->pIndex; pPk && pPk->autoIndex!=2; pPk=pPk->pNext){} - sqlite3VdbeSetNumCols(v, 6); - pParse->nMem = 6; - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC); - sqlite3ViewGetColumnNames(pParse, pTab); - for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ - if( IsHiddenColumn(pCol) ){ - nHidden++; - continue; - } - sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1); - sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, - pCol->zType ? pCol->zType : "", 0); - sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4); - if( pCol->zDflt ){ - sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0); - }else{ - sqlite3VdbeAddOp2(v, OP_Null, 0, 5); - } - if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ - k = 0; - }else if( pPk==0 ){ - k = 1; - }else{ - for(k=1; ALWAYS(k<=pTab->nCol) && pPk->aiColumn[k-1]!=i; k++){} - } - sqlite3VdbeAddOp2(v, OP_Integer, k, 6); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); - } - } - }else - - if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ - Index *pIdx; - Table *pTab; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - pIdx = sqlite3FindIndex(db, zRight, zDb); - if( pIdx ){ - int i; - pTab = pIdx->pTable; - sqlite3VdbeSetNumCols(v, 3); - pParse->nMem = 3; - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC); - for(i=0; i<pIdx->nColumn; i++){ - int cnum = pIdx->aiColumn[i]; - sqlite3VdbeAddOp2(v, OP_Integer, i, 1); - sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2); - assert( pTab->nCol>cnum ); - sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); - } - } - }else - - if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ - Index *pIdx; - Table *pTab; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - pTab = sqlite3FindTable(db, zRight, zDb); - if( pTab ){ - v = sqlite3GetVdbe(pParse); - pIdx = pTab->pIndex; - if( pIdx ){ - int i = 0; - sqlite3VdbeSetNumCols(v, 3); - pParse->nMem = 3; - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC); - while(pIdx){ - sqlite3VdbeAddOp2(v, OP_Integer, i, 1); - sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); - sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); - ++i; - pIdx = pIdx->pNext; - } - } - } - }else - - if( sqlite3StrICmp(zLeft, "database_list")==0 ){ - int i; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - sqlite3VdbeSetNumCols(v, 3); - pParse->nMem = 3; - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC); - for(i=0; i<db->nDb; i++){ - if( db->aDb[i].pBt==0 ) continue; - assert( db->aDb[i].zName!=0 ); - sqlite3VdbeAddOp2(v, OP_Integer, i, 1); - sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, - sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); - } - }else - - if( sqlite3StrICmp(zLeft, "collation_list")==0 ){ - int i = 0; - HashElem *p; - sqlite3VdbeSetNumCols(v, 2); - pParse->nMem = 2; - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); - for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ - CollSeq *pColl = (CollSeq *)sqliteHashData(p); - sqlite3VdbeAddOp2(v, OP_Integer, i++, 1); - sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); - } - }else -#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ - -#ifndef SQLITE_OMIT_FOREIGN_KEY - if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ - FKey *pFK; - Table *pTab; - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - pTab = sqlite3FindTable(db, zRight, zDb); - if( pTab ){ - v = sqlite3GetVdbe(pParse); - pFK = pTab->pFKey; - if( pFK ){ - int i = 0; - sqlite3VdbeSetNumCols(v, 8); - pParse->nMem = 8; - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 7, COLNAME_NAME, "match", SQLITE_STATIC); - while(pFK){ - int j; - for(j=0; j<pFK->nCol; j++){ - char *zCol = pFK->aCol[j].zCol; - char *zOnDelete = (char *)actionName(pFK->aAction[0]); - char *zOnUpdate = (char *)actionName(pFK->aAction[1]); - sqlite3VdbeAddOp2(v, OP_Integer, i, 1); - sqlite3VdbeAddOp2(v, OP_Integer, j, 2); - sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, - pTab->aCol[pFK->aCol[j].iFrom].zName, 0); - sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 6, 0, zOnUpdate, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 7, 0, zOnDelete, 0); - sqlite3VdbeAddOp4(v, OP_String8, 0, 8, 0, "NONE", 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); - } - ++i; - pFK = pFK->pNextFrom; - } - } - } - }else -#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ - -#ifndef SQLITE_OMIT_FOREIGN_KEY -#ifndef SQLITE_OMIT_TRIGGER - if( sqlite3StrICmp(zLeft, "foreign_key_check")==0 ){ - FKey *pFK; /* A foreign key constraint */ - Table *pTab; /* Child table contain "REFERENCES" keyword */ - Table *pParent; /* Parent table that child points to */ - Index *pIdx; /* Index in the parent table */ - int i; /* Loop counter: Foreign key number for pTab */ - int j; /* Loop counter: Field of the foreign key */ - HashElem *k; /* Loop counter: Next table in schema */ - int x; /* result variable */ - int regResult; /* 3 registers to hold a result row */ - int regKey; /* Register to hold key for checking the FK */ - int regRow; /* Registers to hold a row from pTab */ - int addrTop; /* Top of a loop checking foreign keys */ - int addrOk; /* Jump here if the key is OK */ - int *aiCols; /* child to parent column mapping */ - - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - regResult = pParse->nMem+1; - pParse->nMem += 4; - regKey = ++pParse->nMem; - regRow = ++pParse->nMem; - v = sqlite3GetVdbe(pParse); - sqlite3VdbeSetNumCols(v, 4); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "rowid", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "parent", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "fkid", SQLITE_STATIC); - sqlite3CodeVerifySchema(pParse, iDb); - k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); - while( k ){ - if( zRight ){ - pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); - k = 0; - }else{ - pTab = (Table*)sqliteHashData(k); - k = sqliteHashNext(k); - } - if( pTab==0 || pTab->pFKey==0 ) continue; - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; - sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); - sqlite3VdbeAddOp4(v, OP_String8, 0, regResult, 0, pTab->zName, - P4_TRANSIENT); - for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ - pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb); - if( pParent==0 ) break; - pIdx = 0; - sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); - x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); - if( x==0 ){ - if( pIdx==0 ){ - sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); - }else{ - KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); - sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); - sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); - } - }else{ - k = 0; - break; - } - } - if( pFK ) break; - if( pParse->nTab<i ) pParse->nTab = i; - addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); - for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ - pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb); - assert( pParent!=0 ); - pIdx = 0; - aiCols = 0; - x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); - assert( x==0 ); - addrOk = sqlite3VdbeMakeLabel(v); - if( pIdx==0 ){ - int iKey = pFK->aCol[0].iFrom; - assert( iKey>=0 && iKey<pTab->nCol ); - if( iKey!=pTab->iPKey ){ - sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); - sqlite3ColumnDefault(v, pTab, iKey, regRow); - sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); - sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow, - sqlite3VdbeCurrentAddr(v)+3); - }else{ - sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); - } - sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk); - sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); - }else{ - for(j=0; j<pFK->nCol; j++){ - sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, - aiCols ? aiCols[j] : pFK->aCol[0].iFrom, regRow+j); - sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); - } - sqlite3VdbeAddOp3(v, OP_MakeRecord, regRow, pFK->nCol, regKey); - sqlite3VdbeChangeP4(v, -1, - sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); - sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); - } - sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); - sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, - pFK->zTo, P4_TRANSIENT); - sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3); - sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); - sqlite3VdbeResolveLabel(v, addrOk); - sqlite3DbFree(db, aiCols); - } - sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); - sqlite3VdbeJumpHere(v, addrTop); - } - }else -#endif /* !defined(SQLITE_OMIT_TRIGGER) */ -#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ - -#ifndef NDEBUG - if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ - if( zRight ){ - if( sqlite3GetBoolean(zRight, 0) ){ - sqlite3ParserTrace(stderr, "parser: "); - }else{ - sqlite3ParserTrace(0, 0); - } - } - }else -#endif - - /* Reinstall the LIKE and GLOB functions. The variant of LIKE - ** used will be case sensitive or not depending on the RHS. - */ - if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){ - if( zRight ){ - sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); - } - }else - -#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX -# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 -#endif - -#ifndef SQLITE_OMIT_INTEGRITY_CHECK - /* Pragma "quick_check" is an experimental reduced version of - ** integrity_check designed to detect most database corruption - ** without most of the overhead of a full integrity-check. - */ - if( sqlite3StrICmp(zLeft, "integrity_check")==0 - || sqlite3StrICmp(zLeft, "quick_check")==0 - ){ - int i, j, addr, mxErr; - - /* Code that appears at the end of the integrity check. If no error - ** messages have been generated, output OK. Otherwise output the - ** error message - */ - static const VdbeOpList endCode[] = { - { OP_AddImm, 1, 0, 0}, /* 0 */ - { OP_IfNeg, 1, 0, 0}, /* 1 */ - { OP_String8, 0, 3, 0}, /* 2 */ - { OP_ResultRow, 3, 1, 0}, - }; - - int isQuick = (sqlite3Tolower(zLeft[0])=='q'); - - /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", - ** then iDb is set to the index of the database identified by <db>. - ** In this case, the integrity of database iDb only is verified by - ** the VDBE created below. - ** - ** Otherwise, if the command was simply "PRAGMA integrity_check" (or - ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb - ** to -1 here, to indicate that the VDBE should verify the integrity - ** of all attached databases. */ - assert( iDb>=0 ); - assert( iDb==0 || pId2->z ); - if( pId2->z==0 ) iDb = -1; - - /* Initialize the VDBE program */ - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - pParse->nMem = 6; - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC); - - /* Set the maximum error count */ - mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; - if( zRight ){ - sqlite3GetInt32(zRight, &mxErr); - if( mxErr<=0 ){ - mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; - } - } - sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ - - /* Do an integrity check on each database file */ - for(i=0; i<db->nDb; i++){ - HashElem *x; - Hash *pTbls; - int cnt = 0; - - if( OMIT_TEMPDB && i==1 ) continue; - if( iDb>=0 && i!=iDb ) continue; - - sqlite3CodeVerifySchema(pParse, i); - addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ - sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); - sqlite3VdbeJumpHere(v, addr); - - /* Do an integrity check of the B-Tree - ** - ** Begin by filling registers 2, 3, ... with the root pages numbers - ** for all tables and indices in the database. - */ - assert( sqlite3SchemaMutexHeld(db, i, 0) ); - pTbls = &db->aDb[i].pSchema->tblHash; - for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ - Table *pTab = sqliteHashData(x); - Index *pIdx; - sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); - cnt++; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); - cnt++; - } - } - - /* Make sure sufficient number of registers have been allocated */ - if( pParse->nMem < cnt+4 ){ - pParse->nMem = cnt+4; - } - - /* Do the b-tree integrity checks */ - sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); - sqlite3VdbeChangeP5(v, (u8)i); - addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); - sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, - sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), - P4_DYNAMIC); - sqlite3VdbeAddOp2(v, OP_Move, 2, 4); - sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); - sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); - sqlite3VdbeJumpHere(v, addr); - - /* Make sure all the indices are constructed correctly. - */ - for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ - Table *pTab = sqliteHashData(x); - Index *pIdx; - int loopTop; - - if( pTab->pIndex==0 ) continue; - addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ - sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); - sqlite3VdbeJumpHere(v, addr); - sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); - sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */ - loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0); - sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */ - for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ - int jmp2; - int r1; - static const VdbeOpList idxErr[] = { - { OP_AddImm, 1, -1, 0}, - { OP_String8, 0, 3, 0}, /* 1 */ - { OP_Rowid, 1, 4, 0}, - { OP_String8, 0, 5, 0}, /* 3 */ - { OP_String8, 0, 6, 0}, /* 4 */ - { OP_Concat, 4, 3, 3}, - { OP_Concat, 5, 3, 3}, - { OP_Concat, 6, 3, 3}, - { OP_ResultRow, 3, 1, 0}, - { OP_IfPos, 1, 0, 0}, /* 9 */ - { OP_Halt, 0, 0, 0}, - }; - r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0); - jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1); - addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); - sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); - sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); - sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT); - sqlite3VdbeJumpHere(v, addr+9); - sqlite3VdbeJumpHere(v, jmp2); - } - sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); - sqlite3VdbeJumpHere(v, loopTop); - for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ - static const VdbeOpList cntIdx[] = { - { OP_Integer, 0, 3, 0}, - { OP_Rewind, 0, 0, 0}, /* 1 */ - { OP_AddImm, 3, 1, 0}, - { OP_Next, 0, 0, 0}, /* 3 */ - { OP_Eq, 2, 0, 3}, /* 4 */ - { OP_AddImm, 1, -1, 0}, - { OP_String8, 0, 2, 0}, /* 6 */ - { OP_String8, 0, 3, 0}, /* 7 */ - { OP_Concat, 3, 2, 2}, - { OP_ResultRow, 2, 1, 0}, - }; - addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); - sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); - sqlite3VdbeJumpHere(v, addr); - addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); - sqlite3VdbeChangeP1(v, addr+1, j+2); - sqlite3VdbeChangeP2(v, addr+1, addr+4); - sqlite3VdbeChangeP1(v, addr+3, j+2); - sqlite3VdbeChangeP2(v, addr+3, addr+2); - sqlite3VdbeJumpHere(v, addr+4); - sqlite3VdbeChangeP4(v, addr+6, - "wrong # of entries in index ", P4_STATIC); - sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT); - } - } - } - addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); - sqlite3VdbeChangeP2(v, addr, -mxErr); - sqlite3VdbeJumpHere(v, addr+1); - sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); - }else -#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ - -#ifndef SQLITE_OMIT_UTF16 - /* - ** PRAGMA encoding - ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" - ** - ** In its first form, this pragma returns the encoding of the main - ** database. If the database is not initialized, it is initialized now. - ** - ** The second form of this pragma is a no-op if the main database file - ** has not already been initialized. In this case it sets the default - ** encoding that will be used for the main database file if a new file - ** is created. If an existing main database file is opened, then the - ** default text encoding for the existing database is used. - ** - ** In all cases new databases created using the ATTACH command are - ** created to use the same default text encoding as the main database. If - ** the main database has not been initialized and/or created when ATTACH - ** is executed, this is done before the ATTACH operation. - ** - ** In the second form this pragma sets the text encoding to be used in - ** new database files created using this database handle. It is only - ** useful if invoked immediately after the main database i - */ - if( sqlite3StrICmp(zLeft, "encoding")==0 ){ - static const struct EncName { - char *zName; - u8 enc; - } encnames[] = { - { "UTF8", SQLITE_UTF8 }, - { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ - { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ - { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ - { "UTF16le", SQLITE_UTF16LE }, - { "UTF16be", SQLITE_UTF16BE }, - { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ - { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ - { 0, 0 } - }; - const struct EncName *pEnc; - if( !zRight ){ /* "PRAGMA encoding" */ - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", SQLITE_STATIC); - sqlite3VdbeAddOp2(v, OP_String8, 0, 1); - assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); - assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); - assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); - sqlite3VdbeChangeP4(v, -1, encnames[ENC(pParse->db)].zName, P4_STATIC); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - }else{ /* "PRAGMA encoding = XXX" */ - /* Only change the value of sqlite.enc if the database handle is not - ** initialized. If the main database exists, the new sqlite.enc value - ** will be overwritten when the schema is next loaded. If it does not - ** already exists, it will be created to use the new encoding value. - */ - if( - !(DbHasProperty(db, 0, DB_SchemaLoaded)) || - DbHasProperty(db, 0, DB_Empty) - ){ - for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ - if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ - ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; - break; - } - } - if( !pEnc->zName ){ - sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); - } - } - } - }else -#endif /* SQLITE_OMIT_UTF16 */ - -#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS - /* - ** PRAGMA [database.]schema_version - ** PRAGMA [database.]schema_version = <integer> - ** - ** PRAGMA [database.]user_version - ** PRAGMA [database.]user_version = <integer> - ** - ** The pragma's schema_version and user_version are used to set or get - ** the value of the schema-version and user-version, respectively. Both - ** the schema-version and the user-version are 32-bit signed integers - ** stored in the database header. - ** - ** The schema-cookie is usually only manipulated internally by SQLite. It - ** is incremented by SQLite whenever the database schema is modified (by - ** creating or dropping a table or index). The schema version is used by - ** SQLite each time a query is executed to ensure that the internal cache - ** of the schema used when compiling the SQL query matches the schema of - ** the database against which the compiled query is actually executed. - ** Subverting this mechanism by using "PRAGMA schema_version" to modify - ** the schema-version is potentially dangerous and may lead to program - ** crashes or database corruption. Use with caution! - ** - ** The user-version is not used internally by SQLite. It may be used by - ** applications for any purpose. - */ - if( sqlite3StrICmp(zLeft, "schema_version")==0 - || sqlite3StrICmp(zLeft, "user_version")==0 - || sqlite3StrICmp(zLeft, "freelist_count")==0 - ){ - int iCookie; /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */ - sqlite3VdbeUsesBtree(v, iDb); - switch( zLeft[0] ){ - case 'f': case 'F': - iCookie = BTREE_FREE_PAGE_COUNT; - break; - case 's': case 'S': - iCookie = BTREE_SCHEMA_VERSION; - break; - default: - iCookie = BTREE_USER_VERSION; - break; - } - - if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ - /* Write the specified cookie value */ - static const VdbeOpList setCookie[] = { - { OP_Transaction, 0, 1, 0}, /* 0 */ - { OP_Integer, 0, 1, 0}, /* 1 */ - { OP_SetCookie, 0, 0, 1}, /* 2 */ - }; - int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie); - sqlite3VdbeChangeP1(v, addr, iDb); - sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight)); - sqlite3VdbeChangeP1(v, addr+2, iDb); - sqlite3VdbeChangeP2(v, addr+2, iCookie); - }else{ - /* Read the specified cookie value */ - static const VdbeOpList readCookie[] = { - { OP_Transaction, 0, 0, 0}, /* 0 */ - { OP_ReadCookie, 0, 1, 0}, /* 1 */ - { OP_ResultRow, 1, 1, 0} - }; - int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie); - sqlite3VdbeChangeP1(v, addr, iDb); - sqlite3VdbeChangeP1(v, addr+1, iDb); - sqlite3VdbeChangeP3(v, addr+1, iCookie); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); - } - }else -#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ - -#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS - /* - ** PRAGMA compile_options - ** - ** Return the names of all compile-time options used in this build, - ** one option per row. - */ - if( sqlite3StrICmp(zLeft, "compile_options")==0 ){ - int i = 0; - const char *zOpt; - sqlite3VdbeSetNumCols(v, 1); - pParse->nMem = 1; - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "compile_option", SQLITE_STATIC); - while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zOpt, 0); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); - } - }else -#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ - -#ifndef SQLITE_OMIT_WAL - /* - ** PRAGMA [database.]wal_checkpoint = passive|full|restart - ** - ** Checkpoint the database. - */ - if( sqlite3StrICmp(zLeft, "wal_checkpoint")==0 ){ - int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); - int eMode = SQLITE_CHECKPOINT_PASSIVE; - if( zRight ){ - if( sqlite3StrICmp(zRight, "full")==0 ){ - eMode = SQLITE_CHECKPOINT_FULL; - }else if( sqlite3StrICmp(zRight, "restart")==0 ){ - eMode = SQLITE_CHECKPOINT_RESTART; - } - } - if( sqlite3ReadSchema(pParse) ) goto pragma_out; - sqlite3VdbeSetNumCols(v, 3); - pParse->nMem = 3; - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC); - - sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); - }else - - /* - ** PRAGMA wal_autocheckpoint - ** PRAGMA wal_autocheckpoint = N - ** - ** Configure a database connection to automatically checkpoint a database - ** after accumulating N frames in the log. Or query for the current value - ** of N. - */ - if( sqlite3StrICmp(zLeft, "wal_autocheckpoint")==0 ){ - if( zRight ){ - sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); - } - returnSingleInt(pParse, "wal_autocheckpoint", - db->xWalCallback==sqlite3WalDefaultHook ? - SQLITE_PTR_TO_INT(db->pWalArg) : 0); - }else -#endif - - /* - ** PRAGMA shrink_memory - ** - ** This pragma attempts to free as much memory as possible from the - ** current database connection. - */ - if( sqlite3StrICmp(zLeft, "shrink_memory")==0 ){ - sqlite3_db_release_memory(db); - }else - - /* - ** PRAGMA busy_timeout - ** PRAGMA busy_timeout = N - ** - ** Call sqlite3_busy_timeout(db, N). Return the current timeout value - ** if one is set. If no busy handler or a different busy handler is set - ** then 0 is returned. Setting the busy_timeout to 0 or negative - ** disables the timeout. - */ - if( sqlite3StrICmp(zLeft, "busy_timeout")==0 ){ - if( zRight ){ - sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); - } - returnSingleInt(pParse, "timeout", db->busyTimeout); - }else - -#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) - /* - ** Report the current state of file logs for all databases - */ - if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ - static const char *const azLockName[] = { - "unlocked", "shared", "reserved", "pending", "exclusive" - }; - int i; - sqlite3VdbeSetNumCols(v, 2); - pParse->nMem = 2; - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC); - sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC); - for(i=0; i<db->nDb; i++){ - Btree *pBt; - const char *zState = "unknown"; - int j; - if( db->aDb[i].zName==0 ) continue; - sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC); - pBt = db->aDb[i].pBt; - if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ - zState = "closed"; - }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, - SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ - zState = azLockName[j]; - } - sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC); - sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); - } - - }else -#endif - -#ifdef SQLITE_HAS_CODEC - if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){ - sqlite3_key(db, zRight, sqlite3Strlen30(zRight)); - }else - if( sqlite3StrICmp(zLeft, "rekey")==0 && zRight ){ - sqlite3_rekey(db, zRight, sqlite3Strlen30(zRight)); - }else - if( zRight && (sqlite3StrICmp(zLeft, "hexkey")==0 || - sqlite3StrICmp(zLeft, "hexrekey")==0) ){ - int i, h1, h2; - char zKey[40]; - for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){ - h1 += 9*(1&(h1>>6)); - h2 += 9*(1&(h2>>6)); - zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4); - } - if( (zLeft[3] & 0xf)==0xb ){ - sqlite3_key(db, zKey, i/2); - }else{ - sqlite3_rekey(db, zKey, i/2); - } - }else -#endif -#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) - if( sqlite3StrICmp(zLeft, "activate_extensions")==0 && zRight ){ -#ifdef SQLITE_HAS_CODEC - if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ - sqlite3_activate_see(&zRight[4]); - } -#endif -#ifdef SQLITE_ENABLE_CEROD - if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ - sqlite3_activate_cerod(&zRight[6]); - } -#endif - }else -#endif - - - {/* Empty ELSE clause */} - - /* - ** Reset the safety level, in case the fullfsync flag or synchronous - ** setting changed. - */ -#ifndef SQLITE_OMIT_PAGER_PRAGMAS - if( db->autoCommit ){ - sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, - (db->flags&SQLITE_FullFSync)!=0, - (db->flags&SQLITE_CkptFullFSync)!=0); - } -#endif -pragma_out: - sqlite3DbFree(db, zLeft); - sqlite3DbFree(db, zRight); -} - -#endif /* SQLITE_OMIT_PRAGMA */ - -/************** End of pragma.c **********************************************/ -/************** Begin file prepare.c *****************************************/ -/* -** 2005 May 25 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the implementation of the sqlite3_prepare() -** interface, and routines that contribute to loading the database schema -** from disk. -*/ - -/* -** Fill the InitData structure with an error message that indicates -** that the database is corrupt. -*/ -static void corruptSchema( - InitData *pData, /* Initialization context */ - const char *zObj, /* Object being parsed at the point of error */ - const char *zExtra /* Error information */ -){ - sqlite3 *db = pData->db; - if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){ - if( zObj==0 ) zObj = "?"; - sqlite3SetString(pData->pzErrMsg, db, - "malformed database schema (%s)", zObj); - if( zExtra ){ - *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg, - "%s - %s", *pData->pzErrMsg, zExtra); - } - } - pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT; -} - -/* -** This is the callback routine for the code that initializes the -** database. See sqlite3Init() below for additional information. -** This routine is also called from the OP_ParseSchema opcode of the VDBE. -** -** Each callback contains the following information: -** -** argv[0] = name of thing being created -** argv[1] = root page number for table or index. 0 for trigger or view. -** argv[2] = SQL text for the CREATE statement. -** -*/ -SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ - InitData *pData = (InitData*)pInit; - sqlite3 *db = pData->db; - int iDb = pData->iDb; - - assert( argc==3 ); - UNUSED_PARAMETER2(NotUsed, argc); - assert( sqlite3_mutex_held(db->mutex) ); - DbClearProperty(db, iDb, DB_Empty); - if( db->mallocFailed ){ - corruptSchema(pData, argv[0], 0); - return 1; - } - - assert( iDb>=0 && iDb<db->nDb ); - if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ - if( argv[1]==0 ){ - corruptSchema(pData, argv[0], 0); - }else if( argv[2] && argv[2][0] ){ - /* Call the parser to process a CREATE TABLE, INDEX or VIEW. - ** But because db->init.busy is set to 1, no VDBE code is generated - ** or executed. All the parser does is build the internal data - ** structures that describe the table, index, or view. - */ - int rc; - sqlite3_stmt *pStmt; - TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ - - assert( db->init.busy ); - db->init.iDb = iDb; - db->init.newTnum = sqlite3Atoi(argv[1]); - db->init.orphanTrigger = 0; - TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0); - rc = db->errCode; - assert( (rc&0xFF)==(rcp&0xFF) ); - db->init.iDb = 0; - if( SQLITE_OK!=rc ){ - if( db->init.orphanTrigger ){ - assert( iDb==1 ); - }else{ - pData->rc = rc; - if( rc==SQLITE_NOMEM ){ - db->mallocFailed = 1; - }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ - corruptSchema(pData, argv[0], sqlite3_errmsg(db)); - } - } - } - sqlite3_finalize(pStmt); - }else if( argv[0]==0 ){ - corruptSchema(pData, 0, 0); - }else{ - /* If the SQL column is blank it means this is an index that - ** was created to be the PRIMARY KEY or to fulfill a UNIQUE - ** constraint for a CREATE TABLE. The index should have already - ** been created when we processed the CREATE TABLE. All we have - ** to do here is record the root page number for that index. - */ - Index *pIndex; - pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName); - if( pIndex==0 ){ - /* This can occur if there exists an index on a TEMP table which - ** has the same name as another index on a permanent index. Since - ** the permanent table is hidden by the TEMP table, we can also - ** safely ignore the index on the permanent table. - */ - /* Do Nothing */; - }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){ - corruptSchema(pData, argv[0], "invalid rootpage"); - } - } - return 0; -} - -/* -** Attempt to read the database schema and initialize internal -** data structures for a single database file. The index of the -** database file is given by iDb. iDb==0 is used for the main -** database. iDb==1 should never be used. iDb>=2 is used for -** auxiliary databases. Return one of the SQLITE_ error codes to -** indicate success or failure. -*/ -static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ - int rc; - int i; -#ifndef SQLITE_OMIT_DEPRECATED - int size; -#endif - Table *pTab; - Db *pDb; - char const *azArg[4]; - int meta[5]; - InitData initData; - char const *zMasterSchema; - char const *zMasterName; - int openedTransaction = 0; - - /* - ** The master database table has a structure like this - */ - static const char master_schema[] = - "CREATE TABLE sqlite_master(\n" - " type text,\n" - " name text,\n" - " tbl_name text,\n" - " rootpage integer,\n" - " sql text\n" - ")" - ; -#ifndef SQLITE_OMIT_TEMPDB - static const char temp_master_schema[] = - "CREATE TEMP TABLE sqlite_temp_master(\n" - " type text,\n" - " name text,\n" - " tbl_name text,\n" - " rootpage integer,\n" - " sql text\n" - ")" - ; -#else - #define temp_master_schema 0 -#endif - - assert( iDb>=0 && iDb<db->nDb ); - assert( db->aDb[iDb].pSchema ); - assert( sqlite3_mutex_held(db->mutex) ); - assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); - - /* zMasterSchema and zInitScript are set to point at the master schema - ** and initialisation script appropriate for the database being - ** initialized. zMasterName is the name of the master table. - */ - if( !OMIT_TEMPDB && iDb==1 ){ - zMasterSchema = temp_master_schema; - }else{ - zMasterSchema = master_schema; - } - zMasterName = SCHEMA_TABLE(iDb); - - /* Construct the schema tables. */ - azArg[0] = zMasterName; - azArg[1] = "1"; - azArg[2] = zMasterSchema; - azArg[3] = 0; - initData.db = db; - initData.iDb = iDb; - initData.rc = SQLITE_OK; - initData.pzErrMsg = pzErrMsg; - sqlite3InitCallback(&initData, 3, (char **)azArg, 0); - if( initData.rc ){ - rc = initData.rc; - goto error_out; - } - pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); - if( ALWAYS(pTab) ){ - pTab->tabFlags |= TF_Readonly; - } - - /* Create a cursor to hold the database open - */ - pDb = &db->aDb[iDb]; - if( pDb->pBt==0 ){ - if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){ - DbSetProperty(db, 1, DB_SchemaLoaded); - } - return SQLITE_OK; - } - - /* If there is not already a read-only (or read-write) transaction opened - ** on the b-tree database, open one now. If a transaction is opened, it - ** will be closed before this function returns. */ - sqlite3BtreeEnter(pDb->pBt); - if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ - rc = sqlite3BtreeBeginTrans(pDb->pBt, 0); - if( rc!=SQLITE_OK ){ - sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc)); - goto initone_error_out; - } - openedTransaction = 1; - } - - /* Get the database meta information. - ** - ** Meta values are as follows: - ** meta[0] Schema cookie. Changes with each schema change. - ** meta[1] File format of schema layer. - ** meta[2] Size of the page cache. - ** meta[3] Largest rootpage (auto/incr_vacuum mode) - ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE - ** meta[5] User version - ** meta[6] Incremental vacuum mode - ** meta[7] unused - ** meta[8] unused - ** meta[9] unused - ** - ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to - ** the possible values of meta[4]. - */ - for(i=0; i<ArraySize(meta); i++){ - sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); - } - pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; - - /* If opening a non-empty database, check the text encoding. For the - ** main database, set sqlite3.enc to the encoding of the main database. - ** For an attached db, it is an error if the encoding is not the same - ** as sqlite3.enc. - */ - if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ - if( iDb==0 ){ -#ifndef SQLITE_OMIT_UTF16 - u8 encoding; - /* If opening the main database, set ENC(db). */ - encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; - if( encoding==0 ) encoding = SQLITE_UTF8; - ENC(db) = encoding; -#else - ENC(db) = SQLITE_UTF8; -#endif - }else{ - /* If opening an attached database, the encoding much match ENC(db) */ - if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){ - sqlite3SetString(pzErrMsg, db, "attached databases must use the same" - " text encoding as main database"); - rc = SQLITE_ERROR; - goto initone_error_out; - } - } - }else{ - DbSetProperty(db, iDb, DB_Empty); - } - pDb->pSchema->enc = ENC(db); - - if( pDb->pSchema->cache_size==0 ){ -#ifndef SQLITE_OMIT_DEPRECATED - size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); - if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } - pDb->pSchema->cache_size = size; -#else - pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; -#endif - sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); - } - - /* - ** file_format==1 Version 3.0.0. - ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN - ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults - ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants - */ - pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; - if( pDb->pSchema->file_format==0 ){ - pDb->pSchema->file_format = 1; - } - if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ - sqlite3SetString(pzErrMsg, db, "unsupported file format"); - rc = SQLITE_ERROR; - goto initone_error_out; - } - - /* Ticket #2804: When we open a database in the newer file format, - ** clear the legacy_file_format pragma flag so that a VACUUM will - ** not downgrade the database and thus invalidate any descending - ** indices that the user might have created. - */ - if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ - db->flags &= ~SQLITE_LegacyFileFmt; - } - - /* Read the schema information out of the schema tables - */ - assert( db->init.busy ); - { - char *zSql; - zSql = sqlite3MPrintf(db, - "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid", - db->aDb[iDb].zName, zMasterName); -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); - xAuth = db->xAuth; - db->xAuth = 0; -#endif - rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); -#ifndef SQLITE_OMIT_AUTHORIZATION - db->xAuth = xAuth; - } -#endif - if( rc==SQLITE_OK ) rc = initData.rc; - sqlite3DbFree(db, zSql); -#ifndef SQLITE_OMIT_ANALYZE - if( rc==SQLITE_OK ){ - sqlite3AnalysisLoad(db, iDb); - } -#endif - } - if( db->mallocFailed ){ - rc = SQLITE_NOMEM; - sqlite3ResetAllSchemasOfConnection(db); - } - if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){ - /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider - ** the schema loaded, even if errors occurred. In this situation the - ** current sqlite3_prepare() operation will fail, but the following one - ** will attempt to compile the supplied statement against whatever subset - ** of the schema was loaded before the error occurred. The primary - ** purpose of this is to allow access to the sqlite_master table - ** even when its contents have been corrupted. - */ - DbSetProperty(db, iDb, DB_SchemaLoaded); - rc = SQLITE_OK; - } - - /* Jump here for an error that occurs after successfully allocating - ** curMain and calling sqlite3BtreeEnter(). For an error that occurs - ** before that point, jump to error_out. - */ -initone_error_out: - if( openedTransaction ){ - sqlite3BtreeCommit(pDb->pBt); - } - sqlite3BtreeLeave(pDb->pBt); - -error_out: - if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ - db->mallocFailed = 1; - } - return rc; -} - -/* -** Initialize all database files - the main database file, the file -** used to store temporary tables, and any additional database files -** created using ATTACH statements. Return a success code. If an -** error occurs, write an error message into *pzErrMsg. -** -** After a database is initialized, the DB_SchemaLoaded bit is set -** bit is set in the flags field of the Db structure. If the database -** file was of zero-length, then the DB_Empty flag is also set. -*/ -SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){ - int i, rc; - int commit_internal = !(db->flags&SQLITE_InternChanges); - - assert( sqlite3_mutex_held(db->mutex) ); - rc = SQLITE_OK; - db->init.busy = 1; - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; - rc = sqlite3InitOne(db, i, pzErrMsg); - if( rc ){ - sqlite3ResetOneSchema(db, i); - } - } - - /* Once all the other databases have been initialized, load the schema - ** for the TEMP database. This is loaded last, as the TEMP database - ** schema may contain references to objects in other databases. - */ -#ifndef SQLITE_OMIT_TEMPDB - if( rc==SQLITE_OK && ALWAYS(db->nDb>1) - && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ - rc = sqlite3InitOne(db, 1, pzErrMsg); - if( rc ){ - sqlite3ResetOneSchema(db, 1); - } - } -#endif - - db->init.busy = 0; - if( rc==SQLITE_OK && commit_internal ){ - sqlite3CommitInternalChanges(db); - } - - return rc; -} - -/* -** This routine is a no-op if the database schema is already initialized. -** Otherwise, the schema is loaded. An error code is returned. -*/ -SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){ - int rc = SQLITE_OK; - sqlite3 *db = pParse->db; - assert( sqlite3_mutex_held(db->mutex) ); - if( !db->init.busy ){ - rc = sqlite3Init(db, &pParse->zErrMsg); - } - if( rc!=SQLITE_OK ){ - pParse->rc = rc; - pParse->nErr++; - } - return rc; -} - - -/* -** Check schema cookies in all databases. If any cookie is out -** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies -** make no changes to pParse->rc. -*/ -static void schemaIsValid(Parse *pParse){ - sqlite3 *db = pParse->db; - int iDb; - int rc; - int cookie; - - assert( pParse->checkSchema ); - assert( sqlite3_mutex_held(db->mutex) ); - for(iDb=0; iDb<db->nDb; iDb++){ - int openedTransaction = 0; /* True if a transaction is opened */ - Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ - if( pBt==0 ) continue; - - /* If there is not already a read-only (or read-write) transaction opened - ** on the b-tree database, open one now. If a transaction is opened, it - ** will be closed immediately after reading the meta-value. */ - if( !sqlite3BtreeIsInReadTrans(pBt) ){ - rc = sqlite3BtreeBeginTrans(pBt, 0); - if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ - db->mallocFailed = 1; - } - if( rc!=SQLITE_OK ) return; - openedTransaction = 1; - } - - /* Read the schema cookie from the database. If it does not match the - ** value stored as part of the in-memory schema representation, - ** set Parse.rc to SQLITE_SCHEMA. */ - sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ - sqlite3ResetOneSchema(db, iDb); - pParse->rc = SQLITE_SCHEMA; - } - - /* Close the transaction, if one was opened. */ - if( openedTransaction ){ - sqlite3BtreeCommit(pBt); - } - } -} - -/* -** Convert a schema pointer into the iDb index that indicates -** which database file in db->aDb[] the schema refers to. -** -** If the same database is attached more than once, the first -** attached database is returned. -*/ -SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ - int i = -1000000; - - /* If pSchema is NULL, then return -1000000. This happens when code in - ** expr.c is trying to resolve a reference to a transient table (i.e. one - ** created by a sub-select). In this case the return value of this - ** function should never be used. - ** - ** We return -1000000 instead of the more usual -1 simply because using - ** -1000000 as the incorrect index into db->aDb[] is much - ** more likely to cause a segfault than -1 (of course there are assert() - ** statements too, but it never hurts to play the odds). - */ - assert( sqlite3_mutex_held(db->mutex) ); - if( pSchema ){ - for(i=0; ALWAYS(i<db->nDb); i++){ - if( db->aDb[i].pSchema==pSchema ){ - break; - } - } - assert( i>=0 && i<db->nDb ); - } - return i; -} - -/* -** Compile the UTF-8 encoded SQL statement zSql into a statement handle. -*/ -static int sqlite3Prepare( - sqlite3 *db, /* Database handle. */ - const char *zSql, /* UTF-8 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ - Vdbe *pReprepare, /* VM being reprepared */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const char **pzTail /* OUT: End of parsed string */ -){ - Parse *pParse; /* Parsing context */ - char *zErrMsg = 0; /* Error message */ - int rc = SQLITE_OK; /* Result code */ - int i; /* Loop counter */ - - /* Allocate the parsing context */ - pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); - if( pParse==0 ){ - rc = SQLITE_NOMEM; - goto end_prepare; - } - pParse->pReprepare = pReprepare; - assert( ppStmt && *ppStmt==0 ); - assert( !db->mallocFailed ); - assert( sqlite3_mutex_held(db->mutex) ); - - /* Check to verify that it is possible to get a read lock on all - ** database schemas. The inability to get a read lock indicates that - ** some other database connection is holding a write-lock, which in - ** turn means that the other connection has made uncommitted changes - ** to the schema. - ** - ** Were we to proceed and prepare the statement against the uncommitted - ** schema changes and if those schema changes are subsequently rolled - ** back and different changes are made in their place, then when this - ** prepared statement goes to run the schema cookie would fail to detect - ** the schema change. Disaster would follow. - ** - ** This thread is currently holding mutexes on all Btrees (because - ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it - ** is not possible for another thread to start a new schema change - ** while this routine is running. Hence, we do not need to hold - ** locks on the schema, we just need to make sure nobody else is - ** holding them. - ** - ** Note that setting READ_UNCOMMITTED overrides most lock detection, - ** but it does *not* override schema lock detection, so this all still - ** works even if READ_UNCOMMITTED is set. - */ - for(i=0; i<db->nDb; i++) { - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - assert( sqlite3BtreeHoldsMutex(pBt) ); - rc = sqlite3BtreeSchemaLocked(pBt); - if( rc ){ - const char *zDb = db->aDb[i].zName; - sqlite3Error(db, rc, "database schema is locked: %s", zDb); - testcase( db->flags & SQLITE_ReadUncommitted ); - goto end_prepare; - } - } - } - - sqlite3VtabUnlockList(db); - - pParse->db = db; - pParse->nQueryLoop = (double)1; - if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ - char *zSqlCopy; - int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; - testcase( nBytes==mxLen ); - testcase( nBytes==mxLen+1 ); - if( nBytes>mxLen ){ - sqlite3Error(db, SQLITE_TOOBIG, "statement too long"); - rc = sqlite3ApiExit(db, SQLITE_TOOBIG); - goto end_prepare; - } - zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); - if( zSqlCopy ){ - sqlite3RunParser(pParse, zSqlCopy, &zErrMsg); - sqlite3DbFree(db, zSqlCopy); - pParse->zTail = &zSql[pParse->zTail-zSqlCopy]; - }else{ - pParse->zTail = &zSql[nBytes]; - } - }else{ - sqlite3RunParser(pParse, zSql, &zErrMsg); - } - assert( 1==(int)pParse->nQueryLoop ); - - if( db->mallocFailed ){ - pParse->rc = SQLITE_NOMEM; - } - if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK; - if( pParse->checkSchema ){ - schemaIsValid(pParse); - } - if( db->mallocFailed ){ - pParse->rc = SQLITE_NOMEM; - } - if( pzTail ){ - *pzTail = pParse->zTail; - } - rc = pParse->rc; - -#ifndef SQLITE_OMIT_EXPLAIN - if( rc==SQLITE_OK && pParse->pVdbe && pParse->explain ){ - static const char * const azColName[] = { - "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", - "selectid", "order", "from", "detail" - }; - int iFirst, mx; - if( pParse->explain==2 ){ - sqlite3VdbeSetNumCols(pParse->pVdbe, 4); - iFirst = 8; - mx = 12; - }else{ - sqlite3VdbeSetNumCols(pParse->pVdbe, 8); - iFirst = 0; - mx = 8; - } - for(i=iFirst; i<mx; i++){ - sqlite3VdbeSetColName(pParse->pVdbe, i-iFirst, COLNAME_NAME, - azColName[i], SQLITE_STATIC); - } - } -#endif - - assert( db->init.busy==0 || saveSqlFlag==0 ); - if( db->init.busy==0 ){ - Vdbe *pVdbe = pParse->pVdbe; - sqlite3VdbeSetSql(pVdbe, zSql, (int)(pParse->zTail-zSql), saveSqlFlag); - } - if( pParse->pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){ - sqlite3VdbeFinalize(pParse->pVdbe); - assert(!(*ppStmt)); - }else{ - *ppStmt = (sqlite3_stmt*)pParse->pVdbe; - } - - if( zErrMsg ){ - sqlite3Error(db, rc, "%s", zErrMsg); - sqlite3DbFree(db, zErrMsg); - }else{ - sqlite3Error(db, rc, 0); - } - - /* Delete any TriggerPrg structures allocated while parsing this statement. */ - while( pParse->pTriggerPrg ){ - TriggerPrg *pT = pParse->pTriggerPrg; - pParse->pTriggerPrg = pT->pNext; - sqlite3DbFree(db, pT); - } - -end_prepare: - - sqlite3StackFree(db, pParse); - rc = sqlite3ApiExit(db, rc); - assert( (rc&db->errMask)==rc ); - return rc; -} -static int sqlite3LockAndPrepare( - sqlite3 *db, /* Database handle. */ - const char *zSql, /* UTF-8 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ - Vdbe *pOld, /* VM being reprepared */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const char **pzTail /* OUT: End of parsed string */ -){ - int rc; - assert( ppStmt!=0 ); - *ppStmt = 0; - if( !sqlite3SafetyCheckOk(db) ){ - return SQLITE_MISUSE_BKPT; - } - sqlite3_mutex_enter(db->mutex); - sqlite3BtreeEnterAll(db); - rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); - if( rc==SQLITE_SCHEMA ){ - sqlite3_finalize(*ppStmt); - rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); - } - sqlite3BtreeLeaveAll(db); - sqlite3_mutex_leave(db->mutex); - assert( rc==SQLITE_OK || *ppStmt==0 ); - return rc; -} - -/* -** Rerun the compilation of a statement after a schema change. -** -** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, -** if the statement cannot be recompiled because another connection has -** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error -** occurs, return SQLITE_SCHEMA. -*/ -SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){ - int rc; - sqlite3_stmt *pNew; - const char *zSql; - sqlite3 *db; - - assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); - zSql = sqlite3_sql((sqlite3_stmt *)p); - assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ - db = sqlite3VdbeDb(p); - assert( sqlite3_mutex_held(db->mutex) ); - rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0); - if( rc ){ - if( rc==SQLITE_NOMEM ){ - db->mallocFailed = 1; - } - assert( pNew==0 ); - return rc; - }else{ - assert( pNew!=0 ); - } - sqlite3VdbeSwap((Vdbe*)pNew, p); - sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); - sqlite3VdbeResetStepResult((Vdbe*)pNew); - sqlite3VdbeFinalize((Vdbe*)pNew); - return SQLITE_OK; -} - - -/* -** Two versions of the official API. Legacy and new use. In the legacy -** version, the original SQL text is not saved in the prepared statement -** and so if a schema change occurs, SQLITE_SCHEMA is returned by -** sqlite3_step(). In the new version, the original SQL text is retained -** and the statement is automatically recompiled if an schema change -** occurs. -*/ -SQLITE_API int sqlite3_prepare( - sqlite3 *db, /* Database handle. */ - const char *zSql, /* UTF-8 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const char **pzTail /* OUT: End of parsed string */ -){ - int rc; - rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); - assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ - return rc; -} -SQLITE_API int sqlite3_prepare_v2( - sqlite3 *db, /* Database handle. */ - const char *zSql, /* UTF-8 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const char **pzTail /* OUT: End of parsed string */ -){ - int rc; - rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,0,ppStmt,pzTail); - assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ - return rc; -} - - -#ifndef SQLITE_OMIT_UTF16 -/* -** Compile the UTF-16 encoded SQL statement zSql into a statement handle. -*/ -static int sqlite3Prepare16( - sqlite3 *db, /* Database handle. */ - const void *zSql, /* UTF-16 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const void **pzTail /* OUT: End of parsed string */ -){ - /* This function currently works by first transforming the UTF-16 - ** encoded string to UTF-8, then invoking sqlite3_prepare(). The - ** tricky bit is figuring out the pointer to return in *pzTail. - */ - char *zSql8; - const char *zTail8 = 0; - int rc = SQLITE_OK; - - assert( ppStmt ); - *ppStmt = 0; - if( !sqlite3SafetyCheckOk(db) ){ - return SQLITE_MISUSE_BKPT; - } - sqlite3_mutex_enter(db->mutex); - zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); - if( zSql8 ){ - rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8); - } - - if( zTail8 && pzTail ){ - /* If sqlite3_prepare returns a tail pointer, we calculate the - ** equivalent pointer into the UTF-16 string by counting the unicode - ** characters between zSql8 and zTail8, and then returning a pointer - ** the same number of characters into the UTF-16 string. - */ - int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); - *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); - } - sqlite3DbFree(db, zSql8); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Two versions of the official API. Legacy and new use. In the legacy -** version, the original SQL text is not saved in the prepared statement -** and so if a schema change occurs, SQLITE_SCHEMA is returned by -** sqlite3_step(). In the new version, the original SQL text is retained -** and the statement is automatically recompiled if an schema change -** occurs. -*/ -SQLITE_API int sqlite3_prepare16( - sqlite3 *db, /* Database handle. */ - const void *zSql, /* UTF-16 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const void **pzTail /* OUT: End of parsed string */ -){ - int rc; - rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); - assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ - return rc; -} -SQLITE_API int sqlite3_prepare16_v2( - sqlite3 *db, /* Database handle. */ - const void *zSql, /* UTF-16 encoded SQL statement. */ - int nBytes, /* Length of zSql in bytes. */ - sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ - const void **pzTail /* OUT: End of parsed string */ -){ - int rc; - rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail); - assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ - return rc; -} - -#endif /* SQLITE_OMIT_UTF16 */ - -/************** End of prepare.c *********************************************/ -/************** Begin file select.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the parser -** to handle SELECT statements in SQLite. -*/ - - -/* -** Delete all the content of a Select structure but do not deallocate -** the select structure itself. -*/ -static void clearSelect(sqlite3 *db, Select *p){ - sqlite3ExprListDelete(db, p->pEList); - sqlite3SrcListDelete(db, p->pSrc); - sqlite3ExprDelete(db, p->pWhere); - sqlite3ExprListDelete(db, p->pGroupBy); - sqlite3ExprDelete(db, p->pHaving); - sqlite3ExprListDelete(db, p->pOrderBy); - sqlite3SelectDelete(db, p->pPrior); - sqlite3ExprDelete(db, p->pLimit); - sqlite3ExprDelete(db, p->pOffset); -} - -/* -** Initialize a SelectDest structure. -*/ -SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ - pDest->eDest = (u8)eDest; - pDest->iSDParm = iParm; - pDest->affSdst = 0; - pDest->iSdst = 0; - pDest->nSdst = 0; -} - - -/* -** Allocate a new Select structure and return a pointer to that -** structure. -*/ -SQLITE_PRIVATE Select *sqlite3SelectNew( - Parse *pParse, /* Parsing context */ - ExprList *pEList, /* which columns to include in the result */ - SrcList *pSrc, /* the FROM clause -- which tables to scan */ - Expr *pWhere, /* the WHERE clause */ - ExprList *pGroupBy, /* the GROUP BY clause */ - Expr *pHaving, /* the HAVING clause */ - ExprList *pOrderBy, /* the ORDER BY clause */ - u16 selFlags, /* Flag parameters, such as SF_Distinct */ - Expr *pLimit, /* LIMIT value. NULL means not used */ - Expr *pOffset /* OFFSET value. NULL means no offset */ -){ - Select *pNew; - Select standin; - sqlite3 *db = pParse->db; - pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); - assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ - if( pNew==0 ){ - assert( db->mallocFailed ); - pNew = &standin; - memset(pNew, 0, sizeof(*pNew)); - } - if( pEList==0 ){ - pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); - } - pNew->pEList = pEList; - if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); - pNew->pSrc = pSrc; - pNew->pWhere = pWhere; - pNew->pGroupBy = pGroupBy; - pNew->pHaving = pHaving; - pNew->pOrderBy = pOrderBy; - pNew->selFlags = selFlags; - pNew->op = TK_SELECT; - pNew->pLimit = pLimit; - pNew->pOffset = pOffset; - assert( pOffset==0 || pLimit!=0 ); - pNew->addrOpenEphm[0] = -1; - pNew->addrOpenEphm[1] = -1; - pNew->addrOpenEphm[2] = -1; - if( db->mallocFailed ) { - clearSelect(db, pNew); - if( pNew!=&standin ) sqlite3DbFree(db, pNew); - pNew = 0; - }else{ - assert( pNew->pSrc!=0 || pParse->nErr>0 ); - } - assert( pNew!=&standin ); - return pNew; -} - -/* -** Delete the given Select structure and all of its substructures. -*/ -SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){ - if( p ){ - clearSelect(db, p); - sqlite3DbFree(db, p); - } -} - -/* -** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the -** type of join. Return an integer constant that expresses that type -** in terms of the following bit values: -** -** JT_INNER -** JT_CROSS -** JT_OUTER -** JT_NATURAL -** JT_LEFT -** JT_RIGHT -** -** A full outer join is the combination of JT_LEFT and JT_RIGHT. -** -** If an illegal or unsupported join type is seen, then still return -** a join type, but put an error in the pParse structure. -*/ -SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ - int jointype = 0; - Token *apAll[3]; - Token *p; - /* 0123456789 123456789 123456789 123 */ - static const char zKeyText[] = "naturaleftouterightfullinnercross"; - static const struct { - u8 i; /* Beginning of keyword text in zKeyText[] */ - u8 nChar; /* Length of the keyword in characters */ - u8 code; /* Join type mask */ - } aKeyword[] = { - /* natural */ { 0, 7, JT_NATURAL }, - /* left */ { 6, 4, JT_LEFT|JT_OUTER }, - /* outer */ { 10, 5, JT_OUTER }, - /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, - /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, - /* inner */ { 23, 5, JT_INNER }, - /* cross */ { 28, 5, JT_INNER|JT_CROSS }, - }; - int i, j; - apAll[0] = pA; - apAll[1] = pB; - apAll[2] = pC; - for(i=0; i<3 && apAll[i]; i++){ - p = apAll[i]; - for(j=0; j<ArraySize(aKeyword); j++){ - if( p->n==aKeyword[j].nChar - && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ - jointype |= aKeyword[j].code; - break; - } - } - testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); - if( j>=ArraySize(aKeyword) ){ - jointype |= JT_ERROR; - break; - } - } - if( - (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || - (jointype & JT_ERROR)!=0 - ){ - const char *zSp = " "; - assert( pB!=0 ); - if( pC==0 ){ zSp++; } - sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " - "%T %T%s%T", pA, pB, zSp, pC); - jointype = JT_INNER; - }else if( (jointype & JT_OUTER)!=0 - && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ - sqlite3ErrorMsg(pParse, - "RIGHT and FULL OUTER JOINs are not currently supported"); - jointype = JT_INNER; - } - return jointype; -} - -/* -** Return the index of a column in a table. Return -1 if the column -** is not contained in the table. -*/ -static int columnIndex(Table *pTab, const char *zCol){ - int i; - for(i=0; i<pTab->nCol; i++){ - if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; - } - return -1; -} - -/* -** Search the first N tables in pSrc, from left to right, looking for a -** table that has a column named zCol. -** -** When found, set *piTab and *piCol to the table index and column index -** of the matching column and return TRUE. -** -** If not found, return FALSE. -*/ -static int tableAndColumnIndex( - SrcList *pSrc, /* Array of tables to search */ - int N, /* Number of tables in pSrc->a[] to search */ - const char *zCol, /* Name of the column we are looking for */ - int *piTab, /* Write index of pSrc->a[] here */ - int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ -){ - int i; /* For looping over tables in pSrc */ - int iCol; /* Index of column matching zCol */ - - assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ - for(i=0; i<N; i++){ - iCol = columnIndex(pSrc->a[i].pTab, zCol); - if( iCol>=0 ){ - if( piTab ){ - *piTab = i; - *piCol = iCol; - } - return 1; - } - } - return 0; -} - -/* -** This function is used to add terms implied by JOIN syntax to the -** WHERE clause expression of a SELECT statement. The new term, which -** is ANDed with the existing WHERE clause, is of the form: -** -** (tab1.col1 = tab2.col2) -** -** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the -** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is -** column iColRight of tab2. -*/ -static void addWhereTerm( - Parse *pParse, /* Parsing context */ - SrcList *pSrc, /* List of tables in FROM clause */ - int iLeft, /* Index of first table to join in pSrc */ - int iColLeft, /* Index of column in first table */ - int iRight, /* Index of second table in pSrc */ - int iColRight, /* Index of column in second table */ - int isOuterJoin, /* True if this is an OUTER join */ - Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ -){ - sqlite3 *db = pParse->db; - Expr *pE1; - Expr *pE2; - Expr *pEq; - - assert( iLeft<iRight ); - assert( pSrc->nSrc>iRight ); - assert( pSrc->a[iLeft].pTab ); - assert( pSrc->a[iRight].pTab ); - - pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); - pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); - - pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); - if( pEq && isOuterJoin ){ - ExprSetProperty(pEq, EP_FromJoin); - assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); - ExprSetIrreducible(pEq); - pEq->iRightJoinTable = (i16)pE2->iTable; - } - *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); -} - -/* -** Set the EP_FromJoin property on all terms of the given expression. -** And set the Expr.iRightJoinTable to iTable for every term in the -** expression. -** -** The EP_FromJoin property is used on terms of an expression to tell -** the LEFT OUTER JOIN processing logic that this term is part of the -** join restriction specified in the ON or USING clause and not a part -** of the more general WHERE clause. These terms are moved over to the -** WHERE clause during join processing but we need to remember that they -** originated in the ON or USING clause. -** -** The Expr.iRightJoinTable tells the WHERE clause processing that the -** expression depends on table iRightJoinTable even if that table is not -** explicitly mentioned in the expression. That information is needed -** for cases like this: -** -** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 -** -** The where clause needs to defer the handling of the t1.x=5 -** term until after the t2 loop of the join. In that way, a -** NULL t2 row will be inserted whenever t1.x!=5. If we do not -** defer the handling of t1.x=5, it will be processed immediately -** after the t1 loop and rows with t1.x!=5 will never appear in -** the output, which is incorrect. -*/ -static void setJoinExpr(Expr *p, int iTable){ - while( p ){ - ExprSetProperty(p, EP_FromJoin); - assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); - ExprSetIrreducible(p); - p->iRightJoinTable = (i16)iTable; - setJoinExpr(p->pLeft, iTable); - p = p->pRight; - } -} - -/* -** This routine processes the join information for a SELECT statement. -** ON and USING clauses are converted into extra terms of the WHERE clause. -** NATURAL joins also create extra WHERE clause terms. -** -** The terms of a FROM clause are contained in the Select.pSrc structure. -** The left most table is the first entry in Select.pSrc. The right-most -** table is the last entry. The join operator is held in the entry to -** the left. Thus entry 0 contains the join operator for the join between -** entries 0 and 1. Any ON or USING clauses associated with the join are -** also attached to the left entry. -** -** This routine returns the number of errors encountered. -*/ -static int sqliteProcessJoin(Parse *pParse, Select *p){ - SrcList *pSrc; /* All tables in the FROM clause */ - int i, j; /* Loop counters */ - struct SrcList_item *pLeft; /* Left table being joined */ - struct SrcList_item *pRight; /* Right table being joined */ - - pSrc = p->pSrc; - pLeft = &pSrc->a[0]; - pRight = &pLeft[1]; - for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ - Table *pLeftTab = pLeft->pTab; - Table *pRightTab = pRight->pTab; - int isOuter; - - if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; - isOuter = (pRight->jointype & JT_OUTER)!=0; - - /* When the NATURAL keyword is present, add WHERE clause terms for - ** every column that the two tables have in common. - */ - if( pRight->jointype & JT_NATURAL ){ - if( pRight->pOn || pRight->pUsing ){ - sqlite3ErrorMsg(pParse, "a NATURAL join may not have " - "an ON or USING clause", 0); - return 1; - } - for(j=0; j<pRightTab->nCol; j++){ - char *zName; /* Name of column in the right table */ - int iLeft; /* Matching left table */ - int iLeftCol; /* Matching column in the left table */ - - zName = pRightTab->aCol[j].zName; - if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ - addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, - isOuter, &p->pWhere); - } - } - } - - /* Disallow both ON and USING clauses in the same join - */ - if( pRight->pOn && pRight->pUsing ){ - sqlite3ErrorMsg(pParse, "cannot have both ON and USING " - "clauses in the same join"); - return 1; - } - - /* Add the ON clause to the end of the WHERE clause, connected by - ** an AND operator. - */ - if( pRight->pOn ){ - if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); - p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); - pRight->pOn = 0; - } - - /* Create extra terms on the WHERE clause for each column named - ** in the USING clause. Example: If the two tables to be joined are - ** A and B and the USING clause names X, Y, and Z, then add this - ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z - ** Report an error if any column mentioned in the USING clause is - ** not contained in both tables to be joined. - */ - if( pRight->pUsing ){ - IdList *pList = pRight->pUsing; - for(j=0; j<pList->nId; j++){ - char *zName; /* Name of the term in the USING clause */ - int iLeft; /* Table on the left with matching column name */ - int iLeftCol; /* Column number of matching column on the left */ - int iRightCol; /* Column number of matching column on the right */ - - zName = pList->a[j].zName; - iRightCol = columnIndex(pRightTab, zName); - if( iRightCol<0 - || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) - ){ - sqlite3ErrorMsg(pParse, "cannot join using column %s - column " - "not present in both tables", zName); - return 1; - } - addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, - isOuter, &p->pWhere); - } - } - } - return 0; -} - -/* -** Insert code into "v" that will push the record on the top of the -** stack into the sorter. -*/ -static void pushOntoSorter( - Parse *pParse, /* Parser context */ - ExprList *pOrderBy, /* The ORDER BY clause */ - Select *pSelect, /* The whole SELECT statement */ - int regData /* Register holding data to be sorted */ -){ - Vdbe *v = pParse->pVdbe; - int nExpr = pOrderBy->nExpr; - int regBase = sqlite3GetTempRange(pParse, nExpr+2); - int regRecord = sqlite3GetTempReg(pParse); - int op; - sqlite3ExprCacheClear(pParse); - sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); - sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); - sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); - if( pSelect->selFlags & SF_UseSorter ){ - op = OP_SorterInsert; - }else{ - op = OP_IdxInsert; - } - sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); - sqlite3ReleaseTempReg(pParse, regRecord); - sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); - if( pSelect->iLimit ){ - int addr1, addr2; - int iLimit; - if( pSelect->iOffset ){ - iLimit = pSelect->iOffset+1; - }else{ - iLimit = pSelect->iLimit; - } - addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); - sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); - addr2 = sqlite3VdbeAddOp0(v, OP_Goto); - sqlite3VdbeJumpHere(v, addr1); - sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); - sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); - sqlite3VdbeJumpHere(v, addr2); - } -} - -/* -** Add code to implement the OFFSET -*/ -static void codeOffset( - Vdbe *v, /* Generate code into this VM */ - Select *p, /* The SELECT statement being coded */ - int iContinue /* Jump here to skip the current record */ -){ - if( p->iOffset && iContinue!=0 ){ - int addr; - sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); - addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); - sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); - VdbeComment((v, "skip OFFSET records")); - sqlite3VdbeJumpHere(v, addr); - } -} - -/* -** Add code that will check to make sure the N registers starting at iMem -** form a distinct entry. iTab is a sorting index that holds previously -** seen combinations of the N values. A new entry is made in iTab -** if the current N values are new. -** -** A jump to addrRepeat is made and the N+1 values are popped from the -** stack if the top N elements are not distinct. -*/ -static void codeDistinct( - Parse *pParse, /* Parsing and code generating context */ - int iTab, /* A sorting index used to test for distinctness */ - int addrRepeat, /* Jump to here if not distinct */ - int N, /* Number of elements */ - int iMem /* First element */ -){ - Vdbe *v; - int r1; - - v = pParse->pVdbe; - r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); - sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); - sqlite3ReleaseTempReg(pParse, r1); -} - -#ifndef SQLITE_OMIT_SUBQUERY -/* -** Generate an error message when a SELECT is used within a subexpression -** (example: "a IN (SELECT * FROM table)") but it has more than 1 result -** column. We do this in a subroutine because the error used to occur -** in multiple places. (The error only occurs in one place now, but we -** retain the subroutine to minimize code disruption.) -*/ -static int checkForMultiColumnSelectError( - Parse *pParse, /* Parse context. */ - SelectDest *pDest, /* Destination of SELECT results */ - int nExpr /* Number of result columns returned by SELECT */ -){ - int eDest = pDest->eDest; - if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ - sqlite3ErrorMsg(pParse, "only a single result allowed for " - "a SELECT that is part of an expression"); - return 1; - }else{ - return 0; - } -} -#endif - -/* -** An instance of the following object is used to record information about -** how to process the DISTINCT keyword, to simplify passing that information -** into the selectInnerLoop() routine. -*/ -typedef struct DistinctCtx DistinctCtx; -struct DistinctCtx { - u8 isTnct; /* True if the DISTINCT keyword is present */ - u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ - int tabTnct; /* Ephemeral table used for DISTINCT processing */ - int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ -}; - -/* -** This routine generates the code for the inside of the inner loop -** of a SELECT. -** -** If srcTab and nColumn are both zero, then the pEList expressions -** are evaluated in order to get the data for this row. If nColumn>0 -** then data is pulled from srcTab and pEList is used only to get the -** datatypes for each column. -*/ -static void selectInnerLoop( - Parse *pParse, /* The parser context */ - Select *p, /* The complete select statement being coded */ - ExprList *pEList, /* List of values being extracted */ - int srcTab, /* Pull data from this table */ - int nColumn, /* Number of columns in the source table */ - ExprList *pOrderBy, /* If not NULL, sort results using this key */ - DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ - SelectDest *pDest, /* How to dispose of the results */ - int iContinue, /* Jump here to continue with next row */ - int iBreak /* Jump here to break out of the inner loop */ -){ - Vdbe *v = pParse->pVdbe; - int i; - int hasDistinct; /* True if the DISTINCT keyword is present */ - int regResult; /* Start of memory holding result set */ - int eDest = pDest->eDest; /* How to dispose of results */ - int iParm = pDest->iSDParm; /* First argument to disposal method */ - int nResultCol; /* Number of result columns */ - - assert( v ); - if( NEVER(v==0) ) return; - assert( pEList!=0 ); - hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; - if( pOrderBy==0 && !hasDistinct ){ - codeOffset(v, p, iContinue); - } - - /* Pull the requested columns. - */ - if( nColumn>0 ){ - nResultCol = nColumn; - }else{ - nResultCol = pEList->nExpr; - } - if( pDest->iSdst==0 ){ - pDest->iSdst = pParse->nMem+1; - pDest->nSdst = nResultCol; - pParse->nMem += nResultCol; - }else{ - assert( pDest->nSdst==nResultCol ); - } - regResult = pDest->iSdst; - if( nColumn>0 ){ - for(i=0; i<nColumn; i++){ - sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); - } - }else if( eDest!=SRT_Exists ){ - /* If the destination is an EXISTS(...) expression, the actual - ** values returned by the SELECT are not required. - */ - sqlite3ExprCacheClear(pParse); - sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); - } - nColumn = nResultCol; - - /* If the DISTINCT keyword was present on the SELECT statement - ** and this row has been seen before, then do not make this row - ** part of the result. - */ - if( hasDistinct ){ - assert( pEList!=0 ); - assert( pEList->nExpr==nColumn ); - switch( pDistinct->eTnctType ){ - case WHERE_DISTINCT_ORDERED: { - VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ - int iJump; /* Jump destination */ - int regPrev; /* Previous row content */ - - /* Allocate space for the previous row */ - regPrev = pParse->nMem+1; - pParse->nMem += nColumn; - - /* Change the OP_OpenEphemeral coded earlier to an OP_Null - ** sets the MEM_Cleared bit on the first register of the - ** previous value. This will cause the OP_Ne below to always - ** fail on the first iteration of the loop even if the first - ** row is all NULLs. - */ - sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); - pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); - pOp->opcode = OP_Null; - pOp->p1 = 1; - pOp->p2 = regPrev; - - iJump = sqlite3VdbeCurrentAddr(v) + nColumn; - for(i=0; i<nColumn; i++){ - CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); - if( i<nColumn-1 ){ - sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); - }else{ - sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); - } - sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); - sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); - } - assert( sqlite3VdbeCurrentAddr(v)==iJump ); - sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nColumn-1); - break; - } - - case WHERE_DISTINCT_UNIQUE: { - sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); - break; - } - - default: { - assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); - codeDistinct(pParse, pDistinct->tabTnct, iContinue, nColumn, regResult); - break; - } - } - if( pOrderBy==0 ){ - codeOffset(v, p, iContinue); - } - } - - switch( eDest ){ - /* In this mode, write each query result to the key of the temporary - ** table iParm. - */ -#ifndef SQLITE_OMIT_COMPOUND_SELECT - case SRT_Union: { - int r1; - r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); - sqlite3ReleaseTempReg(pParse, r1); - break; - } - - /* Construct a record from the query result, but instead of - ** saving that record, use it as a key to delete elements from - ** the temporary table iParm. - */ - case SRT_Except: { - sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); - break; - } -#endif - - /* Store the result as data using a unique key. - */ - case SRT_Table: - case SRT_EphemTab: { - int r1 = sqlite3GetTempReg(pParse); - testcase( eDest==SRT_Table ); - testcase( eDest==SRT_EphemTab ); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); - if( pOrderBy ){ - pushOntoSorter(pParse, pOrderBy, p, r1); - }else{ - int r2 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); - sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - sqlite3ReleaseTempReg(pParse, r2); - } - sqlite3ReleaseTempReg(pParse, r1); - break; - } - -#ifndef SQLITE_OMIT_SUBQUERY - /* If we are creating a set for an "expr IN (SELECT ...)" construct, - ** then there should be a single item on the stack. Write this - ** item into the set table with bogus data. - */ - case SRT_Set: { - assert( nColumn==1 ); - pDest->affSdst = - sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); - if( pOrderBy ){ - /* At first glance you would think we could optimize out the - ** ORDER BY in this case since the order of entries in the set - ** does not matter. But there might be a LIMIT clause, in which - ** case the order does matter */ - pushOntoSorter(pParse, pOrderBy, p, regResult); - }else{ - int r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); - sqlite3ExprCacheAffinityChange(pParse, regResult, 1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); - sqlite3ReleaseTempReg(pParse, r1); - } - break; - } - - /* If any row exist in the result set, record that fact and abort. - */ - case SRT_Exists: { - sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); - /* The LIMIT clause will terminate the loop for us */ - break; - } - - /* If this is a scalar select that is part of an expression, then - ** store the results in the appropriate memory cell and break out - ** of the scan loop. - */ - case SRT_Mem: { - assert( nColumn==1 ); - if( pOrderBy ){ - pushOntoSorter(pParse, pOrderBy, p, regResult); - }else{ - sqlite3ExprCodeMove(pParse, regResult, iParm, 1); - /* The LIMIT clause will jump out of the loop for us */ - } - break; - } -#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ - - /* Send the data to the callback function or to a subroutine. In the - ** case of a subroutine, the subroutine itself is responsible for - ** popping the data from the stack. - */ - case SRT_Coroutine: - case SRT_Output: { - testcase( eDest==SRT_Coroutine ); - testcase( eDest==SRT_Output ); - if( pOrderBy ){ - int r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); - pushOntoSorter(pParse, pOrderBy, p, r1); - sqlite3ReleaseTempReg(pParse, r1); - }else if( eDest==SRT_Coroutine ){ - sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); - }else{ - sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); - sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); - } - break; - } - -#if !defined(SQLITE_OMIT_TRIGGER) - /* Discard the results. This is used for SELECT statements inside - ** the body of a TRIGGER. The purpose of such selects is to call - ** user-defined functions that have side effects. We do not care - ** about the actual results of the select. - */ - default: { - assert( eDest==SRT_Discard ); - break; - } -#endif - } - - /* Jump to the end of the loop if the LIMIT is reached. Except, if - ** there is a sorter, in which case the sorter has already limited - ** the output for us. - */ - if( pOrderBy==0 && p->iLimit ){ - sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); - } -} - -/* -** Given an expression list, generate a KeyInfo structure that records -** the collating sequence for each expression in that expression list. -** -** If the ExprList is an ORDER BY or GROUP BY clause then the resulting -** KeyInfo structure is appropriate for initializing a virtual index to -** implement that clause. If the ExprList is the result set of a SELECT -** then the KeyInfo structure is appropriate for initializing a virtual -** index to implement a DISTINCT test. -** -** Space to hold the KeyInfo structure is obtain from malloc. The calling -** function is responsible for seeing that this structure is eventually -** freed. Add the KeyInfo structure to the P4 field of an opcode using -** P4_KEYINFO_HANDOFF is the usual way of dealing with this. -*/ -static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ - sqlite3 *db = pParse->db; - int nExpr; - KeyInfo *pInfo; - struct ExprList_item *pItem; - int i; - - nExpr = pList->nExpr; - pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); - if( pInfo ){ - pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; - pInfo->nField = (u16)nExpr; - pInfo->enc = ENC(db); - pInfo->db = db; - for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ - CollSeq *pColl; - pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); - if( !pColl ){ - pColl = db->pDfltColl; - } - pInfo->aColl[i] = pColl; - pInfo->aSortOrder[i] = pItem->sortOrder; - } - } - return pInfo; -} - -#ifndef SQLITE_OMIT_COMPOUND_SELECT -/* -** Name of the connection operator, used for error messages. -*/ -static const char *selectOpName(int id){ - char *z; - switch( id ){ - case TK_ALL: z = "UNION ALL"; break; - case TK_INTERSECT: z = "INTERSECT"; break; - case TK_EXCEPT: z = "EXCEPT"; break; - default: z = "UNION"; break; - } - return z; -} -#endif /* SQLITE_OMIT_COMPOUND_SELECT */ - -#ifndef SQLITE_OMIT_EXPLAIN -/* -** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function -** is a no-op. Otherwise, it adds a single row of output to the EQP result, -** where the caption is of the form: -** -** "USE TEMP B-TREE FOR xxx" -** -** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which -** is determined by the zUsage argument. -*/ -static void explainTempTable(Parse *pParse, const char *zUsage){ - if( pParse->explain==2 ){ - Vdbe *v = pParse->pVdbe; - char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); - sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); - } -} - -/* -** Assign expression b to lvalue a. A second, no-op, version of this macro -** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code -** in sqlite3Select() to assign values to structure member variables that -** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the -** code with #ifndef directives. -*/ -# define explainSetInteger(a, b) a = b - -#else -/* No-op versions of the explainXXX() functions and macros. */ -# define explainTempTable(y,z) -# define explainSetInteger(y,z) -#endif - -#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) -/* -** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function -** is a no-op. Otherwise, it adds a single row of output to the EQP result, -** where the caption is of one of the two forms: -** -** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" -** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" -** -** where iSub1 and iSub2 are the integers passed as the corresponding -** function parameters, and op is the text representation of the parameter -** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, -** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is -** false, or the second form if it is true. -*/ -static void explainComposite( - Parse *pParse, /* Parse context */ - int op, /* One of TK_UNION, TK_EXCEPT etc. */ - int iSub1, /* Subquery id 1 */ - int iSub2, /* Subquery id 2 */ - int bUseTmp /* True if a temp table was used */ -){ - assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); - if( pParse->explain==2 ){ - Vdbe *v = pParse->pVdbe; - char *zMsg = sqlite3MPrintf( - pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, - bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) - ); - sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); - } -} -#else -/* No-op versions of the explainXXX() functions and macros. */ -# define explainComposite(v,w,x,y,z) -#endif - -/* -** If the inner loop was generated using a non-null pOrderBy argument, -** then the results were placed in a sorter. After the loop is terminated -** we need to run the sorter and output the results. The following -** routine generates the code needed to do that. -*/ -static void generateSortTail( - Parse *pParse, /* Parsing context */ - Select *p, /* The SELECT statement */ - Vdbe *v, /* Generate code into this VDBE */ - int nColumn, /* Number of columns of data */ - SelectDest *pDest /* Write the sorted results here */ -){ - int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ - int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ - int addr; - int iTab; - int pseudoTab = 0; - ExprList *pOrderBy = p->pOrderBy; - - int eDest = pDest->eDest; - int iParm = pDest->iSDParm; - - int regRow; - int regRowid; - - iTab = pOrderBy->iECursor; - regRow = sqlite3GetTempReg(pParse); - if( eDest==SRT_Output || eDest==SRT_Coroutine ){ - pseudoTab = pParse->nTab++; - sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); - regRowid = 0; - }else{ - regRowid = sqlite3GetTempReg(pParse); - } - if( p->selFlags & SF_UseSorter ){ - int regSortOut = ++pParse->nMem; - int ptab2 = pParse->nTab++; - sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); - addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); - codeOffset(v, p, addrContinue); - sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); - sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); - sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); - }else{ - addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); - codeOffset(v, p, addrContinue); - sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); - } - switch( eDest ){ - case SRT_Table: - case SRT_EphemTab: { - testcase( eDest==SRT_Table ); - testcase( eDest==SRT_EphemTab ); - sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case SRT_Set: { - assert( nColumn==1 ); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, - &pDest->affSdst, 1); - sqlite3ExprCacheAffinityChange(pParse, regRow, 1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); - break; - } - case SRT_Mem: { - assert( nColumn==1 ); - sqlite3ExprCodeMove(pParse, regRow, iParm, 1); - /* The LIMIT clause will terminate the loop for us */ - break; - } -#endif - default: { - int i; - assert( eDest==SRT_Output || eDest==SRT_Coroutine ); - testcase( eDest==SRT_Output ); - testcase( eDest==SRT_Coroutine ); - for(i=0; i<nColumn; i++){ - assert( regRow!=pDest->iSdst+i ); - sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); - if( i==0 ){ - sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); - } - } - if( eDest==SRT_Output ){ - sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); - sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); - }else{ - sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); - } - break; - } - } - sqlite3ReleaseTempReg(pParse, regRow); - sqlite3ReleaseTempReg(pParse, regRowid); - - /* The bottom of the loop - */ - sqlite3VdbeResolveLabel(v, addrContinue); - if( p->selFlags & SF_UseSorter ){ - sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); - }else{ - sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); - } - sqlite3VdbeResolveLabel(v, addrBreak); - if( eDest==SRT_Output || eDest==SRT_Coroutine ){ - sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); - } -} - -/* -** Return a pointer to a string containing the 'declaration type' of the -** expression pExpr. The string may be treated as static by the caller. -** -** The declaration type is the exact datatype definition extracted from the -** original CREATE TABLE statement if the expression is a column. The -** declaration type for a ROWID field is INTEGER. Exactly when an expression -** is considered a column can be complex in the presence of subqueries. The -** result-set expression in all of the following SELECT statements is -** considered a column by this function. -** -** SELECT col FROM tbl; -** SELECT (SELECT col FROM tbl; -** SELECT (SELECT col FROM tbl); -** SELECT abc FROM (SELECT col AS abc FROM tbl); -** -** The declaration type for any expression other than a column is NULL. -*/ -static const char *columnType( - NameContext *pNC, - Expr *pExpr, - const char **pzOriginDb, - const char **pzOriginTab, - const char **pzOriginCol -){ - char const *zType = 0; - char const *zOriginDb = 0; - char const *zOriginTab = 0; - char const *zOriginCol = 0; - int j; - if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; - - switch( pExpr->op ){ - case TK_AGG_COLUMN: - case TK_COLUMN: { - /* The expression is a column. Locate the table the column is being - ** extracted from in NameContext.pSrcList. This table may be real - ** database table or a subquery. - */ - Table *pTab = 0; /* Table structure column is extracted from */ - Select *pS = 0; /* Select the column is extracted from */ - int iCol = pExpr->iColumn; /* Index of column in pTab */ - testcase( pExpr->op==TK_AGG_COLUMN ); - testcase( pExpr->op==TK_COLUMN ); - while( pNC && !pTab ){ - SrcList *pTabList = pNC->pSrcList; - for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); - if( j<pTabList->nSrc ){ - pTab = pTabList->a[j].pTab; - pS = pTabList->a[j].pSelect; - }else{ - pNC = pNC->pNext; - } - } - - if( pTab==0 ){ - /* At one time, code such as "SELECT new.x" within a trigger would - ** cause this condition to run. Since then, we have restructured how - ** trigger code is generated and so this condition is no longer - ** possible. However, it can still be true for statements like - ** the following: - ** - ** CREATE TABLE t1(col INTEGER); - ** SELECT (SELECT t1.col) FROM FROM t1; - ** - ** when columnType() is called on the expression "t1.col" in the - ** sub-select. In this case, set the column type to NULL, even - ** though it should really be "INTEGER". - ** - ** This is not a problem, as the column type of "t1.col" is never - ** used. When columnType() is called on the expression - ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT - ** branch below. */ - break; - } - - assert( pTab && pExpr->pTab==pTab ); - if( pS ){ - /* The "table" is actually a sub-select or a view in the FROM clause - ** of the SELECT statement. Return the declaration type and origin - ** data for the result-set column of the sub-select. - */ - if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ - /* If iCol is less than zero, then the expression requests the - ** rowid of the sub-select or view. This expression is legal (see - ** test case misc2.2.2) - it always evaluates to NULL. - */ - NameContext sNC; - Expr *p = pS->pEList->a[iCol].pExpr; - sNC.pSrcList = pS->pSrc; - sNC.pNext = pNC; - sNC.pParse = pNC->pParse; - zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); - } - }else if( ALWAYS(pTab->pSchema) ){ - /* A real table */ - assert( !pS ); - if( iCol<0 ) iCol = pTab->iPKey; - assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); - if( iCol<0 ){ - zType = "INTEGER"; - zOriginCol = "rowid"; - }else{ - zType = pTab->aCol[iCol].zType; - zOriginCol = pTab->aCol[iCol].zName; - } - zOriginTab = pTab->zName; - if( pNC->pParse ){ - int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); - zOriginDb = pNC->pParse->db->aDb[iDb].zName; - } - } - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_SELECT: { - /* The expression is a sub-select. Return the declaration type and - ** origin info for the single column in the result set of the SELECT - ** statement. - */ - NameContext sNC; - Select *pS = pExpr->x.pSelect; - Expr *p = pS->pEList->a[0].pExpr; - assert( ExprHasProperty(pExpr, EP_xIsSelect) ); - sNC.pSrcList = pS->pSrc; - sNC.pNext = pNC; - sNC.pParse = pNC->pParse; - zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); - break; - } -#endif - } - - if( pzOriginDb ){ - assert( pzOriginTab && pzOriginCol ); - *pzOriginDb = zOriginDb; - *pzOriginTab = zOriginTab; - *pzOriginCol = zOriginCol; - } - return zType; -} - -/* -** Generate code that will tell the VDBE the declaration types of columns -** in the result set. -*/ -static void generateColumnTypes( - Parse *pParse, /* Parser context */ - SrcList *pTabList, /* List of tables */ - ExprList *pEList /* Expressions defining the result set */ -){ -#ifndef SQLITE_OMIT_DECLTYPE - Vdbe *v = pParse->pVdbe; - int i; - NameContext sNC; - sNC.pSrcList = pTabList; - sNC.pParse = pParse; - for(i=0; i<pEList->nExpr; i++){ - Expr *p = pEList->a[i].pExpr; - const char *zType; -#ifdef SQLITE_ENABLE_COLUMN_METADATA - const char *zOrigDb = 0; - const char *zOrigTab = 0; - const char *zOrigCol = 0; - zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); - - /* The vdbe must make its own copy of the column-type and other - ** column specific strings, in case the schema is reset before this - ** virtual machine is deleted. - */ - sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); - sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); - sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); -#else - zType = columnType(&sNC, p, 0, 0, 0); -#endif - sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); - } -#endif /* SQLITE_OMIT_DECLTYPE */ -} - -/* -** Generate code that will tell the VDBE the names of columns -** in the result set. This information is used to provide the -** azCol[] values in the callback. -*/ -static void generateColumnNames( - Parse *pParse, /* Parser context */ - SrcList *pTabList, /* List of tables */ - ExprList *pEList /* Expressions defining the result set */ -){ - Vdbe *v = pParse->pVdbe; - int i, j; - sqlite3 *db = pParse->db; - int fullNames, shortNames; - -#ifndef SQLITE_OMIT_EXPLAIN - /* If this is an EXPLAIN, skip this step */ - if( pParse->explain ){ - return; - } -#endif - - if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; - pParse->colNamesSet = 1; - fullNames = (db->flags & SQLITE_FullColNames)!=0; - shortNames = (db->flags & SQLITE_ShortColNames)!=0; - sqlite3VdbeSetNumCols(v, pEList->nExpr); - for(i=0; i<pEList->nExpr; i++){ - Expr *p; - p = pEList->a[i].pExpr; - if( NEVER(p==0) ) continue; - if( pEList->a[i].zName ){ - char *zName = pEList->a[i].zName; - sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); - }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ - Table *pTab; - char *zCol; - int iCol = p->iColumn; - for(j=0; ALWAYS(j<pTabList->nSrc); j++){ - if( pTabList->a[j].iCursor==p->iTable ) break; - } - assert( j<pTabList->nSrc ); - pTab = pTabList->a[j].pTab; - if( iCol<0 ) iCol = pTab->iPKey; - assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); - if( iCol<0 ){ - zCol = "rowid"; - }else{ - zCol = pTab->aCol[iCol].zName; - } - if( !shortNames && !fullNames ){ - sqlite3VdbeSetColName(v, i, COLNAME_NAME, - sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); - }else if( fullNames ){ - char *zName = 0; - zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); - sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); - }else{ - sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); - } - }else{ - sqlite3VdbeSetColName(v, i, COLNAME_NAME, - sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); - } - } - generateColumnTypes(pParse, pTabList, pEList); -} - -/* -** Given a an expression list (which is really the list of expressions -** that form the result set of a SELECT statement) compute appropriate -** column names for a table that would hold the expression list. -** -** All column names will be unique. -** -** Only the column names are computed. Column.zType, Column.zColl, -** and other fields of Column are zeroed. -** -** Return SQLITE_OK on success. If a memory allocation error occurs, -** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. -*/ -static int selectColumnsFromExprList( - Parse *pParse, /* Parsing context */ - ExprList *pEList, /* Expr list from which to derive column names */ - i16 *pnCol, /* Write the number of columns here */ - Column **paCol /* Write the new column list here */ -){ - sqlite3 *db = pParse->db; /* Database connection */ - int i, j; /* Loop counters */ - int cnt; /* Index added to make the name unique */ - Column *aCol, *pCol; /* For looping over result columns */ - int nCol; /* Number of columns in the result set */ - Expr *p; /* Expression for a single result column */ - char *zName; /* Column name */ - int nName; /* Size of name in zName[] */ - - if( pEList ){ - nCol = pEList->nExpr; - aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); - testcase( aCol==0 ); - }else{ - nCol = 0; - aCol = 0; - } - *pnCol = nCol; - *paCol = aCol; - - for(i=0, pCol=aCol; i<nCol; i++, pCol++){ - /* Get an appropriate name for the column - */ - p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); - if( (zName = pEList->a[i].zName)!=0 ){ - /* If the column contains an "AS <name>" phrase, use <name> as the name */ - zName = sqlite3DbStrDup(db, zName); - }else{ - Expr *pColExpr = p; /* The expression that is the result column name */ - Table *pTab; /* Table associated with this expression */ - while( pColExpr->op==TK_DOT ){ - pColExpr = pColExpr->pRight; - assert( pColExpr!=0 ); - } - if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ - /* For columns use the column name name */ - int iCol = pColExpr->iColumn; - pTab = pColExpr->pTab; - if( iCol<0 ) iCol = pTab->iPKey; - zName = sqlite3MPrintf(db, "%s", - iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); - }else if( pColExpr->op==TK_ID ){ - assert( !ExprHasProperty(pColExpr, EP_IntValue) ); - zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); - }else{ - /* Use the original text of the column expression as its name */ - zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); - } - } - if( db->mallocFailed ){ - sqlite3DbFree(db, zName); - break; - } - - /* Make sure the column name is unique. If the name is not unique, - ** append a integer to the name so that it becomes unique. - */ - nName = sqlite3Strlen30(zName); - for(j=cnt=0; j<i; j++){ - if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ - char *zNewName; - int k; - for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} - if( zName[k]==':' ) nName = k; - zName[nName] = 0; - zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); - sqlite3DbFree(db, zName); - zName = zNewName; - j = -1; - if( zName==0 ) break; - } - } - pCol->zName = zName; - } - if( db->mallocFailed ){ - for(j=0; j<i; j++){ - sqlite3DbFree(db, aCol[j].zName); - } - sqlite3DbFree(db, aCol); - *paCol = 0; - *pnCol = 0; - return SQLITE_NOMEM; - } - return SQLITE_OK; -} - -/* -** Add type and collation information to a column list based on -** a SELECT statement. -** -** The column list presumably came from selectColumnNamesFromExprList(). -** The column list has only names, not types or collations. This -** routine goes through and adds the types and collations. -** -** This routine requires that all identifiers in the SELECT -** statement be resolved. -*/ -static void selectAddColumnTypeAndCollation( - Parse *pParse, /* Parsing contexts */ - int nCol, /* Number of columns */ - Column *aCol, /* List of columns */ - Select *pSelect /* SELECT used to determine types and collations */ -){ - sqlite3 *db = pParse->db; - NameContext sNC; - Column *pCol; - CollSeq *pColl; - int i; - Expr *p; - struct ExprList_item *a; - - assert( pSelect!=0 ); - assert( (pSelect->selFlags & SF_Resolved)!=0 ); - assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); - if( db->mallocFailed ) return; - memset(&sNC, 0, sizeof(sNC)); - sNC.pSrcList = pSelect->pSrc; - a = pSelect->pEList->a; - for(i=0, pCol=aCol; i<nCol; i++, pCol++){ - p = a[i].pExpr; - pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); - pCol->affinity = sqlite3ExprAffinity(p); - if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; - pColl = sqlite3ExprCollSeq(pParse, p); - if( pColl ){ - pCol->zColl = sqlite3DbStrDup(db, pColl->zName); - } - } -} - -/* -** Given a SELECT statement, generate a Table structure that describes -** the result set of that SELECT. -*/ -SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ - Table *pTab; - sqlite3 *db = pParse->db; - int savedFlags; - - savedFlags = db->flags; - db->flags &= ~SQLITE_FullColNames; - db->flags |= SQLITE_ShortColNames; - sqlite3SelectPrep(pParse, pSelect, 0); - if( pParse->nErr ) return 0; - while( pSelect->pPrior ) pSelect = pSelect->pPrior; - db->flags = savedFlags; - pTab = sqlite3DbMallocZero(db, sizeof(Table) ); - if( pTab==0 ){ - return 0; - } - /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside - ** is disabled */ - assert( db->lookaside.bEnabled==0 ); - pTab->nRef = 1; - pTab->zName = 0; - pTab->nRowEst = 1000000; - selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); - selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); - pTab->iPKey = -1; - if( db->mallocFailed ){ - sqlite3DeleteTable(db, pTab); - return 0; - } - return pTab; -} - -/* -** Get a VDBE for the given parser context. Create a new one if necessary. -** If an error occurs, return NULL and leave a message in pParse. -*/ -SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ - Vdbe *v = pParse->pVdbe; - if( v==0 ){ - v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); -#ifndef SQLITE_OMIT_TRACE - if( v ){ - sqlite3VdbeAddOp0(v, OP_Trace); - } -#endif - } - return v; -} - - -/* -** Compute the iLimit and iOffset fields of the SELECT based on the -** pLimit and pOffset expressions. pLimit and pOffset hold the expressions -** that appear in the original SQL statement after the LIMIT and OFFSET -** keywords. Or NULL if those keywords are omitted. iLimit and iOffset -** are the integer memory register numbers for counters used to compute -** the limit and offset. If there is no limit and/or offset, then -** iLimit and iOffset are negative. -** -** This routine changes the values of iLimit and iOffset only if -** a limit or offset is defined by pLimit and pOffset. iLimit and -** iOffset should have been preset to appropriate default values -** (usually but not always -1) prior to calling this routine. -** Only if pLimit!=0 or pOffset!=0 do the limit registers get -** redefined. The UNION ALL operator uses this property to force -** the reuse of the same limit and offset registers across multiple -** SELECT statements. -*/ -static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ - Vdbe *v = 0; - int iLimit = 0; - int iOffset; - int addr1, n; - if( p->iLimit ) return; - - /* - ** "LIMIT -1" always shows all rows. There is some - ** contraversy about what the correct behavior should be. - ** The current implementation interprets "LIMIT 0" to mean - ** no rows. - */ - sqlite3ExprCacheClear(pParse); - assert( p->pOffset==0 || p->pLimit!=0 ); - if( p->pLimit ){ - p->iLimit = iLimit = ++pParse->nMem; - v = sqlite3GetVdbe(pParse); - if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ - if( sqlite3ExprIsInteger(p->pLimit, &n) ){ - sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); - VdbeComment((v, "LIMIT counter")); - if( n==0 ){ - sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); - }else{ - if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; - } - }else{ - sqlite3ExprCode(pParse, p->pLimit, iLimit); - sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); - VdbeComment((v, "LIMIT counter")); - sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); - } - if( p->pOffset ){ - p->iOffset = iOffset = ++pParse->nMem; - pParse->nMem++; /* Allocate an extra register for limit+offset */ - sqlite3ExprCode(pParse, p->pOffset, iOffset); - sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); - VdbeComment((v, "OFFSET counter")); - addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); - sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); - sqlite3VdbeJumpHere(v, addr1); - sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); - VdbeComment((v, "LIMIT+OFFSET")); - addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); - sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); - sqlite3VdbeJumpHere(v, addr1); - } - } -} - -#ifndef SQLITE_OMIT_COMPOUND_SELECT -/* -** Return the appropriate collating sequence for the iCol-th column of -** the result set for the compound-select statement "p". Return NULL if -** the column has no default collating sequence. -** -** The collating sequence for the compound select is taken from the -** left-most term of the select that has a collating sequence. -*/ -static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ - CollSeq *pRet; - if( p->pPrior ){ - pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); - }else{ - pRet = 0; - } - assert( iCol>=0 ); - if( pRet==0 && iCol<p->pEList->nExpr ){ - pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); - } - return pRet; -} -#endif /* SQLITE_OMIT_COMPOUND_SELECT */ - -/* Forward reference */ -static int multiSelectOrderBy( - Parse *pParse, /* Parsing context */ - Select *p, /* The right-most of SELECTs to be coded */ - SelectDest *pDest /* What to do with query results */ -); - - -#ifndef SQLITE_OMIT_COMPOUND_SELECT -/* -** This routine is called to process a compound query form from -** two or more separate queries using UNION, UNION ALL, EXCEPT, or -** INTERSECT -** -** "p" points to the right-most of the two queries. the query on the -** left is p->pPrior. The left query could also be a compound query -** in which case this routine will be called recursively. -** -** The results of the total query are to be written into a destination -** of type eDest with parameter iParm. -** -** Example 1: Consider a three-way compound SQL statement. -** -** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 -** -** This statement is parsed up as follows: -** -** SELECT c FROM t3 -** | -** `-----> SELECT b FROM t2 -** | -** `------> SELECT a FROM t1 -** -** The arrows in the diagram above represent the Select.pPrior pointer. -** So if this routine is called with p equal to the t3 query, then -** pPrior will be the t2 query. p->op will be TK_UNION in this case. -** -** Notice that because of the way SQLite parses compound SELECTs, the -** individual selects always group from left to right. -*/ -static int multiSelect( - Parse *pParse, /* Parsing context */ - Select *p, /* The right-most of SELECTs to be coded */ - SelectDest *pDest /* What to do with query results */ -){ - int rc = SQLITE_OK; /* Success code from a subroutine */ - Select *pPrior; /* Another SELECT immediately to our left */ - Vdbe *v; /* Generate code to this VDBE */ - SelectDest dest; /* Alternative data destination */ - Select *pDelete = 0; /* Chain of simple selects to delete */ - sqlite3 *db; /* Database connection */ -#ifndef SQLITE_OMIT_EXPLAIN - int iSub1; /* EQP id of left-hand query */ - int iSub2; /* EQP id of right-hand query */ -#endif - - /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only - ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. - */ - assert( p && p->pPrior ); /* Calling function guarantees this much */ - db = pParse->db; - pPrior = p->pPrior; - assert( pPrior->pRightmost!=pPrior ); - assert( pPrior->pRightmost==p->pRightmost ); - dest = *pDest; - if( pPrior->pOrderBy ){ - sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", - selectOpName(p->op)); - rc = 1; - goto multi_select_end; - } - if( pPrior->pLimit ){ - sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", - selectOpName(p->op)); - rc = 1; - goto multi_select_end; - } - - v = sqlite3GetVdbe(pParse); - assert( v!=0 ); /* The VDBE already created by calling function */ - - /* Create the destination temporary table if necessary - */ - if( dest.eDest==SRT_EphemTab ){ - assert( p->pEList ); - sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); - sqlite3VdbeChangeP5(v, BTREE_UNORDERED); - dest.eDest = SRT_Table; - } - - /* Make sure all SELECTs in the statement have the same number of elements - ** in their result sets. - */ - assert( p->pEList && pPrior->pEList ); - if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ - if( p->selFlags & SF_Values ){ - sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); - }else{ - sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" - " do not have the same number of result columns", selectOpName(p->op)); - } - rc = 1; - goto multi_select_end; - } - - /* Compound SELECTs that have an ORDER BY clause are handled separately. - */ - if( p->pOrderBy ){ - return multiSelectOrderBy(pParse, p, pDest); - } - - /* Generate code for the left and right SELECT statements. - */ - switch( p->op ){ - case TK_ALL: { - int addr = 0; - int nLimit; - assert( !pPrior->pLimit ); - pPrior->iLimit = p->iLimit; - pPrior->iOffset = p->iOffset; - pPrior->pLimit = p->pLimit; - pPrior->pOffset = p->pOffset; - explainSetInteger(iSub1, pParse->iNextSelectId); - rc = sqlite3Select(pParse, pPrior, &dest); - p->pLimit = 0; - p->pOffset = 0; - if( rc ){ - goto multi_select_end; - } - p->pPrior = 0; - p->iLimit = pPrior->iLimit; - p->iOffset = pPrior->iOffset; - if( p->iLimit ){ - addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); - VdbeComment((v, "Jump ahead if LIMIT reached")); - } - explainSetInteger(iSub2, pParse->iNextSelectId); - rc = sqlite3Select(pParse, p, &dest); - testcase( rc!=SQLITE_OK ); - pDelete = p->pPrior; - p->pPrior = pPrior; - p->nSelectRow += pPrior->nSelectRow; - if( pPrior->pLimit - && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) - && p->nSelectRow > (double)nLimit - ){ - p->nSelectRow = (double)nLimit; - } - if( addr ){ - sqlite3VdbeJumpHere(v, addr); - } - break; - } - case TK_EXCEPT: - case TK_UNION: { - int unionTab; /* Cursor number of the temporary table holding result */ - u8 op = 0; /* One of the SRT_ operations to apply to self */ - int priorOp; /* The SRT_ operation to apply to prior selects */ - Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ - int addr; - SelectDest uniondest; - - testcase( p->op==TK_EXCEPT ); - testcase( p->op==TK_UNION ); - priorOp = SRT_Union; - if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ - /* We can reuse a temporary table generated by a SELECT to our - ** right. - */ - assert( p->pRightmost!=p ); /* Can only happen for leftward elements - ** of a 3-way or more compound */ - assert( p->pLimit==0 ); /* Not allowed on leftward elements */ - assert( p->pOffset==0 ); /* Not allowed on leftward elements */ - unionTab = dest.iSDParm; - }else{ - /* We will need to create our own temporary table to hold the - ** intermediate results. - */ - unionTab = pParse->nTab++; - assert( p->pOrderBy==0 ); - addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); - assert( p->addrOpenEphm[0] == -1 ); - p->addrOpenEphm[0] = addr; - p->pRightmost->selFlags |= SF_UsesEphemeral; - assert( p->pEList ); - } - - /* Code the SELECT statements to our left - */ - assert( !pPrior->pOrderBy ); - sqlite3SelectDestInit(&uniondest, priorOp, unionTab); - explainSetInteger(iSub1, pParse->iNextSelectId); - rc = sqlite3Select(pParse, pPrior, &uniondest); - if( rc ){ - goto multi_select_end; - } - - /* Code the current SELECT statement - */ - if( p->op==TK_EXCEPT ){ - op = SRT_Except; - }else{ - assert( p->op==TK_UNION ); - op = SRT_Union; - } - p->pPrior = 0; - pLimit = p->pLimit; - p->pLimit = 0; - pOffset = p->pOffset; - p->pOffset = 0; - uniondest.eDest = op; - explainSetInteger(iSub2, pParse->iNextSelectId); - rc = sqlite3Select(pParse, p, &uniondest); - testcase( rc!=SQLITE_OK ); - /* Query flattening in sqlite3Select() might refill p->pOrderBy. - ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ - sqlite3ExprListDelete(db, p->pOrderBy); - pDelete = p->pPrior; - p->pPrior = pPrior; - p->pOrderBy = 0; - if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; - sqlite3ExprDelete(db, p->pLimit); - p->pLimit = pLimit; - p->pOffset = pOffset; - p->iLimit = 0; - p->iOffset = 0; - - /* Convert the data in the temporary table into whatever form - ** it is that we currently need. - */ - assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); - if( dest.eDest!=priorOp ){ - int iCont, iBreak, iStart; - assert( p->pEList ); - if( dest.eDest==SRT_Output ){ - Select *pFirst = p; - while( pFirst->pPrior ) pFirst = pFirst->pPrior; - generateColumnNames(pParse, 0, pFirst->pEList); - } - iBreak = sqlite3VdbeMakeLabel(v); - iCont = sqlite3VdbeMakeLabel(v); - computeLimitRegisters(pParse, p, iBreak); - sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); - iStart = sqlite3VdbeCurrentAddr(v); - selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, - 0, 0, &dest, iCont, iBreak); - sqlite3VdbeResolveLabel(v, iCont); - sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); - sqlite3VdbeResolveLabel(v, iBreak); - sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); - } - break; - } - default: assert( p->op==TK_INTERSECT ); { - int tab1, tab2; - int iCont, iBreak, iStart; - Expr *pLimit, *pOffset; - int addr; - SelectDest intersectdest; - int r1; - - /* INTERSECT is different from the others since it requires - ** two temporary tables. Hence it has its own case. Begin - ** by allocating the tables we will need. - */ - tab1 = pParse->nTab++; - tab2 = pParse->nTab++; - assert( p->pOrderBy==0 ); - - addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); - assert( p->addrOpenEphm[0] == -1 ); - p->addrOpenEphm[0] = addr; - p->pRightmost->selFlags |= SF_UsesEphemeral; - assert( p->pEList ); - - /* Code the SELECTs to our left into temporary table "tab1". - */ - sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); - explainSetInteger(iSub1, pParse->iNextSelectId); - rc = sqlite3Select(pParse, pPrior, &intersectdest); - if( rc ){ - goto multi_select_end; - } - - /* Code the current SELECT into temporary table "tab2" - */ - addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); - assert( p->addrOpenEphm[1] == -1 ); - p->addrOpenEphm[1] = addr; - p->pPrior = 0; - pLimit = p->pLimit; - p->pLimit = 0; - pOffset = p->pOffset; - p->pOffset = 0; - intersectdest.iSDParm = tab2; - explainSetInteger(iSub2, pParse->iNextSelectId); - rc = sqlite3Select(pParse, p, &intersectdest); - testcase( rc!=SQLITE_OK ); - pDelete = p->pPrior; - p->pPrior = pPrior; - if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; - sqlite3ExprDelete(db, p->pLimit); - p->pLimit = pLimit; - p->pOffset = pOffset; - - /* Generate code to take the intersection of the two temporary - ** tables. - */ - assert( p->pEList ); - if( dest.eDest==SRT_Output ){ - Select *pFirst = p; - while( pFirst->pPrior ) pFirst = pFirst->pPrior; - generateColumnNames(pParse, 0, pFirst->pEList); - } - iBreak = sqlite3VdbeMakeLabel(v); - iCont = sqlite3VdbeMakeLabel(v); - computeLimitRegisters(pParse, p, iBreak); - sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); - r1 = sqlite3GetTempReg(pParse); - iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); - sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); - sqlite3ReleaseTempReg(pParse, r1); - selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, - 0, 0, &dest, iCont, iBreak); - sqlite3VdbeResolveLabel(v, iCont); - sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); - sqlite3VdbeResolveLabel(v, iBreak); - sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); - sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); - break; - } - } - - explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); - - /* Compute collating sequences used by - ** temporary tables needed to implement the compound select. - ** Attach the KeyInfo structure to all temporary tables. - ** - ** This section is run by the right-most SELECT statement only. - ** SELECT statements to the left always skip this part. The right-most - ** SELECT might also skip this part if it has no ORDER BY clause and - ** no temp tables are required. - */ - if( p->selFlags & SF_UsesEphemeral ){ - int i; /* Loop counter */ - KeyInfo *pKeyInfo; /* Collating sequence for the result set */ - Select *pLoop; /* For looping through SELECT statements */ - CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ - int nCol; /* Number of columns in result set */ - - assert( p->pRightmost==p ); - nCol = p->pEList->nExpr; - pKeyInfo = sqlite3DbMallocZero(db, - sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); - if( !pKeyInfo ){ - rc = SQLITE_NOMEM; - goto multi_select_end; - } - - pKeyInfo->enc = ENC(db); - pKeyInfo->nField = (u16)nCol; - - for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ - *apColl = multiSelectCollSeq(pParse, p, i); - if( 0==*apColl ){ - *apColl = db->pDfltColl; - } - } - pKeyInfo->aSortOrder = (u8*)apColl; - - for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ - for(i=0; i<2; i++){ - int addr = pLoop->addrOpenEphm[i]; - if( addr<0 ){ - /* If [0] is unused then [1] is also unused. So we can - ** always safely abort as soon as the first unused slot is found */ - assert( pLoop->addrOpenEphm[1]<0 ); - break; - } - sqlite3VdbeChangeP2(v, addr, nCol); - sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); - pLoop->addrOpenEphm[i] = -1; - } - } - sqlite3DbFree(db, pKeyInfo); - } - -multi_select_end: - pDest->iSdst = dest.iSdst; - pDest->nSdst = dest.nSdst; - sqlite3SelectDelete(db, pDelete); - return rc; -} -#endif /* SQLITE_OMIT_COMPOUND_SELECT */ - -/* -** Code an output subroutine for a coroutine implementation of a -** SELECT statment. -** -** The data to be output is contained in pIn->iSdst. There are -** pIn->nSdst columns to be output. pDest is where the output should -** be sent. -** -** regReturn is the number of the register holding the subroutine -** return address. -** -** If regPrev>0 then it is the first register in a vector that -** records the previous output. mem[regPrev] is a flag that is false -** if there has been no previous output. If regPrev>0 then code is -** generated to suppress duplicates. pKeyInfo is used for comparing -** keys. -** -** If the LIMIT found in p->iLimit is reached, jump immediately to -** iBreak. -*/ -static int generateOutputSubroutine( - Parse *pParse, /* Parsing context */ - Select *p, /* The SELECT statement */ - SelectDest *pIn, /* Coroutine supplying data */ - SelectDest *pDest, /* Where to send the data */ - int regReturn, /* The return address register */ - int regPrev, /* Previous result register. No uniqueness if 0 */ - KeyInfo *pKeyInfo, /* For comparing with previous entry */ - int p4type, /* The p4 type for pKeyInfo */ - int iBreak /* Jump here if we hit the LIMIT */ -){ - Vdbe *v = pParse->pVdbe; - int iContinue; - int addr; - - addr = sqlite3VdbeCurrentAddr(v); - iContinue = sqlite3VdbeMakeLabel(v); - - /* Suppress duplicates for UNION, EXCEPT, and INTERSECT - */ - if( regPrev ){ - int j1, j2; - j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); - j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, - (char*)pKeyInfo, p4type); - sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); - sqlite3VdbeJumpHere(v, j1); - sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); - sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); - } - if( pParse->db->mallocFailed ) return 0; - - /* Suppress the first OFFSET entries if there is an OFFSET clause - */ - codeOffset(v, p, iContinue); - - switch( pDest->eDest ){ - /* Store the result as data using a unique key. - */ - case SRT_Table: - case SRT_EphemTab: { - int r1 = sqlite3GetTempReg(pParse); - int r2 = sqlite3GetTempReg(pParse); - testcase( pDest->eDest==SRT_Table ); - testcase( pDest->eDest==SRT_EphemTab ); - sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); - sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); - sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - sqlite3ReleaseTempReg(pParse, r2); - sqlite3ReleaseTempReg(pParse, r1); - break; - } - -#ifndef SQLITE_OMIT_SUBQUERY - /* If we are creating a set for an "expr IN (SELECT ...)" construct, - ** then there should be a single item on the stack. Write this - ** item into the set table with bogus data. - */ - case SRT_Set: { - int r1; - assert( pIn->nSdst==1 ); - pDest->affSdst = - sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); - r1 = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); - sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); - sqlite3ReleaseTempReg(pParse, r1); - break; - } - -#if 0 /* Never occurs on an ORDER BY query */ - /* If any row exist in the result set, record that fact and abort. - */ - case SRT_Exists: { - sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); - /* The LIMIT clause will terminate the loop for us */ - break; - } -#endif - - /* If this is a scalar select that is part of an expression, then - ** store the results in the appropriate memory cell and break out - ** of the scan loop. - */ - case SRT_Mem: { - assert( pIn->nSdst==1 ); - sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); - /* The LIMIT clause will jump out of the loop for us */ - break; - } -#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ - - /* The results are stored in a sequence of registers - ** starting at pDest->iSdst. Then the co-routine yields. - */ - case SRT_Coroutine: { - if( pDest->iSdst==0 ){ - pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); - pDest->nSdst = pIn->nSdst; - } - sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); - sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); - break; - } - - /* If none of the above, then the result destination must be - ** SRT_Output. This routine is never called with any other - ** destination other than the ones handled above or SRT_Output. - ** - ** For SRT_Output, results are stored in a sequence of registers. - ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to - ** return the next row of result. - */ - default: { - assert( pDest->eDest==SRT_Output ); - sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); - sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); - break; - } - } - - /* Jump to the end of the loop if the LIMIT is reached. - */ - if( p->iLimit ){ - sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); - } - - /* Generate the subroutine return - */ - sqlite3VdbeResolveLabel(v, iContinue); - sqlite3VdbeAddOp1(v, OP_Return, regReturn); - - return addr; -} - -/* -** Alternative compound select code generator for cases when there -** is an ORDER BY clause. -** -** We assume a query of the following form: -** -** <selectA> <operator> <selectB> ORDER BY <orderbylist> -** -** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea -** is to code both <selectA> and <selectB> with the ORDER BY clause as -** co-routines. Then run the co-routines in parallel and merge the results -** into the output. In addition to the two coroutines (called selectA and -** selectB) there are 7 subroutines: -** -** outA: Move the output of the selectA coroutine into the output -** of the compound query. -** -** outB: Move the output of the selectB coroutine into the output -** of the compound query. (Only generated for UNION and -** UNION ALL. EXCEPT and INSERTSECT never output a row that -** appears only in B.) -** -** AltB: Called when there is data from both coroutines and A<B. -** -** AeqB: Called when there is data from both coroutines and A==B. -** -** AgtB: Called when there is data from both coroutines and A>B. -** -** EofA: Called when data is exhausted from selectA. -** -** EofB: Called when data is exhausted from selectB. -** -** The implementation of the latter five subroutines depend on which -** <operator> is used: -** -** -** UNION ALL UNION EXCEPT INTERSECT -** ------------- ----------------- -------------- ----------------- -** AltB: outA, nextA outA, nextA outA, nextA nextA -** -** AeqB: outA, nextA nextA nextA outA, nextA -** -** AgtB: outB, nextB outB, nextB nextB nextB -** -** EofA: outB, nextB outB, nextB halt halt -** -** EofB: outA, nextA outA, nextA outA, nextA halt -** -** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA -** causes an immediate jump to EofA and an EOF on B following nextB causes -** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or -** following nextX causes a jump to the end of the select processing. -** -** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled -** within the output subroutine. The regPrev register set holds the previously -** output value. A comparison is made against this value and the output -** is skipped if the next results would be the same as the previous. -** -** The implementation plan is to implement the two coroutines and seven -** subroutines first, then put the control logic at the bottom. Like this: -** -** goto Init -** coA: coroutine for left query (A) -** coB: coroutine for right query (B) -** outA: output one row of A -** outB: output one row of B (UNION and UNION ALL only) -** EofA: ... -** EofB: ... -** AltB: ... -** AeqB: ... -** AgtB: ... -** Init: initialize coroutine registers -** yield coA -** if eof(A) goto EofA -** yield coB -** if eof(B) goto EofB -** Cmpr: Compare A, B -** Jump AltB, AeqB, AgtB -** End: ... -** -** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not -** actually called using Gosub and they do not Return. EofA and EofB loop -** until all data is exhausted then jump to the "end" labe. AltB, AeqB, -** and AgtB jump to either L2 or to one of EofA or EofB. -*/ -#ifndef SQLITE_OMIT_COMPOUND_SELECT -static int multiSelectOrderBy( - Parse *pParse, /* Parsing context */ - Select *p, /* The right-most of SELECTs to be coded */ - SelectDest *pDest /* What to do with query results */ -){ - int i, j; /* Loop counters */ - Select *pPrior; /* Another SELECT immediately to our left */ - Vdbe *v; /* Generate code to this VDBE */ - SelectDest destA; /* Destination for coroutine A */ - SelectDest destB; /* Destination for coroutine B */ - int regAddrA; /* Address register for select-A coroutine */ - int regEofA; /* Flag to indicate when select-A is complete */ - int regAddrB; /* Address register for select-B coroutine */ - int regEofB; /* Flag to indicate when select-B is complete */ - int addrSelectA; /* Address of the select-A coroutine */ - int addrSelectB; /* Address of the select-B coroutine */ - int regOutA; /* Address register for the output-A subroutine */ - int regOutB; /* Address register for the output-B subroutine */ - int addrOutA; /* Address of the output-A subroutine */ - int addrOutB = 0; /* Address of the output-B subroutine */ - int addrEofA; /* Address of the select-A-exhausted subroutine */ - int addrEofB; /* Address of the select-B-exhausted subroutine */ - int addrAltB; /* Address of the A<B subroutine */ - int addrAeqB; /* Address of the A==B subroutine */ - int addrAgtB; /* Address of the A>B subroutine */ - int regLimitA; /* Limit register for select-A */ - int regLimitB; /* Limit register for select-A */ - int regPrev; /* A range of registers to hold previous output */ - int savedLimit; /* Saved value of p->iLimit */ - int savedOffset; /* Saved value of p->iOffset */ - int labelCmpr; /* Label for the start of the merge algorithm */ - int labelEnd; /* Label for the end of the overall SELECT stmt */ - int j1; /* Jump instructions that get retargetted */ - int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ - KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ - KeyInfo *pKeyMerge; /* Comparison information for merging rows */ - sqlite3 *db; /* Database connection */ - ExprList *pOrderBy; /* The ORDER BY clause */ - int nOrderBy; /* Number of terms in the ORDER BY clause */ - int *aPermute; /* Mapping from ORDER BY terms to result set columns */ -#ifndef SQLITE_OMIT_EXPLAIN - int iSub1; /* EQP id of left-hand query */ - int iSub2; /* EQP id of right-hand query */ -#endif - - assert( p->pOrderBy!=0 ); - assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ - db = pParse->db; - v = pParse->pVdbe; - assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ - labelEnd = sqlite3VdbeMakeLabel(v); - labelCmpr = sqlite3VdbeMakeLabel(v); - - - /* Patch up the ORDER BY clause - */ - op = p->op; - pPrior = p->pPrior; - assert( pPrior->pOrderBy==0 ); - pOrderBy = p->pOrderBy; - assert( pOrderBy ); - nOrderBy = pOrderBy->nExpr; - - /* For operators other than UNION ALL we have to make sure that - ** the ORDER BY clause covers every term of the result set. Add - ** terms to the ORDER BY clause as necessary. - */ - if( op!=TK_ALL ){ - for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ - struct ExprList_item *pItem; - for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ - assert( pItem->iOrderByCol>0 ); - if( pItem->iOrderByCol==i ) break; - } - if( j==nOrderBy ){ - Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); - if( pNew==0 ) return SQLITE_NOMEM; - pNew->flags |= EP_IntValue; - pNew->u.iValue = i; - pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); - if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; - } - } - } - - /* Compute the comparison permutation and keyinfo that is used with - ** the permutation used to determine if the next - ** row of results comes from selectA or selectB. Also add explicit - ** collations to the ORDER BY clause terms so that when the subqueries - ** to the right and the left are evaluated, they use the correct - ** collation. - */ - aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); - if( aPermute ){ - struct ExprList_item *pItem; - for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ - assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); - aPermute[i] = pItem->iOrderByCol - 1; - } - pKeyMerge = - sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); - if( pKeyMerge ){ - pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; - pKeyMerge->nField = (u16)nOrderBy; - pKeyMerge->enc = ENC(db); - for(i=0; i<nOrderBy; i++){ - CollSeq *pColl; - Expr *pTerm = pOrderBy->a[i].pExpr; - if( pTerm->flags & EP_Collate ){ - pColl = sqlite3ExprCollSeq(pParse, pTerm); - }else{ - pColl = multiSelectCollSeq(pParse, p, aPermute[i]); - if( pColl==0 ) pColl = db->pDfltColl; - pOrderBy->a[i].pExpr = - sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); - } - pKeyMerge->aColl[i] = pColl; - pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; - } - } - }else{ - pKeyMerge = 0; - } - - /* Reattach the ORDER BY clause to the query. - */ - p->pOrderBy = pOrderBy; - pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); - - /* Allocate a range of temporary registers and the KeyInfo needed - ** for the logic that removes duplicate result rows when the - ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). - */ - if( op==TK_ALL ){ - regPrev = 0; - }else{ - int nExpr = p->pEList->nExpr; - assert( nOrderBy>=nExpr || db->mallocFailed ); - regPrev = pParse->nMem+1; - pParse->nMem += nExpr+1; - sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); - pKeyDup = sqlite3DbMallocZero(db, - sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); - if( pKeyDup ){ - pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; - pKeyDup->nField = (u16)nExpr; - pKeyDup->enc = ENC(db); - for(i=0; i<nExpr; i++){ - pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); - pKeyDup->aSortOrder[i] = 0; - } - } - } - - /* Separate the left and the right query from one another - */ - p->pPrior = 0; - sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); - if( pPrior->pPrior==0 ){ - sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); - } - - /* Compute the limit registers */ - computeLimitRegisters(pParse, p, labelEnd); - if( p->iLimit && op==TK_ALL ){ - regLimitA = ++pParse->nMem; - regLimitB = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, - regLimitA); - sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); - }else{ - regLimitA = regLimitB = 0; - } - sqlite3ExprDelete(db, p->pLimit); - p->pLimit = 0; - sqlite3ExprDelete(db, p->pOffset); - p->pOffset = 0; - - regAddrA = ++pParse->nMem; - regEofA = ++pParse->nMem; - regAddrB = ++pParse->nMem; - regEofB = ++pParse->nMem; - regOutA = ++pParse->nMem; - regOutB = ++pParse->nMem; - sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); - sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); - - /* Jump past the various subroutines and coroutines to the main - ** merge loop - */ - j1 = sqlite3VdbeAddOp0(v, OP_Goto); - addrSelectA = sqlite3VdbeCurrentAddr(v); - - - /* Generate a coroutine to evaluate the SELECT statement to the - ** left of the compound operator - the "A" select. - */ - VdbeNoopComment((v, "Begin coroutine for left SELECT")); - pPrior->iLimit = regLimitA; - explainSetInteger(iSub1, pParse->iNextSelectId); - sqlite3Select(pParse, pPrior, &destA); - sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); - sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); - VdbeNoopComment((v, "End coroutine for left SELECT")); - - /* Generate a coroutine to evaluate the SELECT statement on - ** the right - the "B" select - */ - addrSelectB = sqlite3VdbeCurrentAddr(v); - VdbeNoopComment((v, "Begin coroutine for right SELECT")); - savedLimit = p->iLimit; - savedOffset = p->iOffset; - p->iLimit = regLimitB; - p->iOffset = 0; - explainSetInteger(iSub2, pParse->iNextSelectId); - sqlite3Select(pParse, p, &destB); - p->iLimit = savedLimit; - p->iOffset = savedOffset; - sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); - sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); - VdbeNoopComment((v, "End coroutine for right SELECT")); - - /* Generate a subroutine that outputs the current row of the A - ** select as the next output row of the compound select. - */ - VdbeNoopComment((v, "Output routine for A")); - addrOutA = generateOutputSubroutine(pParse, - p, &destA, pDest, regOutA, - regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); - - /* Generate a subroutine that outputs the current row of the B - ** select as the next output row of the compound select. - */ - if( op==TK_ALL || op==TK_UNION ){ - VdbeNoopComment((v, "Output routine for B")); - addrOutB = generateOutputSubroutine(pParse, - p, &destB, pDest, regOutB, - regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); - } - - /* Generate a subroutine to run when the results from select A - ** are exhausted and only data in select B remains. - */ - VdbeNoopComment((v, "eof-A subroutine")); - if( op==TK_EXCEPT || op==TK_INTERSECT ){ - addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); - }else{ - addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); - sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); - sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); - p->nSelectRow += pPrior->nSelectRow; - } - - /* Generate a subroutine to run when the results from select B - ** are exhausted and only data in select A remains. - */ - if( op==TK_INTERSECT ){ - addrEofB = addrEofA; - if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; - }else{ - VdbeNoopComment((v, "eof-B subroutine")); - addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); - sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); - sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); - } - - /* Generate code to handle the case of A<B - */ - VdbeNoopComment((v, "A-lt-B subroutine")); - addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); - sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); - sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); - sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); - - /* Generate code to handle the case of A==B - */ - if( op==TK_ALL ){ - addrAeqB = addrAltB; - }else if( op==TK_INTERSECT ){ - addrAeqB = addrAltB; - addrAltB++; - }else{ - VdbeNoopComment((v, "A-eq-B subroutine")); - addrAeqB = - sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); - sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); - sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); - } - - /* Generate code to handle the case of A>B - */ - VdbeNoopComment((v, "A-gt-B subroutine")); - addrAgtB = sqlite3VdbeCurrentAddr(v); - if( op==TK_ALL || op==TK_UNION ){ - sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); - } - sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); - sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); - sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); - - /* This code runs once to initialize everything. - */ - sqlite3VdbeJumpHere(v, j1); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); - sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); - sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); - sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); - sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); - - /* Implement the main merge loop - */ - sqlite3VdbeResolveLabel(v, labelCmpr); - sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); - sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, - (char*)pKeyMerge, P4_KEYINFO_HANDOFF); - sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); - sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); - - /* Jump to the this point in order to terminate the query. - */ - sqlite3VdbeResolveLabel(v, labelEnd); - - /* Set the number of output columns - */ - if( pDest->eDest==SRT_Output ){ - Select *pFirst = pPrior; - while( pFirst->pPrior ) pFirst = pFirst->pPrior; - generateColumnNames(pParse, 0, pFirst->pEList); - } - - /* Reassembly the compound query so that it will be freed correctly - ** by the calling function */ - if( p->pPrior ){ - sqlite3SelectDelete(db, p->pPrior); - } - p->pPrior = pPrior; - - /*** TBD: Insert subroutine calls to close cursors on incomplete - **** subqueries ****/ - explainComposite(pParse, p->op, iSub1, iSub2, 0); - return SQLITE_OK; -} -#endif - -#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) -/* Forward Declarations */ -static void substExprList(sqlite3*, ExprList*, int, ExprList*); -static void substSelect(sqlite3*, Select *, int, ExprList *); - -/* -** Scan through the expression pExpr. Replace every reference to -** a column in table number iTable with a copy of the iColumn-th -** entry in pEList. (But leave references to the ROWID column -** unchanged.) -** -** This routine is part of the flattening procedure. A subquery -** whose result set is defined by pEList appears as entry in the -** FROM clause of a SELECT such that the VDBE cursor assigned to that -** FORM clause entry is iTable. This routine make the necessary -** changes to pExpr so that it refers directly to the source table -** of the subquery rather the result set of the subquery. -*/ -static Expr *substExpr( - sqlite3 *db, /* Report malloc errors to this connection */ - Expr *pExpr, /* Expr in which substitution occurs */ - int iTable, /* Table to be substituted */ - ExprList *pEList /* Substitute expressions */ -){ - if( pExpr==0 ) return 0; - if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ - if( pExpr->iColumn<0 ){ - pExpr->op = TK_NULL; - }else{ - Expr *pNew; - assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); - assert( pExpr->pLeft==0 && pExpr->pRight==0 ); - pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); - sqlite3ExprDelete(db, pExpr); - pExpr = pNew; - } - }else{ - pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); - pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - substSelect(db, pExpr->x.pSelect, iTable, pEList); - }else{ - substExprList(db, pExpr->x.pList, iTable, pEList); - } - } - return pExpr; -} -static void substExprList( - sqlite3 *db, /* Report malloc errors here */ - ExprList *pList, /* List to scan and in which to make substitutes */ - int iTable, /* Table to be substituted */ - ExprList *pEList /* Substitute values */ -){ - int i; - if( pList==0 ) return; - for(i=0; i<pList->nExpr; i++){ - pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); - } -} -static void substSelect( - sqlite3 *db, /* Report malloc errors here */ - Select *p, /* SELECT statement in which to make substitutions */ - int iTable, /* Table to be replaced */ - ExprList *pEList /* Substitute values */ -){ - SrcList *pSrc; - struct SrcList_item *pItem; - int i; - if( !p ) return; - substExprList(db, p->pEList, iTable, pEList); - substExprList(db, p->pGroupBy, iTable, pEList); - substExprList(db, p->pOrderBy, iTable, pEList); - p->pHaving = substExpr(db, p->pHaving, iTable, pEList); - p->pWhere = substExpr(db, p->pWhere, iTable, pEList); - substSelect(db, p->pPrior, iTable, pEList); - pSrc = p->pSrc; - assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ - if( ALWAYS(pSrc) ){ - for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ - substSelect(db, pItem->pSelect, iTable, pEList); - } - } -} -#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ - -#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) -/* -** This routine attempts to flatten subqueries as a performance optimization. -** This routine returns 1 if it makes changes and 0 if no flattening occurs. -** -** To understand the concept of flattening, consider the following -** query: -** -** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 -** -** The default way of implementing this query is to execute the -** subquery first and store the results in a temporary table, then -** run the outer query on that temporary table. This requires two -** passes over the data. Furthermore, because the temporary table -** has no indices, the WHERE clause on the outer query cannot be -** optimized. -** -** This routine attempts to rewrite queries such as the above into -** a single flat select, like this: -** -** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 -** -** The code generated for this simpification gives the same result -** but only has to scan the data once. And because indices might -** exist on the table t1, a complete scan of the data might be -** avoided. -** -** Flattening is only attempted if all of the following are true: -** -** (1) The subquery and the outer query do not both use aggregates. -** -** (2) The subquery is not an aggregate or the outer query is not a join. -** -** (3) The subquery is not the right operand of a left outer join -** (Originally ticket #306. Strengthened by ticket #3300) -** -** (4) The subquery is not DISTINCT. -** -** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT -** sub-queries that were excluded from this optimization. Restriction -** (4) has since been expanded to exclude all DISTINCT subqueries. -** -** (6) The subquery does not use aggregates or the outer query is not -** DISTINCT. -** -** (7) The subquery has a FROM clause. TODO: For subqueries without -** A FROM clause, consider adding a FROM close with the special -** table sqlite_once that consists of a single row containing a -** single NULL. -** -** (8) The subquery does not use LIMIT or the outer query is not a join. -** -** (9) The subquery does not use LIMIT or the outer query does not use -** aggregates. -** -** (10) The subquery does not use aggregates or the outer query does not -** use LIMIT. -** -** (11) The subquery and the outer query do not both have ORDER BY clauses. -** -** (**) Not implemented. Subsumed into restriction (3). Was previously -** a separate restriction deriving from ticket #350. -** -** (13) The subquery and outer query do not both use LIMIT. -** -** (14) The subquery does not use OFFSET. -** -** (15) The outer query is not part of a compound select or the -** subquery does not have a LIMIT clause. -** (See ticket #2339 and ticket [02a8e81d44]). -** -** (16) The outer query is not an aggregate or the subquery does -** not contain ORDER BY. (Ticket #2942) This used to not matter -** until we introduced the group_concat() function. -** -** (17) The sub-query is not a compound select, or it is a UNION ALL -** compound clause made up entirely of non-aggregate queries, and -** the parent query: -** -** * is not itself part of a compound select, -** * is not an aggregate or DISTINCT query, and -** * is not a join -** -** The parent and sub-query may contain WHERE clauses. Subject to -** rules (11), (13) and (14), they may also contain ORDER BY, -** LIMIT and OFFSET clauses. The subquery cannot use any compound -** operator other than UNION ALL because all the other compound -** operators have an implied DISTINCT which is disallowed by -** restriction (4). -** -** Also, each component of the sub-query must return the same number -** of result columns. This is actually a requirement for any compound -** SELECT statement, but all the code here does is make sure that no -** such (illegal) sub-query is flattened. The caller will detect the -** syntax error and return a detailed message. -** -** (18) If the sub-query is a compound select, then all terms of the -** ORDER by clause of the parent must be simple references to -** columns of the sub-query. -** -** (19) The subquery does not use LIMIT or the outer query does not -** have a WHERE clause. -** -** (20) If the sub-query is a compound select, then it must not use -** an ORDER BY clause. Ticket #3773. We could relax this constraint -** somewhat by saying that the terms of the ORDER BY clause must -** appear as unmodified result columns in the outer query. But we -** have other optimizations in mind to deal with that case. -** -** (21) The subquery does not use LIMIT or the outer query is not -** DISTINCT. (See ticket [752e1646fc]). -** -** In this routine, the "p" parameter is a pointer to the outer query. -** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query -** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. -** -** If flattening is not attempted, this routine is a no-op and returns 0. -** If flattening is attempted this routine returns 1. -** -** All of the expression analysis must occur on both the outer query and -** the subquery before this routine runs. -*/ -static int flattenSubquery( - Parse *pParse, /* Parsing context */ - Select *p, /* The parent or outer SELECT statement */ - int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ - int isAgg, /* True if outer SELECT uses aggregate functions */ - int subqueryIsAgg /* True if the subquery uses aggregate functions */ -){ - const char *zSavedAuthContext = pParse->zAuthContext; - Select *pParent; - Select *pSub; /* The inner query or "subquery" */ - Select *pSub1; /* Pointer to the rightmost select in sub-query */ - SrcList *pSrc; /* The FROM clause of the outer query */ - SrcList *pSubSrc; /* The FROM clause of the subquery */ - ExprList *pList; /* The result set of the outer query */ - int iParent; /* VDBE cursor number of the pSub result set temp table */ - int i; /* Loop counter */ - Expr *pWhere; /* The WHERE clause */ - struct SrcList_item *pSubitem; /* The subquery */ - sqlite3 *db = pParse->db; - - /* Check to see if flattening is permitted. Return 0 if not. - */ - assert( p!=0 ); - assert( p->pPrior==0 ); /* Unable to flatten compound queries */ - if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; - pSrc = p->pSrc; - assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); - pSubitem = &pSrc->a[iFrom]; - iParent = pSubitem->iCursor; - pSub = pSubitem->pSelect; - assert( pSub!=0 ); - if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ - if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ - pSubSrc = pSub->pSrc; - assert( pSubSrc ); - /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, - ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET - ** because they could be computed at compile-time. But when LIMIT and OFFSET - ** became arbitrary expressions, we were forced to add restrictions (13) - ** and (14). */ - if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ - if( pSub->pOffset ) return 0; /* Restriction (14) */ - if( p->pRightmost && pSub->pLimit ){ - return 0; /* Restriction (15) */ - } - if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ - if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ - if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ - return 0; /* Restrictions (8)(9) */ - } - if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ - return 0; /* Restriction (6) */ - } - if( p->pOrderBy && pSub->pOrderBy ){ - return 0; /* Restriction (11) */ - } - if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ - if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ - if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ - return 0; /* Restriction (21) */ - } - - /* OBSOLETE COMMENT 1: - ** Restriction 3: If the subquery is a join, make sure the subquery is - ** not used as the right operand of an outer join. Examples of why this - ** is not allowed: - ** - ** t1 LEFT OUTER JOIN (t2 JOIN t3) - ** - ** If we flatten the above, we would get - ** - ** (t1 LEFT OUTER JOIN t2) JOIN t3 - ** - ** which is not at all the same thing. - ** - ** OBSOLETE COMMENT 2: - ** Restriction 12: If the subquery is the right operand of a left outer - ** join, make sure the subquery has no WHERE clause. - ** An examples of why this is not allowed: - ** - ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) - ** - ** If we flatten the above, we would get - ** - ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 - ** - ** But the t2.x>0 test will always fail on a NULL row of t2, which - ** effectively converts the OUTER JOIN into an INNER JOIN. - ** - ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: - ** Ticket #3300 shows that flattening the right term of a LEFT JOIN - ** is fraught with danger. Best to avoid the whole thing. If the - ** subquery is the right term of a LEFT JOIN, then do not flatten. - */ - if( (pSubitem->jointype & JT_OUTER)!=0 ){ - return 0; - } - - /* Restriction 17: If the sub-query is a compound SELECT, then it must - ** use only the UNION ALL operator. And none of the simple select queries - ** that make up the compound SELECT are allowed to be aggregate or distinct - ** queries. - */ - if( pSub->pPrior ){ - if( pSub->pOrderBy ){ - return 0; /* Restriction 20 */ - } - if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ - return 0; - } - for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ - testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); - testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); - assert( pSub->pSrc!=0 ); - if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 - || (pSub1->pPrior && pSub1->op!=TK_ALL) - || pSub1->pSrc->nSrc<1 - || pSub->pEList->nExpr!=pSub1->pEList->nExpr - ){ - return 0; - } - testcase( pSub1->pSrc->nSrc>1 ); - } - - /* Restriction 18. */ - if( p->pOrderBy ){ - int ii; - for(ii=0; ii<p->pOrderBy->nExpr; ii++){ - if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; - } - } - } - - /***** If we reach this point, flattening is permitted. *****/ - - /* Authorize the subquery */ - pParse->zAuthContext = pSubitem->zName; - TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); - testcase( i==SQLITE_DENY ); - pParse->zAuthContext = zSavedAuthContext; - - /* If the sub-query is a compound SELECT statement, then (by restrictions - ** 17 and 18 above) it must be a UNION ALL and the parent query must - ** be of the form: - ** - ** SELECT <expr-list> FROM (<sub-query>) <where-clause> - ** - ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block - ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or - ** OFFSET clauses and joins them to the left-hand-side of the original - ** using UNION ALL operators. In this case N is the number of simple - ** select statements in the compound sub-query. - ** - ** Example: - ** - ** SELECT a+1 FROM ( - ** SELECT x FROM tab - ** UNION ALL - ** SELECT y FROM tab - ** UNION ALL - ** SELECT abs(z*2) FROM tab2 - ** ) WHERE a!=5 ORDER BY 1 - ** - ** Transformed into: - ** - ** SELECT x+1 FROM tab WHERE x+1!=5 - ** UNION ALL - ** SELECT y+1 FROM tab WHERE y+1!=5 - ** UNION ALL - ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 - ** ORDER BY 1 - ** - ** We call this the "compound-subquery flattening". - */ - for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ - Select *pNew; - ExprList *pOrderBy = p->pOrderBy; - Expr *pLimit = p->pLimit; - Expr *pOffset = p->pOffset; - Select *pPrior = p->pPrior; - p->pOrderBy = 0; - p->pSrc = 0; - p->pPrior = 0; - p->pLimit = 0; - p->pOffset = 0; - pNew = sqlite3SelectDup(db, p, 0); - p->pOffset = pOffset; - p->pLimit = pLimit; - p->pOrderBy = pOrderBy; - p->pSrc = pSrc; - p->op = TK_ALL; - p->pRightmost = 0; - if( pNew==0 ){ - pNew = pPrior; - }else{ - pNew->pPrior = pPrior; - pNew->pRightmost = 0; - } - p->pPrior = pNew; - if( db->mallocFailed ) return 1; - } - - /* Begin flattening the iFrom-th entry of the FROM clause - ** in the outer query. - */ - pSub = pSub1 = pSubitem->pSelect; - - /* Delete the transient table structure associated with the - ** subquery - */ - sqlite3DbFree(db, pSubitem->zDatabase); - sqlite3DbFree(db, pSubitem->zName); - sqlite3DbFree(db, pSubitem->zAlias); - pSubitem->zDatabase = 0; - pSubitem->zName = 0; - pSubitem->zAlias = 0; - pSubitem->pSelect = 0; - - /* Defer deleting the Table object associated with the - ** subquery until code generation is - ** complete, since there may still exist Expr.pTab entries that - ** refer to the subquery even after flattening. Ticket #3346. - ** - ** pSubitem->pTab is always non-NULL by test restrictions and tests above. - */ - if( ALWAYS(pSubitem->pTab!=0) ){ - Table *pTabToDel = pSubitem->pTab; - if( pTabToDel->nRef==1 ){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - pTabToDel->pNextZombie = pToplevel->pZombieTab; - pToplevel->pZombieTab = pTabToDel; - }else{ - pTabToDel->nRef--; - } - pSubitem->pTab = 0; - } - - /* The following loop runs once for each term in a compound-subquery - ** flattening (as described above). If we are doing a different kind - ** of flattening - a flattening other than a compound-subquery flattening - - ** then this loop only runs once. - ** - ** This loop moves all of the FROM elements of the subquery into the - ** the FROM clause of the outer query. Before doing this, remember - ** the cursor number for the original outer query FROM element in - ** iParent. The iParent cursor will never be used. Subsequent code - ** will scan expressions looking for iParent references and replace - ** those references with expressions that resolve to the subquery FROM - ** elements we are now copying in. - */ - for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ - int nSubSrc; - u8 jointype = 0; - pSubSrc = pSub->pSrc; /* FROM clause of subquery */ - nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ - pSrc = pParent->pSrc; /* FROM clause of the outer query */ - - if( pSrc ){ - assert( pParent==p ); /* First time through the loop */ - jointype = pSubitem->jointype; - }else{ - assert( pParent!=p ); /* 2nd and subsequent times through the loop */ - pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); - if( pSrc==0 ){ - assert( db->mallocFailed ); - break; - } - } - - /* The subquery uses a single slot of the FROM clause of the outer - ** query. If the subquery has more than one element in its FROM clause, - ** then expand the outer query to make space for it to hold all elements - ** of the subquery. - ** - ** Example: - ** - ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; - ** - ** The outer query has 3 slots in its FROM clause. One slot of the - ** outer query (the middle slot) is used by the subquery. The next - ** block of code will expand the out query to 4 slots. The middle - ** slot is expanded to two slots in order to make space for the - ** two elements in the FROM clause of the subquery. - */ - if( nSubSrc>1 ){ - pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); - if( db->mallocFailed ){ - break; - } - } - - /* Transfer the FROM clause terms from the subquery into the - ** outer query. - */ - for(i=0; i<nSubSrc; i++){ - sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); - pSrc->a[i+iFrom] = pSubSrc->a[i]; - memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); - } - pSrc->a[iFrom].jointype = jointype; - - /* Now begin substituting subquery result set expressions for - ** references to the iParent in the outer query. - ** - ** Example: - ** - ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; - ** \ \_____________ subquery __________/ / - ** \_____________________ outer query ______________________________/ - ** - ** We look at every expression in the outer query and every place we see - ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". - */ - pList = pParent->pEList; - for(i=0; i<pList->nExpr; i++){ - if( pList->a[i].zName==0 ){ - char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); - sqlite3Dequote(zName); - pList->a[i].zName = zName; - } - } - substExprList(db, pParent->pEList, iParent, pSub->pEList); - if( isAgg ){ - substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); - pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); - } - if( pSub->pOrderBy ){ - assert( pParent->pOrderBy==0 ); - pParent->pOrderBy = pSub->pOrderBy; - pSub->pOrderBy = 0; - }else if( pParent->pOrderBy ){ - substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); - } - if( pSub->pWhere ){ - pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); - }else{ - pWhere = 0; - } - if( subqueryIsAgg ){ - assert( pParent->pHaving==0 ); - pParent->pHaving = pParent->pWhere; - pParent->pWhere = pWhere; - pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); - pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, - sqlite3ExprDup(db, pSub->pHaving, 0)); - assert( pParent->pGroupBy==0 ); - pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); - }else{ - pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); - pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); - } - - /* The flattened query is distinct if either the inner or the - ** outer query is distinct. - */ - pParent->selFlags |= pSub->selFlags & SF_Distinct; - - /* - ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; - ** - ** One is tempted to try to add a and b to combine the limits. But this - ** does not work if either limit is negative. - */ - if( pSub->pLimit ){ - pParent->pLimit = pSub->pLimit; - pSub->pLimit = 0; - } - } - - /* Finially, delete what is left of the subquery and return - ** success. - */ - sqlite3SelectDelete(db, pSub1); - - return 1; -} -#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ - -/* -** Based on the contents of the AggInfo structure indicated by the first -** argument, this function checks if the following are true: -** -** * the query contains just a single aggregate function, -** * the aggregate function is either min() or max(), and -** * the argument to the aggregate function is a column value. -** -** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX -** is returned as appropriate. Also, *ppMinMax is set to point to the -** list of arguments passed to the aggregate before returning. -** -** Or, if the conditions above are not met, *ppMinMax is set to 0 and -** WHERE_ORDERBY_NORMAL is returned. -*/ -static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ - int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ - - *ppMinMax = 0; - if( pAggInfo->nFunc==1 ){ - Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ - ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ - - assert( pExpr->op==TK_AGG_FUNCTION ); - if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ - const char *zFunc = pExpr->u.zToken; - if( sqlite3StrICmp(zFunc, "min")==0 ){ - eRet = WHERE_ORDERBY_MIN; - *ppMinMax = pEList; - }else if( sqlite3StrICmp(zFunc, "max")==0 ){ - eRet = WHERE_ORDERBY_MAX; - *ppMinMax = pEList; - } - } - } - - assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); - return eRet; -} - -/* -** The select statement passed as the first argument is an aggregate query. -** The second argment is the associated aggregate-info object. This -** function tests if the SELECT is of the form: -** -** SELECT count(*) FROM <tbl> -** -** where table is a database table, not a sub-select or view. If the query -** does match this pattern, then a pointer to the Table object representing -** <tbl> is returned. Otherwise, 0 is returned. -*/ -static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ - Table *pTab; - Expr *pExpr; - - assert( !p->pGroupBy ); - - if( p->pWhere || p->pEList->nExpr!=1 - || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect - ){ - return 0; - } - pTab = p->pSrc->a[0].pTab; - pExpr = p->pEList->a[0].pExpr; - assert( pTab && !pTab->pSelect && pExpr ); - - if( IsVirtual(pTab) ) return 0; - if( pExpr->op!=TK_AGG_FUNCTION ) return 0; - if( NEVER(pAggInfo->nFunc==0) ) return 0; - if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; - if( pExpr->flags&EP_Distinct ) return 0; - - return pTab; -} - -/* -** If the source-list item passed as an argument was augmented with an -** INDEXED BY clause, then try to locate the specified index. If there -** was such a clause and the named index cannot be found, return -** SQLITE_ERROR and leave an error in pParse. Otherwise, populate -** pFrom->pIndex and return SQLITE_OK. -*/ -SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ - if( pFrom->pTab && pFrom->zIndex ){ - Table *pTab = pFrom->pTab; - char *zIndex = pFrom->zIndex; - Index *pIdx; - for(pIdx=pTab->pIndex; - pIdx && sqlite3StrICmp(pIdx->zName, zIndex); - pIdx=pIdx->pNext - ); - if( !pIdx ){ - sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); - pParse->checkSchema = 1; - return SQLITE_ERROR; - } - pFrom->pIndex = pIdx; - } - return SQLITE_OK; -} - -/* -** This routine is a Walker callback for "expanding" a SELECT statement. -** "Expanding" means to do the following: -** -** (1) Make sure VDBE cursor numbers have been assigned to every -** element of the FROM clause. -** -** (2) Fill in the pTabList->a[].pTab fields in the SrcList that -** defines FROM clause. When views appear in the FROM clause, -** fill pTabList->a[].pSelect with a copy of the SELECT statement -** that implements the view. A copy is made of the view's SELECT -** statement so that we can freely modify or delete that statement -** without worrying about messing up the presistent representation -** of the view. -** -** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword -** on joins and the ON and USING clause of joins. -** -** (4) Scan the list of columns in the result set (pEList) looking -** for instances of the "*" operator or the TABLE.* operator. -** If found, expand each "*" to be every column in every table -** and TABLE.* to be every column in TABLE. -** -*/ -static int selectExpander(Walker *pWalker, Select *p){ - Parse *pParse = pWalker->pParse; - int i, j, k; - SrcList *pTabList; - ExprList *pEList; - struct SrcList_item *pFrom; - sqlite3 *db = pParse->db; - Expr *pE, *pRight, *pExpr; - u16 selFlags = p->selFlags; - - p->selFlags |= SF_Expanded; - if( db->mallocFailed ){ - return WRC_Abort; - } - if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ - return WRC_Prune; - } - pTabList = p->pSrc; - pEList = p->pEList; - - /* Make sure cursor numbers have been assigned to all entries in - ** the FROM clause of the SELECT statement. - */ - sqlite3SrcListAssignCursors(pParse, pTabList); - - /* Look up every table named in the FROM clause of the select. If - ** an entry of the FROM clause is a subquery instead of a table or view, - ** then create a transient table structure to describe the subquery. - */ - for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ - Table *pTab; - if( pFrom->pTab!=0 ){ - /* This statement has already been prepared. There is no need - ** to go further. */ - assert( i==0 ); - return WRC_Prune; - } - if( pFrom->zName==0 ){ -#ifndef SQLITE_OMIT_SUBQUERY - Select *pSel = pFrom->pSelect; - /* A sub-query in the FROM clause of a SELECT */ - assert( pSel!=0 ); - assert( pFrom->pTab==0 ); - sqlite3WalkSelect(pWalker, pSel); - pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); - if( pTab==0 ) return WRC_Abort; - pTab->nRef = 1; - pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); - while( pSel->pPrior ){ pSel = pSel->pPrior; } - selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); - pTab->iPKey = -1; - pTab->nRowEst = 1000000; - pTab->tabFlags |= TF_Ephemeral; -#endif - }else{ - /* An ordinary table or view name in the FROM clause */ - assert( pFrom->pTab==0 ); - pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); - if( pTab==0 ) return WRC_Abort; - if( pTab->nRef==0xffff ){ - sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", - pTab->zName); - pFrom->pTab = 0; - return WRC_Abort; - } - pTab->nRef++; -#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) - if( pTab->pSelect || IsVirtual(pTab) ){ - /* We reach here if the named table is a really a view */ - if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; - assert( pFrom->pSelect==0 ); - pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); - sqlite3WalkSelect(pWalker, pFrom->pSelect); - } -#endif - } - - /* Locate the index named by the INDEXED BY clause, if any. */ - if( sqlite3IndexedByLookup(pParse, pFrom) ){ - return WRC_Abort; - } - } - - /* Process NATURAL keywords, and ON and USING clauses of joins. - */ - if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ - return WRC_Abort; - } - - /* For every "*" that occurs in the column list, insert the names of - ** all columns in all tables. And for every TABLE.* insert the names - ** of all columns in TABLE. The parser inserted a special expression - ** with the TK_ALL operator for each "*" that it found in the column list. - ** The following code just has to locate the TK_ALL expressions and expand - ** each one to the list of all columns in all tables. - ** - ** The first loop just checks to see if there are any "*" operators - ** that need expanding. - */ - for(k=0; k<pEList->nExpr; k++){ - pE = pEList->a[k].pExpr; - if( pE->op==TK_ALL ) break; - assert( pE->op!=TK_DOT || pE->pRight!=0 ); - assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); - if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; - } - if( k<pEList->nExpr ){ - /* - ** If we get here it means the result set contains one or more "*" - ** operators that need to be expanded. Loop through each expression - ** in the result set and expand them one by one. - */ - struct ExprList_item *a = pEList->a; - ExprList *pNew = 0; - int flags = pParse->db->flags; - int longNames = (flags & SQLITE_FullColNames)!=0 - && (flags & SQLITE_ShortColNames)==0; - - /* When processing FROM-clause subqueries, it is always the case - ** that full_column_names=OFF and short_column_names=ON. The - ** sqlite3ResultSetOfSelect() routine makes it so. */ - assert( (p->selFlags & SF_NestedFrom)==0 - || ((flags & SQLITE_FullColNames)==0 && - (flags & SQLITE_ShortColNames)!=0) ); - - for(k=0; k<pEList->nExpr; k++){ - pE = a[k].pExpr; - pRight = pE->pRight; - assert( pE->op!=TK_DOT || pRight!=0 ); - if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ - /* This particular expression does not need to be expanded. - */ - pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); - if( pNew ){ - pNew->a[pNew->nExpr-1].zName = a[k].zName; - pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; - a[k].zName = 0; - a[k].zSpan = 0; - } - a[k].pExpr = 0; - }else{ - /* This expression is a "*" or a "TABLE.*" and needs to be - ** expanded. */ - int tableSeen = 0; /* Set to 1 when TABLE matches */ - char *zTName = 0; /* text of name of TABLE */ - if( pE->op==TK_DOT ){ - assert( pE->pLeft!=0 ); - assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); - zTName = pE->pLeft->u.zToken; - } - for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ - Table *pTab = pFrom->pTab; - Select *pSub = pFrom->pSelect; - char *zTabName = pFrom->zAlias; - const char *zSchemaName = 0; - int iDb; - if( zTabName==0 ){ - zTabName = pTab->zName; - } - if( db->mallocFailed ) break; - if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ - pSub = 0; - if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ - continue; - } - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; - } - for(j=0; j<pTab->nCol; j++){ - char *zName = pTab->aCol[j].zName; - char *zColname; /* The computed column name */ - char *zToFree; /* Malloced string that needs to be freed */ - Token sColname; /* Computed column name as a token */ - - assert( zName ); - if( zTName && pSub - && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 - ){ - continue; - } - - /* If a column is marked as 'hidden' (currently only possible - ** for virtual tables), do not include it in the expanded - ** result-set list. - */ - if( IsHiddenColumn(&pTab->aCol[j]) ){ - assert(IsVirtual(pTab)); - continue; - } - tableSeen = 1; - - if( i>0 && zTName==0 ){ - if( (pFrom->jointype & JT_NATURAL)!=0 - && tableAndColumnIndex(pTabList, i, zName, 0, 0) - ){ - /* In a NATURAL join, omit the join columns from the - ** table to the right of the join */ - continue; - } - if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ - /* In a join with a USING clause, omit columns in the - ** using clause from the table on the right. */ - continue; - } - } - pRight = sqlite3Expr(db, TK_ID, zName); - zColname = zName; - zToFree = 0; - if( longNames || pTabList->nSrc>1 ){ - Expr *pLeft; - pLeft = sqlite3Expr(db, TK_ID, zTabName); - pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); - if( zSchemaName ){ - pLeft = sqlite3Expr(db, TK_ID, zSchemaName); - pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); - } - if( longNames ){ - zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); - zToFree = zColname; - } - }else{ - pExpr = pRight; - } - pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); - sColname.z = zColname; - sColname.n = sqlite3Strlen30(zColname); - sqlite3ExprListSetName(pParse, pNew, &sColname, 0); - if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ - struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; - if( pSub ){ - pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); - testcase( pX->zSpan==0 ); - }else{ - pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", - zSchemaName, zTabName, zColname); - testcase( pX->zSpan==0 ); - } - pX->bSpanIsTab = 1; - } - sqlite3DbFree(db, zToFree); - } - } - if( !tableSeen ){ - if( zTName ){ - sqlite3ErrorMsg(pParse, "no such table: %s", zTName); - }else{ - sqlite3ErrorMsg(pParse, "no tables specified"); - } - } - } - } - sqlite3ExprListDelete(db, pEList); - p->pEList = pNew; - } -#if SQLITE_MAX_COLUMN - if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ - sqlite3ErrorMsg(pParse, "too many columns in result set"); - } -#endif - return WRC_Continue; -} - -/* -** No-op routine for the parse-tree walker. -** -** When this routine is the Walker.xExprCallback then expression trees -** are walked without any actions being taken at each node. Presumably, -** when this routine is used for Walker.xExprCallback then -** Walker.xSelectCallback is set to do something useful for every -** subquery in the parser tree. -*/ -static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ - UNUSED_PARAMETER2(NotUsed, NotUsed2); - return WRC_Continue; -} - -/* -** This routine "expands" a SELECT statement and all of its subqueries. -** For additional information on what it means to "expand" a SELECT -** statement, see the comment on the selectExpand worker callback above. -** -** Expanding a SELECT statement is the first step in processing a -** SELECT statement. The SELECT statement must be expanded before -** name resolution is performed. -** -** If anything goes wrong, an error message is written into pParse. -** The calling function can detect the problem by looking at pParse->nErr -** and/or pParse->db->mallocFailed. -*/ -static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ - Walker w; - w.xSelectCallback = selectExpander; - w.xExprCallback = exprWalkNoop; - w.pParse = pParse; - sqlite3WalkSelect(&w, pSelect); -} - - -#ifndef SQLITE_OMIT_SUBQUERY -/* -** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() -** interface. -** -** For each FROM-clause subquery, add Column.zType and Column.zColl -** information to the Table structure that represents the result set -** of that subquery. -** -** The Table structure that represents the result set was constructed -** by selectExpander() but the type and collation information was omitted -** at that point because identifiers had not yet been resolved. This -** routine is called after identifier resolution. -*/ -static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ - Parse *pParse; - int i; - SrcList *pTabList; - struct SrcList_item *pFrom; - - assert( p->selFlags & SF_Resolved ); - if( (p->selFlags & SF_HasTypeInfo)==0 ){ - p->selFlags |= SF_HasTypeInfo; - pParse = pWalker->pParse; - pTabList = p->pSrc; - for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ - Table *pTab = pFrom->pTab; - if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ - /* A sub-query in the FROM clause of a SELECT */ - Select *pSel = pFrom->pSelect; - assert( pSel ); - while( pSel->pPrior ) pSel = pSel->pPrior; - selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); - } - } - } - return WRC_Continue; -} -#endif - - -/* -** This routine adds datatype and collating sequence information to -** the Table structures of all FROM-clause subqueries in a -** SELECT statement. -** -** Use this routine after name resolution. -*/ -static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ -#ifndef SQLITE_OMIT_SUBQUERY - Walker w; - w.xSelectCallback = selectAddSubqueryTypeInfo; - w.xExprCallback = exprWalkNoop; - w.pParse = pParse; - sqlite3WalkSelect(&w, pSelect); -#endif -} - - -/* -** This routine sets up a SELECT statement for processing. The -** following is accomplished: -** -** * VDBE Cursor numbers are assigned to all FROM-clause terms. -** * Ephemeral Table objects are created for all FROM-clause subqueries. -** * ON and USING clauses are shifted into WHERE statements -** * Wildcards "*" and "TABLE.*" in result sets are expanded. -** * Identifiers in expression are matched to tables. -** -** This routine acts recursively on all subqueries within the SELECT. -*/ -SQLITE_PRIVATE void sqlite3SelectPrep( - Parse *pParse, /* The parser context */ - Select *p, /* The SELECT statement being coded. */ - NameContext *pOuterNC /* Name context for container */ -){ - sqlite3 *db; - if( NEVER(p==0) ) return; - db = pParse->db; - if( db->mallocFailed ) return; - if( p->selFlags & SF_HasTypeInfo ) return; - sqlite3SelectExpand(pParse, p); - if( pParse->nErr || db->mallocFailed ) return; - sqlite3ResolveSelectNames(pParse, p, pOuterNC); - if( pParse->nErr || db->mallocFailed ) return; - sqlite3SelectAddTypeInfo(pParse, p); -} - -/* -** Reset the aggregate accumulator. -** -** The aggregate accumulator is a set of memory cells that hold -** intermediate results while calculating an aggregate. This -** routine generates code that stores NULLs in all of those memory -** cells. -*/ -static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ - Vdbe *v = pParse->pVdbe; - int i; - struct AggInfo_func *pFunc; - if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ - return; - } - for(i=0; i<pAggInfo->nColumn; i++){ - sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); - } - for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ - sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); - if( pFunc->iDistinct>=0 ){ - Expr *pE = pFunc->pExpr; - assert( !ExprHasProperty(pE, EP_xIsSelect) ); - if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ - sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " - "argument"); - pFunc->iDistinct = -1; - }else{ - KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); - sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, - (char*)pKeyInfo, P4_KEYINFO_HANDOFF); - } - } - } -} - -/* -** Invoke the OP_AggFinalize opcode for every aggregate function -** in the AggInfo structure. -*/ -static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ - Vdbe *v = pParse->pVdbe; - int i; - struct AggInfo_func *pF; - for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ - ExprList *pList = pF->pExpr->x.pList; - assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); - sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, - (void*)pF->pFunc, P4_FUNCDEF); - } -} - -/* -** Update the accumulator memory cells for an aggregate based on -** the current cursor position. -*/ -static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ - Vdbe *v = pParse->pVdbe; - int i; - int regHit = 0; - int addrHitTest = 0; - struct AggInfo_func *pF; - struct AggInfo_col *pC; - - pAggInfo->directMode = 1; - sqlite3ExprCacheClear(pParse); - for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ - int nArg; - int addrNext = 0; - int regAgg; - ExprList *pList = pF->pExpr->x.pList; - assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); - if( pList ){ - nArg = pList->nExpr; - regAgg = sqlite3GetTempRange(pParse, nArg); - sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); - }else{ - nArg = 0; - regAgg = 0; - } - if( pF->iDistinct>=0 ){ - addrNext = sqlite3VdbeMakeLabel(v); - assert( nArg==1 ); - codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); - } - if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ - CollSeq *pColl = 0; - struct ExprList_item *pItem; - int j; - assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ - for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ - pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); - } - if( !pColl ){ - pColl = pParse->db->pDfltColl; - } - if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; - sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); - } - sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, - (void*)pF->pFunc, P4_FUNCDEF); - sqlite3VdbeChangeP5(v, (u8)nArg); - sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); - sqlite3ReleaseTempRange(pParse, regAgg, nArg); - if( addrNext ){ - sqlite3VdbeResolveLabel(v, addrNext); - sqlite3ExprCacheClear(pParse); - } - } - - /* Before populating the accumulator registers, clear the column cache. - ** Otherwise, if any of the required column values are already present - ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value - ** to pC->iMem. But by the time the value is used, the original register - ** may have been used, invalidating the underlying buffer holding the - ** text or blob value. See ticket [883034dcb5]. - ** - ** Another solution would be to change the OP_SCopy used to copy cached - ** values to an OP_Copy. - */ - if( regHit ){ - addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); - } - sqlite3ExprCacheClear(pParse); - for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ - sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); - } - pAggInfo->directMode = 0; - sqlite3ExprCacheClear(pParse); - if( addrHitTest ){ - sqlite3VdbeJumpHere(v, addrHitTest); - } -} - -/* -** Add a single OP_Explain instruction to the VDBE to explain a simple -** count(*) query ("SELECT count(*) FROM pTab"). -*/ -#ifndef SQLITE_OMIT_EXPLAIN -static void explainSimpleCount( - Parse *pParse, /* Parse context */ - Table *pTab, /* Table being queried */ - Index *pIdx /* Index used to optimize scan, or NULL */ -){ - if( pParse->explain==2 ){ - char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", - pTab->zName, - pIdx ? "USING COVERING INDEX " : "", - pIdx ? pIdx->zName : "", - pTab->nRowEst - ); - sqlite3VdbeAddOp4( - pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC - ); - } -} -#else -# define explainSimpleCount(a,b,c) -#endif - -/* -** Generate code for the SELECT statement given in the p argument. -** -** The results are distributed in various ways depending on the -** contents of the SelectDest structure pointed to by argument pDest -** as follows: -** -** pDest->eDest Result -** ------------ ------------------------------------------- -** SRT_Output Generate a row of output (using the OP_ResultRow -** opcode) for each row in the result set. -** -** SRT_Mem Only valid if the result is a single column. -** Store the first column of the first result row -** in register pDest->iSDParm then abandon the rest -** of the query. This destination implies "LIMIT 1". -** -** SRT_Set The result must be a single column. Store each -** row of result as the key in table pDest->iSDParm. -** Apply the affinity pDest->affSdst before storing -** results. Used to implement "IN (SELECT ...)". -** -** SRT_Union Store results as a key in a temporary table -** identified by pDest->iSDParm. -** -** SRT_Except Remove results from the temporary table pDest->iSDParm. -** -** SRT_Table Store results in temporary table pDest->iSDParm. -** This is like SRT_EphemTab except that the table -** is assumed to already be open. -** -** SRT_EphemTab Create an temporary table pDest->iSDParm and store -** the result there. The cursor is left open after -** returning. This is like SRT_Table except that -** this destination uses OP_OpenEphemeral to create -** the table first. -** -** SRT_Coroutine Generate a co-routine that returns a new row of -** results each time it is invoked. The entry point -** of the co-routine is stored in register pDest->iSDParm. -** -** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result -** set is not empty. -** -** SRT_Discard Throw the results away. This is used by SELECT -** statements within triggers whose only purpose is -** the side-effects of functions. -** -** This routine returns the number of errors. If any errors are -** encountered, then an appropriate error message is left in -** pParse->zErrMsg. -** -** This routine does NOT free the Select structure passed in. The -** calling function needs to do that. -*/ -SQLITE_PRIVATE int sqlite3Select( - Parse *pParse, /* The parser context */ - Select *p, /* The SELECT statement being coded. */ - SelectDest *pDest /* What to do with the query results */ -){ - int i, j; /* Loop counters */ - WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ - Vdbe *v; /* The virtual machine under construction */ - int isAgg; /* True for select lists like "count(*)" */ - ExprList *pEList; /* List of columns to extract. */ - SrcList *pTabList; /* List of tables to select from */ - Expr *pWhere; /* The WHERE clause. May be NULL */ - ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ - ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ - Expr *pHaving; /* The HAVING clause. May be NULL */ - int rc = 1; /* Value to return from this function */ - int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ - DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ - AggInfo sAggInfo; /* Information used by aggregate queries */ - int iEnd; /* Address of the end of the query */ - sqlite3 *db; /* The database connection */ - -#ifndef SQLITE_OMIT_EXPLAIN - int iRestoreSelectId = pParse->iSelectId; - pParse->iSelectId = pParse->iNextSelectId++; -#endif - - db = pParse->db; - if( p==0 || db->mallocFailed || pParse->nErr ){ - return 1; - } - if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; - memset(&sAggInfo, 0, sizeof(sAggInfo)); - - if( IgnorableOrderby(pDest) ){ - assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || - pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); - /* If ORDER BY makes no difference in the output then neither does - ** DISTINCT so it can be removed too. */ - sqlite3ExprListDelete(db, p->pOrderBy); - p->pOrderBy = 0; - p->selFlags &= ~SF_Distinct; - } - sqlite3SelectPrep(pParse, p, 0); - pOrderBy = p->pOrderBy; - pTabList = p->pSrc; - pEList = p->pEList; - if( pParse->nErr || db->mallocFailed ){ - goto select_end; - } - isAgg = (p->selFlags & SF_Aggregate)!=0; - assert( pEList!=0 ); - - /* Begin generating code. - */ - v = sqlite3GetVdbe(pParse); - if( v==0 ) goto select_end; - - /* If writing to memory or generating a set - ** only a single column may be output. - */ -#ifndef SQLITE_OMIT_SUBQUERY - if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ - goto select_end; - } -#endif - - /* Generate code for all sub-queries in the FROM clause - */ -#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) - for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ - struct SrcList_item *pItem = &pTabList->a[i]; - SelectDest dest; - Select *pSub = pItem->pSelect; - int isAggSub; - - if( pSub==0 ) continue; - - /* Sometimes the code for a subquery will be generated more than - ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, - ** for example. In that case, do not regenerate the code to manifest - ** a view or the co-routine to implement a view. The first instance - ** is sufficient, though the subroutine to manifest the view does need - ** to be invoked again. */ - if( pItem->addrFillSub ){ - if( pItem->viaCoroutine==0 ){ - sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); - } - continue; - } - - /* Increment Parse.nHeight by the height of the largest expression - ** tree refered to by this, the parent select. The child select - ** may contain expression trees of at most - ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit - ** more conservative than necessary, but much easier than enforcing - ** an exact limit. - */ - pParse->nHeight += sqlite3SelectExprHeight(p); - - isAggSub = (pSub->selFlags & SF_Aggregate)!=0; - if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ - /* This subquery can be absorbed into its parent. */ - if( isAggSub ){ - isAgg = 1; - p->selFlags |= SF_Aggregate; - } - i = -1; - }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0 - && OptimizationEnabled(db, SQLITE_SubqCoroutine) - ){ - /* Implement a co-routine that will return a single row of the result - ** set on each invocation. - */ - int addrTop; - int addrEof; - pItem->regReturn = ++pParse->nMem; - addrEof = ++pParse->nMem; - /* Before coding the OP_Goto to jump to the start of the main routine, - ** ensure that the jump to the verify-schema routine has already - ** been coded. Otherwise, the verify-schema would likely be coded as - ** part of the co-routine. If the main routine then accessed the - ** database before invoking the co-routine for the first time (for - ** example to initialize a LIMIT register from a sub-select), it would - ** be doing so without having verified the schema version and obtained - ** the required db locks. See ticket d6b36be38. */ - sqlite3CodeVerifySchema(pParse, -1); - sqlite3VdbeAddOp0(v, OP_Goto); - addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor); - sqlite3VdbeChangeP5(v, 1); - VdbeComment((v, "coroutine for %s", pItem->pTab->zName)); - pItem->addrFillSub = addrTop; - sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof); - sqlite3VdbeChangeP5(v, 1); - sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); - explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); - sqlite3Select(pParse, pSub, &dest); - pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; - pItem->viaCoroutine = 1; - sqlite3VdbeChangeP2(v, addrTop, dest.iSdst); - sqlite3VdbeChangeP3(v, addrTop, dest.nSdst); - sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof); - sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn); - VdbeComment((v, "end %s", pItem->pTab->zName)); - sqlite3VdbeJumpHere(v, addrTop-1); - sqlite3ClearTempRegCache(pParse); - }else{ - /* Generate a subroutine that will fill an ephemeral table with - ** the content of this subquery. pItem->addrFillSub will point - ** to the address of the generated subroutine. pItem->regReturn - ** is a register allocated to hold the subroutine return address - */ - int topAddr; - int onceAddr = 0; - int retAddr; - assert( pItem->addrFillSub==0 ); - pItem->regReturn = ++pParse->nMem; - topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); - pItem->addrFillSub = topAddr+1; - VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); - if( pItem->isCorrelated==0 ){ - /* If the subquery is no correlated and if we are not inside of - ** a trigger, then we only need to compute the value of the subquery - ** once. */ - onceAddr = sqlite3CodeOnce(pParse); - } - sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); - explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); - sqlite3Select(pParse, pSub, &dest); - pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; - if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); - retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); - VdbeComment((v, "end %s", pItem->pTab->zName)); - sqlite3VdbeChangeP1(v, topAddr, retAddr); - sqlite3ClearTempRegCache(pParse); - } - if( /*pParse->nErr ||*/ db->mallocFailed ){ - goto select_end; - } - pParse->nHeight -= sqlite3SelectExprHeight(p); - pTabList = p->pSrc; - if( !IgnorableOrderby(pDest) ){ - pOrderBy = p->pOrderBy; - } - } - pEList = p->pEList; -#endif - pWhere = p->pWhere; - pGroupBy = p->pGroupBy; - pHaving = p->pHaving; - sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; - -#ifndef SQLITE_OMIT_COMPOUND_SELECT - /* If there is are a sequence of queries, do the earlier ones first. - */ - if( p->pPrior ){ - if( p->pRightmost==0 ){ - Select *pLoop, *pRight = 0; - int cnt = 0; - int mxSelect; - for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ - pLoop->pRightmost = p; - pLoop->pNext = pRight; - pRight = pLoop; - } - mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; - if( mxSelect && cnt>mxSelect ){ - sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); - goto select_end; - } - } - rc = multiSelect(pParse, p, pDest); - explainSetInteger(pParse->iSelectId, iRestoreSelectId); - return rc; - } -#endif - - /* If there is both a GROUP BY and an ORDER BY clause and they are - ** identical, then disable the ORDER BY clause since the GROUP BY - ** will cause elements to come out in the correct order. This is - ** an optimization - the correct answer should result regardless. - ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER - ** to disable this optimization for testing purposes. - */ - if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 - && OptimizationEnabled(db, SQLITE_GroupByOrder) ){ - pOrderBy = 0; - } - - /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and - ** if the select-list is the same as the ORDER BY list, then this query - ** can be rewritten as a GROUP BY. In other words, this: - ** - ** SELECT DISTINCT xyz FROM ... ORDER BY xyz - ** - ** is transformed to: - ** - ** SELECT xyz FROM ... GROUP BY xyz - ** - ** The second form is preferred as a single index (or temp-table) may be - ** used for both the ORDER BY and DISTINCT processing. As originally - ** written the query must use a temp-table for at least one of the ORDER - ** BY and DISTINCT, and an index or separate temp-table for the other. - */ - if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct - && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 - ){ - p->selFlags &= ~SF_Distinct; - p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); - pGroupBy = p->pGroupBy; - pOrderBy = 0; - /* Notice that even thought SF_Distinct has been cleared from p->selFlags, - ** the sDistinct.isTnct is still set. Hence, isTnct represents the - ** original setting of the SF_Distinct flag, not the current setting */ - assert( sDistinct.isTnct ); - } - - /* If there is an ORDER BY clause, then this sorting - ** index might end up being unused if the data can be - ** extracted in pre-sorted order. If that is the case, then the - ** OP_OpenEphemeral instruction will be changed to an OP_Noop once - ** we figure out that the sorting index is not needed. The addrSortIndex - ** variable is used to facilitate that change. - */ - if( pOrderBy ){ - KeyInfo *pKeyInfo; - pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); - pOrderBy->iECursor = pParse->nTab++; - p->addrOpenEphm[2] = addrSortIndex = - sqlite3VdbeAddOp4(v, OP_OpenEphemeral, - pOrderBy->iECursor, pOrderBy->nExpr+2, 0, - (char*)pKeyInfo, P4_KEYINFO_HANDOFF); - }else{ - addrSortIndex = -1; - } - - /* If the output is destined for a temporary table, open that table. - */ - if( pDest->eDest==SRT_EphemTab ){ - sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); - } - - /* Set the limiter. - */ - iEnd = sqlite3VdbeMakeLabel(v); - p->nSelectRow = (double)LARGEST_INT64; - computeLimitRegisters(pParse, p, iEnd); - if( p->iLimit==0 && addrSortIndex>=0 ){ - sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; - p->selFlags |= SF_UseSorter; - } - - /* Open a virtual index to use for the distinct set. - */ - if( p->selFlags & SF_Distinct ){ - sDistinct.tabTnct = pParse->nTab++; - sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, - sDistinct.tabTnct, 0, 0, - (char*)keyInfoFromExprList(pParse, p->pEList), - P4_KEYINFO_HANDOFF); - sqlite3VdbeChangeP5(v, BTREE_UNORDERED); - sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; - }else{ - sDistinct.eTnctType = WHERE_DISTINCT_NOOP; - } - - if( !isAgg && pGroupBy==0 ){ - /* No aggregate functions and no GROUP BY clause */ - ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0); - - /* Begin the database scan. */ - pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0); - if( pWInfo==0 ) goto select_end; - if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; - if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct; - if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0; - - /* If sorting index that was created by a prior OP_OpenEphemeral - ** instruction ended up not being needed, then change the OP_OpenEphemeral - ** into an OP_Noop. - */ - if( addrSortIndex>=0 && pOrderBy==0 ){ - sqlite3VdbeChangeToNoop(v, addrSortIndex); - p->addrOpenEphm[2] = -1; - } - - /* Use the standard inner loop. */ - selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest, - pWInfo->iContinue, pWInfo->iBreak); - - /* End the database scan loop. - */ - sqlite3WhereEnd(pWInfo); - }else{ - /* This case when there exist aggregate functions or a GROUP BY clause - ** or both */ - NameContext sNC; /* Name context for processing aggregate information */ - int iAMem; /* First Mem address for storing current GROUP BY */ - int iBMem; /* First Mem address for previous GROUP BY */ - int iUseFlag; /* Mem address holding flag indicating that at least - ** one row of the input to the aggregator has been - ** processed */ - int iAbortFlag; /* Mem address which causes query abort if positive */ - int groupBySort; /* Rows come from source in GROUP BY order */ - int addrEnd; /* End of processing for this SELECT */ - int sortPTab = 0; /* Pseudotable used to decode sorting results */ - int sortOut = 0; /* Output register from the sorter */ - - /* Remove any and all aliases between the result set and the - ** GROUP BY clause. - */ - if( pGroupBy ){ - int k; /* Loop counter */ - struct ExprList_item *pItem; /* For looping over expression in a list */ - - for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ - pItem->iAlias = 0; - } - for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ - pItem->iAlias = 0; - } - if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; - }else{ - p->nSelectRow = (double)1; - } - - - /* Create a label to jump to when we want to abort the query */ - addrEnd = sqlite3VdbeMakeLabel(v); - - /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in - ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the - ** SELECT statement. - */ - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pParse; - sNC.pSrcList = pTabList; - sNC.pAggInfo = &sAggInfo; - sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; - sAggInfo.pGroupBy = pGroupBy; - sqlite3ExprAnalyzeAggList(&sNC, pEList); - sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); - if( pHaving ){ - sqlite3ExprAnalyzeAggregates(&sNC, pHaving); - } - sAggInfo.nAccumulator = sAggInfo.nColumn; - for(i=0; i<sAggInfo.nFunc; i++){ - assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); - sNC.ncFlags |= NC_InAggFunc; - sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); - sNC.ncFlags &= ~NC_InAggFunc; - } - if( db->mallocFailed ) goto select_end; - - /* Processing for aggregates with GROUP BY is very different and - ** much more complex than aggregates without a GROUP BY. - */ - if( pGroupBy ){ - KeyInfo *pKeyInfo; /* Keying information for the group by clause */ - int j1; /* A-vs-B comparision jump */ - int addrOutputRow; /* Start of subroutine that outputs a result row */ - int regOutputRow; /* Return address register for output subroutine */ - int addrSetAbort; /* Set the abort flag and return */ - int addrTopOfLoop; /* Top of the input loop */ - int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ - int addrReset; /* Subroutine for resetting the accumulator */ - int regReset; /* Return address register for reset subroutine */ - - /* If there is a GROUP BY clause we might need a sorting index to - ** implement it. Allocate that sorting index now. If it turns out - ** that we do not need it after all, the OP_SorterOpen instruction - ** will be converted into a Noop. - */ - sAggInfo.sortingIdx = pParse->nTab++; - pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); - addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, - sAggInfo.sortingIdx, sAggInfo.nSortingColumn, - 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); - - /* Initialize memory locations used by GROUP BY aggregate processing - */ - iUseFlag = ++pParse->nMem; - iAbortFlag = ++pParse->nMem; - regOutputRow = ++pParse->nMem; - addrOutputRow = sqlite3VdbeMakeLabel(v); - regReset = ++pParse->nMem; - addrReset = sqlite3VdbeMakeLabel(v); - iAMem = pParse->nMem + 1; - pParse->nMem += pGroupBy->nExpr; - iBMem = pParse->nMem + 1; - pParse->nMem += pGroupBy->nExpr; - sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); - VdbeComment((v, "clear abort flag")); - sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); - VdbeComment((v, "indicate accumulator empty")); - sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); - - /* Begin a loop that will extract all source rows in GROUP BY order. - ** This might involve two separate loops with an OP_Sort in between, or - ** it might be a single loop that uses an index to extract information - ** in the right order to begin with. - */ - sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); - pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0); - if( pWInfo==0 ) goto select_end; - if( pWInfo->nOBSat==pGroupBy->nExpr ){ - /* The optimizer is able to deliver rows in group by order so - ** we do not have to sort. The OP_OpenEphemeral table will be - ** cancelled later because we still need to use the pKeyInfo - */ - groupBySort = 0; - }else{ - /* Rows are coming out in undetermined order. We have to push - ** each row into a sorting index, terminate the first loop, - ** then loop over the sorting index in order to get the output - ** in sorted order - */ - int regBase; - int regRecord; - int nCol; - int nGroupBy; - - explainTempTable(pParse, - (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? - "DISTINCT" : "GROUP BY"); - - groupBySort = 1; - nGroupBy = pGroupBy->nExpr; - nCol = nGroupBy + 1; - j = nGroupBy+1; - for(i=0; i<sAggInfo.nColumn; i++){ - if( sAggInfo.aCol[i].iSorterColumn>=j ){ - nCol++; - j++; - } - } - regBase = sqlite3GetTempRange(pParse, nCol); - sqlite3ExprCacheClear(pParse); - sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); - sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); - j = nGroupBy+1; - for(i=0; i<sAggInfo.nColumn; i++){ - struct AggInfo_col *pCol = &sAggInfo.aCol[i]; - if( pCol->iSorterColumn>=j ){ - int r1 = j + regBase; - int r2; - - r2 = sqlite3ExprCodeGetColumn(pParse, - pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); - if( r1!=r2 ){ - sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); - } - j++; - } - } - regRecord = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); - sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); - sqlite3ReleaseTempReg(pParse, regRecord); - sqlite3ReleaseTempRange(pParse, regBase, nCol); - sqlite3WhereEnd(pWInfo); - sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; - sortOut = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); - sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); - VdbeComment((v, "GROUP BY sort")); - sAggInfo.useSortingIdx = 1; - sqlite3ExprCacheClear(pParse); - } - - /* Evaluate the current GROUP BY terms and store in b0, b1, b2... - ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) - ** Then compare the current GROUP BY terms against the GROUP BY terms - ** from the previous row currently stored in a0, a1, a2... - */ - addrTopOfLoop = sqlite3VdbeCurrentAddr(v); - sqlite3ExprCacheClear(pParse); - if( groupBySort ){ - sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); - } - for(j=0; j<pGroupBy->nExpr; j++){ - if( groupBySort ){ - sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); - if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); - }else{ - sAggInfo.directMode = 1; - sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); - } - } - sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, - (char*)pKeyInfo, P4_KEYINFO); - j1 = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); - - /* Generate code that runs whenever the GROUP BY changes. - ** Changes in the GROUP BY are detected by the previous code - ** block. If there were no changes, this block is skipped. - ** - ** This code copies current group by terms in b0,b1,b2,... - ** over to a0,a1,a2. It then calls the output subroutine - ** and resets the aggregate accumulator registers in preparation - ** for the next GROUP BY batch. - */ - sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); - sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); - VdbeComment((v, "output one row")); - sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); - VdbeComment((v, "check abort flag")); - sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); - VdbeComment((v, "reset accumulator")); - - /* Update the aggregate accumulators based on the content of - ** the current row - */ - sqlite3VdbeJumpHere(v, j1); - updateAccumulator(pParse, &sAggInfo); - sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); - VdbeComment((v, "indicate data in accumulator")); - - /* End of the loop - */ - if( groupBySort ){ - sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); - }else{ - sqlite3WhereEnd(pWInfo); - sqlite3VdbeChangeToNoop(v, addrSortingIdx); - } - - /* Output the final row of result - */ - sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); - VdbeComment((v, "output final row")); - - /* Jump over the subroutines - */ - sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); - - /* Generate a subroutine that outputs a single row of the result - ** set. This subroutine first looks at the iUseFlag. If iUseFlag - ** is less than or equal to zero, the subroutine is a no-op. If - ** the processing calls for the query to abort, this subroutine - ** increments the iAbortFlag memory location before returning in - ** order to signal the caller to abort. - */ - addrSetAbort = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); - VdbeComment((v, "set abort flag")); - sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); - sqlite3VdbeResolveLabel(v, addrOutputRow); - addrOutputRow = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); - VdbeComment((v, "Groupby result generator entry point")); - sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); - finalizeAggFunctions(pParse, &sAggInfo); - sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); - selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, - &sDistinct, pDest, - addrOutputRow+1, addrSetAbort); - sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); - VdbeComment((v, "end groupby result generator")); - - /* Generate a subroutine that will reset the group-by accumulator - */ - sqlite3VdbeResolveLabel(v, addrReset); - resetAccumulator(pParse, &sAggInfo); - sqlite3VdbeAddOp1(v, OP_Return, regReset); - - } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ - else { - ExprList *pDel = 0; -#ifndef SQLITE_OMIT_BTREECOUNT - Table *pTab; - if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ - /* If isSimpleCount() returns a pointer to a Table structure, then - ** the SQL statement is of the form: - ** - ** SELECT count(*) FROM <tbl> - ** - ** where the Table structure returned represents table <tbl>. - ** - ** This statement is so common that it is optimized specially. The - ** OP_Count instruction is executed either on the intkey table that - ** contains the data for table <tbl> or on one of its indexes. It - ** is better to execute the op on an index, as indexes are almost - ** always spread across less pages than their corresponding tables. - */ - const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ - Index *pIdx; /* Iterator variable */ - KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ - Index *pBest = 0; /* Best index found so far */ - int iRoot = pTab->tnum; /* Root page of scanned b-tree */ - - sqlite3CodeVerifySchema(pParse, iDb); - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - - /* Search for the index that has the least amount of columns. If - ** there is such an index, and it has less columns than the table - ** does, then we can assume that it consumes less space on disk and - ** will therefore be cheaper to scan to determine the query result. - ** In this case set iRoot to the root page number of the index b-tree - ** and pKeyInfo to the KeyInfo structure required to navigate the - ** index. - ** - ** (2011-04-15) Do not do a full scan of an unordered index. - ** - ** In practice the KeyInfo structure will not be used. It is only - ** passed to keep OP_OpenRead happy. - */ - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ - pBest = pIdx; - } - } - if( pBest && pBest->nColumn<pTab->nCol ){ - iRoot = pBest->tnum; - pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); - } - - /* Open a read-only cursor, execute the OP_Count, close the cursor. */ - sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); - if( pKeyInfo ){ - sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); - } - sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); - sqlite3VdbeAddOp1(v, OP_Close, iCsr); - explainSimpleCount(pParse, pTab, pBest); - }else -#endif /* SQLITE_OMIT_BTREECOUNT */ - { - /* Check if the query is of one of the following forms: - ** - ** SELECT min(x) FROM ... - ** SELECT max(x) FROM ... - ** - ** If it is, then ask the code in where.c to attempt to sort results - ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. - ** If where.c is able to produce results sorted in this order, then - ** add vdbe code to break out of the processing loop after the - ** first iteration (since the first iteration of the loop is - ** guaranteed to operate on the row with the minimum or maximum - ** value of x, the only row required). - ** - ** A special flag must be passed to sqlite3WhereBegin() to slightly - ** modify behavior as follows: - ** - ** + If the query is a "SELECT min(x)", then the loop coded by - ** where.c should not iterate over any values with a NULL value - ** for x. - ** - ** + The optimizer code in where.c (the thing that decides which - ** index or indices to use) should place a different priority on - ** satisfying the 'ORDER BY' clause than it does in other cases. - ** Refer to code and comments in where.c for details. - */ - ExprList *pMinMax = 0; - u8 flag = WHERE_ORDERBY_NORMAL; - - assert( p->pGroupBy==0 ); - assert( flag==0 ); - if( p->pHaving==0 ){ - flag = minMaxQuery(&sAggInfo, &pMinMax); - } - assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); - - if( flag ){ - pMinMax = sqlite3ExprListDup(db, pMinMax, 0); - pDel = pMinMax; - if( pMinMax && !db->mallocFailed ){ - pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; - pMinMax->a[0].pExpr->op = TK_COLUMN; - } - } - - /* This case runs if the aggregate has no GROUP BY clause. The - ** processing is much simpler since there is only a single row - ** of output. - */ - resetAccumulator(pParse, &sAggInfo); - pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); - if( pWInfo==0 ){ - sqlite3ExprListDelete(db, pDel); - goto select_end; - } - updateAccumulator(pParse, &sAggInfo); - assert( pMinMax==0 || pMinMax->nExpr==1 ); - if( pWInfo->nOBSat>0 ){ - sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); - VdbeComment((v, "%s() by index", - (flag==WHERE_ORDERBY_MIN?"min":"max"))); - } - sqlite3WhereEnd(pWInfo); - finalizeAggFunctions(pParse, &sAggInfo); - } - - pOrderBy = 0; - sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); - selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, 0, - pDest, addrEnd, addrEnd); - sqlite3ExprListDelete(db, pDel); - } - sqlite3VdbeResolveLabel(v, addrEnd); - - } /* endif aggregate query */ - - if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ - explainTempTable(pParse, "DISTINCT"); - } - - /* If there is an ORDER BY clause, then we need to sort the results - ** and send them to the callback one by one. - */ - if( pOrderBy ){ - explainTempTable(pParse, "ORDER BY"); - generateSortTail(pParse, p, v, pEList->nExpr, pDest); - } - - /* Jump here to skip this query - */ - sqlite3VdbeResolveLabel(v, iEnd); - - /* The SELECT was successfully coded. Set the return code to 0 - ** to indicate no errors. - */ - rc = 0; - - /* Control jumps to here if an error is encountered above, or upon - ** successful coding of the SELECT. - */ -select_end: - explainSetInteger(pParse->iSelectId, iRestoreSelectId); - - /* Identify column names if results of the SELECT are to be output. - */ - if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ - generateColumnNames(pParse, pTabList, pEList); - } - - sqlite3DbFree(db, sAggInfo.aCol); - sqlite3DbFree(db, sAggInfo.aFunc); - return rc; -} - -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) -/* -** Generate a human-readable description of a the Select object. -*/ -static void explainOneSelect(Vdbe *pVdbe, Select *p){ - sqlite3ExplainPrintf(pVdbe, "SELECT "); - if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ - if( p->selFlags & SF_Distinct ){ - sqlite3ExplainPrintf(pVdbe, "DISTINCT "); - } - if( p->selFlags & SF_Aggregate ){ - sqlite3ExplainPrintf(pVdbe, "agg_flag "); - } - sqlite3ExplainNL(pVdbe); - sqlite3ExplainPrintf(pVdbe, " "); - } - sqlite3ExplainExprList(pVdbe, p->pEList); - sqlite3ExplainNL(pVdbe); - if( p->pSrc && p->pSrc->nSrc ){ - int i; - sqlite3ExplainPrintf(pVdbe, "FROM "); - sqlite3ExplainPush(pVdbe); - for(i=0; i<p->pSrc->nSrc; i++){ - struct SrcList_item *pItem = &p->pSrc->a[i]; - sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); - if( pItem->pSelect ){ - sqlite3ExplainSelect(pVdbe, pItem->pSelect); - if( pItem->pTab ){ - sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); - } - }else if( pItem->zName ){ - sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); - } - if( pItem->zAlias ){ - sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); - } - if( pItem->jointype & JT_LEFT ){ - sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); - } - sqlite3ExplainNL(pVdbe); - } - sqlite3ExplainPop(pVdbe); - } - if( p->pWhere ){ - sqlite3ExplainPrintf(pVdbe, "WHERE "); - sqlite3ExplainExpr(pVdbe, p->pWhere); - sqlite3ExplainNL(pVdbe); - } - if( p->pGroupBy ){ - sqlite3ExplainPrintf(pVdbe, "GROUPBY "); - sqlite3ExplainExprList(pVdbe, p->pGroupBy); - sqlite3ExplainNL(pVdbe); - } - if( p->pHaving ){ - sqlite3ExplainPrintf(pVdbe, "HAVING "); - sqlite3ExplainExpr(pVdbe, p->pHaving); - sqlite3ExplainNL(pVdbe); - } - if( p->pOrderBy ){ - sqlite3ExplainPrintf(pVdbe, "ORDERBY "); - sqlite3ExplainExprList(pVdbe, p->pOrderBy); - sqlite3ExplainNL(pVdbe); - } - if( p->pLimit ){ - sqlite3ExplainPrintf(pVdbe, "LIMIT "); - sqlite3ExplainExpr(pVdbe, p->pLimit); - sqlite3ExplainNL(pVdbe); - } - if( p->pOffset ){ - sqlite3ExplainPrintf(pVdbe, "OFFSET "); - sqlite3ExplainExpr(pVdbe, p->pOffset); - sqlite3ExplainNL(pVdbe); - } -} -SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ - if( p==0 ){ - sqlite3ExplainPrintf(pVdbe, "(null-select)"); - return; - } - while( p->pPrior ){ - p->pPrior->pNext = p; - p = p->pPrior; - } - sqlite3ExplainPush(pVdbe); - while( p ){ - explainOneSelect(pVdbe, p); - p = p->pNext; - if( p==0 ) break; - sqlite3ExplainNL(pVdbe); - sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); - } - sqlite3ExplainPrintf(pVdbe, "END"); - sqlite3ExplainPop(pVdbe); -} - -/* End of the structure debug printing code -*****************************************************************************/ -#endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ - -/************** End of select.c **********************************************/ -/************** Begin file table.c *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the sqlite3_get_table() and sqlite3_free_table() -** interface routines. These are just wrappers around the main -** interface routine of sqlite3_exec(). -** -** These routines are in a separate files so that they will not be linked -** if they are not used. -*/ -/* #include <stdlib.h> */ -/* #include <string.h> */ - -#ifndef SQLITE_OMIT_GET_TABLE - -/* -** This structure is used to pass data from sqlite3_get_table() through -** to the callback function is uses to build the result. -*/ -typedef struct TabResult { - char **azResult; /* Accumulated output */ - char *zErrMsg; /* Error message text, if an error occurs */ - int nAlloc; /* Slots allocated for azResult[] */ - int nRow; /* Number of rows in the result */ - int nColumn; /* Number of columns in the result */ - int nData; /* Slots used in azResult[]. (nRow+1)*nColumn */ - int rc; /* Return code from sqlite3_exec() */ -} TabResult; - -/* -** This routine is called once for each row in the result table. Its job -** is to fill in the TabResult structure appropriately, allocating new -** memory as necessary. -*/ -static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ - TabResult *p = (TabResult*)pArg; /* Result accumulator */ - int need; /* Slots needed in p->azResult[] */ - int i; /* Loop counter */ - char *z; /* A single column of result */ - - /* Make sure there is enough space in p->azResult to hold everything - ** we need to remember from this invocation of the callback. - */ - if( p->nRow==0 && argv!=0 ){ - need = nCol*2; - }else{ - need = nCol; - } - if( p->nData + need > p->nAlloc ){ - char **azNew; - p->nAlloc = p->nAlloc*2 + need; - azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc ); - if( azNew==0 ) goto malloc_failed; - p->azResult = azNew; - } - - /* If this is the first row, then generate an extra row containing - ** the names of all columns. - */ - if( p->nRow==0 ){ - p->nColumn = nCol; - for(i=0; i<nCol; i++){ - z = sqlite3_mprintf("%s", colv[i]); - if( z==0 ) goto malloc_failed; - p->azResult[p->nData++] = z; - } - }else if( p->nColumn!=nCol ){ - sqlite3_free(p->zErrMsg); - p->zErrMsg = sqlite3_mprintf( - "sqlite3_get_table() called with two or more incompatible queries" - ); - p->rc = SQLITE_ERROR; - return 1; - } - - /* Copy over the row data - */ - if( argv!=0 ){ - for(i=0; i<nCol; i++){ - if( argv[i]==0 ){ - z = 0; - }else{ - int n = sqlite3Strlen30(argv[i])+1; - z = sqlite3_malloc( n ); - if( z==0 ) goto malloc_failed; - memcpy(z, argv[i], n); - } - p->azResult[p->nData++] = z; - } - p->nRow++; - } - return 0; - -malloc_failed: - p->rc = SQLITE_NOMEM; - return 1; -} - -/* -** Query the database. But instead of invoking a callback for each row, -** malloc() for space to hold the result and return the entire results -** at the conclusion of the call. -** -** The result that is written to ***pazResult is held in memory obtained -** from malloc(). But the caller cannot free this memory directly. -** Instead, the entire table should be passed to sqlite3_free_table() when -** the calling procedure is finished using it. -*/ -SQLITE_API int sqlite3_get_table( - sqlite3 *db, /* The database on which the SQL executes */ - const char *zSql, /* The SQL to be executed */ - char ***pazResult, /* Write the result table here */ - int *pnRow, /* Write the number of rows in the result here */ - int *pnColumn, /* Write the number of columns of result here */ - char **pzErrMsg /* Write error messages here */ -){ - int rc; - TabResult res; - - *pazResult = 0; - if( pnColumn ) *pnColumn = 0; - if( pnRow ) *pnRow = 0; - if( pzErrMsg ) *pzErrMsg = 0; - res.zErrMsg = 0; - res.nRow = 0; - res.nColumn = 0; - res.nData = 1; - res.nAlloc = 20; - res.rc = SQLITE_OK; - res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc ); - if( res.azResult==0 ){ - db->errCode = SQLITE_NOMEM; - return SQLITE_NOMEM; - } - res.azResult[0] = 0; - rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); - assert( sizeof(res.azResult[0])>= sizeof(res.nData) ); - res.azResult[0] = SQLITE_INT_TO_PTR(res.nData); - if( (rc&0xff)==SQLITE_ABORT ){ - sqlite3_free_table(&res.azResult[1]); - if( res.zErrMsg ){ - if( pzErrMsg ){ - sqlite3_free(*pzErrMsg); - *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); - } - sqlite3_free(res.zErrMsg); - } - db->errCode = res.rc; /* Assume 32-bit assignment is atomic */ - return res.rc; - } - sqlite3_free(res.zErrMsg); - if( rc!=SQLITE_OK ){ - sqlite3_free_table(&res.azResult[1]); - return rc; - } - if( res.nAlloc>res.nData ){ - char **azNew; - azNew = sqlite3_realloc( res.azResult, sizeof(char*)*res.nData ); - if( azNew==0 ){ - sqlite3_free_table(&res.azResult[1]); - db->errCode = SQLITE_NOMEM; - return SQLITE_NOMEM; - } - res.azResult = azNew; - } - *pazResult = &res.azResult[1]; - if( pnColumn ) *pnColumn = res.nColumn; - if( pnRow ) *pnRow = res.nRow; - return rc; -} - -/* -** This routine frees the space the sqlite3_get_table() malloced. -*/ -SQLITE_API void sqlite3_free_table( - char **azResult /* Result returned from from sqlite3_get_table() */ -){ - if( azResult ){ - int i, n; - azResult--; - assert( azResult!=0 ); - n = SQLITE_PTR_TO_INT(azResult[0]); - for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); } - sqlite3_free(azResult); - } -} - -#endif /* SQLITE_OMIT_GET_TABLE */ - -/************** End of table.c ***********************************************/ -/************** Begin file trigger.c *****************************************/ -/* -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains the implementation for TRIGGERs -*/ - -#ifndef SQLITE_OMIT_TRIGGER -/* -** Delete a linked list of TriggerStep structures. -*/ -SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){ - while( pTriggerStep ){ - TriggerStep * pTmp = pTriggerStep; - pTriggerStep = pTriggerStep->pNext; - - sqlite3ExprDelete(db, pTmp->pWhere); - sqlite3ExprListDelete(db, pTmp->pExprList); - sqlite3SelectDelete(db, pTmp->pSelect); - sqlite3IdListDelete(db, pTmp->pIdList); - - sqlite3DbFree(db, pTmp); - } -} - -/* -** Given table pTab, return a list of all the triggers attached to -** the table. The list is connected by Trigger.pNext pointers. -** -** All of the triggers on pTab that are in the same database as pTab -** are already attached to pTab->pTrigger. But there might be additional -** triggers on pTab in the TEMP schema. This routine prepends all -** TEMP triggers on pTab to the beginning of the pTab->pTrigger list -** and returns the combined list. -** -** To state it another way: This routine returns a list of all triggers -** that fire off of pTab. The list will include any TEMP triggers on -** pTab as well as the triggers lised in pTab->pTrigger. -*/ -SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){ - Schema * const pTmpSchema = pParse->db->aDb[1].pSchema; - Trigger *pList = 0; /* List of triggers to return */ - - if( pParse->disableTriggers ){ - return 0; - } - - if( pTmpSchema!=pTab->pSchema ){ - HashElem *p; - assert( sqlite3SchemaMutexHeld(pParse->db, 0, pTmpSchema) ); - for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){ - Trigger *pTrig = (Trigger *)sqliteHashData(p); - if( pTrig->pTabSchema==pTab->pSchema - && 0==sqlite3StrICmp(pTrig->table, pTab->zName) - ){ - pTrig->pNext = (pList ? pList : pTab->pTrigger); - pList = pTrig; - } - } - } - - return (pList ? pList : pTab->pTrigger); -} - -/* -** This is called by the parser when it sees a CREATE TRIGGER statement -** up to the point of the BEGIN before the trigger actions. A Trigger -** structure is generated based on the information available and stored -** in pParse->pNewTrigger. After the trigger actions have been parsed, the -** sqlite3FinishTrigger() function is called to complete the trigger -** construction process. -*/ -SQLITE_PRIVATE void sqlite3BeginTrigger( - Parse *pParse, /* The parse context of the CREATE TRIGGER statement */ - Token *pName1, /* The name of the trigger */ - Token *pName2, /* The name of the trigger */ - int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */ - int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */ - IdList *pColumns, /* column list if this is an UPDATE OF trigger */ - SrcList *pTableName,/* The name of the table/view the trigger applies to */ - Expr *pWhen, /* WHEN clause */ - int isTemp, /* True if the TEMPORARY keyword is present */ - int noErr /* Suppress errors if the trigger already exists */ -){ - Trigger *pTrigger = 0; /* The new trigger */ - Table *pTab; /* Table that the trigger fires off of */ - char *zName = 0; /* Name of the trigger */ - sqlite3 *db = pParse->db; /* The database connection */ - int iDb; /* The database to store the trigger in */ - Token *pName; /* The unqualified db name */ - DbFixer sFix; /* State vector for the DB fixer */ - int iTabDb; /* Index of the database holding pTab */ - - assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */ - assert( pName2!=0 ); - assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE ); - assert( op>0 && op<0xff ); - if( isTemp ){ - /* If TEMP was specified, then the trigger name may not be qualified. */ - if( pName2->n>0 ){ - sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); - goto trigger_cleanup; - } - iDb = 1; - pName = pName1; - }else{ - /* Figure out the db that the trigger will be created in */ - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); - if( iDb<0 ){ - goto trigger_cleanup; - } - } - if( !pTableName || db->mallocFailed ){ - goto trigger_cleanup; - } - - /* A long-standing parser bug is that this syntax was allowed: - ** - ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... - ** ^^^^^^^^ - ** - ** To maintain backwards compatibility, ignore the database - ** name on pTableName if we are reparsing our of SQLITE_MASTER. - */ - if( db->init.busy && iDb!=1 ){ - sqlite3DbFree(db, pTableName->a[0].zDatabase); - pTableName->a[0].zDatabase = 0; - } - - /* If the trigger name was unqualified, and the table is a temp table, - ** then set iDb to 1 to create the trigger in the temporary database. - ** If sqlite3SrcListLookup() returns 0, indicating the table does not - ** exist, the error is caught by the block below. - */ - pTab = sqlite3SrcListLookup(pParse, pTableName); - if( db->init.busy==0 && pName2->n==0 && pTab - && pTab->pSchema==db->aDb[1].pSchema ){ - iDb = 1; - } - - /* Ensure the table name matches database name and that the table exists */ - if( db->mallocFailed ) goto trigger_cleanup; - assert( pTableName->nSrc==1 ); - if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && - sqlite3FixSrcList(&sFix, pTableName) ){ - goto trigger_cleanup; - } - pTab = sqlite3SrcListLookup(pParse, pTableName); - if( !pTab ){ - /* The table does not exist. */ - if( db->init.iDb==1 ){ - /* Ticket #3810. - ** Normally, whenever a table is dropped, all associated triggers are - ** dropped too. But if a TEMP trigger is created on a non-TEMP table - ** and the table is dropped by a different database connection, the - ** trigger is not visible to the database connection that does the - ** drop so the trigger cannot be dropped. This results in an - ** "orphaned trigger" - a trigger whose associated table is missing. - */ - db->init.orphanTrigger = 1; - } - goto trigger_cleanup; - } - if( IsVirtual(pTab) ){ - sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables"); - goto trigger_cleanup; - } - - /* Check that the trigger name is not reserved and that no trigger of the - ** specified name exists */ - zName = sqlite3NameFromToken(db, pName); - if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ - goto trigger_cleanup; - } - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), - zName, sqlite3Strlen30(zName)) ){ - if( !noErr ){ - sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); - }else{ - assert( !db->init.busy ); - sqlite3CodeVerifySchema(pParse, iDb); - } - goto trigger_cleanup; - } - - /* Do not create a trigger on a system table */ - if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ - sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); - pParse->nErr++; - goto trigger_cleanup; - } - - /* INSTEAD of triggers are only for views and views only support INSTEAD - ** of triggers. - */ - if( pTab->pSelect && tr_tm!=TK_INSTEAD ){ - sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", - (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0); - goto trigger_cleanup; - } - if( !pTab->pSelect && tr_tm==TK_INSTEAD ){ - sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" - " trigger on table: %S", pTableName, 0); - goto trigger_cleanup; - } - iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); - -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int code = SQLITE_CREATE_TRIGGER; - const char *zDb = db->aDb[iTabDb].zName; - const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb; - if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; - if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ - goto trigger_cleanup; - } - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){ - goto trigger_cleanup; - } - } -#endif - - /* INSTEAD OF triggers can only appear on views and BEFORE triggers - ** cannot appear on views. So we might as well translate every - ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code - ** elsewhere. - */ - if (tr_tm == TK_INSTEAD){ - tr_tm = TK_BEFORE; - } - - /* Build the Trigger object */ - pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); - if( pTrigger==0 ) goto trigger_cleanup; - pTrigger->zName = zName; - zName = 0; - pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName); - pTrigger->pSchema = db->aDb[iDb].pSchema; - pTrigger->pTabSchema = pTab->pSchema; - pTrigger->op = (u8)op; - pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; - pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); - pTrigger->pColumns = sqlite3IdListDup(db, pColumns); - assert( pParse->pNewTrigger==0 ); - pParse->pNewTrigger = pTrigger; - -trigger_cleanup: - sqlite3DbFree(db, zName); - sqlite3SrcListDelete(db, pTableName); - sqlite3IdListDelete(db, pColumns); - sqlite3ExprDelete(db, pWhen); - if( !pParse->pNewTrigger ){ - sqlite3DeleteTrigger(db, pTrigger); - }else{ - assert( pParse->pNewTrigger==pTrigger ); - } -} - -/* -** This routine is called after all of the trigger actions have been parsed -** in order to complete the process of building the trigger. -*/ -SQLITE_PRIVATE void sqlite3FinishTrigger( - Parse *pParse, /* Parser context */ - TriggerStep *pStepList, /* The triggered program */ - Token *pAll /* Token that describes the complete CREATE TRIGGER */ -){ - Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */ - char *zName; /* Name of trigger */ - sqlite3 *db = pParse->db; /* The database */ - DbFixer sFix; /* Fixer object */ - int iDb; /* Database containing the trigger */ - Token nameToken; /* Trigger name for error reporting */ - - pParse->pNewTrigger = 0; - if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; - zName = pTrig->zName; - iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); - pTrig->step_list = pStepList; - while( pStepList ){ - pStepList->pTrig = pTrig; - pStepList = pStepList->pNext; - } - nameToken.z = pTrig->zName; - nameToken.n = sqlite3Strlen30(nameToken.z); - if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken) - && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){ - goto triggerfinish_cleanup; - } - - /* if we are not initializing, - ** build the sqlite_master entry - */ - if( !db->init.busy ){ - Vdbe *v; - char *z; - - /* Make an entry in the sqlite_master table */ - v = sqlite3GetVdbe(pParse); - if( v==0 ) goto triggerfinish_cleanup; - sqlite3BeginWriteOperation(pParse, 0, iDb); - z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n); - sqlite3NestedParse(pParse, - "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')", - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName, - pTrig->table, z); - sqlite3DbFree(db, z); - sqlite3ChangeCookie(pParse, iDb); - sqlite3VdbeAddParseSchemaOp(v, iDb, - sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName)); - } - - if( db->init.busy ){ - Trigger *pLink = pTrig; - Hash *pHash = &db->aDb[iDb].pSchema->trigHash; - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig); - if( pTrig ){ - db->mallocFailed = 1; - }else if( pLink->pSchema==pLink->pTabSchema ){ - Table *pTab; - int n = sqlite3Strlen30(pLink->table); - pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n); - assert( pTab!=0 ); - pLink->pNext = pTab->pTrigger; - pTab->pTrigger = pLink; - } - } - -triggerfinish_cleanup: - sqlite3DeleteTrigger(db, pTrig); - assert( !pParse->pNewTrigger ); - sqlite3DeleteTriggerStep(db, pStepList); -} - -/* -** Turn a SELECT statement (that the pSelect parameter points to) into -** a trigger step. Return a pointer to a TriggerStep structure. -** -** The parser calls this routine when it finds a SELECT statement in -** body of a TRIGGER. -*/ -SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){ - TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); - if( pTriggerStep==0 ) { - sqlite3SelectDelete(db, pSelect); - return 0; - } - pTriggerStep->op = TK_SELECT; - pTriggerStep->pSelect = pSelect; - pTriggerStep->orconf = OE_Default; - return pTriggerStep; -} - -/* -** Allocate space to hold a new trigger step. The allocated space -** holds both the TriggerStep object and the TriggerStep.target.z string. -** -** If an OOM error occurs, NULL is returned and db->mallocFailed is set. -*/ -static TriggerStep *triggerStepAllocate( - sqlite3 *db, /* Database connection */ - u8 op, /* Trigger opcode */ - Token *pName /* The target name */ -){ - TriggerStep *pTriggerStep; - - pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n); - if( pTriggerStep ){ - char *z = (char*)&pTriggerStep[1]; - memcpy(z, pName->z, pName->n); - pTriggerStep->target.z = z; - pTriggerStep->target.n = pName->n; - pTriggerStep->op = op; - } - return pTriggerStep; -} - -/* -** Build a trigger step out of an INSERT statement. Return a pointer -** to the new trigger step. -** -** The parser calls this routine when it sees an INSERT inside the -** body of a trigger. -*/ -SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep( - sqlite3 *db, /* The database connection */ - Token *pTableName, /* Name of the table into which we insert */ - IdList *pColumn, /* List of columns in pTableName to insert into */ - ExprList *pEList, /* The VALUE clause: a list of values to be inserted */ - Select *pSelect, /* A SELECT statement that supplies values */ - u8 orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ -){ - TriggerStep *pTriggerStep; - - assert(pEList == 0 || pSelect == 0); - assert(pEList != 0 || pSelect != 0 || db->mallocFailed); - - pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName); - if( pTriggerStep ){ - pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); - pTriggerStep->pIdList = pColumn; - pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE); - pTriggerStep->orconf = orconf; - }else{ - sqlite3IdListDelete(db, pColumn); - } - sqlite3ExprListDelete(db, pEList); - sqlite3SelectDelete(db, pSelect); - - return pTriggerStep; -} - -/* -** Construct a trigger step that implements an UPDATE statement and return -** a pointer to that trigger step. The parser calls this routine when it -** sees an UPDATE statement inside the body of a CREATE TRIGGER. -*/ -SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep( - sqlite3 *db, /* The database connection */ - Token *pTableName, /* Name of the table to be updated */ - ExprList *pEList, /* The SET clause: list of column and new values */ - Expr *pWhere, /* The WHERE clause */ - u8 orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */ -){ - TriggerStep *pTriggerStep; - - pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName); - if( pTriggerStep ){ - pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE); - pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); - pTriggerStep->orconf = orconf; - } - sqlite3ExprListDelete(db, pEList); - sqlite3ExprDelete(db, pWhere); - return pTriggerStep; -} - -/* -** Construct a trigger step that implements a DELETE statement and return -** a pointer to that trigger step. The parser calls this routine when it -** sees a DELETE statement inside the body of a CREATE TRIGGER. -*/ -SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep( - sqlite3 *db, /* Database connection */ - Token *pTableName, /* The table from which rows are deleted */ - Expr *pWhere /* The WHERE clause */ -){ - TriggerStep *pTriggerStep; - - pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName); - if( pTriggerStep ){ - pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); - pTriggerStep->orconf = OE_Default; - } - sqlite3ExprDelete(db, pWhere); - return pTriggerStep; -} - -/* -** Recursively delete a Trigger structure -*/ -SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){ - if( pTrigger==0 ) return; - sqlite3DeleteTriggerStep(db, pTrigger->step_list); - sqlite3DbFree(db, pTrigger->zName); - sqlite3DbFree(db, pTrigger->table); - sqlite3ExprDelete(db, pTrigger->pWhen); - sqlite3IdListDelete(db, pTrigger->pColumns); - sqlite3DbFree(db, pTrigger); -} - -/* -** This function is called to drop a trigger from the database schema. -** -** This may be called directly from the parser and therefore identifies -** the trigger by name. The sqlite3DropTriggerPtr() routine does the -** same job as this routine except it takes a pointer to the trigger -** instead of the trigger name. -**/ -SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){ - Trigger *pTrigger = 0; - int i; - const char *zDb; - const char *zName; - int nName; - sqlite3 *db = pParse->db; - - if( db->mallocFailed ) goto drop_trigger_cleanup; - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ - goto drop_trigger_cleanup; - } - - assert( pName->nSrc==1 ); - zDb = pName->a[0].zDatabase; - zName = pName->a[0].zName; - nName = sqlite3Strlen30(zName); - assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); - for(i=OMIT_TEMPDB; i<db->nDb; i++){ - int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ - if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; - assert( sqlite3SchemaMutexHeld(db, j, 0) ); - pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName); - if( pTrigger ) break; - } - if( !pTrigger ){ - if( !noErr ){ - sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); - }else{ - sqlite3CodeVerifyNamedSchema(pParse, zDb); - } - pParse->checkSchema = 1; - goto drop_trigger_cleanup; - } - sqlite3DropTriggerPtr(pParse, pTrigger); - -drop_trigger_cleanup: - sqlite3SrcListDelete(db, pName); -} - -/* -** Return a pointer to the Table structure for the table that a trigger -** is set on. -*/ -static Table *tableOfTrigger(Trigger *pTrigger){ - int n = sqlite3Strlen30(pTrigger->table); - return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n); -} - - -/* -** Drop a trigger given a pointer to that trigger. -*/ -SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){ - Table *pTable; - Vdbe *v; - sqlite3 *db = pParse->db; - int iDb; - - iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema); - assert( iDb>=0 && iDb<db->nDb ); - pTable = tableOfTrigger(pTrigger); - assert( pTable ); - assert( pTable->pSchema==pTrigger->pSchema || iDb==1 ); -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int code = SQLITE_DROP_TRIGGER; - const char *zDb = db->aDb[iDb].zName; - const char *zTab = SCHEMA_TABLE(iDb); - if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; - if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) || - sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ - return; - } - } -#endif - - /* Generate code to destroy the database record of the trigger. - */ - assert( pTable!=0 ); - if( (v = sqlite3GetVdbe(pParse))!=0 ){ - int base; - static const VdbeOpList dropTrigger[] = { - { OP_Rewind, 0, ADDR(9), 0}, - { OP_String8, 0, 1, 0}, /* 1 */ - { OP_Column, 0, 1, 2}, - { OP_Ne, 2, ADDR(8), 1}, - { OP_String8, 0, 1, 0}, /* 4: "trigger" */ - { OP_Column, 0, 0, 2}, - { OP_Ne, 2, ADDR(8), 1}, - { OP_Delete, 0, 0, 0}, - { OP_Next, 0, ADDR(1), 0}, /* 8 */ - }; - - sqlite3BeginWriteOperation(pParse, 0, iDb); - sqlite3OpenMasterTable(pParse, iDb); - base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); - sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT); - sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); - sqlite3ChangeCookie(pParse, iDb); - sqlite3VdbeAddOp2(v, OP_Close, 0, 0); - sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); - if( pParse->nMem<3 ){ - pParse->nMem = 3; - } - } -} - -/* -** Remove a trigger from the hash tables of the sqlite* pointer. -*/ -SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ - Trigger *pTrigger; - Hash *pHash; - - assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); - pHash = &(db->aDb[iDb].pSchema->trigHash); - pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0); - if( ALWAYS(pTrigger) ){ - if( pTrigger->pSchema==pTrigger->pTabSchema ){ - Table *pTab = tableOfTrigger(pTrigger); - Trigger **pp; - for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext)); - *pp = (*pp)->pNext; - } - sqlite3DeleteTrigger(db, pTrigger); - db->flags |= SQLITE_InternChanges; - } -} - -/* -** pEList is the SET clause of an UPDATE statement. Each entry -** in pEList is of the format <id>=<expr>. If any of the entries -** in pEList have an <id> which matches an identifier in pIdList, -** then return TRUE. If pIdList==NULL, then it is considered a -** wildcard that matches anything. Likewise if pEList==NULL then -** it matches anything so always return true. Return false only -** if there is no match. -*/ -static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){ - int e; - if( pIdList==0 || NEVER(pEList==0) ) return 1; - for(e=0; e<pEList->nExpr; e++){ - if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1; - } - return 0; -} - -/* -** Return a list of all triggers on table pTab if there exists at least -** one trigger that must be fired when an operation of type 'op' is -** performed on the table, and, if that operation is an UPDATE, if at -** least one of the columns in pChanges is being modified. -*/ -SQLITE_PRIVATE Trigger *sqlite3TriggersExist( - Parse *pParse, /* Parse context */ - Table *pTab, /* The table the contains the triggers */ - int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ - ExprList *pChanges, /* Columns that change in an UPDATE statement */ - int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ -){ - int mask = 0; - Trigger *pList = 0; - Trigger *p; - - if( (pParse->db->flags & SQLITE_EnableTrigger)!=0 ){ - pList = sqlite3TriggerList(pParse, pTab); - } - assert( pList==0 || IsVirtual(pTab)==0 ); - for(p=pList; p; p=p->pNext){ - if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){ - mask |= p->tr_tm; - } - } - if( pMask ){ - *pMask = mask; - } - return (mask ? pList : 0); -} - -/* -** Convert the pStep->target token into a SrcList and return a pointer -** to that SrcList. -** -** This routine adds a specific database name, if needed, to the target when -** forming the SrcList. This prevents a trigger in one database from -** referring to a target in another database. An exception is when the -** trigger is in TEMP in which case it can refer to any other database it -** wants. -*/ -static SrcList *targetSrcList( - Parse *pParse, /* The parsing context */ - TriggerStep *pStep /* The trigger containing the target token */ -){ - int iDb; /* Index of the database to use */ - SrcList *pSrc; /* SrcList to be returned */ - - pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0); - if( pSrc ){ - assert( pSrc->nSrc>0 ); - assert( pSrc->a!=0 ); - iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema); - if( iDb==0 || iDb>=2 ){ - sqlite3 *db = pParse->db; - assert( iDb<pParse->db->nDb ); - pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); - } - } - return pSrc; -} - -/* -** Generate VDBE code for the statements inside the body of a single -** trigger. -*/ -static int codeTriggerProgram( - Parse *pParse, /* The parser context */ - TriggerStep *pStepList, /* List of statements inside the trigger body */ - int orconf /* Conflict algorithm. (OE_Abort, etc) */ -){ - TriggerStep *pStep; - Vdbe *v = pParse->pVdbe; - sqlite3 *db = pParse->db; - - assert( pParse->pTriggerTab && pParse->pToplevel ); - assert( pStepList ); - assert( v!=0 ); - for(pStep=pStepList; pStep; pStep=pStep->pNext){ - /* Figure out the ON CONFLICT policy that will be used for this step - ** of the trigger program. If the statement that caused this trigger - ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use - ** the ON CONFLICT policy that was specified as part of the trigger - ** step statement. Example: - ** - ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN; - ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); - ** END; - ** - ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy - ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy - */ - pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; - - /* Clear the cookieGoto flag. When coding triggers, the cookieGoto - ** variable is used as a flag to indicate to sqlite3ExprCodeConstants() - ** that it is not safe to refactor constants (this happens after the - ** start of the first loop in the SQL statement is coded - at that - ** point code may be conditionally executed, so it is no longer safe to - ** initialize constant register values). */ - assert( pParse->cookieGoto==0 || pParse->cookieGoto==-1 ); - pParse->cookieGoto = 0; - - switch( pStep->op ){ - case TK_UPDATE: { - sqlite3Update(pParse, - targetSrcList(pParse, pStep), - sqlite3ExprListDup(db, pStep->pExprList, 0), - sqlite3ExprDup(db, pStep->pWhere, 0), - pParse->eOrconf - ); - break; - } - case TK_INSERT: { - sqlite3Insert(pParse, - targetSrcList(pParse, pStep), - sqlite3ExprListDup(db, pStep->pExprList, 0), - sqlite3SelectDup(db, pStep->pSelect, 0), - sqlite3IdListDup(db, pStep->pIdList), - pParse->eOrconf - ); - break; - } - case TK_DELETE: { - sqlite3DeleteFrom(pParse, - targetSrcList(pParse, pStep), - sqlite3ExprDup(db, pStep->pWhere, 0) - ); - break; - } - default: assert( pStep->op==TK_SELECT ); { - SelectDest sDest; - Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0); - sqlite3SelectDestInit(&sDest, SRT_Discard, 0); - sqlite3Select(pParse, pSelect, &sDest); - sqlite3SelectDelete(db, pSelect); - break; - } - } - if( pStep->op!=TK_SELECT ){ - sqlite3VdbeAddOp0(v, OP_ResetCount); - } - } - - return 0; -} - -#ifdef SQLITE_DEBUG -/* -** This function is used to add VdbeComment() annotations to a VDBE -** program. It is not used in production code, only for debugging. -*/ -static const char *onErrorText(int onError){ - switch( onError ){ - case OE_Abort: return "abort"; - case OE_Rollback: return "rollback"; - case OE_Fail: return "fail"; - case OE_Replace: return "replace"; - case OE_Ignore: return "ignore"; - case OE_Default: return "default"; - } - return "n/a"; -} -#endif - -/* -** Parse context structure pFrom has just been used to create a sub-vdbe -** (trigger program). If an error has occurred, transfer error information -** from pFrom to pTo. -*/ -static void transferParseError(Parse *pTo, Parse *pFrom){ - assert( pFrom->zErrMsg==0 || pFrom->nErr ); - assert( pTo->zErrMsg==0 || pTo->nErr ); - if( pTo->nErr==0 ){ - pTo->zErrMsg = pFrom->zErrMsg; - pTo->nErr = pFrom->nErr; - }else{ - sqlite3DbFree(pFrom->db, pFrom->zErrMsg); - } -} - -/* -** Create and populate a new TriggerPrg object with a sub-program -** implementing trigger pTrigger with ON CONFLICT policy orconf. -*/ -static TriggerPrg *codeRowTrigger( - Parse *pParse, /* Current parse context */ - Trigger *pTrigger, /* Trigger to code */ - Table *pTab, /* The table pTrigger is attached to */ - int orconf /* ON CONFLICT policy to code trigger program with */ -){ - Parse *pTop = sqlite3ParseToplevel(pParse); - sqlite3 *db = pParse->db; /* Database handle */ - TriggerPrg *pPrg; /* Value to return */ - Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */ - Vdbe *v; /* Temporary VM */ - NameContext sNC; /* Name context for sub-vdbe */ - SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ - Parse *pSubParse; /* Parse context for sub-vdbe */ - int iEndTrigger = 0; /* Label to jump to if WHEN is false */ - - assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); - assert( pTop->pVdbe ); - - /* Allocate the TriggerPrg and SubProgram objects. To ensure that they - ** are freed if an error occurs, link them into the Parse.pTriggerPrg - ** list of the top-level Parse object sooner rather than later. */ - pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); - if( !pPrg ) return 0; - pPrg->pNext = pTop->pTriggerPrg; - pTop->pTriggerPrg = pPrg; - pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); - if( !pProgram ) return 0; - sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram); - pPrg->pTrigger = pTrigger; - pPrg->orconf = orconf; - pPrg->aColmask[0] = 0xffffffff; - pPrg->aColmask[1] = 0xffffffff; - - /* Allocate and populate a new Parse context to use for coding the - ** trigger sub-program. */ - pSubParse = sqlite3StackAllocZero(db, sizeof(Parse)); - if( !pSubParse ) return 0; - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pSubParse; - pSubParse->db = db; - pSubParse->pTriggerTab = pTab; - pSubParse->pToplevel = pTop; - pSubParse->zAuthContext = pTrigger->zName; - pSubParse->eTriggerOp = pTrigger->op; - pSubParse->nQueryLoop = pParse->nQueryLoop; - - v = sqlite3GetVdbe(pSubParse); - if( v ){ - VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)", - pTrigger->zName, onErrorText(orconf), - (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"), - (pTrigger->op==TK_UPDATE ? "UPDATE" : ""), - (pTrigger->op==TK_INSERT ? "INSERT" : ""), - (pTrigger->op==TK_DELETE ? "DELETE" : ""), - pTab->zName - )); -#ifndef SQLITE_OMIT_TRACE - sqlite3VdbeChangeP4(v, -1, - sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC - ); -#endif - - /* If one was specified, code the WHEN clause. If it evaluates to false - ** (or NULL) the sub-vdbe is immediately halted by jumping to the - ** OP_Halt inserted at the end of the program. */ - if( pTrigger->pWhen ){ - pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0); - if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen) - && db->mallocFailed==0 - ){ - iEndTrigger = sqlite3VdbeMakeLabel(v); - sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL); - } - sqlite3ExprDelete(db, pWhen); - } - - /* Code the trigger program into the sub-vdbe. */ - codeTriggerProgram(pSubParse, pTrigger->step_list, orconf); - - /* Insert an OP_Halt at the end of the sub-program. */ - if( iEndTrigger ){ - sqlite3VdbeResolveLabel(v, iEndTrigger); - } - sqlite3VdbeAddOp0(v, OP_Halt); - VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf))); - - transferParseError(pParse, pSubParse); - if( db->mallocFailed==0 ){ - pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); - } - pProgram->nMem = pSubParse->nMem; - pProgram->nCsr = pSubParse->nTab; - pProgram->nOnce = pSubParse->nOnce; - pProgram->token = (void *)pTrigger; - pPrg->aColmask[0] = pSubParse->oldmask; - pPrg->aColmask[1] = pSubParse->newmask; - sqlite3VdbeDelete(v); - } - - assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); - assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg ); - sqlite3StackFree(db, pSubParse); - - return pPrg; -} - -/* -** Return a pointer to a TriggerPrg object containing the sub-program for -** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such -** TriggerPrg object exists, a new object is allocated and populated before -** being returned. -*/ -static TriggerPrg *getRowTrigger( - Parse *pParse, /* Current parse context */ - Trigger *pTrigger, /* Trigger to code */ - Table *pTab, /* The table trigger pTrigger is attached to */ - int orconf /* ON CONFLICT algorithm. */ -){ - Parse *pRoot = sqlite3ParseToplevel(pParse); - TriggerPrg *pPrg; - - assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); - - /* It may be that this trigger has already been coded (or is in the - ** process of being coded). If this is the case, then an entry with - ** a matching TriggerPrg.pTrigger field will be present somewhere - ** in the Parse.pTriggerPrg list. Search for such an entry. */ - for(pPrg=pRoot->pTriggerPrg; - pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf); - pPrg=pPrg->pNext - ); - - /* If an existing TriggerPrg could not be located, create a new one. */ - if( !pPrg ){ - pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf); - } - - return pPrg; -} - -/* -** Generate code for the trigger program associated with trigger p on -** table pTab. The reg, orconf and ignoreJump parameters passed to this -** function are the same as those described in the header function for -** sqlite3CodeRowTrigger() -*/ -SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect( - Parse *pParse, /* Parse context */ - Trigger *p, /* Trigger to code */ - Table *pTab, /* The table to code triggers from */ - int reg, /* Reg array containing OLD.* and NEW.* values */ - int orconf, /* ON CONFLICT policy */ - int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ -){ - Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */ - TriggerPrg *pPrg; - pPrg = getRowTrigger(pParse, p, pTab, orconf); - assert( pPrg || pParse->nErr || pParse->db->mallocFailed ); - - /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program - ** is a pointer to the sub-vdbe containing the trigger program. */ - if( pPrg ){ - int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers)); - - sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem); - sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM); - VdbeComment( - (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf))); - - /* Set the P5 operand of the OP_Program instruction to non-zero if - ** recursive invocation of this trigger program is disallowed. Recursive - ** invocation is disallowed if (a) the sub-program is really a trigger, - ** not a foreign key action, and (b) the flag to enable recursive triggers - ** is clear. */ - sqlite3VdbeChangeP5(v, (u8)bRecursive); - } -} - -/* -** This is called to code the required FOR EACH ROW triggers for an operation -** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) -** is given by the op paramater. The tr_tm parameter determines whether the -** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then -** parameter pChanges is passed the list of columns being modified. -** -** If there are no triggers that fire at the specified time for the specified -** operation on pTab, this function is a no-op. -** -** The reg argument is the address of the first in an array of registers -** that contain the values substituted for the new.* and old.* references -** in the trigger program. If N is the number of columns in table pTab -** (a copy of pTab->nCol), then registers are populated as follows: -** -** Register Contains -** ------------------------------------------------------ -** reg+0 OLD.rowid -** reg+1 OLD.* value of left-most column of pTab -** ... ... -** reg+N OLD.* value of right-most column of pTab -** reg+N+1 NEW.rowid -** reg+N+2 OLD.* value of left-most column of pTab -** ... ... -** reg+N+N+1 NEW.* value of right-most column of pTab -** -** For ON DELETE triggers, the registers containing the NEW.* values will -** never be accessed by the trigger program, so they are not allocated or -** populated by the caller (there is no data to populate them with anyway). -** Similarly, for ON INSERT triggers the values stored in the OLD.* registers -** are never accessed, and so are not allocated by the caller. So, for an -** ON INSERT trigger, the value passed to this function as parameter reg -** is not a readable register, although registers (reg+N) through -** (reg+N+N+1) are. -** -** Parameter orconf is the default conflict resolution algorithm for the -** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump -** is the instruction that control should jump to if a trigger program -** raises an IGNORE exception. -*/ -SQLITE_PRIVATE void sqlite3CodeRowTrigger( - Parse *pParse, /* Parse context */ - Trigger *pTrigger, /* List of triggers on table pTab */ - int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ - ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ - int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ - Table *pTab, /* The table to code triggers from */ - int reg, /* The first in an array of registers (see above) */ - int orconf, /* ON CONFLICT policy */ - int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ -){ - Trigger *p; /* Used to iterate through pTrigger list */ - - assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE ); - assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER ); - assert( (op==TK_UPDATE)==(pChanges!=0) ); - - for(p=pTrigger; p; p=p->pNext){ - - /* Sanity checking: The schema for the trigger and for the table are - ** always defined. The trigger must be in the same schema as the table - ** or else it must be a TEMP trigger. */ - assert( p->pSchema!=0 ); - assert( p->pTabSchema!=0 ); - assert( p->pSchema==p->pTabSchema - || p->pSchema==pParse->db->aDb[1].pSchema ); - - /* Determine whether we should code this trigger */ - if( p->op==op - && p->tr_tm==tr_tm - && checkColumnOverlap(p->pColumns, pChanges) - ){ - sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump); - } - } -} - -/* -** Triggers may access values stored in the old.* or new.* pseudo-table. -** This function returns a 32-bit bitmask indicating which columns of the -** old.* or new.* tables actually are used by triggers. This information -** may be used by the caller, for example, to avoid having to load the entire -** old.* record into memory when executing an UPDATE or DELETE command. -** -** Bit 0 of the returned mask is set if the left-most column of the -** table may be accessed using an [old|new].<col> reference. Bit 1 is set if -** the second leftmost column value is required, and so on. If there -** are more than 32 columns in the table, and at least one of the columns -** with an index greater than 32 may be accessed, 0xffffffff is returned. -** -** It is not possible to determine if the old.rowid or new.rowid column is -** accessed by triggers. The caller must always assume that it is. -** -** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned -** applies to the old.* table. If 1, the new.* table. -** -** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE -** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only -** included in the returned mask if the TRIGGER_BEFORE bit is set in the -** tr_tm parameter. Similarly, values accessed by AFTER triggers are only -** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm. -*/ -SQLITE_PRIVATE u32 sqlite3TriggerColmask( - Parse *pParse, /* Parse context */ - Trigger *pTrigger, /* List of triggers on table pTab */ - ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ - int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */ - int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ - Table *pTab, /* The table to code triggers from */ - int orconf /* Default ON CONFLICT policy for trigger steps */ -){ - const int op = pChanges ? TK_UPDATE : TK_DELETE; - u32 mask = 0; - Trigger *p; - - assert( isNew==1 || isNew==0 ); - for(p=pTrigger; p; p=p->pNext){ - if( p->op==op && (tr_tm&p->tr_tm) - && checkColumnOverlap(p->pColumns,pChanges) - ){ - TriggerPrg *pPrg; - pPrg = getRowTrigger(pParse, p, pTab, orconf); - if( pPrg ){ - mask |= pPrg->aColmask[isNew]; - } - } - } - - return mask; -} - -#endif /* !defined(SQLITE_OMIT_TRIGGER) */ - -/************** End of trigger.c *********************************************/ -/************** Begin file update.c ******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains C code routines that are called by the parser -** to handle UPDATE statements. -*/ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* Forward declaration */ -static void updateVirtualTable( - Parse *pParse, /* The parsing context */ - SrcList *pSrc, /* The virtual table to be modified */ - Table *pTab, /* The virtual table */ - ExprList *pChanges, /* The columns to change in the UPDATE statement */ - Expr *pRowidExpr, /* Expression used to recompute the rowid */ - int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ - Expr *pWhere, /* WHERE clause of the UPDATE statement */ - int onError /* ON CONFLICT strategy */ -); -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -/* -** The most recently coded instruction was an OP_Column to retrieve the -** i-th column of table pTab. This routine sets the P4 parameter of the -** OP_Column to the default value, if any. -** -** The default value of a column is specified by a DEFAULT clause in the -** column definition. This was either supplied by the user when the table -** was created, or added later to the table definition by an ALTER TABLE -** command. If the latter, then the row-records in the table btree on disk -** may not contain a value for the column and the default value, taken -** from the P4 parameter of the OP_Column instruction, is returned instead. -** If the former, then all row-records are guaranteed to include a value -** for the column and the P4 value is not required. -** -** Column definitions created by an ALTER TABLE command may only have -** literal default values specified: a number, null or a string. (If a more -** complicated default expression value was provided, it is evaluated -** when the ALTER TABLE is executed and one of the literal values written -** into the sqlite_master table.) -** -** Therefore, the P4 parameter is only required if the default value for -** the column is a literal number, string or null. The sqlite3ValueFromExpr() -** function is capable of transforming these types of expressions into -** sqlite3_value objects. -** -** If parameter iReg is not negative, code an OP_RealAffinity instruction -** on register iReg. This is used when an equivalent integer value is -** stored in place of an 8-byte floating point value in order to save -** space. -*/ -SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){ - assert( pTab!=0 ); - if( !pTab->pSelect ){ - sqlite3_value *pValue; - u8 enc = ENC(sqlite3VdbeDb(v)); - Column *pCol = &pTab->aCol[i]; - VdbeComment((v, "%s.%s", pTab->zName, pCol->zName)); - assert( i<pTab->nCol ); - sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, - pCol->affinity, &pValue); - if( pValue ){ - sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM); - } -#ifndef SQLITE_OMIT_FLOATING_POINT - if( iReg>=0 && pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ - sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); - } -#endif - } -} - -/* -** Process an UPDATE statement. -** -** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; -** \_______/ \________/ \______/ \________________/ -* onError pTabList pChanges pWhere -*/ -SQLITE_PRIVATE void sqlite3Update( - Parse *pParse, /* The parser context */ - SrcList *pTabList, /* The table in which we should change things */ - ExprList *pChanges, /* Things to be changed */ - Expr *pWhere, /* The WHERE clause. May be null */ - int onError /* How to handle constraint errors */ -){ - int i, j; /* Loop counters */ - Table *pTab; /* The table to be updated */ - int addr = 0; /* VDBE instruction address of the start of the loop */ - WhereInfo *pWInfo; /* Information about the WHERE clause */ - Vdbe *v; /* The virtual database engine */ - Index *pIdx; /* For looping over indices */ - int nIdx; /* Number of indices that need updating */ - int iCur; /* VDBE Cursor number of pTab */ - sqlite3 *db; /* The database structure */ - int *aRegIdx = 0; /* One register assigned to each index to be updated */ - int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the - ** an expression for the i-th column of the table. - ** aXRef[i]==-1 if the i-th column is not changed. */ - int chngRowid; /* True if the record number is being changed */ - Expr *pRowidExpr = 0; /* Expression defining the new record number */ - int openAll = 0; /* True if all indices need to be opened */ - AuthContext sContext; /* The authorization context */ - NameContext sNC; /* The name-context to resolve expressions in */ - int iDb; /* Database containing the table being updated */ - int okOnePass; /* True for one-pass algorithm without the FIFO */ - int hasFK; /* True if foreign key processing is required */ - -#ifndef SQLITE_OMIT_TRIGGER - int isView; /* True when updating a view (INSTEAD OF trigger) */ - Trigger *pTrigger; /* List of triggers on pTab, if required */ - int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ -#endif - int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ - - /* Register Allocations */ - int regRowCount = 0; /* A count of rows changed */ - int regOldRowid; /* The old rowid */ - int regNewRowid; /* The new rowid */ - int regNew; /* Content of the NEW.* table in triggers */ - int regOld = 0; /* Content of OLD.* table in triggers */ - int regRowSet = 0; /* Rowset of rows to be updated */ - - memset(&sContext, 0, sizeof(sContext)); - db = pParse->db; - if( pParse->nErr || db->mallocFailed ){ - goto update_cleanup; - } - assert( pTabList->nSrc==1 ); - - /* Locate the table which we want to update. - */ - pTab = sqlite3SrcListLookup(pParse, pTabList); - if( pTab==0 ) goto update_cleanup; - iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); - - /* Figure out if we have any triggers and if the table being - ** updated is a view. - */ -#ifndef SQLITE_OMIT_TRIGGER - pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask); - isView = pTab->pSelect!=0; - assert( pTrigger || tmask==0 ); -#else -# define pTrigger 0 -# define isView 0 -# define tmask 0 -#endif -#ifdef SQLITE_OMIT_VIEW -# undef isView -# define isView 0 -#endif - - if( sqlite3ViewGetColumnNames(pParse, pTab) ){ - goto update_cleanup; - } - if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ - goto update_cleanup; - } - aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol ); - if( aXRef==0 ) goto update_cleanup; - for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; - - /* Allocate a cursors for the main database table and for all indices. - ** The index cursors might not be used, but if they are used they - ** need to occur right after the database cursor. So go ahead and - ** allocate enough space, just in case. - */ - pTabList->a[0].iCursor = iCur = pParse->nTab++; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - pParse->nTab++; - } - - /* Initialize the name-context */ - memset(&sNC, 0, sizeof(sNC)); - sNC.pParse = pParse; - sNC.pSrcList = pTabList; - - /* Resolve the column names in all the expressions of the - ** of the UPDATE statement. Also find the column index - ** for each column to be updated in the pChanges array. For each - ** column to be updated, make sure we have authorization to change - ** that column. - */ - chngRowid = 0; - for(i=0; i<pChanges->nExpr; i++){ - if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){ - goto update_cleanup; - } - for(j=0; j<pTab->nCol; j++){ - if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ - if( j==pTab->iPKey ){ - chngRowid = 1; - pRowidExpr = pChanges->a[i].pExpr; - } - aXRef[j] = i; - break; - } - } - if( j>=pTab->nCol ){ - if( sqlite3IsRowid(pChanges->a[i].zName) ){ - chngRowid = 1; - pRowidExpr = pChanges->a[i].pExpr; - }else{ - sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName); - pParse->checkSchema = 1; - goto update_cleanup; - } - } -#ifndef SQLITE_OMIT_AUTHORIZATION - { - int rc; - rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, - pTab->aCol[j].zName, db->aDb[iDb].zName); - if( rc==SQLITE_DENY ){ - goto update_cleanup; - }else if( rc==SQLITE_IGNORE ){ - aXRef[j] = -1; - } - } -#endif - } - - hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngRowid); - - /* Allocate memory for the array aRegIdx[]. There is one entry in the - ** array for each index associated with table being updated. Fill in - ** the value with a register number for indices that are to be used - ** and with zero for unused indices. - */ - for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} - if( nIdx>0 ){ - aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx ); - if( aRegIdx==0 ) goto update_cleanup; - } - for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ - int reg; - if( hasFK || chngRowid ){ - reg = ++pParse->nMem; - }else{ - reg = 0; - for(i=0; i<pIdx->nColumn; i++){ - if( aXRef[pIdx->aiColumn[i]]>=0 ){ - reg = ++pParse->nMem; - break; - } - } - } - aRegIdx[j] = reg; - } - - /* Begin generating code. */ - v = sqlite3GetVdbe(pParse); - if( v==0 ) goto update_cleanup; - if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); - sqlite3BeginWriteOperation(pParse, 1, iDb); - -#ifndef SQLITE_OMIT_VIRTUALTABLE - /* Virtual tables must be handled separately */ - if( IsVirtual(pTab) ){ - updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, - pWhere, onError); - pWhere = 0; - pTabList = 0; - goto update_cleanup; - } -#endif - - /* Allocate required registers. */ - regRowSet = ++pParse->nMem; - regOldRowid = regNewRowid = ++pParse->nMem; - if( pTrigger || hasFK ){ - regOld = pParse->nMem + 1; - pParse->nMem += pTab->nCol; - } - if( chngRowid || pTrigger || hasFK ){ - regNewRowid = ++pParse->nMem; - } - regNew = pParse->nMem + 1; - pParse->nMem += pTab->nCol; - - /* Start the view context. */ - if( isView ){ - sqlite3AuthContextPush(pParse, &sContext, pTab->zName); - } - - /* If we are trying to update a view, realize that view into - ** a ephemeral table. - */ -#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) - if( isView ){ - sqlite3MaterializeView(pParse, pTab, pWhere, iCur); - } -#endif - - /* Resolve the column names in all the expressions in the - ** WHERE clause. - */ - if( sqlite3ResolveExprNames(&sNC, pWhere) ){ - goto update_cleanup; - } - - /* Begin the database scan - */ - sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); - pWInfo = sqlite3WhereBegin( - pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0 - ); - if( pWInfo==0 ) goto update_cleanup; - okOnePass = pWInfo->okOnePass; - - /* Remember the rowid of every item to be updated. - */ - sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid); - if( !okOnePass ){ - sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid); - } - - /* End the database scan loop. - */ - sqlite3WhereEnd(pWInfo); - - /* Initialize the count of updated rows - */ - if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){ - regRowCount = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); - } - - if( !isView ){ - /* - ** Open every index that needs updating. Note that if any - ** index could potentially invoke a REPLACE conflict resolution - ** action, then we need to open all indices because we might need - ** to be deleting some records. - */ - if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite); - if( onError==OE_Replace ){ - openAll = 1; - }else{ - openAll = 0; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - if( pIdx->onError==OE_Replace ){ - openAll = 1; - break; - } - } - } - for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ - assert( aRegIdx ); - if( openAll || aRegIdx[i]>0 ){ - KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); - sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb, - (char*)pKey, P4_KEYINFO_HANDOFF); - assert( pParse->nTab>iCur+i+1 ); - } - } - } - - /* Top of the update loop */ - if( okOnePass ){ - int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid); - addr = sqlite3VdbeAddOp0(v, OP_Goto); - sqlite3VdbeJumpHere(v, a1); - }else{ - addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid); - } - - /* Make cursor iCur point to the record that is being updated. If - ** this record does not exist for some reason (deleted by a trigger, - ** for example, then jump to the next iteration of the RowSet loop. */ - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); - - /* If the record number will change, set register regNewRowid to - ** contain the new value. If the record number is not being modified, - ** then regNewRowid is the same register as regOldRowid, which is - ** already populated. */ - assert( chngRowid || pTrigger || hasFK || regOldRowid==regNewRowid ); - if( chngRowid ){ - sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); - sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); - } - - /* If there are triggers on this table, populate an array of registers - ** with the required old.* column data. */ - if( hasFK || pTrigger ){ - u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); - oldmask |= sqlite3TriggerColmask(pParse, - pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError - ); - for(i=0; i<pTab->nCol; i++){ - if( aXRef[i]<0 || oldmask==0xffffffff || (i<32 && (oldmask & (1<<i))) ){ - sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOld+i); - }else{ - sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i); - } - } - if( chngRowid==0 ){ - sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); - } - } - - /* Populate the array of registers beginning at regNew with the new - ** row data. This array is used to check constaints, create the new - ** table and index records, and as the values for any new.* references - ** made by triggers. - ** - ** If there are one or more BEFORE triggers, then do not populate the - ** registers associated with columns that are (a) not modified by - ** this UPDATE statement and (b) not accessed by new.* references. The - ** values for registers not modified by the UPDATE must be reloaded from - ** the database after the BEFORE triggers are fired anyway (as the trigger - ** may have modified them). So not loading those that are not going to - ** be used eliminates some redundant opcodes. - */ - newmask = sqlite3TriggerColmask( - pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError - ); - sqlite3VdbeAddOp3(v, OP_Null, 0, regNew, regNew+pTab->nCol-1); - for(i=0; i<pTab->nCol; i++){ - if( i==pTab->iPKey ){ - /*sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);*/ - }else{ - j = aXRef[i]; - if( j>=0 ){ - sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); - }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask&(1<<i)) ){ - /* This branch loads the value of a column that will not be changed - ** into a register. This is done if there are no BEFORE triggers, or - ** if there are one or more BEFORE triggers that use this value via - ** a new.* reference in a trigger program. - */ - testcase( i==31 ); - testcase( i==32 ); - sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i); - sqlite3ColumnDefault(v, pTab, i, regNew+i); - } - } - } - - /* Fire any BEFORE UPDATE triggers. This happens before constraints are - ** verified. One could argue that this is wrong. - */ - if( tmask&TRIGGER_BEFORE ){ - sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol); - sqlite3TableAffinityStr(v, pTab); - sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, - TRIGGER_BEFORE, pTab, regOldRowid, onError, addr); - - /* The row-trigger may have deleted the row being updated. In this - ** case, jump to the next row. No updates or AFTER triggers are - ** required. This behavior - what happens when the row being updated - ** is deleted or renamed by a BEFORE trigger - is left undefined in the - ** documentation. - */ - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); - - /* If it did not delete it, the row-trigger may still have modified - ** some of the columns of the row being updated. Load the values for - ** all columns not modified by the update statement into their - ** registers in case this has happened. - */ - for(i=0; i<pTab->nCol; i++){ - if( aXRef[i]<0 && i!=pTab->iPKey ){ - sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i); - sqlite3ColumnDefault(v, pTab, i, regNew+i); - } - } - } - - if( !isView ){ - int j1; /* Address of jump instruction */ - - /* Do constraint checks. */ - sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid, - aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0); - - /* Do FK constraint checks. */ - if( hasFK ){ - sqlite3FkCheck(pParse, pTab, regOldRowid, 0); - } - - /* Delete the index entries associated with the current record. */ - j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid); - sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx); - - /* If changing the record number, delete the old record. */ - if( hasFK || chngRowid ){ - sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0); - } - sqlite3VdbeJumpHere(v, j1); - - if( hasFK ){ - sqlite3FkCheck(pParse, pTab, 0, regNewRowid); - } - - /* Insert the new index entries and the new record. */ - sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0); - - /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to - ** handle rows (possibly in other tables) that refer via a foreign key - ** to the row just updated. */ - if( hasFK ){ - sqlite3FkActions(pParse, pTab, pChanges, regOldRowid); - } - } - - /* Increment the row counter - */ - if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){ - sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); - } - - sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, - TRIGGER_AFTER, pTab, regOldRowid, onError, addr); - - /* Repeat the above with the next record to be updated, until - ** all record selected by the WHERE clause have been updated. - */ - sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); - sqlite3VdbeJumpHere(v, addr); - - /* Close all tables */ - for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ - assert( aRegIdx ); - if( openAll || aRegIdx[i]>0 ){ - sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0); - } - } - sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); - - /* Update the sqlite_sequence table by storing the content of the - ** maximum rowid counter values recorded while inserting into - ** autoincrement tables. - */ - if( pParse->nested==0 && pParse->pTriggerTab==0 ){ - sqlite3AutoincrementEnd(pParse); - } - - /* - ** Return the number of rows that were changed. If this routine is - ** generating code because of a call to sqlite3NestedParse(), do not - ** invoke the callback function. - */ - if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){ - sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); - sqlite3VdbeSetNumCols(v, 1); - sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); - } - -update_cleanup: - sqlite3AuthContextPop(&sContext); - sqlite3DbFree(db, aRegIdx); - sqlite3DbFree(db, aXRef); - sqlite3SrcListDelete(db, pTabList); - sqlite3ExprListDelete(db, pChanges); - sqlite3ExprDelete(db, pWhere); - return; -} -/* Make sure "isView" and other macros defined above are undefined. Otherwise -** thely may interfere with compilation of other functions in this file -** (or in another file, if this file becomes part of the amalgamation). */ -#ifdef isView - #undef isView -#endif -#ifdef pTrigger - #undef pTrigger -#endif - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* -** Generate code for an UPDATE of a virtual table. -** -** The strategy is that we create an ephemerial table that contains -** for each row to be changed: -** -** (A) The original rowid of that row. -** (B) The revised rowid for the row. (note1) -** (C) The content of every column in the row. -** -** Then we loop over this ephemeral table and for each row in -** the ephermeral table call VUpdate. -** -** When finished, drop the ephemeral table. -** -** (note1) Actually, if we know in advance that (A) is always the same -** as (B) we only store (A), then duplicate (A) when pulling -** it out of the ephemeral table before calling VUpdate. -*/ -static void updateVirtualTable( - Parse *pParse, /* The parsing context */ - SrcList *pSrc, /* The virtual table to be modified */ - Table *pTab, /* The virtual table */ - ExprList *pChanges, /* The columns to change in the UPDATE statement */ - Expr *pRowid, /* Expression used to recompute the rowid */ - int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ - Expr *pWhere, /* WHERE clause of the UPDATE statement */ - int onError /* ON CONFLICT strategy */ -){ - Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ - ExprList *pEList = 0; /* The result set of the SELECT statement */ - Select *pSelect = 0; /* The SELECT statement */ - Expr *pExpr; /* Temporary expression */ - int ephemTab; /* Table holding the result of the SELECT */ - int i; /* Loop counter */ - int addr; /* Address of top of loop */ - int iReg; /* First register in set passed to OP_VUpdate */ - sqlite3 *db = pParse->db; /* Database connection */ - const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); - SelectDest dest; - - /* Construct the SELECT statement that will find the new values for - ** all updated rows. - */ - pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, "_rowid_")); - if( pRowid ){ - pEList = sqlite3ExprListAppend(pParse, pEList, - sqlite3ExprDup(db, pRowid, 0)); - } - assert( pTab->iPKey<0 ); - for(i=0; i<pTab->nCol; i++){ - if( aXRef[i]>=0 ){ - pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0); - }else{ - pExpr = sqlite3Expr(db, TK_ID, pTab->aCol[i].zName); - } - pEList = sqlite3ExprListAppend(pParse, pEList, pExpr); - } - pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0); - - /* Create the ephemeral table into which the update results will - ** be stored. - */ - assert( v ); - ephemTab = pParse->nTab++; - sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0)); - sqlite3VdbeChangeP5(v, BTREE_UNORDERED); - - /* fill the ephemeral table - */ - sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); - sqlite3Select(pParse, pSelect, &dest); - - /* Generate code to scan the ephemeral table and call VUpdate. */ - iReg = ++pParse->nMem; - pParse->nMem += pTab->nCol+1; - addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); - sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); - sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); - for(i=0; i<pTab->nCol; i++){ - sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); - } - sqlite3VtabMakeWritable(pParse, pTab); - sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); - sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); - sqlite3MayAbort(pParse); - sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); - sqlite3VdbeJumpHere(v, addr); - sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); - - /* Cleanup */ - sqlite3SelectDelete(db, pSelect); -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -/************** End of update.c **********************************************/ -/************** Begin file vacuum.c ******************************************/ -/* -** 2003 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to implement the VACUUM command. -** -** Most of the code in this file may be omitted by defining the -** SQLITE_OMIT_VACUUM macro. -*/ - -#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) -/* -** Finalize a prepared statement. If there was an error, store the -** text of the error message in *pzErrMsg. Return the result code. -*/ -static int vacuumFinalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){ - int rc; - rc = sqlite3VdbeFinalize((Vdbe*)pStmt); - if( rc ){ - sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); - } - return rc; -} - -/* -** Execute zSql on database db. Return an error code. -*/ -static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ - sqlite3_stmt *pStmt; - VVA_ONLY( int rc; ) - if( !zSql ){ - return SQLITE_NOMEM; - } - if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ - sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); - return sqlite3_errcode(db); - } - VVA_ONLY( rc = ) sqlite3_step(pStmt); - assert( rc!=SQLITE_ROW || (db->flags&SQLITE_CountRows) ); - return vacuumFinalize(db, pStmt, pzErrMsg); -} - -/* -** Execute zSql on database db. The statement returns exactly -** one column. Execute this as SQL on the same database. -*/ -static int execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ - sqlite3_stmt *pStmt; - int rc; - - rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); - if( rc!=SQLITE_OK ) return rc; - - while( SQLITE_ROW==sqlite3_step(pStmt) ){ - rc = execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0)); - if( rc!=SQLITE_OK ){ - vacuumFinalize(db, pStmt, pzErrMsg); - return rc; - } - } - - return vacuumFinalize(db, pStmt, pzErrMsg); -} - -/* -** The non-standard VACUUM command is used to clean up the database, -** collapse free space, etc. It is modelled after the VACUUM command -** in PostgreSQL. -** -** In version 1.0.x of SQLite, the VACUUM command would call -** gdbm_reorganize() on all the database tables. But beginning -** with 2.0.0, SQLite no longer uses GDBM so this command has -** become a no-op. -*/ -SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){ - Vdbe *v = sqlite3GetVdbe(pParse); - if( v ){ - sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0); - sqlite3VdbeUsesBtree(v, 0); - } - return; -} - -/* -** This routine implements the OP_Vacuum opcode of the VDBE. -*/ -SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ - int rc = SQLITE_OK; /* Return code from service routines */ - Btree *pMain; /* The database being vacuumed */ - Btree *pTemp; /* The temporary database we vacuum into */ - char *zSql = 0; /* SQL statements */ - int saved_flags; /* Saved value of the db->flags */ - int saved_nChange; /* Saved value of db->nChange */ - int saved_nTotalChange; /* Saved value of db->nTotalChange */ - void (*saved_xTrace)(void*,const char*); /* Saved db->xTrace */ - Db *pDb = 0; /* Database to detach at end of vacuum */ - int isMemDb; /* True if vacuuming a :memory: database */ - int nRes; /* Bytes of reserved space at the end of each page */ - int nDb; /* Number of attached databases */ - - if( !db->autoCommit ){ - sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); - return SQLITE_ERROR; - } - if( db->activeVdbeCnt>1 ){ - sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); - return SQLITE_ERROR; - } - - /* Save the current value of the database flags so that it can be - ** restored before returning. Then set the writable-schema flag, and - ** disable CHECK and foreign key constraints. */ - saved_flags = db->flags; - saved_nChange = db->nChange; - saved_nTotalChange = db->nTotalChange; - saved_xTrace = db->xTrace; - db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin; - db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder); - db->xTrace = 0; - - pMain = db->aDb[0].pBt; - isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); - - /* Attach the temporary database as 'vacuum_db'. The synchronous pragma - ** can be set to 'off' for this file, as it is not recovered if a crash - ** occurs anyway. The integrity of the database is maintained by a - ** (possibly synchronous) transaction opened on the main database before - ** sqlite3BtreeCopyFile() is called. - ** - ** An optimisation would be to use a non-journaled pager. - ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but - ** that actually made the VACUUM run slower. Very little journalling - ** actually occurs when doing a vacuum since the vacuum_db is initially - ** empty. Only the journal header is written. Apparently it takes more - ** time to parse and run the PRAGMA to turn journalling off than it does - ** to write the journal header file. - */ - nDb = db->nDb; - if( sqlite3TempInMemory(db) ){ - zSql = "ATTACH ':memory:' AS vacuum_db;"; - }else{ - zSql = "ATTACH '' AS vacuum_db;"; - } - rc = execSql(db, pzErrMsg, zSql); - if( db->nDb>nDb ){ - pDb = &db->aDb[db->nDb-1]; - assert( strcmp(pDb->zName,"vacuum_db")==0 ); - } - if( rc!=SQLITE_OK ) goto end_of_vacuum; - pTemp = db->aDb[db->nDb-1].pBt; - - /* The call to execSql() to attach the temp database has left the file - ** locked (as there was more than one active statement when the transaction - ** to read the schema was concluded. Unlock it here so that this doesn't - ** cause problems for the call to BtreeSetPageSize() below. */ - sqlite3BtreeCommit(pTemp); - - nRes = sqlite3BtreeGetReserve(pMain); - - /* A VACUUM cannot change the pagesize of an encrypted database. */ -#ifdef SQLITE_HAS_CODEC - if( db->nextPagesize ){ - extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); - int nKey; - char *zKey; - sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); - if( nKey ) db->nextPagesize = 0; - } -#endif - - rc = execSql(db, pzErrMsg, "PRAGMA vacuum_db.synchronous=OFF"); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - - /* Begin a transaction and take an exclusive lock on the main database - ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, - ** to ensure that we do not try to change the page-size on a WAL database. - */ - rc = execSql(db, pzErrMsg, "BEGIN;"); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - rc = sqlite3BtreeBeginTrans(pMain, 2); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - - /* Do not attempt to change the page size for a WAL database */ - if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) - ==PAGER_JOURNALMODE_WAL ){ - db->nextPagesize = 0; - } - - if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) - || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) - || NEVER(db->mallocFailed) - ){ - rc = SQLITE_NOMEM; - goto end_of_vacuum; - } - -#ifndef SQLITE_OMIT_AUTOVACUUM - sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : - sqlite3BtreeGetAutoVacuum(pMain)); -#endif - - /* Query the schema of the main database. Create a mirror schema - ** in the temporary database. - */ - rc = execExecSql(db, pzErrMsg, - "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) " - " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" - " AND rootpage>0" - ); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - rc = execExecSql(db, pzErrMsg, - "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)" - " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - rc = execExecSql(db, pzErrMsg, - "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) " - " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - - /* Loop through the tables in the main database. For each, do - ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy - ** the contents to the temporary database. - */ - rc = execExecSql(db, pzErrMsg, - "SELECT 'INSERT INTO vacuum_db.' || quote(name) " - "|| ' SELECT * FROM main.' || quote(name) || ';'" - "FROM main.sqlite_master " - "WHERE type = 'table' AND name!='sqlite_sequence' " - " AND rootpage>0" - ); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - - /* Copy over the sequence table - */ - rc = execExecSql(db, pzErrMsg, - "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " - "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " - ); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - rc = execExecSql(db, pzErrMsg, - "SELECT 'INSERT INTO vacuum_db.' || quote(name) " - "|| ' SELECT * FROM main.' || quote(name) || ';' " - "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" - ); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - - - /* Copy the triggers, views, and virtual tables from the main database - ** over to the temporary database. None of these objects has any - ** associated storage, so all we have to do is copy their entries - ** from the SQLITE_MASTER table. - */ - rc = execSql(db, pzErrMsg, - "INSERT INTO vacuum_db.sqlite_master " - " SELECT type, name, tbl_name, rootpage, sql" - " FROM main.sqlite_master" - " WHERE type='view' OR type='trigger'" - " OR (type='table' AND rootpage=0)" - ); - if( rc ) goto end_of_vacuum; - - /* At this point, there is a write transaction open on both the - ** vacuum database and the main database. Assuming no error occurs, - ** both transactions are closed by this block - the main database - ** transaction by sqlite3BtreeCopyFile() and the other by an explicit - ** call to sqlite3BtreeCommit(). - */ - { - u32 meta; - int i; - - /* This array determines which meta meta values are preserved in the - ** vacuum. Even entries are the meta value number and odd entries - ** are an increment to apply to the meta value after the vacuum. - ** The increment is used to increase the schema cookie so that other - ** connections to the same database will know to reread the schema. - */ - static const unsigned char aCopy[] = { - BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ - BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ - BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ - BTREE_USER_VERSION, 0, /* Preserve the user version */ - }; - - assert( 1==sqlite3BtreeIsInTrans(pTemp) ); - assert( 1==sqlite3BtreeIsInTrans(pMain) ); - - /* Copy Btree meta values */ - for(i=0; i<ArraySize(aCopy); i+=2){ - /* GetMeta() and UpdateMeta() cannot fail in this context because - ** we already have page 1 loaded into cache and marked dirty. */ - sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); - rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); - if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum; - } - - rc = sqlite3BtreeCopyFile(pMain, pTemp); - if( rc!=SQLITE_OK ) goto end_of_vacuum; - rc = sqlite3BtreeCommit(pTemp); - if( rc!=SQLITE_OK ) goto end_of_vacuum; -#ifndef SQLITE_OMIT_AUTOVACUUM - sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); -#endif - } - - assert( rc==SQLITE_OK ); - rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1); - -end_of_vacuum: - /* Restore the original value of db->flags */ - db->flags = saved_flags; - db->nChange = saved_nChange; - db->nTotalChange = saved_nTotalChange; - db->xTrace = saved_xTrace; - sqlite3BtreeSetPageSize(pMain, -1, -1, 1); - - /* Currently there is an SQL level transaction open on the vacuum - ** database. No locks are held on any other files (since the main file - ** was committed at the btree level). So it safe to end the transaction - ** by manually setting the autoCommit flag to true and detaching the - ** vacuum database. The vacuum_db journal file is deleted when the pager - ** is closed by the DETACH. - */ - db->autoCommit = 1; - - if( pDb ){ - sqlite3BtreeClose(pDb->pBt); - pDb->pBt = 0; - pDb->pSchema = 0; - } - - /* This both clears the schemas and reduces the size of the db->aDb[] - ** array. */ - sqlite3ResetAllSchemasOfConnection(db); - - return rc; -} - -#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ - -/************** End of vacuum.c **********************************************/ -/************** Begin file vtab.c ********************************************/ -/* -** 2006 June 10 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used to help implement virtual tables. -*/ -#ifndef SQLITE_OMIT_VIRTUALTABLE - -/* -** Before a virtual table xCreate() or xConnect() method is invoked, the -** sqlite3.pVtabCtx member variable is set to point to an instance of -** this struct allocated on the stack. It is used by the implementation of -** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which -** are invoked only from within xCreate and xConnect methods. -*/ -struct VtabCtx { - VTable *pVTable; /* The virtual table being constructed */ - Table *pTab; /* The Table object to which the virtual table belongs */ -}; - -/* -** The actual function that does the work of creating a new module. -** This function implements the sqlite3_create_module() and -** sqlite3_create_module_v2() interfaces. -*/ -static int createModule( - sqlite3 *db, /* Database in which module is registered */ - const char *zName, /* Name assigned to this module */ - const sqlite3_module *pModule, /* The definition of the module */ - void *pAux, /* Context pointer for xCreate/xConnect */ - void (*xDestroy)(void *) /* Module destructor function */ -){ - int rc = SQLITE_OK; - int nName; - - sqlite3_mutex_enter(db->mutex); - nName = sqlite3Strlen30(zName); - if( sqlite3HashFind(&db->aModule, zName, nName) ){ - rc = SQLITE_MISUSE_BKPT; - }else{ - Module *pMod; - pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); - if( pMod ){ - Module *pDel; - char *zCopy = (char *)(&pMod[1]); - memcpy(zCopy, zName, nName+1); - pMod->zName = zCopy; - pMod->pModule = pModule; - pMod->pAux = pAux; - pMod->xDestroy = xDestroy; - pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,nName,(void*)pMod); - assert( pDel==0 || pDel==pMod ); - if( pDel ){ - db->mallocFailed = 1; - sqlite3DbFree(db, pDel); - } - } - } - rc = sqlite3ApiExit(db, rc); - if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); - - sqlite3_mutex_leave(db->mutex); - return rc; -} - - -/* -** External API function used to create a new virtual-table module. -*/ -SQLITE_API int sqlite3_create_module( - sqlite3 *db, /* Database in which module is registered */ - const char *zName, /* Name assigned to this module */ - const sqlite3_module *pModule, /* The definition of the module */ - void *pAux /* Context pointer for xCreate/xConnect */ -){ - return createModule(db, zName, pModule, pAux, 0); -} - -/* -** External API function used to create a new virtual-table module. -*/ -SQLITE_API int sqlite3_create_module_v2( - sqlite3 *db, /* Database in which module is registered */ - const char *zName, /* Name assigned to this module */ - const sqlite3_module *pModule, /* The definition of the module */ - void *pAux, /* Context pointer for xCreate/xConnect */ - void (*xDestroy)(void *) /* Module destructor function */ -){ - return createModule(db, zName, pModule, pAux, xDestroy); -} - -/* -** Lock the virtual table so that it cannot be disconnected. -** Locks nest. Every lock should have a corresponding unlock. -** If an unlock is omitted, resources leaks will occur. -** -** If a disconnect is attempted while a virtual table is locked, -** the disconnect is deferred until all locks have been removed. -*/ -SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){ - pVTab->nRef++; -} - - -/* -** pTab is a pointer to a Table structure representing a virtual-table. -** Return a pointer to the VTable object used by connection db to access -** this virtual-table, if one has been created, or NULL otherwise. -*/ -SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ - VTable *pVtab; - assert( IsVirtual(pTab) ); - for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); - return pVtab; -} - -/* -** Decrement the ref-count on a virtual table object. When the ref-count -** reaches zero, call the xDisconnect() method to delete the object. -*/ -SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){ - sqlite3 *db = pVTab->db; - - assert( db ); - assert( pVTab->nRef>0 ); - assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); - - pVTab->nRef--; - if( pVTab->nRef==0 ){ - sqlite3_vtab *p = pVTab->pVtab; - if( p ){ - p->pModule->xDisconnect(p); - } - sqlite3DbFree(db, pVTab); - } -} - -/* -** Table p is a virtual table. This function moves all elements in the -** p->pVTable list to the sqlite3.pDisconnect lists of their associated -** database connections to be disconnected at the next opportunity. -** Except, if argument db is not NULL, then the entry associated with -** connection db is left in the p->pVTable list. -*/ -static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ - VTable *pRet = 0; - VTable *pVTable = p->pVTable; - p->pVTable = 0; - - /* Assert that the mutex (if any) associated with the BtShared database - ** that contains table p is held by the caller. See header comments - ** above function sqlite3VtabUnlockList() for an explanation of why - ** this makes it safe to access the sqlite3.pDisconnect list of any - ** database connection that may have an entry in the p->pVTable list. - */ - assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); - - while( pVTable ){ - sqlite3 *db2 = pVTable->db; - VTable *pNext = pVTable->pNext; - assert( db2 ); - if( db2==db ){ - pRet = pVTable; - p->pVTable = pRet; - pRet->pNext = 0; - }else{ - pVTable->pNext = db2->pDisconnect; - db2->pDisconnect = pVTable; - } - pVTable = pNext; - } - - assert( !db || pRet ); - return pRet; -} - -/* -** Table *p is a virtual table. This function removes the VTable object -** for table *p associated with database connection db from the linked -** list in p->pVTab. It also decrements the VTable ref count. This is -** used when closing database connection db to free all of its VTable -** objects without disturbing the rest of the Schema object (which may -** be being used by other shared-cache connections). -*/ -SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ - VTable **ppVTab; - - assert( IsVirtual(p) ); - assert( sqlite3BtreeHoldsAllMutexes(db) ); - assert( sqlite3_mutex_held(db->mutex) ); - - for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ - if( (*ppVTab)->db==db ){ - VTable *pVTab = *ppVTab; - *ppVTab = pVTab->pNext; - sqlite3VtabUnlock(pVTab); - break; - } - } -} - - -/* -** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. -** -** This function may only be called when the mutexes associated with all -** shared b-tree databases opened using connection db are held by the -** caller. This is done to protect the sqlite3.pDisconnect list. The -** sqlite3.pDisconnect list is accessed only as follows: -** -** 1) By this function. In this case, all BtShared mutexes and the mutex -** associated with the database handle itself must be held. -** -** 2) By function vtabDisconnectAll(), when it adds a VTable entry to -** the sqlite3.pDisconnect list. In this case either the BtShared mutex -** associated with the database the virtual table is stored in is held -** or, if the virtual table is stored in a non-sharable database, then -** the database handle mutex is held. -** -** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously -** by multiple threads. It is thread-safe. -*/ -SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){ - VTable *p = db->pDisconnect; - db->pDisconnect = 0; - - assert( sqlite3BtreeHoldsAllMutexes(db) ); - assert( sqlite3_mutex_held(db->mutex) ); - - if( p ){ - sqlite3ExpirePreparedStatements(db); - do { - VTable *pNext = p->pNext; - sqlite3VtabUnlock(p); - p = pNext; - }while( p ); - } -} - -/* -** Clear any and all virtual-table information from the Table record. -** This routine is called, for example, just before deleting the Table -** record. -** -** Since it is a virtual-table, the Table structure contains a pointer -** to the head of a linked list of VTable structures. Each VTable -** structure is associated with a single sqlite3* user of the schema. -** The reference count of the VTable structure associated with database -** connection db is decremented immediately (which may lead to the -** structure being xDisconnected and free). Any other VTable structures -** in the list are moved to the sqlite3.pDisconnect list of the associated -** database connection. -*/ -SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){ - if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); - if( p->azModuleArg ){ - int i; - for(i=0; i<p->nModuleArg; i++){ - if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); - } - sqlite3DbFree(db, p->azModuleArg); - } -} - -/* -** Add a new module argument to pTable->azModuleArg[]. -** The string is not copied - the pointer is stored. The -** string will be freed automatically when the table is -** deleted. -*/ -static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ - int i = pTable->nModuleArg++; - int nBytes = sizeof(char *)*(1+pTable->nModuleArg); - char **azModuleArg; - azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); - if( azModuleArg==0 ){ - int j; - for(j=0; j<i; j++){ - sqlite3DbFree(db, pTable->azModuleArg[j]); - } - sqlite3DbFree(db, zArg); - sqlite3DbFree(db, pTable->azModuleArg); - pTable->nModuleArg = 0; - }else{ - azModuleArg[i] = zArg; - azModuleArg[i+1] = 0; - } - pTable->azModuleArg = azModuleArg; -} - -/* -** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE -** statement. The module name has been parsed, but the optional list -** of parameters that follow the module name are still pending. -*/ -SQLITE_PRIVATE void sqlite3VtabBeginParse( - Parse *pParse, /* Parsing context */ - Token *pName1, /* Name of new table, or database name */ - Token *pName2, /* Name of new table or NULL */ - Token *pModuleName, /* Name of the module for the virtual table */ - int ifNotExists /* No error if the table already exists */ -){ - int iDb; /* The database the table is being created in */ - Table *pTable; /* The new virtual table */ - sqlite3 *db; /* Database connection */ - - sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); - pTable = pParse->pNewTable; - if( pTable==0 ) return; - assert( 0==pTable->pIndex ); - - db = pParse->db; - iDb = sqlite3SchemaToIndex(db, pTable->pSchema); - assert( iDb>=0 ); - - pTable->tabFlags |= TF_Virtual; - pTable->nModuleArg = 0; - addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); - addModuleArgument(db, pTable, 0); - addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); - pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); - -#ifndef SQLITE_OMIT_AUTHORIZATION - /* Creating a virtual table invokes the authorization callback twice. - ** The first invocation, to obtain permission to INSERT a row into the - ** sqlite_master table, has already been made by sqlite3StartTable(). - ** The second call, to obtain permission to create the table, is made now. - */ - if( pTable->azModuleArg ){ - sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, - pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); - } -#endif -} - -/* -** This routine takes the module argument that has been accumulating -** in pParse->zArg[] and appends it to the list of arguments on the -** virtual table currently under construction in pParse->pTable. -*/ -static void addArgumentToVtab(Parse *pParse){ - if( pParse->sArg.z && pParse->pNewTable ){ - const char *z = (const char*)pParse->sArg.z; - int n = pParse->sArg.n; - sqlite3 *db = pParse->db; - addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); - } -} - -/* -** The parser calls this routine after the CREATE VIRTUAL TABLE statement -** has been completely parsed. -*/ -SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ - Table *pTab = pParse->pNewTable; /* The table being constructed */ - sqlite3 *db = pParse->db; /* The database connection */ - - if( pTab==0 ) return; - addArgumentToVtab(pParse); - pParse->sArg.z = 0; - if( pTab->nModuleArg<1 ) return; - - /* If the CREATE VIRTUAL TABLE statement is being entered for the - ** first time (in other words if the virtual table is actually being - ** created now instead of just being read out of sqlite_master) then - ** do additional initialization work and store the statement text - ** in the sqlite_master table. - */ - if( !db->init.busy ){ - char *zStmt; - char *zWhere; - int iDb; - Vdbe *v; - - /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ - if( pEnd ){ - pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; - } - zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); - - /* A slot for the record has already been allocated in the - ** SQLITE_MASTER table. We just need to update that slot with all - ** the information we've collected. - ** - ** The VM register number pParse->regRowid holds the rowid of an - ** entry in the sqlite_master table tht was created for this vtab - ** by sqlite3StartTable(). - */ - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - sqlite3NestedParse(pParse, - "UPDATE %Q.%s " - "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " - "WHERE rowid=#%d", - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), - pTab->zName, - pTab->zName, - zStmt, - pParse->regRowid - ); - sqlite3DbFree(db, zStmt); - v = sqlite3GetVdbe(pParse); - sqlite3ChangeCookie(pParse, iDb); - - sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); - zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); - sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); - sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, - pTab->zName, sqlite3Strlen30(pTab->zName) + 1); - } - - /* If we are rereading the sqlite_master table create the in-memory - ** record of the table. The xConnect() method is not called until - ** the first time the virtual table is used in an SQL statement. This - ** allows a schema that contains virtual tables to be loaded before - ** the required virtual table implementations are registered. */ - else { - Table *pOld; - Schema *pSchema = pTab->pSchema; - const char *zName = pTab->zName; - int nName = sqlite3Strlen30(zName); - assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); - pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); - if( pOld ){ - db->mallocFailed = 1; - assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ - return; - } - pParse->pNewTable = 0; - } -} - -/* -** The parser calls this routine when it sees the first token -** of an argument to the module name in a CREATE VIRTUAL TABLE statement. -*/ -SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){ - addArgumentToVtab(pParse); - pParse->sArg.z = 0; - pParse->sArg.n = 0; -} - -/* -** The parser calls this routine for each token after the first token -** in an argument to the module name in a CREATE VIRTUAL TABLE statement. -*/ -SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){ - Token *pArg = &pParse->sArg; - if( pArg->z==0 ){ - pArg->z = p->z; - pArg->n = p->n; - }else{ - assert(pArg->z < p->z); - pArg->n = (int)(&p->z[p->n] - pArg->z); - } -} - -/* -** Invoke a virtual table constructor (either xCreate or xConnect). The -** pointer to the function to invoke is passed as the fourth parameter -** to this procedure. -*/ -static int vtabCallConstructor( - sqlite3 *db, - Table *pTab, - Module *pMod, - int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), - char **pzErr -){ - VtabCtx sCtx, *pPriorCtx; - VTable *pVTable; - int rc; - const char *const*azArg = (const char *const*)pTab->azModuleArg; - int nArg = pTab->nModuleArg; - char *zErr = 0; - char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); - int iDb; - - if( !zModuleName ){ - return SQLITE_NOMEM; - } - - pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); - if( !pVTable ){ - sqlite3DbFree(db, zModuleName); - return SQLITE_NOMEM; - } - pVTable->db = db; - pVTable->pMod = pMod; - - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - pTab->azModuleArg[1] = db->aDb[iDb].zName; - - /* Invoke the virtual table constructor */ - assert( &db->pVtabCtx ); - assert( xConstruct ); - sCtx.pTab = pTab; - sCtx.pVTable = pVTable; - pPriorCtx = db->pVtabCtx; - db->pVtabCtx = &sCtx; - rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); - db->pVtabCtx = pPriorCtx; - if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; - - if( SQLITE_OK!=rc ){ - if( zErr==0 ){ - *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); - }else { - *pzErr = sqlite3MPrintf(db, "%s", zErr); - sqlite3_free(zErr); - } - sqlite3DbFree(db, pVTable); - }else if( ALWAYS(pVTable->pVtab) ){ - /* Justification of ALWAYS(): A correct vtab constructor must allocate - ** the sqlite3_vtab object if successful. */ - pVTable->pVtab->pModule = pMod->pModule; - pVTable->nRef = 1; - if( sCtx.pTab ){ - const char *zFormat = "vtable constructor did not declare schema: %s"; - *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); - sqlite3VtabUnlock(pVTable); - rc = SQLITE_ERROR; - }else{ - int iCol; - /* If everything went according to plan, link the new VTable structure - ** into the linked list headed by pTab->pVTable. Then loop through the - ** columns of the table to see if any of them contain the token "hidden". - ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from - ** the type string. */ - pVTable->pNext = pTab->pVTable; - pTab->pVTable = pVTable; - - for(iCol=0; iCol<pTab->nCol; iCol++){ - char *zType = pTab->aCol[iCol].zType; - int nType; - int i = 0; - if( !zType ) continue; - nType = sqlite3Strlen30(zType); - if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ - for(i=0; i<nType; i++){ - if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) - && (zType[i+7]=='\0' || zType[i+7]==' ') - ){ - i++; - break; - } - } - } - if( i<nType ){ - int j; - int nDel = 6 + (zType[i+6] ? 1 : 0); - for(j=i; (j+nDel)<=nType; j++){ - zType[j] = zType[j+nDel]; - } - if( zType[i]=='\0' && i>0 ){ - assert(zType[i-1]==' '); - zType[i-1] = '\0'; - } - pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; - } - } - } - } - - sqlite3DbFree(db, zModuleName); - return rc; -} - -/* -** This function is invoked by the parser to call the xConnect() method -** of the virtual table pTab. If an error occurs, an error code is returned -** and an error left in pParse. -** -** This call is a no-op if table pTab is not a virtual table. -*/ -SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ - sqlite3 *db = pParse->db; - const char *zMod; - Module *pMod; - int rc; - - assert( pTab ); - if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ - return SQLITE_OK; - } - - /* Locate the required virtual table module */ - zMod = pTab->azModuleArg[0]; - pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); - - if( !pMod ){ - const char *zModule = pTab->azModuleArg[0]; - sqlite3ErrorMsg(pParse, "no such module: %s", zModule); - rc = SQLITE_ERROR; - }else{ - char *zErr = 0; - rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); - if( rc!=SQLITE_OK ){ - sqlite3ErrorMsg(pParse, "%s", zErr); - } - sqlite3DbFree(db, zErr); - } - - return rc; -} -/* -** Grow the db->aVTrans[] array so that there is room for at least one -** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. -*/ -static int growVTrans(sqlite3 *db){ - const int ARRAY_INCR = 5; - - /* Grow the sqlite3.aVTrans array if required */ - if( (db->nVTrans%ARRAY_INCR)==0 ){ - VTable **aVTrans; - int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); - aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); - if( !aVTrans ){ - return SQLITE_NOMEM; - } - memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); - db->aVTrans = aVTrans; - } - - return SQLITE_OK; -} - -/* -** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should -** have already been reserved using growVTrans(). -*/ -static void addToVTrans(sqlite3 *db, VTable *pVTab){ - /* Add pVtab to the end of sqlite3.aVTrans */ - db->aVTrans[db->nVTrans++] = pVTab; - sqlite3VtabLock(pVTab); -} - -/* -** This function is invoked by the vdbe to call the xCreate method -** of the virtual table named zTab in database iDb. -** -** If an error occurs, *pzErr is set to point an an English language -** description of the error and an SQLITE_XXX error code is returned. -** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. -*/ -SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ - int rc = SQLITE_OK; - Table *pTab; - Module *pMod; - const char *zMod; - - pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); - assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); - - /* Locate the required virtual table module */ - zMod = pTab->azModuleArg[0]; - pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); - - /* If the module has been registered and includes a Create method, - ** invoke it now. If the module has not been registered, return an - ** error. Otherwise, do nothing. - */ - if( !pMod ){ - *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); - rc = SQLITE_ERROR; - }else{ - rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); - } - - /* Justification of ALWAYS(): The xConstructor method is required to - ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ - if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ - rc = growVTrans(db); - if( rc==SQLITE_OK ){ - addToVTrans(db, sqlite3GetVTable(db, pTab)); - } - } - - return rc; -} - -/* -** This function is used to set the schema of a virtual table. It is only -** valid to call this function from within the xCreate() or xConnect() of a -** virtual table module. -*/ -SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ - Parse *pParse; - - int rc = SQLITE_OK; - Table *pTab; - char *zErr = 0; - - sqlite3_mutex_enter(db->mutex); - if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ - sqlite3Error(db, SQLITE_MISUSE, 0); - sqlite3_mutex_leave(db->mutex); - return SQLITE_MISUSE_BKPT; - } - assert( (pTab->tabFlags & TF_Virtual)!=0 ); - - pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); - if( pParse==0 ){ - rc = SQLITE_NOMEM; - }else{ - pParse->declareVtab = 1; - pParse->db = db; - pParse->nQueryLoop = 1; - - if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) - && pParse->pNewTable - && !db->mallocFailed - && !pParse->pNewTable->pSelect - && (pParse->pNewTable->tabFlags & TF_Virtual)==0 - ){ - if( !pTab->aCol ){ - pTab->aCol = pParse->pNewTable->aCol; - pTab->nCol = pParse->pNewTable->nCol; - pParse->pNewTable->nCol = 0; - pParse->pNewTable->aCol = 0; - } - db->pVtabCtx->pTab = 0; - }else{ - sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); - sqlite3DbFree(db, zErr); - rc = SQLITE_ERROR; - } - pParse->declareVtab = 0; - - if( pParse->pVdbe ){ - sqlite3VdbeFinalize(pParse->pVdbe); - } - sqlite3DeleteTable(db, pParse->pNewTable); - sqlite3StackFree(db, pParse); - } - - assert( (rc&0xff)==rc ); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** This function is invoked by the vdbe to call the xDestroy method -** of the virtual table named zTab in database iDb. This occurs -** when a DROP TABLE is mentioned. -** -** This call is a no-op if zTab is not a virtual table. -*/ -SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ - int rc = SQLITE_OK; - Table *pTab; - - pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); - if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ - VTable *p = vtabDisconnectAll(db, pTab); - - assert( rc==SQLITE_OK ); - rc = p->pMod->pModule->xDestroy(p->pVtab); - - /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ - if( rc==SQLITE_OK ){ - assert( pTab->pVTable==p && p->pNext==0 ); - p->pVtab = 0; - pTab->pVTable = 0; - sqlite3VtabUnlock(p); - } - } - - return rc; -} - -/* -** This function invokes either the xRollback or xCommit method -** of each of the virtual tables in the sqlite3.aVTrans array. The method -** called is identified by the second argument, "offset", which is -** the offset of the method to call in the sqlite3_module structure. -** -** The array is cleared after invoking the callbacks. -*/ -static void callFinaliser(sqlite3 *db, int offset){ - int i; - if( db->aVTrans ){ - for(i=0; i<db->nVTrans; i++){ - VTable *pVTab = db->aVTrans[i]; - sqlite3_vtab *p = pVTab->pVtab; - if( p ){ - int (*x)(sqlite3_vtab *); - x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); - if( x ) x(p); - } - pVTab->iSavepoint = 0; - sqlite3VtabUnlock(pVTab); - } - sqlite3DbFree(db, db->aVTrans); - db->nVTrans = 0; - db->aVTrans = 0; - } -} - -/* -** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans -** array. Return the error code for the first error that occurs, or -** SQLITE_OK if all xSync operations are successful. -** -** Set *pzErrmsg to point to a buffer that should be released using -** sqlite3DbFree() containing an error message, if one is available. -*/ -SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){ - int i; - int rc = SQLITE_OK; - VTable **aVTrans = db->aVTrans; - - db->aVTrans = 0; - for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ - int (*x)(sqlite3_vtab *); - sqlite3_vtab *pVtab = aVTrans[i]->pVtab; - if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ - rc = x(pVtab); - sqlite3DbFree(db, *pzErrmsg); - *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); - sqlite3_free(pVtab->zErrMsg); - } - } - db->aVTrans = aVTrans; - return rc; -} - -/* -** Invoke the xRollback method of all virtual tables in the -** sqlite3.aVTrans array. Then clear the array itself. -*/ -SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){ - callFinaliser(db, offsetof(sqlite3_module,xRollback)); - return SQLITE_OK; -} - -/* -** Invoke the xCommit method of all virtual tables in the -** sqlite3.aVTrans array. Then clear the array itself. -*/ -SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){ - callFinaliser(db, offsetof(sqlite3_module,xCommit)); - return SQLITE_OK; -} - -/* -** If the virtual table pVtab supports the transaction interface -** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is -** not currently open, invoke the xBegin method now. -** -** If the xBegin call is successful, place the sqlite3_vtab pointer -** in the sqlite3.aVTrans array. -*/ -SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ - int rc = SQLITE_OK; - const sqlite3_module *pModule; - - /* Special case: If db->aVTrans is NULL and db->nVTrans is greater - ** than zero, then this function is being called from within a - ** virtual module xSync() callback. It is illegal to write to - ** virtual module tables in this case, so return SQLITE_LOCKED. - */ - if( sqlite3VtabInSync(db) ){ - return SQLITE_LOCKED; - } - if( !pVTab ){ - return SQLITE_OK; - } - pModule = pVTab->pVtab->pModule; - - if( pModule->xBegin ){ - int i; - - /* If pVtab is already in the aVTrans array, return early */ - for(i=0; i<db->nVTrans; i++){ - if( db->aVTrans[i]==pVTab ){ - return SQLITE_OK; - } - } - - /* Invoke the xBegin method. If successful, add the vtab to the - ** sqlite3.aVTrans[] array. */ - rc = growVTrans(db); - if( rc==SQLITE_OK ){ - rc = pModule->xBegin(pVTab->pVtab); - if( rc==SQLITE_OK ){ - addToVTrans(db, pVTab); - } - } - } - return rc; -} - -/* -** Invoke either the xSavepoint, xRollbackTo or xRelease method of all -** virtual tables that currently have an open transaction. Pass iSavepoint -** as the second argument to the virtual table method invoked. -** -** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is -** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is -** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with -** an open transaction is invoked. -** -** If any virtual table method returns an error code other than SQLITE_OK, -** processing is abandoned and the error returned to the caller of this -** function immediately. If all calls to virtual table methods are successful, -** SQLITE_OK is returned. -*/ -SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ - int rc = SQLITE_OK; - - assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); - assert( iSavepoint>=0 ); - if( db->aVTrans ){ - int i; - for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ - VTable *pVTab = db->aVTrans[i]; - const sqlite3_module *pMod = pVTab->pMod->pModule; - if( pVTab->pVtab && pMod->iVersion>=2 ){ - int (*xMethod)(sqlite3_vtab *, int); - switch( op ){ - case SAVEPOINT_BEGIN: - xMethod = pMod->xSavepoint; - pVTab->iSavepoint = iSavepoint+1; - break; - case SAVEPOINT_ROLLBACK: - xMethod = pMod->xRollbackTo; - break; - default: - xMethod = pMod->xRelease; - break; - } - if( xMethod && pVTab->iSavepoint>iSavepoint ){ - rc = xMethod(pVTab->pVtab, iSavepoint); - } - } - } - } - return rc; -} - -/* -** The first parameter (pDef) is a function implementation. The -** second parameter (pExpr) is the first argument to this function. -** If pExpr is a column in a virtual table, then let the virtual -** table implementation have an opportunity to overload the function. -** -** This routine is used to allow virtual table implementations to -** overload MATCH, LIKE, GLOB, and REGEXP operators. -** -** Return either the pDef argument (indicating no change) or a -** new FuncDef structure that is marked as ephemeral using the -** SQLITE_FUNC_EPHEM flag. -*/ -SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction( - sqlite3 *db, /* Database connection for reporting malloc problems */ - FuncDef *pDef, /* Function to possibly overload */ - int nArg, /* Number of arguments to the function */ - Expr *pExpr /* First argument to the function */ -){ - Table *pTab; - sqlite3_vtab *pVtab; - sqlite3_module *pMod; - void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; - void *pArg = 0; - FuncDef *pNew; - int rc = 0; - char *zLowerName; - unsigned char *z; - - - /* Check to see the left operand is a column in a virtual table */ - if( NEVER(pExpr==0) ) return pDef; - if( pExpr->op!=TK_COLUMN ) return pDef; - pTab = pExpr->pTab; - if( NEVER(pTab==0) ) return pDef; - if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; - pVtab = sqlite3GetVTable(db, pTab)->pVtab; - assert( pVtab!=0 ); - assert( pVtab->pModule!=0 ); - pMod = (sqlite3_module *)pVtab->pModule; - if( pMod->xFindFunction==0 ) return pDef; - - /* Call the xFindFunction method on the virtual table implementation - ** to see if the implementation wants to overload this function - */ - zLowerName = sqlite3DbStrDup(db, pDef->zName); - if( zLowerName ){ - for(z=(unsigned char*)zLowerName; *z; z++){ - *z = sqlite3UpperToLower[*z]; - } - rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); - sqlite3DbFree(db, zLowerName); - } - if( rc==0 ){ - return pDef; - } - - /* Create a new ephemeral function definition for the overloaded - ** function */ - pNew = sqlite3DbMallocZero(db, sizeof(*pNew) - + sqlite3Strlen30(pDef->zName) + 1); - if( pNew==0 ){ - return pDef; - } - *pNew = *pDef; - pNew->zName = (char *)&pNew[1]; - memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); - pNew->xFunc = xFunc; - pNew->pUserData = pArg; - pNew->flags |= SQLITE_FUNC_EPHEM; - return pNew; -} - -/* -** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] -** array so that an OP_VBegin will get generated for it. Add pTab to the -** array if it is missing. If pTab is already in the array, this routine -** is a no-op. -*/ -SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ - Parse *pToplevel = sqlite3ParseToplevel(pParse); - int i, n; - Table **apVtabLock; - - assert( IsVirtual(pTab) ); - for(i=0; i<pToplevel->nVtabLock; i++){ - if( pTab==pToplevel->apVtabLock[i] ) return; - } - n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); - apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); - if( apVtabLock ){ - pToplevel->apVtabLock = apVtabLock; - pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; - }else{ - pToplevel->db->mallocFailed = 1; - } -} - -/* -** Return the ON CONFLICT resolution mode in effect for the virtual -** table update operation currently in progress. -** -** The results of this routine are undefined unless it is called from -** within an xUpdate method. -*/ -SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){ - static const unsigned char aMap[] = { - SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE - }; - assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); - assert( OE_Ignore==4 && OE_Replace==5 ); - assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); - return (int)aMap[db->vtabOnConflict-1]; -} - -/* -** Call from within the xCreate() or xConnect() methods to provide -** the SQLite core with additional information about the behavior -** of the virtual table being implemented. -*/ -SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){ - va_list ap; - int rc = SQLITE_OK; - - sqlite3_mutex_enter(db->mutex); - - va_start(ap, op); - switch( op ){ - case SQLITE_VTAB_CONSTRAINT_SUPPORT: { - VtabCtx *p = db->pVtabCtx; - if( !p ){ - rc = SQLITE_MISUSE_BKPT; - }else{ - assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); - p->pVTable->bConstraint = (u8)va_arg(ap, int); - } - break; - } - default: - rc = SQLITE_MISUSE_BKPT; - break; - } - va_end(ap); - - if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -/************** End of vtab.c ************************************************/ -/************** Begin file where.c *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This module contains C code that generates VDBE code used to process -** the WHERE clause of SQL statements. This module is responsible for -** generating the code that loops through a table looking for applicable -** rows. Indices are selected and used to speed the search when doing -** so is applicable. Because this module is responsible for selecting -** indices, you might also think of this module as the "query optimizer". -*/ - - -/* -** Trace output macros -*/ -#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) -/***/ int sqlite3WhereTrace = 0; -#endif -#if defined(SQLITE_DEBUG) \ - && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) -# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X -#else -# define WHERETRACE(X) -#endif - -/* Forward reference -*/ -typedef struct WhereClause WhereClause; -typedef struct WhereMaskSet WhereMaskSet; -typedef struct WhereOrInfo WhereOrInfo; -typedef struct WhereAndInfo WhereAndInfo; -typedef struct WhereCost WhereCost; - -/* -** The query generator uses an array of instances of this structure to -** help it analyze the subexpressions of the WHERE clause. Each WHERE -** clause subexpression is separated from the others by AND operators, -** usually, or sometimes subexpressions separated by OR. -** -** All WhereTerms are collected into a single WhereClause structure. -** The following identity holds: -** -** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm -** -** When a term is of the form: -** -** X <op> <expr> -** -** where X is a column name and <op> is one of certain operators, -** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the -** cursor number and column number for X. WhereTerm.eOperator records -** the <op> using a bitmask encoding defined by WO_xxx below. The -** use of a bitmask encoding for the operator allows us to search -** quickly for terms that match any of several different operators. -** -** A WhereTerm might also be two or more subterms connected by OR: -** -** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... -** -** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR -** and the WhereTerm.u.pOrInfo field points to auxiliary information that -** is collected about the -** -** If a term in the WHERE clause does not match either of the two previous -** categories, then eOperator==0. The WhereTerm.pExpr field is still set -** to the original subexpression content and wtFlags is set up appropriately -** but no other fields in the WhereTerm object are meaningful. -** -** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, -** but they do so indirectly. A single WhereMaskSet structure translates -** cursor number into bits and the translated bit is stored in the prereq -** fields. The translation is used in order to maximize the number of -** bits that will fit in a Bitmask. The VDBE cursor numbers might be -** spread out over the non-negative integers. For example, the cursor -** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet -** translates these sparse cursor numbers into consecutive integers -** beginning with 0 in order to make the best possible use of the available -** bits in the Bitmask. So, in the example above, the cursor numbers -** would be mapped into integers 0 through 7. -** -** The number of terms in a join is limited by the number of bits -** in prereqRight and prereqAll. The default is 64 bits, hence SQLite -** is only able to process joins with 64 or fewer tables. -*/ -typedef struct WhereTerm WhereTerm; -struct WhereTerm { - Expr *pExpr; /* Pointer to the subexpression that is this term */ - int iParent; /* Disable pWC->a[iParent] when this term disabled */ - int leftCursor; /* Cursor number of X in "X <op> <expr>" */ - union { - int leftColumn; /* Column number of X in "X <op> <expr>" */ - WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ - WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ - } u; - u16 eOperator; /* A WO_xx value describing <op> */ - u8 wtFlags; /* TERM_xxx bit flags. See below */ - u8 nChild; /* Number of children that must disable us */ - WhereClause *pWC; /* The clause this term is part of */ - Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ - Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ -}; - -/* -** Allowed values of WhereTerm.wtFlags -*/ -#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ -#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ -#define TERM_CODED 0x04 /* This term is already coded */ -#define TERM_COPIED 0x08 /* Has a child */ -#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ -#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ -#define TERM_OR_OK 0x40 /* Used during OR-clause processing */ -#ifdef SQLITE_ENABLE_STAT3 -# define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ -#else -# define TERM_VNULL 0x00 /* Disabled if not using stat3 */ -#endif - -/* -** An instance of the following structure holds all information about a -** WHERE clause. Mostly this is a container for one or more WhereTerms. -** -** Explanation of pOuter: For a WHERE clause of the form -** -** a AND ((b AND c) OR (d AND e)) AND f -** -** There are separate WhereClause objects for the whole clause and for -** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the -** subclauses points to the WhereClause object for the whole clause. -*/ -struct WhereClause { - Parse *pParse; /* The parser context */ - WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ - WhereClause *pOuter; /* Outer conjunction */ - u8 op; /* Split operator. TK_AND or TK_OR */ - u16 wctrlFlags; /* Might include WHERE_AND_ONLY */ - int nTerm; /* Number of terms */ - int nSlot; /* Number of entries in a[] */ - WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ -#if defined(SQLITE_SMALL_STACK) - WhereTerm aStatic[1]; /* Initial static space for a[] */ -#else - WhereTerm aStatic[8]; /* Initial static space for a[] */ -#endif -}; - -/* -** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to -** a dynamically allocated instance of the following structure. -*/ -struct WhereOrInfo { - WhereClause wc; /* Decomposition into subterms */ - Bitmask indexable; /* Bitmask of all indexable tables in the clause */ -}; - -/* -** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to -** a dynamically allocated instance of the following structure. -*/ -struct WhereAndInfo { - WhereClause wc; /* The subexpression broken out */ -}; - -/* -** An instance of the following structure keeps track of a mapping -** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. -** -** The VDBE cursor numbers are small integers contained in -** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE -** clause, the cursor numbers might not begin with 0 and they might -** contain gaps in the numbering sequence. But we want to make maximum -** use of the bits in our bitmasks. This structure provides a mapping -** from the sparse cursor numbers into consecutive integers beginning -** with 0. -** -** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask -** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. -** -** For example, if the WHERE clause expression used these VDBE -** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure -** would map those cursor numbers into bits 0 through 5. -** -** Note that the mapping is not necessarily ordered. In the example -** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, -** 57->5, 73->4. Or one of 719 other combinations might be used. It -** does not really matter. What is important is that sparse cursor -** numbers all get mapped into bit numbers that begin with 0 and contain -** no gaps. -*/ -struct WhereMaskSet { - int n; /* Number of assigned cursor values */ - int ix[BMS]; /* Cursor assigned to each bit */ -}; - -/* -** A WhereCost object records a lookup strategy and the estimated -** cost of pursuing that strategy. -*/ -struct WhereCost { - WherePlan plan; /* The lookup strategy */ - double rCost; /* Overall cost of pursuing this search strategy */ - Bitmask used; /* Bitmask of cursors used by this plan */ -}; - -/* -** Bitmasks for the operators that indices are able to exploit. An -** OR-ed combination of these values can be used when searching for -** terms in the where clause. -*/ -#define WO_IN 0x001 -#define WO_EQ 0x002 -#define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) -#define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) -#define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) -#define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) -#define WO_MATCH 0x040 -#define WO_ISNULL 0x080 -#define WO_OR 0x100 /* Two or more OR-connected terms */ -#define WO_AND 0x200 /* Two or more AND-connected terms */ -#define WO_EQUIV 0x400 /* Of the form A==B, both columns */ -#define WO_NOOP 0x800 /* This term does not restrict search space */ - -#define WO_ALL 0xfff /* Mask of all possible WO_* values */ -#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ - -/* -** Value for wsFlags returned by bestIndex() and stored in -** WhereLevel.wsFlags. These flags determine which search -** strategies are appropriate. -** -** The least significant 12 bits is reserved as a mask for WO_ values above. -** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. -** But if the table is the right table of a left join, WhereLevel.wsFlags -** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as -** the "op" parameter to findTerm when we are resolving equality constraints. -** ISNULL constraints will then not be used on the right table of a left -** join. Tickets #2177 and #2189. -*/ -#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ -#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ -#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ -#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ -#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ -#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ -#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ -#define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ -#define WHERE_IN_ABLE 0x080f1000 /* Able to support an IN operator */ -#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ -#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ -#define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */ -#define WHERE_IDX_ONLY 0x00400000 /* Use index only - omit table */ -#define WHERE_ORDERED 0x00800000 /* Output will appear in correct order */ -#define WHERE_REVERSE 0x01000000 /* Scan in reverse order */ -#define WHERE_UNIQUE 0x02000000 /* Selects no more than one row */ -#define WHERE_ALL_UNIQUE 0x04000000 /* This and all prior have one row */ -#define WHERE_OB_UNIQUE 0x00004000 /* Values in ORDER BY columns are - ** different for every output row */ -#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ -#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ -#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ -#define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */ -#define WHERE_COVER_SCAN 0x80000000 /* Full scan of a covering index */ - -/* -** This module contains many separate subroutines that work together to -** find the best indices to use for accessing a particular table in a query. -** An instance of the following structure holds context information about the -** index search so that it can be more easily passed between the various -** routines. -*/ -typedef struct WhereBestIdx WhereBestIdx; -struct WhereBestIdx { - Parse *pParse; /* Parser context */ - WhereClause *pWC; /* The WHERE clause */ - struct SrcList_item *pSrc; /* The FROM clause term to search */ - Bitmask notReady; /* Mask of cursors not available */ - Bitmask notValid; /* Cursors not available for any purpose */ - ExprList *pOrderBy; /* The ORDER BY clause */ - ExprList *pDistinct; /* The select-list if query is DISTINCT */ - sqlite3_index_info **ppIdxInfo; /* Index information passed to xBestIndex */ - int i, n; /* Which loop is being coded; # of loops */ - WhereLevel *aLevel; /* Info about outer loops */ - WhereCost cost; /* Lowest cost query plan */ -}; - -/* -** Return TRUE if the probe cost is less than the baseline cost -*/ -static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){ - if( pProbe->rCost<pBaseline->rCost ) return 1; - if( pProbe->rCost>pBaseline->rCost ) return 0; - if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1; - if( pProbe->plan.nRow<pBaseline->plan.nRow ) return 1; - return 0; -} - -/* -** Initialize a preallocated WhereClause structure. -*/ -static void whereClauseInit( - WhereClause *pWC, /* The WhereClause to be initialized */ - Parse *pParse, /* The parsing context */ - WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmasks */ - u16 wctrlFlags /* Might include WHERE_AND_ONLY */ -){ - pWC->pParse = pParse; - pWC->pMaskSet = pMaskSet; - pWC->pOuter = 0; - pWC->nTerm = 0; - pWC->nSlot = ArraySize(pWC->aStatic); - pWC->a = pWC->aStatic; - pWC->wctrlFlags = wctrlFlags; -} - -/* Forward reference */ -static void whereClauseClear(WhereClause*); - -/* -** Deallocate all memory associated with a WhereOrInfo object. -*/ -static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ - whereClauseClear(&p->wc); - sqlite3DbFree(db, p); -} - -/* -** Deallocate all memory associated with a WhereAndInfo object. -*/ -static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ - whereClauseClear(&p->wc); - sqlite3DbFree(db, p); -} - -/* -** Deallocate a WhereClause structure. The WhereClause structure -** itself is not freed. This routine is the inverse of whereClauseInit(). -*/ -static void whereClauseClear(WhereClause *pWC){ - int i; - WhereTerm *a; - sqlite3 *db = pWC->pParse->db; - for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ - if( a->wtFlags & TERM_DYNAMIC ){ - sqlite3ExprDelete(db, a->pExpr); - } - if( a->wtFlags & TERM_ORINFO ){ - whereOrInfoDelete(db, a->u.pOrInfo); - }else if( a->wtFlags & TERM_ANDINFO ){ - whereAndInfoDelete(db, a->u.pAndInfo); - } - } - if( pWC->a!=pWC->aStatic ){ - sqlite3DbFree(db, pWC->a); - } -} - -/* -** Add a single new WhereTerm entry to the WhereClause object pWC. -** The new WhereTerm object is constructed from Expr p and with wtFlags. -** The index in pWC->a[] of the new WhereTerm is returned on success. -** 0 is returned if the new WhereTerm could not be added due to a memory -** allocation error. The memory allocation failure will be recorded in -** the db->mallocFailed flag so that higher-level functions can detect it. -** -** This routine will increase the size of the pWC->a[] array as necessary. -** -** If the wtFlags argument includes TERM_DYNAMIC, then responsibility -** for freeing the expression p is assumed by the WhereClause object pWC. -** This is true even if this routine fails to allocate a new WhereTerm. -** -** WARNING: This routine might reallocate the space used to store -** WhereTerms. All pointers to WhereTerms should be invalidated after -** calling this routine. Such pointers may be reinitialized by referencing -** the pWC->a[] array. -*/ -static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ - WhereTerm *pTerm; - int idx; - testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ - if( pWC->nTerm>=pWC->nSlot ){ - WhereTerm *pOld = pWC->a; - sqlite3 *db = pWC->pParse->db; - pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); - if( pWC->a==0 ){ - if( wtFlags & TERM_DYNAMIC ){ - sqlite3ExprDelete(db, p); - } - pWC->a = pOld; - return 0; - } - memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); - if( pOld!=pWC->aStatic ){ - sqlite3DbFree(db, pOld); - } - pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); - } - pTerm = &pWC->a[idx = pWC->nTerm++]; - pTerm->pExpr = sqlite3ExprSkipCollate(p); - pTerm->wtFlags = wtFlags; - pTerm->pWC = pWC; - pTerm->iParent = -1; - return idx; -} - -/* -** This routine identifies subexpressions in the WHERE clause where -** each subexpression is separated by the AND operator or some other -** operator specified in the op parameter. The WhereClause structure -** is filled with pointers to subexpressions. For example: -** -** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) -** \________/ \_______________/ \________________/ -** slot[0] slot[1] slot[2] -** -** The original WHERE clause in pExpr is unaltered. All this routine -** does is make slot[] entries point to substructure within pExpr. -** -** In the previous sentence and in the diagram, "slot[]" refers to -** the WhereClause.a[] array. The slot[] array grows as needed to contain -** all terms of the WHERE clause. -*/ -static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ - pWC->op = (u8)op; - if( pExpr==0 ) return; - if( pExpr->op!=op ){ - whereClauseInsert(pWC, pExpr, 0); - }else{ - whereSplit(pWC, pExpr->pLeft, op); - whereSplit(pWC, pExpr->pRight, op); - } -} - -/* -** Initialize an expression mask set (a WhereMaskSet object) -*/ -#define initMaskSet(P) memset(P, 0, sizeof(*P)) - -/* -** Return the bitmask for the given cursor number. Return 0 if -** iCursor is not in the set. -*/ -static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ - int i; - assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); - for(i=0; i<pMaskSet->n; i++){ - if( pMaskSet->ix[i]==iCursor ){ - return ((Bitmask)1)<<i; - } - } - return 0; -} - -/* -** Create a new mask for cursor iCursor. -** -** There is one cursor per table in the FROM clause. The number of -** tables in the FROM clause is limited by a test early in the -** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] -** array will never overflow. -*/ -static void createMask(WhereMaskSet *pMaskSet, int iCursor){ - assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); - pMaskSet->ix[pMaskSet->n++] = iCursor; -} - -/* -** This routine walks (recursively) an expression tree and generates -** a bitmask indicating which tables are used in that expression -** tree. -** -** In order for this routine to work, the calling function must have -** previously invoked sqlite3ResolveExprNames() on the expression. See -** the header comment on that routine for additional information. -** The sqlite3ResolveExprNames() routines looks for column names and -** sets their opcodes to TK_COLUMN and their Expr.iTable fields to -** the VDBE cursor number of the table. This routine just has to -** translate the cursor numbers into bitmask values and OR all -** the bitmasks together. -*/ -static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); -static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); -static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ - Bitmask mask = 0; - if( p==0 ) return 0; - if( p->op==TK_COLUMN ){ - mask = getMask(pMaskSet, p->iTable); - return mask; - } - mask = exprTableUsage(pMaskSet, p->pRight); - mask |= exprTableUsage(pMaskSet, p->pLeft); - if( ExprHasProperty(p, EP_xIsSelect) ){ - mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); - }else{ - mask |= exprListTableUsage(pMaskSet, p->x.pList); - } - return mask; -} -static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ - int i; - Bitmask mask = 0; - if( pList ){ - for(i=0; i<pList->nExpr; i++){ - mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); - } - } - return mask; -} -static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ - Bitmask mask = 0; - while( pS ){ - SrcList *pSrc = pS->pSrc; - mask |= exprListTableUsage(pMaskSet, pS->pEList); - mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); - mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); - mask |= exprTableUsage(pMaskSet, pS->pWhere); - mask |= exprTableUsage(pMaskSet, pS->pHaving); - if( ALWAYS(pSrc!=0) ){ - int i; - for(i=0; i<pSrc->nSrc; i++){ - mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); - mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); - } - } - pS = pS->pPrior; - } - return mask; -} - -/* -** Return TRUE if the given operator is one of the operators that is -** allowed for an indexable WHERE clause term. The allowed operators are -** "=", "<", ">", "<=", ">=", and "IN". -** -** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be -** of one of the following forms: column = expression column > expression -** column >= expression column < expression column <= expression -** expression = column expression > column expression >= column -** expression < column expression <= column column IN -** (expression-list) column IN (subquery) column IS NULL -*/ -static int allowedOp(int op){ - assert( TK_GT>TK_EQ && TK_GT<TK_GE ); - assert( TK_LT>TK_EQ && TK_LT<TK_GE ); - assert( TK_LE>TK_EQ && TK_LE<TK_GE ); - assert( TK_GE==TK_EQ+4 ); - return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; -} - -/* -** Swap two objects of type TYPE. -*/ -#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} - -/* -** Commute a comparison operator. Expressions of the form "X op Y" -** are converted into "Y op X". -** -** If left/right precedence rules come into play when determining the -** collating -** side of the comparison, it remains associated with the same side after -** the commutation. So "Y collate NOCASE op X" becomes -** "X op Y". This is because any collation sequence on -** the left hand side of a comparison overrides any collation sequence -** attached to the right. For the same reason the EP_Collate flag -** is not commuted. -*/ -static void exprCommute(Parse *pParse, Expr *pExpr){ - u16 expRight = (pExpr->pRight->flags & EP_Collate); - u16 expLeft = (pExpr->pLeft->flags & EP_Collate); - assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); - if( expRight==expLeft ){ - /* Either X and Y both have COLLATE operator or neither do */ - if( expRight ){ - /* Both X and Y have COLLATE operators. Make sure X is always - ** used by clearing the EP_Collate flag from Y. */ - pExpr->pRight->flags &= ~EP_Collate; - }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ - /* Neither X nor Y have COLLATE operators, but X has a non-default - ** collating sequence. So add the EP_Collate marker on X to cause - ** it to be searched first. */ - pExpr->pLeft->flags |= EP_Collate; - } - } - SWAP(Expr*,pExpr->pRight,pExpr->pLeft); - if( pExpr->op>=TK_GT ){ - assert( TK_LT==TK_GT+2 ); - assert( TK_GE==TK_LE+2 ); - assert( TK_GT>TK_EQ ); - assert( TK_GT<TK_LE ); - assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); - pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; - } -} - -/* -** Translate from TK_xx operator to WO_xx bitmask. -*/ -static u16 operatorMask(int op){ - u16 c; - assert( allowedOp(op) ); - if( op==TK_IN ){ - c = WO_IN; - }else if( op==TK_ISNULL ){ - c = WO_ISNULL; - }else{ - assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); - c = (u16)(WO_EQ<<(op-TK_EQ)); - } - assert( op!=TK_ISNULL || c==WO_ISNULL ); - assert( op!=TK_IN || c==WO_IN ); - assert( op!=TK_EQ || c==WO_EQ ); - assert( op!=TK_LT || c==WO_LT ); - assert( op!=TK_LE || c==WO_LE ); - assert( op!=TK_GT || c==WO_GT ); - assert( op!=TK_GE || c==WO_GE ); - return c; -} - -/* -** Search for a term in the WHERE clause that is of the form "X <op> <expr>" -** where X is a reference to the iColumn of table iCur and <op> is one of -** the WO_xx operator codes specified by the op parameter. -** Return a pointer to the term. Return 0 if not found. -** -** The term returned might by Y=<expr> if there is another constraint in -** the WHERE clause that specifies that X=Y. Any such constraints will be -** identified by the WO_EQUIV bit in the pTerm->eOperator field. The -** aEquiv[] array holds X and all its equivalents, with each SQL variable -** taking up two slots in aEquiv[]. The first slot is for the cursor number -** and the second is for the column number. There are 22 slots in aEquiv[] -** so that means we can look for X plus up to 10 other equivalent values. -** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 -** and ... and A9=A10 and A10=<expr>. -** -** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" -** then try for the one with no dependencies on <expr> - in other words where -** <expr> is a constant expression of some kind. Only return entries of -** the form "X <op> Y" where Y is a column in another table if no terms of -** the form "X <op> <const-expr>" exist. If no terms with a constant RHS -** exist, try to return a term that does not use WO_EQUIV. -*/ -static WhereTerm *findTerm( - WhereClause *pWC, /* The WHERE clause to be searched */ - int iCur, /* Cursor number of LHS */ - int iColumn, /* Column number of LHS */ - Bitmask notReady, /* RHS must not overlap with this mask */ - u32 op, /* Mask of WO_xx values describing operator */ - Index *pIdx /* Must be compatible with this index, if not NULL */ -){ - WhereTerm *pTerm; /* Term being examined as possible result */ - WhereTerm *pResult = 0; /* The answer to return */ - WhereClause *pWCOrig = pWC; /* Original pWC value */ - int j, k; /* Loop counters */ - Expr *pX; /* Pointer to an expression */ - Parse *pParse; /* Parsing context */ - int iOrigCol = iColumn; /* Original value of iColumn */ - int nEquiv = 2; /* Number of entires in aEquiv[] */ - int iEquiv = 2; /* Number of entries of aEquiv[] processed so far */ - int aEquiv[22]; /* iCur,iColumn and up to 10 other equivalents */ - - assert( iCur>=0 ); - aEquiv[0] = iCur; - aEquiv[1] = iColumn; - for(;;){ - for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){ - for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ - if( pTerm->leftCursor==iCur - && pTerm->u.leftColumn==iColumn - ){ - if( (pTerm->prereqRight & notReady)==0 - && (pTerm->eOperator & op & WO_ALL)!=0 - ){ - if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){ - CollSeq *pColl; - char idxaff; - - pX = pTerm->pExpr; - pParse = pWC->pParse; - idxaff = pIdx->pTable->aCol[iOrigCol].affinity; - if( !sqlite3IndexAffinityOk(pX, idxaff) ){ - continue; - } - - /* Figure out the collation sequence required from an index for - ** it to be useful for optimising expression pX. Store this - ** value in variable pColl. - */ - assert(pX->pLeft); - pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight); - if( pColl==0 ) pColl = pParse->db->pDfltColl; - - for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){ - if( NEVER(j>=pIdx->nColumn) ) return 0; - } - if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){ - continue; - } - } - if( pTerm->prereqRight==0 ){ - pResult = pTerm; - goto findTerm_success; - }else if( pResult==0 ){ - pResult = pTerm; - } - } - if( (pTerm->eOperator & WO_EQUIV)!=0 - && nEquiv<ArraySize(aEquiv) - ){ - pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); - assert( pX->op==TK_COLUMN ); - for(j=0; j<nEquiv; j+=2){ - if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break; - } - if( j==nEquiv ){ - aEquiv[j] = pX->iTable; - aEquiv[j+1] = pX->iColumn; - nEquiv += 2; - } - } - } - } - } - if( iEquiv>=nEquiv ) break; - iCur = aEquiv[iEquiv++]; - iColumn = aEquiv[iEquiv++]; - } -findTerm_success: - return pResult; -} - -/* Forward reference */ -static void exprAnalyze(SrcList*, WhereClause*, int); - -/* -** Call exprAnalyze on all terms in a WHERE clause. -** -** -*/ -static void exprAnalyzeAll( - SrcList *pTabList, /* the FROM clause */ - WhereClause *pWC /* the WHERE clause to be analyzed */ -){ - int i; - for(i=pWC->nTerm-1; i>=0; i--){ - exprAnalyze(pTabList, pWC, i); - } -} - -#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION -/* -** Check to see if the given expression is a LIKE or GLOB operator that -** can be optimized using inequality constraints. Return TRUE if it is -** so and false if not. -** -** In order for the operator to be optimizible, the RHS must be a string -** literal that does not begin with a wildcard. -*/ -static int isLikeOrGlob( - Parse *pParse, /* Parsing and code generating context */ - Expr *pExpr, /* Test this expression */ - Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ - int *pisComplete, /* True if the only wildcard is % in the last character */ - int *pnoCase /* True if uppercase is equivalent to lowercase */ -){ - const char *z = 0; /* String on RHS of LIKE operator */ - Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ - ExprList *pList; /* List of operands to the LIKE operator */ - int c; /* One character in z[] */ - int cnt; /* Number of non-wildcard prefix characters */ - char wc[3]; /* Wildcard characters */ - sqlite3 *db = pParse->db; /* Database connection */ - sqlite3_value *pVal = 0; - int op; /* Opcode of pRight */ - - if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ - return 0; - } -#ifdef SQLITE_EBCDIC - if( *pnoCase ) return 0; -#endif - pList = pExpr->x.pList; - pLeft = pList->a[1].pExpr; - if( pLeft->op!=TK_COLUMN - || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT - || IsVirtual(pLeft->pTab) - ){ - /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must - ** be the name of an indexed column with TEXT affinity. */ - return 0; - } - assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ - - pRight = pList->a[0].pExpr; - op = pRight->op; - if( op==TK_REGISTER ){ - op = pRight->op2; - } - if( op==TK_VARIABLE ){ - Vdbe *pReprepare = pParse->pReprepare; - int iCol = pRight->iColumn; - pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); - if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ - z = (char *)sqlite3_value_text(pVal); - } - sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); - assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); - }else if( op==TK_STRING ){ - z = pRight->u.zToken; - } - if( z ){ - cnt = 0; - while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ - cnt++; - } - if( cnt!=0 && 255!=(u8)z[cnt-1] ){ - Expr *pPrefix; - *pisComplete = c==wc[0] && z[cnt+1]==0; - pPrefix = sqlite3Expr(db, TK_STRING, z); - if( pPrefix ) pPrefix->u.zToken[cnt] = 0; - *ppPrefix = pPrefix; - if( op==TK_VARIABLE ){ - Vdbe *v = pParse->pVdbe; - sqlite3VdbeSetVarmask(v, pRight->iColumn); - if( *pisComplete && pRight->u.zToken[1] ){ - /* If the rhs of the LIKE expression is a variable, and the current - ** value of the variable means there is no need to invoke the LIKE - ** function, then no OP_Variable will be added to the program. - ** This causes problems for the sqlite3_bind_parameter_name() - ** API. To workaround them, add a dummy OP_Variable here. - */ - int r1 = sqlite3GetTempReg(pParse); - sqlite3ExprCodeTarget(pParse, pRight, r1); - sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); - sqlite3ReleaseTempReg(pParse, r1); - } - } - }else{ - z = 0; - } - } - - sqlite3ValueFree(pVal); - return (z!=0); -} -#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ - - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* -** Check to see if the given expression is of the form -** -** column MATCH expr -** -** If it is then return TRUE. If not, return FALSE. -*/ -static int isMatchOfColumn( - Expr *pExpr /* Test this expression */ -){ - ExprList *pList; - - if( pExpr->op!=TK_FUNCTION ){ - return 0; - } - if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ - return 0; - } - pList = pExpr->x.pList; - if( pList->nExpr!=2 ){ - return 0; - } - if( pList->a[1].pExpr->op != TK_COLUMN ){ - return 0; - } - return 1; -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -/* -** If the pBase expression originated in the ON or USING clause of -** a join, then transfer the appropriate markings over to derived. -*/ -static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ - pDerived->flags |= pBase->flags & EP_FromJoin; - pDerived->iRightJoinTable = pBase->iRightJoinTable; -} - -#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) -/* -** Analyze a term that consists of two or more OR-connected -** subterms. So in: -** -** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) -** ^^^^^^^^^^^^^^^^^^^^ -** -** This routine analyzes terms such as the middle term in the above example. -** A WhereOrTerm object is computed and attached to the term under -** analysis, regardless of the outcome of the analysis. Hence: -** -** WhereTerm.wtFlags |= TERM_ORINFO -** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object -** -** The term being analyzed must have two or more of OR-connected subterms. -** A single subterm might be a set of AND-connected sub-subterms. -** Examples of terms under analysis: -** -** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 -** (B) x=expr1 OR expr2=x OR x=expr3 -** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) -** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') -** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) -** -** CASE 1: -** -** If all subterms are of the form T.C=expr for some single column of C and -** a single table T (as shown in example B above) then create a new virtual -** term that is an equivalent IN expression. In other words, if the term -** being analyzed is: -** -** x = expr1 OR expr2 = x OR x = expr3 -** -** then create a new virtual term like this: -** -** x IN (expr1,expr2,expr3) -** -** CASE 2: -** -** If all subterms are indexable by a single table T, then set -** -** WhereTerm.eOperator = WO_OR -** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T -** -** A subterm is "indexable" if it is of the form -** "T.C <op> <expr>" where C is any column of table T and -** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". -** A subterm is also indexable if it is an AND of two or more -** subsubterms at least one of which is indexable. Indexable AND -** subterms have their eOperator set to WO_AND and they have -** u.pAndInfo set to a dynamically allocated WhereAndTerm object. -** -** From another point of view, "indexable" means that the subterm could -** potentially be used with an index if an appropriate index exists. -** This analysis does not consider whether or not the index exists; that -** is something the bestIndex() routine will determine. This analysis -** only looks at whether subterms appropriate for indexing exist. -** -** All examples A through E above all satisfy case 2. But if a term -** also statisfies case 1 (such as B) we know that the optimizer will -** always prefer case 1, so in that case we pretend that case 2 is not -** satisfied. -** -** It might be the case that multiple tables are indexable. For example, -** (E) above is indexable on tables P, Q, and R. -** -** Terms that satisfy case 2 are candidates for lookup by using -** separate indices to find rowids for each subterm and composing -** the union of all rowids using a RowSet object. This is similar -** to "bitmap indices" in other database engines. -** -** OTHERWISE: -** -** If neither case 1 nor case 2 apply, then leave the eOperator set to -** zero. This term is not useful for search. -*/ -static void exprAnalyzeOrTerm( - SrcList *pSrc, /* the FROM clause */ - WhereClause *pWC, /* the complete WHERE clause */ - int idxTerm /* Index of the OR-term to be analyzed */ -){ - Parse *pParse = pWC->pParse; /* Parser context */ - sqlite3 *db = pParse->db; /* Database connection */ - WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ - Expr *pExpr = pTerm->pExpr; /* The expression of the term */ - WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ - int i; /* Loop counters */ - WhereClause *pOrWc; /* Breakup of pTerm into subterms */ - WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ - WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ - Bitmask chngToIN; /* Tables that might satisfy case 1 */ - Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ - - /* - ** Break the OR clause into its separate subterms. The subterms are - ** stored in a WhereClause structure containing within the WhereOrInfo - ** object that is attached to the original OR clause term. - */ - assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); - assert( pExpr->op==TK_OR ); - pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); - if( pOrInfo==0 ) return; - pTerm->wtFlags |= TERM_ORINFO; - pOrWc = &pOrInfo->wc; - whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags); - whereSplit(pOrWc, pExpr, TK_OR); - exprAnalyzeAll(pSrc, pOrWc); - if( db->mallocFailed ) return; - assert( pOrWc->nTerm>=2 ); - - /* - ** Compute the set of tables that might satisfy cases 1 or 2. - */ - indexable = ~(Bitmask)0; - chngToIN = ~(Bitmask)0; - for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ - if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ - WhereAndInfo *pAndInfo; - assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); - chngToIN = 0; - pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); - if( pAndInfo ){ - WhereClause *pAndWC; - WhereTerm *pAndTerm; - int j; - Bitmask b = 0; - pOrTerm->u.pAndInfo = pAndInfo; - pOrTerm->wtFlags |= TERM_ANDINFO; - pOrTerm->eOperator = WO_AND; - pAndWC = &pAndInfo->wc; - whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags); - whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); - exprAnalyzeAll(pSrc, pAndWC); - pAndWC->pOuter = pWC; - testcase( db->mallocFailed ); - if( !db->mallocFailed ){ - for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ - assert( pAndTerm->pExpr ); - if( allowedOp(pAndTerm->pExpr->op) ){ - b |= getMask(pMaskSet, pAndTerm->leftCursor); - } - } - } - indexable &= b; - } - }else if( pOrTerm->wtFlags & TERM_COPIED ){ - /* Skip this term for now. We revisit it when we process the - ** corresponding TERM_VIRTUAL term */ - }else{ - Bitmask b; - b = getMask(pMaskSet, pOrTerm->leftCursor); - if( pOrTerm->wtFlags & TERM_VIRTUAL ){ - WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; - b |= getMask(pMaskSet, pOther->leftCursor); - } - indexable &= b; - if( (pOrTerm->eOperator & WO_EQ)==0 ){ - chngToIN = 0; - }else{ - chngToIN &= b; - } - } - } - - /* - ** Record the set of tables that satisfy case 2. The set might be - ** empty. - */ - pOrInfo->indexable = indexable; - pTerm->eOperator = indexable==0 ? 0 : WO_OR; - - /* - ** chngToIN holds a set of tables that *might* satisfy case 1. But - ** we have to do some additional checking to see if case 1 really - ** is satisfied. - ** - ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means - ** that there is no possibility of transforming the OR clause into an - ** IN operator because one or more terms in the OR clause contain - ** something other than == on a column in the single table. The 1-bit - ** case means that every term of the OR clause is of the form - ** "table.column=expr" for some single table. The one bit that is set - ** will correspond to the common table. We still need to check to make - ** sure the same column is used on all terms. The 2-bit case is when - ** the all terms are of the form "table1.column=table2.column". It - ** might be possible to form an IN operator with either table1.column - ** or table2.column as the LHS if either is common to every term of - ** the OR clause. - ** - ** Note that terms of the form "table.column1=table.column2" (the - ** same table on both sizes of the ==) cannot be optimized. - */ - if( chngToIN ){ - int okToChngToIN = 0; /* True if the conversion to IN is valid */ - int iColumn = -1; /* Column index on lhs of IN operator */ - int iCursor = -1; /* Table cursor common to all terms */ - int j = 0; /* Loop counter */ - - /* Search for a table and column that appears on one side or the - ** other of the == operator in every subterm. That table and column - ** will be recorded in iCursor and iColumn. There might not be any - ** such table and column. Set okToChngToIN if an appropriate table - ** and column is found but leave okToChngToIN false if not found. - */ - for(j=0; j<2 && !okToChngToIN; j++){ - pOrTerm = pOrWc->a; - for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ - assert( pOrTerm->eOperator & WO_EQ ); - pOrTerm->wtFlags &= ~TERM_OR_OK; - if( pOrTerm->leftCursor==iCursor ){ - /* This is the 2-bit case and we are on the second iteration and - ** current term is from the first iteration. So skip this term. */ - assert( j==1 ); - continue; - } - if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ - /* This term must be of the form t1.a==t2.b where t2 is in the - ** chngToIN set but t1 is not. This term will be either preceeded - ** or follwed by an inverted copy (t2.b==t1.a). Skip this term - ** and use its inversion. */ - testcase( pOrTerm->wtFlags & TERM_COPIED ); - testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); - assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); - continue; - } - iColumn = pOrTerm->u.leftColumn; - iCursor = pOrTerm->leftCursor; - break; - } - if( i<0 ){ - /* No candidate table+column was found. This can only occur - ** on the second iteration */ - assert( j==1 ); - assert( IsPowerOfTwo(chngToIN) ); - assert( chngToIN==getMask(pMaskSet, iCursor) ); - break; - } - testcase( j==1 ); - - /* We have found a candidate table and column. Check to see if that - ** table and column is common to every term in the OR clause */ - okToChngToIN = 1; - for(; i>=0 && okToChngToIN; i--, pOrTerm++){ - assert( pOrTerm->eOperator & WO_EQ ); - if( pOrTerm->leftCursor!=iCursor ){ - pOrTerm->wtFlags &= ~TERM_OR_OK; - }else if( pOrTerm->u.leftColumn!=iColumn ){ - okToChngToIN = 0; - }else{ - int affLeft, affRight; - /* If the right-hand side is also a column, then the affinities - ** of both right and left sides must be such that no type - ** conversions are required on the right. (Ticket #2249) - */ - affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); - affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); - if( affRight!=0 && affRight!=affLeft ){ - okToChngToIN = 0; - }else{ - pOrTerm->wtFlags |= TERM_OR_OK; - } - } - } - } - - /* At this point, okToChngToIN is true if original pTerm satisfies - ** case 1. In that case, construct a new virtual term that is - ** pTerm converted into an IN operator. - ** - ** EV: R-00211-15100 - */ - if( okToChngToIN ){ - Expr *pDup; /* A transient duplicate expression */ - ExprList *pList = 0; /* The RHS of the IN operator */ - Expr *pLeft = 0; /* The LHS of the IN operator */ - Expr *pNew; /* The complete IN operator */ - - for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ - if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; - assert( pOrTerm->eOperator & WO_EQ ); - assert( pOrTerm->leftCursor==iCursor ); - assert( pOrTerm->u.leftColumn==iColumn ); - pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); - pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); - pLeft = pOrTerm->pExpr->pLeft; - } - assert( pLeft!=0 ); - pDup = sqlite3ExprDup(db, pLeft, 0); - pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); - if( pNew ){ - int idxNew; - transferJoinMarkings(pNew, pExpr); - assert( !ExprHasProperty(pNew, EP_xIsSelect) ); - pNew->x.pList = pList; - idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); - testcase( idxNew==0 ); - exprAnalyze(pSrc, pWC, idxNew); - pTerm = &pWC->a[idxTerm]; - pWC->a[idxNew].iParent = idxTerm; - pTerm->nChild = 1; - }else{ - sqlite3ExprListDelete(db, pList); - } - pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ - } - } -} -#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ - -/* -** The input to this routine is an WhereTerm structure with only the -** "pExpr" field filled in. The job of this routine is to analyze the -** subexpression and populate all the other fields of the WhereTerm -** structure. -** -** If the expression is of the form "<expr> <op> X" it gets commuted -** to the standard form of "X <op> <expr>". -** -** If the expression is of the form "X <op> Y" where both X and Y are -** columns, then the original expression is unchanged and a new virtual -** term of the form "Y <op> X" is added to the WHERE clause and -** analyzed separately. The original term is marked with TERM_COPIED -** and the new term is marked with TERM_DYNAMIC (because it's pExpr -** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it -** is a commuted copy of a prior term.) The original term has nChild=1 -** and the copy has idxParent set to the index of the original term. -*/ -static void exprAnalyze( - SrcList *pSrc, /* the FROM clause */ - WhereClause *pWC, /* the WHERE clause */ - int idxTerm /* Index of the term to be analyzed */ -){ - WhereTerm *pTerm; /* The term to be analyzed */ - WhereMaskSet *pMaskSet; /* Set of table index masks */ - Expr *pExpr; /* The expression to be analyzed */ - Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ - Bitmask prereqAll; /* Prerequesites of pExpr */ - Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ - Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ - int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ - int noCase = 0; /* LIKE/GLOB distinguishes case */ - int op; /* Top-level operator. pExpr->op */ - Parse *pParse = pWC->pParse; /* Parsing context */ - sqlite3 *db = pParse->db; /* Database connection */ - - if( db->mallocFailed ){ - return; - } - pTerm = &pWC->a[idxTerm]; - pMaskSet = pWC->pMaskSet; - pExpr = pTerm->pExpr; - assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); - prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); - op = pExpr->op; - if( op==TK_IN ){ - assert( pExpr->pRight==0 ); - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); - }else{ - pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); - } - }else if( op==TK_ISNULL ){ - pTerm->prereqRight = 0; - }else{ - pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); - } - prereqAll = exprTableUsage(pMaskSet, pExpr); - if( ExprHasProperty(pExpr, EP_FromJoin) ){ - Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); - prereqAll |= x; - extraRight = x-1; /* ON clause terms may not be used with an index - ** on left table of a LEFT JOIN. Ticket #3015 */ - } - pTerm->prereqAll = prereqAll; - pTerm->leftCursor = -1; - pTerm->iParent = -1; - pTerm->eOperator = 0; - if( allowedOp(op) ){ - Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); - Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); - u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; - if( pLeft->op==TK_COLUMN ){ - pTerm->leftCursor = pLeft->iTable; - pTerm->u.leftColumn = pLeft->iColumn; - pTerm->eOperator = operatorMask(op) & opMask; - } - if( pRight && pRight->op==TK_COLUMN ){ - WhereTerm *pNew; - Expr *pDup; - u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ - if( pTerm->leftCursor>=0 ){ - int idxNew; - pDup = sqlite3ExprDup(db, pExpr, 0); - if( db->mallocFailed ){ - sqlite3ExprDelete(db, pDup); - return; - } - idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); - if( idxNew==0 ) return; - pNew = &pWC->a[idxNew]; - pNew->iParent = idxTerm; - pTerm = &pWC->a[idxTerm]; - pTerm->nChild = 1; - pTerm->wtFlags |= TERM_COPIED; - if( pExpr->op==TK_EQ - && !ExprHasProperty(pExpr, EP_FromJoin) - && OptimizationEnabled(db, SQLITE_Transitive) - ){ - pTerm->eOperator |= WO_EQUIV; - eExtraOp = WO_EQUIV; - } - }else{ - pDup = pExpr; - pNew = pTerm; - } - exprCommute(pParse, pDup); - pLeft = sqlite3ExprSkipCollate(pDup->pLeft); - pNew->leftCursor = pLeft->iTable; - pNew->u.leftColumn = pLeft->iColumn; - testcase( (prereqLeft | extraRight) != prereqLeft ); - pNew->prereqRight = prereqLeft | extraRight; - pNew->prereqAll = prereqAll; - pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; - } - } - -#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION - /* If a term is the BETWEEN operator, create two new virtual terms - ** that define the range that the BETWEEN implements. For example: - ** - ** a BETWEEN b AND c - ** - ** is converted into: - ** - ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) - ** - ** The two new terms are added onto the end of the WhereClause object. - ** The new terms are "dynamic" and are children of the original BETWEEN - ** term. That means that if the BETWEEN term is coded, the children are - ** skipped. Or, if the children are satisfied by an index, the original - ** BETWEEN term is skipped. - */ - else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ - ExprList *pList = pExpr->x.pList; - int i; - static const u8 ops[] = {TK_GE, TK_LE}; - assert( pList!=0 ); - assert( pList->nExpr==2 ); - for(i=0; i<2; i++){ - Expr *pNewExpr; - int idxNew; - pNewExpr = sqlite3PExpr(pParse, ops[i], - sqlite3ExprDup(db, pExpr->pLeft, 0), - sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); - idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); - testcase( idxNew==0 ); - exprAnalyze(pSrc, pWC, idxNew); - pTerm = &pWC->a[idxTerm]; - pWC->a[idxNew].iParent = idxTerm; - } - pTerm->nChild = 2; - } -#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ - -#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) - /* Analyze a term that is composed of two or more subterms connected by - ** an OR operator. - */ - else if( pExpr->op==TK_OR ){ - assert( pWC->op==TK_AND ); - exprAnalyzeOrTerm(pSrc, pWC, idxTerm); - pTerm = &pWC->a[idxTerm]; - } -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ - -#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION - /* Add constraints to reduce the search space on a LIKE or GLOB - ** operator. - ** - ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints - ** - ** x>='abc' AND x<'abd' AND x LIKE 'abc%' - ** - ** The last character of the prefix "abc" is incremented to form the - ** termination condition "abd". - */ - if( pWC->op==TK_AND - && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) - ){ - Expr *pLeft; /* LHS of LIKE/GLOB operator */ - Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ - Expr *pNewExpr1; - Expr *pNewExpr2; - int idxNew1; - int idxNew2; - Token sCollSeqName; /* Name of collating sequence */ - - pLeft = pExpr->x.pList->a[1].pExpr; - pStr2 = sqlite3ExprDup(db, pStr1, 0); - if( !db->mallocFailed ){ - u8 c, *pC; /* Last character before the first wildcard */ - pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; - c = *pC; - if( noCase ){ - /* The point is to increment the last character before the first - ** wildcard. But if we increment '@', that will push it into the - ** alphabetic range where case conversions will mess up the - ** inequality. To avoid this, make sure to also run the full - ** LIKE on all candidate expressions by clearing the isComplete flag - */ - if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ - - - c = sqlite3UpperToLower[c]; - } - *pC = c + 1; - } - sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; - sCollSeqName.n = 6; - pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); - pNewExpr1 = sqlite3PExpr(pParse, TK_GE, - sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), - pStr1, 0); - idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); - testcase( idxNew1==0 ); - exprAnalyze(pSrc, pWC, idxNew1); - pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); - pNewExpr2 = sqlite3PExpr(pParse, TK_LT, - sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), - pStr2, 0); - idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); - testcase( idxNew2==0 ); - exprAnalyze(pSrc, pWC, idxNew2); - pTerm = &pWC->a[idxTerm]; - if( isComplete ){ - pWC->a[idxNew1].iParent = idxTerm; - pWC->a[idxNew2].iParent = idxTerm; - pTerm->nChild = 2; - } - } -#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE - /* Add a WO_MATCH auxiliary term to the constraint set if the - ** current expression is of the form: column MATCH expr. - ** This information is used by the xBestIndex methods of - ** virtual tables. The native query optimizer does not attempt - ** to do anything with MATCH functions. - */ - if( isMatchOfColumn(pExpr) ){ - int idxNew; - Expr *pRight, *pLeft; - WhereTerm *pNewTerm; - Bitmask prereqColumn, prereqExpr; - - pRight = pExpr->x.pList->a[0].pExpr; - pLeft = pExpr->x.pList->a[1].pExpr; - prereqExpr = exprTableUsage(pMaskSet, pRight); - prereqColumn = exprTableUsage(pMaskSet, pLeft); - if( (prereqExpr & prereqColumn)==0 ){ - Expr *pNewExpr; - pNewExpr = sqlite3PExpr(pParse, TK_MATCH, - 0, sqlite3ExprDup(db, pRight, 0), 0); - idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); - testcase( idxNew==0 ); - pNewTerm = &pWC->a[idxNew]; - pNewTerm->prereqRight = prereqExpr; - pNewTerm->leftCursor = pLeft->iTable; - pNewTerm->u.leftColumn = pLeft->iColumn; - pNewTerm->eOperator = WO_MATCH; - pNewTerm->iParent = idxTerm; - pTerm = &pWC->a[idxTerm]; - pTerm->nChild = 1; - pTerm->wtFlags |= TERM_COPIED; - pNewTerm->prereqAll = pTerm->prereqAll; - } - } -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifdef SQLITE_ENABLE_STAT3 - /* When sqlite_stat3 histogram data is available an operator of the - ** form "x IS NOT NULL" can sometimes be evaluated more efficiently - ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a - ** virtual term of that form. - ** - ** Note that the virtual term must be tagged with TERM_VNULL. This - ** TERM_VNULL tag will suppress the not-null check at the beginning - ** of the loop. Without the TERM_VNULL flag, the not-null check at - ** the start of the loop will prevent any results from being returned. - */ - if( pExpr->op==TK_NOTNULL - && pExpr->pLeft->op==TK_COLUMN - && pExpr->pLeft->iColumn>=0 - ){ - Expr *pNewExpr; - Expr *pLeft = pExpr->pLeft; - int idxNew; - WhereTerm *pNewTerm; - - pNewExpr = sqlite3PExpr(pParse, TK_GT, - sqlite3ExprDup(db, pLeft, 0), - sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); - - idxNew = whereClauseInsert(pWC, pNewExpr, - TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); - if( idxNew ){ - pNewTerm = &pWC->a[idxNew]; - pNewTerm->prereqRight = 0; - pNewTerm->leftCursor = pLeft->iTable; - pNewTerm->u.leftColumn = pLeft->iColumn; - pNewTerm->eOperator = WO_GT; - pNewTerm->iParent = idxTerm; - pTerm = &pWC->a[idxTerm]; - pTerm->nChild = 1; - pTerm->wtFlags |= TERM_COPIED; - pNewTerm->prereqAll = pTerm->prereqAll; - } - } -#endif /* SQLITE_ENABLE_STAT */ - - /* Prevent ON clause terms of a LEFT JOIN from being used to drive - ** an index for tables to the left of the join. - */ - pTerm->prereqRight |= extraRight; -} - -/* -** This function searches the expression list passed as the second argument -** for an expression of type TK_COLUMN that refers to the same column and -** uses the same collation sequence as the iCol'th column of index pIdx. -** Argument iBase is the cursor number used for the table that pIdx refers -** to. -** -** If such an expression is found, its index in pList->a[] is returned. If -** no expression is found, -1 is returned. -*/ -static int findIndexCol( - Parse *pParse, /* Parse context */ - ExprList *pList, /* Expression list to search */ - int iBase, /* Cursor for table associated with pIdx */ - Index *pIdx, /* Index to match column of */ - int iCol /* Column of index to match */ -){ - int i; - const char *zColl = pIdx->azColl[iCol]; - - for(i=0; i<pList->nExpr; i++){ - Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); - if( p->op==TK_COLUMN - && p->iColumn==pIdx->aiColumn[iCol] - && p->iTable==iBase - ){ - CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); - if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ - return i; - } - } - } - - return -1; -} - -/* -** This routine determines if pIdx can be used to assist in processing a -** DISTINCT qualifier. In other words, it tests whether or not using this -** index for the outer loop guarantees that rows with equal values for -** all expressions in the pDistinct list are delivered grouped together. -** -** For example, the query -** -** SELECT DISTINCT a, b, c FROM tbl WHERE a = ? -** -** can benefit from any index on columns "b" and "c". -*/ -static int isDistinctIndex( - Parse *pParse, /* Parsing context */ - WhereClause *pWC, /* The WHERE clause */ - Index *pIdx, /* The index being considered */ - int base, /* Cursor number for the table pIdx is on */ - ExprList *pDistinct, /* The DISTINCT expressions */ - int nEqCol /* Number of index columns with == */ -){ - Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */ - int i; /* Iterator variable */ - - assert( pDistinct!=0 ); - if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0; - testcase( pDistinct->nExpr==BMS-1 ); - - /* Loop through all the expressions in the distinct list. If any of them - ** are not simple column references, return early. Otherwise, test if the - ** WHERE clause contains a "col=X" clause. If it does, the expression - ** can be ignored. If it does not, and the column does not belong to the - ** same table as index pIdx, return early. Finally, if there is no - ** matching "col=X" expression and the column is on the same table as pIdx, - ** set the corresponding bit in variable mask. - */ - for(i=0; i<pDistinct->nExpr; i++){ - WhereTerm *pTerm; - Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); - if( p->op!=TK_COLUMN ) return 0; - pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0); - if( pTerm ){ - Expr *pX = pTerm->pExpr; - CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); - CollSeq *p2 = sqlite3ExprCollSeq(pParse, p); - if( p1==p2 ) continue; - } - if( p->iTable!=base ) return 0; - mask |= (((Bitmask)1) << i); - } - - for(i=nEqCol; mask && i<pIdx->nColumn; i++){ - int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i); - if( iExpr<0 ) break; - mask &= ~(((Bitmask)1) << iExpr); - } - - return (mask==0); -} - - -/* -** Return true if the DISTINCT expression-list passed as the third argument -** is redundant. A DISTINCT list is redundant if the database contains a -** UNIQUE index that guarantees that the result of the query will be distinct -** anyway. -*/ -static int isDistinctRedundant( - Parse *pParse, - SrcList *pTabList, - WhereClause *pWC, - ExprList *pDistinct -){ - Table *pTab; - Index *pIdx; - int i; - int iBase; - - /* If there is more than one table or sub-select in the FROM clause of - ** this query, then it will not be possible to show that the DISTINCT - ** clause is redundant. */ - if( pTabList->nSrc!=1 ) return 0; - iBase = pTabList->a[0].iCursor; - pTab = pTabList->a[0].pTab; - - /* If any of the expressions is an IPK column on table iBase, then return - ** true. Note: The (p->iTable==iBase) part of this test may be false if the - ** current SELECT is a correlated sub-query. - */ - for(i=0; i<pDistinct->nExpr; i++){ - Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); - if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; - } - - /* Loop through all indices on the table, checking each to see if it makes - ** the DISTINCT qualifier redundant. It does so if: - ** - ** 1. The index is itself UNIQUE, and - ** - ** 2. All of the columns in the index are either part of the pDistinct - ** list, or else the WHERE clause contains a term of the form "col=X", - ** where X is a constant value. The collation sequences of the - ** comparison and select-list expressions must match those of the index. - ** - ** 3. All of those index columns for which the WHERE clause does not - ** contain a "col=X" term are subject to a NOT NULL constraint. - */ - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - if( pIdx->onError==OE_None ) continue; - for(i=0; i<pIdx->nColumn; i++){ - int iCol = pIdx->aiColumn[i]; - if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ - int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); - if( iIdxCol<0 || pTab->aCol[pIdx->aiColumn[i]].notNull==0 ){ - break; - } - } - } - if( i==pIdx->nColumn ){ - /* This index implies that the DISTINCT qualifier is redundant. */ - return 1; - } - } - - return 0; -} - -/* -** Prepare a crude estimate of the logarithm of the input value. -** The results need not be exact. This is only used for estimating -** the total cost of performing operations with O(logN) or O(NlogN) -** complexity. Because N is just a guess, it is no great tragedy if -** logN is a little off. -*/ -static double estLog(double N){ - double logN = 1; - double x = 10; - while( N>x ){ - logN += 1; - x *= 10; - } - return logN; -} - -/* -** Two routines for printing the content of an sqlite3_index_info -** structure. Used for testing and debugging only. If neither -** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines -** are no-ops. -*/ -#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) -static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ - int i; - if( !sqlite3WhereTrace ) return; - for(i=0; i<p->nConstraint; i++){ - sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", - i, - p->aConstraint[i].iColumn, - p->aConstraint[i].iTermOffset, - p->aConstraint[i].op, - p->aConstraint[i].usable); - } - for(i=0; i<p->nOrderBy; i++){ - sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", - i, - p->aOrderBy[i].iColumn, - p->aOrderBy[i].desc); - } -} -static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ - int i; - if( !sqlite3WhereTrace ) return; - for(i=0; i<p->nConstraint; i++){ - sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", - i, - p->aConstraintUsage[i].argvIndex, - p->aConstraintUsage[i].omit); - } - sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); - sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); - sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); - sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); -} -#else -#define TRACE_IDX_INPUTS(A) -#define TRACE_IDX_OUTPUTS(A) -#endif - -/* -** Required because bestIndex() is called by bestOrClauseIndex() -*/ -static void bestIndex(WhereBestIdx*); - -/* -** This routine attempts to find an scanning strategy that can be used -** to optimize an 'OR' expression that is part of a WHERE clause. -** -** The table associated with FROM clause term pSrc may be either a -** regular B-Tree table or a virtual table. -*/ -static void bestOrClauseIndex(WhereBestIdx *p){ -#ifndef SQLITE_OMIT_OR_OPTIMIZATION - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - const int iCur = pSrc->iCursor; /* The cursor of the table */ - const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ - WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ - - /* The OR-clause optimization is disallowed if the INDEXED BY or - ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */ - if( pSrc->notIndexed || pSrc->pIndex!=0 ){ - return; - } - if( pWC->wctrlFlags & WHERE_AND_ONLY ){ - return; - } - - /* Search the WHERE clause terms for a usable WO_OR term. */ - for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ - if( (pTerm->eOperator & WO_OR)!=0 - && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0 - && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 - ){ - WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; - WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; - WhereTerm *pOrTerm; - int flags = WHERE_MULTI_OR; - double rTotal = 0; - double nRow = 0; - Bitmask used = 0; - WhereBestIdx sBOI; - - sBOI = *p; - sBOI.pOrderBy = 0; - sBOI.pDistinct = 0; - sBOI.ppIdxInfo = 0; - for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ - WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", - (pOrTerm - pOrWC->a), (pTerm - pWC->a) - )); - if( (pOrTerm->eOperator& WO_AND)!=0 ){ - sBOI.pWC = &pOrTerm->u.pAndInfo->wc; - bestIndex(&sBOI); - }else if( pOrTerm->leftCursor==iCur ){ - WhereClause tempWC; - tempWC.pParse = pWC->pParse; - tempWC.pMaskSet = pWC->pMaskSet; - tempWC.pOuter = pWC; - tempWC.op = TK_AND; - tempWC.a = pOrTerm; - tempWC.wctrlFlags = 0; - tempWC.nTerm = 1; - sBOI.pWC = &tempWC; - bestIndex(&sBOI); - }else{ - continue; - } - rTotal += sBOI.cost.rCost; - nRow += sBOI.cost.plan.nRow; - used |= sBOI.cost.used; - if( rTotal>=p->cost.rCost ) break; - } - - /* If there is an ORDER BY clause, increase the scan cost to account - ** for the cost of the sort. */ - if( p->pOrderBy!=0 ){ - WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", - rTotal, rTotal+nRow*estLog(nRow))); - rTotal += nRow*estLog(nRow); - } - - /* If the cost of scanning using this OR term for optimization is - ** less than the current cost stored in pCost, replace the contents - ** of pCost. */ - WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); - if( rTotal<p->cost.rCost ){ - p->cost.rCost = rTotal; - p->cost.used = used; - p->cost.plan.nRow = nRow; - p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; - p->cost.plan.wsFlags = flags; - p->cost.plan.u.pTerm = pTerm; - } - } - } -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ -} - -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX -/* -** Return TRUE if the WHERE clause term pTerm is of a form where it -** could be used with an index to access pSrc, assuming an appropriate -** index existed. -*/ -static int termCanDriveIndex( - WhereTerm *pTerm, /* WHERE clause term to check */ - struct SrcList_item *pSrc, /* Table we are trying to access */ - Bitmask notReady /* Tables in outer loops of the join */ -){ - char aff; - if( pTerm->leftCursor!=pSrc->iCursor ) return 0; - if( (pTerm->eOperator & WO_EQ)==0 ) return 0; - if( (pTerm->prereqRight & notReady)!=0 ) return 0; - aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; - if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; - return 1; -} -#endif - -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX -/* -** If the query plan for pSrc specified in pCost is a full table scan -** and indexing is allows (if there is no NOT INDEXED clause) and it -** possible to construct a transient index that would perform better -** than a full table scan even when the cost of constructing the index -** is taken into account, then alter the query plan to use the -** transient index. -*/ -static void bestAutomaticIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - double nTableRow; /* Rows in the input table */ - double logN; /* log(nTableRow) */ - double costTempIdx; /* per-query cost of the transient index */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ - WhereTerm *pWCEnd; /* End of pWC->a[] */ - Table *pTable; /* Table tht might be indexed */ - - if( pParse->nQueryLoop<=(double)1 ){ - /* There is no point in building an automatic index for a single scan */ - return; - } - if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ - /* Automatic indices are disabled at run-time */ - return; - } - if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 - && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0 - ){ - /* We already have some kind of index in use for this query. */ - return; - } - if( pSrc->viaCoroutine ){ - /* Cannot index a co-routine */ - return; - } - if( pSrc->notIndexed ){ - /* The NOT INDEXED clause appears in the SQL. */ - return; - } - if( pSrc->isCorrelated ){ - /* The source is a correlated sub-query. No point in indexing it. */ - return; - } - - assert( pParse->nQueryLoop >= (double)1 ); - pTable = pSrc->pTab; - nTableRow = pTable->nRowEst; - logN = estLog(nTableRow); - costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); - if( costTempIdx>=p->cost.rCost ){ - /* The cost of creating the transient table would be greater than - ** doing the full table scan */ - return; - } - - /* Search for any equality comparison term */ - pWCEnd = &pWC->a[pWC->nTerm]; - for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ - if( termCanDriveIndex(pTerm, pSrc, p->notReady) ){ - WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", - p->cost.rCost, costTempIdx)); - p->cost.rCost = costTempIdx; - p->cost.plan.nRow = logN + 1; - p->cost.plan.wsFlags = WHERE_TEMP_INDEX; - p->cost.used = pTerm->prereqRight; - break; - } - } -} -#else -# define bestAutomaticIndex(A) /* no-op */ -#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ - - -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX -/* -** Generate code to construct the Index object for an automatic index -** and to set up the WhereLevel object pLevel so that the code generator -** makes use of the automatic index. -*/ -static void constructAutomaticIndex( - Parse *pParse, /* The parsing context */ - WhereClause *pWC, /* The WHERE clause */ - struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ - Bitmask notReady, /* Mask of cursors that are not available */ - WhereLevel *pLevel /* Write new index here */ -){ - int nColumn; /* Number of columns in the constructed index */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ - WhereTerm *pWCEnd; /* End of pWC->a[] */ - int nByte; /* Byte of memory needed for pIdx */ - Index *pIdx; /* Object describing the transient index */ - Vdbe *v; /* Prepared statement under construction */ - int addrInit; /* Address of the initialization bypass jump */ - Table *pTable; /* The table being indexed */ - KeyInfo *pKeyinfo; /* Key information for the index */ - int addrTop; /* Top of the index fill loop */ - int regRecord; /* Register holding an index record */ - int n; /* Column counter */ - int i; /* Loop counter */ - int mxBitCol; /* Maximum column in pSrc->colUsed */ - CollSeq *pColl; /* Collating sequence to on a column */ - Bitmask idxCols; /* Bitmap of columns used for indexing */ - Bitmask extraCols; /* Bitmap of additional columns */ - - /* Generate code to skip over the creation and initialization of the - ** transient index on 2nd and subsequent iterations of the loop. */ - v = pParse->pVdbe; - assert( v!=0 ); - addrInit = sqlite3CodeOnce(pParse); - - /* Count the number of columns that will be added to the index - ** and used to match WHERE clause constraints */ - nColumn = 0; - pTable = pSrc->pTab; - pWCEnd = &pWC->a[pWC->nTerm]; - idxCols = 0; - for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ - if( termCanDriveIndex(pTerm, pSrc, notReady) ){ - int iCol = pTerm->u.leftColumn; - Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; - testcase( iCol==BMS ); - testcase( iCol==BMS-1 ); - if( (idxCols & cMask)==0 ){ - nColumn++; - idxCols |= cMask; - } - } - } - assert( nColumn>0 ); - pLevel->plan.nEq = nColumn; - - /* Count the number of additional columns needed to create a - ** covering index. A "covering index" is an index that contains all - ** columns that are needed by the query. With a covering index, the - ** original table never needs to be accessed. Automatic indices must - ** be a covering index because the index will not be updated if the - ** original table changes and the index and table cannot both be used - ** if they go out of sync. - */ - extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); - mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; - testcase( pTable->nCol==BMS-1 ); - testcase( pTable->nCol==BMS-2 ); - for(i=0; i<mxBitCol; i++){ - if( extraCols & (((Bitmask)1)<<i) ) nColumn++; - } - if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ - nColumn += pTable->nCol - BMS + 1; - } - pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; - - /* Construct the Index object to describe this index */ - nByte = sizeof(Index); - nByte += nColumn*sizeof(int); /* Index.aiColumn */ - nByte += nColumn*sizeof(char*); /* Index.azColl */ - nByte += nColumn; /* Index.aSortOrder */ - pIdx = sqlite3DbMallocZero(pParse->db, nByte); - if( pIdx==0 ) return; - pLevel->plan.u.pIdx = pIdx; - pIdx->azColl = (char**)&pIdx[1]; - pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; - pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; - pIdx->zName = "auto-index"; - pIdx->nColumn = nColumn; - pIdx->pTable = pTable; - n = 0; - idxCols = 0; - for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ - if( termCanDriveIndex(pTerm, pSrc, notReady) ){ - int iCol = pTerm->u.leftColumn; - Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; - if( (idxCols & cMask)==0 ){ - Expr *pX = pTerm->pExpr; - idxCols |= cMask; - pIdx->aiColumn[n] = pTerm->u.leftColumn; - pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); - pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; - n++; - } - } - } - assert( (u32)n==pLevel->plan.nEq ); - - /* Add additional columns needed to make the automatic index into - ** a covering index */ - for(i=0; i<mxBitCol; i++){ - if( extraCols & (((Bitmask)1)<<i) ){ - pIdx->aiColumn[n] = i; - pIdx->azColl[n] = "BINARY"; - n++; - } - } - if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ - for(i=BMS-1; i<pTable->nCol; i++){ - pIdx->aiColumn[n] = i; - pIdx->azColl[n] = "BINARY"; - n++; - } - } - assert( n==nColumn ); - - /* Create the automatic index */ - pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); - assert( pLevel->iIdxCur>=0 ); - sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, - (char*)pKeyinfo, P4_KEYINFO_HANDOFF); - VdbeComment((v, "for %s", pTable->zName)); - - /* Fill the automatic index with content */ - addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); - regRecord = sqlite3GetTempReg(pParse); - sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); - sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); - sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); - sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); - sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); - sqlite3VdbeJumpHere(v, addrTop); - sqlite3ReleaseTempReg(pParse, regRecord); - - /* Jump here when skipping the initialization */ - sqlite3VdbeJumpHere(v, addrInit); -} -#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ - -#ifndef SQLITE_OMIT_VIRTUALTABLE -/* -** Allocate and populate an sqlite3_index_info structure. It is the -** responsibility of the caller to eventually release the structure -** by passing the pointer returned by this function to sqlite3_free(). -*/ -static sqlite3_index_info *allocateIndexInfo(WhereBestIdx *p){ - Parse *pParse = p->pParse; - WhereClause *pWC = p->pWC; - struct SrcList_item *pSrc = p->pSrc; - ExprList *pOrderBy = p->pOrderBy; - int i, j; - int nTerm; - struct sqlite3_index_constraint *pIdxCons; - struct sqlite3_index_orderby *pIdxOrderBy; - struct sqlite3_index_constraint_usage *pUsage; - WhereTerm *pTerm; - int nOrderBy; - sqlite3_index_info *pIdxInfo; - - WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); - - /* Count the number of possible WHERE clause constraints referring - ** to this virtual table */ - for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ - if( pTerm->leftCursor != pSrc->iCursor ) continue; - assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); - testcase( pTerm->eOperator & WO_IN ); - testcase( pTerm->eOperator & WO_ISNULL ); - if( pTerm->eOperator & (WO_ISNULL) ) continue; - if( pTerm->wtFlags & TERM_VNULL ) continue; - nTerm++; - } - - /* If the ORDER BY clause contains only columns in the current - ** virtual table then allocate space for the aOrderBy part of - ** the sqlite3_index_info structure. - */ - nOrderBy = 0; - if( pOrderBy ){ - int n = pOrderBy->nExpr; - for(i=0; i<n; i++){ - Expr *pExpr = pOrderBy->a[i].pExpr; - if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; - } - if( i==n){ - nOrderBy = n; - } - } - - /* Allocate the sqlite3_index_info structure - */ - pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) - + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm - + sizeof(*pIdxOrderBy)*nOrderBy ); - if( pIdxInfo==0 ){ - sqlite3ErrorMsg(pParse, "out of memory"); - /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ - return 0; - } - - /* Initialize the structure. The sqlite3_index_info structure contains - ** many fields that are declared "const" to prevent xBestIndex from - ** changing them. We have to do some funky casting in order to - ** initialize those fields. - */ - pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; - pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; - pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; - *(int*)&pIdxInfo->nConstraint = nTerm; - *(int*)&pIdxInfo->nOrderBy = nOrderBy; - *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; - *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; - *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = - pUsage; - - for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ - u8 op; - if( pTerm->leftCursor != pSrc->iCursor ) continue; - assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); - testcase( pTerm->eOperator & WO_IN ); - testcase( pTerm->eOperator & WO_ISNULL ); - if( pTerm->eOperator & (WO_ISNULL) ) continue; - if( pTerm->wtFlags & TERM_VNULL ) continue; - pIdxCons[j].iColumn = pTerm->u.leftColumn; - pIdxCons[j].iTermOffset = i; - op = (u8)pTerm->eOperator & WO_ALL; - if( op==WO_IN ) op = WO_EQ; - pIdxCons[j].op = op; - /* The direct assignment in the previous line is possible only because - ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The - ** following asserts verify this fact. */ - assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); - assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); - assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); - assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); - assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); - assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); - assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); - j++; - } - for(i=0; i<nOrderBy; i++){ - Expr *pExpr = pOrderBy->a[i].pExpr; - pIdxOrderBy[i].iColumn = pExpr->iColumn; - pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; - } - - return pIdxInfo; -} - -/* -** The table object reference passed as the second argument to this function -** must represent a virtual table. This function invokes the xBestIndex() -** method of the virtual table with the sqlite3_index_info pointer passed -** as the argument. -** -** If an error occurs, pParse is populated with an error message and a -** non-zero value is returned. Otherwise, 0 is returned and the output -** part of the sqlite3_index_info structure is left populated. -** -** Whether or not an error is returned, it is the responsibility of the -** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates -** that this is required. -*/ -static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ - sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; - int i; - int rc; - - WHERETRACE(("xBestIndex for %s\n", pTab->zName)); - TRACE_IDX_INPUTS(p); - rc = pVtab->pModule->xBestIndex(pVtab, p); - TRACE_IDX_OUTPUTS(p); - - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_NOMEM ){ - pParse->db->mallocFailed = 1; - }else if( !pVtab->zErrMsg ){ - sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); - }else{ - sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); - } - } - sqlite3_free(pVtab->zErrMsg); - pVtab->zErrMsg = 0; - - for(i=0; i<p->nConstraint; i++){ - if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ - sqlite3ErrorMsg(pParse, - "table %s: xBestIndex returned an invalid plan", pTab->zName); - } - } - - return pParse->nErr; -} - - -/* -** Compute the best index for a virtual table. -** -** The best index is computed by the xBestIndex method of the virtual -** table module. This routine is really just a wrapper that sets up -** the sqlite3_index_info structure that is used to communicate with -** xBestIndex. -** -** In a join, this routine might be called multiple times for the -** same virtual table. The sqlite3_index_info structure is created -** and initialized on the first invocation and reused on all subsequent -** invocations. The sqlite3_index_info structure is also used when -** code is generated to access the virtual table. The whereInfoDelete() -** routine takes care of freeing the sqlite3_index_info structure after -** everybody has finished with it. -*/ -static void bestVirtualIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - Table *pTab = pSrc->pTab; - sqlite3_index_info *pIdxInfo; - struct sqlite3_index_constraint *pIdxCons; - struct sqlite3_index_constraint_usage *pUsage; - WhereTerm *pTerm; - int i, j, k; - int nOrderBy; - int sortOrder; /* Sort order for IN clauses */ - int bAllowIN; /* Allow IN optimizations */ - double rCost; - - /* Make sure wsFlags is initialized to some sane value. Otherwise, if the - ** malloc in allocateIndexInfo() fails and this function returns leaving - ** wsFlags in an uninitialized state, the caller may behave unpredictably. - */ - memset(&p->cost, 0, sizeof(p->cost)); - p->cost.plan.wsFlags = WHERE_VIRTUALTABLE; - - /* If the sqlite3_index_info structure has not been previously - ** allocated and initialized, then allocate and initialize it now. - */ - pIdxInfo = *p->ppIdxInfo; - if( pIdxInfo==0 ){ - *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(p); - } - if( pIdxInfo==0 ){ - return; - } - - /* At this point, the sqlite3_index_info structure that pIdxInfo points - ** to will have been initialized, either during the current invocation or - ** during some prior invocation. Now we just have to customize the - ** details of pIdxInfo for the current invocation and pass it to - ** xBestIndex. - */ - - /* The module name must be defined. Also, by this point there must - ** be a pointer to an sqlite3_vtab structure. Otherwise - ** sqlite3ViewGetColumnNames() would have picked up the error. - */ - assert( pTab->azModuleArg && pTab->azModuleArg[0] ); - assert( sqlite3GetVTable(pParse->db, pTab) ); - - /* Try once or twice. On the first attempt, allow IN optimizations. - ** If an IN optimization is accepted by the virtual table xBestIndex - ** method, but the pInfo->aConstrainUsage.omit flag is not set, then - ** the query will not work because it might allow duplicate rows in - ** output. In that case, run the xBestIndex method a second time - ** without the IN constraints. Usually this loop only runs once. - ** The loop will exit using a "break" statement. - */ - for(bAllowIN=1; 1; bAllowIN--){ - assert( bAllowIN==0 || bAllowIN==1 ); - - /* Set the aConstraint[].usable fields and initialize all - ** output variables to zero. - ** - ** aConstraint[].usable is true for constraints where the right-hand - ** side contains only references to tables to the left of the current - ** table. In other words, if the constraint is of the form: - ** - ** column = expr - ** - ** and we are evaluating a join, then the constraint on column is - ** only valid if all tables referenced in expr occur to the left - ** of the table containing column. - ** - ** The aConstraints[] array contains entries for all constraints - ** on the current table. That way we only have to compute it once - ** even though we might try to pick the best index multiple times. - ** For each attempt at picking an index, the order of tables in the - ** join might be different so we have to recompute the usable flag - ** each time. - */ - pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; - pUsage = pIdxInfo->aConstraintUsage; - for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ - j = pIdxCons->iTermOffset; - pTerm = &pWC->a[j]; - if( (pTerm->prereqRight&p->notReady)==0 - && (bAllowIN || (pTerm->eOperator & WO_IN)==0) - ){ - pIdxCons->usable = 1; - }else{ - pIdxCons->usable = 0; - } - } - memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); - if( pIdxInfo->needToFreeIdxStr ){ - sqlite3_free(pIdxInfo->idxStr); - } - pIdxInfo->idxStr = 0; - pIdxInfo->idxNum = 0; - pIdxInfo->needToFreeIdxStr = 0; - pIdxInfo->orderByConsumed = 0; - /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ - pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); - nOrderBy = pIdxInfo->nOrderBy; - if( !p->pOrderBy ){ - pIdxInfo->nOrderBy = 0; - } - - if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ - return; - } - - sortOrder = SQLITE_SO_ASC; - pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; - for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ - if( pUsage[i].argvIndex>0 ){ - j = pIdxCons->iTermOffset; - pTerm = &pWC->a[j]; - p->cost.used |= pTerm->prereqRight; - if( (pTerm->eOperator & WO_IN)!=0 ){ - if( pUsage[i].omit==0 ){ - /* Do not attempt to use an IN constraint if the virtual table - ** says that the equivalent EQ constraint cannot be safely omitted. - ** If we do attempt to use such a constraint, some rows might be - ** repeated in the output. */ - break; - } - for(k=0; k<pIdxInfo->nOrderBy; k++){ - if( pIdxInfo->aOrderBy[k].iColumn==pIdxCons->iColumn ){ - sortOrder = pIdxInfo->aOrderBy[k].desc; - break; - } - } - } - } - } - if( i>=pIdxInfo->nConstraint ) break; - } - - /* If there is an ORDER BY clause, and the selected virtual table index - ** does not satisfy it, increase the cost of the scan accordingly. This - ** matches the processing for non-virtual tables in bestBtreeIndex(). - */ - rCost = pIdxInfo->estimatedCost; - if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){ - rCost += estLog(rCost)*rCost; - } - - /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the - ** inital value of lowestCost in this loop. If it is, then the - ** (cost<lowestCost) test below will never be true. - ** - ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT - ** is defined. - */ - if( (SQLITE_BIG_DBL/((double)2))<rCost ){ - p->cost.rCost = (SQLITE_BIG_DBL/((double)2)); - }else{ - p->cost.rCost = rCost; - } - p->cost.plan.u.pVtabIdx = pIdxInfo; - if( pIdxInfo->orderByConsumed ){ - assert( sortOrder==0 || sortOrder==1 ); - p->cost.plan.wsFlags |= WHERE_ORDERED + sortOrder*WHERE_REVERSE; - p->cost.plan.nOBSat = nOrderBy; - }else{ - p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; - } - p->cost.plan.nEq = 0; - pIdxInfo->nOrderBy = nOrderBy; - - /* Try to find a more efficient access pattern by using multiple indexes - ** to optimize an OR expression within the WHERE clause. - */ - bestOrClauseIndex(p); -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - -#ifdef SQLITE_ENABLE_STAT3 -/* -** Estimate the location of a particular key among all keys in an -** index. Store the results in aStat as follows: -** -** aStat[0] Est. number of rows less than pVal -** aStat[1] Est. number of rows equal to pVal -** -** Return SQLITE_OK on success. -*/ -static int whereKeyStats( - Parse *pParse, /* Database connection */ - Index *pIdx, /* Index to consider domain of */ - sqlite3_value *pVal, /* Value to consider */ - int roundUp, /* Round up if true. Round down if false */ - tRowcnt *aStat /* OUT: stats written here */ -){ - tRowcnt n; - IndexSample *aSample; - int i, eType; - int isEq = 0; - i64 v; - double r, rS; - - assert( roundUp==0 || roundUp==1 ); - assert( pIdx->nSample>0 ); - if( pVal==0 ) return SQLITE_ERROR; - n = pIdx->aiRowEst[0]; - aSample = pIdx->aSample; - eType = sqlite3_value_type(pVal); - - if( eType==SQLITE_INTEGER ){ - v = sqlite3_value_int64(pVal); - r = (i64)v; - for(i=0; i<pIdx->nSample; i++){ - if( aSample[i].eType==SQLITE_NULL ) continue; - if( aSample[i].eType>=SQLITE_TEXT ) break; - if( aSample[i].eType==SQLITE_INTEGER ){ - if( aSample[i].u.i>=v ){ - isEq = aSample[i].u.i==v; - break; - } - }else{ - assert( aSample[i].eType==SQLITE_FLOAT ); - if( aSample[i].u.r>=r ){ - isEq = aSample[i].u.r==r; - break; - } - } - } - }else if( eType==SQLITE_FLOAT ){ - r = sqlite3_value_double(pVal); - for(i=0; i<pIdx->nSample; i++){ - if( aSample[i].eType==SQLITE_NULL ) continue; - if( aSample[i].eType>=SQLITE_TEXT ) break; - if( aSample[i].eType==SQLITE_FLOAT ){ - rS = aSample[i].u.r; - }else{ - rS = aSample[i].u.i; - } - if( rS>=r ){ - isEq = rS==r; - break; - } - } - }else if( eType==SQLITE_NULL ){ - i = 0; - if( aSample[0].eType==SQLITE_NULL ) isEq = 1; - }else{ - assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); - for(i=0; i<pIdx->nSample; i++){ - if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){ - break; - } - } - if( i<pIdx->nSample ){ - sqlite3 *db = pParse->db; - CollSeq *pColl; - const u8 *z; - if( eType==SQLITE_BLOB ){ - z = (const u8 *)sqlite3_value_blob(pVal); - pColl = db->pDfltColl; - assert( pColl->enc==SQLITE_UTF8 ); - }else{ - pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl); - if( pColl==0 ){ - return SQLITE_ERROR; - } - z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); - if( !z ){ - return SQLITE_NOMEM; - } - assert( z && pColl && pColl->xCmp ); - } - n = sqlite3ValueBytes(pVal, pColl->enc); - - for(; i<pIdx->nSample; i++){ - int c; - int eSampletype = aSample[i].eType; - if( eSampletype<eType ) continue; - if( eSampletype!=eType ) break; -#ifndef SQLITE_OMIT_UTF16 - if( pColl->enc!=SQLITE_UTF8 ){ - int nSample; - char *zSample = sqlite3Utf8to16( - db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample - ); - if( !zSample ){ - assert( db->mallocFailed ); - return SQLITE_NOMEM; - } - c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); - sqlite3DbFree(db, zSample); - }else -#endif - { - c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); - } - if( c>=0 ){ - if( c==0 ) isEq = 1; - break; - } - } - } - } - - /* At this point, aSample[i] is the first sample that is greater than - ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less - ** than pVal. If aSample[i]==pVal, then isEq==1. - */ - if( isEq ){ - assert( i<pIdx->nSample ); - aStat[0] = aSample[i].nLt; - aStat[1] = aSample[i].nEq; - }else{ - tRowcnt iLower, iUpper, iGap; - if( i==0 ){ - iLower = 0; - iUpper = aSample[0].nLt; - }else{ - iUpper = i>=pIdx->nSample ? n : aSample[i].nLt; - iLower = aSample[i-1].nEq + aSample[i-1].nLt; - } - aStat[1] = pIdx->avgEq; - if( iLower>=iUpper ){ - iGap = 0; - }else{ - iGap = iUpper - iLower; - } - if( roundUp ){ - iGap = (iGap*2)/3; - }else{ - iGap = iGap/3; - } - aStat[0] = iLower + iGap; - } - return SQLITE_OK; -} -#endif /* SQLITE_ENABLE_STAT3 */ - -/* -** If expression pExpr represents a literal value, set *pp to point to -** an sqlite3_value structure containing the same value, with affinity -** aff applied to it, before returning. It is the responsibility of the -** caller to eventually release this structure by passing it to -** sqlite3ValueFree(). -** -** If the current parse is a recompile (sqlite3Reprepare()) and pExpr -** is an SQL variable that currently has a non-NULL value bound to it, -** create an sqlite3_value structure containing this value, again with -** affinity aff applied to it, instead. -** -** If neither of the above apply, set *pp to NULL. -** -** If an error occurs, return an error code. Otherwise, SQLITE_OK. -*/ -#ifdef SQLITE_ENABLE_STAT3 -static int valueFromExpr( - Parse *pParse, - Expr *pExpr, - u8 aff, - sqlite3_value **pp -){ - if( pExpr->op==TK_VARIABLE - || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) - ){ - int iVar = pExpr->iColumn; - sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); - *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); - return SQLITE_OK; - } - return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); -} -#endif - -/* -** This function is used to estimate the number of rows that will be visited -** by scanning an index for a range of values. The range may have an upper -** bound, a lower bound, or both. The WHERE clause terms that set the upper -** and lower bounds are represented by pLower and pUpper respectively. For -** example, assuming that index p is on t1(a): -** -** ... FROM t1 WHERE a > ? AND a < ? ... -** |_____| |_____| -** | | -** pLower pUpper -** -** If either of the upper or lower bound is not present, then NULL is passed in -** place of the corresponding WhereTerm. -** -** The nEq parameter is passed the index of the index column subject to the -** range constraint. Or, equivalently, the number of equality constraints -** optimized by the proposed index scan. For example, assuming index p is -** on t1(a, b), and the SQL query is: -** -** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... -** -** then nEq should be passed the value 1 (as the range restricted column, -** b, is the second left-most column of the index). Or, if the query is: -** -** ... FROM t1 WHERE a > ? AND a < ? ... -** -** then nEq should be passed 0. -** -** The returned value is an integer divisor to reduce the estimated -** search space. A return value of 1 means that range constraints are -** no help at all. A return value of 2 means range constraints are -** expected to reduce the search space by half. And so forth... -** -** In the absence of sqlite_stat3 ANALYZE data, each range inequality -** reduces the search space by a factor of 4. Hence a single constraint (x>?) -** results in a return of 4 and a range constraint (x>? AND x<?) results -** in a return of 16. -*/ -static int whereRangeScanEst( - Parse *pParse, /* Parsing & code generating context */ - Index *p, /* The index containing the range-compared column; "x" */ - int nEq, /* index into p->aCol[] of the range-compared column */ - WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ - WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ - double *pRangeDiv /* OUT: Reduce search space by this divisor */ -){ - int rc = SQLITE_OK; - -#ifdef SQLITE_ENABLE_STAT3 - - if( nEq==0 && p->nSample ){ - sqlite3_value *pRangeVal; - tRowcnt iLower = 0; - tRowcnt iUpper = p->aiRowEst[0]; - tRowcnt a[2]; - u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; - - if( pLower ){ - Expr *pExpr = pLower->pExpr->pRight; - rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal); - assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 ); - if( rc==SQLITE_OK - && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK - ){ - iLower = a[0]; - if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1]; - } - sqlite3ValueFree(pRangeVal); - } - if( rc==SQLITE_OK && pUpper ){ - Expr *pExpr = pUpper->pExpr->pRight; - rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal); - assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); - if( rc==SQLITE_OK - && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK - ){ - iUpper = a[0]; - if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1]; - } - sqlite3ValueFree(pRangeVal); - } - if( rc==SQLITE_OK ){ - if( iUpper<=iLower ){ - *pRangeDiv = (double)p->aiRowEst[0]; - }else{ - *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower); - } - WHERETRACE(("range scan regions: %u..%u div=%g\n", - (u32)iLower, (u32)iUpper, *pRangeDiv)); - return SQLITE_OK; - } - } -#else - UNUSED_PARAMETER(pParse); - UNUSED_PARAMETER(p); - UNUSED_PARAMETER(nEq); -#endif - assert( pLower || pUpper ); - *pRangeDiv = (double)1; - if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4; - if( pUpper ) *pRangeDiv *= (double)4; - return rc; -} - -#ifdef SQLITE_ENABLE_STAT3 -/* -** Estimate the number of rows that will be returned based on -** an equality constraint x=VALUE and where that VALUE occurs in -** the histogram data. This only works when x is the left-most -** column of an index and sqlite_stat3 histogram data is available -** for that index. When pExpr==NULL that means the constraint is -** "x IS NULL" instead of "x=VALUE". -** -** Write the estimated row count into *pnRow and return SQLITE_OK. -** If unable to make an estimate, leave *pnRow unchanged and return -** non-zero. -** -** This routine can fail if it is unable to load a collating sequence -** required for string comparison, or if unable to allocate memory -** for a UTF conversion required for comparison. The error is stored -** in the pParse structure. -*/ -static int whereEqualScanEst( - Parse *pParse, /* Parsing & code generating context */ - Index *p, /* The index whose left-most column is pTerm */ - Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ - double *pnRow /* Write the revised row estimate here */ -){ - sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ - u8 aff; /* Column affinity */ - int rc; /* Subfunction return code */ - tRowcnt a[2]; /* Statistics */ - - assert( p->aSample!=0 ); - assert( p->nSample>0 ); - aff = p->pTable->aCol[p->aiColumn[0]].affinity; - if( pExpr ){ - rc = valueFromExpr(pParse, pExpr, aff, &pRhs); - if( rc ) goto whereEqualScanEst_cancel; - }else{ - pRhs = sqlite3ValueNew(pParse->db); - } - if( pRhs==0 ) return SQLITE_NOTFOUND; - rc = whereKeyStats(pParse, p, pRhs, 0, a); - if( rc==SQLITE_OK ){ - WHERETRACE(("equality scan regions: %d\n", (int)a[1])); - *pnRow = a[1]; - } -whereEqualScanEst_cancel: - sqlite3ValueFree(pRhs); - return rc; -} -#endif /* defined(SQLITE_ENABLE_STAT3) */ - -#ifdef SQLITE_ENABLE_STAT3 -/* -** Estimate the number of rows that will be returned based on -** an IN constraint where the right-hand side of the IN operator -** is a list of values. Example: -** -** WHERE x IN (1,2,3,4) -** -** Write the estimated row count into *pnRow and return SQLITE_OK. -** If unable to make an estimate, leave *pnRow unchanged and return -** non-zero. -** -** This routine can fail if it is unable to load a collating sequence -** required for string comparison, or if unable to allocate memory -** for a UTF conversion required for comparison. The error is stored -** in the pParse structure. -*/ -static int whereInScanEst( - Parse *pParse, /* Parsing & code generating context */ - Index *p, /* The index whose left-most column is pTerm */ - ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ - double *pnRow /* Write the revised row estimate here */ -){ - int rc = SQLITE_OK; /* Subfunction return code */ - double nEst; /* Number of rows for a single term */ - double nRowEst = (double)0; /* New estimate of the number of rows */ - int i; /* Loop counter */ - - assert( p->aSample!=0 ); - for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ - nEst = p->aiRowEst[0]; - rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst); - nRowEst += nEst; - } - if( rc==SQLITE_OK ){ - if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; - *pnRow = nRowEst; - WHERETRACE(("IN row estimate: est=%g\n", nRowEst)); - } - return rc; -} -#endif /* defined(SQLITE_ENABLE_STAT3) */ - -/* -** Check to see if column iCol of the table with cursor iTab will appear -** in sorted order according to the current query plan. -** -** Return values: -** -** 0 iCol is not ordered -** 1 iCol has only a single value -** 2 iCol is in ASC order -** 3 iCol is in DESC order -*/ -static int isOrderedColumn( - WhereBestIdx *p, - int iTab, - int iCol -){ - int i, j; - WhereLevel *pLevel = &p->aLevel[p->i-1]; - Index *pIdx; - u8 sortOrder; - for(i=p->i-1; i>=0; i--, pLevel--){ - if( pLevel->iTabCur!=iTab ) continue; - if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ - return 1; - } - assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 ); - if( (pIdx = pLevel->plan.u.pIdx)!=0 ){ - if( iCol<0 ){ - sortOrder = 0; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - }else{ - int n = pIdx->nColumn; - for(j=0; j<n; j++){ - if( iCol==pIdx->aiColumn[j] ) break; - } - if( j>=n ) return 0; - sortOrder = pIdx->aSortOrder[j]; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - } - }else{ - if( iCol!=(-1) ) return 0; - sortOrder = 0; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - } - if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){ - assert( sortOrder==0 || sortOrder==1 ); - testcase( sortOrder==1 ); - sortOrder = 1 - sortOrder; - } - return sortOrder+2; - } - return 0; -} - -/* -** This routine decides if pIdx can be used to satisfy the ORDER BY -** clause, either in whole or in part. The return value is the -** cumulative number of terms in the ORDER BY clause that are satisfied -** by the index pIdx and other indices in outer loops. -** -** The table being queried has a cursor number of "base". pIdx is the -** index that is postulated for use to access the table. -** -** The *pbRev value is set to 0 order 1 depending on whether or not -** pIdx should be run in the forward order or in reverse order. -*/ -static int isSortingIndex( - WhereBestIdx *p, /* Best index search context */ - Index *pIdx, /* The index we are testing */ - int base, /* Cursor number for the table to be sorted */ - int *pbRev, /* Set to 1 for reverse-order scan of pIdx */ - int *pbObUnique /* ORDER BY column values will different in every row */ -){ - int i; /* Number of pIdx terms used */ - int j; /* Number of ORDER BY terms satisfied */ - int sortOrder = 2; /* 0: forward. 1: backward. 2: unknown */ - int nTerm; /* Number of ORDER BY terms */ - struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */ - Table *pTab = pIdx->pTable; /* Table that owns index pIdx */ - ExprList *pOrderBy; /* The ORDER BY clause */ - Parse *pParse = p->pParse; /* Parser context */ - sqlite3 *db = pParse->db; /* Database connection */ - int nPriorSat; /* ORDER BY terms satisfied by outer loops */ - int seenRowid = 0; /* True if an ORDER BY rowid term is seen */ - int uniqueNotNull; /* pIdx is UNIQUE with all terms are NOT NULL */ - int outerObUnique; /* Outer loops generate different values in - ** every row for the ORDER BY columns */ - - if( p->i==0 ){ - nPriorSat = 0; - outerObUnique = 1; - }else{ - u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags; - nPriorSat = p->aLevel[p->i-1].plan.nOBSat; - if( (wsFlags & WHERE_ORDERED)==0 ){ - /* This loop cannot be ordered unless the next outer loop is - ** also ordered */ - return nPriorSat; - } - if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){ - /* Only look at the outer-most loop if the OrderByIdxJoin - ** optimization is disabled */ - return nPriorSat; - } - testcase( wsFlags & WHERE_OB_UNIQUE ); - testcase( wsFlags & WHERE_ALL_UNIQUE ); - outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0; - } - pOrderBy = p->pOrderBy; - assert( pOrderBy!=0 ); - if( pIdx->bUnordered ){ - /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot - ** be used for sorting */ - return nPriorSat; - } - nTerm = pOrderBy->nExpr; - uniqueNotNull = pIdx->onError!=OE_None; - assert( nTerm>0 ); - - /* Argument pIdx must either point to a 'real' named index structure, - ** or an index structure allocated on the stack by bestBtreeIndex() to - ** represent the rowid index that is part of every table. */ - assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); - - /* Match terms of the ORDER BY clause against columns of - ** the index. - ** - ** Note that indices have pIdx->nColumn regular columns plus - ** one additional column containing the rowid. The rowid column - ** of the index is also allowed to match against the ORDER BY - ** clause. - */ - j = nPriorSat; - for(i=0,pOBItem=&pOrderBy->a[j]; j<nTerm && i<=pIdx->nColumn; i++){ - Expr *pOBExpr; /* The expression of the ORDER BY pOBItem */ - CollSeq *pColl; /* The collating sequence of pOBExpr */ - int termSortOrder; /* Sort order for this term */ - int iColumn; /* The i-th column of the index. -1 for rowid */ - int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ - int isEq; /* Subject to an == or IS NULL constraint */ - int isMatch; /* ORDER BY term matches the index term */ - const char *zColl; /* Name of collating sequence for i-th index term */ - WhereTerm *pConstraint; /* A constraint in the WHERE clause */ - - /* If the next term of the ORDER BY clause refers to anything other than - ** a column in the "base" table, then this index will not be of any - ** further use in handling the ORDER BY. */ - pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr); - if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){ - break; - } - - /* Find column number and collating sequence for the next entry - ** in the index */ - if( pIdx->zName && i<pIdx->nColumn ){ - iColumn = pIdx->aiColumn[i]; - if( iColumn==pIdx->pTable->iPKey ){ - iColumn = -1; - } - iSortOrder = pIdx->aSortOrder[i]; - zColl = pIdx->azColl[i]; - assert( zColl!=0 ); - }else{ - iColumn = -1; - iSortOrder = 0; - zColl = 0; - } - - /* Check to see if the column number and collating sequence of the - ** index match the column number and collating sequence of the ORDER BY - ** clause entry. Set isMatch to 1 if they both match. */ - if( pOBExpr->iColumn==iColumn ){ - if( zColl ){ - pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr); - if( !pColl ) pColl = db->pDfltColl; - isMatch = sqlite3StrICmp(pColl->zName, zColl)==0; - }else{ - isMatch = 1; - } - }else{ - isMatch = 0; - } - - /* termSortOrder is 0 or 1 for whether or not the access loop should - ** run forward or backwards (respectively) in order to satisfy this - ** term of the ORDER BY clause. */ - assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 ); - assert( iSortOrder==0 || iSortOrder==1 ); - termSortOrder = iSortOrder ^ pOBItem->sortOrder; - - /* If X is the column in the index and ORDER BY clause, check to see - ** if there are any X= or X IS NULL constraints in the WHERE clause. */ - pConstraint = findTerm(p->pWC, base, iColumn, p->notReady, - WO_EQ|WO_ISNULL|WO_IN, pIdx); - if( pConstraint==0 ){ - isEq = 0; - }else if( (pConstraint->eOperator & WO_IN)!=0 ){ - isEq = 0; - }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){ - uniqueNotNull = 0; - isEq = 1; /* "X IS NULL" means X has only a single value */ - }else if( pConstraint->prereqRight==0 ){ - isEq = 1; /* Constraint "X=constant" means X has only a single value */ - }else{ - Expr *pRight = pConstraint->pExpr->pRight; - if( pRight->op==TK_COLUMN ){ - WHERETRACE((" .. isOrderedColumn(tab=%d,col=%d)", - pRight->iTable, pRight->iColumn)); - isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn); - WHERETRACE((" -> isEq=%d\n", isEq)); - - /* If the constraint is of the form X=Y where Y is an ordered value - ** in an outer loop, then make sure the sort order of Y matches the - ** sort order required for X. */ - if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){ - testcase( isEq==2 ); - testcase( isEq==3 ); - break; - } - }else{ - isEq = 0; /* "X=expr" places no ordering constraints on X */ - } - } - if( !isMatch ){ - if( isEq==0 ){ - break; - }else{ - continue; - } - }else if( isEq!=1 ){ - if( sortOrder==2 ){ - sortOrder = termSortOrder; - }else if( termSortOrder!=sortOrder ){ - break; - } - } - j++; - pOBItem++; - if( iColumn<0 ){ - seenRowid = 1; - break; - }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){ - testcase( isEq==0 ); - testcase( isEq==2 ); - testcase( isEq==3 ); - uniqueNotNull = 0; - } - } - if( seenRowid ){ - uniqueNotNull = 1; - }else if( uniqueNotNull==0 || i<pIdx->nColumn ){ - uniqueNotNull = 0; - } - - /* If we have not found at least one ORDER BY term that matches the - ** index, then show no progress. */ - if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat; - - /* Either the outer queries must generate rows where there are no two - ** rows with the same values in all ORDER BY columns, or else this - ** loop must generate just a single row of output. Example: Suppose - ** the outer loops generate A=1 and A=1, and this loop generates B=3 - ** and B=4. Then without the following test, ORDER BY A,B would - ** generate the wrong order output: 1,3 1,4 1,3 1,4 - */ - if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat; - *pbObUnique = uniqueNotNull; - - /* Return the necessary scan order back to the caller */ - *pbRev = sortOrder & 1; - - /* If there was an "ORDER BY rowid" term that matched, or it is only - ** possible for a single row from this table to match, then skip over - ** any additional ORDER BY terms dealing with this table. - */ - if( uniqueNotNull ){ - /* Advance j over additional ORDER BY terms associated with base */ - WhereMaskSet *pMS = p->pWC->pMaskSet; - Bitmask m = ~getMask(pMS, base); - while( j<nTerm && (exprTableUsage(pMS, pOrderBy->a[j].pExpr)&m)==0 ){ - j++; - } - } - return j; -} - -/* -** Find the best query plan for accessing a particular table. Write the -** best query plan and its cost into the p->cost. -** -** The lowest cost plan wins. The cost is an estimate of the amount of -** CPU and disk I/O needed to process the requested result. -** Factors that influence cost include: -** -** * The estimated number of rows that will be retrieved. (The -** fewer the better.) -** -** * Whether or not sorting must occur. -** -** * Whether or not there must be separate lookups in the -** index and in the main table. -** -** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in -** the SQL statement, then this function only considers plans using the -** named index. If no such plan is found, then the returned cost is -** SQLITE_BIG_DBL. If a plan is found that uses the named index, -** then the cost is calculated in the usual way. -** -** If a NOT INDEXED clause was attached to the table -** in the SELECT statement, then no indexes are considered. However, the -** selected plan may still take advantage of the built-in rowid primary key -** index. -*/ -static void bestBtreeIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ - Index *pProbe; /* An index we are evaluating */ - Index *pIdx; /* Copy of pProbe, or zero for IPK index */ - int eqTermMask; /* Current mask of valid equality operators */ - int idxEqTermMask; /* Index mask of valid equality operators */ - Index sPk; /* A fake index object for the primary key */ - tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ - int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ - int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */ - int nPriorSat; /* ORDER BY terms satisfied by outer loops */ - int nOrderBy; /* Number of ORDER BY terms */ - char bSortInit; /* Initializer for bSort in inner loop */ - char bDistInit; /* Initializer for bDist in inner loop */ - - - /* Initialize the cost to a worst-case value */ - memset(&p->cost, 0, sizeof(p->cost)); - p->cost.rCost = SQLITE_BIG_DBL; - - /* If the pSrc table is the right table of a LEFT JOIN then we may not - ** use an index to satisfy IS NULL constraints on that table. This is - ** because columns might end up being NULL if the table does not match - - ** a circumstance which the index cannot help us discover. Ticket #2177. - */ - if( pSrc->jointype & JT_LEFT ){ - idxEqTermMask = WO_EQ|WO_IN; - }else{ - idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; - } - - if( pSrc->pIndex ){ - /* An INDEXED BY clause specifies a particular index to use */ - pIdx = pProbe = pSrc->pIndex; - wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); - eqTermMask = idxEqTermMask; - }else{ - /* There is no INDEXED BY clause. Create a fake Index object in local - ** variable sPk to represent the rowid primary key index. Make this - ** fake index the first in a chain of Index objects with all of the real - ** indices to follow */ - Index *pFirst; /* First of real indices on the table */ - memset(&sPk, 0, sizeof(Index)); - sPk.nColumn = 1; - sPk.aiColumn = &aiColumnPk; - sPk.aiRowEst = aiRowEstPk; - sPk.onError = OE_Replace; - sPk.pTable = pSrc->pTab; - aiRowEstPk[0] = pSrc->pTab->nRowEst; - aiRowEstPk[1] = 1; - pFirst = pSrc->pTab->pIndex; - if( pSrc->notIndexed==0 ){ - /* The real indices of the table are only considered if the - ** NOT INDEXED qualifier is omitted from the FROM clause */ - sPk.pNext = pFirst; - } - pProbe = &sPk; - wsFlagMask = ~( - WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE - ); - eqTermMask = WO_EQ|WO_IN; - pIdx = 0; - } - - nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0; - if( p->i ){ - nPriorSat = p->aLevel[p->i-1].plan.nOBSat; - bSortInit = nPriorSat<nOrderBy; - bDistInit = 0; - }else{ - nPriorSat = 0; - bSortInit = nOrderBy>0; - bDistInit = p->pDistinct!=0; - } - - /* Loop over all indices looking for the best one to use - */ - for(; pProbe; pIdx=pProbe=pProbe->pNext){ - const tRowcnt * const aiRowEst = pProbe->aiRowEst; - WhereCost pc; /* Cost of using pProbe */ - double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */ - - /* The following variables are populated based on the properties of - ** index being evaluated. They are then used to determine the expected - ** cost and number of rows returned. - ** - ** pc.plan.nEq: - ** Number of equality terms that can be implemented using the index. - ** In other words, the number of initial fields in the index that - ** are used in == or IN or NOT NULL constraints of the WHERE clause. - ** - ** nInMul: - ** The "in-multiplier". This is an estimate of how many seek operations - ** SQLite must perform on the index in question. For example, if the - ** WHERE clause is: - ** - ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) - ** - ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is - ** set to 9. Given the same schema and either of the following WHERE - ** clauses: - ** - ** WHERE a = 1 - ** WHERE a >= 2 - ** - ** nInMul is set to 1. - ** - ** If there exists a WHERE term of the form "x IN (SELECT ...)", then - ** the sub-select is assumed to return 25 rows for the purposes of - ** determining nInMul. - ** - ** bInEst: - ** Set to true if there was at least one "x IN (SELECT ...)" term used - ** in determining the value of nInMul. Note that the RHS of the - ** IN operator must be a SELECT, not a value list, for this variable - ** to be true. - ** - ** rangeDiv: - ** An estimate of a divisor by which to reduce the search space due - ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE - ** data, a single inequality reduces the search space to 1/4rd its - ** original size (rangeDiv==4). Two inequalities reduce the search - ** space to 1/16th of its original size (rangeDiv==16). - ** - ** bSort: - ** Boolean. True if there is an ORDER BY clause that will require an - ** external sort (i.e. scanning the index being evaluated will not - ** correctly order records). - ** - ** bDist: - ** Boolean. True if there is a DISTINCT clause that will require an - ** external btree. - ** - ** bLookup: - ** Boolean. True if a table lookup is required for each index entry - ** visited. In other words, true if this is not a covering index. - ** This is always false for the rowid primary key index of a table. - ** For other indexes, it is true unless all the columns of the table - ** used by the SELECT statement are present in the index (such an - ** index is sometimes described as a covering index). - ** For example, given the index on (a, b), the second of the following - ** two queries requires table b-tree lookups in order to find the value - ** of column c, but the first does not because columns a and b are - ** both available in the index. - ** - ** SELECT a, b FROM tbl WHERE a = 1; - ** SELECT a, b, c FROM tbl WHERE a = 1; - */ - int bInEst = 0; /* True if "x IN (SELECT...)" seen */ - int nInMul = 1; /* Number of distinct equalities to lookup */ - double rangeDiv = (double)1; /* Estimated reduction in search space */ - int nBound = 0; /* Number of range constraints seen */ - char bSort = bSortInit; /* True if external sort required */ - char bDist = bDistInit; /* True if index cannot help with DISTINCT */ - char bLookup = 0; /* True if not a covering index */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ -#ifdef SQLITE_ENABLE_STAT3 - WhereTerm *pFirstTerm = 0; /* First term matching the index */ -#endif - - WHERETRACE(( - " %s(%s):\n", - pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk") - )); - memset(&pc, 0, sizeof(pc)); - pc.plan.nOBSat = nPriorSat; - - /* Determine the values of pc.plan.nEq and nInMul */ - for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){ - int j = pProbe->aiColumn[pc.plan.nEq]; - pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx); - if( pTerm==0 ) break; - pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); - testcase( pTerm->pWC!=pWC ); - if( pTerm->eOperator & WO_IN ){ - Expr *pExpr = pTerm->pExpr; - pc.plan.wsFlags |= WHERE_COLUMN_IN; - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ - nInMul *= 25; - bInEst = 1; - }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ - /* "x IN (value, value, ...)" */ - nInMul *= pExpr->x.pList->nExpr; - } - }else if( pTerm->eOperator & WO_ISNULL ){ - pc.plan.wsFlags |= WHERE_COLUMN_NULL; - } -#ifdef SQLITE_ENABLE_STAT3 - if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; -#endif - pc.used |= pTerm->prereqRight; - } - - /* If the index being considered is UNIQUE, and there is an equality - ** constraint for all columns in the index, then this search will find - ** at most a single row. In this case set the WHERE_UNIQUE flag to - ** indicate this to the caller. - ** - ** Otherwise, if the search may find more than one row, test to see if - ** there is a range constraint on indexed column (pc.plan.nEq+1) that - ** can be optimized using the index. - */ - if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){ - testcase( pc.plan.wsFlags & WHERE_COLUMN_IN ); - testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL ); - if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ - pc.plan.wsFlags |= WHERE_UNIQUE; - if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ - pc.plan.wsFlags |= WHERE_ALL_UNIQUE; - } - } - }else if( pProbe->bUnordered==0 ){ - int j; - j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]); - if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ - WhereTerm *pTop, *pBtm; - pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx); - pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx); - whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv); - if( pTop ){ - nBound = 1; - pc.plan.wsFlags |= WHERE_TOP_LIMIT; - pc.used |= pTop->prereqRight; - testcase( pTop->pWC!=pWC ); - } - if( pBtm ){ - nBound++; - pc.plan.wsFlags |= WHERE_BTM_LIMIT; - pc.used |= pBtm->prereqRight; - testcase( pBtm->pWC!=pWC ); - } - pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); - } - } - - /* If there is an ORDER BY clause and the index being considered will - ** naturally scan rows in the required order, set the appropriate flags - ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but - ** the index will scan rows in a different order, set the bSort - ** variable. */ - if( bSort && (pSrc->jointype & JT_LEFT)==0 ){ - int bRev = 2; - int bObUnique = 0; - WHERETRACE((" --> before isSortIndex: nPriorSat=%d\n",nPriorSat)); - pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique); - WHERETRACE((" --> after isSortIndex: bRev=%d bObU=%d nOBSat=%d\n", - bRev, bObUnique, pc.plan.nOBSat)); - if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ - pc.plan.wsFlags |= WHERE_ORDERED; - if( bObUnique ) pc.plan.wsFlags |= WHERE_OB_UNIQUE; - } - if( nOrderBy==pc.plan.nOBSat ){ - bSort = 0; - pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE; - } - if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE; - } - - /* If there is a DISTINCT qualifier and this index will scan rows in - ** order of the DISTINCT expressions, clear bDist and set the appropriate - ** flags in pc.plan.wsFlags. */ - if( bDist - && isDistinctIndex(pParse, pWC, pProbe, iCur, p->pDistinct, pc.plan.nEq) - && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0 - ){ - bDist = 0; - pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT; - } - - /* If currently calculating the cost of using an index (not the IPK - ** index), determine if all required column data may be obtained without - ** using the main table (i.e. if the index is a covering - ** index for this query). If it is, set the WHERE_IDX_ONLY flag in - ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true. */ - if( pIdx ){ - Bitmask m = pSrc->colUsed; - int j; - for(j=0; j<pIdx->nColumn; j++){ - int x = pIdx->aiColumn[j]; - if( x<BMS-1 ){ - m &= ~(((Bitmask)1)<<x); - } - } - if( m==0 ){ - pc.plan.wsFlags |= WHERE_IDX_ONLY; - }else{ - bLookup = 1; - } - } - - /* - ** Estimate the number of rows of output. For an "x IN (SELECT...)" - ** constraint, do not let the estimate exceed half the rows in the table. - */ - pc.plan.nRow = (double)(aiRowEst[pc.plan.nEq] * nInMul); - if( bInEst && pc.plan.nRow*2>aiRowEst[0] ){ - pc.plan.nRow = aiRowEst[0]/2; - nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]); - } - -#ifdef SQLITE_ENABLE_STAT3 - /* If the constraint is of the form x=VALUE or x IN (E1,E2,...) - ** and we do not think that values of x are unique and if histogram - ** data is available for column x, then it might be possible - ** to get a better estimate on the number of rows based on - ** VALUE and how common that value is according to the histogram. - */ - if( pc.plan.nRow>(double)1 && pc.plan.nEq==1 - && pFirstTerm!=0 && aiRowEst[1]>1 ){ - assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 ); - if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ - testcase( pFirstTerm->eOperator & WO_EQ ); - testcase( pFirstTerm->eOperator & WO_EQUIV ); - testcase( pFirstTerm->eOperator & WO_ISNULL ); - whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, - &pc.plan.nRow); - }else if( bInEst==0 ){ - assert( pFirstTerm->eOperator & WO_IN ); - whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, - &pc.plan.nRow); - } - } -#endif /* SQLITE_ENABLE_STAT3 */ - - /* Adjust the number of output rows and downward to reflect rows - ** that are excluded by range constraints. - */ - pc.plan.nRow = pc.plan.nRow/rangeDiv; - if( pc.plan.nRow<1 ) pc.plan.nRow = 1; - - /* Experiments run on real SQLite databases show that the time needed - ** to do a binary search to locate a row in a table or index is roughly - ** log10(N) times the time to move from one row to the next row within - ** a table or index. The actual times can vary, with the size of - ** records being an important factor. Both moves and searches are - ** slower with larger records, presumably because fewer records fit - ** on one page and hence more pages have to be fetched. - ** - ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do - ** not give us data on the relative sizes of table and index records. - ** So this computation assumes table records are about twice as big - ** as index records - */ - if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE)) - ==WHERE_IDX_ONLY - && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 - && sqlite3GlobalConfig.bUseCis - && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan) - ){ - /* This index is not useful for indexing, but it is a covering index. - ** A full-scan of the index might be a little faster than a full-scan - ** of the table, so give this case a cost slightly less than a table - ** scan. */ - pc.rCost = aiRowEst[0]*3 + pProbe->nColumn; - pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE; - }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ - /* The cost of a full table scan is a number of move operations equal - ** to the number of rows in the table. - ** - ** We add an additional 4x penalty to full table scans. This causes - ** the cost function to err on the side of choosing an index over - ** choosing a full scan. This 4x full-scan penalty is an arguable - ** decision and one which we expect to revisit in the future. But - ** it seems to be working well enough at the moment. - */ - pc.rCost = aiRowEst[0]*4; - pc.plan.wsFlags &= ~WHERE_IDX_ONLY; - if( pIdx ){ - pc.plan.wsFlags &= ~WHERE_ORDERED; - pc.plan.nOBSat = nPriorSat; - } - }else{ - log10N = estLog(aiRowEst[0]); - pc.rCost = pc.plan.nRow; - if( pIdx ){ - if( bLookup ){ - /* For an index lookup followed by a table lookup: - ** nInMul index searches to find the start of each index range - ** + nRow steps through the index - ** + nRow table searches to lookup the table entry using the rowid - */ - pc.rCost += (nInMul + pc.plan.nRow)*log10N; - }else{ - /* For a covering index: - ** nInMul index searches to find the initial entry - ** + nRow steps through the index - */ - pc.rCost += nInMul*log10N; - } - }else{ - /* For a rowid primary key lookup: - ** nInMult table searches to find the initial entry for each range - ** + nRow steps through the table - */ - pc.rCost += nInMul*log10N; - } - } - - /* Add in the estimated cost of sorting the result. Actual experimental - ** measurements of sorting performance in SQLite show that sorting time - ** adds C*N*log10(N) to the cost, where N is the number of rows to be - ** sorted and C is a factor between 1.95 and 4.3. We will split the - ** difference and select C of 3.0. - */ - if( bSort ){ - double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy); - m *= (double)(pc.plan.nOBSat ? 2 : 3); - pc.rCost += pc.plan.nRow*m; - } - if( bDist ){ - pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3; - } - - /**** Cost of using this index has now been computed ****/ - - /* If there are additional constraints on this table that cannot - ** be used with the current index, but which might lower the number - ** of output rows, adjust the nRow value accordingly. This only - ** matters if the current index is the least costly, so do not bother - ** with this step if we already know this index will not be chosen. - ** Also, never reduce the output row count below 2 using this step. - ** - ** It is critical that the notValid mask be used here instead of - ** the notReady mask. When computing an "optimal" index, the notReady - ** mask will only have one bit set - the bit for the current table. - ** The notValid mask, on the other hand, always has all bits set for - ** tables that are not in outer loops. If notReady is used here instead - ** of notValid, then a optimal index that depends on inner joins loops - ** might be selected even when there exists an optimal index that has - ** no such dependency. - */ - if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){ - int k; /* Loop counter */ - int nSkipEq = pc.plan.nEq; /* Number of == constraints to skip */ - int nSkipRange = nBound; /* Number of < constraints to skip */ - Bitmask thisTab; /* Bitmap for pSrc */ - - thisTab = getMask(pWC->pMaskSet, iCur); - for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){ - if( pTerm->wtFlags & TERM_VIRTUAL ) continue; - if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue; - if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ - if( nSkipEq ){ - /* Ignore the first pc.plan.nEq equality matches since the index - ** has already accounted for these */ - nSkipEq--; - }else{ - /* Assume each additional equality match reduces the result - ** set size by a factor of 10 */ - pc.plan.nRow /= 10; - } - }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ - if( nSkipRange ){ - /* Ignore the first nSkipRange range constraints since the index - ** has already accounted for these */ - nSkipRange--; - }else{ - /* Assume each additional range constraint reduces the result - ** set size by a factor of 3. Indexed range constraints reduce - ** the search space by a larger factor: 4. We make indexed range - ** more selective intentionally because of the subjective - ** observation that indexed range constraints really are more - ** selective in practice, on average. */ - pc.plan.nRow /= 3; - } - }else if( (pTerm->eOperator & WO_NOOP)==0 ){ - /* Any other expression lowers the output row count by half */ - pc.plan.nRow /= 2; - } - } - if( pc.plan.nRow<2 ) pc.plan.nRow = 2; - } - - - WHERETRACE(( - " nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n" - " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n" - " used=0x%llx nOBSat=%d\n", - pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags, - p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used, - pc.plan.nOBSat - )); - - /* If this index is the best we have seen so far, then record this - ** index and its cost in the p->cost structure. - */ - if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){ - p->cost = pc; - p->cost.plan.wsFlags &= wsFlagMask; - p->cost.plan.u.pIdx = pIdx; - } - - /* If there was an INDEXED BY clause, then only that one index is - ** considered. */ - if( pSrc->pIndex ) break; - - /* Reset masks for the next index in the loop */ - wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); - eqTermMask = idxEqTermMask; - } - - /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag - ** is set, then reverse the order that the index will be scanned - ** in. This is used for application testing, to help find cases - ** where application behavior depends on the (undefined) order that - ** SQLite outputs rows in in the absence of an ORDER BY clause. */ - if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ - p->cost.plan.wsFlags |= WHERE_REVERSE; - } - - assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 ); - assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 ); - assert( pSrc->pIndex==0 - || p->cost.plan.u.pIdx==0 - || p->cost.plan.u.pIdx==pSrc->pIndex - ); - - WHERETRACE((" best index is %s cost=%.1f\n", - p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk", - p->cost.rCost)); - - bestOrClauseIndex(p); - bestAutomaticIndex(p); - p->cost.plan.wsFlags |= eqTermMask; -} - -/* -** Find the query plan for accessing table pSrc->pTab. Write the -** best query plan and its cost into the WhereCost object supplied -** as the last parameter. This function may calculate the cost of -** both real and virtual table scans. -** -** This function does not take ORDER BY or DISTINCT into account. Nor -** does it remember the virtual table query plan. All it does is compute -** the cost while determining if an OR optimization is applicable. The -** details will be reconsidered later if the optimization is found to be -** applicable. -*/ -static void bestIndex(WhereBestIdx *p){ -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(p->pSrc->pTab) ){ - sqlite3_index_info *pIdxInfo = 0; - p->ppIdxInfo = &pIdxInfo; - bestVirtualIndex(p); - assert( pIdxInfo!=0 || p->pParse->db->mallocFailed ); - if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){ - sqlite3_free(pIdxInfo->idxStr); - } - sqlite3DbFree(p->pParse->db, pIdxInfo); - }else -#endif - { - bestBtreeIndex(p); - } -} - -/* -** Disable a term in the WHERE clause. Except, do not disable the term -** if it controls a LEFT OUTER JOIN and it did not originate in the ON -** or USING clause of that join. -** -** Consider the term t2.z='ok' in the following queries: -** -** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' -** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' -** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' -** -** The t2.z='ok' is disabled in the in (2) because it originates -** in the ON clause. The term is disabled in (3) because it is not part -** of a LEFT OUTER JOIN. In (1), the term is not disabled. -** -** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are -** completely satisfied by indices. -** -** Disabling a term causes that term to not be tested in the inner loop -** of the join. Disabling is an optimization. When terms are satisfied -** by indices, we disable them to prevent redundant tests in the inner -** loop. We would get the correct results if nothing were ever disabled, -** but joins might run a little slower. The trick is to disable as much -** as we can without disabling too much. If we disabled in (1), we'd get -** the wrong answer. See ticket #813. -*/ -static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ - if( pTerm - && (pTerm->wtFlags & TERM_CODED)==0 - && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) - ){ - pTerm->wtFlags |= TERM_CODED; - if( pTerm->iParent>=0 ){ - WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; - if( (--pOther->nChild)==0 ){ - disableTerm(pLevel, pOther); - } - } - } -} - -/* -** Code an OP_Affinity opcode to apply the column affinity string zAff -** to the n registers starting at base. -** -** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the -** beginning and end of zAff are ignored. If all entries in zAff are -** SQLITE_AFF_NONE, then no code gets generated. -** -** This routine makes its own copy of zAff so that the caller is free -** to modify zAff after this routine returns. -*/ -static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ - Vdbe *v = pParse->pVdbe; - if( zAff==0 ){ - assert( pParse->db->mallocFailed ); - return; - } - assert( v!=0 ); - - /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning - ** and end of the affinity string. - */ - while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ - n--; - base++; - zAff++; - } - while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ - n--; - } - - /* Code the OP_Affinity opcode if there is anything left to do. */ - if( n>0 ){ - sqlite3VdbeAddOp2(v, OP_Affinity, base, n); - sqlite3VdbeChangeP4(v, -1, zAff, n); - sqlite3ExprCacheAffinityChange(pParse, base, n); - } -} - - -/* -** Generate code for a single equality term of the WHERE clause. An equality -** term can be either X=expr or X IN (...). pTerm is the term to be -** coded. -** -** The current value for the constraint is left in register iReg. -** -** For a constraint of the form X=expr, the expression is evaluated and its -** result is left on the stack. For constraints of the form X IN (...) -** this routine sets up a loop that will iterate over all values of X. -*/ -static int codeEqualityTerm( - Parse *pParse, /* The parsing context */ - WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ - WhereLevel *pLevel, /* The level of the FROM clause we are working on */ - int iEq, /* Index of the equality term within this level */ - int iTarget /* Attempt to leave results in this register */ -){ - Expr *pX = pTerm->pExpr; - Vdbe *v = pParse->pVdbe; - int iReg; /* Register holding results */ - - assert( iTarget>0 ); - if( pX->op==TK_EQ ){ - iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); - }else if( pX->op==TK_ISNULL ){ - iReg = iTarget; - sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); -#ifndef SQLITE_OMIT_SUBQUERY - }else{ - int eType; - int iTab; - struct InLoop *pIn; - u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; - - if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 - && pLevel->plan.u.pIdx->aSortOrder[iEq] - ){ - testcase( iEq==0 ); - testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 ); - testcase( iEq>0 && iEq+1<pLevel->plan.u.pIdx->nColumn ); - testcase( bRev ); - bRev = !bRev; - } - assert( pX->op==TK_IN ); - iReg = iTarget; - eType = sqlite3FindInIndex(pParse, pX, 0); - if( eType==IN_INDEX_INDEX_DESC ){ - testcase( bRev ); - bRev = !bRev; - } - iTab = pX->iTable; - sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); - assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); - if( pLevel->u.in.nIn==0 ){ - pLevel->addrNxt = sqlite3VdbeMakeLabel(v); - } - pLevel->u.in.nIn++; - pLevel->u.in.aInLoop = - sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, - sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); - pIn = pLevel->u.in.aInLoop; - if( pIn ){ - pIn += pLevel->u.in.nIn - 1; - pIn->iCur = iTab; - if( eType==IN_INDEX_ROWID ){ - pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); - }else{ - pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); - } - pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; - sqlite3VdbeAddOp1(v, OP_IsNull, iReg); - }else{ - pLevel->u.in.nIn = 0; - } -#endif - } - disableTerm(pLevel, pTerm); - return iReg; -} - -/* -** Generate code that will evaluate all == and IN constraints for an -** index. -** -** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). -** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 -** The index has as many as three equality constraints, but in this -** example, the third "c" value is an inequality. So only two -** constraints are coded. This routine will generate code to evaluate -** a==5 and b IN (1,2,3). The current values for a and b will be stored -** in consecutive registers and the index of the first register is returned. -** -** In the example above nEq==2. But this subroutine works for any value -** of nEq including 0. If nEq==0, this routine is nearly a no-op. -** The only thing it does is allocate the pLevel->iMem memory cell and -** compute the affinity string. -** -** This routine always allocates at least one memory cell and returns -** the index of that memory cell. The code that -** calls this routine will use that memory cell to store the termination -** key value of the loop. If one or more IN operators appear, then -** this routine allocates an additional nEq memory cells for internal -** use. -** -** Before returning, *pzAff is set to point to a buffer containing a -** copy of the column affinity string of the index allocated using -** sqlite3DbMalloc(). Except, entries in the copy of the string associated -** with equality constraints that use NONE affinity are set to -** SQLITE_AFF_NONE. This is to deal with SQL such as the following: -** -** CREATE TABLE t1(a TEXT PRIMARY KEY, b); -** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; -** -** In the example above, the index on t1(a) has TEXT affinity. But since -** the right hand side of the equality constraint (t2.b) has NONE affinity, -** no conversion should be attempted before using a t2.b value as part of -** a key to search the index. Hence the first byte in the returned affinity -** string in this example would be set to SQLITE_AFF_NONE. -*/ -static int codeAllEqualityTerms( - Parse *pParse, /* Parsing context */ - WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ - WhereClause *pWC, /* The WHERE clause */ - Bitmask notReady, /* Which parts of FROM have not yet been coded */ - int nExtraReg, /* Number of extra registers to allocate */ - char **pzAff /* OUT: Set to point to affinity string */ -){ - int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ - Vdbe *v = pParse->pVdbe; /* The vm under construction */ - Index *pIdx; /* The index being used for this loop */ - int iCur = pLevel->iTabCur; /* The cursor of the table */ - WhereTerm *pTerm; /* A single constraint term */ - int j; /* Loop counter */ - int regBase; /* Base register */ - int nReg; /* Number of registers to allocate */ - char *zAff; /* Affinity string to return */ - - /* This module is only called on query plans that use an index. */ - assert( pLevel->plan.wsFlags & WHERE_INDEXED ); - pIdx = pLevel->plan.u.pIdx; - - /* Figure out how many memory cells we will need then allocate them. - */ - regBase = pParse->nMem + 1; - nReg = pLevel->plan.nEq + nExtraReg; - pParse->nMem += nReg; - - zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); - if( !zAff ){ - pParse->db->mallocFailed = 1; - } - - /* Evaluate the equality constraints - */ - assert( pIdx->nColumn>=nEq ); - for(j=0; j<nEq; j++){ - int r1; - int k = pIdx->aiColumn[j]; - pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); - if( pTerm==0 ) break; - /* The following true for indices with redundant columns. - ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ - testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); - testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j); - if( r1!=regBase+j ){ - if( nReg==1 ){ - sqlite3ReleaseTempReg(pParse, regBase); - regBase = r1; - }else{ - sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); - } - } - testcase( pTerm->eOperator & WO_ISNULL ); - testcase( pTerm->eOperator & WO_IN ); - if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ - Expr *pRight = pTerm->pExpr->pRight; - sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); - if( zAff ){ - if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ - zAff[j] = SQLITE_AFF_NONE; - } - if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ - zAff[j] = SQLITE_AFF_NONE; - } - } - } - } - *pzAff = zAff; - return regBase; -} - -#ifndef SQLITE_OMIT_EXPLAIN -/* -** This routine is a helper for explainIndexRange() below -** -** pStr holds the text of an expression that we are building up one term -** at a time. This routine adds a new term to the end of the expression. -** Terms are separated by AND so add the "AND" text for second and subsequent -** terms only. -*/ -static void explainAppendTerm( - StrAccum *pStr, /* The text expression being built */ - int iTerm, /* Index of this term. First is zero */ - const char *zColumn, /* Name of the column */ - const char *zOp /* Name of the operator */ -){ - if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); - sqlite3StrAccumAppend(pStr, zColumn, -1); - sqlite3StrAccumAppend(pStr, zOp, 1); - sqlite3StrAccumAppend(pStr, "?", 1); -} - -/* -** Argument pLevel describes a strategy for scanning table pTab. This -** function returns a pointer to a string buffer containing a description -** of the subset of table rows scanned by the strategy in the form of an -** SQL expression. Or, if all rows are scanned, NULL is returned. -** -** For example, if the query: -** -** SELECT * FROM t1 WHERE a=1 AND b>2; -** -** is run and there is an index on (a, b), then this function returns a -** string similar to: -** -** "a=? AND b>?" -** -** The returned pointer points to memory obtained from sqlite3DbMalloc(). -** It is the responsibility of the caller to free the buffer when it is -** no longer required. -*/ -static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ - WherePlan *pPlan = &pLevel->plan; - Index *pIndex = pPlan->u.pIdx; - int nEq = pPlan->nEq; - int i, j; - Column *aCol = pTab->aCol; - int *aiColumn = pIndex->aiColumn; - StrAccum txt; - - if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ - return 0; - } - sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); - txt.db = db; - sqlite3StrAccumAppend(&txt, " (", 2); - for(i=0; i<nEq; i++){ - explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); - } - - j = i; - if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ - char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName; - explainAppendTerm(&txt, i++, z, ">"); - } - if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ - char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName; - explainAppendTerm(&txt, i, z, "<"); - } - sqlite3StrAccumAppend(&txt, ")", 1); - return sqlite3StrAccumFinish(&txt); -} - -/* -** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN -** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single -** record is added to the output to describe the table scan strategy in -** pLevel. -*/ -static void explainOneScan( - Parse *pParse, /* Parse context */ - SrcList *pTabList, /* Table list this loop refers to */ - WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ - int iLevel, /* Value for "level" column of output */ - int iFrom, /* Value for "from" column of output */ - u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ -){ - if( pParse->explain==2 ){ - u32 flags = pLevel->plan.wsFlags; - struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; - Vdbe *v = pParse->pVdbe; /* VM being constructed */ - sqlite3 *db = pParse->db; /* Database handle */ - char *zMsg; /* Text to add to EQP output */ - sqlite3_int64 nRow; /* Expected number of rows visited by scan */ - int iId = pParse->iSelectId; /* Select id (left-most output column) */ - int isSearch; /* True for a SEARCH. False for SCAN. */ - - if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; - - isSearch = (pLevel->plan.nEq>0) - || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 - || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); - - zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); - if( pItem->pSelect ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); - }else{ - zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); - } - - if( pItem->zAlias ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); - } - if( (flags & WHERE_INDEXED)!=0 ){ - char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); - zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, - ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), - ((flags & WHERE_IDX_ONLY)?"COVERING ":""), - ((flags & WHERE_TEMP_INDEX)?"":" "), - ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), - zWhere - ); - sqlite3DbFree(db, zWhere); - }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); - - if( flags&WHERE_ROWID_EQ ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); - }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); - }else if( flags&WHERE_BTM_LIMIT ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); - }else if( flags&WHERE_TOP_LIMIT ){ - zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); - } - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ - sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; - zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, - pVtabIdx->idxNum, pVtabIdx->idxStr); - } -#endif - if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ - testcase( wctrlFlags & WHERE_ORDERBY_MIN ); - nRow = 1; - }else{ - nRow = (sqlite3_int64)pLevel->plan.nRow; - } - zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); - sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); - } -} -#else -# define explainOneScan(u,v,w,x,y,z) -#endif /* SQLITE_OMIT_EXPLAIN */ - - -/* -** Generate code for the start of the iLevel-th loop in the WHERE clause -** implementation described by pWInfo. -*/ -static Bitmask codeOneLoopStart( - WhereInfo *pWInfo, /* Complete information about the WHERE clause */ - int iLevel, /* Which level of pWInfo->a[] should be coded */ - u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ - Bitmask notReady /* Which tables are currently available */ -){ - int j, k; /* Loop counters */ - int iCur; /* The VDBE cursor for the table */ - int addrNxt; /* Where to jump to continue with the next IN case */ - int omitTable; /* True if we use the index only */ - int bRev; /* True if we need to scan in reverse order */ - WhereLevel *pLevel; /* The where level to be coded */ - WhereClause *pWC; /* Decomposition of the entire WHERE clause */ - WhereTerm *pTerm; /* A WHERE clause term */ - Parse *pParse; /* Parsing context */ - Vdbe *v; /* The prepared stmt under constructions */ - struct SrcList_item *pTabItem; /* FROM clause term being coded */ - int addrBrk; /* Jump here to break out of the loop */ - int addrCont; /* Jump here to continue with next cycle */ - int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ - int iReleaseReg = 0; /* Temp register to free before returning */ - - pParse = pWInfo->pParse; - v = pParse->pVdbe; - pWC = pWInfo->pWC; - pLevel = &pWInfo->a[iLevel]; - pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; - iCur = pTabItem->iCursor; - bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; - omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 - && (wctrlFlags & WHERE_FORCE_TABLE)==0; - - /* Create labels for the "break" and "continue" instructions - ** for the current loop. Jump to addrBrk to break out of a loop. - ** Jump to cont to go immediately to the next iteration of the - ** loop. - ** - ** When there is an IN operator, we also have a "addrNxt" label that - ** means to continue with the next IN value combination. When - ** there are no IN operators in the constraints, the "addrNxt" label - ** is the same as "addrBrk". - */ - addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); - addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); - - /* If this is the right table of a LEFT OUTER JOIN, allocate and - ** initialize a memory cell that records if this table matches any - ** row of the left table of the join. - */ - if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ - pLevel->iLeftJoin = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); - VdbeComment((v, "init LEFT JOIN no-match flag")); - } - - /* Special case of a FROM clause subquery implemented as a co-routine */ - if( pTabItem->viaCoroutine ){ - int regYield = pTabItem->regReturn; - sqlite3VdbeAddOp2(v, OP_Integer, pTabItem->addrFillSub-1, regYield); - pLevel->p2 = sqlite3VdbeAddOp1(v, OP_Yield, regYield); - VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName)); - sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk); - pLevel->op = OP_Goto; - }else - -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ - /* Case 0: The table is a virtual-table. Use the VFilter and VNext - ** to access the data. - */ - int iReg; /* P3 Value for OP_VFilter */ - int addrNotFound; - sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; - int nConstraint = pVtabIdx->nConstraint; - struct sqlite3_index_constraint_usage *aUsage = - pVtabIdx->aConstraintUsage; - const struct sqlite3_index_constraint *aConstraint = - pVtabIdx->aConstraint; - - sqlite3ExprCachePush(pParse); - iReg = sqlite3GetTempRange(pParse, nConstraint+2); - addrNotFound = pLevel->addrBrk; - for(j=1; j<=nConstraint; j++){ - for(k=0; k<nConstraint; k++){ - if( aUsage[k].argvIndex==j ){ - int iTarget = iReg+j+1; - pTerm = &pWC->a[aConstraint[k].iTermOffset]; - if( pTerm->eOperator & WO_IN ){ - codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget); - addrNotFound = pLevel->addrNxt; - }else{ - sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); - } - break; - } - } - if( k==nConstraint ) break; - } - sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); - sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); - sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr, - pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); - pVtabIdx->needToFreeIdxStr = 0; - for(j=0; j<nConstraint; j++){ - if( aUsage[j].omit ){ - int iTerm = aConstraint[j].iTermOffset; - disableTerm(pLevel, &pWC->a[iTerm]); - } - } - pLevel->op = OP_VNext; - pLevel->p1 = iCur; - pLevel->p2 = sqlite3VdbeCurrentAddr(v); - sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); - sqlite3ExprCachePop(pParse, 1); - }else -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - - if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ - /* Case 1: We can directly reference a single row using an - ** equality comparison against the ROWID field. Or - ** we reference multiple rows using a "rowid IN (...)" - ** construct. - */ - iReleaseReg = sqlite3GetTempReg(pParse); - pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); - assert( pTerm!=0 ); - assert( pTerm->pExpr!=0 ); - assert( omitTable==0 ); - testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg); - addrNxt = pLevel->addrNxt; - sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); - sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); - sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); - sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); - VdbeComment((v, "pk")); - pLevel->op = OP_Noop; - }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ - /* Case 2: We have an inequality comparison against the ROWID field. - */ - int testOp = OP_Noop; - int start; - int memEndValue = 0; - WhereTerm *pStart, *pEnd; - - assert( omitTable==0 ); - pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); - pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); - if( bRev ){ - pTerm = pStart; - pStart = pEnd; - pEnd = pTerm; - } - if( pStart ){ - Expr *pX; /* The expression that defines the start bound */ - int r1, rTemp; /* Registers for holding the start boundary */ - - /* The following constant maps TK_xx codes into corresponding - ** seek opcodes. It depends on a particular ordering of TK_xx - */ - const u8 aMoveOp[] = { - /* TK_GT */ OP_SeekGt, - /* TK_LE */ OP_SeekLe, - /* TK_LT */ OP_SeekLt, - /* TK_GE */ OP_SeekGe - }; - assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ - assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ - assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ - - testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - pX = pStart->pExpr; - assert( pX!=0 ); - assert( pStart->leftCursor==iCur ); - r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); - sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); - VdbeComment((v, "pk")); - sqlite3ExprCacheAffinityChange(pParse, r1, 1); - sqlite3ReleaseTempReg(pParse, rTemp); - disableTerm(pLevel, pStart); - }else{ - sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); - } - if( pEnd ){ - Expr *pX; - pX = pEnd->pExpr; - assert( pX!=0 ); - assert( pEnd->leftCursor==iCur ); - testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - memEndValue = ++pParse->nMem; - sqlite3ExprCode(pParse, pX->pRight, memEndValue); - if( pX->op==TK_LT || pX->op==TK_GT ){ - testOp = bRev ? OP_Le : OP_Ge; - }else{ - testOp = bRev ? OP_Lt : OP_Gt; - } - disableTerm(pLevel, pEnd); - } - start = sqlite3VdbeCurrentAddr(v); - pLevel->op = bRev ? OP_Prev : OP_Next; - pLevel->p1 = iCur; - pLevel->p2 = start; - if( pStart==0 && pEnd==0 ){ - pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; - }else{ - assert( pLevel->p5==0 ); - } - if( testOp!=OP_Noop ){ - iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); - sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); - sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); - sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); - } - }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ - /* Case 3: A scan using an index. - ** - ** The WHERE clause may contain zero or more equality - ** terms ("==" or "IN" operators) that refer to the N - ** left-most columns of the index. It may also contain - ** inequality constraints (>, <, >= or <=) on the indexed - ** column that immediately follows the N equalities. Only - ** the right-most column can be an inequality - the rest must - ** use the "==" and "IN" operators. For example, if the - ** index is on (x,y,z), then the following clauses are all - ** optimized: - ** - ** x=5 - ** x=5 AND y=10 - ** x=5 AND y<10 - ** x=5 AND y>5 AND y<10 - ** x=5 AND y=5 AND z<=10 - ** - ** The z<10 term of the following cannot be used, only - ** the x=5 term: - ** - ** x=5 AND z<10 - ** - ** N may be zero if there are inequality constraints. - ** If there are no inequality constraints, then N is at - ** least one. - ** - ** This case is also used when there are no WHERE clause - ** constraints but an index is selected anyway, in order - ** to force the output order to conform to an ORDER BY. - */ - static const u8 aStartOp[] = { - 0, - 0, - OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ - OP_Last, /* 3: (!start_constraints && startEq && bRev) */ - OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ - OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ - OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ - OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ - }; - static const u8 aEndOp[] = { - OP_Noop, /* 0: (!end_constraints) */ - OP_IdxGE, /* 1: (end_constraints && !bRev) */ - OP_IdxLT /* 2: (end_constraints && bRev) */ - }; - int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ - int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ - int regBase; /* Base register holding constraint values */ - int r1; /* Temp register */ - WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ - WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ - int startEq; /* True if range start uses ==, >= or <= */ - int endEq; /* True if range end uses ==, >= or <= */ - int start_constraints; /* Start of range is constrained */ - int nConstraint; /* Number of constraint terms */ - Index *pIdx; /* The index we will be using */ - int iIdxCur; /* The VDBE cursor for the index */ - int nExtraReg = 0; /* Number of extra registers needed */ - int op; /* Instruction opcode */ - char *zStartAff; /* Affinity for start of range constraint */ - char *zEndAff; /* Affinity for end of range constraint */ - - pIdx = pLevel->plan.u.pIdx; - iIdxCur = pLevel->iIdxCur; - k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]); - - /* If this loop satisfies a sort order (pOrderBy) request that - ** was passed to this function to implement a "SELECT min(x) ..." - ** query, then the caller will only allow the loop to run for - ** a single iteration. This means that the first row returned - ** should not have a NULL value stored in 'x'. If column 'x' is - ** the first one after the nEq equality constraints in the index, - ** this requires some special handling. - */ - if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 - && (pLevel->plan.wsFlags&WHERE_ORDERED) - && (pIdx->nColumn>nEq) - ){ - /* assert( pOrderBy->nExpr==1 ); */ - /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ - isMinQuery = 1; - nExtraReg = 1; - } - - /* Find any inequality constraint terms for the start and end - ** of the range. - */ - if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ - pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); - nExtraReg = 1; - } - if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ - pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); - nExtraReg = 1; - } - - /* Generate code to evaluate all constraint terms using == or IN - ** and store the values of those terms in an array of registers - ** starting at regBase. - */ - regBase = codeAllEqualityTerms( - pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff - ); - zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); - addrNxt = pLevel->addrNxt; - - /* If we are doing a reverse order scan on an ascending index, or - ** a forward order scan on a descending index, interchange the - ** start and end terms (pRangeStart and pRangeEnd). - */ - if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) - || (bRev && pIdx->nColumn==nEq) - ){ - SWAP(WhereTerm *, pRangeEnd, pRangeStart); - } - - testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); - testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); - testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); - testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); - startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); - endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); - start_constraints = pRangeStart || nEq>0; - - /* Seek the index cursor to the start of the range. */ - nConstraint = nEq; - if( pRangeStart ){ - Expr *pRight = pRangeStart->pExpr->pRight; - sqlite3ExprCode(pParse, pRight, regBase+nEq); - if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ - sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); - } - if( zStartAff ){ - if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ - /* Since the comparison is to be performed with no conversions - ** applied to the operands, set the affinity to apply to pRight to - ** SQLITE_AFF_NONE. */ - zStartAff[nEq] = SQLITE_AFF_NONE; - } - if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ - zStartAff[nEq] = SQLITE_AFF_NONE; - } - } - nConstraint++; - testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - }else if( isMinQuery ){ - sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); - nConstraint++; - startEq = 0; - start_constraints = 1; - } - codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); - op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; - assert( op!=0 ); - testcase( op==OP_Rewind ); - testcase( op==OP_Last ); - testcase( op==OP_SeekGt ); - testcase( op==OP_SeekGe ); - testcase( op==OP_SeekLe ); - testcase( op==OP_SeekLt ); - sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); - - /* Load the value for the inequality constraint at the end of the - ** range (if any). - */ - nConstraint = nEq; - if( pRangeEnd ){ - Expr *pRight = pRangeEnd->pExpr->pRight; - sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); - sqlite3ExprCode(pParse, pRight, regBase+nEq); - if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ - sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); - } - if( zEndAff ){ - if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ - /* Since the comparison is to be performed with no conversions - ** applied to the operands, set the affinity to apply to pRight to - ** SQLITE_AFF_NONE. */ - zEndAff[nEq] = SQLITE_AFF_NONE; - } - if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ - zEndAff[nEq] = SQLITE_AFF_NONE; - } - } - codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); - nConstraint++; - testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - } - sqlite3DbFree(pParse->db, zStartAff); - sqlite3DbFree(pParse->db, zEndAff); - - /* Top of the loop body */ - pLevel->p2 = sqlite3VdbeCurrentAddr(v); - - /* Check if the index cursor is past the end of the range. */ - op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; - testcase( op==OP_Noop ); - testcase( op==OP_IdxGE ); - testcase( op==OP_IdxLT ); - if( op!=OP_Noop ){ - sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); - sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); - } - - /* If there are inequality constraints, check that the value - ** of the table column that the inequality contrains is not NULL. - ** If it is, jump to the next iteration of the loop. - */ - r1 = sqlite3GetTempReg(pParse); - testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); - testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); - if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); - sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); - } - sqlite3ReleaseTempReg(pParse, r1); - - /* Seek the table cursor, if required */ - disableTerm(pLevel, pRangeStart); - disableTerm(pLevel, pRangeEnd); - if( !omitTable ){ - iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); - sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); - sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); - sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ - } - - /* Record the instruction used to terminate the loop. Disable - ** WHERE clause terms made redundant by the index range scan. - */ - if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ - pLevel->op = OP_Noop; - }else if( bRev ){ - pLevel->op = OP_Prev; - }else{ - pLevel->op = OP_Next; - } - pLevel->p1 = iIdxCur; - if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){ - pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; - }else{ - assert( pLevel->p5==0 ); - } - }else - -#ifndef SQLITE_OMIT_OR_OPTIMIZATION - if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ - /* Case 4: Two or more separately indexed terms connected by OR - ** - ** Example: - ** - ** CREATE TABLE t1(a,b,c,d); - ** CREATE INDEX i1 ON t1(a); - ** CREATE INDEX i2 ON t1(b); - ** CREATE INDEX i3 ON t1(c); - ** - ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) - ** - ** In the example, there are three indexed terms connected by OR. - ** The top of the loop looks like this: - ** - ** Null 1 # Zero the rowset in reg 1 - ** - ** Then, for each indexed term, the following. The arguments to - ** RowSetTest are such that the rowid of the current row is inserted - ** into the RowSet. If it is already present, control skips the - ** Gosub opcode and jumps straight to the code generated by WhereEnd(). - ** - ** sqlite3WhereBegin(<term>) - ** RowSetTest # Insert rowid into rowset - ** Gosub 2 A - ** sqlite3WhereEnd() - ** - ** Following the above, code to terminate the loop. Label A, the target - ** of the Gosub above, jumps to the instruction right after the Goto. - ** - ** Null 1 # Zero the rowset in reg 1 - ** Goto B # The loop is finished. - ** - ** A: <loop body> # Return data, whatever. - ** - ** Return 2 # Jump back to the Gosub - ** - ** B: <after the loop> - ** - */ - WhereClause *pOrWc; /* The OR-clause broken out into subterms */ - SrcList *pOrTab; /* Shortened table list or OR-clause generation */ - Index *pCov = 0; /* Potential covering index (or NULL) */ - int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ - - int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ - int regRowset = 0; /* Register for RowSet object */ - int regRowid = 0; /* Register holding rowid */ - int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ - int iRetInit; /* Address of regReturn init */ - int untestedTerms = 0; /* Some terms not completely tested */ - int ii; /* Loop counter */ - Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ - - pTerm = pLevel->plan.u.pTerm; - assert( pTerm!=0 ); - assert( pTerm->eOperator & WO_OR ); - assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); - pOrWc = &pTerm->u.pOrInfo->wc; - pLevel->op = OP_Return; - pLevel->p1 = regReturn; - - /* Set up a new SrcList in pOrTab containing the table being scanned - ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. - ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). - */ - if( pWInfo->nLevel>1 ){ - int nNotReady; /* The number of notReady tables */ - struct SrcList_item *origSrc; /* Original list of tables */ - nNotReady = pWInfo->nLevel - iLevel - 1; - pOrTab = sqlite3StackAllocRaw(pParse->db, - sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); - if( pOrTab==0 ) return notReady; - pOrTab->nAlloc = (i16)(nNotReady + 1); - pOrTab->nSrc = pOrTab->nAlloc; - memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); - origSrc = pWInfo->pTabList->a; - for(k=1; k<=nNotReady; k++){ - memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); - } - }else{ - pOrTab = pWInfo->pTabList; - } - - /* Initialize the rowset register to contain NULL. An SQL NULL is - ** equivalent to an empty rowset. - ** - ** Also initialize regReturn to contain the address of the instruction - ** immediately following the OP_Return at the bottom of the loop. This - ** is required in a few obscure LEFT JOIN cases where control jumps - ** over the top of the loop into the body of it. In this case the - ** correct response for the end-of-loop code (the OP_Return) is to - ** fall through to the next instruction, just as an OP_Next does if - ** called on an uninitialized cursor. - */ - if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ - regRowset = ++pParse->nMem; - regRowid = ++pParse->nMem; - sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); - } - iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); - - /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y - ** Then for every term xN, evaluate as the subexpression: xN AND z - ** That way, terms in y that are factored into the disjunction will - ** be picked up by the recursive calls to sqlite3WhereBegin() below. - ** - ** Actually, each subexpression is converted to "xN AND w" where w is - ** the "interesting" terms of z - terms that did not originate in the - ** ON or USING clause of a LEFT JOIN, and terms that are usable as - ** indices. - */ - if( pWC->nTerm>1 ){ - int iTerm; - for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ - Expr *pExpr = pWC->a[iTerm].pExpr; - if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; - if( pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_ORINFO) ) continue; - if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; - pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); - pAndExpr = sqlite3ExprAnd(pParse->db, pAndExpr, pExpr); - } - if( pAndExpr ){ - pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); - } - } - - for(ii=0; ii<pOrWc->nTerm; ii++){ - WhereTerm *pOrTerm = &pOrWc->a[ii]; - if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ - WhereInfo *pSubWInfo; /* Info for single OR-term scan */ - Expr *pOrExpr = pOrTerm->pExpr; - if( pAndExpr ){ - pAndExpr->pLeft = pOrExpr; - pOrExpr = pAndExpr; - } - /* Loop through table entries that match term pOrTerm. */ - pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, - WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY | - WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur); - assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed ); - if( pSubWInfo ){ - WhereLevel *pLvl; - explainOneScan( - pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 - ); - if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ - int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); - int r; - r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, - regRowid, 0); - sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, - sqlite3VdbeCurrentAddr(v)+2, r, iSet); - } - sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); - - /* The pSubWInfo->untestedTerms flag means that this OR term - ** contained one or more AND term from a notReady table. The - ** terms from the notReady table could not be tested and will - ** need to be tested later. - */ - if( pSubWInfo->untestedTerms ) untestedTerms = 1; - - /* If all of the OR-connected terms are optimized using the same - ** index, and the index is opened using the same cursor number - ** by each call to sqlite3WhereBegin() made by this loop, it may - ** be possible to use that index as a covering index. - ** - ** If the call to sqlite3WhereBegin() above resulted in a scan that - ** uses an index, and this is either the first OR-connected term - ** processed or the index is the same as that used by all previous - ** terms, set pCov to the candidate covering index. Otherwise, set - ** pCov to NULL to indicate that no candidate covering index will - ** be available. - */ - pLvl = &pSubWInfo->a[0]; - if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0 - && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0 - && (ii==0 || pLvl->plan.u.pIdx==pCov) - ){ - assert( pLvl->iIdxCur==iCovCur ); - pCov = pLvl->plan.u.pIdx; - }else{ - pCov = 0; - } - - /* Finish the loop through table entries that match term pOrTerm. */ - sqlite3WhereEnd(pSubWInfo); - } - } - } - pLevel->u.pCovidx = pCov; - if( pCov ) pLevel->iIdxCur = iCovCur; - if( pAndExpr ){ - pAndExpr->pLeft = 0; - sqlite3ExprDelete(pParse->db, pAndExpr); - } - sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); - sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); - sqlite3VdbeResolveLabel(v, iLoopBody); - - if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); - if( !untestedTerms ) disableTerm(pLevel, pTerm); - }else -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ - - { - /* Case 5: There is no usable index. We must do a complete - ** scan of the entire table. - */ - static const u8 aStep[] = { OP_Next, OP_Prev }; - static const u8 aStart[] = { OP_Rewind, OP_Last }; - assert( bRev==0 || bRev==1 ); - assert( omitTable==0 ); - pLevel->op = aStep[bRev]; - pLevel->p1 = iCur; - pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); - pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; - } - notReady &= ~getMask(pWC->pMaskSet, iCur); - - /* Insert code to test every subexpression that can be completely - ** computed using the current set of tables. - ** - ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through - ** the use of indices become tests that are evaluated against each row of - ** the relevant input tables. - */ - for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ - Expr *pE; - testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ - testcase( pTerm->wtFlags & TERM_CODED ); - if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; - if( (pTerm->prereqAll & notReady)!=0 ){ - testcase( pWInfo->untestedTerms==0 - && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); - pWInfo->untestedTerms = 1; - continue; - } - pE = pTerm->pExpr; - assert( pE!=0 ); - if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ - continue; - } - sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); - pTerm->wtFlags |= TERM_CODED; - } - - /* For a LEFT OUTER JOIN, generate code that will record the fact that - ** at least one row of the right table has matched the left table. - */ - if( pLevel->iLeftJoin ){ - pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); - VdbeComment((v, "record LEFT JOIN hit")); - sqlite3ExprCacheClear(pParse); - for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ - testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ - testcase( pTerm->wtFlags & TERM_CODED ); - if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; - if( (pTerm->prereqAll & notReady)!=0 ){ - assert( pWInfo->untestedTerms ); - continue; - } - assert( pTerm->pExpr ); - sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); - pTerm->wtFlags |= TERM_CODED; - } - } - sqlite3ReleaseTempReg(pParse, iReleaseReg); - - return notReady; -} - -#if defined(SQLITE_TEST) -/* -** The following variable holds a text description of query plan generated -** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin -** overwrites the previous. This information is used for testing and -** analysis only. -*/ -SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ -static int nQPlan = 0; /* Next free slow in _query_plan[] */ - -#endif /* SQLITE_TEST */ - - -/* -** Free a WhereInfo structure -*/ -static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ - if( ALWAYS(pWInfo) ){ - int i; - for(i=0; i<pWInfo->nLevel; i++){ - sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; - if( pInfo ){ - /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ - if( pInfo->needToFreeIdxStr ){ - sqlite3_free(pInfo->idxStr); - } - sqlite3DbFree(db, pInfo); - } - if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ - Index *pIdx = pWInfo->a[i].plan.u.pIdx; - if( pIdx ){ - sqlite3DbFree(db, pIdx->zColAff); - sqlite3DbFree(db, pIdx); - } - } - } - whereClauseClear(pWInfo->pWC); - sqlite3DbFree(db, pWInfo); - } -} - - -/* -** Generate the beginning of the loop used for WHERE clause processing. -** The return value is a pointer to an opaque structure that contains -** information needed to terminate the loop. Later, the calling routine -** should invoke sqlite3WhereEnd() with the return value of this function -** in order to complete the WHERE clause processing. -** -** If an error occurs, this routine returns NULL. -** -** The basic idea is to do a nested loop, one loop for each table in -** the FROM clause of a select. (INSERT and UPDATE statements are the -** same as a SELECT with only a single table in the FROM clause.) For -** example, if the SQL is this: -** -** SELECT * FROM t1, t2, t3 WHERE ...; -** -** Then the code generated is conceptually like the following: -** -** foreach row1 in t1 do \ Code generated -** foreach row2 in t2 do |-- by sqlite3WhereBegin() -** foreach row3 in t3 do / -** ... -** end \ Code generated -** end |-- by sqlite3WhereEnd() -** end / -** -** Note that the loops might not be nested in the order in which they -** appear in the FROM clause if a different order is better able to make -** use of indices. Note also that when the IN operator appears in -** the WHERE clause, it might result in additional nested loops for -** scanning through all values on the right-hand side of the IN. -** -** There are Btree cursors associated with each table. t1 uses cursor -** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. -** And so forth. This routine generates code to open those VDBE cursors -** and sqlite3WhereEnd() generates the code to close them. -** -** The code that sqlite3WhereBegin() generates leaves the cursors named -** in pTabList pointing at their appropriate entries. The [...] code -** can use OP_Column and OP_Rowid opcodes on these cursors to extract -** data from the various tables of the loop. -** -** If the WHERE clause is empty, the foreach loops must each scan their -** entire tables. Thus a three-way join is an O(N^3) operation. But if -** the tables have indices and there are terms in the WHERE clause that -** refer to those indices, a complete table scan can be avoided and the -** code will run much faster. Most of the work of this routine is checking -** to see if there are indices that can be used to speed up the loop. -** -** Terms of the WHERE clause are also used to limit which rows actually -** make it to the "..." in the middle of the loop. After each "foreach", -** terms of the WHERE clause that use only terms in that loop and outer -** loops are evaluated and if false a jump is made around all subsequent -** inner loops (or around the "..." if the test occurs within the inner- -** most loop) -** -** OUTER JOINS -** -** An outer join of tables t1 and t2 is conceptally coded as follows: -** -** foreach row1 in t1 do -** flag = 0 -** foreach row2 in t2 do -** start: -** ... -** flag = 1 -** end -** if flag==0 then -** move the row2 cursor to a null row -** goto start -** fi -** end -** -** ORDER BY CLAUSE PROCESSING -** -** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement, -** if there is one. If there is no ORDER BY clause or if this routine -** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. -** -** If an index can be used so that the natural output order of the table -** scan is correct for the ORDER BY clause, then that index is used and -** the returned WhereInfo.nOBSat field is set to pOrderBy->nExpr. This -** is an optimization that prevents an unnecessary sort of the result set -** if an index appropriate for the ORDER BY clause already exists. -** -** If the where clause loops cannot be arranged to provide the correct -** output order, then WhereInfo.nOBSat is 0. -*/ -SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin( - Parse *pParse, /* The parser context */ - SrcList *pTabList, /* A list of all tables to be scanned */ - Expr *pWhere, /* The WHERE clause */ - ExprList *pOrderBy, /* An ORDER BY clause, or NULL */ - ExprList *pDistinct, /* The select-list for DISTINCT queries - or NULL */ - u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ - int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ -){ - int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ - int nTabList; /* Number of elements in pTabList */ - WhereInfo *pWInfo; /* Will become the return value of this function */ - Vdbe *v = pParse->pVdbe; /* The virtual database engine */ - Bitmask notReady; /* Cursors that are not yet positioned */ - WhereBestIdx sWBI; /* Best index search context */ - WhereMaskSet *pMaskSet; /* The expression mask set */ - WhereLevel *pLevel; /* A single level in pWInfo->a[] */ - int iFrom; /* First unused FROM clause element */ - int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ - int ii; /* Loop counter */ - sqlite3 *db; /* Database connection */ - - - /* Variable initialization */ - memset(&sWBI, 0, sizeof(sWBI)); - sWBI.pParse = pParse; - - /* The number of tables in the FROM clause is limited by the number of - ** bits in a Bitmask - */ - testcase( pTabList->nSrc==BMS ); - if( pTabList->nSrc>BMS ){ - sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); - return 0; - } - - /* This function normally generates a nested loop for all tables in - ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should - ** only generate code for the first table in pTabList and assume that - ** any cursors associated with subsequent tables are uninitialized. - */ - nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; - - /* Allocate and initialize the WhereInfo structure that will become the - ** return value. A single allocation is used to store the WhereInfo - ** struct, the contents of WhereInfo.a[], the WhereClause structure - ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte - ** field (type Bitmask) it must be aligned on an 8-byte boundary on - ** some architectures. Hence the ROUND8() below. - */ - db = pParse->db; - nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); - pWInfo = sqlite3DbMallocZero(db, - nByteWInfo + - sizeof(WhereClause) + - sizeof(WhereMaskSet) - ); - if( db->mallocFailed ){ - sqlite3DbFree(db, pWInfo); - pWInfo = 0; - goto whereBeginError; - } - pWInfo->nLevel = nTabList; - pWInfo->pParse = pParse; - pWInfo->pTabList = pTabList; - pWInfo->iBreak = sqlite3VdbeMakeLabel(v); - pWInfo->pWC = sWBI.pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; - pWInfo->wctrlFlags = wctrlFlags; - pWInfo->savedNQueryLoop = pParse->nQueryLoop; - pMaskSet = (WhereMaskSet*)&sWBI.pWC[1]; - sWBI.aLevel = pWInfo->a; - - /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via - ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ - if( OptimizationDisabled(db, SQLITE_DistinctOpt) ) pDistinct = 0; - - /* Split the WHERE clause into separate subexpressions where each - ** subexpression is separated by an AND operator. - */ - initMaskSet(pMaskSet); - whereClauseInit(sWBI.pWC, pParse, pMaskSet, wctrlFlags); - sqlite3ExprCodeConstants(pParse, pWhere); - whereSplit(sWBI.pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ - - /* Special case: a WHERE clause that is constant. Evaluate the - ** expression and either jump over all of the code or fall thru. - */ - if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ - sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); - pWhere = 0; - } - - /* Assign a bit from the bitmask to every term in the FROM clause. - ** - ** When assigning bitmask values to FROM clause cursors, it must be - ** the case that if X is the bitmask for the N-th FROM clause term then - ** the bitmask for all FROM clause terms to the left of the N-th term - ** is (X-1). An expression from the ON clause of a LEFT JOIN can use - ** its Expr.iRightJoinTable value to find the bitmask of the right table - ** of the join. Subtracting one from the right table bitmask gives a - ** bitmask for all tables to the left of the join. Knowing the bitmask - ** for all tables to the left of a left join is important. Ticket #3015. - ** - ** Note that bitmasks are created for all pTabList->nSrc tables in - ** pTabList, not just the first nTabList tables. nTabList is normally - ** equal to pTabList->nSrc but might be shortened to 1 if the - ** WHERE_ONETABLE_ONLY flag is set. - */ - for(ii=0; ii<pTabList->nSrc; ii++){ - createMask(pMaskSet, pTabList->a[ii].iCursor); - } -#ifndef NDEBUG - { - Bitmask toTheLeft = 0; - for(ii=0; ii<pTabList->nSrc; ii++){ - Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); - assert( (m-1)==toTheLeft ); - toTheLeft |= m; - } - } -#endif - - /* Analyze all of the subexpressions. Note that exprAnalyze() might - ** add new virtual terms onto the end of the WHERE clause. We do not - ** want to analyze these virtual terms, so start analyzing at the end - ** and work forward so that the added virtual terms are never processed. - */ - exprAnalyzeAll(pTabList, sWBI.pWC); - if( db->mallocFailed ){ - goto whereBeginError; - } - - /* Check if the DISTINCT qualifier, if there is one, is redundant. - ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to - ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT. - */ - if( pDistinct && isDistinctRedundant(pParse, pTabList, sWBI.pWC, pDistinct) ){ - pDistinct = 0; - pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; - } - - /* Chose the best index to use for each table in the FROM clause. - ** - ** This loop fills in the following fields: - ** - ** pWInfo->a[].pIdx The index to use for this level of the loop. - ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx - ** pWInfo->a[].nEq The number of == and IN constraints - ** pWInfo->a[].iFrom Which term of the FROM clause is being coded - ** pWInfo->a[].iTabCur The VDBE cursor for the database table - ** pWInfo->a[].iIdxCur The VDBE cursor for the index - ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term - ** - ** This loop also figures out the nesting order of tables in the FROM - ** clause. - */ - sWBI.notValid = ~(Bitmask)0; - sWBI.pOrderBy = pOrderBy; - sWBI.n = nTabList; - sWBI.pDistinct = pDistinct; - andFlags = ~0; - WHERETRACE(("*** Optimizer Start ***\n")); - for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){ - WhereCost bestPlan; /* Most efficient plan seen so far */ - Index *pIdx; /* Index for FROM table at pTabItem */ - int j; /* For looping over FROM tables */ - int bestJ = -1; /* The value of j */ - Bitmask m; /* Bitmask value for j or bestJ */ - int isOptimal; /* Iterator for optimal/non-optimal search */ - int ckOptimal; /* Do the optimal scan check */ - int nUnconstrained; /* Number tables without INDEXED BY */ - Bitmask notIndexed; /* Mask of tables that cannot use an index */ - - memset(&bestPlan, 0, sizeof(bestPlan)); - bestPlan.rCost = SQLITE_BIG_DBL; - WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i)); - - /* Loop through the remaining entries in the FROM clause to find the - ** next nested loop. The loop tests all FROM clause entries - ** either once or twice. - ** - ** The first test is always performed if there are two or more entries - ** remaining and never performed if there is only one FROM clause entry - ** to choose from. The first test looks for an "optimal" scan. In - ** this context an optimal scan is one that uses the same strategy - ** for the given FROM clause entry as would be selected if the entry - ** were used as the innermost nested loop. In other words, a table - ** is chosen such that the cost of running that table cannot be reduced - ** by waiting for other tables to run first. This "optimal" test works - ** by first assuming that the FROM clause is on the inner loop and finding - ** its query plan, then checking to see if that query plan uses any - ** other FROM clause terms that are sWBI.notValid. If no notValid terms - ** are used then the "optimal" query plan works. - ** - ** Note that the WhereCost.nRow parameter for an optimal scan might - ** not be as small as it would be if the table really were the innermost - ** join. The nRow value can be reduced by WHERE clause constraints - ** that do not use indices. But this nRow reduction only happens if the - ** table really is the innermost join. - ** - ** The second loop iteration is only performed if no optimal scan - ** strategies were found by the first iteration. This second iteration - ** is used to search for the lowest cost scan overall. - ** - ** Without the optimal scan step (the first iteration) a suboptimal - ** plan might be chosen for queries like this: - ** - ** CREATE TABLE t1(a, b); - ** CREATE TABLE t2(c, d); - ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; - ** - ** The best strategy is to iterate through table t1 first. However it - ** is not possible to determine this with a simple greedy algorithm. - ** Since the cost of a linear scan through table t2 is the same - ** as the cost of a linear scan through table t1, a simple greedy - ** algorithm may choose to use t2 for the outer loop, which is a much - ** costlier approach. - */ - nUnconstrained = 0; - notIndexed = 0; - - /* The optimal scan check only occurs if there are two or more tables - ** available to be reordered */ - if( iFrom==nTabList-1 ){ - ckOptimal = 0; /* Common case of just one table in the FROM clause */ - }else{ - ckOptimal = -1; - for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ - m = getMask(pMaskSet, sWBI.pSrc->iCursor); - if( (m & sWBI.notValid)==0 ){ - if( j==iFrom ) iFrom++; - continue; - } - if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break; - if( ++ckOptimal ) break; - if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; - } - } - assert( ckOptimal==0 || ckOptimal==1 ); - - for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){ - for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ - if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){ - /* This break and one like it in the ckOptimal computation loop - ** above prevent table reordering across LEFT and CROSS JOINs. - ** The LEFT JOIN case is necessary for correctness. The prohibition - ** against reordering across a CROSS JOIN is an SQLite feature that - ** allows the developer to control table reordering */ - break; - } - m = getMask(pMaskSet, sWBI.pSrc->iCursor); - if( (m & sWBI.notValid)==0 ){ - assert( j>iFrom ); - continue; - } - sWBI.notReady = (isOptimal ? m : sWBI.notValid); - if( sWBI.pSrc->pIndex==0 ) nUnconstrained++; - - WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n", - j, sWBI.pSrc->pTab->zName, isOptimal)); - assert( sWBI.pSrc->pTab ); -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(sWBI.pSrc->pTab) ){ - sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo; - bestVirtualIndex(&sWBI); - }else -#endif - { - bestBtreeIndex(&sWBI); - } - assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 ); - - /* If an INDEXED BY clause is present, then the plan must use that - ** index if it uses any index at all */ - assert( sWBI.pSrc->pIndex==0 - || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 - || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex ); - - if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ - notIndexed |= m; - } - if( isOptimal ){ - pWInfo->a[j].rOptCost = sWBI.cost.rCost; - }else if( ckOptimal ){ - /* If two or more tables have nearly the same outer loop cost, but - ** very different inner loop (optimal) cost, we want to choose - ** for the outer loop that table which benefits the least from - ** being in the inner loop. The following code scales the - ** outer loop cost estimate to accomplish that. */ - WHERETRACE((" scaling cost from %.1f to %.1f\n", - sWBI.cost.rCost, - sWBI.cost.rCost/pWInfo->a[j].rOptCost)); - sWBI.cost.rCost /= pWInfo->a[j].rOptCost; - } - - /* Conditions under which this table becomes the best so far: - ** - ** (1) The table must not depend on other tables that have not - ** yet run. (In other words, it must not depend on tables - ** in inner loops.) - ** - ** (2) (This rule was removed on 2012-11-09. The scaling of the - ** cost using the optimal scan cost made this rule obsolete.) - ** - ** (3) All tables have an INDEXED BY clause or this table lacks an - ** INDEXED BY clause or this table uses the specific - ** index specified by its INDEXED BY clause. This rule ensures - ** that a best-so-far is always selected even if an impossible - ** combination of INDEXED BY clauses are given. The error - ** will be detected and relayed back to the application later. - ** The NEVER() comes about because rule (2) above prevents - ** An indexable full-table-scan from reaching rule (3). - ** - ** (4) The plan cost must be lower than prior plans, where "cost" - ** is defined by the compareCost() function above. - */ - if( (sWBI.cost.used&sWBI.notValid)==0 /* (1) */ - && (nUnconstrained==0 || sWBI.pSrc->pIndex==0 /* (3) */ - || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) - && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan)) /* (4) */ - ){ - WHERETRACE((" === table %d (%s) is best so far\n" - " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n", - j, sWBI.pSrc->pTab->zName, - sWBI.cost.rCost, sWBI.cost.plan.nRow, - sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags)); - bestPlan = sWBI.cost; - bestJ = j; - } - - /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that - ** table y (and not table z) is always the next inner loop inside - ** of table x. */ - if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; - } - } - assert( bestJ>=0 ); - assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); - assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 ); - testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 ); - testcase( bestJ>iFrom && bestJ<nTabList-1 - && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 ); - WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n" - " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n", - bestJ, pTabList->a[bestJ].pTab->zName, - pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow, - bestPlan.plan.nOBSat, bestPlan.plan.wsFlags)); - if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){ - assert( pWInfo->eDistinct==0 ); - pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; - } - andFlags &= bestPlan.plan.wsFlags; - pLevel->plan = bestPlan.plan; - pLevel->iTabCur = pTabList->a[bestJ].iCursor; - testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); - testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); - if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ - if( (wctrlFlags & WHERE_ONETABLE_ONLY) - && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 - ){ - pLevel->iIdxCur = iIdxCur; - }else{ - pLevel->iIdxCur = pParse->nTab++; - } - }else{ - pLevel->iIdxCur = -1; - } - sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); - pLevel->iFrom = (u8)bestJ; - if( bestPlan.plan.nRow>=(double)1 ){ - pParse->nQueryLoop *= bestPlan.plan.nRow; - } - - /* Check that if the table scanned by this loop iteration had an - ** INDEXED BY clause attached to it, that the named index is being - ** used for the scan. If not, then query compilation has failed. - ** Return an error. - */ - pIdx = pTabList->a[bestJ].pIndex; - if( pIdx ){ - if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ - sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); - goto whereBeginError; - }else{ - /* If an INDEXED BY clause is used, the bestIndex() function is - ** guaranteed to find the index specified in the INDEXED BY clause - ** if it find an index at all. */ - assert( bestPlan.plan.u.pIdx==pIdx ); - } - } - } - WHERETRACE(("*** Optimizer Finished ***\n")); - if( pParse->nErr || db->mallocFailed ){ - goto whereBeginError; - } - if( nTabList ){ - pLevel--; - pWInfo->nOBSat = pLevel->plan.nOBSat; - }else{ - pWInfo->nOBSat = 0; - } - - /* If the total query only selects a single row, then the ORDER BY - ** clause is irrelevant. - */ - if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){ - assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ); - pWInfo->nOBSat = pOrderBy->nExpr; - } - - /* If the caller is an UPDATE or DELETE statement that is requesting - ** to use a one-pass algorithm, determine if this is appropriate. - ** The one-pass algorithm only works if the WHERE clause constraints - ** the statement to update a single row. - */ - assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); - if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ - pWInfo->okOnePass = 1; - pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; - } - - /* Open all tables in the pTabList and any indices selected for - ** searching those tables. - */ - sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ - notReady = ~(Bitmask)0; - pWInfo->nRowOut = (double)1; - for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ - Table *pTab; /* Table to open */ - int iDb; /* Index of database containing table/index */ - struct SrcList_item *pTabItem; - - pTabItem = &pTabList->a[pLevel->iFrom]; - pTab = pTabItem->pTab; - pWInfo->nRowOut *= pLevel->plan.nRow; - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ - /* Do nothing */ - }else -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ - const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); - int iCur = pTabItem->iCursor; - sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); - }else if( IsVirtual(pTab) ){ - /* noop */ - }else -#endif - if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 - && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ - int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; - sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); - testcase( pTab->nCol==BMS-1 ); - testcase( pTab->nCol==BMS ); - if( !pWInfo->okOnePass && pTab->nCol<BMS ){ - Bitmask b = pTabItem->colUsed; - int n = 0; - for(; b; b=b>>1, n++){} - sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, - SQLITE_INT_TO_PTR(n), P4_INT32); - assert( n<=pTab->nCol ); - } - }else{ - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - } -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX - if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ - constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel); - }else -#endif - if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ - Index *pIx = pLevel->plan.u.pIdx; - KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); - int iIndexCur = pLevel->iIdxCur; - assert( pIx->pSchema==pTab->pSchema ); - assert( iIndexCur>=0 ); - sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb, - (char*)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pIx->zName)); - } - sqlite3CodeVerifySchema(pParse, iDb); - notReady &= ~getMask(sWBI.pWC->pMaskSet, pTabItem->iCursor); - } - pWInfo->iTop = sqlite3VdbeCurrentAddr(v); - if( db->mallocFailed ) goto whereBeginError; - - /* Generate the code to do the search. Each iteration of the for - ** loop below generates code for a single nested loop of the VM - ** program. - */ - notReady = ~(Bitmask)0; - for(ii=0; ii<nTabList; ii++){ - pLevel = &pWInfo->a[ii]; - explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); - notReady = codeOneLoopStart(pWInfo, ii, wctrlFlags, notReady); - pWInfo->iContinue = pLevel->addrCont; - } - -#ifdef SQLITE_TEST /* For testing and debugging use only */ - /* Record in the query plan information about the current table - ** and the index used to access it (if any). If the table itself - ** is not used, its name is just '{}'. If no index is used - ** the index is listed as "{}". If the primary key is used the - ** index name is '*'. - */ - for(ii=0; ii<nTabList; ii++){ - char *z; - int n; - int w; - struct SrcList_item *pTabItem; - - pLevel = &pWInfo->a[ii]; - w = pLevel->plan.wsFlags; - pTabItem = &pTabList->a[pLevel->iFrom]; - z = pTabItem->zAlias; - if( z==0 ) z = pTabItem->pTab->zName; - n = sqlite3Strlen30(z); - if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ - if( (w & WHERE_IDX_ONLY)!=0 && (w & WHERE_COVER_SCAN)==0 ){ - memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); - nQPlan += 2; - }else{ - memcpy(&sqlite3_query_plan[nQPlan], z, n); - nQPlan += n; - } - sqlite3_query_plan[nQPlan++] = ' '; - } - testcase( w & WHERE_ROWID_EQ ); - testcase( w & WHERE_ROWID_RANGE ); - if( w & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ - memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); - nQPlan += 2; - }else if( (w & WHERE_INDEXED)!=0 && (w & WHERE_COVER_SCAN)==0 ){ - n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); - if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ - memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); - nQPlan += n; - sqlite3_query_plan[nQPlan++] = ' '; - } - }else{ - memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); - nQPlan += 3; - } - } - while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ - sqlite3_query_plan[--nQPlan] = 0; - } - sqlite3_query_plan[nQPlan] = 0; - nQPlan = 0; -#endif /* SQLITE_TEST // Testing and debugging use only */ - - /* Record the continuation address in the WhereInfo structure. Then - ** clean up and return. - */ - return pWInfo; - - /* Jump here if malloc fails */ -whereBeginError: - if( pWInfo ){ - pParse->nQueryLoop = pWInfo->savedNQueryLoop; - whereInfoFree(db, pWInfo); - } - return 0; -} - -/* -** Generate the end of the WHERE loop. See comments on -** sqlite3WhereBegin() for additional information. -*/ -SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){ - Parse *pParse = pWInfo->pParse; - Vdbe *v = pParse->pVdbe; - int i; - WhereLevel *pLevel; - SrcList *pTabList = pWInfo->pTabList; - sqlite3 *db = pParse->db; - - /* Generate loop termination code. - */ - sqlite3ExprCacheClear(pParse); - for(i=pWInfo->nLevel-1; i>=0; i--){ - pLevel = &pWInfo->a[i]; - sqlite3VdbeResolveLabel(v, pLevel->addrCont); - if( pLevel->op!=OP_Noop ){ - sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); - sqlite3VdbeChangeP5(v, pLevel->p5); - } - if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ - struct InLoop *pIn; - int j; - sqlite3VdbeResolveLabel(v, pLevel->addrNxt); - for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ - sqlite3VdbeJumpHere(v, pIn->addrInTop+1); - sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); - sqlite3VdbeJumpHere(v, pIn->addrInTop-1); - } - sqlite3DbFree(db, pLevel->u.in.aInLoop); - } - sqlite3VdbeResolveLabel(v, pLevel->addrBrk); - if( pLevel->iLeftJoin ){ - int addr; - addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); - assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 - || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); - if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ - sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); - } - if( pLevel->iIdxCur>=0 ){ - sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); - } - if( pLevel->op==OP_Return ){ - sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); - }else{ - sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); - } - sqlite3VdbeJumpHere(v, addr); - } - } - - /* The "break" point is here, just past the end of the outer loop. - ** Set it. - */ - sqlite3VdbeResolveLabel(v, pWInfo->iBreak); - - /* Close all of the cursors that were opened by sqlite3WhereBegin. - */ - assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); - for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ - Index *pIdx = 0; - struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; - Table *pTab = pTabItem->pTab; - assert( pTab!=0 ); - if( (pTab->tabFlags & TF_Ephemeral)==0 - && pTab->pSelect==0 - && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 - ){ - int ws = pLevel->plan.wsFlags; - if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ - sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); - } - if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ - sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); - } - } - - /* If this scan uses an index, make code substitutions to read data - ** from the index in preference to the table. Sometimes, this means - ** the table need never be read from. This is a performance boost, - ** as the vdbe level waits until the table is read before actually - ** seeking the table cursor to the record corresponding to the current - ** position in the index. - ** - ** Calls to the code generator in between sqlite3WhereBegin and - ** sqlite3WhereEnd will have created code that references the table - ** directly. This loop scans all that code looking for opcodes - ** that reference the table and converts them into opcodes that - ** reference the index. - */ - if( pLevel->plan.wsFlags & WHERE_INDEXED ){ - pIdx = pLevel->plan.u.pIdx; - }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ - pIdx = pLevel->u.pCovidx; - } - if( pIdx && !db->mallocFailed){ - int k, j, last; - VdbeOp *pOp; - - pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); - last = sqlite3VdbeCurrentAddr(v); - for(k=pWInfo->iTop; k<last; k++, pOp++){ - if( pOp->p1!=pLevel->iTabCur ) continue; - if( pOp->opcode==OP_Column ){ - for(j=0; j<pIdx->nColumn; j++){ - if( pOp->p2==pIdx->aiColumn[j] ){ - pOp->p2 = j; - pOp->p1 = pLevel->iIdxCur; - break; - } - } - assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 - || j<pIdx->nColumn ); - }else if( pOp->opcode==OP_Rowid ){ - pOp->p1 = pLevel->iIdxCur; - pOp->opcode = OP_IdxRowid; - } - } - } - } - - /* Final cleanup - */ - pParse->nQueryLoop = pWInfo->savedNQueryLoop; - whereInfoFree(db, pWInfo); - return; -} - -/************** End of where.c ***********************************************/ -/************** Begin file parse.c *******************************************/ -/* Driver template for the LEMON parser generator. -** The author disclaims copyright to this source code. -** -** This version of "lempar.c" is modified, slightly, for use by SQLite. -** The only modifications are the addition of a couple of NEVER() -** macros to disable tests that are needed in the case of a general -** LALR(1) grammar but which are always false in the -** specific grammar used by SQLite. -*/ -/* First off, code is included that follows the "include" declaration -** in the input grammar file. */ -/* #include <stdio.h> */ - - -/* -** Disable all error recovery processing in the parser push-down -** automaton. -*/ -#define YYNOERRORRECOVERY 1 - -/* -** Make yytestcase() the same as testcase() -*/ -#define yytestcase(X) testcase(X) - -/* -** An instance of this structure holds information about the -** LIMIT clause of a SELECT statement. -*/ -struct LimitVal { - Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ - Expr *pOffset; /* The OFFSET expression. NULL if there is none */ -}; - -/* -** An instance of this structure is used to store the LIKE, -** GLOB, NOT LIKE, and NOT GLOB operators. -*/ -struct LikeOp { - Token eOperator; /* "like" or "glob" or "regexp" */ - int bNot; /* True if the NOT keyword is present */ -}; - -/* -** An instance of the following structure describes the event of a -** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, -** TK_DELETE, or TK_INSTEAD. If the event is of the form -** -** UPDATE ON (a,b,c) -** -** Then the "b" IdList records the list "a,b,c". -*/ -struct TrigEvent { int a; IdList * b; }; - -/* -** An instance of this structure holds the ATTACH key and the key type. -*/ -struct AttachKey { int type; Token key; }; - -/* -** One or more VALUES claues -*/ -struct ValueList { - ExprList *pList; - Select *pSelect; -}; - - - /* This is a utility routine used to set the ExprSpan.zStart and - ** ExprSpan.zEnd values of pOut so that the span covers the complete - ** range of text beginning with pStart and going to the end of pEnd. - */ - static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ - pOut->zStart = pStart->z; - pOut->zEnd = &pEnd->z[pEnd->n]; - } - - /* Construct a new Expr object from a single identifier. Use the - ** new Expr to populate pOut. Set the span of pOut to be the identifier - ** that created the expression. - */ - static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ - pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); - pOut->zStart = pValue->z; - pOut->zEnd = &pValue->z[pValue->n]; - } - - /* This routine constructs a binary expression node out of two ExprSpan - ** objects and uses the result to populate a new ExprSpan object. - */ - static void spanBinaryExpr( - ExprSpan *pOut, /* Write the result here */ - Parse *pParse, /* The parsing context. Errors accumulate here */ - int op, /* The binary operation */ - ExprSpan *pLeft, /* The left operand */ - ExprSpan *pRight /* The right operand */ - ){ - pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); - pOut->zStart = pLeft->zStart; - pOut->zEnd = pRight->zEnd; - } - - /* Construct an expression node for a unary postfix operator - */ - static void spanUnaryPostfix( - ExprSpan *pOut, /* Write the new expression node here */ - Parse *pParse, /* Parsing context to record errors */ - int op, /* The operator */ - ExprSpan *pOperand, /* The operand */ - Token *pPostOp /* The operand token for setting the span */ - ){ - pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); - pOut->zStart = pOperand->zStart; - pOut->zEnd = &pPostOp->z[pPostOp->n]; - } - - /* A routine to convert a binary TK_IS or TK_ISNOT expression into a - ** unary TK_ISNULL or TK_NOTNULL expression. */ - static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ - sqlite3 *db = pParse->db; - if( db->mallocFailed==0 && pY->op==TK_NULL ){ - pA->op = (u8)op; - sqlite3ExprDelete(db, pA->pRight); - pA->pRight = 0; - } - } - - /* Construct an expression node for a unary prefix operator - */ - static void spanUnaryPrefix( - ExprSpan *pOut, /* Write the new expression node here */ - Parse *pParse, /* Parsing context to record errors */ - int op, /* The operator */ - ExprSpan *pOperand, /* The operand */ - Token *pPreOp /* The operand token for setting the span */ - ){ - pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); - pOut->zStart = pPreOp->z; - pOut->zEnd = pOperand->zEnd; - } -/* Next is all token values, in a form suitable for use by makeheaders. -** This section will be null unless lemon is run with the -m switch. -*/ -/* -** These constants (all generated automatically by the parser generator) -** specify the various kinds of tokens (terminals) that the parser -** understands. -** -** Each symbol here is a terminal symbol in the grammar. -*/ -/* Make sure the INTERFACE macro is defined. -*/ -#ifndef INTERFACE -# define INTERFACE 1 -#endif -/* The next thing included is series of defines which control -** various aspects of the generated parser. -** YYCODETYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 terminals -** and nonterminals. "int" is used otherwise. -** YYNOCODE is a number of type YYCODETYPE which corresponds -** to no legal terminal or nonterminal number. This -** number is used to fill in empty slots of the hash -** table. -** YYFALLBACK If defined, this indicates that one or more tokens -** have fall-back values which should be used if the -** original value of the token will not parse. -** YYACTIONTYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 rules and -** states combined. "int" is used otherwise. -** sqlite3ParserTOKENTYPE is the data type used for minor tokens given -** directly to the parser from the tokenizer. -** YYMINORTYPE is the data type used for all minor tokens. -** This is typically a union of many types, one of -** which is sqlite3ParserTOKENTYPE. The entry in the union -** for base tokens is called "yy0". -** YYSTACKDEPTH is the maximum depth of the parser's stack. If -** zero the stack is dynamically sized using realloc() -** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument -** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument -** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser -** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser -** YYNSTATE the combined number of states. -** YYNRULE the number of rules in the grammar -** YYERRORSYMBOL is the code number of the error symbol. If not -** defined, then do no error processing. -*/ -#define YYCODETYPE unsigned char -#define YYNOCODE 251 -#define YYACTIONTYPE unsigned short int -#define YYWILDCARD 67 -#define sqlite3ParserTOKENTYPE Token -typedef union { - int yyinit; - sqlite3ParserTOKENTYPE yy0; - struct LimitVal yy64; - Expr* yy122; - Select* yy159; - IdList* yy180; - struct {int value; int mask;} yy207; - u8 yy258; - u16 yy305; - struct LikeOp yy318; - TriggerStep* yy327; - ExprSpan yy342; - SrcList* yy347; - int yy392; - struct TrigEvent yy410; - ExprList* yy442; - struct ValueList yy487; -} YYMINORTYPE; -#ifndef YYSTACKDEPTH -#define YYSTACKDEPTH 100 -#endif -#define sqlite3ParserARG_SDECL Parse *pParse; -#define sqlite3ParserARG_PDECL ,Parse *pParse -#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse -#define sqlite3ParserARG_STORE yypParser->pParse = pParse -#define YYNSTATE 627 -#define YYNRULE 327 -#define YYFALLBACK 1 -#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) -#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) -#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) - -/* The yyzerominor constant is used to initialize instances of -** YYMINORTYPE objects to zero. */ -static const YYMINORTYPE yyzerominor = { 0 }; - -/* Define the yytestcase() macro to be a no-op if is not already defined -** otherwise. -** -** Applications can choose to define yytestcase() in the %include section -** to a macro that can assist in verifying code coverage. For production -** code the yytestcase() macro should be turned off. But it is useful -** for testing. -*/ -#ifndef yytestcase -# define yytestcase(X) -#endif - - -/* Next are the tables used to determine what action to take based on the -** current state and lookahead token. These tables are used to implement -** functions that take a state number and lookahead value and return an -** action integer. -** -** Suppose the action integer is N. Then the action is determined as -** follows -** -** 0 <= N < YYNSTATE Shift N. That is, push the lookahead -** token onto the stack and goto state N. -** -** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. -** -** N == YYNSTATE+YYNRULE A syntax error has occurred. -** -** N == YYNSTATE+YYNRULE+1 The parser accepts its input. -** -** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused -** slots in the yy_action[] table. -** -** The action table is constructed as a single large table named yy_action[]. -** Given state S and lookahead X, the action is computed as -** -** yy_action[ yy_shift_ofst[S] + X ] -** -** If the index value yy_shift_ofst[S]+X is out of range or if the value -** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] -** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table -** and that yy_default[S] should be used instead. -** -** The formula above is for computing the action when the lookahead is -** a terminal symbol. If the lookahead is a non-terminal (as occurs after -** a reduce action) then the yy_reduce_ofst[] array is used in place of -** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of -** YY_SHIFT_USE_DFLT. -** -** The following are the tables generated in this section: -** -** yy_action[] A single table containing all actions. -** yy_lookahead[] A table containing the lookahead for each entry in -** yy_action. Used to detect hash collisions. -** yy_shift_ofst[] For each state, the offset into yy_action for -** shifting terminals. -** yy_reduce_ofst[] For each state, the offset into yy_action for -** shifting non-terminals after a reduce. -** yy_default[] Default action for each state. -*/ -#define YY_ACTTAB_COUNT (1564) -static const YYACTIONTYPE yy_action[] = { - /* 0 */ 309, 955, 184, 417, 2, 171, 624, 594, 56, 56, - /* 10 */ 56, 56, 49, 54, 54, 54, 54, 53, 53, 52, - /* 20 */ 52, 52, 51, 233, 620, 619, 298, 620, 619, 234, - /* 30 */ 587, 581, 56, 56, 56, 56, 19, 54, 54, 54, - /* 40 */ 54, 53, 53, 52, 52, 52, 51, 233, 605, 57, - /* 50 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, - /* 60 */ 56, 56, 541, 54, 54, 54, 54, 53, 53, 52, - /* 70 */ 52, 52, 51, 233, 309, 594, 325, 196, 195, 194, - /* 80 */ 33, 54, 54, 54, 54, 53, 53, 52, 52, 52, - /* 90 */ 51, 233, 617, 616, 165, 617, 616, 380, 377, 376, - /* 100 */ 407, 532, 576, 576, 587, 581, 303, 422, 375, 59, - /* 110 */ 53, 53, 52, 52, 52, 51, 233, 50, 47, 146, - /* 120 */ 574, 545, 65, 57, 58, 48, 579, 578, 580, 580, - /* 130 */ 55, 55, 56, 56, 56, 56, 213, 54, 54, 54, - /* 140 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 223, - /* 150 */ 539, 420, 170, 176, 138, 280, 383, 275, 382, 168, - /* 160 */ 489, 551, 409, 668, 620, 619, 271, 438, 409, 438, - /* 170 */ 550, 604, 67, 482, 507, 618, 599, 412, 587, 581, - /* 180 */ 600, 483, 618, 412, 618, 598, 91, 439, 440, 439, - /* 190 */ 335, 598, 73, 669, 222, 266, 480, 57, 58, 48, - /* 200 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, - /* 210 */ 670, 54, 54, 54, 54, 53, 53, 52, 52, 52, - /* 220 */ 51, 233, 309, 279, 232, 231, 1, 132, 200, 385, - /* 230 */ 620, 619, 617, 616, 278, 435, 289, 563, 175, 262, - /* 240 */ 409, 264, 437, 497, 436, 166, 441, 568, 336, 568, - /* 250 */ 201, 537, 587, 581, 599, 412, 165, 594, 600, 380, - /* 260 */ 377, 376, 597, 598, 92, 523, 618, 569, 569, 592, - /* 270 */ 375, 57, 58, 48, 579, 578, 580, 580, 55, 55, - /* 280 */ 56, 56, 56, 56, 597, 54, 54, 54, 54, 53, - /* 290 */ 53, 52, 52, 52, 51, 233, 309, 463, 617, 616, - /* 300 */ 590, 590, 590, 174, 272, 396, 409, 272, 409, 548, - /* 310 */ 397, 620, 619, 68, 326, 620, 619, 620, 619, 618, - /* 320 */ 546, 412, 618, 412, 471, 594, 587, 581, 472, 598, - /* 330 */ 92, 598, 92, 52, 52, 52, 51, 233, 513, 512, - /* 340 */ 206, 322, 363, 464, 221, 57, 58, 48, 579, 578, - /* 350 */ 580, 580, 55, 55, 56, 56, 56, 56, 529, 54, - /* 360 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, - /* 370 */ 309, 396, 409, 396, 597, 372, 386, 530, 347, 617, - /* 380 */ 616, 575, 202, 617, 616, 617, 616, 412, 620, 619, - /* 390 */ 145, 255, 346, 254, 577, 598, 74, 351, 45, 489, - /* 400 */ 587, 581, 235, 189, 464, 544, 167, 296, 187, 469, - /* 410 */ 479, 67, 62, 39, 618, 546, 597, 345, 573, 57, - /* 420 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, - /* 430 */ 56, 56, 6, 54, 54, 54, 54, 53, 53, 52, - /* 440 */ 52, 52, 51, 233, 309, 562, 558, 407, 528, 576, - /* 450 */ 576, 344, 255, 346, 254, 182, 617, 616, 503, 504, - /* 460 */ 314, 409, 557, 235, 166, 271, 409, 352, 564, 181, - /* 470 */ 407, 546, 576, 576, 587, 581, 412, 537, 556, 561, - /* 480 */ 517, 412, 618, 249, 598, 16, 7, 36, 467, 598, - /* 490 */ 92, 516, 618, 57, 58, 48, 579, 578, 580, 580, - /* 500 */ 55, 55, 56, 56, 56, 56, 541, 54, 54, 54, - /* 510 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 327, - /* 520 */ 572, 571, 525, 558, 560, 394, 871, 246, 409, 248, - /* 530 */ 171, 392, 594, 219, 407, 409, 576, 576, 502, 557, - /* 540 */ 364, 145, 510, 412, 407, 229, 576, 576, 587, 581, - /* 550 */ 412, 598, 92, 381, 269, 556, 166, 400, 598, 69, - /* 560 */ 501, 419, 945, 199, 945, 198, 546, 57, 58, 48, - /* 570 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, - /* 580 */ 568, 54, 54, 54, 54, 53, 53, 52, 52, 52, - /* 590 */ 51, 233, 309, 317, 419, 944, 508, 944, 308, 597, - /* 600 */ 594, 565, 490, 212, 173, 247, 423, 615, 614, 613, - /* 610 */ 323, 197, 143, 405, 572, 571, 489, 66, 50, 47, - /* 620 */ 146, 594, 587, 581, 232, 231, 559, 427, 67, 555, - /* 630 */ 15, 618, 186, 543, 303, 421, 35, 206, 432, 423, - /* 640 */ 552, 57, 58, 48, 579, 578, 580, 580, 55, 55, - /* 650 */ 56, 56, 56, 56, 205, 54, 54, 54, 54, 53, - /* 660 */ 53, 52, 52, 52, 51, 233, 309, 569, 569, 260, - /* 670 */ 268, 597, 12, 373, 568, 166, 409, 313, 409, 420, - /* 680 */ 409, 473, 473, 365, 618, 50, 47, 146, 597, 594, - /* 690 */ 468, 412, 166, 412, 351, 412, 587, 581, 32, 598, - /* 700 */ 94, 598, 97, 598, 95, 627, 625, 329, 142, 50, - /* 710 */ 47, 146, 333, 349, 358, 57, 58, 48, 579, 578, - /* 720 */ 580, 580, 55, 55, 56, 56, 56, 56, 409, 54, - /* 730 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, - /* 740 */ 309, 409, 388, 412, 409, 22, 565, 404, 212, 362, - /* 750 */ 389, 598, 104, 359, 409, 156, 412, 409, 603, 412, - /* 760 */ 537, 331, 569, 569, 598, 103, 493, 598, 105, 412, - /* 770 */ 587, 581, 412, 260, 549, 618, 11, 598, 106, 521, - /* 780 */ 598, 133, 169, 457, 456, 170, 35, 601, 618, 57, - /* 790 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, - /* 800 */ 56, 56, 409, 54, 54, 54, 54, 53, 53, 52, - /* 810 */ 52, 52, 51, 233, 309, 409, 259, 412, 409, 50, - /* 820 */ 47, 146, 357, 318, 355, 598, 134, 527, 352, 337, - /* 830 */ 412, 409, 356, 412, 357, 409, 357, 618, 598, 98, - /* 840 */ 129, 598, 102, 618, 587, 581, 412, 21, 235, 618, - /* 850 */ 412, 618, 211, 143, 598, 101, 30, 167, 598, 93, - /* 860 */ 350, 535, 203, 57, 58, 48, 579, 578, 580, 580, - /* 870 */ 55, 55, 56, 56, 56, 56, 409, 54, 54, 54, - /* 880 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 409, - /* 890 */ 526, 412, 409, 425, 215, 305, 597, 551, 141, 598, - /* 900 */ 100, 40, 409, 38, 412, 409, 550, 412, 409, 228, - /* 910 */ 220, 314, 598, 77, 500, 598, 96, 412, 587, 581, - /* 920 */ 412, 338, 253, 412, 218, 598, 137, 379, 598, 136, - /* 930 */ 28, 598, 135, 270, 715, 210, 481, 57, 58, 48, - /* 940 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, - /* 950 */ 409, 54, 54, 54, 54, 53, 53, 52, 52, 52, - /* 960 */ 51, 233, 309, 409, 272, 412, 409, 315, 147, 597, - /* 970 */ 272, 626, 2, 598, 76, 209, 409, 127, 412, 618, - /* 980 */ 126, 412, 409, 621, 235, 618, 598, 90, 374, 598, - /* 990 */ 89, 412, 587, 581, 27, 260, 350, 412, 618, 598, - /* 1000 */ 75, 321, 541, 541, 125, 598, 88, 320, 278, 597, - /* 1010 */ 618, 57, 46, 48, 579, 578, 580, 580, 55, 55, - /* 1020 */ 56, 56, 56, 56, 409, 54, 54, 54, 54, 53, - /* 1030 */ 53, 52, 52, 52, 51, 233, 309, 409, 450, 412, - /* 1040 */ 164, 284, 282, 272, 609, 424, 304, 598, 87, 370, - /* 1050 */ 409, 477, 412, 409, 608, 409, 607, 602, 618, 618, - /* 1060 */ 598, 99, 586, 585, 122, 412, 587, 581, 412, 618, - /* 1070 */ 412, 618, 618, 598, 86, 366, 598, 17, 598, 85, - /* 1080 */ 319, 185, 519, 518, 583, 582, 58, 48, 579, 578, - /* 1090 */ 580, 580, 55, 55, 56, 56, 56, 56, 409, 54, - /* 1100 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, - /* 1110 */ 309, 584, 409, 412, 409, 260, 260, 260, 408, 591, - /* 1120 */ 474, 598, 84, 170, 409, 466, 518, 412, 121, 412, - /* 1130 */ 618, 618, 618, 618, 618, 598, 83, 598, 72, 412, - /* 1140 */ 587, 581, 51, 233, 625, 329, 470, 598, 71, 257, - /* 1150 */ 159, 120, 14, 462, 157, 158, 117, 260, 448, 447, - /* 1160 */ 446, 48, 579, 578, 580, 580, 55, 55, 56, 56, - /* 1170 */ 56, 56, 618, 54, 54, 54, 54, 53, 53, 52, - /* 1180 */ 52, 52, 51, 233, 44, 403, 260, 3, 409, 459, - /* 1190 */ 260, 413, 619, 118, 398, 10, 25, 24, 554, 348, - /* 1200 */ 217, 618, 406, 412, 409, 618, 4, 44, 403, 618, - /* 1210 */ 3, 598, 82, 618, 413, 619, 455, 542, 115, 412, - /* 1220 */ 538, 401, 536, 274, 506, 406, 251, 598, 81, 216, - /* 1230 */ 273, 563, 618, 243, 453, 618, 154, 618, 618, 618, - /* 1240 */ 449, 416, 623, 110, 401, 618, 409, 236, 64, 123, - /* 1250 */ 487, 41, 42, 531, 563, 204, 409, 267, 43, 411, - /* 1260 */ 410, 412, 265, 592, 108, 618, 107, 434, 332, 598, - /* 1270 */ 80, 412, 618, 263, 41, 42, 443, 618, 409, 598, - /* 1280 */ 70, 43, 411, 410, 433, 261, 592, 149, 618, 597, - /* 1290 */ 256, 237, 188, 412, 590, 590, 590, 589, 588, 13, - /* 1300 */ 618, 598, 18, 328, 235, 618, 44, 403, 360, 3, - /* 1310 */ 418, 461, 339, 413, 619, 227, 124, 590, 590, 590, - /* 1320 */ 589, 588, 13, 618, 406, 409, 618, 409, 139, 34, - /* 1330 */ 403, 387, 3, 148, 622, 312, 413, 619, 311, 330, - /* 1340 */ 412, 460, 412, 401, 180, 353, 412, 406, 598, 79, - /* 1350 */ 598, 78, 250, 563, 598, 9, 618, 612, 611, 610, - /* 1360 */ 618, 8, 452, 442, 242, 415, 401, 618, 239, 235, - /* 1370 */ 179, 238, 428, 41, 42, 288, 563, 618, 618, 618, - /* 1380 */ 43, 411, 410, 618, 144, 592, 618, 618, 177, 61, - /* 1390 */ 618, 596, 391, 620, 619, 287, 41, 42, 414, 618, - /* 1400 */ 293, 30, 393, 43, 411, 410, 292, 618, 592, 31, - /* 1410 */ 618, 395, 291, 60, 230, 37, 590, 590, 590, 589, - /* 1420 */ 588, 13, 214, 553, 183, 290, 172, 301, 300, 299, - /* 1430 */ 178, 297, 595, 563, 451, 29, 285, 390, 540, 590, - /* 1440 */ 590, 590, 589, 588, 13, 283, 520, 534, 150, 533, - /* 1450 */ 241, 281, 384, 192, 191, 324, 515, 514, 276, 240, - /* 1460 */ 510, 523, 307, 511, 128, 592, 509, 225, 226, 486, - /* 1470 */ 485, 224, 152, 491, 464, 306, 484, 163, 153, 371, - /* 1480 */ 478, 151, 162, 258, 369, 161, 367, 208, 475, 476, - /* 1490 */ 26, 160, 465, 140, 361, 131, 590, 590, 590, 116, - /* 1500 */ 119, 454, 343, 155, 114, 342, 113, 112, 445, 111, - /* 1510 */ 130, 109, 431, 316, 426, 430, 23, 429, 20, 606, - /* 1520 */ 190, 507, 255, 341, 244, 63, 294, 593, 310, 570, - /* 1530 */ 277, 402, 354, 235, 567, 496, 495, 492, 494, 302, - /* 1540 */ 458, 378, 286, 245, 566, 5, 252, 547, 193, 444, - /* 1550 */ 233, 340, 207, 524, 368, 505, 334, 522, 499, 399, - /* 1560 */ 295, 498, 956, 488, -}; -static const YYCODETYPE yy_lookahead[] = { - /* 0 */ 19, 142, 143, 144, 145, 24, 1, 26, 77, 78, - /* 10 */ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, - /* 20 */ 89, 90, 91, 92, 26, 27, 15, 26, 27, 197, - /* 30 */ 49, 50, 77, 78, 79, 80, 204, 82, 83, 84, - /* 40 */ 85, 86, 87, 88, 89, 90, 91, 92, 23, 68, - /* 50 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, - /* 60 */ 79, 80, 166, 82, 83, 84, 85, 86, 87, 88, - /* 70 */ 89, 90, 91, 92, 19, 94, 19, 105, 106, 107, - /* 80 */ 25, 82, 83, 84, 85, 86, 87, 88, 89, 90, - /* 90 */ 91, 92, 94, 95, 96, 94, 95, 99, 100, 101, - /* 100 */ 112, 205, 114, 115, 49, 50, 22, 23, 110, 54, - /* 110 */ 86, 87, 88, 89, 90, 91, 92, 221, 222, 223, - /* 120 */ 23, 120, 25, 68, 69, 70, 71, 72, 73, 74, - /* 130 */ 75, 76, 77, 78, 79, 80, 22, 82, 83, 84, - /* 140 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 92, - /* 150 */ 23, 67, 25, 96, 97, 98, 99, 100, 101, 102, - /* 160 */ 150, 32, 150, 118, 26, 27, 109, 150, 150, 150, - /* 170 */ 41, 161, 162, 180, 181, 165, 113, 165, 49, 50, - /* 180 */ 117, 188, 165, 165, 165, 173, 174, 170, 171, 170, - /* 190 */ 171, 173, 174, 118, 184, 16, 186, 68, 69, 70, - /* 200 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, - /* 210 */ 118, 82, 83, 84, 85, 86, 87, 88, 89, 90, - /* 220 */ 91, 92, 19, 98, 86, 87, 22, 24, 160, 88, - /* 230 */ 26, 27, 94, 95, 109, 97, 224, 66, 118, 60, - /* 240 */ 150, 62, 104, 23, 106, 25, 229, 230, 229, 230, - /* 250 */ 160, 150, 49, 50, 113, 165, 96, 26, 117, 99, - /* 260 */ 100, 101, 194, 173, 174, 94, 165, 129, 130, 98, - /* 270 */ 110, 68, 69, 70, 71, 72, 73, 74, 75, 76, - /* 280 */ 77, 78, 79, 80, 194, 82, 83, 84, 85, 86, - /* 290 */ 87, 88, 89, 90, 91, 92, 19, 11, 94, 95, - /* 300 */ 129, 130, 131, 118, 150, 215, 150, 150, 150, 25, - /* 310 */ 220, 26, 27, 22, 213, 26, 27, 26, 27, 165, - /* 320 */ 25, 165, 165, 165, 30, 94, 49, 50, 34, 173, - /* 330 */ 174, 173, 174, 88, 89, 90, 91, 92, 7, 8, - /* 340 */ 160, 187, 48, 57, 187, 68, 69, 70, 71, 72, - /* 350 */ 73, 74, 75, 76, 77, 78, 79, 80, 23, 82, - /* 360 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, - /* 370 */ 19, 215, 150, 215, 194, 19, 220, 88, 220, 94, - /* 380 */ 95, 23, 160, 94, 95, 94, 95, 165, 26, 27, - /* 390 */ 95, 105, 106, 107, 113, 173, 174, 217, 22, 150, - /* 400 */ 49, 50, 116, 119, 57, 120, 50, 158, 22, 21, - /* 410 */ 161, 162, 232, 136, 165, 120, 194, 237, 23, 68, - /* 420 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, - /* 430 */ 79, 80, 22, 82, 83, 84, 85, 86, 87, 88, - /* 440 */ 89, 90, 91, 92, 19, 23, 12, 112, 23, 114, - /* 450 */ 115, 63, 105, 106, 107, 23, 94, 95, 97, 98, - /* 460 */ 104, 150, 28, 116, 25, 109, 150, 150, 23, 23, - /* 470 */ 112, 25, 114, 115, 49, 50, 165, 150, 44, 11, - /* 480 */ 46, 165, 165, 16, 173, 174, 76, 136, 100, 173, - /* 490 */ 174, 57, 165, 68, 69, 70, 71, 72, 73, 74, - /* 500 */ 75, 76, 77, 78, 79, 80, 166, 82, 83, 84, - /* 510 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 169, - /* 520 */ 170, 171, 23, 12, 23, 214, 138, 60, 150, 62, - /* 530 */ 24, 215, 26, 216, 112, 150, 114, 115, 36, 28, - /* 540 */ 213, 95, 103, 165, 112, 205, 114, 115, 49, 50, - /* 550 */ 165, 173, 174, 51, 23, 44, 25, 46, 173, 174, - /* 560 */ 58, 22, 23, 22, 25, 160, 120, 68, 69, 70, - /* 570 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, - /* 580 */ 230, 82, 83, 84, 85, 86, 87, 88, 89, 90, - /* 590 */ 91, 92, 19, 215, 22, 23, 23, 25, 163, 194, - /* 600 */ 94, 166, 167, 168, 25, 138, 67, 7, 8, 9, - /* 610 */ 108, 206, 207, 169, 170, 171, 150, 22, 221, 222, - /* 620 */ 223, 26, 49, 50, 86, 87, 23, 161, 162, 23, - /* 630 */ 22, 165, 24, 120, 22, 23, 25, 160, 241, 67, - /* 640 */ 176, 68, 69, 70, 71, 72, 73, 74, 75, 76, - /* 650 */ 77, 78, 79, 80, 160, 82, 83, 84, 85, 86, - /* 660 */ 87, 88, 89, 90, 91, 92, 19, 129, 130, 150, - /* 670 */ 23, 194, 35, 23, 230, 25, 150, 155, 150, 67, - /* 680 */ 150, 105, 106, 107, 165, 221, 222, 223, 194, 94, - /* 690 */ 23, 165, 25, 165, 217, 165, 49, 50, 25, 173, - /* 700 */ 174, 173, 174, 173, 174, 0, 1, 2, 118, 221, - /* 710 */ 222, 223, 193, 219, 237, 68, 69, 70, 71, 72, - /* 720 */ 73, 74, 75, 76, 77, 78, 79, 80, 150, 82, - /* 730 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, - /* 740 */ 19, 150, 19, 165, 150, 24, 166, 167, 168, 227, - /* 750 */ 27, 173, 174, 231, 150, 25, 165, 150, 172, 165, - /* 760 */ 150, 242, 129, 130, 173, 174, 180, 173, 174, 165, - /* 770 */ 49, 50, 165, 150, 176, 165, 35, 173, 174, 165, - /* 780 */ 173, 174, 35, 23, 23, 25, 25, 173, 165, 68, - /* 790 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, - /* 800 */ 79, 80, 150, 82, 83, 84, 85, 86, 87, 88, - /* 810 */ 89, 90, 91, 92, 19, 150, 193, 165, 150, 221, - /* 820 */ 222, 223, 150, 213, 19, 173, 174, 23, 150, 97, - /* 830 */ 165, 150, 27, 165, 150, 150, 150, 165, 173, 174, - /* 840 */ 22, 173, 174, 165, 49, 50, 165, 52, 116, 165, - /* 850 */ 165, 165, 206, 207, 173, 174, 126, 50, 173, 174, - /* 860 */ 128, 27, 160, 68, 69, 70, 71, 72, 73, 74, - /* 870 */ 75, 76, 77, 78, 79, 80, 150, 82, 83, 84, - /* 880 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 150, - /* 890 */ 23, 165, 150, 23, 216, 25, 194, 32, 39, 173, - /* 900 */ 174, 135, 150, 137, 165, 150, 41, 165, 150, 52, - /* 910 */ 238, 104, 173, 174, 29, 173, 174, 165, 49, 50, - /* 920 */ 165, 219, 238, 165, 238, 173, 174, 52, 173, 174, - /* 930 */ 22, 173, 174, 23, 23, 160, 25, 68, 69, 70, - /* 940 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, - /* 950 */ 150, 82, 83, 84, 85, 86, 87, 88, 89, 90, - /* 960 */ 91, 92, 19, 150, 150, 165, 150, 245, 246, 194, - /* 970 */ 150, 144, 145, 173, 174, 160, 150, 22, 165, 165, - /* 980 */ 22, 165, 150, 150, 116, 165, 173, 174, 52, 173, - /* 990 */ 174, 165, 49, 50, 22, 150, 128, 165, 165, 173, - /* 1000 */ 174, 187, 166, 166, 22, 173, 174, 187, 109, 194, - /* 1010 */ 165, 68, 69, 70, 71, 72, 73, 74, 75, 76, - /* 1020 */ 77, 78, 79, 80, 150, 82, 83, 84, 85, 86, - /* 1030 */ 87, 88, 89, 90, 91, 92, 19, 150, 193, 165, - /* 1040 */ 102, 205, 205, 150, 150, 247, 248, 173, 174, 19, - /* 1050 */ 150, 20, 165, 150, 150, 150, 150, 150, 165, 165, - /* 1060 */ 173, 174, 49, 50, 104, 165, 49, 50, 165, 165, - /* 1070 */ 165, 165, 165, 173, 174, 43, 173, 174, 173, 174, - /* 1080 */ 187, 24, 190, 191, 71, 72, 69, 70, 71, 72, - /* 1090 */ 73, 74, 75, 76, 77, 78, 79, 80, 150, 82, - /* 1100 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, - /* 1110 */ 19, 98, 150, 165, 150, 150, 150, 150, 150, 150, - /* 1120 */ 59, 173, 174, 25, 150, 190, 191, 165, 53, 165, - /* 1130 */ 165, 165, 165, 165, 165, 173, 174, 173, 174, 165, - /* 1140 */ 49, 50, 91, 92, 1, 2, 53, 173, 174, 138, - /* 1150 */ 104, 22, 5, 1, 35, 118, 127, 150, 193, 193, - /* 1160 */ 193, 70, 71, 72, 73, 74, 75, 76, 77, 78, - /* 1170 */ 79, 80, 165, 82, 83, 84, 85, 86, 87, 88, - /* 1180 */ 89, 90, 91, 92, 19, 20, 150, 22, 150, 27, - /* 1190 */ 150, 26, 27, 108, 150, 22, 76, 76, 150, 25, - /* 1200 */ 193, 165, 37, 165, 150, 165, 22, 19, 20, 165, - /* 1210 */ 22, 173, 174, 165, 26, 27, 23, 150, 119, 165, - /* 1220 */ 150, 56, 150, 150, 150, 37, 16, 173, 174, 193, - /* 1230 */ 150, 66, 165, 193, 1, 165, 121, 165, 165, 165, - /* 1240 */ 20, 146, 147, 119, 56, 165, 150, 152, 16, 154, - /* 1250 */ 150, 86, 87, 88, 66, 160, 150, 150, 93, 94, - /* 1260 */ 95, 165, 150, 98, 108, 165, 127, 23, 65, 173, - /* 1270 */ 174, 165, 165, 150, 86, 87, 128, 165, 150, 173, - /* 1280 */ 174, 93, 94, 95, 23, 150, 98, 15, 165, 194, - /* 1290 */ 150, 140, 22, 165, 129, 130, 131, 132, 133, 134, - /* 1300 */ 165, 173, 174, 3, 116, 165, 19, 20, 150, 22, - /* 1310 */ 4, 150, 217, 26, 27, 179, 179, 129, 130, 131, - /* 1320 */ 132, 133, 134, 165, 37, 150, 165, 150, 164, 19, - /* 1330 */ 20, 150, 22, 246, 149, 249, 26, 27, 249, 244, - /* 1340 */ 165, 150, 165, 56, 6, 150, 165, 37, 173, 174, - /* 1350 */ 173, 174, 150, 66, 173, 174, 165, 149, 149, 13, - /* 1360 */ 165, 25, 150, 150, 150, 149, 56, 165, 150, 116, - /* 1370 */ 151, 150, 150, 86, 87, 150, 66, 165, 165, 165, - /* 1380 */ 93, 94, 95, 165, 150, 98, 165, 165, 151, 22, - /* 1390 */ 165, 194, 150, 26, 27, 150, 86, 87, 159, 165, - /* 1400 */ 199, 126, 123, 93, 94, 95, 200, 165, 98, 124, - /* 1410 */ 165, 122, 201, 125, 225, 135, 129, 130, 131, 132, - /* 1420 */ 133, 134, 5, 157, 157, 202, 118, 10, 11, 12, - /* 1430 */ 13, 14, 203, 66, 17, 104, 210, 121, 211, 129, - /* 1440 */ 130, 131, 132, 133, 134, 210, 175, 211, 31, 211, - /* 1450 */ 33, 210, 104, 86, 87, 47, 175, 183, 175, 42, - /* 1460 */ 103, 94, 178, 177, 22, 98, 175, 92, 228, 175, - /* 1470 */ 175, 228, 55, 183, 57, 178, 175, 156, 61, 18, - /* 1480 */ 157, 64, 156, 235, 157, 156, 45, 157, 236, 157, - /* 1490 */ 135, 156, 189, 68, 157, 218, 129, 130, 131, 22, - /* 1500 */ 189, 199, 157, 156, 192, 18, 192, 192, 199, 192, - /* 1510 */ 218, 189, 40, 157, 38, 157, 240, 157, 240, 153, - /* 1520 */ 196, 181, 105, 106, 107, 243, 198, 166, 111, 230, - /* 1530 */ 176, 226, 239, 116, 230, 176, 166, 166, 176, 148, - /* 1540 */ 199, 177, 209, 209, 166, 196, 239, 208, 185, 199, - /* 1550 */ 92, 209, 233, 173, 234, 182, 139, 173, 182, 191, - /* 1560 */ 195, 182, 250, 186, -}; -#define YY_SHIFT_USE_DFLT (-70) -#define YY_SHIFT_COUNT (416) -#define YY_SHIFT_MIN (-69) -#define YY_SHIFT_MAX (1487) -static const short yy_shift_ofst[] = { - /* 0 */ 1143, 1188, 1417, 1188, 1287, 1287, 138, 138, -2, -19, - /* 10 */ 1287, 1287, 1287, 1287, 347, 362, 129, 129, 795, 1165, - /* 20 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, - /* 30 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, - /* 40 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1310, 1287, - /* 50 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, - /* 60 */ 1287, 1287, 286, 362, 362, 538, 538, 231, 1253, 55, - /* 70 */ 721, 647, 573, 499, 425, 351, 277, 203, 869, 869, - /* 80 */ 869, 869, 869, 869, 869, 869, 869, 869, 869, 869, - /* 90 */ 869, 869, 869, 943, 869, 1017, 1091, 1091, -69, -45, - /* 100 */ -45, -45, -45, -45, -1, 24, 245, 362, 362, 362, - /* 110 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, - /* 120 */ 362, 362, 362, 388, 356, 362, 362, 362, 362, 362, - /* 130 */ 732, 868, 231, 1051, 1458, -70, -70, -70, 1367, 57, - /* 140 */ 434, 434, 289, 291, 285, 1, 204, 572, 539, 362, - /* 150 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, - /* 160 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, - /* 170 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, - /* 180 */ 362, 506, 506, 506, 705, 1253, 1253, 1253, -70, -70, - /* 190 */ -70, 171, 171, 160, 502, 502, 502, 446, 432, 511, - /* 200 */ 422, 358, 335, -12, -12, -12, -12, 576, 294, -12, - /* 210 */ -12, 295, 595, 141, 600, 730, 723, 723, 805, 730, - /* 220 */ 805, 439, 911, 231, 865, 231, 865, 807, 865, 723, - /* 230 */ 766, 633, 633, 231, 284, 63, 608, 1476, 1308, 1308, - /* 240 */ 1472, 1472, 1308, 1477, 1425, 1275, 1487, 1487, 1487, 1487, - /* 250 */ 1308, 1461, 1275, 1477, 1425, 1425, 1308, 1461, 1355, 1441, - /* 260 */ 1308, 1308, 1461, 1308, 1461, 1308, 1461, 1442, 1348, 1348, - /* 270 */ 1348, 1408, 1375, 1375, 1442, 1348, 1357, 1348, 1408, 1348, - /* 280 */ 1348, 1316, 1331, 1316, 1331, 1316, 1331, 1308, 1308, 1280, - /* 290 */ 1288, 1289, 1285, 1279, 1275, 1253, 1336, 1346, 1346, 1338, - /* 300 */ 1338, 1338, 1338, -70, -70, -70, -70, -70, -70, 1013, - /* 310 */ 467, 612, 84, 179, -28, 870, 410, 761, 760, 667, - /* 320 */ 650, 531, 220, 361, 331, 125, 127, 97, 1306, 1300, - /* 330 */ 1270, 1151, 1272, 1203, 1232, 1261, 1244, 1148, 1174, 1139, - /* 340 */ 1156, 1124, 1220, 1115, 1210, 1233, 1099, 1193, 1184, 1174, - /* 350 */ 1173, 1029, 1121, 1120, 1085, 1162, 1119, 1037, 1152, 1147, - /* 360 */ 1129, 1046, 1011, 1093, 1098, 1075, 1061, 1032, 960, 1057, - /* 370 */ 1031, 1030, 899, 938, 982, 936, 972, 958, 910, 955, - /* 380 */ 875, 885, 908, 857, 859, 867, 804, 590, 834, 747, - /* 390 */ 818, 513, 611, 741, 673, 637, 611, 606, 603, 579, - /* 400 */ 501, 541, 468, 386, 445, 395, 376, 281, 185, 120, - /* 410 */ 92, 75, 45, 114, 25, 11, 5, -}; -#define YY_REDUCE_USE_DFLT (-169) -#define YY_REDUCE_COUNT (308) -#define YY_REDUCE_MIN (-168) -#define YY_REDUCE_MAX (1391) -static const short yy_reduce_ofst[] = { - /* 0 */ -141, 90, 1095, 222, 158, 156, 19, 17, 10, -104, - /* 10 */ 378, 316, 311, 12, 180, 249, 598, 464, 397, 1181, - /* 20 */ 1177, 1175, 1128, 1106, 1096, 1054, 1038, 974, 964, 962, - /* 30 */ 948, 905, 903, 900, 887, 874, 832, 826, 816, 813, - /* 40 */ 800, 758, 755, 752, 742, 739, 726, 685, 681, 668, - /* 50 */ 665, 652, 607, 604, 594, 591, 578, 530, 528, 526, - /* 60 */ 385, 18, 477, 466, 519, 444, 350, 435, 405, 488, - /* 70 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, - /* 80 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, - /* 90 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, - /* 100 */ 488, 488, 488, 488, 488, 488, 488, 1040, 678, 1036, - /* 110 */ 1007, 967, 966, 965, 845, 686, 610, 684, 317, 672, - /* 120 */ 893, 327, 623, 522, -7, 820, 814, 157, 154, 101, - /* 130 */ 702, 494, 580, 488, 488, 488, 488, 488, 614, 586, - /* 140 */ 935, 892, 968, 1245, 1242, 1234, 1225, 798, 798, 1222, - /* 150 */ 1221, 1218, 1214, 1213, 1212, 1202, 1195, 1191, 1161, 1158, - /* 160 */ 1140, 1135, 1123, 1112, 1107, 1100, 1080, 1074, 1073, 1072, - /* 170 */ 1070, 1067, 1048, 1044, 969, 968, 907, 906, 904, 894, - /* 180 */ 833, 837, 836, 340, 827, 815, 775, 68, 722, 646, - /* 190 */ -168, 1384, 1380, 1377, 1379, 1376, 1373, 1339, 1365, 1368, - /* 200 */ 1365, 1365, 1365, 1365, 1365, 1365, 1365, 1320, 1319, 1365, - /* 210 */ 1365, 1339, 1378, 1349, 1391, 1350, 1342, 1334, 1307, 1341, - /* 220 */ 1293, 1364, 1363, 1371, 1362, 1370, 1359, 1340, 1354, 1333, - /* 230 */ 1305, 1304, 1299, 1361, 1328, 1324, 1366, 1282, 1360, 1358, - /* 240 */ 1278, 1276, 1356, 1292, 1322, 1309, 1317, 1315, 1314, 1312, - /* 250 */ 1345, 1347, 1302, 1277, 1311, 1303, 1337, 1335, 1252, 1248, - /* 260 */ 1332, 1330, 1329, 1327, 1326, 1323, 1321, 1297, 1301, 1295, - /* 270 */ 1294, 1290, 1243, 1240, 1284, 1291, 1286, 1283, 1274, 1281, - /* 280 */ 1271, 1238, 1241, 1236, 1235, 1227, 1226, 1267, 1266, 1189, - /* 290 */ 1229, 1223, 1211, 1206, 1201, 1197, 1239, 1237, 1219, 1216, - /* 300 */ 1209, 1208, 1185, 1089, 1086, 1087, 1137, 1136, 1164, -}; -static const YYACTIONTYPE yy_default[] = { - /* 0 */ 632, 866, 954, 954, 866, 866, 954, 954, 954, 756, - /* 10 */ 954, 954, 954, 864, 954, 954, 784, 784, 928, 954, - /* 20 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 30 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 40 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 50 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 60 */ 954, 954, 954, 954, 954, 954, 954, 671, 760, 790, - /* 70 */ 954, 954, 954, 954, 954, 954, 954, 954, 927, 929, - /* 80 */ 798, 797, 907, 771, 795, 788, 792, 867, 860, 861, - /* 90 */ 859, 863, 868, 954, 791, 827, 844, 826, 838, 843, - /* 100 */ 850, 842, 839, 829, 828, 830, 831, 954, 954, 954, - /* 110 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 120 */ 954, 954, 954, 658, 725, 954, 954, 954, 954, 954, - /* 130 */ 954, 954, 954, 832, 833, 847, 846, 845, 954, 663, - /* 140 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 150 */ 934, 932, 954, 879, 954, 954, 954, 954, 954, 954, - /* 160 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 170 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 180 */ 638, 756, 756, 756, 632, 954, 954, 954, 946, 760, - /* 190 */ 750, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 200 */ 954, 954, 954, 800, 739, 917, 919, 954, 900, 737, - /* 210 */ 660, 758, 673, 748, 640, 794, 773, 773, 912, 794, - /* 220 */ 912, 696, 719, 954, 784, 954, 784, 693, 784, 773, - /* 230 */ 862, 954, 954, 954, 757, 748, 954, 939, 764, 764, - /* 240 */ 931, 931, 764, 806, 729, 794, 736, 736, 736, 736, - /* 250 */ 764, 655, 794, 806, 729, 729, 764, 655, 906, 904, - /* 260 */ 764, 764, 655, 764, 655, 764, 655, 872, 727, 727, - /* 270 */ 727, 711, 876, 876, 872, 727, 696, 727, 711, 727, - /* 280 */ 727, 777, 772, 777, 772, 777, 772, 764, 764, 954, - /* 290 */ 789, 778, 787, 785, 794, 954, 714, 648, 648, 637, - /* 300 */ 637, 637, 637, 951, 951, 946, 698, 698, 681, 954, - /* 310 */ 954, 954, 954, 954, 954, 954, 881, 954, 954, 954, - /* 320 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 633, - /* 330 */ 941, 954, 954, 938, 954, 954, 954, 954, 799, 954, - /* 340 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 916, - /* 350 */ 954, 954, 954, 954, 954, 954, 954, 910, 954, 954, - /* 360 */ 954, 954, 954, 954, 903, 902, 954, 954, 954, 954, - /* 370 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 380 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, - /* 390 */ 954, 954, 786, 954, 779, 954, 865, 954, 954, 954, - /* 400 */ 954, 954, 954, 954, 954, 954, 954, 742, 815, 954, - /* 410 */ 814, 818, 813, 665, 954, 646, 954, 629, 634, 950, - /* 420 */ 953, 952, 949, 948, 947, 942, 940, 937, 936, 935, - /* 430 */ 933, 930, 926, 885, 883, 890, 889, 888, 887, 886, - /* 440 */ 884, 882, 880, 801, 796, 793, 925, 878, 738, 735, - /* 450 */ 734, 654, 943, 909, 918, 805, 804, 807, 915, 914, - /* 460 */ 913, 911, 908, 895, 803, 802, 730, 870, 869, 657, - /* 470 */ 899, 898, 897, 901, 905, 896, 766, 656, 653, 662, - /* 480 */ 717, 718, 726, 724, 723, 722, 721, 720, 716, 664, - /* 490 */ 672, 710, 695, 694, 875, 877, 874, 873, 703, 702, - /* 500 */ 708, 707, 706, 705, 704, 701, 700, 699, 692, 691, - /* 510 */ 697, 690, 713, 712, 709, 689, 733, 732, 731, 728, - /* 520 */ 688, 687, 686, 818, 685, 684, 824, 823, 811, 854, - /* 530 */ 753, 752, 751, 763, 762, 775, 774, 809, 808, 776, - /* 540 */ 761, 755, 754, 770, 769, 768, 767, 759, 749, 781, - /* 550 */ 783, 782, 780, 856, 765, 853, 924, 923, 922, 921, - /* 560 */ 920, 858, 857, 825, 822, 676, 677, 893, 892, 894, - /* 570 */ 891, 679, 678, 675, 674, 855, 744, 743, 851, 848, - /* 580 */ 840, 836, 852, 849, 841, 837, 835, 834, 820, 819, - /* 590 */ 817, 816, 812, 821, 667, 745, 741, 740, 810, 747, - /* 600 */ 746, 683, 682, 680, 661, 659, 652, 650, 649, 651, - /* 610 */ 647, 645, 644, 643, 642, 641, 670, 669, 668, 666, - /* 620 */ 665, 639, 636, 635, 631, 630, 628, -}; - -/* The next table maps tokens into fallback tokens. If a construct -** like the following: -** -** %fallback ID X Y Z. -** -** appears in the grammar, then ID becomes a fallback token for X, Y, -** and Z. Whenever one of the tokens X, Y, or Z is input to the parser -** but it does not parse, the type of the token is changed to ID and -** the parse is retried before an error is thrown. -*/ -#ifdef YYFALLBACK -static const YYCODETYPE yyFallback[] = { - 0, /* $ => nothing */ - 0, /* SEMI => nothing */ - 26, /* EXPLAIN => ID */ - 26, /* QUERY => ID */ - 26, /* PLAN => ID */ - 26, /* BEGIN => ID */ - 0, /* TRANSACTION => nothing */ - 26, /* DEFERRED => ID */ - 26, /* IMMEDIATE => ID */ - 26, /* EXCLUSIVE => ID */ - 0, /* COMMIT => nothing */ - 26, /* END => ID */ - 26, /* ROLLBACK => ID */ - 26, /* SAVEPOINT => ID */ - 26, /* RELEASE => ID */ - 0, /* TO => nothing */ - 0, /* TABLE => nothing */ - 0, /* CREATE => nothing */ - 26, /* IF => ID */ - 0, /* NOT => nothing */ - 0, /* EXISTS => nothing */ - 26, /* TEMP => ID */ - 0, /* LP => nothing */ - 0, /* RP => nothing */ - 0, /* AS => nothing */ - 0, /* COMMA => nothing */ - 0, /* ID => nothing */ - 0, /* INDEXED => nothing */ - 26, /* ABORT => ID */ - 26, /* ACTION => ID */ - 26, /* AFTER => ID */ - 26, /* ANALYZE => ID */ - 26, /* ASC => ID */ - 26, /* ATTACH => ID */ - 26, /* BEFORE => ID */ - 26, /* BY => ID */ - 26, /* CASCADE => ID */ - 26, /* CAST => ID */ - 26, /* COLUMNKW => ID */ - 26, /* CONFLICT => ID */ - 26, /* DATABASE => ID */ - 26, /* DESC => ID */ - 26, /* DETACH => ID */ - 26, /* EACH => ID */ - 26, /* FAIL => ID */ - 26, /* FOR => ID */ - 26, /* IGNORE => ID */ - 26, /* INITIALLY => ID */ - 26, /* INSTEAD => ID */ - 26, /* LIKE_KW => ID */ - 26, /* MATCH => ID */ - 26, /* NO => ID */ - 26, /* KEY => ID */ - 26, /* OF => ID */ - 26, /* OFFSET => ID */ - 26, /* PRAGMA => ID */ - 26, /* RAISE => ID */ - 26, /* REPLACE => ID */ - 26, /* RESTRICT => ID */ - 26, /* ROW => ID */ - 26, /* TRIGGER => ID */ - 26, /* VACUUM => ID */ - 26, /* VIEW => ID */ - 26, /* VIRTUAL => ID */ - 26, /* REINDEX => ID */ - 26, /* RENAME => ID */ - 26, /* CTIME_KW => ID */ -}; -#endif /* YYFALLBACK */ - -/* The following structure represents a single element of the -** parser's stack. Information stored includes: -** -** + The state number for the parser at this level of the stack. -** -** + The value of the token stored at this level of the stack. -** (In other words, the "major" token.) -** -** + The semantic value stored at this level of the stack. This is -** the information used by the action routines in the grammar. -** It is sometimes called the "minor" token. -*/ -struct yyStackEntry { - YYACTIONTYPE stateno; /* The state-number */ - YYCODETYPE major; /* The major token value. This is the code - ** number for the token at this stack level */ - YYMINORTYPE minor; /* The user-supplied minor token value. This - ** is the value of the token */ -}; -typedef struct yyStackEntry yyStackEntry; - -/* The state of the parser is completely contained in an instance of -** the following structure */ -struct yyParser { - int yyidx; /* Index of top element in stack */ -#ifdef YYTRACKMAXSTACKDEPTH - int yyidxMax; /* Maximum value of yyidx */ -#endif - int yyerrcnt; /* Shifts left before out of the error */ - sqlite3ParserARG_SDECL /* A place to hold %extra_argument */ -#if YYSTACKDEPTH<=0 - int yystksz; /* Current side of the stack */ - yyStackEntry *yystack; /* The parser's stack */ -#else - yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ -#endif -}; -typedef struct yyParser yyParser; - -#ifndef NDEBUG -/* #include <stdio.h> */ -static FILE *yyTraceFILE = 0; -static char *yyTracePrompt = 0; -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* -** Turn parser tracing on by giving a stream to which to write the trace -** and a prompt to preface each trace message. Tracing is turned off -** by making either argument NULL -** -** Inputs: -** <ul> -** <li> A FILE* to which trace output should be written. -** If NULL, then tracing is turned off. -** <li> A prefix string written at the beginning of every -** line of trace output. If NULL, then tracing is -** turned off. -** </ul> -** -** Outputs: -** None. -*/ -SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){ - yyTraceFILE = TraceFILE; - yyTracePrompt = zTracePrompt; - if( yyTraceFILE==0 ) yyTracePrompt = 0; - else if( yyTracePrompt==0 ) yyTraceFILE = 0; -} -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* For tracing shifts, the names of all terminals and nonterminals -** are required. The following table supplies these names */ -static const char *const yyTokenName[] = { - "$", "SEMI", "EXPLAIN", "QUERY", - "PLAN", "BEGIN", "TRANSACTION", "DEFERRED", - "IMMEDIATE", "EXCLUSIVE", "COMMIT", "END", - "ROLLBACK", "SAVEPOINT", "RELEASE", "TO", - "TABLE", "CREATE", "IF", "NOT", - "EXISTS", "TEMP", "LP", "RP", - "AS", "COMMA", "ID", "INDEXED", - "ABORT", "ACTION", "AFTER", "ANALYZE", - "ASC", "ATTACH", "BEFORE", "BY", - "CASCADE", "CAST", "COLUMNKW", "CONFLICT", - "DATABASE", "DESC", "DETACH", "EACH", - "FAIL", "FOR", "IGNORE", "INITIALLY", - "INSTEAD", "LIKE_KW", "MATCH", "NO", - "KEY", "OF", "OFFSET", "PRAGMA", - "RAISE", "REPLACE", "RESTRICT", "ROW", - "TRIGGER", "VACUUM", "VIEW", "VIRTUAL", - "REINDEX", "RENAME", "CTIME_KW", "ANY", - "OR", "AND", "IS", "BETWEEN", - "IN", "ISNULL", "NOTNULL", "NE", - "EQ", "GT", "LE", "LT", - "GE", "ESCAPE", "BITAND", "BITOR", - "LSHIFT", "RSHIFT", "PLUS", "MINUS", - "STAR", "SLASH", "REM", "CONCAT", - "COLLATE", "BITNOT", "STRING", "JOIN_KW", - "CONSTRAINT", "DEFAULT", "NULL", "PRIMARY", - "UNIQUE", "CHECK", "REFERENCES", "AUTOINCR", - "ON", "INSERT", "DELETE", "UPDATE", - "SET", "DEFERRABLE", "FOREIGN", "DROP", - "UNION", "ALL", "EXCEPT", "INTERSECT", - "SELECT", "DISTINCT", "DOT", "FROM", - "JOIN", "USING", "ORDER", "GROUP", - "HAVING", "LIMIT", "WHERE", "INTO", - "VALUES", "INTEGER", "FLOAT", "BLOB", - "REGISTER", "VARIABLE", "CASE", "WHEN", - "THEN", "ELSE", "INDEX", "ALTER", - "ADD", "error", "input", "cmdlist", - "ecmd", "explain", "cmdx", "cmd", - "transtype", "trans_opt", "nm", "savepoint_opt", - "create_table", "create_table_args", "createkw", "temp", - "ifnotexists", "dbnm", "columnlist", "conslist_opt", - "select", "column", "columnid", "type", - "carglist", "id", "ids", "typetoken", - "typename", "signed", "plus_num", "minus_num", - "ccons", "term", "expr", "onconf", - "sortorder", "autoinc", "idxlist_opt", "refargs", - "defer_subclause", "refarg", "refact", "init_deferred_pred_opt", - "conslist", "tconscomma", "tcons", "idxlist", - "defer_subclause_opt", "orconf", "resolvetype", "raisetype", - "ifexists", "fullname", "oneselect", "multiselect_op", - "distinct", "selcollist", "from", "where_opt", - "groupby_opt", "having_opt", "orderby_opt", "limit_opt", - "sclp", "as", "seltablist", "stl_prefix", - "joinop", "indexed_opt", "on_opt", "using_opt", - "joinop2", "inscollist", "sortlist", "nexprlist", - "setlist", "insert_cmd", "inscollist_opt", "valuelist", - "exprlist", "likeop", "between_op", "in_op", - "case_operand", "case_exprlist", "case_else", "uniqueflag", - "collate", "nmnum", "number", "trigger_decl", - "trigger_cmd_list", "trigger_time", "trigger_event", "foreach_clause", - "when_clause", "trigger_cmd", "trnm", "tridxby", - "database_kw_opt", "key_opt", "add_column_fullname", "kwcolumn_opt", - "create_vtab", "vtabarglist", "vtabarg", "vtabargtoken", - "lp", "anylist", -}; -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* For tracing reduce actions, the names of all rules are required. -*/ -static const char *const yyRuleName[] = { - /* 0 */ "input ::= cmdlist", - /* 1 */ "cmdlist ::= cmdlist ecmd", - /* 2 */ "cmdlist ::= ecmd", - /* 3 */ "ecmd ::= SEMI", - /* 4 */ "ecmd ::= explain cmdx SEMI", - /* 5 */ "explain ::=", - /* 6 */ "explain ::= EXPLAIN", - /* 7 */ "explain ::= EXPLAIN QUERY PLAN", - /* 8 */ "cmdx ::= cmd", - /* 9 */ "cmd ::= BEGIN transtype trans_opt", - /* 10 */ "trans_opt ::=", - /* 11 */ "trans_opt ::= TRANSACTION", - /* 12 */ "trans_opt ::= TRANSACTION nm", - /* 13 */ "transtype ::=", - /* 14 */ "transtype ::= DEFERRED", - /* 15 */ "transtype ::= IMMEDIATE", - /* 16 */ "transtype ::= EXCLUSIVE", - /* 17 */ "cmd ::= COMMIT trans_opt", - /* 18 */ "cmd ::= END trans_opt", - /* 19 */ "cmd ::= ROLLBACK trans_opt", - /* 20 */ "savepoint_opt ::= SAVEPOINT", - /* 21 */ "savepoint_opt ::=", - /* 22 */ "cmd ::= SAVEPOINT nm", - /* 23 */ "cmd ::= RELEASE savepoint_opt nm", - /* 24 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm", - /* 25 */ "cmd ::= create_table create_table_args", - /* 26 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm", - /* 27 */ "createkw ::= CREATE", - /* 28 */ "ifnotexists ::=", - /* 29 */ "ifnotexists ::= IF NOT EXISTS", - /* 30 */ "temp ::= TEMP", - /* 31 */ "temp ::=", - /* 32 */ "create_table_args ::= LP columnlist conslist_opt RP", - /* 33 */ "create_table_args ::= AS select", - /* 34 */ "columnlist ::= columnlist COMMA column", - /* 35 */ "columnlist ::= column", - /* 36 */ "column ::= columnid type carglist", - /* 37 */ "columnid ::= nm", - /* 38 */ "id ::= ID", - /* 39 */ "id ::= INDEXED", - /* 40 */ "ids ::= ID|STRING", - /* 41 */ "nm ::= id", - /* 42 */ "nm ::= STRING", - /* 43 */ "nm ::= JOIN_KW", - /* 44 */ "type ::=", - /* 45 */ "type ::= typetoken", - /* 46 */ "typetoken ::= typename", - /* 47 */ "typetoken ::= typename LP signed RP", - /* 48 */ "typetoken ::= typename LP signed COMMA signed RP", - /* 49 */ "typename ::= ids", - /* 50 */ "typename ::= typename ids", - /* 51 */ "signed ::= plus_num", - /* 52 */ "signed ::= minus_num", - /* 53 */ "carglist ::= carglist ccons", - /* 54 */ "carglist ::=", - /* 55 */ "ccons ::= CONSTRAINT nm", - /* 56 */ "ccons ::= DEFAULT term", - /* 57 */ "ccons ::= DEFAULT LP expr RP", - /* 58 */ "ccons ::= DEFAULT PLUS term", - /* 59 */ "ccons ::= DEFAULT MINUS term", - /* 60 */ "ccons ::= DEFAULT id", - /* 61 */ "ccons ::= NULL onconf", - /* 62 */ "ccons ::= NOT NULL onconf", - /* 63 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc", - /* 64 */ "ccons ::= UNIQUE onconf", - /* 65 */ "ccons ::= CHECK LP expr RP", - /* 66 */ "ccons ::= REFERENCES nm idxlist_opt refargs", - /* 67 */ "ccons ::= defer_subclause", - /* 68 */ "ccons ::= COLLATE ids", - /* 69 */ "autoinc ::=", - /* 70 */ "autoinc ::= AUTOINCR", - /* 71 */ "refargs ::=", - /* 72 */ "refargs ::= refargs refarg", - /* 73 */ "refarg ::= MATCH nm", - /* 74 */ "refarg ::= ON INSERT refact", - /* 75 */ "refarg ::= ON DELETE refact", - /* 76 */ "refarg ::= ON UPDATE refact", - /* 77 */ "refact ::= SET NULL", - /* 78 */ "refact ::= SET DEFAULT", - /* 79 */ "refact ::= CASCADE", - /* 80 */ "refact ::= RESTRICT", - /* 81 */ "refact ::= NO ACTION", - /* 82 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt", - /* 83 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt", - /* 84 */ "init_deferred_pred_opt ::=", - /* 85 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED", - /* 86 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE", - /* 87 */ "conslist_opt ::=", - /* 88 */ "conslist_opt ::= COMMA conslist", - /* 89 */ "conslist ::= conslist tconscomma tcons", - /* 90 */ "conslist ::= tcons", - /* 91 */ "tconscomma ::= COMMA", - /* 92 */ "tconscomma ::=", - /* 93 */ "tcons ::= CONSTRAINT nm", - /* 94 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf", - /* 95 */ "tcons ::= UNIQUE LP idxlist RP onconf", - /* 96 */ "tcons ::= CHECK LP expr RP onconf", - /* 97 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt", - /* 98 */ "defer_subclause_opt ::=", - /* 99 */ "defer_subclause_opt ::= defer_subclause", - /* 100 */ "onconf ::=", - /* 101 */ "onconf ::= ON CONFLICT resolvetype", - /* 102 */ "orconf ::=", - /* 103 */ "orconf ::= OR resolvetype", - /* 104 */ "resolvetype ::= raisetype", - /* 105 */ "resolvetype ::= IGNORE", - /* 106 */ "resolvetype ::= REPLACE", - /* 107 */ "cmd ::= DROP TABLE ifexists fullname", - /* 108 */ "ifexists ::= IF EXISTS", - /* 109 */ "ifexists ::=", - /* 110 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select", - /* 111 */ "cmd ::= DROP VIEW ifexists fullname", - /* 112 */ "cmd ::= select", - /* 113 */ "select ::= oneselect", - /* 114 */ "select ::= select multiselect_op oneselect", - /* 115 */ "multiselect_op ::= UNION", - /* 116 */ "multiselect_op ::= UNION ALL", - /* 117 */ "multiselect_op ::= EXCEPT|INTERSECT", - /* 118 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt", - /* 119 */ "distinct ::= DISTINCT", - /* 120 */ "distinct ::= ALL", - /* 121 */ "distinct ::=", - /* 122 */ "sclp ::= selcollist COMMA", - /* 123 */ "sclp ::=", - /* 124 */ "selcollist ::= sclp expr as", - /* 125 */ "selcollist ::= sclp STAR", - /* 126 */ "selcollist ::= sclp nm DOT STAR", - /* 127 */ "as ::= AS nm", - /* 128 */ "as ::= ids", - /* 129 */ "as ::=", - /* 130 */ "from ::=", - /* 131 */ "from ::= FROM seltablist", - /* 132 */ "stl_prefix ::= seltablist joinop", - /* 133 */ "stl_prefix ::=", - /* 134 */ "seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt", - /* 135 */ "seltablist ::= stl_prefix LP select RP as on_opt using_opt", - /* 136 */ "seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt", - /* 137 */ "dbnm ::=", - /* 138 */ "dbnm ::= DOT nm", - /* 139 */ "fullname ::= nm dbnm", - /* 140 */ "joinop ::= COMMA|JOIN", - /* 141 */ "joinop ::= JOIN_KW JOIN", - /* 142 */ "joinop ::= JOIN_KW nm JOIN", - /* 143 */ "joinop ::= JOIN_KW nm nm JOIN", - /* 144 */ "on_opt ::= ON expr", - /* 145 */ "on_opt ::=", - /* 146 */ "indexed_opt ::=", - /* 147 */ "indexed_opt ::= INDEXED BY nm", - /* 148 */ "indexed_opt ::= NOT INDEXED", - /* 149 */ "using_opt ::= USING LP inscollist RP", - /* 150 */ "using_opt ::=", - /* 151 */ "orderby_opt ::=", - /* 152 */ "orderby_opt ::= ORDER BY sortlist", - /* 153 */ "sortlist ::= sortlist COMMA expr sortorder", - /* 154 */ "sortlist ::= expr sortorder", - /* 155 */ "sortorder ::= ASC", - /* 156 */ "sortorder ::= DESC", - /* 157 */ "sortorder ::=", - /* 158 */ "groupby_opt ::=", - /* 159 */ "groupby_opt ::= GROUP BY nexprlist", - /* 160 */ "having_opt ::=", - /* 161 */ "having_opt ::= HAVING expr", - /* 162 */ "limit_opt ::=", - /* 163 */ "limit_opt ::= LIMIT expr", - /* 164 */ "limit_opt ::= LIMIT expr OFFSET expr", - /* 165 */ "limit_opt ::= LIMIT expr COMMA expr", - /* 166 */ "cmd ::= DELETE FROM fullname indexed_opt where_opt", - /* 167 */ "where_opt ::=", - /* 168 */ "where_opt ::= WHERE expr", - /* 169 */ "cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt", - /* 170 */ "setlist ::= setlist COMMA nm EQ expr", - /* 171 */ "setlist ::= nm EQ expr", - /* 172 */ "cmd ::= insert_cmd INTO fullname inscollist_opt valuelist", - /* 173 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select", - /* 174 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES", - /* 175 */ "insert_cmd ::= INSERT orconf", - /* 176 */ "insert_cmd ::= REPLACE", - /* 177 */ "valuelist ::= VALUES LP nexprlist RP", - /* 178 */ "valuelist ::= valuelist COMMA LP exprlist RP", - /* 179 */ "inscollist_opt ::=", - /* 180 */ "inscollist_opt ::= LP inscollist RP", - /* 181 */ "inscollist ::= inscollist COMMA nm", - /* 182 */ "inscollist ::= nm", - /* 183 */ "expr ::= term", - /* 184 */ "expr ::= LP expr RP", - /* 185 */ "term ::= NULL", - /* 186 */ "expr ::= id", - /* 187 */ "expr ::= JOIN_KW", - /* 188 */ "expr ::= nm DOT nm", - /* 189 */ "expr ::= nm DOT nm DOT nm", - /* 190 */ "term ::= INTEGER|FLOAT|BLOB", - /* 191 */ "term ::= STRING", - /* 192 */ "expr ::= REGISTER", - /* 193 */ "expr ::= VARIABLE", - /* 194 */ "expr ::= expr COLLATE ids", - /* 195 */ "expr ::= CAST LP expr AS typetoken RP", - /* 196 */ "expr ::= ID LP distinct exprlist RP", - /* 197 */ "expr ::= ID LP STAR RP", - /* 198 */ "term ::= CTIME_KW", - /* 199 */ "expr ::= expr AND expr", - /* 200 */ "expr ::= expr OR expr", - /* 201 */ "expr ::= expr LT|GT|GE|LE expr", - /* 202 */ "expr ::= expr EQ|NE expr", - /* 203 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr", - /* 204 */ "expr ::= expr PLUS|MINUS expr", - /* 205 */ "expr ::= expr STAR|SLASH|REM expr", - /* 206 */ "expr ::= expr CONCAT expr", - /* 207 */ "likeop ::= LIKE_KW", - /* 208 */ "likeop ::= NOT LIKE_KW", - /* 209 */ "likeop ::= MATCH", - /* 210 */ "likeop ::= NOT MATCH", - /* 211 */ "expr ::= expr likeop expr", - /* 212 */ "expr ::= expr likeop expr ESCAPE expr", - /* 213 */ "expr ::= expr ISNULL|NOTNULL", - /* 214 */ "expr ::= expr NOT NULL", - /* 215 */ "expr ::= expr IS expr", - /* 216 */ "expr ::= expr IS NOT expr", - /* 217 */ "expr ::= NOT expr", - /* 218 */ "expr ::= BITNOT expr", - /* 219 */ "expr ::= MINUS expr", - /* 220 */ "expr ::= PLUS expr", - /* 221 */ "between_op ::= BETWEEN", - /* 222 */ "between_op ::= NOT BETWEEN", - /* 223 */ "expr ::= expr between_op expr AND expr", - /* 224 */ "in_op ::= IN", - /* 225 */ "in_op ::= NOT IN", - /* 226 */ "expr ::= expr in_op LP exprlist RP", - /* 227 */ "expr ::= LP select RP", - /* 228 */ "expr ::= expr in_op LP select RP", - /* 229 */ "expr ::= expr in_op nm dbnm", - /* 230 */ "expr ::= EXISTS LP select RP", - /* 231 */ "expr ::= CASE case_operand case_exprlist case_else END", - /* 232 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr", - /* 233 */ "case_exprlist ::= WHEN expr THEN expr", - /* 234 */ "case_else ::= ELSE expr", - /* 235 */ "case_else ::=", - /* 236 */ "case_operand ::= expr", - /* 237 */ "case_operand ::=", - /* 238 */ "exprlist ::= nexprlist", - /* 239 */ "exprlist ::=", - /* 240 */ "nexprlist ::= nexprlist COMMA expr", - /* 241 */ "nexprlist ::= expr", - /* 242 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP", - /* 243 */ "uniqueflag ::= UNIQUE", - /* 244 */ "uniqueflag ::=", - /* 245 */ "idxlist_opt ::=", - /* 246 */ "idxlist_opt ::= LP idxlist RP", - /* 247 */ "idxlist ::= idxlist COMMA nm collate sortorder", - /* 248 */ "idxlist ::= nm collate sortorder", - /* 249 */ "collate ::=", - /* 250 */ "collate ::= COLLATE ids", - /* 251 */ "cmd ::= DROP INDEX ifexists fullname", - /* 252 */ "cmd ::= VACUUM", - /* 253 */ "cmd ::= VACUUM nm", - /* 254 */ "cmd ::= PRAGMA nm dbnm", - /* 255 */ "cmd ::= PRAGMA nm dbnm EQ nmnum", - /* 256 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP", - /* 257 */ "cmd ::= PRAGMA nm dbnm EQ minus_num", - /* 258 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP", - /* 259 */ "nmnum ::= plus_num", - /* 260 */ "nmnum ::= nm", - /* 261 */ "nmnum ::= ON", - /* 262 */ "nmnum ::= DELETE", - /* 263 */ "nmnum ::= DEFAULT", - /* 264 */ "plus_num ::= PLUS number", - /* 265 */ "plus_num ::= number", - /* 266 */ "minus_num ::= MINUS number", - /* 267 */ "number ::= INTEGER|FLOAT", - /* 268 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END", - /* 269 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause", - /* 270 */ "trigger_time ::= BEFORE", - /* 271 */ "trigger_time ::= AFTER", - /* 272 */ "trigger_time ::= INSTEAD OF", - /* 273 */ "trigger_time ::=", - /* 274 */ "trigger_event ::= DELETE|INSERT", - /* 275 */ "trigger_event ::= UPDATE", - /* 276 */ "trigger_event ::= UPDATE OF inscollist", - /* 277 */ "foreach_clause ::=", - /* 278 */ "foreach_clause ::= FOR EACH ROW", - /* 279 */ "when_clause ::=", - /* 280 */ "when_clause ::= WHEN expr", - /* 281 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI", - /* 282 */ "trigger_cmd_list ::= trigger_cmd SEMI", - /* 283 */ "trnm ::= nm", - /* 284 */ "trnm ::= nm DOT nm", - /* 285 */ "tridxby ::=", - /* 286 */ "tridxby ::= INDEXED BY nm", - /* 287 */ "tridxby ::= NOT INDEXED", - /* 288 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt", - /* 289 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt valuelist", - /* 290 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select", - /* 291 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt", - /* 292 */ "trigger_cmd ::= select", - /* 293 */ "expr ::= RAISE LP IGNORE RP", - /* 294 */ "expr ::= RAISE LP raisetype COMMA nm RP", - /* 295 */ "raisetype ::= ROLLBACK", - /* 296 */ "raisetype ::= ABORT", - /* 297 */ "raisetype ::= FAIL", - /* 298 */ "cmd ::= DROP TRIGGER ifexists fullname", - /* 299 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt", - /* 300 */ "cmd ::= DETACH database_kw_opt expr", - /* 301 */ "key_opt ::=", - /* 302 */ "key_opt ::= KEY expr", - /* 303 */ "database_kw_opt ::= DATABASE", - /* 304 */ "database_kw_opt ::=", - /* 305 */ "cmd ::= REINDEX", - /* 306 */ "cmd ::= REINDEX nm dbnm", - /* 307 */ "cmd ::= ANALYZE", - /* 308 */ "cmd ::= ANALYZE nm dbnm", - /* 309 */ "cmd ::= ALTER TABLE fullname RENAME TO nm", - /* 310 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column", - /* 311 */ "add_column_fullname ::= fullname", - /* 312 */ "kwcolumn_opt ::=", - /* 313 */ "kwcolumn_opt ::= COLUMNKW", - /* 314 */ "cmd ::= create_vtab", - /* 315 */ "cmd ::= create_vtab LP vtabarglist RP", - /* 316 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm", - /* 317 */ "vtabarglist ::= vtabarg", - /* 318 */ "vtabarglist ::= vtabarglist COMMA vtabarg", - /* 319 */ "vtabarg ::=", - /* 320 */ "vtabarg ::= vtabarg vtabargtoken", - /* 321 */ "vtabargtoken ::= ANY", - /* 322 */ "vtabargtoken ::= lp anylist RP", - /* 323 */ "lp ::= LP", - /* 324 */ "anylist ::=", - /* 325 */ "anylist ::= anylist LP anylist RP", - /* 326 */ "anylist ::= anylist ANY", -}; -#endif /* NDEBUG */ - - -#if YYSTACKDEPTH<=0 -/* -** Try to increase the size of the parser stack. -*/ -static void yyGrowStack(yyParser *p){ - int newSize; - yyStackEntry *pNew; - - newSize = p->yystksz*2 + 100; - pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); - if( pNew ){ - p->yystack = pNew; - p->yystksz = newSize; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sStack grows to %d entries!\n", - yyTracePrompt, p->yystksz); - } -#endif - } -} -#endif - -/* -** This function allocates a new parser. -** The only argument is a pointer to a function which works like -** malloc. -** -** Inputs: -** A pointer to the function used to allocate memory. -** -** Outputs: -** A pointer to a parser. This pointer is used in subsequent calls -** to sqlite3Parser and sqlite3ParserFree. -*/ -SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){ - yyParser *pParser; - pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); - if( pParser ){ - pParser->yyidx = -1; -#ifdef YYTRACKMAXSTACKDEPTH - pParser->yyidxMax = 0; -#endif -#if YYSTACKDEPTH<=0 - pParser->yystack = NULL; - pParser->yystksz = 0; - yyGrowStack(pParser); -#endif - } - return pParser; -} - -/* The following function deletes the value associated with a -** symbol. The symbol can be either a terminal or nonterminal. -** "yymajor" is the symbol code, and "yypminor" is a pointer to -** the value. -*/ -static void yy_destructor( - yyParser *yypParser, /* The parser */ - YYCODETYPE yymajor, /* Type code for object to destroy */ - YYMINORTYPE *yypminor /* The object to be destroyed */ -){ - sqlite3ParserARG_FETCH; - switch( yymajor ){ - /* Here is inserted the actions which take place when a - ** terminal or non-terminal is destroyed. This can happen - ** when the symbol is popped from the stack during a - ** reduce or during error processing or when a parser is - ** being destroyed before it is finished parsing. - ** - ** Note: during a reduce, the only symbols destroyed are those - ** which appear on the RHS of the rule, but which are not used - ** inside the C code. - */ - case 160: /* select */ - case 194: /* oneselect */ -{ -sqlite3SelectDelete(pParse->db, (yypminor->yy159)); -} - break; - case 173: /* term */ - case 174: /* expr */ -{ -sqlite3ExprDelete(pParse->db, (yypminor->yy342).pExpr); -} - break; - case 178: /* idxlist_opt */ - case 187: /* idxlist */ - case 197: /* selcollist */ - case 200: /* groupby_opt */ - case 202: /* orderby_opt */ - case 204: /* sclp */ - case 214: /* sortlist */ - case 215: /* nexprlist */ - case 216: /* setlist */ - case 220: /* exprlist */ - case 225: /* case_exprlist */ -{ -sqlite3ExprListDelete(pParse->db, (yypminor->yy442)); -} - break; - case 193: /* fullname */ - case 198: /* from */ - case 206: /* seltablist */ - case 207: /* stl_prefix */ -{ -sqlite3SrcListDelete(pParse->db, (yypminor->yy347)); -} - break; - case 199: /* where_opt */ - case 201: /* having_opt */ - case 210: /* on_opt */ - case 224: /* case_operand */ - case 226: /* case_else */ - case 236: /* when_clause */ - case 241: /* key_opt */ -{ -sqlite3ExprDelete(pParse->db, (yypminor->yy122)); -} - break; - case 211: /* using_opt */ - case 213: /* inscollist */ - case 218: /* inscollist_opt */ -{ -sqlite3IdListDelete(pParse->db, (yypminor->yy180)); -} - break; - case 219: /* valuelist */ -{ - - sqlite3ExprListDelete(pParse->db, (yypminor->yy487).pList); - sqlite3SelectDelete(pParse->db, (yypminor->yy487).pSelect); - -} - break; - case 232: /* trigger_cmd_list */ - case 237: /* trigger_cmd */ -{ -sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy327)); -} - break; - case 234: /* trigger_event */ -{ -sqlite3IdListDelete(pParse->db, (yypminor->yy410).b); -} - break; - default: break; /* If no destructor action specified: do nothing */ - } -} - -/* -** Pop the parser's stack once. -** -** If there is a destructor routine associated with the token which -** is popped from the stack, then call it. -** -** Return the major token number for the symbol popped. -*/ -static int yy_pop_parser_stack(yyParser *pParser){ - YYCODETYPE yymajor; - yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; - - /* There is no mechanism by which the parser stack can be popped below - ** empty in SQLite. */ - if( NEVER(pParser->yyidx<0) ) return 0; -#ifndef NDEBUG - if( yyTraceFILE && pParser->yyidx>=0 ){ - fprintf(yyTraceFILE,"%sPopping %s\n", - yyTracePrompt, - yyTokenName[yytos->major]); - } -#endif - yymajor = yytos->major; - yy_destructor(pParser, yymajor, &yytos->minor); - pParser->yyidx--; - return yymajor; -} - -/* -** Deallocate and destroy a parser. Destructors are all called for -** all stack elements before shutting the parser down. -** -** Inputs: -** <ul> -** <li> A pointer to the parser. This should be a pointer -** obtained from sqlite3ParserAlloc. -** <li> A pointer to a function used to reclaim memory obtained -** from malloc. -** </ul> -*/ -SQLITE_PRIVATE void sqlite3ParserFree( - void *p, /* The parser to be deleted */ - void (*freeProc)(void*) /* Function used to reclaim memory */ -){ - yyParser *pParser = (yyParser*)p; - /* In SQLite, we never try to destroy a parser that was not successfully - ** created in the first place. */ - if( NEVER(pParser==0) ) return; - while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); -#if YYSTACKDEPTH<=0 - free(pParser->yystack); -#endif - (*freeProc)((void*)pParser); -} - -/* -** Return the peak depth of the stack for a parser. -*/ -#ifdef YYTRACKMAXSTACKDEPTH -SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){ - yyParser *pParser = (yyParser*)p; - return pParser->yyidxMax; -} -#endif - -/* -** Find the appropriate action for a parser given the terminal -** look-ahead token iLookAhead. -** -** If the look-ahead token is YYNOCODE, then check to see if the action is -** independent of the look-ahead. If it is, return the action, otherwise -** return YY_NO_ACTION. -*/ -static int yy_find_shift_action( - yyParser *pParser, /* The parser */ - YYCODETYPE iLookAhead /* The look-ahead token */ -){ - int i; - int stateno = pParser->yystack[pParser->yyidx].stateno; - - if( stateno>YY_SHIFT_COUNT - || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){ - return yy_default[stateno]; - } - assert( iLookAhead!=YYNOCODE ); - i += iLookAhead; - if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ - if( iLookAhead>0 ){ -#ifdef YYFALLBACK - YYCODETYPE iFallback; /* Fallback token */ - if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) - && (iFallback = yyFallback[iLookAhead])!=0 ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n", - yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); - } -#endif - return yy_find_shift_action(pParser, iFallback); - } -#endif -#ifdef YYWILDCARD - { - int j = i - iLookAhead + YYWILDCARD; - if( -#if YY_SHIFT_MIN+YYWILDCARD<0 - j>=0 && -#endif -#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT - j<YY_ACTTAB_COUNT && -#endif - yy_lookahead[j]==YYWILDCARD - ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n", - yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); - } -#endif /* NDEBUG */ - return yy_action[j]; - } - } -#endif /* YYWILDCARD */ - } - return yy_default[stateno]; - }else{ - return yy_action[i]; - } -} - -/* -** Find the appropriate action for a parser given the non-terminal -** look-ahead token iLookAhead. -** -** If the look-ahead token is YYNOCODE, then check to see if the action is -** independent of the look-ahead. If it is, return the action, otherwise -** return YY_NO_ACTION. -*/ -static int yy_find_reduce_action( - int stateno, /* Current state number */ - YYCODETYPE iLookAhead /* The look-ahead token */ -){ - int i; -#ifdef YYERRORSYMBOL - if( stateno>YY_REDUCE_COUNT ){ - return yy_default[stateno]; - } -#else - assert( stateno<=YY_REDUCE_COUNT ); -#endif - i = yy_reduce_ofst[stateno]; - assert( i!=YY_REDUCE_USE_DFLT ); - assert( iLookAhead!=YYNOCODE ); - i += iLookAhead; -#ifdef YYERRORSYMBOL - if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ - return yy_default[stateno]; - } -#else - assert( i>=0 && i<YY_ACTTAB_COUNT ); - assert( yy_lookahead[i]==iLookAhead ); -#endif - return yy_action[i]; -} - -/* -** The following routine is called if the stack overflows. -*/ -static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){ - sqlite3ParserARG_FETCH; - yypParser->yyidx--; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will execute if the parser - ** stack every overflows */ - - UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ - sqlite3ErrorMsg(pParse, "parser stack overflow"); - sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */ -} - -/* -** Perform a shift action. -*/ -static void yy_shift( - yyParser *yypParser, /* The parser to be shifted */ - int yyNewState, /* The new state to shift in */ - int yyMajor, /* The major token to shift in */ - YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */ -){ - yyStackEntry *yytos; - yypParser->yyidx++; -#ifdef YYTRACKMAXSTACKDEPTH - if( yypParser->yyidx>yypParser->yyidxMax ){ - yypParser->yyidxMax = yypParser->yyidx; - } -#endif -#if YYSTACKDEPTH>0 - if( yypParser->yyidx>=YYSTACKDEPTH ){ - yyStackOverflow(yypParser, yypMinor); - return; - } -#else - if( yypParser->yyidx>=yypParser->yystksz ){ - yyGrowStack(yypParser); - if( yypParser->yyidx>=yypParser->yystksz ){ - yyStackOverflow(yypParser, yypMinor); - return; - } - } -#endif - yytos = &yypParser->yystack[yypParser->yyidx]; - yytos->stateno = (YYACTIONTYPE)yyNewState; - yytos->major = (YYCODETYPE)yyMajor; - yytos->minor = *yypMinor; -#ifndef NDEBUG - if( yyTraceFILE && yypParser->yyidx>0 ){ - int i; - fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); - fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); - for(i=1; i<=yypParser->yyidx; i++) - fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); - fprintf(yyTraceFILE,"\n"); - } -#endif -} - -/* The following table contains information about every rule that -** is used during the reduce. -*/ -static const struct { - YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ - unsigned char nrhs; /* Number of right-hand side symbols in the rule */ -} yyRuleInfo[] = { - { 142, 1 }, - { 143, 2 }, - { 143, 1 }, - { 144, 1 }, - { 144, 3 }, - { 145, 0 }, - { 145, 1 }, - { 145, 3 }, - { 146, 1 }, - { 147, 3 }, - { 149, 0 }, - { 149, 1 }, - { 149, 2 }, - { 148, 0 }, - { 148, 1 }, - { 148, 1 }, - { 148, 1 }, - { 147, 2 }, - { 147, 2 }, - { 147, 2 }, - { 151, 1 }, - { 151, 0 }, - { 147, 2 }, - { 147, 3 }, - { 147, 5 }, - { 147, 2 }, - { 152, 6 }, - { 154, 1 }, - { 156, 0 }, - { 156, 3 }, - { 155, 1 }, - { 155, 0 }, - { 153, 4 }, - { 153, 2 }, - { 158, 3 }, - { 158, 1 }, - { 161, 3 }, - { 162, 1 }, - { 165, 1 }, - { 165, 1 }, - { 166, 1 }, - { 150, 1 }, - { 150, 1 }, - { 150, 1 }, - { 163, 0 }, - { 163, 1 }, - { 167, 1 }, - { 167, 4 }, - { 167, 6 }, - { 168, 1 }, - { 168, 2 }, - { 169, 1 }, - { 169, 1 }, - { 164, 2 }, - { 164, 0 }, - { 172, 2 }, - { 172, 2 }, - { 172, 4 }, - { 172, 3 }, - { 172, 3 }, - { 172, 2 }, - { 172, 2 }, - { 172, 3 }, - { 172, 5 }, - { 172, 2 }, - { 172, 4 }, - { 172, 4 }, - { 172, 1 }, - { 172, 2 }, - { 177, 0 }, - { 177, 1 }, - { 179, 0 }, - { 179, 2 }, - { 181, 2 }, - { 181, 3 }, - { 181, 3 }, - { 181, 3 }, - { 182, 2 }, - { 182, 2 }, - { 182, 1 }, - { 182, 1 }, - { 182, 2 }, - { 180, 3 }, - { 180, 2 }, - { 183, 0 }, - { 183, 2 }, - { 183, 2 }, - { 159, 0 }, - { 159, 2 }, - { 184, 3 }, - { 184, 1 }, - { 185, 1 }, - { 185, 0 }, - { 186, 2 }, - { 186, 7 }, - { 186, 5 }, - { 186, 5 }, - { 186, 10 }, - { 188, 0 }, - { 188, 1 }, - { 175, 0 }, - { 175, 3 }, - { 189, 0 }, - { 189, 2 }, - { 190, 1 }, - { 190, 1 }, - { 190, 1 }, - { 147, 4 }, - { 192, 2 }, - { 192, 0 }, - { 147, 8 }, - { 147, 4 }, - { 147, 1 }, - { 160, 1 }, - { 160, 3 }, - { 195, 1 }, - { 195, 2 }, - { 195, 1 }, - { 194, 9 }, - { 196, 1 }, - { 196, 1 }, - { 196, 0 }, - { 204, 2 }, - { 204, 0 }, - { 197, 3 }, - { 197, 2 }, - { 197, 4 }, - { 205, 2 }, - { 205, 1 }, - { 205, 0 }, - { 198, 0 }, - { 198, 2 }, - { 207, 2 }, - { 207, 0 }, - { 206, 7 }, - { 206, 7 }, - { 206, 7 }, - { 157, 0 }, - { 157, 2 }, - { 193, 2 }, - { 208, 1 }, - { 208, 2 }, - { 208, 3 }, - { 208, 4 }, - { 210, 2 }, - { 210, 0 }, - { 209, 0 }, - { 209, 3 }, - { 209, 2 }, - { 211, 4 }, - { 211, 0 }, - { 202, 0 }, - { 202, 3 }, - { 214, 4 }, - { 214, 2 }, - { 176, 1 }, - { 176, 1 }, - { 176, 0 }, - { 200, 0 }, - { 200, 3 }, - { 201, 0 }, - { 201, 2 }, - { 203, 0 }, - { 203, 2 }, - { 203, 4 }, - { 203, 4 }, - { 147, 5 }, - { 199, 0 }, - { 199, 2 }, - { 147, 7 }, - { 216, 5 }, - { 216, 3 }, - { 147, 5 }, - { 147, 5 }, - { 147, 6 }, - { 217, 2 }, - { 217, 1 }, - { 219, 4 }, - { 219, 5 }, - { 218, 0 }, - { 218, 3 }, - { 213, 3 }, - { 213, 1 }, - { 174, 1 }, - { 174, 3 }, - { 173, 1 }, - { 174, 1 }, - { 174, 1 }, - { 174, 3 }, - { 174, 5 }, - { 173, 1 }, - { 173, 1 }, - { 174, 1 }, - { 174, 1 }, - { 174, 3 }, - { 174, 6 }, - { 174, 5 }, - { 174, 4 }, - { 173, 1 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 174, 3 }, - { 221, 1 }, - { 221, 2 }, - { 221, 1 }, - { 221, 2 }, - { 174, 3 }, - { 174, 5 }, - { 174, 2 }, - { 174, 3 }, - { 174, 3 }, - { 174, 4 }, - { 174, 2 }, - { 174, 2 }, - { 174, 2 }, - { 174, 2 }, - { 222, 1 }, - { 222, 2 }, - { 174, 5 }, - { 223, 1 }, - { 223, 2 }, - { 174, 5 }, - { 174, 3 }, - { 174, 5 }, - { 174, 4 }, - { 174, 4 }, - { 174, 5 }, - { 225, 5 }, - { 225, 4 }, - { 226, 2 }, - { 226, 0 }, - { 224, 1 }, - { 224, 0 }, - { 220, 1 }, - { 220, 0 }, - { 215, 3 }, - { 215, 1 }, - { 147, 11 }, - { 227, 1 }, - { 227, 0 }, - { 178, 0 }, - { 178, 3 }, - { 187, 5 }, - { 187, 3 }, - { 228, 0 }, - { 228, 2 }, - { 147, 4 }, - { 147, 1 }, - { 147, 2 }, - { 147, 3 }, - { 147, 5 }, - { 147, 6 }, - { 147, 5 }, - { 147, 6 }, - { 229, 1 }, - { 229, 1 }, - { 229, 1 }, - { 229, 1 }, - { 229, 1 }, - { 170, 2 }, - { 170, 1 }, - { 171, 2 }, - { 230, 1 }, - { 147, 5 }, - { 231, 11 }, - { 233, 1 }, - { 233, 1 }, - { 233, 2 }, - { 233, 0 }, - { 234, 1 }, - { 234, 1 }, - { 234, 3 }, - { 235, 0 }, - { 235, 3 }, - { 236, 0 }, - { 236, 2 }, - { 232, 3 }, - { 232, 2 }, - { 238, 1 }, - { 238, 3 }, - { 239, 0 }, - { 239, 3 }, - { 239, 2 }, - { 237, 7 }, - { 237, 5 }, - { 237, 5 }, - { 237, 5 }, - { 237, 1 }, - { 174, 4 }, - { 174, 6 }, - { 191, 1 }, - { 191, 1 }, - { 191, 1 }, - { 147, 4 }, - { 147, 6 }, - { 147, 3 }, - { 241, 0 }, - { 241, 2 }, - { 240, 1 }, - { 240, 0 }, - { 147, 1 }, - { 147, 3 }, - { 147, 1 }, - { 147, 3 }, - { 147, 6 }, - { 147, 6 }, - { 242, 1 }, - { 243, 0 }, - { 243, 1 }, - { 147, 1 }, - { 147, 4 }, - { 244, 8 }, - { 245, 1 }, - { 245, 3 }, - { 246, 0 }, - { 246, 2 }, - { 247, 1 }, - { 247, 3 }, - { 248, 1 }, - { 249, 0 }, - { 249, 4 }, - { 249, 2 }, -}; - -static void yy_accept(yyParser*); /* Forward Declaration */ - -/* -** Perform a reduce action and the shift that must immediately -** follow the reduce. -*/ -static void yy_reduce( - yyParser *yypParser, /* The parser */ - int yyruleno /* Number of the rule by which to reduce */ -){ - int yygoto; /* The next state */ - int yyact; /* The next action */ - YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ - yyStackEntry *yymsp; /* The top of the parser's stack */ - int yysize; /* Amount to pop the stack */ - sqlite3ParserARG_FETCH; - yymsp = &yypParser->yystack[yypParser->yyidx]; -#ifndef NDEBUG - if( yyTraceFILE && yyruleno>=0 - && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ - fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, - yyRuleName[yyruleno]); - } -#endif /* NDEBUG */ - - /* Silence complaints from purify about yygotominor being uninitialized - ** in some cases when it is copied into the stack after the following - ** switch. yygotominor is uninitialized when a rule reduces that does - ** not set the value of its left-hand side nonterminal. Leaving the - ** value of the nonterminal uninitialized is utterly harmless as long - ** as the value is never used. So really the only thing this code - ** accomplishes is to quieten purify. - ** - ** 2007-01-16: The wireshark project (www.wireshark.org) reports that - ** without this code, their parser segfaults. I'm not sure what there - ** parser is doing to make this happen. This is the second bug report - ** from wireshark this week. Clearly they are stressing Lemon in ways - ** that it has not been previously stressed... (SQLite ticket #2172) - */ - /*memset(&yygotominor, 0, sizeof(yygotominor));*/ - yygotominor = yyzerominor; - - - switch( yyruleno ){ - /* Beginning here are the reduction cases. A typical example - ** follows: - ** case 0: - ** #line <lineno> <grammarfile> - ** { ... } // User supplied code - ** #line <lineno> <thisfile> - ** break; - */ - case 5: /* explain ::= */ -{ sqlite3BeginParse(pParse, 0); } - break; - case 6: /* explain ::= EXPLAIN */ -{ sqlite3BeginParse(pParse, 1); } - break; - case 7: /* explain ::= EXPLAIN QUERY PLAN */ -{ sqlite3BeginParse(pParse, 2); } - break; - case 8: /* cmdx ::= cmd */ -{ sqlite3FinishCoding(pParse); } - break; - case 9: /* cmd ::= BEGIN transtype trans_opt */ -{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy392);} - break; - case 13: /* transtype ::= */ -{yygotominor.yy392 = TK_DEFERRED;} - break; - case 14: /* transtype ::= DEFERRED */ - case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15); - case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16); - case 115: /* multiselect_op ::= UNION */ yytestcase(yyruleno==115); - case 117: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==117); -{yygotominor.yy392 = yymsp[0].major;} - break; - case 17: /* cmd ::= COMMIT trans_opt */ - case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18); -{sqlite3CommitTransaction(pParse);} - break; - case 19: /* cmd ::= ROLLBACK trans_opt */ -{sqlite3RollbackTransaction(pParse);} - break; - case 22: /* cmd ::= SAVEPOINT nm */ -{ - sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0); -} - break; - case 23: /* cmd ::= RELEASE savepoint_opt nm */ -{ - sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0); -} - break; - case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ -{ - sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0); -} - break; - case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */ -{ - sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy392,0,0,yymsp[-2].minor.yy392); -} - break; - case 27: /* createkw ::= CREATE */ -{ - pParse->db->lookaside.bEnabled = 0; - yygotominor.yy0 = yymsp[0].minor.yy0; -} - break; - case 28: /* ifnotexists ::= */ - case 31: /* temp ::= */ yytestcase(yyruleno==31); - case 69: /* autoinc ::= */ yytestcase(yyruleno==69); - case 82: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==82); - case 84: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==84); - case 86: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==86); - case 98: /* defer_subclause_opt ::= */ yytestcase(yyruleno==98); - case 109: /* ifexists ::= */ yytestcase(yyruleno==109); - case 221: /* between_op ::= BETWEEN */ yytestcase(yyruleno==221); - case 224: /* in_op ::= IN */ yytestcase(yyruleno==224); -{yygotominor.yy392 = 0;} - break; - case 29: /* ifnotexists ::= IF NOT EXISTS */ - case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30); - case 70: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==70); - case 85: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==85); - case 108: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==108); - case 222: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==222); - case 225: /* in_op ::= NOT IN */ yytestcase(yyruleno==225); -{yygotominor.yy392 = 1;} - break; - case 32: /* create_table_args ::= LP columnlist conslist_opt RP */ -{ - sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0); -} - break; - case 33: /* create_table_args ::= AS select */ -{ - sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy159); - sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy159); -} - break; - case 36: /* column ::= columnid type carglist */ -{ - yygotominor.yy0.z = yymsp[-2].minor.yy0.z; - yygotominor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-2].minor.yy0.z) + pParse->sLastToken.n; -} - break; - case 37: /* columnid ::= nm */ -{ - sqlite3AddColumn(pParse,&yymsp[0].minor.yy0); - yygotominor.yy0 = yymsp[0].minor.yy0; - pParse->constraintName.n = 0; -} - break; - case 38: /* id ::= ID */ - case 39: /* id ::= INDEXED */ yytestcase(yyruleno==39); - case 40: /* ids ::= ID|STRING */ yytestcase(yyruleno==40); - case 41: /* nm ::= id */ yytestcase(yyruleno==41); - case 42: /* nm ::= STRING */ yytestcase(yyruleno==42); - case 43: /* nm ::= JOIN_KW */ yytestcase(yyruleno==43); - case 46: /* typetoken ::= typename */ yytestcase(yyruleno==46); - case 49: /* typename ::= ids */ yytestcase(yyruleno==49); - case 127: /* as ::= AS nm */ yytestcase(yyruleno==127); - case 128: /* as ::= ids */ yytestcase(yyruleno==128); - case 138: /* dbnm ::= DOT nm */ yytestcase(yyruleno==138); - case 147: /* indexed_opt ::= INDEXED BY nm */ yytestcase(yyruleno==147); - case 250: /* collate ::= COLLATE ids */ yytestcase(yyruleno==250); - case 259: /* nmnum ::= plus_num */ yytestcase(yyruleno==259); - case 260: /* nmnum ::= nm */ yytestcase(yyruleno==260); - case 261: /* nmnum ::= ON */ yytestcase(yyruleno==261); - case 262: /* nmnum ::= DELETE */ yytestcase(yyruleno==262); - case 263: /* nmnum ::= DEFAULT */ yytestcase(yyruleno==263); - case 264: /* plus_num ::= PLUS number */ yytestcase(yyruleno==264); - case 265: /* plus_num ::= number */ yytestcase(yyruleno==265); - case 266: /* minus_num ::= MINUS number */ yytestcase(yyruleno==266); - case 267: /* number ::= INTEGER|FLOAT */ yytestcase(yyruleno==267); - case 283: /* trnm ::= nm */ yytestcase(yyruleno==283); -{yygotominor.yy0 = yymsp[0].minor.yy0;} - break; - case 45: /* type ::= typetoken */ -{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy0);} - break; - case 47: /* typetoken ::= typename LP signed RP */ -{ - yygotominor.yy0.z = yymsp[-3].minor.yy0.z; - yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z); -} - break; - case 48: /* typetoken ::= typename LP signed COMMA signed RP */ -{ - yygotominor.yy0.z = yymsp[-5].minor.yy0.z; - yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z); -} - break; - case 50: /* typename ::= typename ids */ -{yygotominor.yy0.z=yymsp[-1].minor.yy0.z; yygotominor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);} - break; - case 55: /* ccons ::= CONSTRAINT nm */ - case 93: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==93); -{pParse->constraintName = yymsp[0].minor.yy0;} - break; - case 56: /* ccons ::= DEFAULT term */ - case 58: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==58); -{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy342);} - break; - case 57: /* ccons ::= DEFAULT LP expr RP */ -{sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy342);} - break; - case 59: /* ccons ::= DEFAULT MINUS term */ -{ - ExprSpan v; - v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy342.pExpr, 0, 0); - v.zStart = yymsp[-1].minor.yy0.z; - v.zEnd = yymsp[0].minor.yy342.zEnd; - sqlite3AddDefaultValue(pParse,&v); -} - break; - case 60: /* ccons ::= DEFAULT id */ -{ - ExprSpan v; - spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0); - sqlite3AddDefaultValue(pParse,&v); -} - break; - case 62: /* ccons ::= NOT NULL onconf */ -{sqlite3AddNotNull(pParse, yymsp[0].minor.yy392);} - break; - case 63: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */ -{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy392,yymsp[0].minor.yy392,yymsp[-2].minor.yy392);} - break; - case 64: /* ccons ::= UNIQUE onconf */ -{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy392,0,0,0,0);} - break; - case 65: /* ccons ::= CHECK LP expr RP */ -{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy342.pExpr);} - break; - case 66: /* ccons ::= REFERENCES nm idxlist_opt refargs */ -{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy442,yymsp[0].minor.yy392);} - break; - case 67: /* ccons ::= defer_subclause */ -{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy392);} - break; - case 68: /* ccons ::= COLLATE ids */ -{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);} - break; - case 71: /* refargs ::= */ -{ yygotominor.yy392 = OE_None*0x0101; /* EV: R-19803-45884 */} - break; - case 72: /* refargs ::= refargs refarg */ -{ yygotominor.yy392 = (yymsp[-1].minor.yy392 & ~yymsp[0].minor.yy207.mask) | yymsp[0].minor.yy207.value; } - break; - case 73: /* refarg ::= MATCH nm */ - case 74: /* refarg ::= ON INSERT refact */ yytestcase(yyruleno==74); -{ yygotominor.yy207.value = 0; yygotominor.yy207.mask = 0x000000; } - break; - case 75: /* refarg ::= ON DELETE refact */ -{ yygotominor.yy207.value = yymsp[0].minor.yy392; yygotominor.yy207.mask = 0x0000ff; } - break; - case 76: /* refarg ::= ON UPDATE refact */ -{ yygotominor.yy207.value = yymsp[0].minor.yy392<<8; yygotominor.yy207.mask = 0x00ff00; } - break; - case 77: /* refact ::= SET NULL */ -{ yygotominor.yy392 = OE_SetNull; /* EV: R-33326-45252 */} - break; - case 78: /* refact ::= SET DEFAULT */ -{ yygotominor.yy392 = OE_SetDflt; /* EV: R-33326-45252 */} - break; - case 79: /* refact ::= CASCADE */ -{ yygotominor.yy392 = OE_Cascade; /* EV: R-33326-45252 */} - break; - case 80: /* refact ::= RESTRICT */ -{ yygotominor.yy392 = OE_Restrict; /* EV: R-33326-45252 */} - break; - case 81: /* refact ::= NO ACTION */ -{ yygotominor.yy392 = OE_None; /* EV: R-33326-45252 */} - break; - case 83: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ - case 99: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==99); - case 101: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==101); - case 104: /* resolvetype ::= raisetype */ yytestcase(yyruleno==104); -{yygotominor.yy392 = yymsp[0].minor.yy392;} - break; - case 87: /* conslist_opt ::= */ -{yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;} - break; - case 88: /* conslist_opt ::= COMMA conslist */ -{yygotominor.yy0 = yymsp[-1].minor.yy0;} - break; - case 91: /* tconscomma ::= COMMA */ -{pParse->constraintName.n = 0;} - break; - case 94: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */ -{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy442,yymsp[0].minor.yy392,yymsp[-2].minor.yy392,0);} - break; - case 95: /* tcons ::= UNIQUE LP idxlist RP onconf */ -{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy442,yymsp[0].minor.yy392,0,0,0,0);} - break; - case 96: /* tcons ::= CHECK LP expr RP onconf */ -{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy342.pExpr);} - break; - case 97: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */ -{ - sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy442, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy442, yymsp[-1].minor.yy392); - sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy392); -} - break; - case 100: /* onconf ::= */ -{yygotominor.yy392 = OE_Default;} - break; - case 102: /* orconf ::= */ -{yygotominor.yy258 = OE_Default;} - break; - case 103: /* orconf ::= OR resolvetype */ -{yygotominor.yy258 = (u8)yymsp[0].minor.yy392;} - break; - case 105: /* resolvetype ::= IGNORE */ -{yygotominor.yy392 = OE_Ignore;} - break; - case 106: /* resolvetype ::= REPLACE */ -{yygotominor.yy392 = OE_Replace;} - break; - case 107: /* cmd ::= DROP TABLE ifexists fullname */ -{ - sqlite3DropTable(pParse, yymsp[0].minor.yy347, 0, yymsp[-1].minor.yy392); -} - break; - case 110: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select */ -{ - sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy159, yymsp[-6].minor.yy392, yymsp[-4].minor.yy392); -} - break; - case 111: /* cmd ::= DROP VIEW ifexists fullname */ -{ - sqlite3DropTable(pParse, yymsp[0].minor.yy347, 1, yymsp[-1].minor.yy392); -} - break; - case 112: /* cmd ::= select */ -{ - SelectDest dest = {SRT_Output, 0, 0, 0, 0}; - sqlite3Select(pParse, yymsp[0].minor.yy159, &dest); - sqlite3ExplainBegin(pParse->pVdbe); - sqlite3ExplainSelect(pParse->pVdbe, yymsp[0].minor.yy159); - sqlite3ExplainFinish(pParse->pVdbe); - sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy159); -} - break; - case 113: /* select ::= oneselect */ -{yygotominor.yy159 = yymsp[0].minor.yy159;} - break; - case 114: /* select ::= select multiselect_op oneselect */ -{ - if( yymsp[0].minor.yy159 ){ - yymsp[0].minor.yy159->op = (u8)yymsp[-1].minor.yy392; - yymsp[0].minor.yy159->pPrior = yymsp[-2].minor.yy159; - }else{ - sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy159); - } - yygotominor.yy159 = yymsp[0].minor.yy159; -} - break; - case 116: /* multiselect_op ::= UNION ALL */ -{yygotominor.yy392 = TK_ALL;} - break; - case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ -{ - yygotominor.yy159 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy442,yymsp[-5].minor.yy347,yymsp[-4].minor.yy122,yymsp[-3].minor.yy442,yymsp[-2].minor.yy122,yymsp[-1].minor.yy442,yymsp[-7].minor.yy305,yymsp[0].minor.yy64.pLimit,yymsp[0].minor.yy64.pOffset); -} - break; - case 119: /* distinct ::= DISTINCT */ -{yygotominor.yy305 = SF_Distinct;} - break; - case 120: /* distinct ::= ALL */ - case 121: /* distinct ::= */ yytestcase(yyruleno==121); -{yygotominor.yy305 = 0;} - break; - case 122: /* sclp ::= selcollist COMMA */ - case 246: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==246); -{yygotominor.yy442 = yymsp[-1].minor.yy442;} - break; - case 123: /* sclp ::= */ - case 151: /* orderby_opt ::= */ yytestcase(yyruleno==151); - case 158: /* groupby_opt ::= */ yytestcase(yyruleno==158); - case 239: /* exprlist ::= */ yytestcase(yyruleno==239); - case 245: /* idxlist_opt ::= */ yytestcase(yyruleno==245); -{yygotominor.yy442 = 0;} - break; - case 124: /* selcollist ::= sclp expr as */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy442, yymsp[-1].minor.yy342.pExpr); - if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy442, &yymsp[0].minor.yy0, 1); - sqlite3ExprListSetSpan(pParse,yygotominor.yy442,&yymsp[-1].minor.yy342); -} - break; - case 125: /* selcollist ::= sclp STAR */ -{ - Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); - yygotominor.yy442 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy442, p); -} - break; - case 126: /* selcollist ::= sclp nm DOT STAR */ -{ - Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0); - Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0); - Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy442, pDot); -} - break; - case 129: /* as ::= */ -{yygotominor.yy0.n = 0;} - break; - case 130: /* from ::= */ -{yygotominor.yy347 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy347));} - break; - case 131: /* from ::= FROM seltablist */ -{ - yygotominor.yy347 = yymsp[0].minor.yy347; - sqlite3SrcListShiftJoinType(yygotominor.yy347); -} - break; - case 132: /* stl_prefix ::= seltablist joinop */ -{ - yygotominor.yy347 = yymsp[-1].minor.yy347; - if( ALWAYS(yygotominor.yy347 && yygotominor.yy347->nSrc>0) ) yygotominor.yy347->a[yygotominor.yy347->nSrc-1].jointype = (u8)yymsp[0].minor.yy392; -} - break; - case 133: /* stl_prefix ::= */ -{yygotominor.yy347 = 0;} - break; - case 134: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */ -{ - yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy122,yymsp[0].minor.yy180); - sqlite3SrcListIndexedBy(pParse, yygotominor.yy347, &yymsp[-2].minor.yy0); -} - break; - case 135: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */ -{ - yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy159,yymsp[-1].minor.yy122,yymsp[0].minor.yy180); - } - break; - case 136: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */ -{ - if( yymsp[-6].minor.yy347==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy122==0 && yymsp[0].minor.yy180==0 ){ - yygotominor.yy347 = yymsp[-4].minor.yy347; - }else if( yymsp[-4].minor.yy347->nSrc==1 ){ - yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy122,yymsp[0].minor.yy180); - if( yygotominor.yy347 ){ - struct SrcList_item *pNew = &yygotominor.yy347->a[yygotominor.yy347->nSrc-1]; - struct SrcList_item *pOld = yymsp[-4].minor.yy347->a; - pNew->zName = pOld->zName; - pNew->zDatabase = pOld->zDatabase; - pOld->zName = pOld->zDatabase = 0; - } - sqlite3SrcListDelete(pParse->db, yymsp[-4].minor.yy347); - }else{ - Select *pSubquery; - sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy347); - pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy347,0,0,0,0,SF_NestedFrom,0,0); - yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy122,yymsp[0].minor.yy180); - } - } - break; - case 137: /* dbnm ::= */ - case 146: /* indexed_opt ::= */ yytestcase(yyruleno==146); -{yygotominor.yy0.z=0; yygotominor.yy0.n=0;} - break; - case 139: /* fullname ::= nm dbnm */ -{yygotominor.yy347 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);} - break; - case 140: /* joinop ::= COMMA|JOIN */ -{ yygotominor.yy392 = JT_INNER; } - break; - case 141: /* joinop ::= JOIN_KW JOIN */ -{ yygotominor.yy392 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); } - break; - case 142: /* joinop ::= JOIN_KW nm JOIN */ -{ yygotominor.yy392 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); } - break; - case 143: /* joinop ::= JOIN_KW nm nm JOIN */ -{ yygotominor.yy392 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); } - break; - case 144: /* on_opt ::= ON expr */ - case 161: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==161); - case 168: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==168); - case 234: /* case_else ::= ELSE expr */ yytestcase(yyruleno==234); - case 236: /* case_operand ::= expr */ yytestcase(yyruleno==236); -{yygotominor.yy122 = yymsp[0].minor.yy342.pExpr;} - break; - case 145: /* on_opt ::= */ - case 160: /* having_opt ::= */ yytestcase(yyruleno==160); - case 167: /* where_opt ::= */ yytestcase(yyruleno==167); - case 235: /* case_else ::= */ yytestcase(yyruleno==235); - case 237: /* case_operand ::= */ yytestcase(yyruleno==237); -{yygotominor.yy122 = 0;} - break; - case 148: /* indexed_opt ::= NOT INDEXED */ -{yygotominor.yy0.z=0; yygotominor.yy0.n=1;} - break; - case 149: /* using_opt ::= USING LP inscollist RP */ - case 180: /* inscollist_opt ::= LP inscollist RP */ yytestcase(yyruleno==180); -{yygotominor.yy180 = yymsp[-1].minor.yy180;} - break; - case 150: /* using_opt ::= */ - case 179: /* inscollist_opt ::= */ yytestcase(yyruleno==179); -{yygotominor.yy180 = 0;} - break; - case 152: /* orderby_opt ::= ORDER BY sortlist */ - case 159: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==159); - case 238: /* exprlist ::= nexprlist */ yytestcase(yyruleno==238); -{yygotominor.yy442 = yymsp[0].minor.yy442;} - break; - case 153: /* sortlist ::= sortlist COMMA expr sortorder */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy442,yymsp[-1].minor.yy342.pExpr); - if( yygotominor.yy442 ) yygotominor.yy442->a[yygotominor.yy442->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy392; -} - break; - case 154: /* sortlist ::= expr sortorder */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy342.pExpr); - if( yygotominor.yy442 && ALWAYS(yygotominor.yy442->a) ) yygotominor.yy442->a[0].sortOrder = (u8)yymsp[0].minor.yy392; -} - break; - case 155: /* sortorder ::= ASC */ - case 157: /* sortorder ::= */ yytestcase(yyruleno==157); -{yygotominor.yy392 = SQLITE_SO_ASC;} - break; - case 156: /* sortorder ::= DESC */ -{yygotominor.yy392 = SQLITE_SO_DESC;} - break; - case 162: /* limit_opt ::= */ -{yygotominor.yy64.pLimit = 0; yygotominor.yy64.pOffset = 0;} - break; - case 163: /* limit_opt ::= LIMIT expr */ -{yygotominor.yy64.pLimit = yymsp[0].minor.yy342.pExpr; yygotominor.yy64.pOffset = 0;} - break; - case 164: /* limit_opt ::= LIMIT expr OFFSET expr */ -{yygotominor.yy64.pLimit = yymsp[-2].minor.yy342.pExpr; yygotominor.yy64.pOffset = yymsp[0].minor.yy342.pExpr;} - break; - case 165: /* limit_opt ::= LIMIT expr COMMA expr */ -{yygotominor.yy64.pOffset = yymsp[-2].minor.yy342.pExpr; yygotominor.yy64.pLimit = yymsp[0].minor.yy342.pExpr;} - break; - case 166: /* cmd ::= DELETE FROM fullname indexed_opt where_opt */ -{ - sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy347, &yymsp[-1].minor.yy0); - sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy347,yymsp[0].minor.yy122); -} - break; - case 169: /* cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt */ -{ - sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy347, &yymsp[-3].minor.yy0); - sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy442,"set list"); - sqlite3Update(pParse,yymsp[-4].minor.yy347,yymsp[-1].minor.yy442,yymsp[0].minor.yy122,yymsp[-5].minor.yy258); -} - break; - case 170: /* setlist ::= setlist COMMA nm EQ expr */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy442, yymsp[0].minor.yy342.pExpr); - sqlite3ExprListSetName(pParse, yygotominor.yy442, &yymsp[-2].minor.yy0, 1); -} - break; - case 171: /* setlist ::= nm EQ expr */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy342.pExpr); - sqlite3ExprListSetName(pParse, yygotominor.yy442, &yymsp[-2].minor.yy0, 1); -} - break; - case 172: /* cmd ::= insert_cmd INTO fullname inscollist_opt valuelist */ -{sqlite3Insert(pParse, yymsp[-2].minor.yy347, yymsp[0].minor.yy487.pList, yymsp[0].minor.yy487.pSelect, yymsp[-1].minor.yy180, yymsp[-4].minor.yy258);} - break; - case 173: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */ -{sqlite3Insert(pParse, yymsp[-2].minor.yy347, 0, yymsp[0].minor.yy159, yymsp[-1].minor.yy180, yymsp[-4].minor.yy258);} - break; - case 174: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */ -{sqlite3Insert(pParse, yymsp[-3].minor.yy347, 0, 0, yymsp[-2].minor.yy180, yymsp[-5].minor.yy258);} - break; - case 175: /* insert_cmd ::= INSERT orconf */ -{yygotominor.yy258 = yymsp[0].minor.yy258;} - break; - case 176: /* insert_cmd ::= REPLACE */ -{yygotominor.yy258 = OE_Replace;} - break; - case 177: /* valuelist ::= VALUES LP nexprlist RP */ -{ - yygotominor.yy487.pList = yymsp[-1].minor.yy442; - yygotominor.yy487.pSelect = 0; -} - break; - case 178: /* valuelist ::= valuelist COMMA LP exprlist RP */ -{ - Select *pRight = sqlite3SelectNew(pParse, yymsp[-1].minor.yy442, 0, 0, 0, 0, 0, 0, 0, 0); - if( yymsp[-4].minor.yy487.pList ){ - yymsp[-4].minor.yy487.pSelect = sqlite3SelectNew(pParse, yymsp[-4].minor.yy487.pList, 0, 0, 0, 0, 0, 0, 0, 0); - yymsp[-4].minor.yy487.pList = 0; - } - yygotominor.yy487.pList = 0; - if( yymsp[-4].minor.yy487.pSelect==0 || pRight==0 ){ - sqlite3SelectDelete(pParse->db, pRight); - sqlite3SelectDelete(pParse->db, yymsp[-4].minor.yy487.pSelect); - yygotominor.yy487.pSelect = 0; - }else{ - pRight->op = TK_ALL; - pRight->pPrior = yymsp[-4].minor.yy487.pSelect; - pRight->selFlags |= SF_Values; - pRight->pPrior->selFlags |= SF_Values; - yygotominor.yy487.pSelect = pRight; - } -} - break; - case 181: /* inscollist ::= inscollist COMMA nm */ -{yygotominor.yy180 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy180,&yymsp[0].minor.yy0);} - break; - case 182: /* inscollist ::= nm */ -{yygotominor.yy180 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);} - break; - case 183: /* expr ::= term */ -{yygotominor.yy342 = yymsp[0].minor.yy342;} - break; - case 184: /* expr ::= LP expr RP */ -{yygotominor.yy342.pExpr = yymsp[-1].minor.yy342.pExpr; spanSet(&yygotominor.yy342,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);} - break; - case 185: /* term ::= NULL */ - case 190: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==190); - case 191: /* term ::= STRING */ yytestcase(yyruleno==191); -{spanExpr(&yygotominor.yy342, pParse, yymsp[0].major, &yymsp[0].minor.yy0);} - break; - case 186: /* expr ::= id */ - case 187: /* expr ::= JOIN_KW */ yytestcase(yyruleno==187); -{spanExpr(&yygotominor.yy342, pParse, TK_ID, &yymsp[0].minor.yy0);} - break; - case 188: /* expr ::= nm DOT nm */ -{ - Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0); - Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0); - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); - spanSet(&yygotominor.yy342,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); -} - break; - case 189: /* expr ::= nm DOT nm DOT nm */ -{ - Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0); - Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0); - Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0); - Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); - spanSet(&yygotominor.yy342,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0); -} - break; - case 192: /* expr ::= REGISTER */ -{ - /* When doing a nested parse, one can include terms in an expression - ** that look like this: #1 #2 ... These terms refer to registers - ** in the virtual machine. #N is the N-th register. */ - if( pParse->nested==0 ){ - sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0); - yygotominor.yy342.pExpr = 0; - }else{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0); - if( yygotominor.yy342.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy342.pExpr->iTable); - } - spanSet(&yygotominor.yy342, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0); -} - break; - case 193: /* expr ::= VARIABLE */ -{ - spanExpr(&yygotominor.yy342, pParse, TK_VARIABLE, &yymsp[0].minor.yy0); - sqlite3ExprAssignVarNumber(pParse, yygotominor.yy342.pExpr); - spanSet(&yygotominor.yy342, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0); -} - break; - case 194: /* expr ::= expr COLLATE ids */ -{ - yygotominor.yy342.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy342.pExpr, &yymsp[0].minor.yy0); - yygotominor.yy342.zStart = yymsp[-2].minor.yy342.zStart; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; -} - break; - case 195: /* expr ::= CAST LP expr AS typetoken RP */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy342.pExpr, 0, &yymsp[-1].minor.yy0); - spanSet(&yygotominor.yy342,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0); -} - break; - case 196: /* expr ::= ID LP distinct exprlist RP */ -{ - if( yymsp[-1].minor.yy442 && yymsp[-1].minor.yy442->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ - sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0); - } - yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy442, &yymsp[-4].minor.yy0); - spanSet(&yygotominor.yy342,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0); - if( yymsp[-2].minor.yy305 && yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->flags |= EP_Distinct; - } -} - break; - case 197: /* expr ::= ID LP STAR RP */ -{ - yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0); - spanSet(&yygotominor.yy342,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); -} - break; - case 198: /* term ::= CTIME_KW */ -{ - /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are - ** treated as functions that return constants */ - yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->op = TK_CONST_FUNC; - } - spanSet(&yygotominor.yy342, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0); -} - break; - case 199: /* expr ::= expr AND expr */ - case 200: /* expr ::= expr OR expr */ yytestcase(yyruleno==200); - case 201: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==201); - case 202: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==202); - case 203: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==203); - case 204: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==204); - case 205: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==205); - case 206: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==206); -{spanBinaryExpr(&yygotominor.yy342,pParse,yymsp[-1].major,&yymsp[-2].minor.yy342,&yymsp[0].minor.yy342);} - break; - case 207: /* likeop ::= LIKE_KW */ - case 209: /* likeop ::= MATCH */ yytestcase(yyruleno==209); -{yygotominor.yy318.eOperator = yymsp[0].minor.yy0; yygotominor.yy318.bNot = 0;} - break; - case 208: /* likeop ::= NOT LIKE_KW */ - case 210: /* likeop ::= NOT MATCH */ yytestcase(yyruleno==210); -{yygotominor.yy318.eOperator = yymsp[0].minor.yy0; yygotominor.yy318.bNot = 1;} - break; - case 211: /* expr ::= expr likeop expr */ -{ - ExprList *pList; - pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy342.pExpr); - pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy342.pExpr); - yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy318.eOperator); - if( yymsp[-1].minor.yy318.bNot ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - yygotominor.yy342.zStart = yymsp[-2].minor.yy342.zStart; - yygotominor.yy342.zEnd = yymsp[0].minor.yy342.zEnd; - if( yygotominor.yy342.pExpr ) yygotominor.yy342.pExpr->flags |= EP_InfixFunc; -} - break; - case 212: /* expr ::= expr likeop expr ESCAPE expr */ -{ - ExprList *pList; - pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy342.pExpr); - pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy342.pExpr); - pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy342.pExpr); - yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy318.eOperator); - if( yymsp[-3].minor.yy318.bNot ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - yygotominor.yy342.zStart = yymsp[-4].minor.yy342.zStart; - yygotominor.yy342.zEnd = yymsp[0].minor.yy342.zEnd; - if( yygotominor.yy342.pExpr ) yygotominor.yy342.pExpr->flags |= EP_InfixFunc; -} - break; - case 213: /* expr ::= expr ISNULL|NOTNULL */ -{spanUnaryPostfix(&yygotominor.yy342,pParse,yymsp[0].major,&yymsp[-1].minor.yy342,&yymsp[0].minor.yy0);} - break; - case 214: /* expr ::= expr NOT NULL */ -{spanUnaryPostfix(&yygotominor.yy342,pParse,TK_NOTNULL,&yymsp[-2].minor.yy342,&yymsp[0].minor.yy0);} - break; - case 215: /* expr ::= expr IS expr */ -{ - spanBinaryExpr(&yygotominor.yy342,pParse,TK_IS,&yymsp[-2].minor.yy342,&yymsp[0].minor.yy342); - binaryToUnaryIfNull(pParse, yymsp[0].minor.yy342.pExpr, yygotominor.yy342.pExpr, TK_ISNULL); -} - break; - case 216: /* expr ::= expr IS NOT expr */ -{ - spanBinaryExpr(&yygotominor.yy342,pParse,TK_ISNOT,&yymsp[-3].minor.yy342,&yymsp[0].minor.yy342); - binaryToUnaryIfNull(pParse, yymsp[0].minor.yy342.pExpr, yygotominor.yy342.pExpr, TK_NOTNULL); -} - break; - case 217: /* expr ::= NOT expr */ - case 218: /* expr ::= BITNOT expr */ yytestcase(yyruleno==218); -{spanUnaryPrefix(&yygotominor.yy342,pParse,yymsp[-1].major,&yymsp[0].minor.yy342,&yymsp[-1].minor.yy0);} - break; - case 219: /* expr ::= MINUS expr */ -{spanUnaryPrefix(&yygotominor.yy342,pParse,TK_UMINUS,&yymsp[0].minor.yy342,&yymsp[-1].minor.yy0);} - break; - case 220: /* expr ::= PLUS expr */ -{spanUnaryPrefix(&yygotominor.yy342,pParse,TK_UPLUS,&yymsp[0].minor.yy342,&yymsp[-1].minor.yy0);} - break; - case 223: /* expr ::= expr between_op expr AND expr */ -{ - ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy342.pExpr); - pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy342.pExpr); - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy342.pExpr, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pList = pList; - }else{ - sqlite3ExprListDelete(pParse->db, pList); - } - if( yymsp[-3].minor.yy392 ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - yygotominor.yy342.zStart = yymsp[-4].minor.yy342.zStart; - yygotominor.yy342.zEnd = yymsp[0].minor.yy342.zEnd; -} - break; - case 226: /* expr ::= expr in_op LP exprlist RP */ -{ - if( yymsp[-1].minor.yy442==0 ){ - /* Expressions of the form - ** - ** expr1 IN () - ** expr1 NOT IN () - ** - ** simplify to constants 0 (false) and 1 (true), respectively, - ** regardless of the value of expr1. - */ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[yymsp[-3].minor.yy392]); - sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy342.pExpr); - }else{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy342.pExpr, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pList = yymsp[-1].minor.yy442; - sqlite3ExprSetHeight(pParse, yygotominor.yy342.pExpr); - }else{ - sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy442); - } - if( yymsp[-3].minor.yy392 ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - } - yygotominor.yy342.zStart = yymsp[-4].minor.yy342.zStart; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; - } - break; - case 227: /* expr ::= LP select RP */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pSelect = yymsp[-1].minor.yy159; - ExprSetProperty(yygotominor.yy342.pExpr, EP_xIsSelect); - sqlite3ExprSetHeight(pParse, yygotominor.yy342.pExpr); - }else{ - sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy159); - } - yygotominor.yy342.zStart = yymsp[-2].minor.yy0.z; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; - } - break; - case 228: /* expr ::= expr in_op LP select RP */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy342.pExpr, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pSelect = yymsp[-1].minor.yy159; - ExprSetProperty(yygotominor.yy342.pExpr, EP_xIsSelect); - sqlite3ExprSetHeight(pParse, yygotominor.yy342.pExpr); - }else{ - sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy159); - } - if( yymsp[-3].minor.yy392 ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - yygotominor.yy342.zStart = yymsp[-4].minor.yy342.zStart; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; - } - break; - case 229: /* expr ::= expr in_op nm dbnm */ -{ - SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0); - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy342.pExpr, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); - ExprSetProperty(yygotominor.yy342.pExpr, EP_xIsSelect); - sqlite3ExprSetHeight(pParse, yygotominor.yy342.pExpr); - }else{ - sqlite3SrcListDelete(pParse->db, pSrc); - } - if( yymsp[-2].minor.yy392 ) yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy342.pExpr, 0, 0); - yygotominor.yy342.zStart = yymsp[-3].minor.yy342.zStart; - yygotominor.yy342.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]; - } - break; - case 230: /* expr ::= EXISTS LP select RP */ -{ - Expr *p = yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); - if( p ){ - p->x.pSelect = yymsp[-1].minor.yy159; - ExprSetProperty(p, EP_xIsSelect); - sqlite3ExprSetHeight(pParse, p); - }else{ - sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy159); - } - yygotominor.yy342.zStart = yymsp[-3].minor.yy0.z; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; - } - break; - case 231: /* expr ::= CASE case_operand case_exprlist case_else END */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy122, yymsp[-1].minor.yy122, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->x.pList = yymsp[-2].minor.yy442; - sqlite3ExprSetHeight(pParse, yygotominor.yy342.pExpr); - }else{ - sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy442); - } - yygotominor.yy342.zStart = yymsp[-4].minor.yy0.z; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; -} - break; - case 232: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy442, yymsp[-2].minor.yy342.pExpr); - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yygotominor.yy442, yymsp[0].minor.yy342.pExpr); -} - break; - case 233: /* case_exprlist ::= WHEN expr THEN expr */ -{ - yygotominor.yy442 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy342.pExpr); - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yygotominor.yy442, yymsp[0].minor.yy342.pExpr); -} - break; - case 240: /* nexprlist ::= nexprlist COMMA expr */ -{yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy442,yymsp[0].minor.yy342.pExpr);} - break; - case 241: /* nexprlist ::= expr */ -{yygotominor.yy442 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy342.pExpr);} - break; - case 242: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */ -{ - sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy0, &yymsp[-5].minor.yy0, - sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy0,0), yymsp[-1].minor.yy442, yymsp[-9].minor.yy392, - &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy392); -} - break; - case 243: /* uniqueflag ::= UNIQUE */ - case 296: /* raisetype ::= ABORT */ yytestcase(yyruleno==296); -{yygotominor.yy392 = OE_Abort;} - break; - case 244: /* uniqueflag ::= */ -{yygotominor.yy392 = OE_None;} - break; - case 247: /* idxlist ::= idxlist COMMA nm collate sortorder */ -{ - Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0); - yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy442, p); - sqlite3ExprListSetName(pParse,yygotominor.yy442,&yymsp[-2].minor.yy0,1); - sqlite3ExprListCheckLength(pParse, yygotominor.yy442, "index"); - if( yygotominor.yy442 ) yygotominor.yy442->a[yygotominor.yy442->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy392; -} - break; - case 248: /* idxlist ::= nm collate sortorder */ -{ - Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0); - yygotominor.yy442 = sqlite3ExprListAppend(pParse,0, p); - sqlite3ExprListSetName(pParse, yygotominor.yy442, &yymsp[-2].minor.yy0, 1); - sqlite3ExprListCheckLength(pParse, yygotominor.yy442, "index"); - if( yygotominor.yy442 ) yygotominor.yy442->a[yygotominor.yy442->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy392; -} - break; - case 249: /* collate ::= */ -{yygotominor.yy0.z = 0; yygotominor.yy0.n = 0;} - break; - case 251: /* cmd ::= DROP INDEX ifexists fullname */ -{sqlite3DropIndex(pParse, yymsp[0].minor.yy347, yymsp[-1].minor.yy392);} - break; - case 252: /* cmd ::= VACUUM */ - case 253: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==253); -{sqlite3Vacuum(pParse);} - break; - case 254: /* cmd ::= PRAGMA nm dbnm */ -{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);} - break; - case 255: /* cmd ::= PRAGMA nm dbnm EQ nmnum */ -{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);} - break; - case 256: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */ -{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);} - break; - case 257: /* cmd ::= PRAGMA nm dbnm EQ minus_num */ -{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);} - break; - case 258: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */ -{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);} - break; - case 268: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ -{ - Token all; - all.z = yymsp[-3].minor.yy0.z; - all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n; - sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy327, &all); -} - break; - case 269: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ -{ - sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy392, yymsp[-4].minor.yy410.a, yymsp[-4].minor.yy410.b, yymsp[-2].minor.yy347, yymsp[0].minor.yy122, yymsp[-10].minor.yy392, yymsp[-8].minor.yy392); - yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0); -} - break; - case 270: /* trigger_time ::= BEFORE */ - case 273: /* trigger_time ::= */ yytestcase(yyruleno==273); -{ yygotominor.yy392 = TK_BEFORE; } - break; - case 271: /* trigger_time ::= AFTER */ -{ yygotominor.yy392 = TK_AFTER; } - break; - case 272: /* trigger_time ::= INSTEAD OF */ -{ yygotominor.yy392 = TK_INSTEAD;} - break; - case 274: /* trigger_event ::= DELETE|INSERT */ - case 275: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==275); -{yygotominor.yy410.a = yymsp[0].major; yygotominor.yy410.b = 0;} - break; - case 276: /* trigger_event ::= UPDATE OF inscollist */ -{yygotominor.yy410.a = TK_UPDATE; yygotominor.yy410.b = yymsp[0].minor.yy180;} - break; - case 279: /* when_clause ::= */ - case 301: /* key_opt ::= */ yytestcase(yyruleno==301); -{ yygotominor.yy122 = 0; } - break; - case 280: /* when_clause ::= WHEN expr */ - case 302: /* key_opt ::= KEY expr */ yytestcase(yyruleno==302); -{ yygotominor.yy122 = yymsp[0].minor.yy342.pExpr; } - break; - case 281: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ -{ - assert( yymsp[-2].minor.yy327!=0 ); - yymsp[-2].minor.yy327->pLast->pNext = yymsp[-1].minor.yy327; - yymsp[-2].minor.yy327->pLast = yymsp[-1].minor.yy327; - yygotominor.yy327 = yymsp[-2].minor.yy327; -} - break; - case 282: /* trigger_cmd_list ::= trigger_cmd SEMI */ -{ - assert( yymsp[-1].minor.yy327!=0 ); - yymsp[-1].minor.yy327->pLast = yymsp[-1].minor.yy327; - yygotominor.yy327 = yymsp[-1].minor.yy327; -} - break; - case 284: /* trnm ::= nm DOT nm */ -{ - yygotominor.yy0 = yymsp[0].minor.yy0; - sqlite3ErrorMsg(pParse, - "qualified table names are not allowed on INSERT, UPDATE, and DELETE " - "statements within triggers"); -} - break; - case 286: /* tridxby ::= INDEXED BY nm */ -{ - sqlite3ErrorMsg(pParse, - "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " - "within triggers"); -} - break; - case 287: /* tridxby ::= NOT INDEXED */ -{ - sqlite3ErrorMsg(pParse, - "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " - "within triggers"); -} - break; - case 288: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */ -{ yygotominor.yy327 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy442, yymsp[0].minor.yy122, yymsp[-5].minor.yy258); } - break; - case 289: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt valuelist */ -{yygotominor.yy327 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy180, yymsp[0].minor.yy487.pList, yymsp[0].minor.yy487.pSelect, yymsp[-4].minor.yy258);} - break; - case 290: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select */ -{yygotominor.yy327 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy180, 0, yymsp[0].minor.yy159, yymsp[-4].minor.yy258);} - break; - case 291: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */ -{yygotominor.yy327 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy122);} - break; - case 292: /* trigger_cmd ::= select */ -{yygotominor.yy327 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy159); } - break; - case 293: /* expr ::= RAISE LP IGNORE RP */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); - if( yygotominor.yy342.pExpr ){ - yygotominor.yy342.pExpr->affinity = OE_Ignore; - } - yygotominor.yy342.zStart = yymsp[-3].minor.yy0.z; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; -} - break; - case 294: /* expr ::= RAISE LP raisetype COMMA nm RP */ -{ - yygotominor.yy342.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0); - if( yygotominor.yy342.pExpr ) { - yygotominor.yy342.pExpr->affinity = (char)yymsp[-3].minor.yy392; - } - yygotominor.yy342.zStart = yymsp[-5].minor.yy0.z; - yygotominor.yy342.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; -} - break; - case 295: /* raisetype ::= ROLLBACK */ -{yygotominor.yy392 = OE_Rollback;} - break; - case 297: /* raisetype ::= FAIL */ -{yygotominor.yy392 = OE_Fail;} - break; - case 298: /* cmd ::= DROP TRIGGER ifexists fullname */ -{ - sqlite3DropTrigger(pParse,yymsp[0].minor.yy347,yymsp[-1].minor.yy392); -} - break; - case 299: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ -{ - sqlite3Attach(pParse, yymsp[-3].minor.yy342.pExpr, yymsp[-1].minor.yy342.pExpr, yymsp[0].minor.yy122); -} - break; - case 300: /* cmd ::= DETACH database_kw_opt expr */ -{ - sqlite3Detach(pParse, yymsp[0].minor.yy342.pExpr); -} - break; - case 305: /* cmd ::= REINDEX */ -{sqlite3Reindex(pParse, 0, 0);} - break; - case 306: /* cmd ::= REINDEX nm dbnm */ -{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} - break; - case 307: /* cmd ::= ANALYZE */ -{sqlite3Analyze(pParse, 0, 0);} - break; - case 308: /* cmd ::= ANALYZE nm dbnm */ -{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} - break; - case 309: /* cmd ::= ALTER TABLE fullname RENAME TO nm */ -{ - sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy347,&yymsp[0].minor.yy0); -} - break; - case 310: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */ -{ - sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0); -} - break; - case 311: /* add_column_fullname ::= fullname */ -{ - pParse->db->lookaside.bEnabled = 0; - sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy347); -} - break; - case 314: /* cmd ::= create_vtab */ -{sqlite3VtabFinishParse(pParse,0);} - break; - case 315: /* cmd ::= create_vtab LP vtabarglist RP */ -{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);} - break; - case 316: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ -{ - sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy392); -} - break; - case 319: /* vtabarg ::= */ -{sqlite3VtabArgInit(pParse);} - break; - case 321: /* vtabargtoken ::= ANY */ - case 322: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==322); - case 323: /* lp ::= LP */ yytestcase(yyruleno==323); -{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);} - break; - default: - /* (0) input ::= cmdlist */ yytestcase(yyruleno==0); - /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1); - /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2); - /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3); - /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4); - /* (10) trans_opt ::= */ yytestcase(yyruleno==10); - /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11); - /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12); - /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20); - /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21); - /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25); - /* (34) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==34); - /* (35) columnlist ::= column */ yytestcase(yyruleno==35); - /* (44) type ::= */ yytestcase(yyruleno==44); - /* (51) signed ::= plus_num */ yytestcase(yyruleno==51); - /* (52) signed ::= minus_num */ yytestcase(yyruleno==52); - /* (53) carglist ::= carglist ccons */ yytestcase(yyruleno==53); - /* (54) carglist ::= */ yytestcase(yyruleno==54); - /* (61) ccons ::= NULL onconf */ yytestcase(yyruleno==61); - /* (89) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==89); - /* (90) conslist ::= tcons */ yytestcase(yyruleno==90); - /* (92) tconscomma ::= */ yytestcase(yyruleno==92); - /* (277) foreach_clause ::= */ yytestcase(yyruleno==277); - /* (278) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==278); - /* (285) tridxby ::= */ yytestcase(yyruleno==285); - /* (303) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==303); - /* (304) database_kw_opt ::= */ yytestcase(yyruleno==304); - /* (312) kwcolumn_opt ::= */ yytestcase(yyruleno==312); - /* (313) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==313); - /* (317) vtabarglist ::= vtabarg */ yytestcase(yyruleno==317); - /* (318) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==318); - /* (320) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==320); - /* (324) anylist ::= */ yytestcase(yyruleno==324); - /* (325) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==325); - /* (326) anylist ::= anylist ANY */ yytestcase(yyruleno==326); - break; - }; - assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) ); - yygoto = yyRuleInfo[yyruleno].lhs; - yysize = yyRuleInfo[yyruleno].nrhs; - yypParser->yyidx -= yysize; - yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto); - if( yyact < YYNSTATE ){ -#ifdef NDEBUG - /* If we are not debugging and the reduce action popped at least - ** one element off the stack, then we can push the new element back - ** onto the stack here, and skip the stack overflow test in yy_shift(). - ** That gives a significant speed improvement. */ - if( yysize ){ - yypParser->yyidx++; - yymsp -= yysize-1; - yymsp->stateno = (YYACTIONTYPE)yyact; - yymsp->major = (YYCODETYPE)yygoto; - yymsp->minor = yygotominor; - }else -#endif - { - yy_shift(yypParser,yyact,yygoto,&yygotominor); - } - }else{ - assert( yyact == YYNSTATE + YYNRULE + 1 ); - yy_accept(yypParser); - } -} - -/* -** The following code executes when the parse fails -*/ -#ifndef YYNOERRORRECOVERY -static void yy_parse_failed( - yyParser *yypParser /* The parser */ -){ - sqlite3ParserARG_FETCH; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser fails */ - sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} -#endif /* YYNOERRORRECOVERY */ - -/* -** The following code executes when a syntax error first occurs. -*/ -static void yy_syntax_error( - yyParser *yypParser, /* The parser */ - int yymajor, /* The major type of the error token */ - YYMINORTYPE yyminor /* The minor type of the error token */ -){ - sqlite3ParserARG_FETCH; -#define TOKEN (yyminor.yy0) - - UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ - assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ - sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); - sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} - -/* -** The following is executed when the parser accepts -*/ -static void yy_accept( - yyParser *yypParser /* The parser */ -){ - sqlite3ParserARG_FETCH; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser accepts */ - sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} - -/* The main parser program. -** The first argument is a pointer to a structure obtained from -** "sqlite3ParserAlloc" which describes the current state of the parser. -** The second argument is the major token number. The third is -** the minor token. The fourth optional argument is whatever the -** user wants (and specified in the grammar) and is available for -** use by the action routines. -** -** Inputs: -** <ul> -** <li> A pointer to the parser (an opaque structure.) -** <li> The major token number. -** <li> The minor token number. -** <li> An option argument of a grammar-specified type. -** </ul> -** -** Outputs: -** None. -*/ -SQLITE_PRIVATE void sqlite3Parser( - void *yyp, /* The parser */ - int yymajor, /* The major token code number */ - sqlite3ParserTOKENTYPE yyminor /* The value for the token */ - sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */ -){ - YYMINORTYPE yyminorunion; - int yyact; /* The parser action. */ -#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) - int yyendofinput; /* True if we are at the end of input */ -#endif -#ifdef YYERRORSYMBOL - int yyerrorhit = 0; /* True if yymajor has invoked an error */ -#endif - yyParser *yypParser; /* The parser */ - - /* (re)initialize the parser, if necessary */ - yypParser = (yyParser*)yyp; - if( yypParser->yyidx<0 ){ -#if YYSTACKDEPTH<=0 - if( yypParser->yystksz <=0 ){ - /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/ - yyminorunion = yyzerominor; - yyStackOverflow(yypParser, &yyminorunion); - return; - } -#endif - yypParser->yyidx = 0; - yypParser->yyerrcnt = -1; - yypParser->yystack[0].stateno = 0; - yypParser->yystack[0].major = 0; - } - yyminorunion.yy0 = yyminor; -#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) - yyendofinput = (yymajor==0); -#endif - sqlite3ParserARG_STORE; - -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); - } -#endif - - do{ - yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor); - if( yyact<YYNSTATE ){ - yy_shift(yypParser,yyact,yymajor,&yyminorunion); - yypParser->yyerrcnt--; - yymajor = YYNOCODE; - }else if( yyact < YYNSTATE + YYNRULE ){ - yy_reduce(yypParser,yyact-YYNSTATE); - }else{ - assert( yyact == YY_ERROR_ACTION ); -#ifdef YYERRORSYMBOL - int yymx; -#endif -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); - } -#endif -#ifdef YYERRORSYMBOL - /* A syntax error has occurred. - ** The response to an error depends upon whether or not the - ** grammar defines an error token "ERROR". - ** - ** This is what we do if the grammar does define ERROR: - ** - ** * Call the %syntax_error function. - ** - ** * Begin popping the stack until we enter a state where - ** it is legal to shift the error symbol, then shift - ** the error symbol. - ** - ** * Set the error count to three. - ** - ** * Begin accepting and shifting new tokens. No new error - ** processing will occur until three tokens have been - ** shifted successfully. - ** - */ - if( yypParser->yyerrcnt<0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion); - } - yymx = yypParser->yystack[yypParser->yyidx].major; - if( yymx==YYERRORSYMBOL || yyerrorhit ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sDiscard input token %s\n", - yyTracePrompt,yyTokenName[yymajor]); - } -#endif - yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion); - yymajor = YYNOCODE; - }else{ - while( - yypParser->yyidx >= 0 && - yymx != YYERRORSYMBOL && - (yyact = yy_find_reduce_action( - yypParser->yystack[yypParser->yyidx].stateno, - YYERRORSYMBOL)) >= YYNSTATE - ){ - yy_pop_parser_stack(yypParser); - } - if( yypParser->yyidx < 0 || yymajor==0 ){ - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - yy_parse_failed(yypParser); - yymajor = YYNOCODE; - }else if( yymx!=YYERRORSYMBOL ){ - YYMINORTYPE u2; - u2.YYERRSYMDT = 0; - yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); - } - } - yypParser->yyerrcnt = 3; - yyerrorhit = 1; -#elif defined(YYNOERRORRECOVERY) - /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to - ** do any kind of error recovery. Instead, simply invoke the syntax - ** error routine and continue going as if nothing had happened. - ** - ** Applications can set this macro (for example inside %include) if - ** they intend to abandon the parse upon the first syntax error seen. - */ - yy_syntax_error(yypParser,yymajor,yyminorunion); - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - yymajor = YYNOCODE; - -#else /* YYERRORSYMBOL is not defined */ - /* This is what we do if the grammar does not define ERROR: - ** - ** * Report an error message, and throw away the input token. - ** - ** * If the input token is $, then fail the parse. - ** - ** As before, subsequent error messages are suppressed until - ** three input tokens have been successfully shifted. - */ - if( yypParser->yyerrcnt<=0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion); - } - yypParser->yyerrcnt = 3; - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - if( yyendofinput ){ - yy_parse_failed(yypParser); - } - yymajor = YYNOCODE; -#endif - } - }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); - return; -} - -/************** End of parse.c ***********************************************/ -/************** Begin file tokenize.c ****************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** An tokenizer for SQL -** -** This file contains C code that splits an SQL input string up into -** individual tokens and sends those tokens one-by-one over to the -** parser for analysis. -*/ -/* #include <stdlib.h> */ - -/* -** The charMap() macro maps alphabetic characters into their -** lower-case ASCII equivalent. On ASCII machines, this is just -** an upper-to-lower case map. On EBCDIC machines we also need -** to adjust the encoding. Only alphabetic characters and underscores -** need to be translated. -*/ -#ifdef SQLITE_ASCII -# define charMap(X) sqlite3UpperToLower[(unsigned char)X] -#endif -#ifdef SQLITE_EBCDIC -# define charMap(X) ebcdicToAscii[(unsigned char)X] -const unsigned char ebcdicToAscii[] = { -/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ - 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */ - 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */ - 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ - 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */ - 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */ - 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ -}; -#endif - -/* -** The sqlite3KeywordCode function looks up an identifier to determine if -** it is a keyword. If it is a keyword, the token code of that keyword is -** returned. If the input is not a keyword, TK_ID is returned. -** -** The implementation of this routine was generated by a program, -** mkkeywordhash.h, located in the tool subdirectory of the distribution. -** The output of the mkkeywordhash.c program is written into a file -** named keywordhash.h and then included into this source file by -** the #include below. -*/ -/************** Include keywordhash.h in the middle of tokenize.c ************/ -/************** Begin file keywordhash.h *************************************/ -/***** This file contains automatically generated code ****** -** -** The code in this file has been automatically generated by -** -** sqlite/tool/mkkeywordhash.c -** -** The code in this file implements a function that determines whether -** or not a given identifier is really an SQL keyword. The same thing -** might be implemented more directly using a hand-written hash table. -** But by using this automatically generated code, the size of the code -** is substantially reduced. This is important for embedded applications -** on platforms with limited memory. -*/ -/* Hash score: 175 */ -static int keywordCode(const char *z, int n){ - /* zText[] encodes 811 bytes of keywords in 541 bytes */ - /* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */ - /* ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE */ - /* XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY */ - /* UNIQUERYATTACHAVINGROUPDATEBEGINNERELEASEBETWEENOTNULLIKE */ - /* CASCADELETECASECOLLATECREATECURRENT_DATEDETACHIMMEDIATEJOIN */ - /* SERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHENWHERENAME */ - /* AFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICTCROSS */ - /* CURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOBYIF */ - /* ISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUMVIEW */ - /* INITIALLY */ - static const char zText[540] = { - 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H', - 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G', - 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A', - 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F', - 'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N', - 'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I', - 'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E', - 'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E', - 'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T', - 'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q', - 'U','E','R','Y','A','T','T','A','C','H','A','V','I','N','G','R','O','U', - 'P','D','A','T','E','B','E','G','I','N','N','E','R','E','L','E','A','S', - 'E','B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C', - 'A','S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L', - 'A','T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D', - 'A','T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E', - 'J','O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A', - 'L','Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U', - 'E','S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W', - 'H','E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C', - 'E','A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R', - 'E','M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M', - 'M','I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U', - 'R','R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M', - 'A','R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T', - 'D','R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L', - 'O','B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S', - 'T','R','I','C','T','O','U','T','E','R','I','G','H','T','R','O','L','L', - 'B','A','C','K','R','O','W','U','N','I','O','N','U','S','I','N','G','V', - 'A','C','U','U','M','V','I','E','W','I','N','I','T','I','A','L','L','Y', - }; - static const unsigned char aHash[127] = { - 72, 101, 114, 70, 0, 45, 0, 0, 78, 0, 73, 0, 0, - 42, 12, 74, 15, 0, 113, 81, 50, 108, 0, 19, 0, 0, - 118, 0, 116, 111, 0, 22, 89, 0, 9, 0, 0, 66, 67, - 0, 65, 6, 0, 48, 86, 98, 0, 115, 97, 0, 0, 44, - 0, 99, 24, 0, 17, 0, 119, 49, 23, 0, 5, 106, 25, - 92, 0, 0, 121, 102, 56, 120, 53, 28, 51, 0, 87, 0, - 96, 26, 0, 95, 0, 0, 0, 91, 88, 93, 84, 105, 14, - 39, 104, 0, 77, 0, 18, 85, 107, 32, 0, 117, 76, 109, - 58, 46, 80, 0, 0, 90, 40, 0, 112, 0, 36, 0, 0, - 29, 0, 82, 59, 60, 0, 20, 57, 0, 52, - }; - static const unsigned char aNext[121] = { - 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, - 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 33, 0, 21, 0, 0, 0, 43, 3, 47, - 0, 0, 0, 0, 30, 0, 54, 0, 38, 0, 0, 0, 1, - 62, 0, 0, 63, 0, 41, 0, 0, 0, 0, 0, 0, 0, - 61, 0, 0, 0, 0, 31, 55, 16, 34, 10, 0, 0, 0, - 0, 0, 0, 0, 11, 68, 75, 0, 8, 0, 100, 94, 0, - 103, 0, 83, 0, 71, 0, 0, 110, 27, 37, 69, 79, 0, - 35, 64, 0, 0, - }; - static const unsigned char aLen[121] = { - 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6, - 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 6, - 11, 6, 2, 7, 5, 5, 9, 6, 9, 9, 7, 10, 10, - 4, 6, 2, 3, 9, 4, 2, 6, 5, 6, 6, 5, 6, - 5, 5, 7, 7, 7, 3, 2, 4, 4, 7, 3, 6, 4, - 7, 6, 12, 6, 9, 4, 6, 5, 4, 7, 6, 5, 6, - 7, 5, 4, 5, 6, 5, 7, 3, 7, 13, 2, 2, 4, - 6, 6, 8, 5, 17, 12, 7, 8, 8, 2, 4, 4, 4, - 4, 4, 2, 2, 6, 5, 8, 5, 5, 8, 3, 5, 5, - 6, 4, 9, 3, - }; - static const unsigned short int aOffset[121] = { - 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33, - 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81, - 86, 91, 95, 96, 101, 105, 109, 117, 122, 128, 136, 142, 152, - 159, 162, 162, 165, 167, 167, 171, 176, 179, 184, 189, 194, 197, - 203, 206, 210, 217, 223, 223, 223, 226, 229, 233, 234, 238, 244, - 248, 255, 261, 273, 279, 288, 290, 296, 301, 303, 310, 315, 320, - 326, 332, 337, 341, 344, 350, 354, 361, 363, 370, 372, 374, 383, - 387, 393, 399, 407, 412, 412, 428, 435, 442, 443, 450, 454, 458, - 462, 466, 469, 471, 473, 479, 483, 491, 495, 500, 508, 511, 516, - 521, 527, 531, 536, - }; - static const unsigned char aCode[121] = { - TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE, - TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN, - TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD, - TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE, - TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE, - TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW, - TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_SAVEPOINT, - TK_INTERSECT, TK_TRIGGER, TK_REFERENCES, TK_CONSTRAINT, TK_INTO, - TK_OFFSET, TK_OF, TK_SET, TK_TEMP, TK_TEMP, - TK_OR, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING, - TK_GROUP, TK_UPDATE, TK_BEGIN, TK_JOIN_KW, TK_RELEASE, - TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NO, TK_NULL, - TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DELETE, TK_CASE, - TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DETACH, TK_IMMEDIATE, - TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN, TK_ANALYZE, - TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL, TK_LIMIT, - TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER, TK_REPLACE, - TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO, TK_IN, - TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, - TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED, TK_DISTINCT, - TK_IS, TK_DROP, TK_FAIL, TK_FROM, TK_JOIN_KW, - TK_LIKE_KW, TK_BY, TK_IF, TK_ISNULL, TK_ORDER, - TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW, - TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY, - TK_ALL, - }; - int h, i; - if( n<2 ) return TK_ID; - h = ((charMap(z[0])*4) ^ - (charMap(z[n-1])*3) ^ - n) % 127; - for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){ - if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){ - testcase( i==0 ); /* REINDEX */ - testcase( i==1 ); /* INDEXED */ - testcase( i==2 ); /* INDEX */ - testcase( i==3 ); /* DESC */ - testcase( i==4 ); /* ESCAPE */ - testcase( i==5 ); /* EACH */ - testcase( i==6 ); /* CHECK */ - testcase( i==7 ); /* KEY */ - testcase( i==8 ); /* BEFORE */ - testcase( i==9 ); /* FOREIGN */ - testcase( i==10 ); /* FOR */ - testcase( i==11 ); /* IGNORE */ - testcase( i==12 ); /* REGEXP */ - testcase( i==13 ); /* EXPLAIN */ - testcase( i==14 ); /* INSTEAD */ - testcase( i==15 ); /* ADD */ - testcase( i==16 ); /* DATABASE */ - testcase( i==17 ); /* AS */ - testcase( i==18 ); /* SELECT */ - testcase( i==19 ); /* TABLE */ - testcase( i==20 ); /* LEFT */ - testcase( i==21 ); /* THEN */ - testcase( i==22 ); /* END */ - testcase( i==23 ); /* DEFERRABLE */ - testcase( i==24 ); /* ELSE */ - testcase( i==25 ); /* EXCEPT */ - testcase( i==26 ); /* TRANSACTION */ - testcase( i==27 ); /* ACTION */ - testcase( i==28 ); /* ON */ - testcase( i==29 ); /* NATURAL */ - testcase( i==30 ); /* ALTER */ - testcase( i==31 ); /* RAISE */ - testcase( i==32 ); /* EXCLUSIVE */ - testcase( i==33 ); /* EXISTS */ - testcase( i==34 ); /* SAVEPOINT */ - testcase( i==35 ); /* INTERSECT */ - testcase( i==36 ); /* TRIGGER */ - testcase( i==37 ); /* REFERENCES */ - testcase( i==38 ); /* CONSTRAINT */ - testcase( i==39 ); /* INTO */ - testcase( i==40 ); /* OFFSET */ - testcase( i==41 ); /* OF */ - testcase( i==42 ); /* SET */ - testcase( i==43 ); /* TEMPORARY */ - testcase( i==44 ); /* TEMP */ - testcase( i==45 ); /* OR */ - testcase( i==46 ); /* UNIQUE */ - testcase( i==47 ); /* QUERY */ - testcase( i==48 ); /* ATTACH */ - testcase( i==49 ); /* HAVING */ - testcase( i==50 ); /* GROUP */ - testcase( i==51 ); /* UPDATE */ - testcase( i==52 ); /* BEGIN */ - testcase( i==53 ); /* INNER */ - testcase( i==54 ); /* RELEASE */ - testcase( i==55 ); /* BETWEEN */ - testcase( i==56 ); /* NOTNULL */ - testcase( i==57 ); /* NOT */ - testcase( i==58 ); /* NO */ - testcase( i==59 ); /* NULL */ - testcase( i==60 ); /* LIKE */ - testcase( i==61 ); /* CASCADE */ - testcase( i==62 ); /* ASC */ - testcase( i==63 ); /* DELETE */ - testcase( i==64 ); /* CASE */ - testcase( i==65 ); /* COLLATE */ - testcase( i==66 ); /* CREATE */ - testcase( i==67 ); /* CURRENT_DATE */ - testcase( i==68 ); /* DETACH */ - testcase( i==69 ); /* IMMEDIATE */ - testcase( i==70 ); /* JOIN */ - testcase( i==71 ); /* INSERT */ - testcase( i==72 ); /* MATCH */ - testcase( i==73 ); /* PLAN */ - testcase( i==74 ); /* ANALYZE */ - testcase( i==75 ); /* PRAGMA */ - testcase( i==76 ); /* ABORT */ - testcase( i==77 ); /* VALUES */ - testcase( i==78 ); /* VIRTUAL */ - testcase( i==79 ); /* LIMIT */ - testcase( i==80 ); /* WHEN */ - testcase( i==81 ); /* WHERE */ - testcase( i==82 ); /* RENAME */ - testcase( i==83 ); /* AFTER */ - testcase( i==84 ); /* REPLACE */ - testcase( i==85 ); /* AND */ - testcase( i==86 ); /* DEFAULT */ - testcase( i==87 ); /* AUTOINCREMENT */ - testcase( i==88 ); /* TO */ - testcase( i==89 ); /* IN */ - testcase( i==90 ); /* CAST */ - testcase( i==91 ); /* COLUMN */ - testcase( i==92 ); /* COMMIT */ - testcase( i==93 ); /* CONFLICT */ - testcase( i==94 ); /* CROSS */ - testcase( i==95 ); /* CURRENT_TIMESTAMP */ - testcase( i==96 ); /* CURRENT_TIME */ - testcase( i==97 ); /* PRIMARY */ - testcase( i==98 ); /* DEFERRED */ - testcase( i==99 ); /* DISTINCT */ - testcase( i==100 ); /* IS */ - testcase( i==101 ); /* DROP */ - testcase( i==102 ); /* FAIL */ - testcase( i==103 ); /* FROM */ - testcase( i==104 ); /* FULL */ - testcase( i==105 ); /* GLOB */ - testcase( i==106 ); /* BY */ - testcase( i==107 ); /* IF */ - testcase( i==108 ); /* ISNULL */ - testcase( i==109 ); /* ORDER */ - testcase( i==110 ); /* RESTRICT */ - testcase( i==111 ); /* OUTER */ - testcase( i==112 ); /* RIGHT */ - testcase( i==113 ); /* ROLLBACK */ - testcase( i==114 ); /* ROW */ - testcase( i==115 ); /* UNION */ - testcase( i==116 ); /* USING */ - testcase( i==117 ); /* VACUUM */ - testcase( i==118 ); /* VIEW */ - testcase( i==119 ); /* INITIALLY */ - testcase( i==120 ); /* ALL */ - return aCode[i]; - } - } - return TK_ID; -} -SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){ - return keywordCode((char*)z, n); -} -#define SQLITE_N_KEYWORD 121 - -/************** End of keywordhash.h *****************************************/ -/************** Continuing where we left off in tokenize.c *******************/ - - -/* -** If X is a character that can be used in an identifier then -** IdChar(X) will be true. Otherwise it is false. -** -** For ASCII, any character with the high-order bit set is -** allowed in an identifier. For 7-bit characters, -** sqlite3IsIdChar[X] must be 1. -** -** For EBCDIC, the rules are more complex but have the same -** end result. -** -** Ticket #1066. the SQL standard does not allow '$' in the -** middle of identfiers. But many SQL implementations do. -** SQLite will allow '$' in identifiers for compatibility. -** But the feature is undocumented. -*/ -#ifdef SQLITE_ASCII -#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) -#endif -#ifdef SQLITE_EBCDIC -SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = { -/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ - 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */ - 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */ - 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ - 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ -}; -#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) -#endif - - -/* -** Return the length of the token that begins at z[0]. -** Store the token type in *tokenType before returning. -*/ -SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ - int i, c; - switch( *z ){ - case ' ': case '\t': case '\n': case '\f': case '\r': { - testcase( z[0]==' ' ); - testcase( z[0]=='\t' ); - testcase( z[0]=='\n' ); - testcase( z[0]=='\f' ); - testcase( z[0]=='\r' ); - for(i=1; sqlite3Isspace(z[i]); i++){} - *tokenType = TK_SPACE; - return i; - } - case '-': { - if( z[1]=='-' ){ - /* IMP: R-50417-27976 -- syntax diagram for comments */ - for(i=2; (c=z[i])!=0 && c!='\n'; i++){} - *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ - return i; - } - *tokenType = TK_MINUS; - return 1; - } - case '(': { - *tokenType = TK_LP; - return 1; - } - case ')': { - *tokenType = TK_RP; - return 1; - } - case ';': { - *tokenType = TK_SEMI; - return 1; - } - case '+': { - *tokenType = TK_PLUS; - return 1; - } - case '*': { - *tokenType = TK_STAR; - return 1; - } - case '/': { - if( z[1]!='*' || z[2]==0 ){ - *tokenType = TK_SLASH; - return 1; - } - /* IMP: R-50417-27976 -- syntax diagram for comments */ - for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} - if( c ) i++; - *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ - return i; - } - case '%': { - *tokenType = TK_REM; - return 1; - } - case '=': { - *tokenType = TK_EQ; - return 1 + (z[1]=='='); - } - case '<': { - if( (c=z[1])=='=' ){ - *tokenType = TK_LE; - return 2; - }else if( c=='>' ){ - *tokenType = TK_NE; - return 2; - }else if( c=='<' ){ - *tokenType = TK_LSHIFT; - return 2; - }else{ - *tokenType = TK_LT; - return 1; - } - } - case '>': { - if( (c=z[1])=='=' ){ - *tokenType = TK_GE; - return 2; - }else if( c=='>' ){ - *tokenType = TK_RSHIFT; - return 2; - }else{ - *tokenType = TK_GT; - return 1; - } - } - case '!': { - if( z[1]!='=' ){ - *tokenType = TK_ILLEGAL; - return 2; - }else{ - *tokenType = TK_NE; - return 2; - } - } - case '|': { - if( z[1]!='|' ){ - *tokenType = TK_BITOR; - return 1; - }else{ - *tokenType = TK_CONCAT; - return 2; - } - } - case ',': { - *tokenType = TK_COMMA; - return 1; - } - case '&': { - *tokenType = TK_BITAND; - return 1; - } - case '~': { - *tokenType = TK_BITNOT; - return 1; - } - case '`': - case '\'': - case '"': { - int delim = z[0]; - testcase( delim=='`' ); - testcase( delim=='\'' ); - testcase( delim=='"' ); - for(i=1; (c=z[i])!=0; i++){ - if( c==delim ){ - if( z[i+1]==delim ){ - i++; - }else{ - break; - } - } - } - if( c=='\'' ){ - *tokenType = TK_STRING; - return i+1; - }else if( c!=0 ){ - *tokenType = TK_ID; - return i+1; - }else{ - *tokenType = TK_ILLEGAL; - return i; - } - } - case '.': { -#ifndef SQLITE_OMIT_FLOATING_POINT - if( !sqlite3Isdigit(z[1]) ) -#endif - { - *tokenType = TK_DOT; - return 1; - } - /* If the next character is a digit, this is a floating point - ** number that begins with ".". Fall thru into the next case */ - } - case '0': case '1': case '2': case '3': case '4': - case '5': case '6': case '7': case '8': case '9': { - testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); - testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); - testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); - testcase( z[0]=='9' ); - *tokenType = TK_INTEGER; - for(i=0; sqlite3Isdigit(z[i]); i++){} -#ifndef SQLITE_OMIT_FLOATING_POINT - if( z[i]=='.' ){ - i++; - while( sqlite3Isdigit(z[i]) ){ i++; } - *tokenType = TK_FLOAT; - } - if( (z[i]=='e' || z[i]=='E') && - ( sqlite3Isdigit(z[i+1]) - || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) - ) - ){ - i += 2; - while( sqlite3Isdigit(z[i]) ){ i++; } - *tokenType = TK_FLOAT; - } -#endif - while( IdChar(z[i]) ){ - *tokenType = TK_ILLEGAL; - i++; - } - return i; - } - case '[': { - for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} - *tokenType = c==']' ? TK_ID : TK_ILLEGAL; - return i; - } - case '?': { - *tokenType = TK_VARIABLE; - for(i=1; sqlite3Isdigit(z[i]); i++){} - return i; - } - case '#': { - for(i=1; sqlite3Isdigit(z[i]); i++){} - if( i>1 ){ - /* Parameters of the form #NNN (where NNN is a number) are used - ** internally by sqlite3NestedParse. */ - *tokenType = TK_REGISTER; - return i; - } - /* Fall through into the next case if the '#' is not followed by - ** a digit. Try to match #AAAA where AAAA is a parameter name. */ - } -#ifndef SQLITE_OMIT_TCL_VARIABLE - case '$': -#endif - case '@': /* For compatibility with MS SQL Server */ - case ':': { - int n = 0; - testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); - *tokenType = TK_VARIABLE; - for(i=1; (c=z[i])!=0; i++){ - if( IdChar(c) ){ - n++; -#ifndef SQLITE_OMIT_TCL_VARIABLE - }else if( c=='(' && n>0 ){ - do{ - i++; - }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); - if( c==')' ){ - i++; - }else{ - *tokenType = TK_ILLEGAL; - } - break; - }else if( c==':' && z[i+1]==':' ){ - i++; -#endif - }else{ - break; - } - } - if( n==0 ) *tokenType = TK_ILLEGAL; - return i; - } -#ifndef SQLITE_OMIT_BLOB_LITERAL - case 'x': case 'X': { - testcase( z[0]=='x' ); testcase( z[0]=='X' ); - if( z[1]=='\'' ){ - *tokenType = TK_BLOB; - for(i=2; sqlite3Isxdigit(z[i]); i++){} - if( z[i]!='\'' || i%2 ){ - *tokenType = TK_ILLEGAL; - while( z[i] && z[i]!='\'' ){ i++; } - } - if( z[i] ) i++; - return i; - } - /* Otherwise fall through to the next case */ - } -#endif - default: { - if( !IdChar(*z) ){ - break; - } - for(i=1; IdChar(z[i]); i++){} - *tokenType = keywordCode((char*)z, i); - return i; - } - } - *tokenType = TK_ILLEGAL; - return 1; -} - -/* -** Run the parser on the given SQL string. The parser structure is -** passed in. An SQLITE_ status code is returned. If an error occurs -** then an and attempt is made to write an error message into -** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that -** error message. -*/ -SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){ - int nErr = 0; /* Number of errors encountered */ - int i; /* Loop counter */ - void *pEngine; /* The LEMON-generated LALR(1) parser */ - int tokenType; /* type of the next token */ - int lastTokenParsed = -1; /* type of the previous token */ - u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */ - sqlite3 *db = pParse->db; /* The database connection */ - int mxSqlLen; /* Max length of an SQL string */ - - - mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; - if( db->activeVdbeCnt==0 ){ - db->u1.isInterrupted = 0; - } - pParse->rc = SQLITE_OK; - pParse->zTail = zSql; - i = 0; - assert( pzErrMsg!=0 ); - pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc); - if( pEngine==0 ){ - db->mallocFailed = 1; - return SQLITE_NOMEM; - } - assert( pParse->pNewTable==0 ); - assert( pParse->pNewTrigger==0 ); - assert( pParse->nVar==0 ); - assert( pParse->nzVar==0 ); - assert( pParse->azVar==0 ); - enableLookaside = db->lookaside.bEnabled; - if( db->lookaside.pStart ) db->lookaside.bEnabled = 1; - while( !db->mallocFailed && zSql[i]!=0 ){ - assert( i>=0 ); - pParse->sLastToken.z = &zSql[i]; - pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType); - i += pParse->sLastToken.n; - if( i>mxSqlLen ){ - pParse->rc = SQLITE_TOOBIG; - break; - } - switch( tokenType ){ - case TK_SPACE: { - if( db->u1.isInterrupted ){ - sqlite3ErrorMsg(pParse, "interrupt"); - pParse->rc = SQLITE_INTERRUPT; - goto abort_parse; - } - break; - } - case TK_ILLEGAL: { - sqlite3DbFree(db, *pzErrMsg); - *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"", - &pParse->sLastToken); - nErr++; - goto abort_parse; - } - case TK_SEMI: { - pParse->zTail = &zSql[i]; - /* Fall thru into the default case */ - } - default: { - sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse); - lastTokenParsed = tokenType; - if( pParse->rc!=SQLITE_OK ){ - goto abort_parse; - } - break; - } - } - } -abort_parse: - if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){ - if( lastTokenParsed!=TK_SEMI ){ - sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse); - pParse->zTail = &zSql[i]; - } - sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse); - } -#ifdef YYTRACKMAXSTACKDEPTH - sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK, - sqlite3ParserStackPeak(pEngine) - ); -#endif /* YYDEBUG */ - sqlite3ParserFree(pEngine, sqlite3_free); - db->lookaside.bEnabled = enableLookaside; - if( db->mallocFailed ){ - pParse->rc = SQLITE_NOMEM; - } - if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){ - sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc)); - } - assert( pzErrMsg!=0 ); - if( pParse->zErrMsg ){ - *pzErrMsg = pParse->zErrMsg; - sqlite3_log(pParse->rc, "%s", *pzErrMsg); - pParse->zErrMsg = 0; - nErr++; - } - if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){ - sqlite3VdbeDelete(pParse->pVdbe); - pParse->pVdbe = 0; - } -#ifndef SQLITE_OMIT_SHARED_CACHE - if( pParse->nested==0 ){ - sqlite3DbFree(db, pParse->aTableLock); - pParse->aTableLock = 0; - pParse->nTableLock = 0; - } -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - sqlite3_free(pParse->apVtabLock); -#endif - - if( !IN_DECLARE_VTAB ){ - /* If the pParse->declareVtab flag is set, do not delete any table - ** structure built up in pParse->pNewTable. The calling code (see vtab.c) - ** will take responsibility for freeing the Table structure. - */ - sqlite3DeleteTable(db, pParse->pNewTable); - } - - sqlite3DeleteTrigger(db, pParse->pNewTrigger); - for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]); - sqlite3DbFree(db, pParse->azVar); - sqlite3DbFree(db, pParse->aAlias); - while( pParse->pAinc ){ - AutoincInfo *p = pParse->pAinc; - pParse->pAinc = p->pNext; - sqlite3DbFree(db, p); - } - while( pParse->pZombieTab ){ - Table *p = pParse->pZombieTab; - pParse->pZombieTab = p->pNextZombie; - sqlite3DeleteTable(db, p); - } - if( nErr>0 && pParse->rc==SQLITE_OK ){ - pParse->rc = SQLITE_ERROR; - } - return nErr; -} - -/************** End of tokenize.c ********************************************/ -/************** Begin file complete.c ****************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** An tokenizer for SQL -** -** This file contains C code that implements the sqlite3_complete() API. -** This code used to be part of the tokenizer.c source file. But by -** separating it out, the code will be automatically omitted from -** static links that do not use it. -*/ -#ifndef SQLITE_OMIT_COMPLETE - -/* -** This is defined in tokenize.c. We just have to import the definition. -*/ -#ifndef SQLITE_AMALGAMATION -#ifdef SQLITE_ASCII -#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) -#endif -#ifdef SQLITE_EBCDIC -SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[]; -#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) -#endif -#endif /* SQLITE_AMALGAMATION */ - - -/* -** Token types used by the sqlite3_complete() routine. See the header -** comments on that procedure for additional information. -*/ -#define tkSEMI 0 -#define tkWS 1 -#define tkOTHER 2 -#ifndef SQLITE_OMIT_TRIGGER -#define tkEXPLAIN 3 -#define tkCREATE 4 -#define tkTEMP 5 -#define tkTRIGGER 6 -#define tkEND 7 -#endif - -/* -** Return TRUE if the given SQL string ends in a semicolon. -** -** Special handling is require for CREATE TRIGGER statements. -** Whenever the CREATE TRIGGER keywords are seen, the statement -** must end with ";END;". -** -** This implementation uses a state machine with 8 states: -** -** (0) INVALID We have not yet seen a non-whitespace character. -** -** (1) START At the beginning or end of an SQL statement. This routine -** returns 1 if it ends in the START state and 0 if it ends -** in any other state. -** -** (2) NORMAL We are in the middle of statement which ends with a single -** semicolon. -** -** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of -** a statement. -** -** (4) CREATE The keyword CREATE has been seen at the beginning of a -** statement, possibly preceeded by EXPLAIN and/or followed by -** TEMP or TEMPORARY -** -** (5) TRIGGER We are in the middle of a trigger definition that must be -** ended by a semicolon, the keyword END, and another semicolon. -** -** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at -** the end of a trigger definition. -** -** (7) END We've seen the ";END" of the ";END;" that occurs at the end -** of a trigger difinition. -** -** Transitions between states above are determined by tokens extracted -** from the input. The following tokens are significant: -** -** (0) tkSEMI A semicolon. -** (1) tkWS Whitespace. -** (2) tkOTHER Any other SQL token. -** (3) tkEXPLAIN The "explain" keyword. -** (4) tkCREATE The "create" keyword. -** (5) tkTEMP The "temp" or "temporary" keyword. -** (6) tkTRIGGER The "trigger" keyword. -** (7) tkEND The "end" keyword. -** -** Whitespace never causes a state transition and is always ignored. -** This means that a SQL string of all whitespace is invalid. -** -** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed -** to recognize the end of a trigger can be omitted. All we have to do -** is look for a semicolon that is not part of an string or comment. -*/ -SQLITE_API int sqlite3_complete(const char *zSql){ - u8 state = 0; /* Current state, using numbers defined in header comment */ - u8 token; /* Value of the next token */ - -#ifndef SQLITE_OMIT_TRIGGER - /* A complex statement machine used to detect the end of a CREATE TRIGGER - ** statement. This is the normal case. - */ - static const u8 trans[8][8] = { - /* Token: */ - /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ - /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, }, - /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, }, - /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, }, - /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, }, - /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, - /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, - /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, - /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, - }; -#else - /* If triggers are not supported by this compile then the statement machine - ** used to detect the end of a statement is much simplier - */ - static const u8 trans[3][3] = { - /* Token: */ - /* State: ** SEMI WS OTHER */ - /* 0 INVALID: */ { 1, 0, 2, }, - /* 1 START: */ { 1, 1, 2, }, - /* 2 NORMAL: */ { 1, 2, 2, }, - }; -#endif /* SQLITE_OMIT_TRIGGER */ - - while( *zSql ){ - switch( *zSql ){ - case ';': { /* A semicolon */ - token = tkSEMI; - break; - } - case ' ': - case '\r': - case '\t': - case '\n': - case '\f': { /* White space is ignored */ - token = tkWS; - break; - } - case '/': { /* C-style comments */ - if( zSql[1]!='*' ){ - token = tkOTHER; - break; - } - zSql += 2; - while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } - if( zSql[0]==0 ) return 0; - zSql++; - token = tkWS; - break; - } - case '-': { /* SQL-style comments from "--" to end of line */ - if( zSql[1]!='-' ){ - token = tkOTHER; - break; - } - while( *zSql && *zSql!='\n' ){ zSql++; } - if( *zSql==0 ) return state==1; - token = tkWS; - break; - } - case '[': { /* Microsoft-style identifiers in [...] */ - zSql++; - while( *zSql && *zSql!=']' ){ zSql++; } - if( *zSql==0 ) return 0; - token = tkOTHER; - break; - } - case '`': /* Grave-accent quoted symbols used by MySQL */ - case '"': /* single- and double-quoted strings */ - case '\'': { - int c = *zSql; - zSql++; - while( *zSql && *zSql!=c ){ zSql++; } - if( *zSql==0 ) return 0; - token = tkOTHER; - break; - } - default: { -#ifdef SQLITE_EBCDIC - unsigned char c; -#endif - if( IdChar((u8)*zSql) ){ - /* Keywords and unquoted identifiers */ - int nId; - for(nId=1; IdChar(zSql[nId]); nId++){} -#ifdef SQLITE_OMIT_TRIGGER - token = tkOTHER; -#else - switch( *zSql ){ - case 'c': case 'C': { - if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ - token = tkCREATE; - }else{ - token = tkOTHER; - } - break; - } - case 't': case 'T': { - if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ - token = tkTRIGGER; - }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ - token = tkTEMP; - }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ - token = tkTEMP; - }else{ - token = tkOTHER; - } - break; - } - case 'e': case 'E': { - if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ - token = tkEND; - }else -#ifndef SQLITE_OMIT_EXPLAIN - if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ - token = tkEXPLAIN; - }else -#endif - { - token = tkOTHER; - } - break; - } - default: { - token = tkOTHER; - break; - } - } -#endif /* SQLITE_OMIT_TRIGGER */ - zSql += nId-1; - }else{ - /* Operators and special symbols */ - token = tkOTHER; - } - break; - } - } - state = trans[state][token]; - zSql++; - } - return state==1; -} - -#ifndef SQLITE_OMIT_UTF16 -/* -** This routine is the same as the sqlite3_complete() routine described -** above, except that the parameter is required to be UTF-16 encoded, not -** UTF-8. -*/ -SQLITE_API int sqlite3_complete16(const void *zSql){ - sqlite3_value *pVal; - char const *zSql8; - int rc = SQLITE_NOMEM; - -#ifndef SQLITE_OMIT_AUTOINIT - rc = sqlite3_initialize(); - if( rc ) return rc; -#endif - pVal = sqlite3ValueNew(0); - sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); - zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); - if( zSql8 ){ - rc = sqlite3_complete(zSql8); - }else{ - rc = SQLITE_NOMEM; - } - sqlite3ValueFree(pVal); - return sqlite3ApiExit(0, rc); -} -#endif /* SQLITE_OMIT_UTF16 */ -#endif /* SQLITE_OMIT_COMPLETE */ - -/************** End of complete.c ********************************************/ -/************** Begin file main.c ********************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Main file for the SQLite library. The routines in this file -** implement the programmer interface to the library. Routines in -** other files are for internal use by SQLite and should not be -** accessed by users of the library. -*/ - -#ifdef SQLITE_ENABLE_FTS3 -/************** Include fts3.h in the middle of main.c ***********************/ -/************** Begin file fts3.h ********************************************/ -/* -** 2006 Oct 10 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This header file is used by programs that want to link against the -** FTS3 library. All it does is declare the sqlite3Fts3Init() interface. -*/ - -#if 0 -extern "C" { -#endif /* __cplusplus */ - -SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db); - -#if 0 -} /* extern "C" */ -#endif /* __cplusplus */ - -/************** End of fts3.h ************************************************/ -/************** Continuing where we left off in main.c ***********************/ -#endif -#ifdef SQLITE_ENABLE_RTREE -/************** Include rtree.h in the middle of main.c **********************/ -/************** Begin file rtree.h *******************************************/ -/* -** 2008 May 26 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This header file is used by programs that want to link against the -** RTREE library. All it does is declare the sqlite3RtreeInit() interface. -*/ - -#if 0 -extern "C" { -#endif /* __cplusplus */ - -SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db); - -#if 0 -} /* extern "C" */ -#endif /* __cplusplus */ - -/************** End of rtree.h ***********************************************/ -/************** Continuing where we left off in main.c ***********************/ -#endif -#ifdef SQLITE_ENABLE_ICU -/************** Include sqliteicu.h in the middle of main.c ******************/ -/************** Begin file sqliteicu.h ***************************************/ -/* -** 2008 May 26 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This header file is used by programs that want to link against the -** ICU extension. All it does is declare the sqlite3IcuInit() interface. -*/ - -#if 0 -extern "C" { -#endif /* __cplusplus */ - -SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db); - -#if 0 -} /* extern "C" */ -#endif /* __cplusplus */ - - -/************** End of sqliteicu.h *******************************************/ -/************** Continuing where we left off in main.c ***********************/ -#endif - -#ifndef SQLITE_AMALGAMATION -/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant -** contains the text of SQLITE_VERSION macro. -*/ -SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; -#endif - -/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns -** a pointer to the to the sqlite3_version[] string constant. -*/ -SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } - -/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a -** pointer to a string constant whose value is the same as the -** SQLITE_SOURCE_ID C preprocessor macro. -*/ -SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } - -/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function -** returns an integer equal to SQLITE_VERSION_NUMBER. -*/ -SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } - -/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns -** zero if and only if SQLite was compiled with mutexing code omitted due to -** the SQLITE_THREADSAFE compile-time option being set to 0. -*/ -SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } - -#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) -/* -** If the following function pointer is not NULL and if -** SQLITE_ENABLE_IOTRACE is enabled, then messages describing -** I/O active are written using this function. These messages -** are intended for debugging activity only. -*/ -SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0; -#endif - -/* -** If the following global variable points to a string which is the -** name of a directory, then that directory will be used to store -** temporary files. -** -** See also the "PRAGMA temp_store_directory" SQL command. -*/ -SQLITE_API char *sqlite3_temp_directory = 0; - -/* -** If the following global variable points to a string which is the -** name of a directory, then that directory will be used to store -** all database files specified with a relative pathname. -** -** See also the "PRAGMA data_store_directory" SQL command. -*/ -SQLITE_API char *sqlite3_data_directory = 0; - -/* -** Initialize SQLite. -** -** This routine must be called to initialize the memory allocation, -** VFS, and mutex subsystems prior to doing any serious work with -** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT -** this routine will be called automatically by key routines such as -** sqlite3_open(). -** -** This routine is a no-op except on its very first call for the process, -** or for the first call after a call to sqlite3_shutdown. -** -** The first thread to call this routine runs the initialization to -** completion. If subsequent threads call this routine before the first -** thread has finished the initialization process, then the subsequent -** threads must block until the first thread finishes with the initialization. -** -** The first thread might call this routine recursively. Recursive -** calls to this routine should not block, of course. Otherwise the -** initialization process would never complete. -** -** Let X be the first thread to enter this routine. Let Y be some other -** thread. Then while the initial invocation of this routine by X is -** incomplete, it is required that: -** -** * Calls to this routine from Y must block until the outer-most -** call by X completes. -** -** * Recursive calls to this routine from thread X return immediately -** without blocking. -*/ -SQLITE_API int sqlite3_initialize(void){ - MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ - int rc; /* Result code */ - -#ifdef SQLITE_OMIT_WSD - rc = sqlite3_wsd_init(4096, 24); - if( rc!=SQLITE_OK ){ - return rc; - } -#endif - - /* If SQLite is already completely initialized, then this call - ** to sqlite3_initialize() should be a no-op. But the initialization - ** must be complete. So isInit must not be set until the very end - ** of this routine. - */ - if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; - -#ifdef SQLITE_ENABLE_SQLLOG - { - extern void sqlite3_init_sqllog(void); - sqlite3_init_sqllog(); - } -#endif - - /* Make sure the mutex subsystem is initialized. If unable to - ** initialize the mutex subsystem, return early with the error. - ** If the system is so sick that we are unable to allocate a mutex, - ** there is not much SQLite is going to be able to do. - ** - ** The mutex subsystem must take care of serializing its own - ** initialization. - */ - rc = sqlite3MutexInit(); - if( rc ) return rc; - - /* Initialize the malloc() system and the recursive pInitMutex mutex. - ** This operation is protected by the STATIC_MASTER mutex. Note that - ** MutexAlloc() is called for a static mutex prior to initializing the - ** malloc subsystem - this implies that the allocation of a static - ** mutex must not require support from the malloc subsystem. - */ - MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) - sqlite3_mutex_enter(pMaster); - sqlite3GlobalConfig.isMutexInit = 1; - if( !sqlite3GlobalConfig.isMallocInit ){ - rc = sqlite3MallocInit(); - } - if( rc==SQLITE_OK ){ - sqlite3GlobalConfig.isMallocInit = 1; - if( !sqlite3GlobalConfig.pInitMutex ){ - sqlite3GlobalConfig.pInitMutex = - sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); - if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ - rc = SQLITE_NOMEM; - } - } - } - if( rc==SQLITE_OK ){ - sqlite3GlobalConfig.nRefInitMutex++; - } - sqlite3_mutex_leave(pMaster); - - /* If rc is not SQLITE_OK at this point, then either the malloc - ** subsystem could not be initialized or the system failed to allocate - ** the pInitMutex mutex. Return an error in either case. */ - if( rc!=SQLITE_OK ){ - return rc; - } - - /* Do the rest of the initialization under the recursive mutex so - ** that we will be able to handle recursive calls into - ** sqlite3_initialize(). The recursive calls normally come through - ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other - ** recursive calls might also be possible. - ** - ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls - ** to the xInit method, so the xInit method need not be threadsafe. - ** - ** The following mutex is what serializes access to the appdef pcache xInit - ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the - ** call to sqlite3PcacheInitialize(). - */ - sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); - if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ - FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); - sqlite3GlobalConfig.inProgress = 1; - memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); - sqlite3RegisterGlobalFunctions(); - if( sqlite3GlobalConfig.isPCacheInit==0 ){ - rc = sqlite3PcacheInitialize(); - } - if( rc==SQLITE_OK ){ - sqlite3GlobalConfig.isPCacheInit = 1; - rc = sqlite3OsInit(); - } - if( rc==SQLITE_OK ){ - sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, - sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); - sqlite3GlobalConfig.isInit = 1; - } - sqlite3GlobalConfig.inProgress = 0; - } - sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); - - /* Go back under the static mutex and clean up the recursive - ** mutex to prevent a resource leak. - */ - sqlite3_mutex_enter(pMaster); - sqlite3GlobalConfig.nRefInitMutex--; - if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ - assert( sqlite3GlobalConfig.nRefInitMutex==0 ); - sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); - sqlite3GlobalConfig.pInitMutex = 0; - } - sqlite3_mutex_leave(pMaster); - - /* The following is just a sanity check to make sure SQLite has - ** been compiled correctly. It is important to run this code, but - ** we don't want to run it too often and soak up CPU cycles for no - ** reason. So we run it once during initialization. - */ -#ifndef NDEBUG -#ifndef SQLITE_OMIT_FLOATING_POINT - /* This section of code's only "output" is via assert() statements. */ - if ( rc==SQLITE_OK ){ - u64 x = (((u64)1)<<63)-1; - double y; - assert(sizeof(x)==8); - assert(sizeof(x)==sizeof(y)); - memcpy(&y, &x, 8); - assert( sqlite3IsNaN(y) ); - } -#endif -#endif - - /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT - ** compile-time option. - */ -#ifdef SQLITE_EXTRA_INIT - if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ - int SQLITE_EXTRA_INIT(const char*); - rc = SQLITE_EXTRA_INIT(0); - } -#endif - - return rc; -} - -/* -** Undo the effects of sqlite3_initialize(). Must not be called while -** there are outstanding database connections or memory allocations or -** while any part of SQLite is otherwise in use in any thread. This -** routine is not threadsafe. But it is safe to invoke this routine -** on when SQLite is already shut down. If SQLite is already shut down -** when this routine is invoked, then this routine is a harmless no-op. -*/ -SQLITE_API int sqlite3_shutdown(void){ - if( sqlite3GlobalConfig.isInit ){ -#ifdef SQLITE_EXTRA_SHUTDOWN - void SQLITE_EXTRA_SHUTDOWN(void); - SQLITE_EXTRA_SHUTDOWN(); -#endif - sqlite3_os_end(); - sqlite3_reset_auto_extension(); - sqlite3GlobalConfig.isInit = 0; - } - if( sqlite3GlobalConfig.isPCacheInit ){ - sqlite3PcacheShutdown(); - sqlite3GlobalConfig.isPCacheInit = 0; - } - if( sqlite3GlobalConfig.isMallocInit ){ - sqlite3MallocEnd(); - sqlite3GlobalConfig.isMallocInit = 0; - -#ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES - /* The heap subsystem has now been shutdown and these values are supposed - ** to be NULL or point to memory that was obtained from sqlite3_malloc(), - ** which would rely on that heap subsystem; therefore, make sure these - ** values cannot refer to heap memory that was just invalidated when the - ** heap subsystem was shutdown. This is only done if the current call to - ** this function resulted in the heap subsystem actually being shutdown. - */ - sqlite3_data_directory = 0; - sqlite3_temp_directory = 0; -#endif - } - if( sqlite3GlobalConfig.isMutexInit ){ - sqlite3MutexEnd(); - sqlite3GlobalConfig.isMutexInit = 0; - } - - return SQLITE_OK; -} - -/* -** This API allows applications to modify the global configuration of -** the SQLite library at run-time. -** -** This routine should only be called when there are no outstanding -** database connections or memory allocations. This routine is not -** threadsafe. Failure to heed these warnings can lead to unpredictable -** behavior. -*/ -SQLITE_API int sqlite3_config(int op, ...){ - va_list ap; - int rc = SQLITE_OK; - - /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while - ** the SQLite library is in use. */ - if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; - - va_start(ap, op); - switch( op ){ - - /* Mutex configuration options are only available in a threadsafe - ** compile. - */ -#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 - case SQLITE_CONFIG_SINGLETHREAD: { - /* Disable all mutexing */ - sqlite3GlobalConfig.bCoreMutex = 0; - sqlite3GlobalConfig.bFullMutex = 0; - break; - } - case SQLITE_CONFIG_MULTITHREAD: { - /* Disable mutexing of database connections */ - /* Enable mutexing of core data structures */ - sqlite3GlobalConfig.bCoreMutex = 1; - sqlite3GlobalConfig.bFullMutex = 0; - break; - } - case SQLITE_CONFIG_SERIALIZED: { - /* Enable all mutexing */ - sqlite3GlobalConfig.bCoreMutex = 1; - sqlite3GlobalConfig.bFullMutex = 1; - break; - } - case SQLITE_CONFIG_MUTEX: { - /* Specify an alternative mutex implementation */ - sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); - break; - } - case SQLITE_CONFIG_GETMUTEX: { - /* Retrieve the current mutex implementation */ - *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; - break; - } -#endif - - - case SQLITE_CONFIG_MALLOC: { - /* Specify an alternative malloc implementation */ - sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); - break; - } - case SQLITE_CONFIG_GETMALLOC: { - /* Retrieve the current malloc() implementation */ - if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); - *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; - break; - } - case SQLITE_CONFIG_MEMSTATUS: { - /* Enable or disable the malloc status collection */ - sqlite3GlobalConfig.bMemstat = va_arg(ap, int); - break; - } - case SQLITE_CONFIG_SCRATCH: { - /* Designate a buffer for scratch memory space */ - sqlite3GlobalConfig.pScratch = va_arg(ap, void*); - sqlite3GlobalConfig.szScratch = va_arg(ap, int); - sqlite3GlobalConfig.nScratch = va_arg(ap, int); - break; - } - case SQLITE_CONFIG_PAGECACHE: { - /* Designate a buffer for page cache memory space */ - sqlite3GlobalConfig.pPage = va_arg(ap, void*); - sqlite3GlobalConfig.szPage = va_arg(ap, int); - sqlite3GlobalConfig.nPage = va_arg(ap, int); - break; - } - - case SQLITE_CONFIG_PCACHE: { - /* no-op */ - break; - } - case SQLITE_CONFIG_GETPCACHE: { - /* now an error */ - rc = SQLITE_ERROR; - break; - } - - case SQLITE_CONFIG_PCACHE2: { - /* Specify an alternative page cache implementation */ - sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); - break; - } - case SQLITE_CONFIG_GETPCACHE2: { - if( sqlite3GlobalConfig.pcache2.xInit==0 ){ - sqlite3PCacheSetDefault(); - } - *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; - break; - } - -#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) - case SQLITE_CONFIG_HEAP: { - /* Designate a buffer for heap memory space */ - sqlite3GlobalConfig.pHeap = va_arg(ap, void*); - sqlite3GlobalConfig.nHeap = va_arg(ap, int); - sqlite3GlobalConfig.mnReq = va_arg(ap, int); - - if( sqlite3GlobalConfig.mnReq<1 ){ - sqlite3GlobalConfig.mnReq = 1; - }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ - /* cap min request size at 2^12 */ - sqlite3GlobalConfig.mnReq = (1<<12); - } - - if( sqlite3GlobalConfig.pHeap==0 ){ - /* If the heap pointer is NULL, then restore the malloc implementation - ** back to NULL pointers too. This will cause the malloc to go - ** back to its default implementation when sqlite3_initialize() is - ** run. - */ - memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); - }else{ - /* The heap pointer is not NULL, then install one of the - ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor - ** ENABLE_MEMSYS5 is defined, return an error. - */ -#ifdef SQLITE_ENABLE_MEMSYS3 - sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); -#endif -#ifdef SQLITE_ENABLE_MEMSYS5 - sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); -#endif - } - break; - } -#endif - - case SQLITE_CONFIG_LOOKASIDE: { - sqlite3GlobalConfig.szLookaside = va_arg(ap, int); - sqlite3GlobalConfig.nLookaside = va_arg(ap, int); - break; - } - - /* Record a pointer to the logger funcction and its first argument. - ** The default is NULL. Logging is disabled if the function pointer is - ** NULL. - */ - case SQLITE_CONFIG_LOG: { - /* MSVC is picky about pulling func ptrs from va lists. - ** http://support.microsoft.com/kb/47961 - ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); - */ - typedef void(*LOGFUNC_t)(void*,int,const char*); - sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); - sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); - break; - } - - case SQLITE_CONFIG_URI: { - sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); - break; - } - - case SQLITE_CONFIG_COVERING_INDEX_SCAN: { - sqlite3GlobalConfig.bUseCis = va_arg(ap, int); - break; - } - -#ifdef SQLITE_ENABLE_SQLLOG - case SQLITE_CONFIG_SQLLOG: { - typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); - sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); - sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); - break; - } -#endif - - default: { - rc = SQLITE_ERROR; - break; - } - } - va_end(ap); - return rc; -} - -/* -** Set up the lookaside buffers for a database connection. -** Return SQLITE_OK on success. -** If lookaside is already active, return SQLITE_BUSY. -** -** The sz parameter is the number of bytes in each lookaside slot. -** The cnt parameter is the number of slots. If pStart is NULL the -** space for the lookaside memory is obtained from sqlite3_malloc(). -** If pStart is not NULL then it is sz*cnt bytes of memory to use for -** the lookaside memory. -*/ -static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ - void *pStart; - if( db->lookaside.nOut ){ - return SQLITE_BUSY; - } - /* Free any existing lookaside buffer for this handle before - ** allocating a new one so we don't have to have space for - ** both at the same time. - */ - if( db->lookaside.bMalloced ){ - sqlite3_free(db->lookaside.pStart); - } - /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger - ** than a pointer to be useful. - */ - sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ - if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; - if( cnt<0 ) cnt = 0; - if( sz==0 || cnt==0 ){ - sz = 0; - pStart = 0; - }else if( pBuf==0 ){ - sqlite3BeginBenignMalloc(); - pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ - sqlite3EndBenignMalloc(); - if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; - }else{ - pStart = pBuf; - } - db->lookaside.pStart = pStart; - db->lookaside.pFree = 0; - db->lookaside.sz = (u16)sz; - if( pStart ){ - int i; - LookasideSlot *p; - assert( sz > (int)sizeof(LookasideSlot*) ); - p = (LookasideSlot*)pStart; - for(i=cnt-1; i>=0; i--){ - p->pNext = db->lookaside.pFree; - db->lookaside.pFree = p; - p = (LookasideSlot*)&((u8*)p)[sz]; - } - db->lookaside.pEnd = p; - db->lookaside.bEnabled = 1; - db->lookaside.bMalloced = pBuf==0 ?1:0; - }else{ - db->lookaside.pEnd = 0; - db->lookaside.bEnabled = 0; - db->lookaside.bMalloced = 0; - } - return SQLITE_OK; -} - -/* -** Return the mutex associated with a database connection. -*/ -SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ - return db->mutex; -} - -/* -** Free up as much memory as we can from the given database -** connection. -*/ -SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){ - int i; - sqlite3_mutex_enter(db->mutex); - sqlite3BtreeEnterAll(db); - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - Pager *pPager = sqlite3BtreePager(pBt); - sqlite3PagerShrink(pPager); - } - } - sqlite3BtreeLeaveAll(db); - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -/* -** Configuration settings for an individual database connection -*/ -SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){ - va_list ap; - int rc; - va_start(ap, op); - switch( op ){ - case SQLITE_DBCONFIG_LOOKASIDE: { - void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ - int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ - int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ - rc = setupLookaside(db, pBuf, sz, cnt); - break; - } - default: { - static const struct { - int op; /* The opcode */ - u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ - } aFlagOp[] = { - { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, - { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, - }; - unsigned int i; - rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ - for(i=0; i<ArraySize(aFlagOp); i++){ - if( aFlagOp[i].op==op ){ - int onoff = va_arg(ap, int); - int *pRes = va_arg(ap, int*); - int oldFlags = db->flags; - if( onoff>0 ){ - db->flags |= aFlagOp[i].mask; - }else if( onoff==0 ){ - db->flags &= ~aFlagOp[i].mask; - } - if( oldFlags!=db->flags ){ - sqlite3ExpirePreparedStatements(db); - } - if( pRes ){ - *pRes = (db->flags & aFlagOp[i].mask)!=0; - } - rc = SQLITE_OK; - break; - } - } - break; - } - } - va_end(ap); - return rc; -} - - -/* -** Return true if the buffer z[0..n-1] contains all spaces. -*/ -static int allSpaces(const char *z, int n){ - while( n>0 && z[n-1]==' ' ){ n--; } - return n==0; -} - -/* -** This is the default collating function named "BINARY" which is always -** available. -** -** If the padFlag argument is not NULL then space padding at the end -** of strings is ignored. This implements the RTRIM collation. -*/ -static int binCollFunc( - void *padFlag, - int nKey1, const void *pKey1, - int nKey2, const void *pKey2 -){ - int rc, n; - n = nKey1<nKey2 ? nKey1 : nKey2; - rc = memcmp(pKey1, pKey2, n); - if( rc==0 ){ - if( padFlag - && allSpaces(((char*)pKey1)+n, nKey1-n) - && allSpaces(((char*)pKey2)+n, nKey2-n) - ){ - /* Leave rc unchanged at 0 */ - }else{ - rc = nKey1 - nKey2; - } - } - return rc; -} - -/* -** Another built-in collating sequence: NOCASE. -** -** This collating sequence is intended to be used for "case independant -** comparison". SQLite's knowledge of upper and lower case equivalents -** extends only to the 26 characters used in the English language. -** -** At the moment there is only a UTF-8 implementation. -*/ -static int nocaseCollatingFunc( - void *NotUsed, - int nKey1, const void *pKey1, - int nKey2, const void *pKey2 -){ - int r = sqlite3StrNICmp( - (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); - UNUSED_PARAMETER(NotUsed); - if( 0==r ){ - r = nKey1-nKey2; - } - return r; -} - -/* -** Return the ROWID of the most recent insert -*/ -SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ - return db->lastRowid; -} - -/* -** Return the number of changes in the most recent call to sqlite3_exec(). -*/ -SQLITE_API int sqlite3_changes(sqlite3 *db){ - return db->nChange; -} - -/* -** Return the number of changes since the database handle was opened. -*/ -SQLITE_API int sqlite3_total_changes(sqlite3 *db){ - return db->nTotalChange; -} - -/* -** Close all open savepoints. This function only manipulates fields of the -** database handle object, it does not close any savepoints that may be open -** at the b-tree/pager level. -*/ -SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){ - while( db->pSavepoint ){ - Savepoint *pTmp = db->pSavepoint; - db->pSavepoint = pTmp->pNext; - sqlite3DbFree(db, pTmp); - } - db->nSavepoint = 0; - db->nStatement = 0; - db->isTransactionSavepoint = 0; -} - -/* -** Invoke the destructor function associated with FuncDef p, if any. Except, -** if this is not the last copy of the function, do not invoke it. Multiple -** copies of a single function are created when create_function() is called -** with SQLITE_ANY as the encoding. -*/ -static void functionDestroy(sqlite3 *db, FuncDef *p){ - FuncDestructor *pDestructor = p->pDestructor; - if( pDestructor ){ - pDestructor->nRef--; - if( pDestructor->nRef==0 ){ - pDestructor->xDestroy(pDestructor->pUserData); - sqlite3DbFree(db, pDestructor); - } - } -} - -/* -** Disconnect all sqlite3_vtab objects that belong to database connection -** db. This is called when db is being closed. -*/ -static void disconnectAllVtab(sqlite3 *db){ -#ifndef SQLITE_OMIT_VIRTUALTABLE - int i; - sqlite3BtreeEnterAll(db); - for(i=0; i<db->nDb; i++){ - Schema *pSchema = db->aDb[i].pSchema; - if( db->aDb[i].pSchema ){ - HashElem *p; - for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ - Table *pTab = (Table *)sqliteHashData(p); - if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); - } - } - } - sqlite3BtreeLeaveAll(db); -#else - UNUSED_PARAMETER(db); -#endif -} - -/* -** Return TRUE if database connection db has unfinalized prepared -** statements or unfinished sqlite3_backup objects. -*/ -static int connectionIsBusy(sqlite3 *db){ - int j; - assert( sqlite3_mutex_held(db->mutex) ); - if( db->pVdbe ) return 1; - for(j=0; j<db->nDb; j++){ - Btree *pBt = db->aDb[j].pBt; - if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; - } - return 0; -} - -/* -** Close an existing SQLite database -*/ -static int sqlite3Close(sqlite3 *db, int forceZombie){ - if( !db ){ - return SQLITE_OK; - } - if( !sqlite3SafetyCheckSickOrOk(db) ){ - return SQLITE_MISUSE_BKPT; - } - sqlite3_mutex_enter(db->mutex); - - /* Force xDisconnect calls on all virtual tables */ - disconnectAllVtab(db); - - /* If a transaction is open, the disconnectAllVtab() call above - ** will not have called the xDisconnect() method on any virtual - ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() - ** call will do so. We need to do this before the check for active - ** SQL statements below, as the v-table implementation may be storing - ** some prepared statements internally. - */ - sqlite3VtabRollback(db); - - /* Legacy behavior (sqlite3_close() behavior) is to return - ** SQLITE_BUSY if the connection can not be closed immediately. - */ - if( !forceZombie && connectionIsBusy(db) ){ - sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " - "statements or unfinished backups"); - sqlite3_mutex_leave(db->mutex); - return SQLITE_BUSY; - } - -#ifdef SQLITE_ENABLE_SQLLOG - if( sqlite3GlobalConfig.xSqllog ){ - /* Closing the handle. Fourth parameter is passed the value 2. */ - sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); - } -#endif - - /* Convert the connection into a zombie and then close it. - */ - db->magic = SQLITE_MAGIC_ZOMBIE; - sqlite3LeaveMutexAndCloseZombie(db); - return SQLITE_OK; -} - -/* -** Two variations on the public interface for closing a database -** connection. The sqlite3_close() version returns SQLITE_BUSY and -** leaves the connection option if there are unfinalized prepared -** statements or unfinished sqlite3_backups. The sqlite3_close_v2() -** version forces the connection to become a zombie if there are -** unclosed resources, and arranges for deallocation when the last -** prepare statement or sqlite3_backup closes. -*/ -SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } -SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } - - -/* -** Close the mutex on database connection db. -** -** Furthermore, if database connection db is a zombie (meaning that there -** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and -** every sqlite3_stmt has now been finalized and every sqlite3_backup has -** finished, then free all resources. -*/ -SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ - HashElem *i; /* Hash table iterator */ - int j; - - /* If there are outstanding sqlite3_stmt or sqlite3_backup objects - ** or if the connection has not yet been closed by sqlite3_close_v2(), - ** then just leave the mutex and return. - */ - if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ - sqlite3_mutex_leave(db->mutex); - return; - } - - /* If we reach this point, it means that the database connection has - ** closed all sqlite3_stmt and sqlite3_backup objects and has been - ** passed to sqlite3_close (meaning that it is a zombie). Therefore, - ** go ahead and free all resources. - */ - - /* Free any outstanding Savepoint structures. */ - sqlite3CloseSavepoints(db); - - /* Close all database connections */ - for(j=0; j<db->nDb; j++){ - struct Db *pDb = &db->aDb[j]; - if( pDb->pBt ){ - sqlite3BtreeClose(pDb->pBt); - pDb->pBt = 0; - if( j!=1 ){ - pDb->pSchema = 0; - } - } - } - /* Clear the TEMP schema separately and last */ - if( db->aDb[1].pSchema ){ - sqlite3SchemaClear(db->aDb[1].pSchema); - } - sqlite3VtabUnlockList(db); - - /* Free up the array of auxiliary databases */ - sqlite3CollapseDatabaseArray(db); - assert( db->nDb<=2 ); - assert( db->aDb==db->aDbStatic ); - - /* Tell the code in notify.c that the connection no longer holds any - ** locks and does not require any further unlock-notify callbacks. - */ - sqlite3ConnectionClosed(db); - - for(j=0; j<ArraySize(db->aFunc.a); j++){ - FuncDef *pNext, *pHash, *p; - for(p=db->aFunc.a[j]; p; p=pHash){ - pHash = p->pHash; - while( p ){ - functionDestroy(db, p); - pNext = p->pNext; - sqlite3DbFree(db, p); - p = pNext; - } - } - } - for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ - CollSeq *pColl = (CollSeq *)sqliteHashData(i); - /* Invoke any destructors registered for collation sequence user data. */ - for(j=0; j<3; j++){ - if( pColl[j].xDel ){ - pColl[j].xDel(pColl[j].pUser); - } - } - sqlite3DbFree(db, pColl); - } - sqlite3HashClear(&db->aCollSeq); -#ifndef SQLITE_OMIT_VIRTUALTABLE - for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ - Module *pMod = (Module *)sqliteHashData(i); - if( pMod->xDestroy ){ - pMod->xDestroy(pMod->pAux); - } - sqlite3DbFree(db, pMod); - } - sqlite3HashClear(&db->aModule); -#endif - - sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ - if( db->pErr ){ - sqlite3ValueFree(db->pErr); - } - sqlite3CloseExtensions(db); - - db->magic = SQLITE_MAGIC_ERROR; - - /* The temp-database schema is allocated differently from the other schema - ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). - ** So it needs to be freed here. Todo: Why not roll the temp schema into - ** the same sqliteMalloc() as the one that allocates the database - ** structure? - */ - sqlite3DbFree(db, db->aDb[1].pSchema); - sqlite3_mutex_leave(db->mutex); - db->magic = SQLITE_MAGIC_CLOSED; - sqlite3_mutex_free(db->mutex); - assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ - if( db->lookaside.bMalloced ){ - sqlite3_free(db->lookaside.pStart); - } - sqlite3_free(db); -} - -/* -** Rollback all database files. If tripCode is not SQLITE_OK, then -** any open cursors are invalidated ("tripped" - as in "tripping a circuit -** breaker") and made to return tripCode if there are any further -** attempts to use that cursor. -*/ -SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){ - int i; - int inTrans = 0; - assert( sqlite3_mutex_held(db->mutex) ); - sqlite3BeginBenignMalloc(); - for(i=0; i<db->nDb; i++){ - Btree *p = db->aDb[i].pBt; - if( p ){ - if( sqlite3BtreeIsInTrans(p) ){ - inTrans = 1; - } - sqlite3BtreeRollback(p, tripCode); - db->aDb[i].inTrans = 0; - } - } - sqlite3VtabRollback(db); - sqlite3EndBenignMalloc(); - - if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ - sqlite3ExpirePreparedStatements(db); - sqlite3ResetAllSchemasOfConnection(db); - } - - /* Any deferred constraint violations have now been resolved. */ - db->nDeferredCons = 0; - - /* If one has been configured, invoke the rollback-hook callback */ - if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ - db->xRollbackCallback(db->pRollbackArg); - } -} - -/* -** Return a static string that describes the kind of error specified in the -** argument. -*/ -SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){ - static const char* const aMsg[] = { - /* SQLITE_OK */ "not an error", - /* SQLITE_ERROR */ "SQL logic error or missing database", - /* SQLITE_INTERNAL */ 0, - /* SQLITE_PERM */ "access permission denied", - /* SQLITE_ABORT */ "callback requested query abort", - /* SQLITE_BUSY */ "database is locked", - /* SQLITE_LOCKED */ "database table is locked", - /* SQLITE_NOMEM */ "out of memory", - /* SQLITE_READONLY */ "attempt to write a readonly database", - /* SQLITE_INTERRUPT */ "interrupted", - /* SQLITE_IOERR */ "disk I/O error", - /* SQLITE_CORRUPT */ "database disk image is malformed", - /* SQLITE_NOTFOUND */ "unknown operation", - /* SQLITE_FULL */ "database or disk is full", - /* SQLITE_CANTOPEN */ "unable to open database file", - /* SQLITE_PROTOCOL */ "locking protocol", - /* SQLITE_EMPTY */ "table contains no data", - /* SQLITE_SCHEMA */ "database schema has changed", - /* SQLITE_TOOBIG */ "string or blob too big", - /* SQLITE_CONSTRAINT */ "constraint failed", - /* SQLITE_MISMATCH */ "datatype mismatch", - /* SQLITE_MISUSE */ "library routine called out of sequence", - /* SQLITE_NOLFS */ "large file support is disabled", - /* SQLITE_AUTH */ "authorization denied", - /* SQLITE_FORMAT */ "auxiliary database format error", - /* SQLITE_RANGE */ "bind or column index out of range", - /* SQLITE_NOTADB */ "file is encrypted or is not a database", - }; - const char *zErr = "unknown error"; - switch( rc ){ - case SQLITE_ABORT_ROLLBACK: { - zErr = "abort due to ROLLBACK"; - break; - } - default: { - rc &= 0xff; - if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ - zErr = aMsg[rc]; - } - break; - } - } - return zErr; -} - -/* -** This routine implements a busy callback that sleeps and tries -** again until a timeout value is reached. The timeout value is -** an integer number of milliseconds passed in as the first -** argument. -*/ -static int sqliteDefaultBusyCallback( - void *ptr, /* Database connection */ - int count /* Number of times table has been busy */ -){ -#if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) - static const u8 delays[] = - { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; - static const u8 totals[] = - { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; -# define NDELAY ArraySize(delays) - sqlite3 *db = (sqlite3 *)ptr; - int timeout = db->busyTimeout; - int delay, prior; - - assert( count>=0 ); - if( count < NDELAY ){ - delay = delays[count]; - prior = totals[count]; - }else{ - delay = delays[NDELAY-1]; - prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); - } - if( prior + delay > timeout ){ - delay = timeout - prior; - if( delay<=0 ) return 0; - } - sqlite3OsSleep(db->pVfs, delay*1000); - return 1; -#else - sqlite3 *db = (sqlite3 *)ptr; - int timeout = ((sqlite3 *)ptr)->busyTimeout; - if( (count+1)*1000 > timeout ){ - return 0; - } - sqlite3OsSleep(db->pVfs, 1000000); - return 1; -#endif -} - -/* -** Invoke the given busy handler. -** -** This routine is called when an operation failed with a lock. -** If this routine returns non-zero, the lock is retried. If it -** returns 0, the operation aborts with an SQLITE_BUSY error. -*/ -SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){ - int rc; - if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; - rc = p->xFunc(p->pArg, p->nBusy); - if( rc==0 ){ - p->nBusy = -1; - }else{ - p->nBusy++; - } - return rc; -} - -/* -** This routine sets the busy callback for an Sqlite database to the -** given callback function with the given argument. -*/ -SQLITE_API int sqlite3_busy_handler( - sqlite3 *db, - int (*xBusy)(void*,int), - void *pArg -){ - sqlite3_mutex_enter(db->mutex); - db->busyHandler.xFunc = xBusy; - db->busyHandler.pArg = pArg; - db->busyHandler.nBusy = 0; - db->busyTimeout = 0; - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK -/* -** This routine sets the progress callback for an Sqlite database to the -** given callback function with the given argument. The progress callback will -** be invoked every nOps opcodes. -*/ -SQLITE_API void sqlite3_progress_handler( - sqlite3 *db, - int nOps, - int (*xProgress)(void*), - void *pArg -){ - sqlite3_mutex_enter(db->mutex); - if( nOps>0 ){ - db->xProgress = xProgress; - db->nProgressOps = nOps; - db->pProgressArg = pArg; - }else{ - db->xProgress = 0; - db->nProgressOps = 0; - db->pProgressArg = 0; - } - sqlite3_mutex_leave(db->mutex); -} -#endif - - -/* -** This routine installs a default busy handler that waits for the -** specified number of milliseconds before returning 0. -*/ -SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){ - if( ms>0 ){ - sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); - db->busyTimeout = ms; - }else{ - sqlite3_busy_handler(db, 0, 0); - } - return SQLITE_OK; -} - -/* -** Cause any pending operation to stop at its earliest opportunity. -*/ -SQLITE_API void sqlite3_interrupt(sqlite3 *db){ - db->u1.isInterrupted = 1; -} - - -/* -** This function is exactly the same as sqlite3_create_function(), except -** that it is designed to be called by internal code. The difference is -** that if a malloc() fails in sqlite3_create_function(), an error code -** is returned and the mallocFailed flag cleared. -*/ -SQLITE_PRIVATE int sqlite3CreateFunc( - sqlite3 *db, - const char *zFunctionName, - int nArg, - int enc, - void *pUserData, - void (*xFunc)(sqlite3_context*,int,sqlite3_value **), - void (*xStep)(sqlite3_context*,int,sqlite3_value **), - void (*xFinal)(sqlite3_context*), - FuncDestructor *pDestructor -){ - FuncDef *p; - int nName; - - assert( sqlite3_mutex_held(db->mutex) ); - if( zFunctionName==0 || - (xFunc && (xFinal || xStep)) || - (!xFunc && (xFinal && !xStep)) || - (!xFunc && (!xFinal && xStep)) || - (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || - (255<(nName = sqlite3Strlen30( zFunctionName))) ){ - return SQLITE_MISUSE_BKPT; - } - -#ifndef SQLITE_OMIT_UTF16 - /* If SQLITE_UTF16 is specified as the encoding type, transform this - ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the - ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. - ** - ** If SQLITE_ANY is specified, add three versions of the function - ** to the hash table. - */ - if( enc==SQLITE_UTF16 ){ - enc = SQLITE_UTF16NATIVE; - }else if( enc==SQLITE_ANY ){ - int rc; - rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, - pUserData, xFunc, xStep, xFinal, pDestructor); - if( rc==SQLITE_OK ){ - rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, - pUserData, xFunc, xStep, xFinal, pDestructor); - } - if( rc!=SQLITE_OK ){ - return rc; - } - enc = SQLITE_UTF16BE; - } -#else - enc = SQLITE_UTF8; -#endif - - /* Check if an existing function is being overridden or deleted. If so, - ** and there are active VMs, then return SQLITE_BUSY. If a function - ** is being overridden/deleted but there are no active VMs, allow the - ** operation to continue but invalidate all precompiled statements. - */ - p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); - if( p && p->iPrefEnc==enc && p->nArg==nArg ){ - if( db->activeVdbeCnt ){ - sqlite3Error(db, SQLITE_BUSY, - "unable to delete/modify user-function due to active statements"); - assert( !db->mallocFailed ); - return SQLITE_BUSY; - }else{ - sqlite3ExpirePreparedStatements(db); - } - } - - p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); - assert(p || db->mallocFailed); - if( !p ){ - return SQLITE_NOMEM; - } - - /* If an older version of the function with a configured destructor is - ** being replaced invoke the destructor function here. */ - functionDestroy(db, p); - - if( pDestructor ){ - pDestructor->nRef++; - } - p->pDestructor = pDestructor; - p->flags = 0; - p->xFunc = xFunc; - p->xStep = xStep; - p->xFinalize = xFinal; - p->pUserData = pUserData; - p->nArg = (u16)nArg; - return SQLITE_OK; -} - -/* -** Create new user functions. -*/ -SQLITE_API int sqlite3_create_function( - sqlite3 *db, - const char *zFunc, - int nArg, - int enc, - void *p, - void (*xFunc)(sqlite3_context*,int,sqlite3_value **), - void (*xStep)(sqlite3_context*,int,sqlite3_value **), - void (*xFinal)(sqlite3_context*) -){ - return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, - xFinal, 0); -} - -SQLITE_API int sqlite3_create_function_v2( - sqlite3 *db, - const char *zFunc, - int nArg, - int enc, - void *p, - void (*xFunc)(sqlite3_context*,int,sqlite3_value **), - void (*xStep)(sqlite3_context*,int,sqlite3_value **), - void (*xFinal)(sqlite3_context*), - void (*xDestroy)(void *) -){ - int rc = SQLITE_ERROR; - FuncDestructor *pArg = 0; - sqlite3_mutex_enter(db->mutex); - if( xDestroy ){ - pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); - if( !pArg ){ - xDestroy(p); - goto out; - } - pArg->xDestroy = xDestroy; - pArg->pUserData = p; - } - rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); - if( pArg && pArg->nRef==0 ){ - assert( rc!=SQLITE_OK ); - xDestroy(p); - sqlite3DbFree(db, pArg); - } - - out: - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -#ifndef SQLITE_OMIT_UTF16 -SQLITE_API int sqlite3_create_function16( - sqlite3 *db, - const void *zFunctionName, - int nArg, - int eTextRep, - void *p, - void (*xFunc)(sqlite3_context*,int,sqlite3_value**), - void (*xStep)(sqlite3_context*,int,sqlite3_value**), - void (*xFinal)(sqlite3_context*) -){ - int rc; - char *zFunc8; - sqlite3_mutex_enter(db->mutex); - assert( !db->mallocFailed ); - zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); - rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); - sqlite3DbFree(db, zFunc8); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} -#endif - - -/* -** Declare that a function has been overloaded by a virtual table. -** -** If the function already exists as a regular global function, then -** this routine is a no-op. If the function does not exist, then create -** a new one that always throws a run-time error. -** -** When virtual tables intend to provide an overloaded function, they -** should call this routine to make sure the global function exists. -** A global function must exist in order for name resolution to work -** properly. -*/ -SQLITE_API int sqlite3_overload_function( - sqlite3 *db, - const char *zName, - int nArg -){ - int nName = sqlite3Strlen30(zName); - int rc = SQLITE_OK; - sqlite3_mutex_enter(db->mutex); - if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ - rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, - 0, sqlite3InvalidFunction, 0, 0, 0); - } - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -#ifndef SQLITE_OMIT_TRACE -/* -** Register a trace function. The pArg from the previously registered trace -** is returned. -** -** A NULL trace function means that no tracing is executes. A non-NULL -** trace is a pointer to a function that is invoked at the start of each -** SQL statement. -*/ -SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ - void *pOld; - sqlite3_mutex_enter(db->mutex); - pOld = db->pTraceArg; - db->xTrace = xTrace; - db->pTraceArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pOld; -} -/* -** Register a profile function. The pArg from the previously registered -** profile function is returned. -** -** A NULL profile function means that no profiling is executes. A non-NULL -** profile is a pointer to a function that is invoked at the conclusion of -** each SQL statement that is run. -*/ -SQLITE_API void *sqlite3_profile( - sqlite3 *db, - void (*xProfile)(void*,const char*,sqlite_uint64), - void *pArg -){ - void *pOld; - sqlite3_mutex_enter(db->mutex); - pOld = db->pProfileArg; - db->xProfile = xProfile; - db->pProfileArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pOld; -} -#endif /* SQLITE_OMIT_TRACE */ - -/* -** Register a function to be invoked when a transaction commits. -** If the invoked function returns non-zero, then the commit becomes a -** rollback. -*/ -SQLITE_API void *sqlite3_commit_hook( - sqlite3 *db, /* Attach the hook to this database */ - int (*xCallback)(void*), /* Function to invoke on each commit */ - void *pArg /* Argument to the function */ -){ - void *pOld; - sqlite3_mutex_enter(db->mutex); - pOld = db->pCommitArg; - db->xCommitCallback = xCallback; - db->pCommitArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pOld; -} - -/* -** Register a callback to be invoked each time a row is updated, -** inserted or deleted using this database connection. -*/ -SQLITE_API void *sqlite3_update_hook( - sqlite3 *db, /* Attach the hook to this database */ - void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), - void *pArg /* Argument to the function */ -){ - void *pRet; - sqlite3_mutex_enter(db->mutex); - pRet = db->pUpdateArg; - db->xUpdateCallback = xCallback; - db->pUpdateArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pRet; -} - -/* -** Register a callback to be invoked each time a transaction is rolled -** back by this database connection. -*/ -SQLITE_API void *sqlite3_rollback_hook( - sqlite3 *db, /* Attach the hook to this database */ - void (*xCallback)(void*), /* Callback function */ - void *pArg /* Argument to the function */ -){ - void *pRet; - sqlite3_mutex_enter(db->mutex); - pRet = db->pRollbackArg; - db->xRollbackCallback = xCallback; - db->pRollbackArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pRet; -} - -#ifndef SQLITE_OMIT_WAL -/* -** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). -** Invoke sqlite3_wal_checkpoint if the number of frames in the log file -** is greater than sqlite3.pWalArg cast to an integer (the value configured by -** wal_autocheckpoint()). -*/ -SQLITE_PRIVATE int sqlite3WalDefaultHook( - void *pClientData, /* Argument */ - sqlite3 *db, /* Connection */ - const char *zDb, /* Database */ - int nFrame /* Size of WAL */ -){ - if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ - sqlite3BeginBenignMalloc(); - sqlite3_wal_checkpoint(db, zDb); - sqlite3EndBenignMalloc(); - } - return SQLITE_OK; -} -#endif /* SQLITE_OMIT_WAL */ - -/* -** Configure an sqlite3_wal_hook() callback to automatically checkpoint -** a database after committing a transaction if there are nFrame or -** more frames in the log file. Passing zero or a negative value as the -** nFrame parameter disables automatic checkpoints entirely. -** -** The callback registered by this function replaces any existing callback -** registered using sqlite3_wal_hook(). Likewise, registering a callback -** using sqlite3_wal_hook() disables the automatic checkpoint mechanism -** configured by this function. -*/ -SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ -#ifdef SQLITE_OMIT_WAL - UNUSED_PARAMETER(db); - UNUSED_PARAMETER(nFrame); -#else - if( nFrame>0 ){ - sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); - }else{ - sqlite3_wal_hook(db, 0, 0); - } -#endif - return SQLITE_OK; -} - -/* -** Register a callback to be invoked each time a transaction is written -** into the write-ahead-log by this database connection. -*/ -SQLITE_API void *sqlite3_wal_hook( - sqlite3 *db, /* Attach the hook to this db handle */ - int(*xCallback)(void *, sqlite3*, const char*, int), - void *pArg /* First argument passed to xCallback() */ -){ -#ifndef SQLITE_OMIT_WAL - void *pRet; - sqlite3_mutex_enter(db->mutex); - pRet = db->pWalArg; - db->xWalCallback = xCallback; - db->pWalArg = pArg; - sqlite3_mutex_leave(db->mutex); - return pRet; -#else - return 0; -#endif -} - -/* -** Checkpoint database zDb. -*/ -SQLITE_API int sqlite3_wal_checkpoint_v2( - sqlite3 *db, /* Database handle */ - const char *zDb, /* Name of attached database (or NULL) */ - int eMode, /* SQLITE_CHECKPOINT_* value */ - int *pnLog, /* OUT: Size of WAL log in frames */ - int *pnCkpt /* OUT: Total number of frames checkpointed */ -){ -#ifdef SQLITE_OMIT_WAL - return SQLITE_OK; -#else - int rc; /* Return code */ - int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ - - /* Initialize the output variables to -1 in case an error occurs. */ - if( pnLog ) *pnLog = -1; - if( pnCkpt ) *pnCkpt = -1; - - assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); - assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); - assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); - if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ - return SQLITE_MISUSE; - } - - sqlite3_mutex_enter(db->mutex); - if( zDb && zDb[0] ){ - iDb = sqlite3FindDbName(db, zDb); - } - if( iDb<0 ){ - rc = SQLITE_ERROR; - sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); - }else{ - rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); - sqlite3Error(db, rc, 0); - } - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -#endif -} - - -/* -** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points -** to contains a zero-length string, all attached databases are -** checkpointed. -*/ -SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ - return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); -} - -#ifndef SQLITE_OMIT_WAL -/* -** Run a checkpoint on database iDb. This is a no-op if database iDb is -** not currently open in WAL mode. -** -** If a transaction is open on the database being checkpointed, this -** function returns SQLITE_LOCKED and a checkpoint is not attempted. If -** an error occurs while running the checkpoint, an SQLite error code is -** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. -** -** The mutex on database handle db should be held by the caller. The mutex -** associated with the specific b-tree being checkpointed is taken by -** this function while the checkpoint is running. -** -** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are -** checkpointed. If an error is encountered it is returned immediately - -** no attempt is made to checkpoint any remaining databases. -** -** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. -*/ -SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ - int rc = SQLITE_OK; /* Return code */ - int i; /* Used to iterate through attached dbs */ - int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ - - assert( sqlite3_mutex_held(db->mutex) ); - assert( !pnLog || *pnLog==-1 ); - assert( !pnCkpt || *pnCkpt==-1 ); - - for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ - if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ - rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); - pnLog = 0; - pnCkpt = 0; - if( rc==SQLITE_BUSY ){ - bBusy = 1; - rc = SQLITE_OK; - } - } - } - - return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; -} -#endif /* SQLITE_OMIT_WAL */ - -/* -** This function returns true if main-memory should be used instead of -** a temporary file for transient pager files and statement journals. -** The value returned depends on the value of db->temp_store (runtime -** parameter) and the compile time value of SQLITE_TEMP_STORE. The -** following table describes the relationship between these two values -** and this functions return value. -** -** SQLITE_TEMP_STORE db->temp_store Location of temporary database -** ----------------- -------------- ------------------------------ -** 0 any file (return 0) -** 1 1 file (return 0) -** 1 2 memory (return 1) -** 1 0 file (return 0) -** 2 1 file (return 0) -** 2 2 memory (return 1) -** 2 0 memory (return 1) -** 3 any memory (return 1) -*/ -SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){ -#if SQLITE_TEMP_STORE==1 - return ( db->temp_store==2 ); -#endif -#if SQLITE_TEMP_STORE==2 - return ( db->temp_store!=1 ); -#endif -#if SQLITE_TEMP_STORE==3 - return 1; -#endif -#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 - return 0; -#endif -} - -/* -** Return UTF-8 encoded English language explanation of the most recent -** error. -*/ -SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){ - const char *z; - if( !db ){ - return sqlite3ErrStr(SQLITE_NOMEM); - } - if( !sqlite3SafetyCheckSickOrOk(db) ){ - return sqlite3ErrStr(SQLITE_MISUSE_BKPT); - } - sqlite3_mutex_enter(db->mutex); - if( db->mallocFailed ){ - z = sqlite3ErrStr(SQLITE_NOMEM); - }else{ - z = (char*)sqlite3_value_text(db->pErr); - assert( !db->mallocFailed ); - if( z==0 ){ - z = sqlite3ErrStr(db->errCode); - } - } - sqlite3_mutex_leave(db->mutex); - return z; -} - -#ifndef SQLITE_OMIT_UTF16 -/* -** Return UTF-16 encoded English language explanation of the most recent -** error. -*/ -SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){ - static const u16 outOfMem[] = { - 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 - }; - static const u16 misuse[] = { - 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', - 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', - 'c', 'a', 'l', 'l', 'e', 'd', ' ', - 'o', 'u', 't', ' ', - 'o', 'f', ' ', - 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 - }; - - const void *z; - if( !db ){ - return (void *)outOfMem; - } - if( !sqlite3SafetyCheckSickOrOk(db) ){ - return (void *)misuse; - } - sqlite3_mutex_enter(db->mutex); - if( db->mallocFailed ){ - z = (void *)outOfMem; - }else{ - z = sqlite3_value_text16(db->pErr); - if( z==0 ){ - sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), - SQLITE_UTF8, SQLITE_STATIC); - z = sqlite3_value_text16(db->pErr); - } - /* A malloc() may have failed within the call to sqlite3_value_text16() - ** above. If this is the case, then the db->mallocFailed flag needs to - ** be cleared before returning. Do this directly, instead of via - ** sqlite3ApiExit(), to avoid setting the database handle error message. - */ - db->mallocFailed = 0; - } - sqlite3_mutex_leave(db->mutex); - return z; -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** Return the most recent error code generated by an SQLite routine. If NULL is -** passed to this function, we assume a malloc() failed during sqlite3_open(). -*/ -SQLITE_API int sqlite3_errcode(sqlite3 *db){ - if( db && !sqlite3SafetyCheckSickOrOk(db) ){ - return SQLITE_MISUSE_BKPT; - } - if( !db || db->mallocFailed ){ - return SQLITE_NOMEM; - } - return db->errCode & db->errMask; -} -SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){ - if( db && !sqlite3SafetyCheckSickOrOk(db) ){ - return SQLITE_MISUSE_BKPT; - } - if( !db || db->mallocFailed ){ - return SQLITE_NOMEM; - } - return db->errCode; -} - -/* -** Return a string that describes the kind of error specified in the -** argument. For now, this simply calls the internal sqlite3ErrStr() -** function. -*/ -SQLITE_API const char *sqlite3_errstr(int rc){ - return sqlite3ErrStr(rc); -} - -/* -** Create a new collating function for database "db". The name is zName -** and the encoding is enc. -*/ -static int createCollation( - sqlite3* db, - const char *zName, - u8 enc, - void* pCtx, - int(*xCompare)(void*,int,const void*,int,const void*), - void(*xDel)(void*) -){ - CollSeq *pColl; - int enc2; - int nName = sqlite3Strlen30(zName); - - assert( sqlite3_mutex_held(db->mutex) ); - - /* If SQLITE_UTF16 is specified as the encoding type, transform this - ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the - ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. - */ - enc2 = enc; - testcase( enc2==SQLITE_UTF16 ); - testcase( enc2==SQLITE_UTF16_ALIGNED ); - if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ - enc2 = SQLITE_UTF16NATIVE; - } - if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ - return SQLITE_MISUSE_BKPT; - } - - /* Check if this call is removing or replacing an existing collation - ** sequence. If so, and there are active VMs, return busy. If there - ** are no active VMs, invalidate any pre-compiled statements. - */ - pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); - if( pColl && pColl->xCmp ){ - if( db->activeVdbeCnt ){ - sqlite3Error(db, SQLITE_BUSY, - "unable to delete/modify collation sequence due to active statements"); - return SQLITE_BUSY; - } - sqlite3ExpirePreparedStatements(db); - - /* If collation sequence pColl was created directly by a call to - ** sqlite3_create_collation, and not generated by synthCollSeq(), - ** then any copies made by synthCollSeq() need to be invalidated. - ** Also, collation destructor - CollSeq.xDel() - function may need - ** to be called. - */ - if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ - CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); - int j; - for(j=0; j<3; j++){ - CollSeq *p = &aColl[j]; - if( p->enc==pColl->enc ){ - if( p->xDel ){ - p->xDel(p->pUser); - } - p->xCmp = 0; - } - } - } - } - - pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); - if( pColl==0 ) return SQLITE_NOMEM; - pColl->xCmp = xCompare; - pColl->pUser = pCtx; - pColl->xDel = xDel; - pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); - sqlite3Error(db, SQLITE_OK, 0); - return SQLITE_OK; -} - - -/* -** This array defines hard upper bounds on limit values. The -** initializer must be kept in sync with the SQLITE_LIMIT_* -** #defines in sqlite3.h. -*/ -static const int aHardLimit[] = { - SQLITE_MAX_LENGTH, - SQLITE_MAX_SQL_LENGTH, - SQLITE_MAX_COLUMN, - SQLITE_MAX_EXPR_DEPTH, - SQLITE_MAX_COMPOUND_SELECT, - SQLITE_MAX_VDBE_OP, - SQLITE_MAX_FUNCTION_ARG, - SQLITE_MAX_ATTACHED, - SQLITE_MAX_LIKE_PATTERN_LENGTH, - SQLITE_MAX_VARIABLE_NUMBER, - SQLITE_MAX_TRIGGER_DEPTH, -}; - -/* -** Make sure the hard limits are set to reasonable values -*/ -#if SQLITE_MAX_LENGTH<100 -# error SQLITE_MAX_LENGTH must be at least 100 -#endif -#if SQLITE_MAX_SQL_LENGTH<100 -# error SQLITE_MAX_SQL_LENGTH must be at least 100 -#endif -#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH -# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH -#endif -#if SQLITE_MAX_COMPOUND_SELECT<2 -# error SQLITE_MAX_COMPOUND_SELECT must be at least 2 -#endif -#if SQLITE_MAX_VDBE_OP<40 -# error SQLITE_MAX_VDBE_OP must be at least 40 -#endif -#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 -# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 -#endif -#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 -# error SQLITE_MAX_ATTACHED must be between 0 and 62 -#endif -#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 -# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 -#endif -#if SQLITE_MAX_COLUMN>32767 -# error SQLITE_MAX_COLUMN must not exceed 32767 -#endif -#if SQLITE_MAX_TRIGGER_DEPTH<1 -# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 -#endif - - -/* -** Change the value of a limit. Report the old value. -** If an invalid limit index is supplied, report -1. -** Make no changes but still report the old value if the -** new limit is negative. -** -** A new lower limit does not shrink existing constructs. -** It merely prevents new constructs that exceed the limit -** from forming. -*/ -SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ - int oldLimit; - - - /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME - ** there is a hard upper bound set at compile-time by a C preprocessor - ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to - ** "_MAX_".) - */ - assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); - assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); - assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); - assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); - assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); - assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); - assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); - assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); - assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== - SQLITE_MAX_LIKE_PATTERN_LENGTH ); - assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); - assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); - assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); - - - if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ - return -1; - } - oldLimit = db->aLimit[limitId]; - if( newLimit>=0 ){ /* IMP: R-52476-28732 */ - if( newLimit>aHardLimit[limitId] ){ - newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ - } - db->aLimit[limitId] = newLimit; - } - return oldLimit; /* IMP: R-53341-35419 */ -} - -/* -** This function is used to parse both URIs and non-URI filenames passed by the -** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database -** URIs specified as part of ATTACH statements. -** -** The first argument to this function is the name of the VFS to use (or -** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" -** query parameter. The second argument contains the URI (or non-URI filename) -** itself. When this function is called the *pFlags variable should contain -** the default flags to open the database handle with. The value stored in -** *pFlags may be updated before returning if the URI filename contains -** "cache=xxx" or "mode=xxx" query parameters. -** -** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to -** the VFS that should be used to open the database file. *pzFile is set to -** point to a buffer containing the name of the file to open. It is the -** responsibility of the caller to eventually call sqlite3_free() to release -** this buffer. -** -** If an error occurs, then an SQLite error code is returned and *pzErrMsg -** may be set to point to a buffer containing an English language error -** message. It is the responsibility of the caller to eventually release -** this buffer by calling sqlite3_free(). -*/ -SQLITE_PRIVATE int sqlite3ParseUri( - const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ - const char *zUri, /* Nul-terminated URI to parse */ - unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ - sqlite3_vfs **ppVfs, /* OUT: VFS to use */ - char **pzFile, /* OUT: Filename component of URI */ - char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ -){ - int rc = SQLITE_OK; - unsigned int flags = *pFlags; - const char *zVfs = zDefaultVfs; - char *zFile; - char c; - int nUri = sqlite3Strlen30(zUri); - - assert( *pzErrMsg==0 ); - - if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) - && nUri>=5 && memcmp(zUri, "file:", 5)==0 - ){ - char *zOpt; - int eState; /* Parser state when parsing URI */ - int iIn; /* Input character index */ - int iOut = 0; /* Output character index */ - int nByte = nUri+2; /* Bytes of space to allocate */ - - /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen - ** method that there may be extra parameters following the file-name. */ - flags |= SQLITE_OPEN_URI; - - for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); - zFile = sqlite3_malloc(nByte); - if( !zFile ) return SQLITE_NOMEM; - - /* Discard the scheme and authority segments of the URI. */ - if( zUri[5]=='/' && zUri[6]=='/' ){ - iIn = 7; - while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; - - if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ - *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", - iIn-7, &zUri[7]); - rc = SQLITE_ERROR; - goto parse_uri_out; - } - }else{ - iIn = 5; - } - - /* Copy the filename and any query parameters into the zFile buffer. - ** Decode %HH escape codes along the way. - ** - ** Within this loop, variable eState may be set to 0, 1 or 2, depending - ** on the parsing context. As follows: - ** - ** 0: Parsing file-name. - ** 1: Parsing name section of a name=value query parameter. - ** 2: Parsing value section of a name=value query parameter. - */ - eState = 0; - while( (c = zUri[iIn])!=0 && c!='#' ){ - iIn++; - if( c=='%' - && sqlite3Isxdigit(zUri[iIn]) - && sqlite3Isxdigit(zUri[iIn+1]) - ){ - int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); - octet += sqlite3HexToInt(zUri[iIn++]); - - assert( octet>=0 && octet<256 ); - if( octet==0 ){ - /* This branch is taken when "%00" appears within the URI. In this - ** case we ignore all text in the remainder of the path, name or - ** value currently being parsed. So ignore the current character - ** and skip to the next "?", "=" or "&", as appropriate. */ - while( (c = zUri[iIn])!=0 && c!='#' - && (eState!=0 || c!='?') - && (eState!=1 || (c!='=' && c!='&')) - && (eState!=2 || c!='&') - ){ - iIn++; - } - continue; - } - c = octet; - }else if( eState==1 && (c=='&' || c=='=') ){ - if( zFile[iOut-1]==0 ){ - /* An empty option name. Ignore this option altogether. */ - while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; - continue; - } - if( c=='&' ){ - zFile[iOut++] = '\0'; - }else{ - eState = 2; - } - c = 0; - }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ - c = 0; - eState = 1; - } - zFile[iOut++] = c; - } - if( eState==1 ) zFile[iOut++] = '\0'; - zFile[iOut++] = '\0'; - zFile[iOut++] = '\0'; - - /* Check if there were any options specified that should be interpreted - ** here. Options that are interpreted here include "vfs" and those that - ** correspond to flags that may be passed to the sqlite3_open_v2() - ** method. */ - zOpt = &zFile[sqlite3Strlen30(zFile)+1]; - while( zOpt[0] ){ - int nOpt = sqlite3Strlen30(zOpt); - char *zVal = &zOpt[nOpt+1]; - int nVal = sqlite3Strlen30(zVal); - - if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ - zVfs = zVal; - }else{ - struct OpenMode { - const char *z; - int mode; - } *aMode = 0; - char *zModeType = 0; - int mask = 0; - int limit = 0; - - if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ - static struct OpenMode aCacheMode[] = { - { "shared", SQLITE_OPEN_SHAREDCACHE }, - { "private", SQLITE_OPEN_PRIVATECACHE }, - { 0, 0 } - }; - - mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; - aMode = aCacheMode; - limit = mask; - zModeType = "cache"; - } - if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ - static struct OpenMode aOpenMode[] = { - { "ro", SQLITE_OPEN_READONLY }, - { "rw", SQLITE_OPEN_READWRITE }, - { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, - { "memory", SQLITE_OPEN_MEMORY }, - { 0, 0 } - }; - - mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE - | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; - aMode = aOpenMode; - limit = mask & flags; - zModeType = "access"; - } - - if( aMode ){ - int i; - int mode = 0; - for(i=0; aMode[i].z; i++){ - const char *z = aMode[i].z; - if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ - mode = aMode[i].mode; - break; - } - } - if( mode==0 ){ - *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); - rc = SQLITE_ERROR; - goto parse_uri_out; - } - if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ - *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", - zModeType, zVal); - rc = SQLITE_PERM; - goto parse_uri_out; - } - flags = (flags & ~mask) | mode; - } - } - - zOpt = &zVal[nVal+1]; - } - - }else{ - zFile = sqlite3_malloc(nUri+2); - if( !zFile ) return SQLITE_NOMEM; - memcpy(zFile, zUri, nUri); - zFile[nUri] = '\0'; - zFile[nUri+1] = '\0'; - flags &= ~SQLITE_OPEN_URI; - } - - *ppVfs = sqlite3_vfs_find(zVfs); - if( *ppVfs==0 ){ - *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); - rc = SQLITE_ERROR; - } - parse_uri_out: - if( rc!=SQLITE_OK ){ - sqlite3_free(zFile); - zFile = 0; - } - *pFlags = flags; - *pzFile = zFile; - return rc; -} - - -/* -** This routine does the work of opening a database on behalf of -** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" -** is UTF-8 encoded. -*/ -static int openDatabase( - const char *zFilename, /* Database filename UTF-8 encoded */ - sqlite3 **ppDb, /* OUT: Returned database handle */ - unsigned int flags, /* Operational flags */ - const char *zVfs /* Name of the VFS to use */ -){ - sqlite3 *db; /* Store allocated handle here */ - int rc; /* Return code */ - int isThreadsafe; /* True for threadsafe connections */ - char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ - char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ - - *ppDb = 0; -#ifndef SQLITE_OMIT_AUTOINIT - rc = sqlite3_initialize(); - if( rc ) return rc; -#endif - - /* Only allow sensible combinations of bits in the flags argument. - ** Throw an error if any non-sense combination is used. If we - ** do not block illegal combinations here, it could trigger - ** assert() statements in deeper layers. Sensible combinations - ** are: - ** - ** 1: SQLITE_OPEN_READONLY - ** 2: SQLITE_OPEN_READWRITE - ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE - */ - assert( SQLITE_OPEN_READONLY == 0x01 ); - assert( SQLITE_OPEN_READWRITE == 0x02 ); - assert( SQLITE_OPEN_CREATE == 0x04 ); - testcase( (1<<(flags&7))==0x02 ); /* READONLY */ - testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ - testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ - if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; - - if( sqlite3GlobalConfig.bCoreMutex==0 ){ - isThreadsafe = 0; - }else if( flags & SQLITE_OPEN_NOMUTEX ){ - isThreadsafe = 0; - }else if( flags & SQLITE_OPEN_FULLMUTEX ){ - isThreadsafe = 1; - }else{ - isThreadsafe = sqlite3GlobalConfig.bFullMutex; - } - if( flags & SQLITE_OPEN_PRIVATECACHE ){ - flags &= ~SQLITE_OPEN_SHAREDCACHE; - }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ - flags |= SQLITE_OPEN_SHAREDCACHE; - } - - /* Remove harmful bits from the flags parameter - ** - ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were - ** dealt with in the previous code block. Besides these, the only - ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, - ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, - ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask - ** off all other flags. - */ - flags &= ~( SQLITE_OPEN_DELETEONCLOSE | - SQLITE_OPEN_EXCLUSIVE | - SQLITE_OPEN_MAIN_DB | - SQLITE_OPEN_TEMP_DB | - SQLITE_OPEN_TRANSIENT_DB | - SQLITE_OPEN_MAIN_JOURNAL | - SQLITE_OPEN_TEMP_JOURNAL | - SQLITE_OPEN_SUBJOURNAL | - SQLITE_OPEN_MASTER_JOURNAL | - SQLITE_OPEN_NOMUTEX | - SQLITE_OPEN_FULLMUTEX | - SQLITE_OPEN_WAL - ); - - /* Allocate the sqlite data structure */ - db = sqlite3MallocZero( sizeof(sqlite3) ); - if( db==0 ) goto opendb_out; - if( isThreadsafe ){ - db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); - if( db->mutex==0 ){ - sqlite3_free(db); - db = 0; - goto opendb_out; - } - } - sqlite3_mutex_enter(db->mutex); - db->errMask = 0xff; - db->nDb = 2; - db->magic = SQLITE_MAGIC_BUSY; - db->aDb = db->aDbStatic; - - assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); - memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); - db->autoCommit = 1; - db->nextAutovac = -1; - db->nextPagesize = 0; - db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger -#if SQLITE_DEFAULT_FILE_FORMAT<4 - | SQLITE_LegacyFileFmt -#endif -#ifdef SQLITE_ENABLE_LOAD_EXTENSION - | SQLITE_LoadExtension -#endif -#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS - | SQLITE_RecTriggers -#endif -#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS - | SQLITE_ForeignKeys -#endif - ; - sqlite3HashInit(&db->aCollSeq); -#ifndef SQLITE_OMIT_VIRTUALTABLE - sqlite3HashInit(&db->aModule); -#endif - - /* Add the default collation sequence BINARY. BINARY works for both UTF-8 - ** and UTF-16, so add a version for each to avoid any unnecessary - ** conversions. The only error that can occur here is a malloc() failure. - */ - createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); - createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); - createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); - createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); - if( db->mallocFailed ){ - goto opendb_out; - } - db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); - assert( db->pDfltColl!=0 ); - - /* Also add a UTF-8 case-insensitive collation sequence. */ - createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); - - /* Parse the filename/URI argument. */ - db->openFlags = flags; - rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; - sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); - sqlite3_free(zErrMsg); - goto opendb_out; - } - - /* Open the backend database driver */ - rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, - flags | SQLITE_OPEN_MAIN_DB); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_IOERR_NOMEM ){ - rc = SQLITE_NOMEM; - } - sqlite3Error(db, rc, 0); - goto opendb_out; - } - db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); - db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); - - - /* The default safety_level for the main database is 'full'; for the temp - ** database it is 'NONE'. This matches the pager layer defaults. - */ - db->aDb[0].zName = "main"; - db->aDb[0].safety_level = 3; - db->aDb[1].zName = "temp"; - db->aDb[1].safety_level = 1; - - db->magic = SQLITE_MAGIC_OPEN; - if( db->mallocFailed ){ - goto opendb_out; - } - - /* Register all built-in functions, but do not attempt to read the - ** database schema yet. This is delayed until the first time the database - ** is accessed. - */ - sqlite3Error(db, SQLITE_OK, 0); - sqlite3RegisterBuiltinFunctions(db); - - /* Load automatic extensions - extensions that have been registered - ** using the sqlite3_automatic_extension() API. - */ - rc = sqlite3_errcode(db); - if( rc==SQLITE_OK ){ - sqlite3AutoLoadExtensions(db); - rc = sqlite3_errcode(db); - if( rc!=SQLITE_OK ){ - goto opendb_out; - } - } - -#ifdef SQLITE_ENABLE_FTS1 - if( !db->mallocFailed ){ - extern int sqlite3Fts1Init(sqlite3*); - rc = sqlite3Fts1Init(db); - } -#endif - -#ifdef SQLITE_ENABLE_FTS2 - if( !db->mallocFailed && rc==SQLITE_OK ){ - extern int sqlite3Fts2Init(sqlite3*); - rc = sqlite3Fts2Init(db); - } -#endif - -#ifdef SQLITE_ENABLE_FTS3 - if( !db->mallocFailed && rc==SQLITE_OK ){ - rc = sqlite3Fts3Init(db); - } -#endif - -#ifdef SQLITE_ENABLE_ICU - if( !db->mallocFailed && rc==SQLITE_OK ){ - rc = sqlite3IcuInit(db); - } -#endif - -#ifdef SQLITE_ENABLE_RTREE - if( !db->mallocFailed && rc==SQLITE_OK){ - rc = sqlite3RtreeInit(db); - } -#endif - - sqlite3Error(db, rc, 0); - - /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking - ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking - ** mode. Doing nothing at all also makes NORMAL the default. - */ -#ifdef SQLITE_DEFAULT_LOCKING_MODE - db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; - sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), - SQLITE_DEFAULT_LOCKING_MODE); -#endif - - /* Enable the lookaside-malloc subsystem */ - setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, - sqlite3GlobalConfig.nLookaside); - - sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); - -opendb_out: - sqlite3_free(zOpen); - if( db ){ - assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); - sqlite3_mutex_leave(db->mutex); - } - rc = sqlite3_errcode(db); - assert( db!=0 || rc==SQLITE_NOMEM ); - if( rc==SQLITE_NOMEM ){ - sqlite3_close(db); - db = 0; - }else if( rc!=SQLITE_OK ){ - db->magic = SQLITE_MAGIC_SICK; - } - *ppDb = db; -#ifdef SQLITE_ENABLE_SQLLOG - if( sqlite3GlobalConfig.xSqllog ){ - /* Opening a db handle. Fourth parameter is passed 0. */ - void *pArg = sqlite3GlobalConfig.pSqllogArg; - sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); - } -#endif - return sqlite3ApiExit(0, rc); -} - -/* -** Open a new database handle. -*/ -SQLITE_API int sqlite3_open( - const char *zFilename, - sqlite3 **ppDb -){ - return openDatabase(zFilename, ppDb, - SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); -} -SQLITE_API int sqlite3_open_v2( - const char *filename, /* Database filename (UTF-8) */ - sqlite3 **ppDb, /* OUT: SQLite db handle */ - int flags, /* Flags */ - const char *zVfs /* Name of VFS module to use */ -){ - return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); -} - -#ifndef SQLITE_OMIT_UTF16 -/* -** Open a new database handle. -*/ -SQLITE_API int sqlite3_open16( - const void *zFilename, - sqlite3 **ppDb -){ - char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ - sqlite3_value *pVal; - int rc; - - assert( zFilename ); - assert( ppDb ); - *ppDb = 0; -#ifndef SQLITE_OMIT_AUTOINIT - rc = sqlite3_initialize(); - if( rc ) return rc; -#endif - pVal = sqlite3ValueNew(0); - sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); - zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); - if( zFilename8 ){ - rc = openDatabase(zFilename8, ppDb, - SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); - assert( *ppDb || rc==SQLITE_NOMEM ); - if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ - ENC(*ppDb) = SQLITE_UTF16NATIVE; - } - }else{ - rc = SQLITE_NOMEM; - } - sqlite3ValueFree(pVal); - - return sqlite3ApiExit(0, rc); -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** Register a new collation sequence with the database handle db. -*/ -SQLITE_API int sqlite3_create_collation( - sqlite3* db, - const char *zName, - int enc, - void* pCtx, - int(*xCompare)(void*,int,const void*,int,const void*) -){ - int rc; - sqlite3_mutex_enter(db->mutex); - assert( !db->mallocFailed ); - rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Register a new collation sequence with the database handle db. -*/ -SQLITE_API int sqlite3_create_collation_v2( - sqlite3* db, - const char *zName, - int enc, - void* pCtx, - int(*xCompare)(void*,int,const void*,int,const void*), - void(*xDel)(void*) -){ - int rc; - sqlite3_mutex_enter(db->mutex); - assert( !db->mallocFailed ); - rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -#ifndef SQLITE_OMIT_UTF16 -/* -** Register a new collation sequence with the database handle db. -*/ -SQLITE_API int sqlite3_create_collation16( - sqlite3* db, - const void *zName, - int enc, - void* pCtx, - int(*xCompare)(void*,int,const void*,int,const void*) -){ - int rc = SQLITE_OK; - char *zName8; - sqlite3_mutex_enter(db->mutex); - assert( !db->mallocFailed ); - zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); - if( zName8 ){ - rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); - sqlite3DbFree(db, zName8); - } - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} -#endif /* SQLITE_OMIT_UTF16 */ - -/* -** Register a collation sequence factory callback with the database handle -** db. Replace any previously installed collation sequence factory. -*/ -SQLITE_API int sqlite3_collation_needed( - sqlite3 *db, - void *pCollNeededArg, - void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) -){ - sqlite3_mutex_enter(db->mutex); - db->xCollNeeded = xCollNeeded; - db->xCollNeeded16 = 0; - db->pCollNeededArg = pCollNeededArg; - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -#ifndef SQLITE_OMIT_UTF16 -/* -** Register a collation sequence factory callback with the database handle -** db. Replace any previously installed collation sequence factory. -*/ -SQLITE_API int sqlite3_collation_needed16( - sqlite3 *db, - void *pCollNeededArg, - void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) -){ - sqlite3_mutex_enter(db->mutex); - db->xCollNeeded = 0; - db->xCollNeeded16 = xCollNeeded16; - db->pCollNeededArg = pCollNeededArg; - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} -#endif /* SQLITE_OMIT_UTF16 */ - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** This function is now an anachronism. It used to be used to recover from a -** malloc() failure, but SQLite now does this automatically. -*/ -SQLITE_API int sqlite3_global_recover(void){ - return SQLITE_OK; -} -#endif - -/* -** Test to see whether or not the database connection is in autocommit -** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on -** by default. Autocommit is disabled by a BEGIN statement and reenabled -** by the next COMMIT or ROLLBACK. -** -******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** -*/ -SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ - return db->autoCommit; -} - -/* -** The following routines are subtitutes for constants SQLITE_CORRUPT, -** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error -** constants. They server two purposes: -** -** 1. Serve as a convenient place to set a breakpoint in a debugger -** to detect when version error conditions occurs. -** -** 2. Invoke sqlite3_log() to provide the source code location where -** a low-level error is first detected. -*/ -SQLITE_PRIVATE int sqlite3CorruptError(int lineno){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_CORRUPT, - "database corruption at line %d of [%.10s]", - lineno, 20+sqlite3_sourceid()); - return SQLITE_CORRUPT; -} -SQLITE_PRIVATE int sqlite3MisuseError(int lineno){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_MISUSE, - "misuse at line %d of [%.10s]", - lineno, 20+sqlite3_sourceid()); - return SQLITE_MISUSE; -} -SQLITE_PRIVATE int sqlite3CantopenError(int lineno){ - testcase( sqlite3GlobalConfig.xLog!=0 ); - sqlite3_log(SQLITE_CANTOPEN, - "cannot open file at line %d of [%.10s]", - lineno, 20+sqlite3_sourceid()); - return SQLITE_CANTOPEN; -} - - -#ifndef SQLITE_OMIT_DEPRECATED -/* -** This is a convenience routine that makes sure that all thread-specific -** data for this thread has been deallocated. -** -** SQLite no longer uses thread-specific data so this routine is now a -** no-op. It is retained for historical compatibility. -*/ -SQLITE_API void sqlite3_thread_cleanup(void){ -} -#endif - -/* -** Return meta information about a specific column of a database table. -** See comment in sqlite3.h (sqlite.h.in) for details. -*/ -#ifdef SQLITE_ENABLE_COLUMN_METADATA -SQLITE_API int sqlite3_table_column_metadata( - sqlite3 *db, /* Connection handle */ - const char *zDbName, /* Database name or NULL */ - const char *zTableName, /* Table name */ - const char *zColumnName, /* Column name */ - char const **pzDataType, /* OUTPUT: Declared data type */ - char const **pzCollSeq, /* OUTPUT: Collation sequence name */ - int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ - int *pPrimaryKey, /* OUTPUT: True if column part of PK */ - int *pAutoinc /* OUTPUT: True if column is auto-increment */ -){ - int rc; - char *zErrMsg = 0; - Table *pTab = 0; - Column *pCol = 0; - int iCol; - - char const *zDataType = 0; - char const *zCollSeq = 0; - int notnull = 0; - int primarykey = 0; - int autoinc = 0; - - /* Ensure the database schema has been loaded */ - sqlite3_mutex_enter(db->mutex); - sqlite3BtreeEnterAll(db); - rc = sqlite3Init(db, &zErrMsg); - if( SQLITE_OK!=rc ){ - goto error_out; - } - - /* Locate the table in question */ - pTab = sqlite3FindTable(db, zTableName, zDbName); - if( !pTab || pTab->pSelect ){ - pTab = 0; - goto error_out; - } - - /* Find the column for which info is requested */ - if( sqlite3IsRowid(zColumnName) ){ - iCol = pTab->iPKey; - if( iCol>=0 ){ - pCol = &pTab->aCol[iCol]; - } - }else{ - for(iCol=0; iCol<pTab->nCol; iCol++){ - pCol = &pTab->aCol[iCol]; - if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ - break; - } - } - if( iCol==pTab->nCol ){ - pTab = 0; - goto error_out; - } - } - - /* The following block stores the meta information that will be returned - ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey - ** and autoinc. At this point there are two possibilities: - ** - ** 1. The specified column name was rowid", "oid" or "_rowid_" - ** and there is no explicitly declared IPK column. - ** - ** 2. The table is not a view and the column name identified an - ** explicitly declared column. Copy meta information from *pCol. - */ - if( pCol ){ - zDataType = pCol->zType; - zCollSeq = pCol->zColl; - notnull = pCol->notNull!=0; - primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; - autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; - }else{ - zDataType = "INTEGER"; - primarykey = 1; - } - if( !zCollSeq ){ - zCollSeq = "BINARY"; - } - -error_out: - sqlite3BtreeLeaveAll(db); - - /* Whether the function call succeeded or failed, set the output parameters - ** to whatever their local counterparts contain. If an error did occur, - ** this has the effect of zeroing all output parameters. - */ - if( pzDataType ) *pzDataType = zDataType; - if( pzCollSeq ) *pzCollSeq = zCollSeq; - if( pNotNull ) *pNotNull = notnull; - if( pPrimaryKey ) *pPrimaryKey = primarykey; - if( pAutoinc ) *pAutoinc = autoinc; - - if( SQLITE_OK==rc && !pTab ){ - sqlite3DbFree(db, zErrMsg); - zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, - zColumnName); - rc = SQLITE_ERROR; - } - sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); - sqlite3DbFree(db, zErrMsg); - rc = sqlite3ApiExit(db, rc); - sqlite3_mutex_leave(db->mutex); - return rc; -} -#endif - -/* -** Sleep for a little while. Return the amount of time slept. -*/ -SQLITE_API int sqlite3_sleep(int ms){ - sqlite3_vfs *pVfs; - int rc; - pVfs = sqlite3_vfs_find(0); - if( pVfs==0 ) return 0; - - /* This function works in milliseconds, but the underlying OsSleep() - ** API uses microseconds. Hence the 1000's. - */ - rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); - return rc; -} - -/* -** Enable or disable the extended result codes. -*/ -SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ - sqlite3_mutex_enter(db->mutex); - db->errMask = onoff ? 0xffffffff : 0xff; - sqlite3_mutex_leave(db->mutex); - return SQLITE_OK; -} - -/* -** Invoke the xFileControl method on a particular database. -*/ -SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ - int rc = SQLITE_ERROR; - Btree *pBtree; - - sqlite3_mutex_enter(db->mutex); - pBtree = sqlite3DbNameToBtree(db, zDbName); - if( pBtree ){ - Pager *pPager; - sqlite3_file *fd; - sqlite3BtreeEnter(pBtree); - pPager = sqlite3BtreePager(pBtree); - assert( pPager!=0 ); - fd = sqlite3PagerFile(pPager); - assert( fd!=0 ); - if( op==SQLITE_FCNTL_FILE_POINTER ){ - *(sqlite3_file**)pArg = fd; - rc = SQLITE_OK; - }else if( fd->pMethods ){ - rc = sqlite3OsFileControl(fd, op, pArg); - }else{ - rc = SQLITE_NOTFOUND; - } - sqlite3BtreeLeave(pBtree); - } - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** Interface to the testing logic. -*/ -SQLITE_API int sqlite3_test_control(int op, ...){ - int rc = 0; -#ifndef SQLITE_OMIT_BUILTIN_TEST - va_list ap; - va_start(ap, op); - switch( op ){ - - /* - ** Save the current state of the PRNG. - */ - case SQLITE_TESTCTRL_PRNG_SAVE: { - sqlite3PrngSaveState(); - break; - } - - /* - ** Restore the state of the PRNG to the last state saved using - ** PRNG_SAVE. If PRNG_SAVE has never before been called, then - ** this verb acts like PRNG_RESET. - */ - case SQLITE_TESTCTRL_PRNG_RESTORE: { - sqlite3PrngRestoreState(); - break; - } - - /* - ** Reset the PRNG back to its uninitialized state. The next call - ** to sqlite3_randomness() will reseed the PRNG using a single call - ** to the xRandomness method of the default VFS. - */ - case SQLITE_TESTCTRL_PRNG_RESET: { - sqlite3PrngResetState(); - break; - } - - /* - ** sqlite3_test_control(BITVEC_TEST, size, program) - ** - ** Run a test against a Bitvec object of size. The program argument - ** is an array of integers that defines the test. Return -1 on a - ** memory allocation error, 0 on success, or non-zero for an error. - ** See the sqlite3BitvecBuiltinTest() for additional information. - */ - case SQLITE_TESTCTRL_BITVEC_TEST: { - int sz = va_arg(ap, int); - int *aProg = va_arg(ap, int*); - rc = sqlite3BitvecBuiltinTest(sz, aProg); - break; - } - - /* - ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) - ** - ** Register hooks to call to indicate which malloc() failures - ** are benign. - */ - case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { - typedef void (*void_function)(void); - void_function xBenignBegin; - void_function xBenignEnd; - xBenignBegin = va_arg(ap, void_function); - xBenignEnd = va_arg(ap, void_function); - sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); - break; - } - - /* - ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) - ** - ** Set the PENDING byte to the value in the argument, if X>0. - ** Make no changes if X==0. Return the value of the pending byte - ** as it existing before this routine was called. - ** - ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in - ** an incompatible database file format. Changing the PENDING byte - ** while any database connection is open results in undefined and - ** dileterious behavior. - */ - case SQLITE_TESTCTRL_PENDING_BYTE: { - rc = PENDING_BYTE; -#ifndef SQLITE_OMIT_WSD - { - unsigned int newVal = va_arg(ap, unsigned int); - if( newVal ) sqlite3PendingByte = newVal; - } -#endif - break; - } - - /* - ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) - ** - ** This action provides a run-time test to see whether or not - ** assert() was enabled at compile-time. If X is true and assert() - ** is enabled, then the return value is true. If X is true and - ** assert() is disabled, then the return value is zero. If X is - ** false and assert() is enabled, then the assertion fires and the - ** process aborts. If X is false and assert() is disabled, then the - ** return value is zero. - */ - case SQLITE_TESTCTRL_ASSERT: { - volatile int x = 0; - assert( (x = va_arg(ap,int))!=0 ); - rc = x; - break; - } - - - /* - ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) - ** - ** This action provides a run-time test to see how the ALWAYS and - ** NEVER macros were defined at compile-time. - ** - ** The return value is ALWAYS(X). - ** - ** The recommended test is X==2. If the return value is 2, that means - ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the - ** default setting. If the return value is 1, then ALWAYS() is either - ** hard-coded to true or else it asserts if its argument is false. - ** The first behavior (hard-coded to true) is the case if - ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second - ** behavior (assert if the argument to ALWAYS() is false) is the case if - ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. - ** - ** The run-time test procedure might look something like this: - ** - ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ - ** // ALWAYS() and NEVER() are no-op pass-through macros - ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ - ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. - ** }else{ - ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. - ** } - */ - case SQLITE_TESTCTRL_ALWAYS: { - int x = va_arg(ap,int); - rc = ALWAYS(x); - break; - } - - /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) - ** - ** Set the nReserve size to N for the main database on the database - ** connection db. - */ - case SQLITE_TESTCTRL_RESERVE: { - sqlite3 *db = va_arg(ap, sqlite3*); - int x = va_arg(ap,int); - sqlite3_mutex_enter(db->mutex); - sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); - sqlite3_mutex_leave(db->mutex); - break; - } - - /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) - ** - ** Enable or disable various optimizations for testing purposes. The - ** argument N is a bitmask of optimizations to be disabled. For normal - ** operation N should be 0. The idea is that a test program (like the - ** SQL Logic Test or SLT test module) can run the same SQL multiple times - ** with various optimizations disabled to verify that the same answer - ** is obtained in every case. - */ - case SQLITE_TESTCTRL_OPTIMIZATIONS: { - sqlite3 *db = va_arg(ap, sqlite3*); - db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); - break; - } - -#ifdef SQLITE_N_KEYWORD - /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) - ** - ** If zWord is a keyword recognized by the parser, then return the - ** number of keywords. Or if zWord is not a keyword, return 0. - ** - ** This test feature is only available in the amalgamation since - ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite - ** is built using separate source files. - */ - case SQLITE_TESTCTRL_ISKEYWORD: { - const char *zWord = va_arg(ap, const char*); - int n = sqlite3Strlen30(zWord); - rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; - break; - } -#endif - - /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); - ** - ** Pass pFree into sqlite3ScratchFree(). - ** If sz>0 then allocate a scratch buffer into pNew. - */ - case SQLITE_TESTCTRL_SCRATCHMALLOC: { - void *pFree, **ppNew; - int sz; - sz = va_arg(ap, int); - ppNew = va_arg(ap, void**); - pFree = va_arg(ap, void*); - if( sz ) *ppNew = sqlite3ScratchMalloc(sz); - sqlite3ScratchFree(pFree); - break; - } - - /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); - ** - ** If parameter onoff is non-zero, configure the wrappers so that all - ** subsequent calls to localtime() and variants fail. If onoff is zero, - ** undo this setting. - */ - case SQLITE_TESTCTRL_LOCALTIME_FAULT: { - sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); - break; - } - -#if defined(SQLITE_ENABLE_TREE_EXPLAIN) - /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, - ** sqlite3_stmt*,const char**); - ** - ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds - ** a string that describes the optimized parse tree. This test-control - ** returns a pointer to that string. - */ - case SQLITE_TESTCTRL_EXPLAIN_STMT: { - sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); - const char **pzRet = va_arg(ap, const char**); - *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); - break; - } -#endif - - } - va_end(ap); -#endif /* SQLITE_OMIT_BUILTIN_TEST */ - return rc; -} - -/* -** This is a utility routine, useful to VFS implementations, that checks -** to see if a database file was a URI that contained a specific query -** parameter, and if so obtains the value of the query parameter. -** -** The zFilename argument is the filename pointer passed into the xOpen() -** method of a VFS implementation. The zParam argument is the name of the -** query parameter we seek. This routine returns the value of the zParam -** parameter if it exists. If the parameter does not exist, this routine -** returns a NULL pointer. -*/ -SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ - if( zFilename==0 ) return 0; - zFilename += sqlite3Strlen30(zFilename) + 1; - while( zFilename[0] ){ - int x = strcmp(zFilename, zParam); - zFilename += sqlite3Strlen30(zFilename) + 1; - if( x==0 ) return zFilename; - zFilename += sqlite3Strlen30(zFilename) + 1; - } - return 0; -} - -/* -** Return a boolean value for a query parameter. -*/ -SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ - const char *z = sqlite3_uri_parameter(zFilename, zParam); - bDflt = bDflt!=0; - return z ? sqlite3GetBoolean(z, bDflt) : bDflt; -} - -/* -** Return a 64-bit integer value for a query parameter. -*/ -SQLITE_API sqlite3_int64 sqlite3_uri_int64( - const char *zFilename, /* Filename as passed to xOpen */ - const char *zParam, /* URI parameter sought */ - sqlite3_int64 bDflt /* return if parameter is missing */ -){ - const char *z = sqlite3_uri_parameter(zFilename, zParam); - sqlite3_int64 v; - if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ - bDflt = v; - } - return bDflt; -} - -/* -** Return the Btree pointer identified by zDbName. Return NULL if not found. -*/ -SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ - int i; - for(i=0; i<db->nDb; i++){ - if( db->aDb[i].pBt - && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) - ){ - return db->aDb[i].pBt; - } - } - return 0; -} - -/* -** Return the filename of the database associated with a database -** connection. -*/ -SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ - Btree *pBt = sqlite3DbNameToBtree(db, zDbName); - return pBt ? sqlite3BtreeGetFilename(pBt) : 0; -} - -/* -** Return 1 if database is read-only or 0 if read/write. Return -1 if -** no such database exists. -*/ -SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ - Btree *pBt = sqlite3DbNameToBtree(db, zDbName); - return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1; -} - -/************** End of main.c ************************************************/ -/************** Begin file notify.c ******************************************/ -/* -** 2009 March 3 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains the implementation of the sqlite3_unlock_notify() -** API method and its associated functionality. -*/ - -/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */ -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY - -/* -** Public interfaces: -** -** sqlite3ConnectionBlocked() -** sqlite3ConnectionUnlocked() -** sqlite3ConnectionClosed() -** sqlite3_unlock_notify() -*/ - -#define assertMutexHeld() \ - assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ) - -/* -** Head of a linked list of all sqlite3 objects created by this process -** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection -** is not NULL. This variable may only accessed while the STATIC_MASTER -** mutex is held. -*/ -static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0; - -#ifndef NDEBUG -/* -** This function is a complex assert() that verifies the following -** properties of the blocked connections list: -** -** 1) Each entry in the list has a non-NULL value for either -** pUnlockConnection or pBlockingConnection, or both. -** -** 2) All entries in the list that share a common value for -** xUnlockNotify are grouped together. -** -** 3) If the argument db is not NULL, then none of the entries in the -** blocked connections list have pUnlockConnection or pBlockingConnection -** set to db. This is used when closing connection db. -*/ -static void checkListProperties(sqlite3 *db){ - sqlite3 *p; - for(p=sqlite3BlockedList; p; p=p->pNextBlocked){ - int seen = 0; - sqlite3 *p2; - - /* Verify property (1) */ - assert( p->pUnlockConnection || p->pBlockingConnection ); - - /* Verify property (2) */ - for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){ - if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1; - assert( p2->xUnlockNotify==p->xUnlockNotify || !seen ); - assert( db==0 || p->pUnlockConnection!=db ); - assert( db==0 || p->pBlockingConnection!=db ); - } - } -} -#else -# define checkListProperties(x) -#endif - -/* -** Remove connection db from the blocked connections list. If connection -** db is not currently a part of the list, this function is a no-op. -*/ -static void removeFromBlockedList(sqlite3 *db){ - sqlite3 **pp; - assertMutexHeld(); - for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){ - if( *pp==db ){ - *pp = (*pp)->pNextBlocked; - break; - } - } -} - -/* -** Add connection db to the blocked connections list. It is assumed -** that it is not already a part of the list. -*/ -static void addToBlockedList(sqlite3 *db){ - sqlite3 **pp; - assertMutexHeld(); - for( - pp=&sqlite3BlockedList; - *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify; - pp=&(*pp)->pNextBlocked - ); - db->pNextBlocked = *pp; - *pp = db; -} - -/* -** Obtain the STATIC_MASTER mutex. -*/ -static void enterMutex(void){ - sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); - checkListProperties(0); -} - -/* -** Release the STATIC_MASTER mutex. -*/ -static void leaveMutex(void){ - assertMutexHeld(); - checkListProperties(0); - sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); -} - -/* -** Register an unlock-notify callback. -** -** This is called after connection "db" has attempted some operation -** but has received an SQLITE_LOCKED error because another connection -** (call it pOther) in the same process was busy using the same shared -** cache. pOther is found by looking at db->pBlockingConnection. -** -** If there is no blocking connection, the callback is invoked immediately, -** before this routine returns. -** -** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate -** a deadlock. -** -** Otherwise, make arrangements to invoke xNotify when pOther drops -** its locks. -** -** Each call to this routine overrides any prior callbacks registered -** on the same "db". If xNotify==0 then any prior callbacks are immediately -** cancelled. -*/ -SQLITE_API int sqlite3_unlock_notify( - sqlite3 *db, - void (*xNotify)(void **, int), - void *pArg -){ - int rc = SQLITE_OK; - - sqlite3_mutex_enter(db->mutex); - enterMutex(); - - if( xNotify==0 ){ - removeFromBlockedList(db); - db->pBlockingConnection = 0; - db->pUnlockConnection = 0; - db->xUnlockNotify = 0; - db->pUnlockArg = 0; - }else if( 0==db->pBlockingConnection ){ - /* The blocking transaction has been concluded. Or there never was a - ** blocking transaction. In either case, invoke the notify callback - ** immediately. - */ - xNotify(&pArg, 1); - }else{ - sqlite3 *p; - - for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){} - if( p ){ - rc = SQLITE_LOCKED; /* Deadlock detected. */ - }else{ - db->pUnlockConnection = db->pBlockingConnection; - db->xUnlockNotify = xNotify; - db->pUnlockArg = pArg; - removeFromBlockedList(db); - addToBlockedList(db); - } - } - - leaveMutex(); - assert( !db->mallocFailed ); - sqlite3Error(db, rc, (rc?"database is deadlocked":0)); - sqlite3_mutex_leave(db->mutex); - return rc; -} - -/* -** This function is called while stepping or preparing a statement -** associated with connection db. The operation will return SQLITE_LOCKED -** to the user because it requires a lock that will not be available -** until connection pBlocker concludes its current transaction. -*/ -SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){ - enterMutex(); - if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){ - addToBlockedList(db); - } - db->pBlockingConnection = pBlocker; - leaveMutex(); -} - -/* -** This function is called when -** the transaction opened by database db has just finished. Locks held -** by database connection db have been released. -** -** This function loops through each entry in the blocked connections -** list and does the following: -** -** 1) If the sqlite3.pBlockingConnection member of a list entry is -** set to db, then set pBlockingConnection=0. -** -** 2) If the sqlite3.pUnlockConnection member of a list entry is -** set to db, then invoke the configured unlock-notify callback and -** set pUnlockConnection=0. -** -** 3) If the two steps above mean that pBlockingConnection==0 and -** pUnlockConnection==0, remove the entry from the blocked connections -** list. -*/ -SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){ - void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */ - int nArg = 0; /* Number of entries in aArg[] */ - sqlite3 **pp; /* Iterator variable */ - void **aArg; /* Arguments to the unlock callback */ - void **aDyn = 0; /* Dynamically allocated space for aArg[] */ - void *aStatic[16]; /* Starter space for aArg[]. No malloc required */ - - aArg = aStatic; - enterMutex(); /* Enter STATIC_MASTER mutex */ - - /* This loop runs once for each entry in the blocked-connections list. */ - for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){ - sqlite3 *p = *pp; - - /* Step 1. */ - if( p->pBlockingConnection==db ){ - p->pBlockingConnection = 0; - } - - /* Step 2. */ - if( p->pUnlockConnection==db ){ - assert( p->xUnlockNotify ); - if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){ - xUnlockNotify(aArg, nArg); - nArg = 0; - } - - sqlite3BeginBenignMalloc(); - assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); - assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); - if( (!aDyn && nArg==(int)ArraySize(aStatic)) - || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) - ){ - /* The aArg[] array needs to grow. */ - void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); - if( pNew ){ - memcpy(pNew, aArg, nArg*sizeof(void *)); - sqlite3_free(aDyn); - aDyn = aArg = pNew; - }else{ - /* This occurs when the array of context pointers that need to - ** be passed to the unlock-notify callback is larger than the - ** aStatic[] array allocated on the stack and the attempt to - ** allocate a larger array from the heap has failed. - ** - ** This is a difficult situation to handle. Returning an error - ** code to the caller is insufficient, as even if an error code - ** is returned the transaction on connection db will still be - ** closed and the unlock-notify callbacks on blocked connections - ** will go unissued. This might cause the application to wait - ** indefinitely for an unlock-notify callback that will never - ** arrive. - ** - ** Instead, invoke the unlock-notify callback with the context - ** array already accumulated. We can then clear the array and - ** begin accumulating any further context pointers without - ** requiring any dynamic allocation. This is sub-optimal because - ** it means that instead of one callback with a large array of - ** context pointers the application will receive two or more - ** callbacks with smaller arrays of context pointers, which will - ** reduce the applications ability to prioritize multiple - ** connections. But it is the best that can be done under the - ** circumstances. - */ - xUnlockNotify(aArg, nArg); - nArg = 0; - } - } - sqlite3EndBenignMalloc(); - - aArg[nArg++] = p->pUnlockArg; - xUnlockNotify = p->xUnlockNotify; - p->pUnlockConnection = 0; - p->xUnlockNotify = 0; - p->pUnlockArg = 0; - } - - /* Step 3. */ - if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){ - /* Remove connection p from the blocked connections list. */ - *pp = p->pNextBlocked; - p->pNextBlocked = 0; - }else{ - pp = &p->pNextBlocked; - } - } - - if( nArg!=0 ){ - xUnlockNotify(aArg, nArg); - } - sqlite3_free(aDyn); - leaveMutex(); /* Leave STATIC_MASTER mutex */ -} - -/* -** This is called when the database connection passed as an argument is -** being closed. The connection is removed from the blocked list. -*/ -SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){ - sqlite3ConnectionUnlocked(db); - enterMutex(); - removeFromBlockedList(db); - checkListProperties(db); - leaveMutex(); -} -#endif - -/************** End of notify.c **********************************************/ -/************** Begin file fts3.c ********************************************/ -/* -** 2006 Oct 10 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This is an SQLite module implementing full-text search. -*/ - -/* -** The code in this file is only compiled if: -** -** * The FTS3 module is being built as an extension -** (in which case SQLITE_CORE is not defined), or -** -** * The FTS3 module is being built into the core of -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). -*/ - -/* The full-text index is stored in a series of b+tree (-like) -** structures called segments which map terms to doclists. The -** structures are like b+trees in layout, but are constructed from the -** bottom up in optimal fashion and are not updatable. Since trees -** are built from the bottom up, things will be described from the -** bottom up. -** -** -**** Varints **** -** The basic unit of encoding is a variable-length integer called a -** varint. We encode variable-length integers in little-endian order -** using seven bits * per byte as follows: -** -** KEY: -** A = 0xxxxxxx 7 bits of data and one flag bit -** B = 1xxxxxxx 7 bits of data and one flag bit -** -** 7 bits - A -** 14 bits - BA -** 21 bits - BBA -** and so on. -** -** This is similar in concept to how sqlite encodes "varints" but -** the encoding is not the same. SQLite varints are big-endian -** are are limited to 9 bytes in length whereas FTS3 varints are -** little-endian and can be up to 10 bytes in length (in theory). -** -** Example encodings: -** -** 1: 0x01 -** 127: 0x7f -** 128: 0x81 0x00 -** -** -**** Document lists **** -** A doclist (document list) holds a docid-sorted list of hits for a -** given term. Doclists hold docids and associated token positions. -** A docid is the unique integer identifier for a single document. -** A position is the index of a word within the document. The first -** word of the document has a position of 0. -** -** FTS3 used to optionally store character offsets using a compile-time -** option. But that functionality is no longer supported. -** -** A doclist is stored like this: -** -** array { -** varint docid; (delta from previous doclist) -** array { (position list for column 0) -** varint position; (2 more than the delta from previous position) -** } -** array { -** varint POS_COLUMN; (marks start of position list for new column) -** varint column; (index of new column) -** array { -** varint position; (2 more than the delta from previous position) -** } -** } -** varint POS_END; (marks end of positions for this document. -** } -** -** Here, array { X } means zero or more occurrences of X, adjacent in -** memory. A "position" is an index of a token in the token stream -** generated by the tokenizer. Note that POS_END and POS_COLUMN occur -** in the same logical place as the position element, and act as sentinals -** ending a position list array. POS_END is 0. POS_COLUMN is 1. -** The positions numbers are not stored literally but rather as two more -** than the difference from the prior position, or the just the position plus -** 2 for the first position. Example: -** -** label: A B C D E F G H I J K -** value: 123 5 9 1 1 14 35 0 234 72 0 -** -** The 123 value is the first docid. For column zero in this document -** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 -** at D signals the start of a new column; the 1 at E indicates that the -** new column is column number 1. There are two positions at 12 and 45 -** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The -** 234 at I is the delta to next docid (357). It has one position 70 -** (72-2) and then terminates with the 0 at K. -** -** A "position-list" is the list of positions for multiple columns for -** a single docid. A "column-list" is the set of positions for a single -** column. Hence, a position-list consists of one or more column-lists, -** a document record consists of a docid followed by a position-list and -** a doclist consists of one or more document records. -** -** A bare doclist omits the position information, becoming an -** array of varint-encoded docids. -** -**** Segment leaf nodes **** -** Segment leaf nodes store terms and doclists, ordered by term. Leaf -** nodes are written using LeafWriter, and read using LeafReader (to -** iterate through a single leaf node's data) and LeavesReader (to -** iterate through a segment's entire leaf layer). Leaf nodes have -** the format: -** -** varint iHeight; (height from leaf level, always 0) -** varint nTerm; (length of first term) -** char pTerm[nTerm]; (content of first term) -** varint nDoclist; (length of term's associated doclist) -** char pDoclist[nDoclist]; (content of doclist) -** array { -** (further terms are delta-encoded) -** varint nPrefix; (length of prefix shared with previous term) -** varint nSuffix; (length of unshared suffix) -** char pTermSuffix[nSuffix];(unshared suffix of next term) -** varint nDoclist; (length of term's associated doclist) -** char pDoclist[nDoclist]; (content of doclist) -** } -** -** Here, array { X } means zero or more occurrences of X, adjacent in -** memory. -** -** Leaf nodes are broken into blocks which are stored contiguously in -** the %_segments table in sorted order. This means that when the end -** of a node is reached, the next term is in the node with the next -** greater node id. -** -** New data is spilled to a new leaf node when the current node -** exceeds LEAF_MAX bytes (default 2048). New data which itself is -** larger than STANDALONE_MIN (default 1024) is placed in a standalone -** node (a leaf node with a single term and doclist). The goal of -** these settings is to pack together groups of small doclists while -** making it efficient to directly access large doclists. The -** assumption is that large doclists represent terms which are more -** likely to be query targets. -** -** TODO(shess) It may be useful for blocking decisions to be more -** dynamic. For instance, it may make more sense to have a 2.5k leaf -** node rather than splitting into 2k and .5k nodes. My intuition is -** that this might extend through 2x or 4x the pagesize. -** -** -**** Segment interior nodes **** -** Segment interior nodes store blockids for subtree nodes and terms -** to describe what data is stored by the each subtree. Interior -** nodes are written using InteriorWriter, and read using -** InteriorReader. InteriorWriters are created as needed when -** SegmentWriter creates new leaf nodes, or when an interior node -** itself grows too big and must be split. The format of interior -** nodes: -** -** varint iHeight; (height from leaf level, always >0) -** varint iBlockid; (block id of node's leftmost subtree) -** optional { -** varint nTerm; (length of first term) -** char pTerm[nTerm]; (content of first term) -** array { -** (further terms are delta-encoded) -** varint nPrefix; (length of shared prefix with previous term) -** varint nSuffix; (length of unshared suffix) -** char pTermSuffix[nSuffix]; (unshared suffix of next term) -** } -** } -** -** Here, optional { X } means an optional element, while array { X } -** means zero or more occurrences of X, adjacent in memory. -** -** An interior node encodes n terms separating n+1 subtrees. The -** subtree blocks are contiguous, so only the first subtree's blockid -** is encoded. The subtree at iBlockid will contain all terms less -** than the first term encoded (or all terms if no term is encoded). -** Otherwise, for terms greater than or equal to pTerm[i] but less -** than pTerm[i+1], the subtree for that term will be rooted at -** iBlockid+i. Interior nodes only store enough term data to -** distinguish adjacent children (if the rightmost term of the left -** child is "something", and the leftmost term of the right child is -** "wicked", only "w" is stored). -** -** New data is spilled to a new interior node at the same height when -** the current node exceeds INTERIOR_MAX bytes (default 2048). -** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing -** interior nodes and making the tree too skinny. The interior nodes -** at a given height are naturally tracked by interior nodes at -** height+1, and so on. -** -** -**** Segment directory **** -** The segment directory in table %_segdir stores meta-information for -** merging and deleting segments, and also the root node of the -** segment's tree. -** -** The root node is the top node of the segment's tree after encoding -** the entire segment, restricted to ROOT_MAX bytes (default 1024). -** This could be either a leaf node or an interior node. If the top -** node requires more than ROOT_MAX bytes, it is flushed to %_segments -** and a new root interior node is generated (which should always fit -** within ROOT_MAX because it only needs space for 2 varints, the -** height and the blockid of the previous root). -** -** The meta-information in the segment directory is: -** level - segment level (see below) -** idx - index within level -** - (level,idx uniquely identify a segment) -** start_block - first leaf node -** leaves_end_block - last leaf node -** end_block - last block (including interior nodes) -** root - contents of root node -** -** If the root node is a leaf node, then start_block, -** leaves_end_block, and end_block are all 0. -** -** -**** Segment merging **** -** To amortize update costs, segments are grouped into levels and -** merged in batches. Each increase in level represents exponentially -** more documents. -** -** New documents (actually, document updates) are tokenized and -** written individually (using LeafWriter) to a level 0 segment, with -** incrementing idx. When idx reaches MERGE_COUNT (default 16), all -** level 0 segments are merged into a single level 1 segment. Level 1 -** is populated like level 0, and eventually MERGE_COUNT level 1 -** segments are merged to a single level 2 segment (representing -** MERGE_COUNT^2 updates), and so on. -** -** A segment merge traverses all segments at a given level in -** parallel, performing a straightforward sorted merge. Since segment -** leaf nodes are written in to the %_segments table in order, this -** merge traverses the underlying sqlite disk structures efficiently. -** After the merge, all segment blocks from the merged level are -** deleted. -** -** MERGE_COUNT controls how often we merge segments. 16 seems to be -** somewhat of a sweet spot for insertion performance. 32 and 64 show -** very similar performance numbers to 16 on insertion, though they're -** a tiny bit slower (perhaps due to more overhead in merge-time -** sorting). 8 is about 20% slower than 16, 4 about 50% slower than -** 16, 2 about 66% slower than 16. -** -** At query time, high MERGE_COUNT increases the number of segments -** which need to be scanned and merged. For instance, with 100k docs -** inserted: -** -** MERGE_COUNT segments -** 16 25 -** 8 12 -** 4 10 -** 2 6 -** -** This appears to have only a moderate impact on queries for very -** frequent terms (which are somewhat dominated by segment merge -** costs), and infrequent and non-existent terms still seem to be fast -** even with many segments. -** -** TODO(shess) That said, it would be nice to have a better query-side -** argument for MERGE_COUNT of 16. Also, it is possible/likely that -** optimizations to things like doclist merging will swing the sweet -** spot around. -** -** -** -**** Handling of deletions and updates **** -** Since we're using a segmented structure, with no docid-oriented -** index into the term index, we clearly cannot simply update the term -** index when a document is deleted or updated. For deletions, we -** write an empty doclist (varint(docid) varint(POS_END)), for updates -** we simply write the new doclist. Segment merges overwrite older -** data for a particular docid with newer data, so deletes or updates -** will eventually overtake the earlier data and knock it out. The -** query logic likewise merges doclists so that newer data knocks out -** older data. -*/ - -/************** Include fts3Int.h in the middle of fts3.c ********************/ -/************** Begin file fts3Int.h *****************************************/ -/* -** 2009 Nov 12 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -*/ -#ifndef _FTSINT_H -#define _FTSINT_H - -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif - -/* -** FTS4 is really an extension for FTS3. It is enabled using the -** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all -** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. -*/ -#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) -# define SQLITE_ENABLE_FTS3 -#endif - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* If not building as part of the core, include sqlite3ext.h. */ -#ifndef SQLITE_CORE -SQLITE_API extern const sqlite3_api_routines *sqlite3_api; -#endif - -/************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/ -/************** Begin file fts3_tokenizer.h **********************************/ -/* -** 2006 July 10 -** -** The author disclaims copyright to this source code. -** -************************************************************************* -** Defines the interface to tokenizers used by fulltext-search. There -** are three basic components: -** -** sqlite3_tokenizer_module is a singleton defining the tokenizer -** interface functions. This is essentially the class structure for -** tokenizers. -** -** sqlite3_tokenizer is used to define a particular tokenizer, perhaps -** including customization information defined at creation time. -** -** sqlite3_tokenizer_cursor is generated by a tokenizer to generate -** tokens from a particular input. -*/ -#ifndef _FTS3_TOKENIZER_H_ -#define _FTS3_TOKENIZER_H_ - -/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. -** If tokenizers are to be allowed to call sqlite3_*() functions, then -** we will need a way to register the API consistently. -*/ - -/* -** Structures used by the tokenizer interface. When a new tokenizer -** implementation is registered, the caller provides a pointer to -** an sqlite3_tokenizer_module containing pointers to the callback -** functions that make up an implementation. -** -** When an fts3 table is created, it passes any arguments passed to -** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the -** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer -** implementation. The xCreate() function in turn returns an -** sqlite3_tokenizer structure representing the specific tokenizer to -** be used for the fts3 table (customized by the tokenizer clause arguments). -** -** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() -** method is called. It returns an sqlite3_tokenizer_cursor object -** that may be used to tokenize a specific input buffer based on -** the tokenization rules supplied by a specific sqlite3_tokenizer -** object. -*/ -typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; -typedef struct sqlite3_tokenizer sqlite3_tokenizer; -typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; - -struct sqlite3_tokenizer_module { - - /* - ** Structure version. Should always be set to 0 or 1. - */ - int iVersion; - - /* - ** Create a new tokenizer. The values in the argv[] array are the - ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL - ** TABLE statement that created the fts3 table. For example, if - ** the following SQL is executed: - ** - ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2) - ** - ** then argc is set to 2, and the argv[] array contains pointers - ** to the strings "arg1" and "arg2". - ** - ** This method should return either SQLITE_OK (0), or an SQLite error - ** code. If SQLITE_OK is returned, then *ppTokenizer should be set - ** to point at the newly created tokenizer structure. The generic - ** sqlite3_tokenizer.pModule variable should not be initialized by - ** this callback. The caller will do so. - */ - int (*xCreate)( - int argc, /* Size of argv array */ - const char *const*argv, /* Tokenizer argument strings */ - sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ - ); - - /* - ** Destroy an existing tokenizer. The fts3 module calls this method - ** exactly once for each successful call to xCreate(). - */ - int (*xDestroy)(sqlite3_tokenizer *pTokenizer); - - /* - ** Create a tokenizer cursor to tokenize an input buffer. The caller - ** is responsible for ensuring that the input buffer remains valid - ** until the cursor is closed (using the xClose() method). - */ - int (*xOpen)( - sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ - const char *pInput, int nBytes, /* Input buffer */ - sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ - ); - - /* - ** Destroy an existing tokenizer cursor. The fts3 module calls this - ** method exactly once for each successful call to xOpen(). - */ - int (*xClose)(sqlite3_tokenizer_cursor *pCursor); - - /* - ** Retrieve the next token from the tokenizer cursor pCursor. This - ** method should either return SQLITE_OK and set the values of the - ** "OUT" variables identified below, or SQLITE_DONE to indicate that - ** the end of the buffer has been reached, or an SQLite error code. - ** - ** *ppToken should be set to point at a buffer containing the - ** normalized version of the token (i.e. after any case-folding and/or - ** stemming has been performed). *pnBytes should be set to the length - ** of this buffer in bytes. The input text that generated the token is - ** identified by the byte offsets returned in *piStartOffset and - ** *piEndOffset. *piStartOffset should be set to the index of the first - ** byte of the token in the input buffer. *piEndOffset should be set - ** to the index of the first byte just past the end of the token in - ** the input buffer. - ** - ** The buffer *ppToken is set to point at is managed by the tokenizer - ** implementation. It is only required to be valid until the next call - ** to xNext() or xClose(). - */ - /* TODO(shess) current implementation requires pInput to be - ** nul-terminated. This should either be fixed, or pInput/nBytes - ** should be converted to zInput. - */ - int (*xNext)( - sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ - const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ - int *piStartOffset, /* OUT: Byte offset of token in input buffer */ - int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ - int *piPosition /* OUT: Number of tokens returned before this one */ - ); - - /*********************************************************************** - ** Methods below this point are only available if iVersion>=1. - */ - - /* - ** Configure the language id of a tokenizer cursor. - */ - int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid); -}; - -struct sqlite3_tokenizer { - const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ - /* Tokenizer implementations will typically add additional fields */ -}; - -struct sqlite3_tokenizer_cursor { - sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ - /* Tokenizer implementations will typically add additional fields */ -}; - -int fts3_global_term_cnt(int iTerm, int iCol); -int fts3_term_cnt(int iTerm, int iCol); - - -#endif /* _FTS3_TOKENIZER_H_ */ - -/************** End of fts3_tokenizer.h **************************************/ -/************** Continuing where we left off in fts3Int.h ********************/ -/************** Include fts3_hash.h in the middle of fts3Int.h ***************/ -/************** Begin file fts3_hash.h ***************************************/ -/* -** 2001 September 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the header file for the generic hash-table implementation -** used in SQLite. We've modified it slightly to serve as a standalone -** hash table implementation for the full-text indexing module. -** -*/ -#ifndef _FTS3_HASH_H_ -#define _FTS3_HASH_H_ - -/* Forward declarations of structures. */ -typedef struct Fts3Hash Fts3Hash; -typedef struct Fts3HashElem Fts3HashElem; - -/* A complete hash table is an instance of the following structure. -** The internals of this structure are intended to be opaque -- client -** code should not attempt to access or modify the fields of this structure -** directly. Change this structure only by using the routines below. -** However, many of the "procedures" and "functions" for modifying and -** accessing this structure are really macros, so we can't really make -** this structure opaque. -*/ -struct Fts3Hash { - char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ - char copyKey; /* True if copy of key made on insert */ - int count; /* Number of entries in this table */ - Fts3HashElem *first; /* The first element of the array */ - int htsize; /* Number of buckets in the hash table */ - struct _fts3ht { /* the hash table */ - int count; /* Number of entries with this hash */ - Fts3HashElem *chain; /* Pointer to first entry with this hash */ - } *ht; -}; - -/* Each element in the hash table is an instance of the following -** structure. All elements are stored on a single doubly-linked list. -** -** Again, this structure is intended to be opaque, but it can't really -** be opaque because it is used by macros. -*/ -struct Fts3HashElem { - Fts3HashElem *next, *prev; /* Next and previous elements in the table */ - void *data; /* Data associated with this element */ - void *pKey; int nKey; /* Key associated with this element */ -}; - -/* -** There are 2 different modes of operation for a hash table: -** -** FTS3_HASH_STRING pKey points to a string that is nKey bytes long -** (including the null-terminator, if any). Case -** is respected in comparisons. -** -** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. -** memcmp() is used to compare keys. -** -** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. -*/ -#define FTS3_HASH_STRING 1 -#define FTS3_HASH_BINARY 2 - -/* -** Access routines. To delete, insert a NULL pointer. -*/ -SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey); -SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData); -SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey); -SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*); -SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int); - -/* -** Shorthand for the functions above -*/ -#define fts3HashInit sqlite3Fts3HashInit -#define fts3HashInsert sqlite3Fts3HashInsert -#define fts3HashFind sqlite3Fts3HashFind -#define fts3HashClear sqlite3Fts3HashClear -#define fts3HashFindElem sqlite3Fts3HashFindElem - -/* -** Macros for looping over all elements of a hash table. The idiom is -** like this: -** -** Fts3Hash h; -** Fts3HashElem *p; -** ... -** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ -** SomeStructure *pData = fts3HashData(p); -** // do something with pData -** } -*/ -#define fts3HashFirst(H) ((H)->first) -#define fts3HashNext(E) ((E)->next) -#define fts3HashData(E) ((E)->data) -#define fts3HashKey(E) ((E)->pKey) -#define fts3HashKeysize(E) ((E)->nKey) - -/* -** Number of entries in a hash table -*/ -#define fts3HashCount(H) ((H)->count) - -#endif /* _FTS3_HASH_H_ */ - -/************** End of fts3_hash.h *******************************************/ -/************** Continuing where we left off in fts3Int.h ********************/ - -/* -** This constant controls how often segments are merged. Once there are -** FTS3_MERGE_COUNT segments of level N, they are merged into a single -** segment of level N+1. -*/ -#define FTS3_MERGE_COUNT 16 - -/* -** This is the maximum amount of data (in bytes) to store in the -** Fts3Table.pendingTerms hash table. Normally, the hash table is -** populated as documents are inserted/updated/deleted in a transaction -** and used to create a new segment when the transaction is committed. -** However if this limit is reached midway through a transaction, a new -** segment is created and the hash table cleared immediately. -*/ -#define FTS3_MAX_PENDING_DATA (1*1024*1024) - -/* -** Macro to return the number of elements in an array. SQLite has a -** similar macro called ArraySize(). Use a different name to avoid -** a collision when building an amalgamation with built-in FTS3. -*/ -#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0]))) - - -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif -#ifndef MAX -# define MAX(x,y) ((x)>(y)?(x):(y)) -#endif - -/* -** Maximum length of a varint encoded integer. The varint format is different -** from that used by SQLite, so the maximum length is 10, not 9. -*/ -#define FTS3_VARINT_MAX 10 - -/* -** FTS4 virtual tables may maintain multiple indexes - one index of all terms -** in the document set and zero or more prefix indexes. All indexes are stored -** as one or more b+-trees in the %_segments and %_segdir tables. -** -** It is possible to determine which index a b+-tree belongs to based on the -** value stored in the "%_segdir.level" column. Given this value L, the index -** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with -** level values between 0 and 1023 (inclusive) belong to index 0, all levels -** between 1024 and 2047 to index 1, and so on. -** -** It is considered impossible for an index to use more than 1024 levels. In -** theory though this may happen, but only after at least -** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables. -*/ -#define FTS3_SEGDIR_MAXLEVEL 1024 -#define FTS3_SEGDIR_MAXLEVEL_STR "1024" - -/* -** The testcase() macro is only used by the amalgamation. If undefined, -** make it a no-op. -*/ -#ifndef testcase -# define testcase(X) -#endif - -/* -** Terminator values for position-lists and column-lists. -*/ -#define POS_COLUMN (1) /* Column-list terminator */ -#define POS_END (0) /* Position-list terminator */ - -/* -** This section provides definitions to allow the -** FTS3 extension to be compiled outside of the -** amalgamation. -*/ -#ifndef SQLITE_AMALGAMATION -/* -** Macros indicating that conditional expressions are always true or -** false. -*/ -#ifdef SQLITE_COVERAGE_TEST -# define ALWAYS(x) (1) -# define NEVER(X) (0) -#else -# define ALWAYS(x) (x) -# define NEVER(x) (x) -#endif - -/* -** Internal types used by SQLite. -*/ -typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ -typedef short int i16; /* 2-byte (or larger) signed integer */ -typedef unsigned int u32; /* 4-byte unsigned integer */ -typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */ -typedef sqlite3_int64 i64; /* 8-byte signed integer */ - -/* -** Macro used to suppress compiler warnings for unused parameters. -*/ -#define UNUSED_PARAMETER(x) (void)(x) - -/* -** Activate assert() only if SQLITE_TEST is enabled. -*/ -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif - -/* -** The TESTONLY macro is used to enclose variable declarations or -** other bits of code that are needed to support the arguments -** within testcase() and assert() macros. -*/ -#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) -# define TESTONLY(X) X -#else -# define TESTONLY(X) -#endif - -#endif /* SQLITE_AMALGAMATION */ - -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE int sqlite3Fts3Corrupt(void); -# define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt() -#else -# define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB -#endif - -typedef struct Fts3Table Fts3Table; -typedef struct Fts3Cursor Fts3Cursor; -typedef struct Fts3Expr Fts3Expr; -typedef struct Fts3Phrase Fts3Phrase; -typedef struct Fts3PhraseToken Fts3PhraseToken; - -typedef struct Fts3Doclist Fts3Doclist; -typedef struct Fts3SegFilter Fts3SegFilter; -typedef struct Fts3DeferredToken Fts3DeferredToken; -typedef struct Fts3SegReader Fts3SegReader; -typedef struct Fts3MultiSegReader Fts3MultiSegReader; - -/* -** A connection to a fulltext index is an instance of the following -** structure. The xCreate and xConnect methods create an instance -** of this structure and xDestroy and xDisconnect free that instance. -** All other methods receive a pointer to the structure as one of their -** arguments. -*/ -struct Fts3Table { - sqlite3_vtab base; /* Base class used by SQLite core */ - sqlite3 *db; /* The database connection */ - const char *zDb; /* logical database name */ - const char *zName; /* virtual table name */ - int nColumn; /* number of named columns in virtual table */ - char **azColumn; /* column names. malloced */ - sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ - char *zContentTbl; /* content=xxx option, or NULL */ - char *zLanguageid; /* languageid=xxx option, or NULL */ - u8 bAutoincrmerge; /* True if automerge=1 */ - u32 nLeafAdd; /* Number of leaf blocks added this trans */ - - /* Precompiled statements used by the implementation. Each of these - ** statements is run and reset within a single virtual table API call. - */ - sqlite3_stmt *aStmt[37]; - - char *zReadExprlist; - char *zWriteExprlist; - - int nNodeSize; /* Soft limit for node size */ - u8 bFts4; /* True for FTS4, false for FTS3 */ - u8 bHasStat; /* True if %_stat table exists */ - u8 bHasDocsize; /* True if %_docsize table exists */ - u8 bDescIdx; /* True if doclists are in reverse order */ - u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */ - int nPgsz; /* Page size for host database */ - char *zSegmentsTbl; /* Name of %_segments table */ - sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ - - /* - ** The following array of hash tables is used to buffer pending index - ** updates during transactions. All pending updates buffered at any one - ** time must share a common language-id (see the FTS4 langid= feature). - ** The current language id is stored in variable iPrevLangid. - ** - ** A single FTS4 table may have multiple full-text indexes. For each index - ** there is an entry in the aIndex[] array. Index 0 is an index of all the - ** terms that appear in the document set. Each subsequent index in aIndex[] - ** is an index of prefixes of a specific length. - ** - ** Variable nPendingData contains an estimate the memory consumed by the - ** pending data structures, including hash table overhead, but not including - ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash - ** tables are flushed to disk. Variable iPrevDocid is the docid of the most - ** recently inserted record. - */ - int nIndex; /* Size of aIndex[] */ - struct Fts3Index { - int nPrefix; /* Prefix length (0 for main terms index) */ - Fts3Hash hPending; /* Pending terms table for this index */ - } *aIndex; - int nMaxPendingData; /* Max pending data before flush to disk */ - int nPendingData; /* Current bytes of pending data */ - sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ - int iPrevLangid; /* Langid of recently inserted document */ - -#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) - /* State variables used for validating that the transaction control - ** methods of the virtual table are called at appropriate times. These - ** values do not contribute to FTS functionality; they are used for - ** verifying the operation of the SQLite core. - */ - int inTransaction; /* True after xBegin but before xCommit/xRollback */ - int mxSavepoint; /* Largest valid xSavepoint integer */ -#endif -}; - -/* -** When the core wants to read from the virtual table, it creates a -** virtual table cursor (an instance of the following structure) using -** the xOpen method. Cursors are destroyed using the xClose method. -*/ -struct Fts3Cursor { - sqlite3_vtab_cursor base; /* Base class used by SQLite core */ - i16 eSearch; /* Search strategy (see below) */ - u8 isEof; /* True if at End Of Results */ - u8 isRequireSeek; /* True if must seek pStmt to %_content row */ - sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ - Fts3Expr *pExpr; /* Parsed MATCH query string */ - int iLangid; /* Language being queried for */ - int nPhrase; /* Number of matchable phrases in query */ - Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ - sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ - char *pNextId; /* Pointer into the body of aDoclist */ - char *aDoclist; /* List of docids for full-text queries */ - int nDoclist; /* Size of buffer at aDoclist */ - u8 bDesc; /* True to sort in descending order */ - int eEvalmode; /* An FTS3_EVAL_XX constant */ - int nRowAvg; /* Average size of database rows, in pages */ - sqlite3_int64 nDoc; /* Documents in table */ - - int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ - u32 *aMatchinfo; /* Information about most recent match */ - int nMatchinfo; /* Number of elements in aMatchinfo[] */ - char *zMatchinfo; /* Matchinfo specification */ -}; - -#define FTS3_EVAL_FILTER 0 -#define FTS3_EVAL_NEXT 1 -#define FTS3_EVAL_MATCHINFO 2 - -/* -** The Fts3Cursor.eSearch member is always set to one of the following. -** Actualy, Fts3Cursor.eSearch can be greater than or equal to -** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index -** of the column to be searched. For example, in -** -** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d); -** SELECT docid FROM ex1 WHERE b MATCH 'one two three'; -** -** Because the LHS of the MATCH operator is 2nd column "b", -** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a, -** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1" -** indicating that all columns should be searched, -** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4. -*/ -#define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */ -#define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */ -#define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */ - - -struct Fts3Doclist { - char *aAll; /* Array containing doclist (or NULL) */ - int nAll; /* Size of a[] in bytes */ - char *pNextDocid; /* Pointer to next docid */ - - sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ - int bFreeList; /* True if pList should be sqlite3_free()d */ - char *pList; /* Pointer to position list following iDocid */ - int nList; /* Length of position list */ -}; - -/* -** A "phrase" is a sequence of one or more tokens that must match in -** sequence. A single token is the base case and the most common case. -** For a sequence of tokens contained in double-quotes (i.e. "one two three") -** nToken will be the number of tokens in the string. -*/ -struct Fts3PhraseToken { - char *z; /* Text of the token */ - int n; /* Number of bytes in buffer z */ - int isPrefix; /* True if token ends with a "*" character */ - int bFirst; /* True if token must appear at position 0 */ - - /* Variables above this point are populated when the expression is - ** parsed (by code in fts3_expr.c). Below this point the variables are - ** used when evaluating the expression. */ - Fts3DeferredToken *pDeferred; /* Deferred token object for this token */ - Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */ -}; - -struct Fts3Phrase { - /* Cache of doclist for this phrase. */ - Fts3Doclist doclist; - int bIncr; /* True if doclist is loaded incrementally */ - int iDoclistToken; - - /* Variables below this point are populated by fts3_expr.c when parsing - ** a MATCH expression. Everything above is part of the evaluation phase. - */ - int nToken; /* Number of tokens in the phrase */ - int iColumn; /* Index of column this phrase must match */ - Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */ -}; - -/* -** A tree of these objects forms the RHS of a MATCH operator. -** -** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist -** points to a malloced buffer, size nDoclist bytes, containing the results -** of this phrase query in FTS3 doclist format. As usual, the initial -** "Length" field found in doclists stored on disk is omitted from this -** buffer. -** -** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global -** matchinfo data. If it is not NULL, it points to an array of size nCol*3, -** where nCol is the number of columns in the queried FTS table. The array -** is populated as follows: -** -** aMI[iCol*3 + 0] = Undefined -** aMI[iCol*3 + 1] = Number of occurrences -** aMI[iCol*3 + 2] = Number of rows containing at least one instance -** -** The aMI array is allocated using sqlite3_malloc(). It should be freed -** when the expression node is. -*/ -struct Fts3Expr { - int eType; /* One of the FTSQUERY_XXX values defined below */ - int nNear; /* Valid if eType==FTSQUERY_NEAR */ - Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ - Fts3Expr *pLeft; /* Left operand */ - Fts3Expr *pRight; /* Right operand */ - Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ - - /* The following are used by the fts3_eval.c module. */ - sqlite3_int64 iDocid; /* Current docid */ - u8 bEof; /* True this expression is at EOF already */ - u8 bStart; /* True if iDocid is valid */ - u8 bDeferred; /* True if this expression is entirely deferred */ - - u32 *aMI; -}; - -/* -** Candidate values for Fts3Query.eType. Note that the order of the first -** four values is in order of precedence when parsing expressions. For -** example, the following: -** -** "a OR b AND c NOT d NEAR e" -** -** is equivalent to: -** -** "a OR (b AND (c NOT (d NEAR e)))" -*/ -#define FTSQUERY_NEAR 1 -#define FTSQUERY_NOT 2 -#define FTSQUERY_AND 3 -#define FTSQUERY_OR 4 -#define FTSQUERY_PHRASE 5 - - -/* fts3_write.c */ -SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*); -SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *); -SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *); -SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); -SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, - sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); -SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( - Fts3Table*,int,const char*,int,int,Fts3SegReader**); -SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); -SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); -SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *); -SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); - -SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); -SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); - -#ifndef SQLITE_DISABLE_FTS4_DEFERRED -SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); -SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); -SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); -SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); -SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *); -#else -# define sqlite3Fts3FreeDeferredTokens(x) -# define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK -# define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK -# define sqlite3Fts3FreeDeferredDoclists(x) -# define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK -#endif - -SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *); -SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *); - -/* Special values interpreted by sqlite3SegReaderCursor() */ -#define FTS3_SEGCURSOR_PENDING -1 -#define FTS3_SEGCURSOR_ALL -2 - -SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*); -SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *); -SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *); - -SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *, - int, int, int, const char *, int, int, int, Fts3MultiSegReader *); - -/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ -#define FTS3_SEGMENT_REQUIRE_POS 0x00000001 -#define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 -#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 -#define FTS3_SEGMENT_PREFIX 0x00000008 -#define FTS3_SEGMENT_SCAN 0x00000010 -#define FTS3_SEGMENT_FIRST 0x00000020 - -/* Type passed as 4th argument to SegmentReaderIterate() */ -struct Fts3SegFilter { - const char *zTerm; - int nTerm; - int iCol; - int flags; -}; - -struct Fts3MultiSegReader { - /* Used internally by sqlite3Fts3SegReaderXXX() calls */ - Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */ - int nSegment; /* Size of apSegment array */ - int nAdvance; /* How many seg-readers to advance */ - Fts3SegFilter *pFilter; /* Pointer to filter object */ - char *aBuffer; /* Buffer to merge doclists in */ - int nBuffer; /* Allocated size of aBuffer[] in bytes */ - - int iColFilter; /* If >=0, filter for this column */ - int bRestart; - - /* Used by fts3.c only. */ - int nCost; /* Cost of running iterator */ - int bLookup; /* True if a lookup of a single entry. */ - - /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */ - char *zTerm; /* Pointer to term buffer */ - int nTerm; /* Size of zTerm in bytes */ - char *aDoclist; /* Pointer to doclist buffer */ - int nDoclist; /* Size of aDoclist[] in bytes */ -}; - -SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int); - -/* fts3.c */ -SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64); -SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); -SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *); -SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64); -SQLITE_PRIVATE void sqlite3Fts3Dequote(char *); -SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*); -SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *); -SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *); -SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*); - -/* fts3_tokenizer.c */ -SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *); -SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); -SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, - sqlite3_tokenizer **, char ** -); -SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char); - -/* fts3_snippet.c */ -SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); -SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *, - const char *, const char *, int, int -); -SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *); - -/* fts3_expr.c */ -SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, - char **, int, int, int, const char *, int, Fts3Expr ** -); -SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *); -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); -SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db); -#endif - -SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int, - sqlite3_tokenizer_cursor ** -); - -/* fts3_aux.c */ -SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db); - -SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *); - -SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( - Fts3Table*, Fts3MultiSegReader*, int, const char*, int); -SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( - Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *); -SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); -SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *); -SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr); - -/* fts3_unicode2.c (functions generated by parsing unicode text files) */ -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 -SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int); -SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int); -SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int); -#endif - -#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */ -#endif /* _FTSINT_H */ - -/************** End of fts3Int.h *********************************************/ -/************** Continuing where we left off in fts3.c ***********************/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) -# define SQLITE_CORE 1 -#endif - -/* #include <assert.h> */ -/* #include <stdlib.h> */ -/* #include <stddef.h> */ -/* #include <stdio.h> */ -/* #include <string.h> */ -/* #include <stdarg.h> */ - -#ifndef SQLITE_CORE - SQLITE_EXTENSION_INIT1 -#endif - -static int fts3EvalNext(Fts3Cursor *pCsr); -static int fts3EvalStart(Fts3Cursor *pCsr); -static int fts3TermSegReaderCursor( - Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); - -/* -** Write a 64-bit variable-length integer to memory starting at p[0]. -** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. -** The number of bytes written is returned. -*/ -SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ - unsigned char *q = (unsigned char *) p; - sqlite_uint64 vu = v; - do{ - *q++ = (unsigned char) ((vu & 0x7f) | 0x80); - vu >>= 7; - }while( vu!=0 ); - q[-1] &= 0x7f; /* turn off high bit in final byte */ - assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); - return (int) (q - (unsigned char *)p); -} - -/* -** Read a 64-bit variable-length integer from memory starting at p[0]. -** Return the number of bytes read, or 0 on error. -** The value is stored in *v. -*/ -SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ - const unsigned char *q = (const unsigned char *) p; - sqlite_uint64 x = 0, y = 1; - while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){ - x += y * (*q++ & 0x7f); - y <<= 7; - } - x += y * (*q++); - *v = (sqlite_int64) x; - return (int) (q - (unsigned char *)p); -} - -/* -** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a -** 32-bit integer before it is returned. -*/ -SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){ - sqlite_int64 i; - int ret = sqlite3Fts3GetVarint(p, &i); - *pi = (int) i; - return ret; -} - -/* -** Return the number of bytes required to encode v as a varint -*/ -SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){ - int i = 0; - do{ - i++; - v >>= 7; - }while( v!=0 ); - return i; -} - -/* -** Convert an SQL-style quoted string into a normal string by removing -** the quote characters. The conversion is done in-place. If the -** input does not begin with a quote character, then this routine -** is a no-op. -** -** Examples: -** -** "abc" becomes abc -** 'xyz' becomes xyz -** [pqr] becomes pqr -** `mno` becomes mno -** -*/ -SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){ - char quote; /* Quote character (if any ) */ - - quote = z[0]; - if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ - int iIn = 1; /* Index of next byte to read from input */ - int iOut = 0; /* Index of next byte to write to output */ - - /* If the first byte was a '[', then the close-quote character is a ']' */ - if( quote=='[' ) quote = ']'; - - while( ALWAYS(z[iIn]) ){ - if( z[iIn]==quote ){ - if( z[iIn+1]!=quote ) break; - z[iOut++] = quote; - iIn += 2; - }else{ - z[iOut++] = z[iIn++]; - } - } - z[iOut] = '\0'; - } -} - -/* -** Read a single varint from the doclist at *pp and advance *pp to point -** to the first byte past the end of the varint. Add the value of the varint -** to *pVal. -*/ -static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ - sqlite3_int64 iVal; - *pp += sqlite3Fts3GetVarint(*pp, &iVal); - *pVal += iVal; -} - -/* -** When this function is called, *pp points to the first byte following a -** varint that is part of a doclist (or position-list, or any other list -** of varints). This function moves *pp to point to the start of that varint, -** and sets *pVal by the varint value. -** -** Argument pStart points to the first byte of the doclist that the -** varint is part of. -*/ -static void fts3GetReverseVarint( - char **pp, - char *pStart, - sqlite3_int64 *pVal -){ - sqlite3_int64 iVal; - char *p; - - /* Pointer p now points at the first byte past the varint we are - ** interested in. So, unless the doclist is corrupt, the 0x80 bit is - ** clear on character p[-1]. */ - for(p = (*pp)-2; p>=pStart && *p&0x80; p--); - p++; - *pp = p; - - sqlite3Fts3GetVarint(p, &iVal); - *pVal = iVal; -} - -/* -** The xDisconnect() virtual table method. -*/ -static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ - Fts3Table *p = (Fts3Table *)pVtab; - int i; - - assert( p->nPendingData==0 ); - assert( p->pSegments==0 ); - - /* Free any prepared statements held */ - for(i=0; i<SizeofArray(p->aStmt); i++){ - sqlite3_finalize(p->aStmt[i]); - } - sqlite3_free(p->zSegmentsTbl); - sqlite3_free(p->zReadExprlist); - sqlite3_free(p->zWriteExprlist); - sqlite3_free(p->zContentTbl); - sqlite3_free(p->zLanguageid); - - /* Invoke the tokenizer destructor to free the tokenizer. */ - p->pTokenizer->pModule->xDestroy(p->pTokenizer); - - sqlite3_free(p); - return SQLITE_OK; -} - -/* -** Construct one or more SQL statements from the format string given -** and then evaluate those statements. The success code is written -** into *pRc. -** -** If *pRc is initially non-zero then this routine is a no-op. -*/ -static void fts3DbExec( - int *pRc, /* Success code */ - sqlite3 *db, /* Database in which to run SQL */ - const char *zFormat, /* Format string for SQL */ - ... /* Arguments to the format string */ -){ - va_list ap; - char *zSql; - if( *pRc ) return; - va_start(ap, zFormat); - zSql = sqlite3_vmprintf(zFormat, ap); - va_end(ap); - if( zSql==0 ){ - *pRc = SQLITE_NOMEM; - }else{ - *pRc = sqlite3_exec(db, zSql, 0, 0, 0); - sqlite3_free(zSql); - } -} - -/* -** The xDestroy() virtual table method. -*/ -static int fts3DestroyMethod(sqlite3_vtab *pVtab){ - Fts3Table *p = (Fts3Table *)pVtab; - int rc = SQLITE_OK; /* Return code */ - const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ - sqlite3 *db = p->db; /* Database handle */ - - /* Drop the shadow tables */ - if( p->zContentTbl==0 ){ - fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName); - } - fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName); - fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName); - fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName); - fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName); - - /* If everything has worked, invoke fts3DisconnectMethod() to free the - ** memory associated with the Fts3Table structure and return SQLITE_OK. - ** Otherwise, return an SQLite error code. - */ - return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); -} - - -/* -** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table -** passed as the first argument. This is done as part of the xConnect() -** and xCreate() methods. -** -** If *pRc is non-zero when this function is called, it is a no-op. -** Otherwise, if an error occurs, an SQLite error code is stored in *pRc -** before returning. -*/ -static void fts3DeclareVtab(int *pRc, Fts3Table *p){ - if( *pRc==SQLITE_OK ){ - int i; /* Iterator variable */ - int rc; /* Return code */ - char *zSql; /* SQL statement passed to declare_vtab() */ - char *zCols; /* List of user defined columns */ - const char *zLanguageid; - - zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); - sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); - - /* Create a list of user columns for the virtual table */ - zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); - for(i=1; zCols && i<p->nColumn; i++){ - zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); - } - - /* Create the whole "CREATE TABLE" statement to pass to SQLite */ - zSql = sqlite3_mprintf( - "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", - zCols, p->zName, zLanguageid - ); - if( !zCols || !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_declare_vtab(p->db, zSql); - } - - sqlite3_free(zSql); - sqlite3_free(zCols); - *pRc = rc; - } -} - -/* -** Create the %_stat table if it does not already exist. -*/ -SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ - fts3DbExec(pRc, p->db, - "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" - "(id INTEGER PRIMARY KEY, value BLOB);", - p->zDb, p->zName - ); - if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; -} - -/* -** Create the backing store tables (%_content, %_segments and %_segdir) -** required by the FTS3 table passed as the only argument. This is done -** as part of the vtab xCreate() method. -** -** If the p->bHasDocsize boolean is true (indicating that this is an -** FTS4 table, not an FTS3 table) then also create the %_docsize and -** %_stat tables required by FTS4. -*/ -static int fts3CreateTables(Fts3Table *p){ - int rc = SQLITE_OK; /* Return code */ - int i; /* Iterator variable */ - sqlite3 *db = p->db; /* The database connection */ - - if( p->zContentTbl==0 ){ - const char *zLanguageid = p->zLanguageid; - char *zContentCols; /* Columns of %_content table */ - - /* Create a list of user columns for the content table */ - zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); - for(i=0; zContentCols && i<p->nColumn; i++){ - char *z = p->azColumn[i]; - zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); - } - if( zLanguageid && zContentCols ){ - zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); - } - if( zContentCols==0 ) rc = SQLITE_NOMEM; - - /* Create the content table */ - fts3DbExec(&rc, db, - "CREATE TABLE %Q.'%q_content'(%s)", - p->zDb, p->zName, zContentCols - ); - sqlite3_free(zContentCols); - } - - /* Create other tables */ - fts3DbExec(&rc, db, - "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", - p->zDb, p->zName - ); - fts3DbExec(&rc, db, - "CREATE TABLE %Q.'%q_segdir'(" - "level INTEGER," - "idx INTEGER," - "start_block INTEGER," - "leaves_end_block INTEGER," - "end_block INTEGER," - "root BLOB," - "PRIMARY KEY(level, idx)" - ");", - p->zDb, p->zName - ); - if( p->bHasDocsize ){ - fts3DbExec(&rc, db, - "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", - p->zDb, p->zName - ); - } - assert( p->bHasStat==p->bFts4 ); - if( p->bHasStat ){ - sqlite3Fts3CreateStatTable(&rc, p); - } - return rc; -} - -/* -** Store the current database page-size in bytes in p->nPgsz. -** -** If *pRc is non-zero when this function is called, it is a no-op. -** Otherwise, if an error occurs, an SQLite error code is stored in *pRc -** before returning. -*/ -static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ - if( *pRc==SQLITE_OK ){ - int rc; /* Return code */ - char *zSql; /* SQL text "PRAGMA %Q.page_size" */ - sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ - - zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_step(pStmt); - p->nPgsz = sqlite3_column_int(pStmt, 0); - rc = sqlite3_finalize(pStmt); - }else if( rc==SQLITE_AUTH ){ - p->nPgsz = 1024; - rc = SQLITE_OK; - } - } - assert( p->nPgsz>0 || rc!=SQLITE_OK ); - sqlite3_free(zSql); - *pRc = rc; - } -} - -/* -** "Special" FTS4 arguments are column specifications of the following form: -** -** <key> = <value> -** -** There may not be whitespace surrounding the "=" character. The <value> -** term may be quoted, but the <key> may not. -*/ -static int fts3IsSpecialColumn( - const char *z, - int *pnKey, - char **pzValue -){ - char *zValue; - const char *zCsr = z; - - while( *zCsr!='=' ){ - if( *zCsr=='\0' ) return 0; - zCsr++; - } - - *pnKey = (int)(zCsr-z); - zValue = sqlite3_mprintf("%s", &zCsr[1]); - if( zValue ){ - sqlite3Fts3Dequote(zValue); - } - *pzValue = zValue; - return 1; -} - -/* -** Append the output of a printf() style formatting to an existing string. -*/ -static void fts3Appendf( - int *pRc, /* IN/OUT: Error code */ - char **pz, /* IN/OUT: Pointer to string buffer */ - const char *zFormat, /* Printf format string to append */ - ... /* Arguments for printf format string */ -){ - if( *pRc==SQLITE_OK ){ - va_list ap; - char *z; - va_start(ap, zFormat); - z = sqlite3_vmprintf(zFormat, ap); - va_end(ap); - if( z && *pz ){ - char *z2 = sqlite3_mprintf("%s%s", *pz, z); - sqlite3_free(z); - z = z2; - } - if( z==0 ) *pRc = SQLITE_NOMEM; - sqlite3_free(*pz); - *pz = z; - } -} - -/* -** Return a copy of input string zInput enclosed in double-quotes (") and -** with all double quote characters escaped. For example: -** -** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" -** -** The pointer returned points to memory obtained from sqlite3_malloc(). It -** is the callers responsibility to call sqlite3_free() to release this -** memory. -*/ -static char *fts3QuoteId(char const *zInput){ - int nRet; - char *zRet; - nRet = 2 + (int)strlen(zInput)*2 + 1; - zRet = sqlite3_malloc(nRet); - if( zRet ){ - int i; - char *z = zRet; - *(z++) = '"'; - for(i=0; zInput[i]; i++){ - if( zInput[i]=='"' ) *(z++) = '"'; - *(z++) = zInput[i]; - } - *(z++) = '"'; - *(z++) = '\0'; - } - return zRet; -} - -/* -** Return a list of comma separated SQL expressions and a FROM clause that -** could be used in a SELECT statement such as the following: -** -** SELECT <list of expressions> FROM %_content AS x ... -** -** to return the docid, followed by each column of text data in order -** from left to write. If parameter zFunc is not NULL, then instead of -** being returned directly each column of text data is passed to an SQL -** function named zFunc first. For example, if zFunc is "unzip" and the -** table has the three user-defined columns "a", "b", and "c", the following -** string is returned: -** -** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" -** -** The pointer returned points to a buffer allocated by sqlite3_malloc(). It -** is the responsibility of the caller to eventually free it. -** -** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and -** a NULL pointer is returned). Otherwise, if an OOM error is encountered -** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If -** no error occurs, *pRc is left unmodified. -*/ -static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ - char *zRet = 0; - char *zFree = 0; - char *zFunction; - int i; - - if( p->zContentTbl==0 ){ - if( !zFunc ){ - zFunction = ""; - }else{ - zFree = zFunction = fts3QuoteId(zFunc); - } - fts3Appendf(pRc, &zRet, "docid"); - for(i=0; i<p->nColumn; i++){ - fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); - } - if( p->zLanguageid ){ - fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); - } - sqlite3_free(zFree); - }else{ - fts3Appendf(pRc, &zRet, "rowid"); - for(i=0; i<p->nColumn; i++){ - fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); - } - if( p->zLanguageid ){ - fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); - } - } - fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", - p->zDb, - (p->zContentTbl ? p->zContentTbl : p->zName), - (p->zContentTbl ? "" : "_content") - ); - return zRet; -} - -/* -** Return a list of N comma separated question marks, where N is the number -** of columns in the %_content table (one for the docid plus one for each -** user-defined text column). -** -** If argument zFunc is not NULL, then all but the first question mark -** is preceded by zFunc and an open bracket, and followed by a closed -** bracket. For example, if zFunc is "zip" and the FTS3 table has three -** user-defined text columns, the following string is returned: -** -** "?, zip(?), zip(?), zip(?)" -** -** The pointer returned points to a buffer allocated by sqlite3_malloc(). It -** is the responsibility of the caller to eventually free it. -** -** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and -** a NULL pointer is returned). Otherwise, if an OOM error is encountered -** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If -** no error occurs, *pRc is left unmodified. -*/ -static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ - char *zRet = 0; - char *zFree = 0; - char *zFunction; - int i; - - if( !zFunc ){ - zFunction = ""; - }else{ - zFree = zFunction = fts3QuoteId(zFunc); - } - fts3Appendf(pRc, &zRet, "?"); - for(i=0; i<p->nColumn; i++){ - fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); - } - if( p->zLanguageid ){ - fts3Appendf(pRc, &zRet, ", ?"); - } - sqlite3_free(zFree); - return zRet; -} - -/* -** This function interprets the string at (*pp) as a non-negative integer -** value. It reads the integer and sets *pnOut to the value read, then -** sets *pp to point to the byte immediately following the last byte of -** the integer value. -** -** Only decimal digits ('0'..'9') may be part of an integer value. -** -** If *pp does not being with a decimal digit SQLITE_ERROR is returned and -** the output value undefined. Otherwise SQLITE_OK is returned. -** -** This function is used when parsing the "prefix=" FTS4 parameter. -*/ -static int fts3GobbleInt(const char **pp, int *pnOut){ - const char *p; /* Iterator pointer */ - int nInt = 0; /* Output value */ - - for(p=*pp; p[0]>='0' && p[0]<='9'; p++){ - nInt = nInt * 10 + (p[0] - '0'); - } - if( p==*pp ) return SQLITE_ERROR; - *pnOut = nInt; - *pp = p; - return SQLITE_OK; -} - -/* -** This function is called to allocate an array of Fts3Index structures -** representing the indexes maintained by the current FTS table. FTS tables -** always maintain the main "terms" index, but may also maintain one or -** more "prefix" indexes, depending on the value of the "prefix=" parameter -** (if any) specified as part of the CREATE VIRTUAL TABLE statement. -** -** Argument zParam is passed the value of the "prefix=" option if one was -** specified, or NULL otherwise. -** -** If no error occurs, SQLITE_OK is returned and *apIndex set to point to -** the allocated array. *pnIndex is set to the number of elements in the -** array. If an error does occur, an SQLite error code is returned. -** -** Regardless of whether or not an error is returned, it is the responsibility -** of the caller to call sqlite3_free() on the output array to free it. -*/ -static int fts3PrefixParameter( - const char *zParam, /* ABC in prefix=ABC parameter to parse */ - int *pnIndex, /* OUT: size of *apIndex[] array */ - struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ -){ - struct Fts3Index *aIndex; /* Allocated array */ - int nIndex = 1; /* Number of entries in array */ - - if( zParam && zParam[0] ){ - const char *p; - nIndex++; - for(p=zParam; *p; p++){ - if( *p==',' ) nIndex++; - } - } - - aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex); - *apIndex = aIndex; - *pnIndex = nIndex; - if( !aIndex ){ - return SQLITE_NOMEM; - } - - memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); - if( zParam ){ - const char *p = zParam; - int i; - for(i=1; i<nIndex; i++){ - int nPrefix; - if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR; - aIndex[i].nPrefix = nPrefix; - p++; - } - } - - return SQLITE_OK; -} - -/* -** This function is called when initializing an FTS4 table that uses the -** content=xxx option. It determines the number of and names of the columns -** of the new FTS4 table. -** -** The third argument passed to this function is the value passed to the -** config=xxx option (i.e. "xxx"). This function queries the database for -** a table of that name. If found, the output variables are populated -** as follows: -** -** *pnCol: Set to the number of columns table xxx has, -** -** *pnStr: Set to the total amount of space required to store a copy -** of each columns name, including the nul-terminator. -** -** *pazCol: Set to point to an array of *pnCol strings. Each string is -** the name of the corresponding column in table xxx. The array -** and its contents are allocated using a single allocation. It -** is the responsibility of the caller to free this allocation -** by eventually passing the *pazCol value to sqlite3_free(). -** -** If the table cannot be found, an error code is returned and the output -** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is -** returned (and the output variables are undefined). -*/ -static int fts3ContentColumns( - sqlite3 *db, /* Database handle */ - const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ - const char *zTbl, /* Name of content table */ - const char ***pazCol, /* OUT: Malloc'd array of column names */ - int *pnCol, /* OUT: Size of array *pazCol */ - int *pnStr /* OUT: Bytes of string content */ -){ - int rc = SQLITE_OK; /* Return code */ - char *zSql; /* "SELECT *" statement on zTbl */ - sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ - - zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); - } - sqlite3_free(zSql); - - if( rc==SQLITE_OK ){ - const char **azCol; /* Output array */ - int nStr = 0; /* Size of all column names (incl. 0x00) */ - int nCol; /* Number of table columns */ - int i; /* Used to iterate through columns */ - - /* Loop through the returned columns. Set nStr to the number of bytes of - ** space required to store a copy of each column name, including the - ** nul-terminator byte. */ - nCol = sqlite3_column_count(pStmt); - for(i=0; i<nCol; i++){ - const char *zCol = sqlite3_column_name(pStmt, i); - nStr += (int)strlen(zCol) + 1; - } - - /* Allocate and populate the array to return. */ - azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr); - if( azCol==0 ){ - rc = SQLITE_NOMEM; - }else{ - char *p = (char *)&azCol[nCol]; - for(i=0; i<nCol; i++){ - const char *zCol = sqlite3_column_name(pStmt, i); - int n = (int)strlen(zCol)+1; - memcpy(p, zCol, n); - azCol[i] = p; - p += n; - } - } - sqlite3_finalize(pStmt); - - /* Set the output variables. */ - *pnCol = nCol; - *pnStr = nStr; - *pazCol = azCol; - } - - return rc; -} - -/* -** This function is the implementation of both the xConnect and xCreate -** methods of the FTS3 virtual table. -** -** The argv[] array contains the following: -** -** argv[0] -> module name ("fts3" or "fts4") -** argv[1] -> database name -** argv[2] -> table name -** argv[...] -> "column name" and other module argument fields. -*/ -static int fts3InitVtab( - int isCreate, /* True for xCreate, false for xConnect */ - sqlite3 *db, /* The SQLite database connection */ - void *pAux, /* Hash table containing tokenizers */ - int argc, /* Number of elements in argv array */ - const char * const *argv, /* xCreate/xConnect argument array */ - sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ - char **pzErr /* Write any error message here */ -){ - Fts3Hash *pHash = (Fts3Hash *)pAux; - Fts3Table *p = 0; /* Pointer to allocated vtab */ - int rc = SQLITE_OK; /* Return code */ - int i; /* Iterator variable */ - int nByte; /* Size of allocation used for *p */ - int iCol; /* Column index */ - int nString = 0; /* Bytes required to hold all column names */ - int nCol = 0; /* Number of columns in the FTS table */ - char *zCsr; /* Space for holding column names */ - int nDb; /* Bytes required to hold database name */ - int nName; /* Bytes required to hold table name */ - int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ - const char **aCol; /* Array of column names */ - sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ - - int nIndex; /* Size of aIndex[] array */ - struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ - - /* The results of parsing supported FTS4 key=value options: */ - int bNoDocsize = 0; /* True to omit %_docsize table */ - int bDescIdx = 0; /* True to store descending indexes */ - char *zPrefix = 0; /* Prefix parameter value (or NULL) */ - char *zCompress = 0; /* compress=? parameter (or NULL) */ - char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ - char *zContent = 0; /* content=? parameter (or NULL) */ - char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ - - assert( strlen(argv[0])==4 ); - assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) - || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) - ); - - nDb = (int)strlen(argv[1]) + 1; - nName = (int)strlen(argv[2]) + 1; - - aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) ); - if( !aCol ) return SQLITE_NOMEM; - memset((void *)aCol, 0, sizeof(const char *) * (argc-2)); - - /* Loop through all of the arguments passed by the user to the FTS3/4 - ** module (i.e. all the column names and special arguments). This loop - ** does the following: - ** - ** + Figures out the number of columns the FTSX table will have, and - ** the number of bytes of space that must be allocated to store copies - ** of the column names. - ** - ** + If there is a tokenizer specification included in the arguments, - ** initializes the tokenizer pTokenizer. - */ - for(i=3; rc==SQLITE_OK && i<argc; i++){ - char const *z = argv[i]; - int nKey; - char *zVal; - - /* Check if this is a tokenizer specification */ - if( !pTokenizer - && strlen(z)>8 - && 0==sqlite3_strnicmp(z, "tokenize", 8) - && 0==sqlite3Fts3IsIdChar(z[8]) - ){ - rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); - } - - /* Check if it is an FTS4 special argument. */ - else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ - struct Fts4Option { - const char *zOpt; - int nOpt; - } aFts4Opt[] = { - { "matchinfo", 9 }, /* 0 -> MATCHINFO */ - { "prefix", 6 }, /* 1 -> PREFIX */ - { "compress", 8 }, /* 2 -> COMPRESS */ - { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ - { "order", 5 }, /* 4 -> ORDER */ - { "content", 7 }, /* 5 -> CONTENT */ - { "languageid", 10 } /* 6 -> LANGUAGEID */ - }; - - int iOpt; - if( !zVal ){ - rc = SQLITE_NOMEM; - }else{ - for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ - struct Fts4Option *pOp = &aFts4Opt[iOpt]; - if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ - break; - } - } - if( iOpt==SizeofArray(aFts4Opt) ){ - *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); - rc = SQLITE_ERROR; - }else{ - switch( iOpt ){ - case 0: /* MATCHINFO */ - if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ - *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); - rc = SQLITE_ERROR; - } - bNoDocsize = 1; - break; - - case 1: /* PREFIX */ - sqlite3_free(zPrefix); - zPrefix = zVal; - zVal = 0; - break; - - case 2: /* COMPRESS */ - sqlite3_free(zCompress); - zCompress = zVal; - zVal = 0; - break; - - case 3: /* UNCOMPRESS */ - sqlite3_free(zUncompress); - zUncompress = zVal; - zVal = 0; - break; - - case 4: /* ORDER */ - if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) - && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) - ){ - *pzErr = sqlite3_mprintf("unrecognized order: %s", zVal); - rc = SQLITE_ERROR; - } - bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); - break; - - case 5: /* CONTENT */ - sqlite3_free(zContent); - zContent = zVal; - zVal = 0; - break; - - case 6: /* LANGUAGEID */ - assert( iOpt==6 ); - sqlite3_free(zLanguageid); - zLanguageid = zVal; - zVal = 0; - break; - } - } - sqlite3_free(zVal); - } - } - - /* Otherwise, the argument is a column name. */ - else { - nString += (int)(strlen(z) + 1); - aCol[nCol++] = z; - } - } - - /* If a content=xxx option was specified, the following: - ** - ** 1. Ignore any compress= and uncompress= options. - ** - ** 2. If no column names were specified as part of the CREATE VIRTUAL - ** TABLE statement, use all columns from the content table. - */ - if( rc==SQLITE_OK && zContent ){ - sqlite3_free(zCompress); - sqlite3_free(zUncompress); - zCompress = 0; - zUncompress = 0; - if( nCol==0 ){ - sqlite3_free((void*)aCol); - aCol = 0; - rc = fts3ContentColumns(db, argv[1], zContent, &aCol, &nCol, &nString); - - /* If a languageid= option was specified, remove the language id - ** column from the aCol[] array. */ - if( rc==SQLITE_OK && zLanguageid ){ - int j; - for(j=0; j<nCol; j++){ - if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){ - int k; - for(k=j; k<nCol; k++) aCol[k] = aCol[k+1]; - nCol--; - break; - } - } - } - } - } - if( rc!=SQLITE_OK ) goto fts3_init_out; - - if( nCol==0 ){ - assert( nString==0 ); - aCol[0] = "content"; - nString = 8; - nCol = 1; - } - - if( pTokenizer==0 ){ - rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); - if( rc!=SQLITE_OK ) goto fts3_init_out; - } - assert( pTokenizer ); - - rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex); - if( rc==SQLITE_ERROR ){ - assert( zPrefix ); - *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix); - } - if( rc!=SQLITE_OK ) goto fts3_init_out; - - /* Allocate and populate the Fts3Table structure. */ - nByte = sizeof(Fts3Table) + /* Fts3Table */ - nCol * sizeof(char *) + /* azColumn */ - nIndex * sizeof(struct Fts3Index) + /* aIndex */ - nName + /* zName */ - nDb + /* zDb */ - nString; /* Space for azColumn strings */ - p = (Fts3Table*)sqlite3_malloc(nByte); - if( p==0 ){ - rc = SQLITE_NOMEM; - goto fts3_init_out; - } - memset(p, 0, nByte); - p->db = db; - p->nColumn = nCol; - p->nPendingData = 0; - p->azColumn = (char **)&p[1]; - p->pTokenizer = pTokenizer; - p->nMaxPendingData = FTS3_MAX_PENDING_DATA; - p->bHasDocsize = (isFts4 && bNoDocsize==0); - p->bHasStat = isFts4; - p->bFts4 = isFts4; - p->bDescIdx = bDescIdx; - p->bAutoincrmerge = 0xff; /* 0xff means setting unknown */ - p->zContentTbl = zContent; - p->zLanguageid = zLanguageid; - zContent = 0; - zLanguageid = 0; - TESTONLY( p->inTransaction = -1 ); - TESTONLY( p->mxSavepoint = -1 ); - - p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; - memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); - p->nIndex = nIndex; - for(i=0; i<nIndex; i++){ - fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1); - } - - /* Fill in the zName and zDb fields of the vtab structure. */ - zCsr = (char *)&p->aIndex[nIndex]; - p->zName = zCsr; - memcpy(zCsr, argv[2], nName); - zCsr += nName; - p->zDb = zCsr; - memcpy(zCsr, argv[1], nDb); - zCsr += nDb; - - /* Fill in the azColumn array */ - for(iCol=0; iCol<nCol; iCol++){ - char *z; - int n = 0; - z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); - memcpy(zCsr, z, n); - zCsr[n] = '\0'; - sqlite3Fts3Dequote(zCsr); - p->azColumn[iCol] = zCsr; - zCsr += n+1; - assert( zCsr <= &((char *)p)[nByte] ); - } - - if( (zCompress==0)!=(zUncompress==0) ){ - char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); - rc = SQLITE_ERROR; - *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); - } - p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); - p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); - if( rc!=SQLITE_OK ) goto fts3_init_out; - - /* If this is an xCreate call, create the underlying tables in the - ** database. TODO: For xConnect(), it could verify that said tables exist. - */ - if( isCreate ){ - rc = fts3CreateTables(p); - } - - /* Check to see if a legacy fts3 table has been "upgraded" by the - ** addition of a %_stat table so that it can use incremental merge. - */ - if( !isFts4 && !isCreate ){ - int rc2 = SQLITE_OK; - fts3DbExec(&rc2, db, "SELECT 1 FROM %Q.'%q_stat' WHERE id=2", - p->zDb, p->zName); - if( rc2==SQLITE_OK ) p->bHasStat = 1; - } - - /* Figure out the page-size for the database. This is required in order to - ** estimate the cost of loading large doclists from the database. */ - fts3DatabasePageSize(&rc, p); - p->nNodeSize = p->nPgsz-35; - - /* Declare the table schema to SQLite. */ - fts3DeclareVtab(&rc, p); - -fts3_init_out: - sqlite3_free(zPrefix); - sqlite3_free(aIndex); - sqlite3_free(zCompress); - sqlite3_free(zUncompress); - sqlite3_free(zContent); - sqlite3_free(zLanguageid); - sqlite3_free((void *)aCol); - if( rc!=SQLITE_OK ){ - if( p ){ - fts3DisconnectMethod((sqlite3_vtab *)p); - }else if( pTokenizer ){ - pTokenizer->pModule->xDestroy(pTokenizer); - } - }else{ - assert( p->pSegments==0 ); - *ppVTab = &p->base; - } - return rc; -} - -/* -** The xConnect() and xCreate() methods for the virtual table. All the -** work is done in function fts3InitVtab(). -*/ -static int fts3ConnectMethod( - sqlite3 *db, /* Database connection */ - void *pAux, /* Pointer to tokenizer hash table */ - int argc, /* Number of elements in argv array */ - const char * const *argv, /* xCreate/xConnect argument array */ - sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ - char **pzErr /* OUT: sqlite3_malloc'd error message */ -){ - return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); -} -static int fts3CreateMethod( - sqlite3 *db, /* Database connection */ - void *pAux, /* Pointer to tokenizer hash table */ - int argc, /* Number of elements in argv array */ - const char * const *argv, /* xCreate/xConnect argument array */ - sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ - char **pzErr /* OUT: sqlite3_malloc'd error message */ -){ - return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); -} - -/* -** Implementation of the xBestIndex method for FTS3 tables. There -** are three possible strategies, in order of preference: -** -** 1. Direct lookup by rowid or docid. -** 2. Full-text search using a MATCH operator on a non-docid column. -** 3. Linear scan of %_content table. -*/ -static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ - Fts3Table *p = (Fts3Table *)pVTab; - int i; /* Iterator variable */ - int iCons = -1; /* Index of constraint to use */ - int iLangidCons = -1; /* Index of langid=x constraint, if present */ - - /* By default use a full table scan. This is an expensive option, - ** so search through the constraints to see if a more efficient - ** strategy is possible. - */ - pInfo->idxNum = FTS3_FULLSCAN_SEARCH; - pInfo->estimatedCost = 500000; - for(i=0; i<pInfo->nConstraint; i++){ - struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; - if( pCons->usable==0 ) continue; - - /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ - if( iCons<0 - && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ - && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 ) - ){ - pInfo->idxNum = FTS3_DOCID_SEARCH; - pInfo->estimatedCost = 1.0; - iCons = i; - } - - /* A MATCH constraint. Use a full-text search. - ** - ** If there is more than one MATCH constraint available, use the first - ** one encountered. If there is both a MATCH constraint and a direct - ** rowid/docid lookup, prefer the MATCH strategy. This is done even - ** though the rowid/docid lookup is faster than a MATCH query, selecting - ** it would lead to an "unable to use function MATCH in the requested - ** context" error. - */ - if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH - && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn - ){ - pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; - pInfo->estimatedCost = 2.0; - iCons = i; - } - - /* Equality constraint on the langid column */ - if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ - && pCons->iColumn==p->nColumn + 2 - ){ - iLangidCons = i; - } - } - - if( iCons>=0 ){ - pInfo->aConstraintUsage[iCons].argvIndex = 1; - pInfo->aConstraintUsage[iCons].omit = 1; - } - if( iLangidCons>=0 ){ - pInfo->aConstraintUsage[iLangidCons].argvIndex = 2; - } - - /* Regardless of the strategy selected, FTS can deliver rows in rowid (or - ** docid) order. Both ascending and descending are possible. - */ - if( pInfo->nOrderBy==1 ){ - struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; - if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ - if( pOrder->desc ){ - pInfo->idxStr = "DESC"; - }else{ - pInfo->idxStr = "ASC"; - } - pInfo->orderByConsumed = 1; - } - } - - assert( p->pSegments==0 ); - return SQLITE_OK; -} - -/* -** Implementation of xOpen method. -*/ -static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ - sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ - - UNUSED_PARAMETER(pVTab); - - /* Allocate a buffer large enough for an Fts3Cursor structure. If the - ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, - ** if the allocation fails, return SQLITE_NOMEM. - */ - *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); - if( !pCsr ){ - return SQLITE_NOMEM; - } - memset(pCsr, 0, sizeof(Fts3Cursor)); - return SQLITE_OK; -} - -/* -** Close the cursor. For additional information see the documentation -** on the xClose method of the virtual table interface. -*/ -static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ - Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; - assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); - sqlite3_finalize(pCsr->pStmt); - sqlite3Fts3ExprFree(pCsr->pExpr); - sqlite3Fts3FreeDeferredTokens(pCsr); - sqlite3_free(pCsr->aDoclist); - sqlite3_free(pCsr->aMatchinfo); - assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); - sqlite3_free(pCsr); - return SQLITE_OK; -} - -/* -** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then -** compose and prepare an SQL statement of the form: -** -** "SELECT <columns> FROM %_content WHERE rowid = ?" -** -** (or the equivalent for a content=xxx table) and set pCsr->pStmt to -** it. If an error occurs, return an SQLite error code. -** -** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK. -*/ -static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){ - int rc = SQLITE_OK; - if( pCsr->pStmt==0 ){ - Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; - char *zSql; - zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); - if( !zSql ) return SQLITE_NOMEM; - rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); - sqlite3_free(zSql); - } - *ppStmt = pCsr->pStmt; - return rc; -} - -/* -** Position the pCsr->pStmt statement so that it is on the row -** of the %_content table that contains the last match. Return -** SQLITE_OK on success. -*/ -static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ - int rc = SQLITE_OK; - if( pCsr->isRequireSeek ){ - sqlite3_stmt *pStmt = 0; - - rc = fts3CursorSeekStmt(pCsr, &pStmt); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); - pCsr->isRequireSeek = 0; - if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ - return SQLITE_OK; - }else{ - rc = sqlite3_reset(pCsr->pStmt); - if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ - /* If no row was found and no error has occurred, then the %_content - ** table is missing a row that is present in the full-text index. - ** The data structures are corrupt. */ - rc = FTS_CORRUPT_VTAB; - pCsr->isEof = 1; - } - } - } - } - - if( rc!=SQLITE_OK && pContext ){ - sqlite3_result_error_code(pContext, rc); - } - return rc; -} - -/* -** This function is used to process a single interior node when searching -** a b-tree for a term or term prefix. The node data is passed to this -** function via the zNode/nNode parameters. The term to search for is -** passed in zTerm/nTerm. -** -** If piFirst is not NULL, then this function sets *piFirst to the blockid -** of the child node that heads the sub-tree that may contain the term. -** -** If piLast is not NULL, then *piLast is set to the right-most child node -** that heads a sub-tree that may contain a term for which zTerm/nTerm is -** a prefix. -** -** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. -*/ -static int fts3ScanInteriorNode( - const char *zTerm, /* Term to select leaves for */ - int nTerm, /* Size of term zTerm in bytes */ - const char *zNode, /* Buffer containing segment interior node */ - int nNode, /* Size of buffer at zNode */ - sqlite3_int64 *piFirst, /* OUT: Selected child node */ - sqlite3_int64 *piLast /* OUT: Selected child node */ -){ - int rc = SQLITE_OK; /* Return code */ - const char *zCsr = zNode; /* Cursor to iterate through node */ - const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ - char *zBuffer = 0; /* Buffer to load terms into */ - int nAlloc = 0; /* Size of allocated buffer */ - int isFirstTerm = 1; /* True when processing first term on page */ - sqlite3_int64 iChild; /* Block id of child node to descend to */ - - /* Skip over the 'height' varint that occurs at the start of every - ** interior node. Then load the blockid of the left-child of the b-tree - ** node into variable iChild. - ** - ** Even if the data structure on disk is corrupted, this (reading two - ** varints from the buffer) does not risk an overread. If zNode is a - ** root node, then the buffer comes from a SELECT statement. SQLite does - ** not make this guarantee explicitly, but in practice there are always - ** either more than 20 bytes of allocated space following the nNode bytes of - ** contents, or two zero bytes. Or, if the node is read from the %_segments - ** table, then there are always 20 bytes of zeroed padding following the - ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). - */ - zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); - zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); - if( zCsr>zEnd ){ - return FTS_CORRUPT_VTAB; - } - - while( zCsr<zEnd && (piFirst || piLast) ){ - int cmp; /* memcmp() result */ - int nSuffix; /* Size of term suffix */ - int nPrefix = 0; /* Size of term prefix */ - int nBuffer; /* Total term size */ - - /* Load the next term on the node into zBuffer. Use realloc() to expand - ** the size of zBuffer if required. */ - if( !isFirstTerm ){ - zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix); - } - isFirstTerm = 0; - zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix); - - if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){ - rc = FTS_CORRUPT_VTAB; - goto finish_scan; - } - if( nPrefix+nSuffix>nAlloc ){ - char *zNew; - nAlloc = (nPrefix+nSuffix) * 2; - zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); - if( !zNew ){ - rc = SQLITE_NOMEM; - goto finish_scan; - } - zBuffer = zNew; - } - assert( zBuffer ); - memcpy(&zBuffer[nPrefix], zCsr, nSuffix); - nBuffer = nPrefix + nSuffix; - zCsr += nSuffix; - - /* Compare the term we are searching for with the term just loaded from - ** the interior node. If the specified term is greater than or equal - ** to the term from the interior node, then all terms on the sub-tree - ** headed by node iChild are smaller than zTerm. No need to search - ** iChild. - ** - ** If the interior node term is larger than the specified term, then - ** the tree headed by iChild may contain the specified term. - */ - cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); - if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ - *piFirst = iChild; - piFirst = 0; - } - - if( piLast && cmp<0 ){ - *piLast = iChild; - piLast = 0; - } - - iChild++; - }; - - if( piFirst ) *piFirst = iChild; - if( piLast ) *piLast = iChild; - - finish_scan: - sqlite3_free(zBuffer); - return rc; -} - - -/* -** The buffer pointed to by argument zNode (size nNode bytes) contains an -** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) -** contains a term. This function searches the sub-tree headed by the zNode -** node for the range of leaf nodes that may contain the specified term -** or terms for which the specified term is a prefix. -** -** If piLeaf is not NULL, then *piLeaf is set to the blockid of the -** left-most leaf node in the tree that may contain the specified term. -** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the -** right-most leaf node that may contain a term for which the specified -** term is a prefix. -** -** It is possible that the range of returned leaf nodes does not contain -** the specified term or any terms for which it is a prefix. However, if the -** segment does contain any such terms, they are stored within the identified -** range. Because this function only inspects interior segment nodes (and -** never loads leaf nodes into memory), it is not possible to be sure. -** -** If an error occurs, an error code other than SQLITE_OK is returned. -*/ -static int fts3SelectLeaf( - Fts3Table *p, /* Virtual table handle */ - const char *zTerm, /* Term to select leaves for */ - int nTerm, /* Size of term zTerm in bytes */ - const char *zNode, /* Buffer containing segment interior node */ - int nNode, /* Size of buffer at zNode */ - sqlite3_int64 *piLeaf, /* Selected leaf node */ - sqlite3_int64 *piLeaf2 /* Selected leaf node */ -){ - int rc; /* Return code */ - int iHeight; /* Height of this node in tree */ - - assert( piLeaf || piLeaf2 ); - - sqlite3Fts3GetVarint32(zNode, &iHeight); - rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); - assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); - - if( rc==SQLITE_OK && iHeight>1 ){ - char *zBlob = 0; /* Blob read from %_segments table */ - int nBlob; /* Size of zBlob in bytes */ - - if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ - rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); - if( rc==SQLITE_OK ){ - rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); - } - sqlite3_free(zBlob); - piLeaf = 0; - zBlob = 0; - } - - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); - } - if( rc==SQLITE_OK ){ - rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); - } - sqlite3_free(zBlob); - } - - return rc; -} - -/* -** This function is used to create delta-encoded serialized lists of FTS3 -** varints. Each call to this function appends a single varint to a list. -*/ -static void fts3PutDeltaVarint( - char **pp, /* IN/OUT: Output pointer */ - sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ - sqlite3_int64 iVal /* Write this value to the list */ -){ - assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); - *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); - *piPrev = iVal; -} - -/* -** When this function is called, *ppPoslist is assumed to point to the -** start of a position-list. After it returns, *ppPoslist points to the -** first byte after the position-list. -** -** A position list is list of positions (delta encoded) and columns for -** a single document record of a doclist. So, in other words, this -** routine advances *ppPoslist so that it points to the next docid in -** the doclist, or to the first byte past the end of the doclist. -** -** If pp is not NULL, then the contents of the position list are copied -** to *pp. *pp is set to point to the first byte past the last byte copied -** before this function returns. -*/ -static void fts3PoslistCopy(char **pp, char **ppPoslist){ - char *pEnd = *ppPoslist; - char c = 0; - - /* The end of a position list is marked by a zero encoded as an FTS3 - ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by - ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail - ** of some other, multi-byte, value. - ** - ** The following while-loop moves pEnd to point to the first byte that is not - ** immediately preceded by a byte with the 0x80 bit set. Then increments - ** pEnd once more so that it points to the byte immediately following the - ** last byte in the position-list. - */ - while( *pEnd | c ){ - c = *pEnd++ & 0x80; - testcase( c!=0 && (*pEnd)==0 ); - } - pEnd++; /* Advance past the POS_END terminator byte */ - - if( pp ){ - int n = (int)(pEnd - *ppPoslist); - char *p = *pp; - memcpy(p, *ppPoslist, n); - p += n; - *pp = p; - } - *ppPoslist = pEnd; -} - -/* -** When this function is called, *ppPoslist is assumed to point to the -** start of a column-list. After it returns, *ppPoslist points to the -** to the terminator (POS_COLUMN or POS_END) byte of the column-list. -** -** A column-list is list of delta-encoded positions for a single column -** within a single document within a doclist. -** -** The column-list is terminated either by a POS_COLUMN varint (1) or -** a POS_END varint (0). This routine leaves *ppPoslist pointing to -** the POS_COLUMN or POS_END that terminates the column-list. -** -** If pp is not NULL, then the contents of the column-list are copied -** to *pp. *pp is set to point to the first byte past the last byte copied -** before this function returns. The POS_COLUMN or POS_END terminator -** is not copied into *pp. -*/ -static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ - char *pEnd = *ppPoslist; - char c = 0; - - /* A column-list is terminated by either a 0x01 or 0x00 byte that is - ** not part of a multi-byte varint. - */ - while( 0xFE & (*pEnd | c) ){ - c = *pEnd++ & 0x80; - testcase( c!=0 && ((*pEnd)&0xfe)==0 ); - } - if( pp ){ - int n = (int)(pEnd - *ppPoslist); - char *p = *pp; - memcpy(p, *ppPoslist, n); - p += n; - *pp = p; - } - *ppPoslist = pEnd; -} - -/* -** Value used to signify the end of an position-list. This is safe because -** it is not possible to have a document with 2^31 terms. -*/ -#define POSITION_LIST_END 0x7fffffff - -/* -** This function is used to help parse position-lists. When this function is -** called, *pp may point to the start of the next varint in the position-list -** being parsed, or it may point to 1 byte past the end of the position-list -** (in which case **pp will be a terminator bytes POS_END (0) or -** (1)). -** -** If *pp points past the end of the current position-list, set *pi to -** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, -** increment the current value of *pi by the value read, and set *pp to -** point to the next value before returning. -** -** Before calling this routine *pi must be initialized to the value of -** the previous position, or zero if we are reading the first position -** in the position-list. Because positions are delta-encoded, the value -** of the previous position is needed in order to compute the value of -** the next position. -*/ -static void fts3ReadNextPos( - char **pp, /* IN/OUT: Pointer into position-list buffer */ - sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ -){ - if( (**pp)&0xFE ){ - fts3GetDeltaVarint(pp, pi); - *pi -= 2; - }else{ - *pi = POSITION_LIST_END; - } -} - -/* -** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by -** the value of iCol encoded as a varint to *pp. This will start a new -** column list. -** -** Set *pp to point to the byte just after the last byte written before -** returning (do not modify it if iCol==0). Return the total number of bytes -** written (0 if iCol==0). -*/ -static int fts3PutColNumber(char **pp, int iCol){ - int n = 0; /* Number of bytes written */ - if( iCol ){ - char *p = *pp; /* Output pointer */ - n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); - *p = 0x01; - *pp = &p[n]; - } - return n; -} - -/* -** Compute the union of two position lists. The output written -** into *pp contains all positions of both *pp1 and *pp2 in sorted -** order and with any duplicates removed. All pointers are -** updated appropriately. The caller is responsible for insuring -** that there is enough space in *pp to hold the complete output. -*/ -static void fts3PoslistMerge( - char **pp, /* Output buffer */ - char **pp1, /* Left input list */ - char **pp2 /* Right input list */ -){ - char *p = *pp; - char *p1 = *pp1; - char *p2 = *pp2; - - while( *p1 || *p2 ){ - int iCol1; /* The current column index in pp1 */ - int iCol2; /* The current column index in pp2 */ - - if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1); - else if( *p1==POS_END ) iCol1 = POSITION_LIST_END; - else iCol1 = 0; - - if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2); - else if( *p2==POS_END ) iCol2 = POSITION_LIST_END; - else iCol2 = 0; - - if( iCol1==iCol2 ){ - sqlite3_int64 i1 = 0; /* Last position from pp1 */ - sqlite3_int64 i2 = 0; /* Last position from pp2 */ - sqlite3_int64 iPrev = 0; - int n = fts3PutColNumber(&p, iCol1); - p1 += n; - p2 += n; - - /* At this point, both p1 and p2 point to the start of column-lists - ** for the same column (the column with index iCol1 and iCol2). - ** A column-list is a list of non-negative delta-encoded varints, each - ** incremented by 2 before being stored. Each list is terminated by a - ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists - ** and writes the results to buffer p. p is left pointing to the byte - ** after the list written. No terminator (POS_END or POS_COLUMN) is - ** written to the output. - */ - fts3GetDeltaVarint(&p1, &i1); - fts3GetDeltaVarint(&p2, &i2); - do { - fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2); - iPrev -= 2; - if( i1==i2 ){ - fts3ReadNextPos(&p1, &i1); - fts3ReadNextPos(&p2, &i2); - }else if( i1<i2 ){ - fts3ReadNextPos(&p1, &i1); - }else{ - fts3ReadNextPos(&p2, &i2); - } - }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END ); - }else if( iCol1<iCol2 ){ - p1 += fts3PutColNumber(&p, iCol1); - fts3ColumnlistCopy(&p, &p1); - }else{ - p2 += fts3PutColNumber(&p, iCol2); - fts3ColumnlistCopy(&p, &p2); - } - } - - *p++ = POS_END; - *pp = p; - *pp1 = p1 + 1; - *pp2 = p2 + 1; -} - -/* -** This function is used to merge two position lists into one. When it is -** called, *pp1 and *pp2 must both point to position lists. A position-list is -** the part of a doclist that follows each document id. For example, if a row -** contains: -** -** 'a b c'|'x y z'|'a b b a' -** -** Then the position list for this row for token 'b' would consist of: -** -** 0x02 0x01 0x02 0x03 0x03 0x00 -** -** When this function returns, both *pp1 and *pp2 are left pointing to the -** byte following the 0x00 terminator of their respective position lists. -** -** If isSaveLeft is 0, an entry is added to the output position list for -** each position in *pp2 for which there exists one or more positions in -** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. -** when the *pp1 token appears before the *pp2 token, but not more than nToken -** slots before it. -** -** e.g. nToken==1 searches for adjacent positions. -*/ -static int fts3PoslistPhraseMerge( - char **pp, /* IN/OUT: Preallocated output buffer */ - int nToken, /* Maximum difference in token positions */ - int isSaveLeft, /* Save the left position */ - int isExact, /* If *pp1 is exactly nTokens before *pp2 */ - char **pp1, /* IN/OUT: Left input list */ - char **pp2 /* IN/OUT: Right input list */ -){ - char *p = *pp; - char *p1 = *pp1; - char *p2 = *pp2; - int iCol1 = 0; - int iCol2 = 0; - - /* Never set both isSaveLeft and isExact for the same invocation. */ - assert( isSaveLeft==0 || isExact==0 ); - - assert( p!=0 && *p1!=0 && *p2!=0 ); - if( *p1==POS_COLUMN ){ - p1++; - p1 += sqlite3Fts3GetVarint32(p1, &iCol1); - } - if( *p2==POS_COLUMN ){ - p2++; - p2 += sqlite3Fts3GetVarint32(p2, &iCol2); - } - - while( 1 ){ - if( iCol1==iCol2 ){ - char *pSave = p; - sqlite3_int64 iPrev = 0; - sqlite3_int64 iPos1 = 0; - sqlite3_int64 iPos2 = 0; - - if( iCol1 ){ - *p++ = POS_COLUMN; - p += sqlite3Fts3PutVarint(p, iCol1); - } - - assert( *p1!=POS_END && *p1!=POS_COLUMN ); - assert( *p2!=POS_END && *p2!=POS_COLUMN ); - fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; - fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; - - while( 1 ){ - if( iPos2==iPos1+nToken - || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) - ){ - sqlite3_int64 iSave; - iSave = isSaveLeft ? iPos1 : iPos2; - fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; - pSave = 0; - assert( p ); - } - if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ - if( (*p2&0xFE)==0 ) break; - fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; - }else{ - if( (*p1&0xFE)==0 ) break; - fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; - } - } - - if( pSave ){ - assert( pp && p ); - p = pSave; - } - - fts3ColumnlistCopy(0, &p1); - fts3ColumnlistCopy(0, &p2); - assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); - if( 0==*p1 || 0==*p2 ) break; - - p1++; - p1 += sqlite3Fts3GetVarint32(p1, &iCol1); - p2++; - p2 += sqlite3Fts3GetVarint32(p2, &iCol2); - } - - /* Advance pointer p1 or p2 (whichever corresponds to the smaller of - ** iCol1 and iCol2) so that it points to either the 0x00 that marks the - ** end of the position list, or the 0x01 that precedes the next - ** column-number in the position list. - */ - else if( iCol1<iCol2 ){ - fts3ColumnlistCopy(0, &p1); - if( 0==*p1 ) break; - p1++; - p1 += sqlite3Fts3GetVarint32(p1, &iCol1); - }else{ - fts3ColumnlistCopy(0, &p2); - if( 0==*p2 ) break; - p2++; - p2 += sqlite3Fts3GetVarint32(p2, &iCol2); - } - } - - fts3PoslistCopy(0, &p2); - fts3PoslistCopy(0, &p1); - *pp1 = p1; - *pp2 = p2; - if( *pp==p ){ - return 0; - } - *p++ = 0x00; - *pp = p; - return 1; -} - -/* -** Merge two position-lists as required by the NEAR operator. The argument -** position lists correspond to the left and right phrases of an expression -** like: -** -** "phrase 1" NEAR "phrase number 2" -** -** Position list *pp1 corresponds to the left-hand side of the NEAR -** expression and *pp2 to the right. As usual, the indexes in the position -** lists are the offsets of the last token in each phrase (tokens "1" and "2" -** in the example above). -** -** The output position list - written to *pp - is a copy of *pp2 with those -** entries that are not sufficiently NEAR entries in *pp1 removed. -*/ -static int fts3PoslistNearMerge( - char **pp, /* Output buffer */ - char *aTmp, /* Temporary buffer space */ - int nRight, /* Maximum difference in token positions */ - int nLeft, /* Maximum difference in token positions */ - char **pp1, /* IN/OUT: Left input list */ - char **pp2 /* IN/OUT: Right input list */ -){ - char *p1 = *pp1; - char *p2 = *pp2; - - char *pTmp1 = aTmp; - char *pTmp2; - char *aTmp2; - int res = 1; - - fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2); - aTmp2 = pTmp2 = pTmp1; - *pp1 = p1; - *pp2 = p2; - fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1); - if( pTmp1!=aTmp && pTmp2!=aTmp2 ){ - fts3PoslistMerge(pp, &aTmp, &aTmp2); - }else if( pTmp1!=aTmp ){ - fts3PoslistCopy(pp, &aTmp); - }else if( pTmp2!=aTmp2 ){ - fts3PoslistCopy(pp, &aTmp2); - }else{ - res = 0; - } - - return res; -} - -/* -** An instance of this function is used to merge together the (potentially -** large number of) doclists for each term that matches a prefix query. -** See function fts3TermSelectMerge() for details. -*/ -typedef struct TermSelect TermSelect; -struct TermSelect { - char *aaOutput[16]; /* Malloc'd output buffers */ - int anOutput[16]; /* Size each output buffer in bytes */ -}; - -/* -** This function is used to read a single varint from a buffer. Parameter -** pEnd points 1 byte past the end of the buffer. When this function is -** called, if *pp points to pEnd or greater, then the end of the buffer -** has been reached. In this case *pp is set to 0 and the function returns. -** -** If *pp does not point to or past pEnd, then a single varint is read -** from *pp. *pp is then set to point 1 byte past the end of the read varint. -** -** If bDescIdx is false, the value read is added to *pVal before returning. -** If it is true, the value read is subtracted from *pVal before this -** function returns. -*/ -static void fts3GetDeltaVarint3( - char **pp, /* IN/OUT: Point to read varint from */ - char *pEnd, /* End of buffer */ - int bDescIdx, /* True if docids are descending */ - sqlite3_int64 *pVal /* IN/OUT: Integer value */ -){ - if( *pp>=pEnd ){ - *pp = 0; - }else{ - sqlite3_int64 iVal; - *pp += sqlite3Fts3GetVarint(*pp, &iVal); - if( bDescIdx ){ - *pVal -= iVal; - }else{ - *pVal += iVal; - } - } -} - -/* -** This function is used to write a single varint to a buffer. The varint -** is written to *pp. Before returning, *pp is set to point 1 byte past the -** end of the value written. -** -** If *pbFirst is zero when this function is called, the value written to -** the buffer is that of parameter iVal. -** -** If *pbFirst is non-zero when this function is called, then the value -** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) -** (if bDescIdx is non-zero). -** -** Before returning, this function always sets *pbFirst to 1 and *piPrev -** to the value of parameter iVal. -*/ -static void fts3PutDeltaVarint3( - char **pp, /* IN/OUT: Output pointer */ - int bDescIdx, /* True for descending docids */ - sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ - int *pbFirst, /* IN/OUT: True after first int written */ - sqlite3_int64 iVal /* Write this value to the list */ -){ - sqlite3_int64 iWrite; - if( bDescIdx==0 || *pbFirst==0 ){ - iWrite = iVal - *piPrev; - }else{ - iWrite = *piPrev - iVal; - } - assert( *pbFirst || *piPrev==0 ); - assert( *pbFirst==0 || iWrite>0 ); - *pp += sqlite3Fts3PutVarint(*pp, iWrite); - *piPrev = iVal; - *pbFirst = 1; -} - - -/* -** This macro is used by various functions that merge doclists. The two -** arguments are 64-bit docid values. If the value of the stack variable -** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). -** Otherwise, (i2-i1). -** -** Using this makes it easier to write code that can merge doclists that are -** sorted in either ascending or descending order. -*/ -#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2)) - -/* -** This function does an "OR" merge of two doclists (output contains all -** positions contained in either argument doclist). If the docids in the -** input doclists are sorted in ascending order, parameter bDescDoclist -** should be false. If they are sorted in ascending order, it should be -** passed a non-zero value. -** -** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer -** containing the output doclist and SQLITE_OK is returned. In this case -** *pnOut is set to the number of bytes in the output doclist. -** -** If an error occurs, an SQLite error code is returned. The output values -** are undefined in this case. -*/ -static int fts3DoclistOrMerge( - int bDescDoclist, /* True if arguments are desc */ - char *a1, int n1, /* First doclist */ - char *a2, int n2, /* Second doclist */ - char **paOut, int *pnOut /* OUT: Malloc'd doclist */ -){ - sqlite3_int64 i1 = 0; - sqlite3_int64 i2 = 0; - sqlite3_int64 iPrev = 0; - char *pEnd1 = &a1[n1]; - char *pEnd2 = &a2[n2]; - char *p1 = a1; - char *p2 = a2; - char *p; - char *aOut; - int bFirstOut = 0; - - *paOut = 0; - *pnOut = 0; - - /* Allocate space for the output. Both the input and output doclists - ** are delta encoded. If they are in ascending order (bDescDoclist==0), - ** then the first docid in each list is simply encoded as a varint. For - ** each subsequent docid, the varint stored is the difference between the - ** current and previous docid (a positive number - since the list is in - ** ascending order). - ** - ** The first docid written to the output is therefore encoded using the - ** same number of bytes as it is in whichever of the input lists it is - ** read from. And each subsequent docid read from the same input list - ** consumes either the same or less bytes as it did in the input (since - ** the difference between it and the previous value in the output must - ** be a positive value less than or equal to the delta value read from - ** the input list). The same argument applies to all but the first docid - ** read from the 'other' list. And to the contents of all position lists - ** that will be copied and merged from the input to the output. - ** - ** However, if the first docid copied to the output is a negative number, - ** then the encoding of the first docid from the 'other' input list may - ** be larger in the output than it was in the input (since the delta value - ** may be a larger positive integer than the actual docid). - ** - ** The space required to store the output is therefore the sum of the - ** sizes of the two inputs, plus enough space for exactly one of the input - ** docids to grow. - ** - ** A symetric argument may be made if the doclists are in descending - ** order. - */ - aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1); - if( !aOut ) return SQLITE_NOMEM; - - p = aOut; - fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); - fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); - while( p1 || p2 ){ - sqlite3_int64 iDiff = DOCID_CMP(i1, i2); - - if( p2 && p1 && iDiff==0 ){ - fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); - fts3PoslistMerge(&p, &p1, &p2); - fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); - fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); - }else if( !p2 || (p1 && iDiff<0) ){ - fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); - fts3PoslistCopy(&p, &p1); - fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); - }else{ - fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); - fts3PoslistCopy(&p, &p2); - fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); - } - } - - *paOut = aOut; - *pnOut = (int)(p-aOut); - assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 ); - return SQLITE_OK; -} - -/* -** This function does a "phrase" merge of two doclists. In a phrase merge, -** the output contains a copy of each position from the right-hand input -** doclist for which there is a position in the left-hand input doclist -** exactly nDist tokens before it. -** -** If the docids in the input doclists are sorted in ascending order, -** parameter bDescDoclist should be false. If they are sorted in ascending -** order, it should be passed a non-zero value. -** -** The right-hand input doclist is overwritten by this function. -*/ -static void fts3DoclistPhraseMerge( - int bDescDoclist, /* True if arguments are desc */ - int nDist, /* Distance from left to right (1=adjacent) */ - char *aLeft, int nLeft, /* Left doclist */ - char *aRight, int *pnRight /* IN/OUT: Right/output doclist */ -){ - sqlite3_int64 i1 = 0; - sqlite3_int64 i2 = 0; - sqlite3_int64 iPrev = 0; - char *pEnd1 = &aLeft[nLeft]; - char *pEnd2 = &aRight[*pnRight]; - char *p1 = aLeft; - char *p2 = aRight; - char *p; - int bFirstOut = 0; - char *aOut = aRight; - - assert( nDist>0 ); - - p = aOut; - fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); - fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); - - while( p1 && p2 ){ - sqlite3_int64 iDiff = DOCID_CMP(i1, i2); - if( iDiff==0 ){ - char *pSave = p; - sqlite3_int64 iPrevSave = iPrev; - int bFirstOutSave = bFirstOut; - - fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); - if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ - p = pSave; - iPrev = iPrevSave; - bFirstOut = bFirstOutSave; - } - fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); - fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); - }else if( iDiff<0 ){ - fts3PoslistCopy(0, &p1); - fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); - }else{ - fts3PoslistCopy(0, &p2); - fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); - } - } - - *pnRight = (int)(p - aOut); -} - -/* -** Argument pList points to a position list nList bytes in size. This -** function checks to see if the position list contains any entries for -** a token in position 0 (of any column). If so, it writes argument iDelta -** to the output buffer pOut, followed by a position list consisting only -** of the entries from pList at position 0, and terminated by an 0x00 byte. -** The value returned is the number of bytes written to pOut (if any). -*/ -SQLITE_PRIVATE int sqlite3Fts3FirstFilter( - sqlite3_int64 iDelta, /* Varint that may be written to pOut */ - char *pList, /* Position list (no 0x00 term) */ - int nList, /* Size of pList in bytes */ - char *pOut /* Write output here */ -){ - int nOut = 0; - int bWritten = 0; /* True once iDelta has been written */ - char *p = pList; - char *pEnd = &pList[nList]; - - if( *p!=0x01 ){ - if( *p==0x02 ){ - nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); - pOut[nOut++] = 0x02; - bWritten = 1; - } - fts3ColumnlistCopy(0, &p); - } - - while( p<pEnd && *p==0x01 ){ - sqlite3_int64 iCol; - p++; - p += sqlite3Fts3GetVarint(p, &iCol); - if( *p==0x02 ){ - if( bWritten==0 ){ - nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); - bWritten = 1; - } - pOut[nOut++] = 0x01; - nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol); - pOut[nOut++] = 0x02; - } - fts3ColumnlistCopy(0, &p); - } - if( bWritten ){ - pOut[nOut++] = 0x00; - } - - return nOut; -} - - -/* -** Merge all doclists in the TermSelect.aaOutput[] array into a single -** doclist stored in TermSelect.aaOutput[0]. If successful, delete all -** other doclists (except the aaOutput[0] one) and return SQLITE_OK. -** -** If an OOM error occurs, return SQLITE_NOMEM. In this case it is -** the responsibility of the caller to free any doclists left in the -** TermSelect.aaOutput[] array. -*/ -static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){ - char *aOut = 0; - int nOut = 0; - int i; - - /* Loop through the doclists in the aaOutput[] array. Merge them all - ** into a single doclist. - */ - for(i=0; i<SizeofArray(pTS->aaOutput); i++){ - if( pTS->aaOutput[i] ){ - if( !aOut ){ - aOut = pTS->aaOutput[i]; - nOut = pTS->anOutput[i]; - pTS->aaOutput[i] = 0; - }else{ - int nNew; - char *aNew; - - int rc = fts3DoclistOrMerge(p->bDescIdx, - pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew - ); - if( rc!=SQLITE_OK ){ - sqlite3_free(aOut); - return rc; - } - - sqlite3_free(pTS->aaOutput[i]); - sqlite3_free(aOut); - pTS->aaOutput[i] = 0; - aOut = aNew; - nOut = nNew; - } - } - } - - pTS->aaOutput[0] = aOut; - pTS->anOutput[0] = nOut; - return SQLITE_OK; -} - -/* -** Merge the doclist aDoclist/nDoclist into the TermSelect object passed -** as the first argument. The merge is an "OR" merge (see function -** fts3DoclistOrMerge() for details). -** -** This function is called with the doclist for each term that matches -** a queried prefix. It merges all these doclists into one, the doclist -** for the specified prefix. Since there can be a very large number of -** doclists to merge, the merging is done pair-wise using the TermSelect -** object. -** -** This function returns SQLITE_OK if the merge is successful, or an -** SQLite error code (SQLITE_NOMEM) if an error occurs. -*/ -static int fts3TermSelectMerge( - Fts3Table *p, /* FTS table handle */ - TermSelect *pTS, /* TermSelect object to merge into */ - char *aDoclist, /* Pointer to doclist */ - int nDoclist /* Size of aDoclist in bytes */ -){ - if( pTS->aaOutput[0]==0 ){ - /* If this is the first term selected, copy the doclist to the output - ** buffer using memcpy(). */ - pTS->aaOutput[0] = sqlite3_malloc(nDoclist); - pTS->anOutput[0] = nDoclist; - if( pTS->aaOutput[0] ){ - memcpy(pTS->aaOutput[0], aDoclist, nDoclist); - }else{ - return SQLITE_NOMEM; - } - }else{ - char *aMerge = aDoclist; - int nMerge = nDoclist; - int iOut; - - for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){ - if( pTS->aaOutput[iOut]==0 ){ - assert( iOut>0 ); - pTS->aaOutput[iOut] = aMerge; - pTS->anOutput[iOut] = nMerge; - break; - }else{ - char *aNew; - int nNew; - - int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, - pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew - ); - if( rc!=SQLITE_OK ){ - if( aMerge!=aDoclist ) sqlite3_free(aMerge); - return rc; - } - - if( aMerge!=aDoclist ) sqlite3_free(aMerge); - sqlite3_free(pTS->aaOutput[iOut]); - pTS->aaOutput[iOut] = 0; - - aMerge = aNew; - nMerge = nNew; - if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ - pTS->aaOutput[iOut] = aMerge; - pTS->anOutput[iOut] = nMerge; - } - } - } - } - return SQLITE_OK; -} - -/* -** Append SegReader object pNew to the end of the pCsr->apSegment[] array. -*/ -static int fts3SegReaderCursorAppend( - Fts3MultiSegReader *pCsr, - Fts3SegReader *pNew -){ - if( (pCsr->nSegment%16)==0 ){ - Fts3SegReader **apNew; - int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); - apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); - if( !apNew ){ - sqlite3Fts3SegReaderFree(pNew); - return SQLITE_NOMEM; - } - pCsr->apSegment = apNew; - } - pCsr->apSegment[pCsr->nSegment++] = pNew; - return SQLITE_OK; -} - -/* -** Add seg-reader objects to the Fts3MultiSegReader object passed as the -** 8th argument. -** -** This function returns SQLITE_OK if successful, or an SQLite error code -** otherwise. -*/ -static int fts3SegReaderCursor( - Fts3Table *p, /* FTS3 table handle */ - int iLangid, /* Language id */ - int iIndex, /* Index to search (from 0 to p->nIndex-1) */ - int iLevel, /* Level of segments to scan */ - const char *zTerm, /* Term to query for */ - int nTerm, /* Size of zTerm in bytes */ - int isPrefix, /* True for a prefix search */ - int isScan, /* True to scan from zTerm to EOF */ - Fts3MultiSegReader *pCsr /* Cursor object to populate */ -){ - int rc = SQLITE_OK; /* Error code */ - sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ - int rc2; /* Result of sqlite3_reset() */ - - /* If iLevel is less than 0 and this is not a scan, include a seg-reader - ** for the pending-terms. If this is a scan, then this call must be being - ** made by an fts4aux module, not an FTS table. In this case calling - ** Fts3SegReaderPending might segfault, as the data structures used by - ** fts4aux are not completely populated. So it's easiest to filter these - ** calls out here. */ - if( iLevel<0 && p->aIndex ){ - Fts3SegReader *pSeg = 0; - rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix, &pSeg); - if( rc==SQLITE_OK && pSeg ){ - rc = fts3SegReaderCursorAppend(pCsr, pSeg); - } - } - - if( iLevel!=FTS3_SEGCURSOR_PENDING ){ - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); - } - - while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ - Fts3SegReader *pSeg = 0; - - /* Read the values returned by the SELECT into local variables. */ - sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); - sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); - sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); - int nRoot = sqlite3_column_bytes(pStmt, 4); - char const *zRoot = sqlite3_column_blob(pStmt, 4); - - /* If zTerm is not NULL, and this segment is not stored entirely on its - ** root node, the range of leaves scanned can be reduced. Do this. */ - if( iStartBlock && zTerm ){ - sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); - rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); - if( rc!=SQLITE_OK ) goto finished; - if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; - } - - rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, - (isPrefix==0 && isScan==0), - iStartBlock, iLeavesEndBlock, - iEndBlock, zRoot, nRoot, &pSeg - ); - if( rc!=SQLITE_OK ) goto finished; - rc = fts3SegReaderCursorAppend(pCsr, pSeg); - } - } - - finished: - rc2 = sqlite3_reset(pStmt); - if( rc==SQLITE_DONE ) rc = rc2; - - return rc; -} - -/* -** Set up a cursor object for iterating through a full-text index or a -** single level therein. -*/ -SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor( - Fts3Table *p, /* FTS3 table handle */ - int iLangid, /* Language-id to search */ - int iIndex, /* Index to search (from 0 to p->nIndex-1) */ - int iLevel, /* Level of segments to scan */ - const char *zTerm, /* Term to query for */ - int nTerm, /* Size of zTerm in bytes */ - int isPrefix, /* True for a prefix search */ - int isScan, /* True to scan from zTerm to EOF */ - Fts3MultiSegReader *pCsr /* Cursor object to populate */ -){ - assert( iIndex>=0 && iIndex<p->nIndex ); - assert( iLevel==FTS3_SEGCURSOR_ALL - || iLevel==FTS3_SEGCURSOR_PENDING - || iLevel>=0 - ); - assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); - assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 ); - assert( isPrefix==0 || isScan==0 ); - - memset(pCsr, 0, sizeof(Fts3MultiSegReader)); - return fts3SegReaderCursor( - p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr - ); -} - -/* -** In addition to its current configuration, have the Fts3MultiSegReader -** passed as the 4th argument also scan the doclist for term zTerm/nTerm. -** -** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. -*/ -static int fts3SegReaderCursorAddZero( - Fts3Table *p, /* FTS virtual table handle */ - int iLangid, - const char *zTerm, /* Term to scan doclist of */ - int nTerm, /* Number of bytes in zTerm */ - Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */ -){ - return fts3SegReaderCursor(p, - iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr - ); -} - -/* -** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or, -** if isPrefix is true, to scan the doclist for all terms for which -** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write -** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return -** an SQLite error code. -** -** It is the responsibility of the caller to free this object by eventually -** passing it to fts3SegReaderCursorFree() -** -** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. -** Output parameter *ppSegcsr is set to 0 if an error occurs. -*/ -static int fts3TermSegReaderCursor( - Fts3Cursor *pCsr, /* Virtual table cursor handle */ - const char *zTerm, /* Term to query for */ - int nTerm, /* Size of zTerm in bytes */ - int isPrefix, /* True for a prefix search */ - Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */ -){ - Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */ - int rc = SQLITE_NOMEM; /* Return code */ - - pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader)); - if( pSegcsr ){ - int i; - int bFound = 0; /* True once an index has been found */ - Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; - - if( isPrefix ){ - for(i=1; bFound==0 && i<p->nIndex; i++){ - if( p->aIndex[i].nPrefix==nTerm ){ - bFound = 1; - rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, - i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr - ); - pSegcsr->bLookup = 1; - } - } - - for(i=1; bFound==0 && i<p->nIndex; i++){ - if( p->aIndex[i].nPrefix==nTerm+1 ){ - bFound = 1; - rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, - i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr - ); - if( rc==SQLITE_OK ){ - rc = fts3SegReaderCursorAddZero( - p, pCsr->iLangid, zTerm, nTerm, pSegcsr - ); - } - } - } - } - - if( bFound==0 ){ - rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, - 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr - ); - pSegcsr->bLookup = !isPrefix; - } - } - - *ppSegcsr = pSegcsr; - return rc; -} - -/* -** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). -*/ -static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ - sqlite3Fts3SegReaderFinish(pSegcsr); - sqlite3_free(pSegcsr); -} - -/* -** This function retrieves the doclist for the specified term (or term -** prefix) from the database. -*/ -static int fts3TermSelect( - Fts3Table *p, /* Virtual table handle */ - Fts3PhraseToken *pTok, /* Token to query for */ - int iColumn, /* Column to query (or -ve for all columns) */ - int *pnOut, /* OUT: Size of buffer at *ppOut */ - char **ppOut /* OUT: Malloced result buffer */ -){ - int rc; /* Return code */ - Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ - TermSelect tsc; /* Object for pair-wise doclist merging */ - Fts3SegFilter filter; /* Segment term filter configuration */ - - pSegcsr = pTok->pSegcsr; - memset(&tsc, 0, sizeof(TermSelect)); - - filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS - | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) - | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) - | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); - filter.iCol = iColumn; - filter.zTerm = pTok->z; - filter.nTerm = pTok->n; - - rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); - while( SQLITE_OK==rc - && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) - ){ - rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); - } - - if( rc==SQLITE_OK ){ - rc = fts3TermSelectFinishMerge(p, &tsc); - } - if( rc==SQLITE_OK ){ - *ppOut = tsc.aaOutput[0]; - *pnOut = tsc.anOutput[0]; - }else{ - int i; - for(i=0; i<SizeofArray(tsc.aaOutput); i++){ - sqlite3_free(tsc.aaOutput[i]); - } - } - - fts3SegReaderCursorFree(pSegcsr); - pTok->pSegcsr = 0; - return rc; -} - -/* -** This function counts the total number of docids in the doclist stored -** in buffer aList[], size nList bytes. -** -** If the isPoslist argument is true, then it is assumed that the doclist -** contains a position-list following each docid. Otherwise, it is assumed -** that the doclist is simply a list of docids stored as delta encoded -** varints. -*/ -static int fts3DoclistCountDocids(char *aList, int nList){ - int nDoc = 0; /* Return value */ - if( aList ){ - char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ - char *p = aList; /* Cursor */ - while( p<aEnd ){ - nDoc++; - while( (*p++)&0x80 ); /* Skip docid varint */ - fts3PoslistCopy(0, &p); /* Skip over position list */ - } - } - - return nDoc; -} - -/* -** Advance the cursor to the next row in the %_content table that -** matches the search criteria. For a MATCH search, this will be -** the next row that matches. For a full-table scan, this will be -** simply the next row in the %_content table. For a docid lookup, -** this routine simply sets the EOF flag. -** -** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned -** even if we reach end-of-file. The fts3EofMethod() will be called -** subsequently to determine whether or not an EOF was hit. -*/ -static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){ - int rc; - Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; - if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ - if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ - pCsr->isEof = 1; - rc = sqlite3_reset(pCsr->pStmt); - }else{ - pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); - rc = SQLITE_OK; - } - }else{ - rc = fts3EvalNext((Fts3Cursor *)pCursor); - } - assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); - return rc; -} - -/* -** This is the xFilter interface for the virtual table. See -** the virtual table xFilter method documentation for additional -** information. -** -** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against -** the %_content table. -** -** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry -** in the %_content table. -** -** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The -** column on the left-hand side of the MATCH operator is column -** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand -** side of the MATCH operator. -*/ -static int fts3FilterMethod( - sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ - int idxNum, /* Strategy index */ - const char *idxStr, /* Unused */ - int nVal, /* Number of elements in apVal */ - sqlite3_value **apVal /* Arguments for the indexing scheme */ -){ - int rc; - char *zSql; /* SQL statement used to access %_content */ - Fts3Table *p = (Fts3Table *)pCursor->pVtab; - Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; - - UNUSED_PARAMETER(idxStr); - UNUSED_PARAMETER(nVal); - - assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); - assert( nVal==0 || nVal==1 || nVal==2 ); - assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) ); - assert( p->pSegments==0 ); - - /* In case the cursor has been used before, clear it now. */ - sqlite3_finalize(pCsr->pStmt); - sqlite3_free(pCsr->aDoclist); - sqlite3Fts3ExprFree(pCsr->pExpr); - memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); - - if( idxStr ){ - pCsr->bDesc = (idxStr[0]=='D'); - }else{ - pCsr->bDesc = p->bDescIdx; - } - pCsr->eSearch = (i16)idxNum; - - if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){ - int iCol = idxNum-FTS3_FULLTEXT_SEARCH; - const char *zQuery = (const char *)sqlite3_value_text(apVal[0]); - - if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ - return SQLITE_NOMEM; - } - - pCsr->iLangid = 0; - if( nVal==2 ) pCsr->iLangid = sqlite3_value_int(apVal[1]); - - rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, - p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr - ); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_ERROR ){ - static const char *zErr = "malformed MATCH expression: [%s]"; - p->base.zErrMsg = sqlite3_mprintf(zErr, zQuery); - } - return rc; - } - - rc = sqlite3Fts3ReadLock(p); - if( rc!=SQLITE_OK ) return rc; - - rc = fts3EvalStart(pCsr); - - sqlite3Fts3SegmentsClose(p); - if( rc!=SQLITE_OK ) return rc; - pCsr->pNextId = pCsr->aDoclist; - pCsr->iPrevId = 0; - } - - /* Compile a SELECT statement for this cursor. For a full-table-scan, the - ** statement loops through all rows of the %_content table. For a - ** full-text query or docid lookup, the statement retrieves a single - ** row by docid. - */ - if( idxNum==FTS3_FULLSCAN_SEARCH ){ - zSql = sqlite3_mprintf( - "SELECT %s ORDER BY rowid %s", - p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") - ); - if( zSql ){ - rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); - sqlite3_free(zSql); - }else{ - rc = SQLITE_NOMEM; - } - }else if( idxNum==FTS3_DOCID_SEARCH ){ - rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt); - if( rc==SQLITE_OK ){ - rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]); - } - } - if( rc!=SQLITE_OK ) return rc; - - return fts3NextMethod(pCursor); -} - -/* -** This is the xEof method of the virtual table. SQLite calls this -** routine to find out if it has reached the end of a result set. -*/ -static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ - return ((Fts3Cursor *)pCursor)->isEof; -} - -/* -** This is the xRowid method. The SQLite core calls this routine to -** retrieve the rowid for the current row of the result set. fts3 -** exposes %_content.docid as the rowid for the virtual table. The -** rowid should be written to *pRowid. -*/ -static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ - Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; - *pRowid = pCsr->iPrevId; - return SQLITE_OK; -} - -/* -** This is the xColumn method, called by SQLite to request a value from -** the row that the supplied cursor currently points to. -** -** If: -** -** (iCol < p->nColumn) -> The value of the iCol'th user column. -** (iCol == p->nColumn) -> Magic column with the same name as the table. -** (iCol == p->nColumn+1) -> Docid column -** (iCol == p->nColumn+2) -> Langid column -*/ -static int fts3ColumnMethod( - sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ - sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ - int iCol /* Index of column to read value from */ -){ - int rc = SQLITE_OK; /* Return Code */ - Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; - Fts3Table *p = (Fts3Table *)pCursor->pVtab; - - /* The column value supplied by SQLite must be in range. */ - assert( iCol>=0 && iCol<=p->nColumn+2 ); - - if( iCol==p->nColumn+1 ){ - /* This call is a request for the "docid" column. Since "docid" is an - ** alias for "rowid", use the xRowid() method to obtain the value. - */ - sqlite3_result_int64(pCtx, pCsr->iPrevId); - }else if( iCol==p->nColumn ){ - /* The extra column whose name is the same as the table. - ** Return a blob which is a pointer to the cursor. */ - sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT); - }else if( iCol==p->nColumn+2 && pCsr->pExpr ){ - sqlite3_result_int64(pCtx, pCsr->iLangid); - }else{ - /* The requested column is either a user column (one that contains - ** indexed data), or the language-id column. */ - rc = fts3CursorSeek(0, pCsr); - - if( rc==SQLITE_OK ){ - if( iCol==p->nColumn+2 ){ - int iLangid = 0; - if( p->zLanguageid ){ - iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1); - } - sqlite3_result_int(pCtx, iLangid); - }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){ - sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); - } - } - } - - assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); - return rc; -} - -/* -** This function is the implementation of the xUpdate callback used by -** FTS3 virtual tables. It is invoked by SQLite each time a row is to be -** inserted, updated or deleted. -*/ -static int fts3UpdateMethod( - sqlite3_vtab *pVtab, /* Virtual table handle */ - int nArg, /* Size of argument array */ - sqlite3_value **apVal, /* Array of arguments */ - sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ -){ - return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); -} - -/* -** Implementation of xSync() method. Flush the contents of the pending-terms -** hash-table to the database. -*/ -static int fts3SyncMethod(sqlite3_vtab *pVtab){ - - /* Following an incremental-merge operation, assuming that the input - ** segments are not completely consumed (the usual case), they are updated - ** in place to remove the entries that have already been merged. This - ** involves updating the leaf block that contains the smallest unmerged - ** entry and each block (if any) between the leaf and the root node. So - ** if the height of the input segment b-trees is N, and input segments - ** are merged eight at a time, updating the input segments at the end - ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually - ** small - often between 0 and 2. So the overhead of the incremental - ** merge is somewhere between 8 and 24 blocks. To avoid this overhead - ** dwarfing the actual productive work accomplished, the incremental merge - ** is only attempted if it will write at least 64 leaf blocks. Hence - ** nMinMerge. - ** - ** Of course, updating the input segments also involves deleting a bunch - ** of blocks from the segments table. But this is not considered overhead - ** as it would also be required by a crisis-merge that used the same input - ** segments. - */ - const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ - - Fts3Table *p = (Fts3Table*)pVtab; - int rc = sqlite3Fts3PendingTermsFlush(p); - - if( rc==SQLITE_OK && p->bAutoincrmerge==1 && p->nLeafAdd>(nMinMerge/16) ){ - int mxLevel = 0; /* Maximum relative level value in db */ - int A; /* Incr-merge parameter A */ - - rc = sqlite3Fts3MaxLevel(p, &mxLevel); - assert( rc==SQLITE_OK || mxLevel==0 ); - A = p->nLeafAdd * mxLevel; - A += (A/2); - if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, 8); - } - sqlite3Fts3SegmentsClose(p); - return rc; -} - -/* -** Implementation of xBegin() method. This is a no-op. -*/ -static int fts3BeginMethod(sqlite3_vtab *pVtab){ - Fts3Table *p = (Fts3Table*)pVtab; - UNUSED_PARAMETER(pVtab); - assert( p->pSegments==0 ); - assert( p->nPendingData==0 ); - assert( p->inTransaction!=1 ); - TESTONLY( p->inTransaction = 1 ); - TESTONLY( p->mxSavepoint = -1; ); - p->nLeafAdd = 0; - return SQLITE_OK; -} - -/* -** Implementation of xCommit() method. This is a no-op. The contents of -** the pending-terms hash-table have already been flushed into the database -** by fts3SyncMethod(). -*/ -static int fts3CommitMethod(sqlite3_vtab *pVtab){ - TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); - UNUSED_PARAMETER(pVtab); - assert( p->nPendingData==0 ); - assert( p->inTransaction!=0 ); - assert( p->pSegments==0 ); - TESTONLY( p->inTransaction = 0 ); - TESTONLY( p->mxSavepoint = -1; ); - return SQLITE_OK; -} - -/* -** Implementation of xRollback(). Discard the contents of the pending-terms -** hash-table. Any changes made to the database are reverted by SQLite. -*/ -static int fts3RollbackMethod(sqlite3_vtab *pVtab){ - Fts3Table *p = (Fts3Table*)pVtab; - sqlite3Fts3PendingTermsClear(p); - assert( p->inTransaction!=0 ); - TESTONLY( p->inTransaction = 0 ); - TESTONLY( p->mxSavepoint = -1; ); - return SQLITE_OK; -} - -/* -** When called, *ppPoslist must point to the byte immediately following the -** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function -** moves *ppPoslist so that it instead points to the first byte of the -** same position list. -*/ -static void fts3ReversePoslist(char *pStart, char **ppPoslist){ - char *p = &(*ppPoslist)[-2]; - char c = 0; - - while( p>pStart && (c=*p--)==0 ); - while( p>pStart && (*p & 0x80) | c ){ - c = *p--; - } - if( p>pStart ){ p = &p[2]; } - while( *p++&0x80 ); - *ppPoslist = p; -} - -/* -** Helper function used by the implementation of the overloaded snippet(), -** offsets() and optimize() SQL functions. -** -** If the value passed as the third argument is a blob of size -** sizeof(Fts3Cursor*), then the blob contents are copied to the -** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error -** message is written to context pContext and SQLITE_ERROR returned. The -** string passed via zFunc is used as part of the error message. -*/ -static int fts3FunctionArg( - sqlite3_context *pContext, /* SQL function call context */ - const char *zFunc, /* Function name */ - sqlite3_value *pVal, /* argv[0] passed to function */ - Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ -){ - Fts3Cursor *pRet; - if( sqlite3_value_type(pVal)!=SQLITE_BLOB - || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *) - ){ - char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); - sqlite3_result_error(pContext, zErr, -1); - sqlite3_free(zErr); - return SQLITE_ERROR; - } - memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *)); - *ppCsr = pRet; - return SQLITE_OK; -} - -/* -** Implementation of the snippet() function for FTS3 -*/ -static void fts3SnippetFunc( - sqlite3_context *pContext, /* SQLite function call context */ - int nVal, /* Size of apVal[] array */ - sqlite3_value **apVal /* Array of arguments */ -){ - Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ - const char *zStart = "<b>"; - const char *zEnd = "</b>"; - const char *zEllipsis = "<b>...</b>"; - int iCol = -1; - int nToken = 15; /* Default number of tokens in snippet */ - - /* There must be at least one argument passed to this function (otherwise - ** the non-overloaded version would have been called instead of this one). - */ - assert( nVal>=1 ); - - if( nVal>6 ){ - sqlite3_result_error(pContext, - "wrong number of arguments to function snippet()", -1); - return; - } - if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; - - switch( nVal ){ - case 6: nToken = sqlite3_value_int(apVal[5]); - case 5: iCol = sqlite3_value_int(apVal[4]); - case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); - case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); - case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); - } - if( !zEllipsis || !zEnd || !zStart ){ - sqlite3_result_error_nomem(pContext); - }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ - sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); - } -} - -/* -** Implementation of the offsets() function for FTS3 -*/ -static void fts3OffsetsFunc( - sqlite3_context *pContext, /* SQLite function call context */ - int nVal, /* Size of argument array */ - sqlite3_value **apVal /* Array of arguments */ -){ - Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ - - UNUSED_PARAMETER(nVal); - - assert( nVal==1 ); - if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; - assert( pCsr ); - if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ - sqlite3Fts3Offsets(pContext, pCsr); - } -} - -/* -** Implementation of the special optimize() function for FTS3. This -** function merges all segments in the database to a single segment. -** Example usage is: -** -** SELECT optimize(t) FROM t LIMIT 1; -** -** where 't' is the name of an FTS3 table. -*/ -static void fts3OptimizeFunc( - sqlite3_context *pContext, /* SQLite function call context */ - int nVal, /* Size of argument array */ - sqlite3_value **apVal /* Array of arguments */ -){ - int rc; /* Return code */ - Fts3Table *p; /* Virtual table handle */ - Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ - - UNUSED_PARAMETER(nVal); - - assert( nVal==1 ); - if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; - p = (Fts3Table *)pCursor->base.pVtab; - assert( p ); - - rc = sqlite3Fts3Optimize(p); - - switch( rc ){ - case SQLITE_OK: - sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); - break; - case SQLITE_DONE: - sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); - break; - default: - sqlite3_result_error_code(pContext, rc); - break; - } -} - -/* -** Implementation of the matchinfo() function for FTS3 -*/ -static void fts3MatchinfoFunc( - sqlite3_context *pContext, /* SQLite function call context */ - int nVal, /* Size of argument array */ - sqlite3_value **apVal /* Array of arguments */ -){ - Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ - assert( nVal==1 || nVal==2 ); - if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ - const char *zArg = 0; - if( nVal>1 ){ - zArg = (const char *)sqlite3_value_text(apVal[1]); - } - sqlite3Fts3Matchinfo(pContext, pCsr, zArg); - } -} - -/* -** This routine implements the xFindFunction method for the FTS3 -** virtual table. -*/ -static int fts3FindFunctionMethod( - sqlite3_vtab *pVtab, /* Virtual table handle */ - int nArg, /* Number of SQL function arguments */ - const char *zName, /* Name of SQL function */ - void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ - void **ppArg /* Unused */ -){ - struct Overloaded { - const char *zName; - void (*xFunc)(sqlite3_context*,int,sqlite3_value**); - } aOverload[] = { - { "snippet", fts3SnippetFunc }, - { "offsets", fts3OffsetsFunc }, - { "optimize", fts3OptimizeFunc }, - { "matchinfo", fts3MatchinfoFunc }, - }; - int i; /* Iterator variable */ - - UNUSED_PARAMETER(pVtab); - UNUSED_PARAMETER(nArg); - UNUSED_PARAMETER(ppArg); - - for(i=0; i<SizeofArray(aOverload); i++){ - if( strcmp(zName, aOverload[i].zName)==0 ){ - *pxFunc = aOverload[i].xFunc; - return 1; - } - } - - /* No function of the specified name was found. Return 0. */ - return 0; -} - -/* -** Implementation of FTS3 xRename method. Rename an fts3 table. -*/ -static int fts3RenameMethod( - sqlite3_vtab *pVtab, /* Virtual table handle */ - const char *zName /* New name of table */ -){ - Fts3Table *p = (Fts3Table *)pVtab; - sqlite3 *db = p->db; /* Database connection */ - int rc; /* Return Code */ - - /* As it happens, the pending terms table is always empty here. This is - ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction - ** always opens a savepoint transaction. And the xSavepoint() method - ** flushes the pending terms table. But leave the (no-op) call to - ** PendingTermsFlush() in in case that changes. - */ - assert( p->nPendingData==0 ); - rc = sqlite3Fts3PendingTermsFlush(p); - - if( p->zContentTbl==0 ){ - fts3DbExec(&rc, db, - "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", - p->zDb, p->zName, zName - ); - } - - if( p->bHasDocsize ){ - fts3DbExec(&rc, db, - "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", - p->zDb, p->zName, zName - ); - } - if( p->bHasStat ){ - fts3DbExec(&rc, db, - "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", - p->zDb, p->zName, zName - ); - } - fts3DbExec(&rc, db, - "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", - p->zDb, p->zName, zName - ); - fts3DbExec(&rc, db, - "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", - p->zDb, p->zName, zName - ); - return rc; -} - -/* -** The xSavepoint() method. -** -** Flush the contents of the pending-terms table to disk. -*/ -static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ - int rc = SQLITE_OK; - UNUSED_PARAMETER(iSavepoint); - assert( ((Fts3Table *)pVtab)->inTransaction ); - assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint ); - TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); - if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){ - rc = fts3SyncMethod(pVtab); - } - return rc; -} - -/* -** The xRelease() method. -** -** This is a no-op. -*/ -static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ - TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); - UNUSED_PARAMETER(iSavepoint); - UNUSED_PARAMETER(pVtab); - assert( p->inTransaction ); - assert( p->mxSavepoint >= iSavepoint ); - TESTONLY( p->mxSavepoint = iSavepoint-1 ); - return SQLITE_OK; -} - -/* -** The xRollbackTo() method. -** -** Discard the contents of the pending terms table. -*/ -static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ - Fts3Table *p = (Fts3Table*)pVtab; - UNUSED_PARAMETER(iSavepoint); - assert( p->inTransaction ); - assert( p->mxSavepoint >= iSavepoint ); - TESTONLY( p->mxSavepoint = iSavepoint ); - sqlite3Fts3PendingTermsClear(p); - return SQLITE_OK; -} - -static const sqlite3_module fts3Module = { - /* iVersion */ 2, - /* xCreate */ fts3CreateMethod, - /* xConnect */ fts3ConnectMethod, - /* xBestIndex */ fts3BestIndexMethod, - /* xDisconnect */ fts3DisconnectMethod, - /* xDestroy */ fts3DestroyMethod, - /* xOpen */ fts3OpenMethod, - /* xClose */ fts3CloseMethod, - /* xFilter */ fts3FilterMethod, - /* xNext */ fts3NextMethod, - /* xEof */ fts3EofMethod, - /* xColumn */ fts3ColumnMethod, - /* xRowid */ fts3RowidMethod, - /* xUpdate */ fts3UpdateMethod, - /* xBegin */ fts3BeginMethod, - /* xSync */ fts3SyncMethod, - /* xCommit */ fts3CommitMethod, - /* xRollback */ fts3RollbackMethod, - /* xFindFunction */ fts3FindFunctionMethod, - /* xRename */ fts3RenameMethod, - /* xSavepoint */ fts3SavepointMethod, - /* xRelease */ fts3ReleaseMethod, - /* xRollbackTo */ fts3RollbackToMethod, -}; - -/* -** This function is registered as the module destructor (called when an -** FTS3 enabled database connection is closed). It frees the memory -** allocated for the tokenizer hash table. -*/ -static void hashDestroy(void *p){ - Fts3Hash *pHash = (Fts3Hash *)p; - sqlite3Fts3HashClear(pHash); - sqlite3_free(pHash); -} - -/* -** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are -** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c -** respectively. The following three forward declarations are for functions -** declared in these files used to retrieve the respective implementations. -** -** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed -** to by the argument to point to the "simple" tokenizer implementation. -** And so on. -*/ -SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); -SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 -SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); -#endif -#ifdef SQLITE_ENABLE_ICU -SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); -#endif - -/* -** Initialize the fts3 extension. If this extension is built as part -** of the sqlite library, then this function is called directly by -** SQLite. If fts3 is built as a dynamically loadable extension, this -** function is called by the sqlite3_extension_init() entry point. -*/ -SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){ - int rc = SQLITE_OK; - Fts3Hash *pHash = 0; - const sqlite3_tokenizer_module *pSimple = 0; - const sqlite3_tokenizer_module *pPorter = 0; -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 - const sqlite3_tokenizer_module *pUnicode = 0; -#endif - -#ifdef SQLITE_ENABLE_ICU - const sqlite3_tokenizer_module *pIcu = 0; - sqlite3Fts3IcuTokenizerModule(&pIcu); -#endif - -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 - sqlite3Fts3UnicodeTokenizer(&pUnicode); -#endif - -#ifdef SQLITE_TEST - rc = sqlite3Fts3InitTerm(db); - if( rc!=SQLITE_OK ) return rc; -#endif - - rc = sqlite3Fts3InitAux(db); - if( rc!=SQLITE_OK ) return rc; - - sqlite3Fts3SimpleTokenizerModule(&pSimple); - sqlite3Fts3PorterTokenizerModule(&pPorter); - - /* Allocate and initialize the hash-table used to store tokenizers. */ - pHash = sqlite3_malloc(sizeof(Fts3Hash)); - if( !pHash ){ - rc = SQLITE_NOMEM; - }else{ - sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); - } - - /* Load the built-in tokenizers into the hash table */ - if( rc==SQLITE_OK ){ - if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) - || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) - -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 - || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode) -#endif -#ifdef SQLITE_ENABLE_ICU - || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) -#endif - ){ - rc = SQLITE_NOMEM; - } - } - -#ifdef SQLITE_TEST - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3ExprInitTestInterface(db); - } -#endif - - /* Create the virtual table wrapper around the hash-table and overload - ** the two scalar functions. If this is successful, register the - ** module with sqlite. - */ - if( SQLITE_OK==rc - && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) - && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) - && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) - && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) - && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) - && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) - ){ - rc = sqlite3_create_module_v2( - db, "fts3", &fts3Module, (void *)pHash, hashDestroy - ); - if( rc==SQLITE_OK ){ - rc = sqlite3_create_module_v2( - db, "fts4", &fts3Module, (void *)pHash, 0 - ); - } - return rc; - } - - /* An error has occurred. Delete the hash table and return the error code. */ - assert( rc!=SQLITE_OK ); - if( pHash ){ - sqlite3Fts3HashClear(pHash); - sqlite3_free(pHash); - } - return rc; -} - -/* -** Allocate an Fts3MultiSegReader for each token in the expression headed -** by pExpr. -** -** An Fts3SegReader object is a cursor that can seek or scan a range of -** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple -** Fts3SegReader objects internally to provide an interface to seek or scan -** within the union of all segments of a b-tree. Hence the name. -** -** If the allocated Fts3MultiSegReader just seeks to a single entry in a -** segment b-tree (if the term is not a prefix or it is a prefix for which -** there exists prefix b-tree of the right length) then it may be traversed -** and merged incrementally. Otherwise, it has to be merged into an in-memory -** doclist and then traversed. -*/ -static void fts3EvalAllocateReaders( - Fts3Cursor *pCsr, /* FTS cursor handle */ - Fts3Expr *pExpr, /* Allocate readers for this expression */ - int *pnToken, /* OUT: Total number of tokens in phrase. */ - int *pnOr, /* OUT: Total number of OR nodes in expr. */ - int *pRc /* IN/OUT: Error code */ -){ - if( pExpr && SQLITE_OK==*pRc ){ - if( pExpr->eType==FTSQUERY_PHRASE ){ - int i; - int nToken = pExpr->pPhrase->nToken; - *pnToken += nToken; - for(i=0; i<nToken; i++){ - Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; - int rc = fts3TermSegReaderCursor(pCsr, - pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr - ); - if( rc!=SQLITE_OK ){ - *pRc = rc; - return; - } - } - assert( pExpr->pPhrase->iDoclistToken==0 ); - pExpr->pPhrase->iDoclistToken = -1; - }else{ - *pnOr += (pExpr->eType==FTSQUERY_OR); - fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); - fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); - } - } -} - -/* -** Arguments pList/nList contain the doclist for token iToken of phrase p. -** It is merged into the main doclist stored in p->doclist.aAll/nAll. -** -** This function assumes that pList points to a buffer allocated using -** sqlite3_malloc(). This function takes responsibility for eventually -** freeing the buffer. -*/ -static void fts3EvalPhraseMergeToken( - Fts3Table *pTab, /* FTS Table pointer */ - Fts3Phrase *p, /* Phrase to merge pList/nList into */ - int iToken, /* Token pList/nList corresponds to */ - char *pList, /* Pointer to doclist */ - int nList /* Number of bytes in pList */ -){ - assert( iToken!=p->iDoclistToken ); - - if( pList==0 ){ - sqlite3_free(p->doclist.aAll); - p->doclist.aAll = 0; - p->doclist.nAll = 0; - } - - else if( p->iDoclistToken<0 ){ - p->doclist.aAll = pList; - p->doclist.nAll = nList; - } - - else if( p->doclist.aAll==0 ){ - sqlite3_free(pList); - } - - else { - char *pLeft; - char *pRight; - int nLeft; - int nRight; - int nDiff; - - if( p->iDoclistToken<iToken ){ - pLeft = p->doclist.aAll; - nLeft = p->doclist.nAll; - pRight = pList; - nRight = nList; - nDiff = iToken - p->iDoclistToken; - }else{ - pRight = p->doclist.aAll; - nRight = p->doclist.nAll; - pLeft = pList; - nLeft = nList; - nDiff = p->iDoclistToken - iToken; - } - - fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight); - sqlite3_free(pLeft); - p->doclist.aAll = pRight; - p->doclist.nAll = nRight; - } - - if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; -} - -/* -** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist -** does not take deferred tokens into account. -** -** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. -*/ -static int fts3EvalPhraseLoad( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Phrase *p /* Phrase object */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int iToken; - int rc = SQLITE_OK; - - for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){ - Fts3PhraseToken *pToken = &p->aToken[iToken]; - assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); - - if( pToken->pSegcsr ){ - int nThis = 0; - char *pThis = 0; - rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); - if( rc==SQLITE_OK ){ - fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); - } - } - assert( pToken->pSegcsr==0 ); - } - - return rc; -} - -/* -** This function is called on each phrase after the position lists for -** any deferred tokens have been loaded into memory. It updates the phrases -** current position list to include only those positions that are really -** instances of the phrase (after considering deferred tokens). If this -** means that the phrase does not appear in the current row, doclist.pList -** and doclist.nList are both zeroed. -** -** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. -*/ -static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ - int iToken; /* Used to iterate through phrase tokens */ - char *aPoslist = 0; /* Position list for deferred tokens */ - int nPoslist = 0; /* Number of bytes in aPoslist */ - int iPrev = -1; /* Token number of previous deferred token */ - - assert( pPhrase->doclist.bFreeList==0 ); - - for(iToken=0; iToken<pPhrase->nToken; iToken++){ - Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; - Fts3DeferredToken *pDeferred = pToken->pDeferred; - - if( pDeferred ){ - char *pList; - int nList; - int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); - if( rc!=SQLITE_OK ) return rc; - - if( pList==0 ){ - sqlite3_free(aPoslist); - pPhrase->doclist.pList = 0; - pPhrase->doclist.nList = 0; - return SQLITE_OK; - - }else if( aPoslist==0 ){ - aPoslist = pList; - nPoslist = nList; - - }else{ - char *aOut = pList; - char *p1 = aPoslist; - char *p2 = aOut; - - assert( iPrev>=0 ); - fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); - sqlite3_free(aPoslist); - aPoslist = pList; - nPoslist = (int)(aOut - aPoslist); - if( nPoslist==0 ){ - sqlite3_free(aPoslist); - pPhrase->doclist.pList = 0; - pPhrase->doclist.nList = 0; - return SQLITE_OK; - } - } - iPrev = iToken; - } - } - - if( iPrev>=0 ){ - int nMaxUndeferred = pPhrase->iDoclistToken; - if( nMaxUndeferred<0 ){ - pPhrase->doclist.pList = aPoslist; - pPhrase->doclist.nList = nPoslist; - pPhrase->doclist.iDocid = pCsr->iPrevId; - pPhrase->doclist.bFreeList = 1; - }else{ - int nDistance; - char *p1; - char *p2; - char *aOut; - - if( nMaxUndeferred>iPrev ){ - p1 = aPoslist; - p2 = pPhrase->doclist.pList; - nDistance = nMaxUndeferred - iPrev; - }else{ - p1 = pPhrase->doclist.pList; - p2 = aPoslist; - nDistance = iPrev - nMaxUndeferred; - } - - aOut = (char *)sqlite3_malloc(nPoslist+8); - if( !aOut ){ - sqlite3_free(aPoslist); - return SQLITE_NOMEM; - } - - pPhrase->doclist.pList = aOut; - if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ - pPhrase->doclist.bFreeList = 1; - pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); - }else{ - sqlite3_free(aOut); - pPhrase->doclist.pList = 0; - pPhrase->doclist.nList = 0; - } - sqlite3_free(aPoslist); - } - } - - return SQLITE_OK; -} - -/* -** This function is called for each Fts3Phrase in a full-text query -** expression to initialize the mechanism for returning rows. Once this -** function has been called successfully on an Fts3Phrase, it may be -** used with fts3EvalPhraseNext() to iterate through the matching docids. -** -** If parameter bOptOk is true, then the phrase may (or may not) use the -** incremental loading strategy. Otherwise, the entire doclist is loaded into -** memory within this call. -** -** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. -*/ -static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ - int rc; /* Error code */ - Fts3PhraseToken *pFirst = &p->aToken[0]; - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - - if( pCsr->bDesc==pTab->bDescIdx - && bOptOk==1 - && p->nToken==1 - && pFirst->pSegcsr - && pFirst->pSegcsr->bLookup - && pFirst->bFirst==0 - ){ - /* Use the incremental approach. */ - int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); - rc = sqlite3Fts3MsrIncrStart( - pTab, pFirst->pSegcsr, iCol, pFirst->z, pFirst->n); - p->bIncr = 1; - - }else{ - /* Load the full doclist for the phrase into memory. */ - rc = fts3EvalPhraseLoad(pCsr, p); - p->bIncr = 0; - } - - assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); - return rc; -} - -/* -** This function is used to iterate backwards (from the end to start) -** through doclists. It is used by this module to iterate through phrase -** doclists in reverse and by the fts3_write.c module to iterate through -** pending-terms lists when writing to databases with "order=desc". -** -** The doclist may be sorted in ascending (parameter bDescIdx==0) or -** descending (parameter bDescIdx==1) order of docid. Regardless, this -** function iterates from the end of the doclist to the beginning. -*/ -SQLITE_PRIVATE void sqlite3Fts3DoclistPrev( - int bDescIdx, /* True if the doclist is desc */ - char *aDoclist, /* Pointer to entire doclist */ - int nDoclist, /* Length of aDoclist in bytes */ - char **ppIter, /* IN/OUT: Iterator pointer */ - sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ - int *pnList, /* OUT: List length pointer */ - u8 *pbEof /* OUT: End-of-file flag */ -){ - char *p = *ppIter; - - assert( nDoclist>0 ); - assert( *pbEof==0 ); - assert( p || *piDocid==0 ); - assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); - - if( p==0 ){ - sqlite3_int64 iDocid = 0; - char *pNext = 0; - char *pDocid = aDoclist; - char *pEnd = &aDoclist[nDoclist]; - int iMul = 1; - - while( pDocid<pEnd ){ - sqlite3_int64 iDelta; - pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta); - iDocid += (iMul * iDelta); - pNext = pDocid; - fts3PoslistCopy(0, &pDocid); - while( pDocid<pEnd && *pDocid==0 ) pDocid++; - iMul = (bDescIdx ? -1 : 1); - } - - *pnList = (int)(pEnd - pNext); - *ppIter = pNext; - *piDocid = iDocid; - }else{ - int iMul = (bDescIdx ? -1 : 1); - sqlite3_int64 iDelta; - fts3GetReverseVarint(&p, aDoclist, &iDelta); - *piDocid -= (iMul * iDelta); - - if( p==aDoclist ){ - *pbEof = 1; - }else{ - char *pSave = p; - fts3ReversePoslist(aDoclist, &p); - *pnList = (int)(pSave - p); - } - *ppIter = p; - } -} - -/* -** Iterate forwards through a doclist. -*/ -SQLITE_PRIVATE void sqlite3Fts3DoclistNext( - int bDescIdx, /* True if the doclist is desc */ - char *aDoclist, /* Pointer to entire doclist */ - int nDoclist, /* Length of aDoclist in bytes */ - char **ppIter, /* IN/OUT: Iterator pointer */ - sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ - u8 *pbEof /* OUT: End-of-file flag */ -){ - char *p = *ppIter; - - assert( nDoclist>0 ); - assert( *pbEof==0 ); - assert( p || *piDocid==0 ); - assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); - - if( p==0 ){ - p = aDoclist; - p += sqlite3Fts3GetVarint(p, piDocid); - }else{ - fts3PoslistCopy(0, &p); - if( p>=&aDoclist[nDoclist] ){ - *pbEof = 1; - }else{ - sqlite3_int64 iVar; - p += sqlite3Fts3GetVarint(p, &iVar); - *piDocid += ((bDescIdx ? -1 : 1) * iVar); - } - } - - *ppIter = p; -} - -/* -** Attempt to move the phrase iterator to point to the next matching docid. -** If an error occurs, return an SQLite error code. Otherwise, return -** SQLITE_OK. -** -** If there is no "next" entry and no error occurs, then *pbEof is set to -** 1 before returning. Otherwise, if no error occurs and the iterator is -** successfully advanced, *pbEof is set to 0. -*/ -static int fts3EvalPhraseNext( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Phrase *p, /* Phrase object to advance to next docid */ - u8 *pbEof /* OUT: Set to 1 if EOF */ -){ - int rc = SQLITE_OK; - Fts3Doclist *pDL = &p->doclist; - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - - if( p->bIncr ){ - assert( p->nToken==1 ); - assert( pDL->pNextDocid==0 ); - rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, - &pDL->iDocid, &pDL->pList, &pDL->nList - ); - if( rc==SQLITE_OK && !pDL->pList ){ - *pbEof = 1; - } - }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ - sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, - &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof - ); - pDL->pList = pDL->pNextDocid; - }else{ - char *pIter; /* Used to iterate through aAll */ - char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */ - if( pDL->pNextDocid ){ - pIter = pDL->pNextDocid; - }else{ - pIter = pDL->aAll; - } - - if( pIter>=pEnd ){ - /* We have already reached the end of this doclist. EOF. */ - *pbEof = 1; - }else{ - sqlite3_int64 iDelta; - pIter += sqlite3Fts3GetVarint(pIter, &iDelta); - if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ - pDL->iDocid += iDelta; - }else{ - pDL->iDocid -= iDelta; - } - pDL->pList = pIter; - fts3PoslistCopy(0, &pIter); - pDL->nList = (int)(pIter - pDL->pList); - - /* pIter now points just past the 0x00 that terminates the position- - ** list for document pDL->iDocid. However, if this position-list was - ** edited in place by fts3EvalNearTrim(), then pIter may not actually - ** point to the start of the next docid value. The following line deals - ** with this case by advancing pIter past the zero-padding added by - ** fts3EvalNearTrim(). */ - while( pIter<pEnd && *pIter==0 ) pIter++; - - pDL->pNextDocid = pIter; - assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); - *pbEof = 0; - } - } - - return rc; -} - -/* -** -** If *pRc is not SQLITE_OK when this function is called, it is a no-op. -** Otherwise, fts3EvalPhraseStart() is called on all phrases within the -** expression. Also the Fts3Expr.bDeferred variable is set to true for any -** expressions for which all descendent tokens are deferred. -** -** If parameter bOptOk is zero, then it is guaranteed that the -** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for -** each phrase in the expression (subject to deferred token processing). -** Or, if bOptOk is non-zero, then one or more tokens within the expression -** may be loaded incrementally, meaning doclist.aAll/nAll is not available. -** -** If an error occurs within this function, *pRc is set to an SQLite error -** code before returning. -*/ -static void fts3EvalStartReaders( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Expr *pExpr, /* Expression to initialize phrases in */ - int bOptOk, /* True to enable incremental loading */ - int *pRc /* IN/OUT: Error code */ -){ - if( pExpr && SQLITE_OK==*pRc ){ - if( pExpr->eType==FTSQUERY_PHRASE ){ - int i; - int nToken = pExpr->pPhrase->nToken; - for(i=0; i<nToken; i++){ - if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break; - } - pExpr->bDeferred = (i==nToken); - *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase); - }else{ - fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc); - fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc); - pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); - } - } -} - -/* -** An array of the following structures is assembled as part of the process -** of selecting tokens to defer before the query starts executing (as part -** of the xFilter() method). There is one element in the array for each -** token in the FTS expression. -** -** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong -** to phrases that are connected only by AND and NEAR operators (not OR or -** NOT). When determining tokens to defer, each AND/NEAR cluster is considered -** separately. The root of a tokens AND/NEAR cluster is stored in -** Fts3TokenAndCost.pRoot. -*/ -typedef struct Fts3TokenAndCost Fts3TokenAndCost; -struct Fts3TokenAndCost { - Fts3Phrase *pPhrase; /* The phrase the token belongs to */ - int iToken; /* Position of token in phrase */ - Fts3PhraseToken *pToken; /* The token itself */ - Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ - int nOvfl; /* Number of overflow pages to load doclist */ - int iCol; /* The column the token must match */ -}; - -/* -** This function is used to populate an allocated Fts3TokenAndCost array. -** -** If *pRc is not SQLITE_OK when this function is called, it is a no-op. -** Otherwise, if an error occurs during execution, *pRc is set to an -** SQLite error code. -*/ -static void fts3EvalTokenCosts( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ - Fts3Expr *pExpr, /* Expression to consider */ - Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ - Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ - int *pRc /* IN/OUT: Error code */ -){ - if( *pRc==SQLITE_OK ){ - if( pExpr->eType==FTSQUERY_PHRASE ){ - Fts3Phrase *pPhrase = pExpr->pPhrase; - int i; - for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){ - Fts3TokenAndCost *pTC = (*ppTC)++; - pTC->pPhrase = pPhrase; - pTC->iToken = i; - pTC->pRoot = pRoot; - pTC->pToken = &pPhrase->aToken[i]; - pTC->iCol = pPhrase->iColumn; - *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); - } - }else if( pExpr->eType!=FTSQUERY_NOT ){ - assert( pExpr->eType==FTSQUERY_OR - || pExpr->eType==FTSQUERY_AND - || pExpr->eType==FTSQUERY_NEAR - ); - assert( pExpr->pLeft && pExpr->pRight ); - if( pExpr->eType==FTSQUERY_OR ){ - pRoot = pExpr->pLeft; - **ppOr = pRoot; - (*ppOr)++; - } - fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); - if( pExpr->eType==FTSQUERY_OR ){ - pRoot = pExpr->pRight; - **ppOr = pRoot; - (*ppOr)++; - } - fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); - } - } -} - -/* -** Determine the average document (row) size in pages. If successful, -** write this value to *pnPage and return SQLITE_OK. Otherwise, return -** an SQLite error code. -** -** The average document size in pages is calculated by first calculating -** determining the average size in bytes, B. If B is less than the amount -** of data that will fit on a single leaf page of an intkey table in -** this database, then the average docsize is 1. Otherwise, it is 1 plus -** the number of overflow pages consumed by a record B bytes in size. -*/ -static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ - if( pCsr->nRowAvg==0 ){ - /* The average document size, which is required to calculate the cost - ** of each doclist, has not yet been determined. Read the required - ** data from the %_stat table to calculate it. - ** - ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 - ** varints, where nCol is the number of columns in the FTS3 table. - ** The first varint is the number of documents currently stored in - ** the table. The following nCol varints contain the total amount of - ** data stored in all rows of each column of the table, from left - ** to right. - */ - int rc; - Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; - sqlite3_stmt *pStmt; - sqlite3_int64 nDoc = 0; - sqlite3_int64 nByte = 0; - const char *pEnd; - const char *a; - - rc = sqlite3Fts3SelectDoctotal(p, &pStmt); - if( rc!=SQLITE_OK ) return rc; - a = sqlite3_column_blob(pStmt, 0); - assert( a ); - - pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; - a += sqlite3Fts3GetVarint(a, &nDoc); - while( a<pEnd ){ - a += sqlite3Fts3GetVarint(a, &nByte); - } - if( nDoc==0 || nByte==0 ){ - sqlite3_reset(pStmt); - return FTS_CORRUPT_VTAB; - } - - pCsr->nDoc = nDoc; - pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); - assert( pCsr->nRowAvg>0 ); - rc = sqlite3_reset(pStmt); - if( rc!=SQLITE_OK ) return rc; - } - - *pnPage = pCsr->nRowAvg; - return SQLITE_OK; -} - -/* -** This function is called to select the tokens (if any) that will be -** deferred. The array aTC[] has already been populated when this is -** called. -** -** This function is called once for each AND/NEAR cluster in the -** expression. Each invocation determines which tokens to defer within -** the cluster with root node pRoot. See comments above the definition -** of struct Fts3TokenAndCost for more details. -** -** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() -** called on each token to defer. Otherwise, an SQLite error code is -** returned. -*/ -static int fts3EvalSelectDeferred( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Expr *pRoot, /* Consider tokens with this root node */ - Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ - int nTC /* Number of entries in aTC[] */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int nDocSize = 0; /* Number of pages per doc loaded */ - int rc = SQLITE_OK; /* Return code */ - int ii; /* Iterator variable for various purposes */ - int nOvfl = 0; /* Total overflow pages used by doclists */ - int nToken = 0; /* Total number of tokens in cluster */ - - int nMinEst = 0; /* The minimum count for any phrase so far. */ - int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ - - /* Tokens are never deferred for FTS tables created using the content=xxx - ** option. The reason being that it is not guaranteed that the content - ** table actually contains the same data as the index. To prevent this from - ** causing any problems, the deferred token optimization is completely - ** disabled for content=xxx tables. */ - if( pTab->zContentTbl ){ - return SQLITE_OK; - } - - /* Count the tokens in this AND/NEAR cluster. If none of the doclists - ** associated with the tokens spill onto overflow pages, or if there is - ** only 1 token, exit early. No tokens to defer in this case. */ - for(ii=0; ii<nTC; ii++){ - if( aTC[ii].pRoot==pRoot ){ - nOvfl += aTC[ii].nOvfl; - nToken++; - } - } - if( nOvfl==0 || nToken<2 ) return SQLITE_OK; - - /* Obtain the average docsize (in pages). */ - rc = fts3EvalAverageDocsize(pCsr, &nDocSize); - assert( rc!=SQLITE_OK || nDocSize>0 ); - - - /* Iterate through all tokens in this AND/NEAR cluster, in ascending order - ** of the number of overflow pages that will be loaded by the pager layer - ** to retrieve the entire doclist for the token from the full-text index. - ** Load the doclists for tokens that are either: - ** - ** a. The cheapest token in the entire query (i.e. the one visited by the - ** first iteration of this loop), or - ** - ** b. Part of a multi-token phrase. - ** - ** After each token doclist is loaded, merge it with the others from the - ** same phrase and count the number of documents that the merged doclist - ** contains. Set variable "nMinEst" to the smallest number of documents in - ** any phrase doclist for which 1 or more token doclists have been loaded. - ** Let nOther be the number of other phrases for which it is certain that - ** one or more tokens will not be deferred. - ** - ** Then, for each token, defer it if loading the doclist would result in - ** loading N or more overflow pages into memory, where N is computed as: - ** - ** (nMinEst + 4^nOther - 1) / (4^nOther) - */ - for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){ - int iTC; /* Used to iterate through aTC[] array. */ - Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */ - - /* Set pTC to point to the cheapest remaining token. */ - for(iTC=0; iTC<nTC; iTC++){ - if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot - && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl) - ){ - pTC = &aTC[iTC]; - } - } - assert( pTC ); - - if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ - /* The number of overflow pages to load for this (and therefore all - ** subsequent) tokens is greater than the estimated number of pages - ** that will be loaded if all subsequent tokens are deferred. - */ - Fts3PhraseToken *pToken = pTC->pToken; - rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); - fts3SegReaderCursorFree(pToken->pSegcsr); - pToken->pSegcsr = 0; - }else{ - /* Set nLoad4 to the value of (4^nOther) for the next iteration of the - ** for-loop. Except, limit the value to 2^24 to prevent it from - ** overflowing the 32-bit integer it is stored in. */ - if( ii<12 ) nLoad4 = nLoad4*4; - - if( ii==0 || pTC->pPhrase->nToken>1 ){ - /* Either this is the cheapest token in the entire query, or it is - ** part of a multi-token phrase. Either way, the entire doclist will - ** (eventually) be loaded into memory. It may as well be now. */ - Fts3PhraseToken *pToken = pTC->pToken; - int nList = 0; - char *pList = 0; - rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); - assert( rc==SQLITE_OK || pList==0 ); - if( rc==SQLITE_OK ){ - int nCount; - fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList); - nCount = fts3DoclistCountDocids( - pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll - ); - if( ii==0 || nCount<nMinEst ) nMinEst = nCount; - } - } - } - pTC->pToken = 0; - } - - return rc; -} - -/* -** This function is called from within the xFilter method. It initializes -** the full-text query currently stored in pCsr->pExpr. To iterate through -** the results of a query, the caller does: -** -** fts3EvalStart(pCsr); -** while( 1 ){ -** fts3EvalNext(pCsr); -** if( pCsr->bEof ) break; -** ... return row pCsr->iPrevId to the caller ... -** } -*/ -static int fts3EvalStart(Fts3Cursor *pCsr){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc = SQLITE_OK; - int nToken = 0; - int nOr = 0; - - /* Allocate a MultiSegReader for each token in the expression. */ - fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); - - /* Determine which, if any, tokens in the expression should be deferred. */ -#ifndef SQLITE_DISABLE_FTS4_DEFERRED - if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ - Fts3TokenAndCost *aTC; - Fts3Expr **apOr; - aTC = (Fts3TokenAndCost *)sqlite3_malloc( - sizeof(Fts3TokenAndCost) * nToken - + sizeof(Fts3Expr *) * nOr * 2 - ); - apOr = (Fts3Expr **)&aTC[nToken]; - - if( !aTC ){ - rc = SQLITE_NOMEM; - }else{ - int ii; - Fts3TokenAndCost *pTC = aTC; - Fts3Expr **ppOr = apOr; - - fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); - nToken = (int)(pTC-aTC); - nOr = (int)(ppOr-apOr); - - if( rc==SQLITE_OK ){ - rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); - for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){ - rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken); - } - } - - sqlite3_free(aTC); - } - } -#endif - - fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc); - return rc; -} - -/* -** Invalidate the current position list for phrase pPhrase. -*/ -static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ - if( pPhrase->doclist.bFreeList ){ - sqlite3_free(pPhrase->doclist.pList); - } - pPhrase->doclist.pList = 0; - pPhrase->doclist.nList = 0; - pPhrase->doclist.bFreeList = 0; -} - -/* -** This function is called to edit the position list associated with -** the phrase object passed as the fifth argument according to a NEAR -** condition. For example: -** -** abc NEAR/5 "def ghi" -** -** Parameter nNear is passed the NEAR distance of the expression (5 in -** the example above). When this function is called, *paPoslist points to -** the position list, and *pnToken is the number of phrase tokens in, the -** phrase on the other side of the NEAR operator to pPhrase. For example, -** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to -** the position list associated with phrase "abc". -** -** All positions in the pPhrase position list that are not sufficiently -** close to a position in the *paPoslist position list are removed. If this -** leaves 0 positions, zero is returned. Otherwise, non-zero. -** -** Before returning, *paPoslist is set to point to the position lsit -** associated with pPhrase. And *pnToken is set to the number of tokens in -** pPhrase. -*/ -static int fts3EvalNearTrim( - int nNear, /* NEAR distance. As in "NEAR/nNear". */ - char *aTmp, /* Temporary space to use */ - char **paPoslist, /* IN/OUT: Position list */ - int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ - Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ -){ - int nParam1 = nNear + pPhrase->nToken; - int nParam2 = nNear + *pnToken; - int nNew; - char *p2; - char *pOut; - int res; - - assert( pPhrase->doclist.pList ); - - p2 = pOut = pPhrase->doclist.pList; - res = fts3PoslistNearMerge( - &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 - ); - if( res ){ - nNew = (int)(pOut - pPhrase->doclist.pList) - 1; - assert( pPhrase->doclist.pList[nNew]=='\0' ); - assert( nNew<=pPhrase->doclist.nList && nNew>0 ); - memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); - pPhrase->doclist.nList = nNew; - *paPoslist = pPhrase->doclist.pList; - *pnToken = pPhrase->nToken; - } - - return res; -} - -/* -** This function is a no-op if *pRc is other than SQLITE_OK when it is called. -** Otherwise, it advances the expression passed as the second argument to -** point to the next matching row in the database. Expressions iterate through -** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, -** or descending if it is non-zero. -** -** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if -** successful, the following variables in pExpr are set: -** -** Fts3Expr.bEof (non-zero if EOF - there is no next row) -** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) -** -** If the expression is of type FTSQUERY_PHRASE, and the expression is not -** at EOF, then the following variables are populated with the position list -** for the phrase for the visited row: -** -** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) -** FTs3Expr.pPhrase->doclist.pList (pointer to position list) -** -** It says above that this function advances the expression to the next -** matching row. This is usually true, but there are the following exceptions: -** -** 1. Deferred tokens are not taken into account. If a phrase consists -** entirely of deferred tokens, it is assumed to match every row in -** the db. In this case the position-list is not populated at all. -** -** Or, if a phrase contains one or more deferred tokens and one or -** more non-deferred tokens, then the expression is advanced to the -** next possible match, considering only non-deferred tokens. In other -** words, if the phrase is "A B C", and "B" is deferred, the expression -** is advanced to the next row that contains an instance of "A * C", -** where "*" may match any single token. The position list in this case -** is populated as for "A * C" before returning. -** -** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is -** advanced to point to the next row that matches "x AND y". -** -** See fts3EvalTestDeferredAndNear() for details on testing if a row is -** really a match, taking into account deferred tokens and NEAR operators. -*/ -static void fts3EvalNextRow( - Fts3Cursor *pCsr, /* FTS Cursor handle */ - Fts3Expr *pExpr, /* Expr. to advance to next matching row */ - int *pRc /* IN/OUT: Error code */ -){ - if( *pRc==SQLITE_OK ){ - int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ - assert( pExpr->bEof==0 ); - pExpr->bStart = 1; - - switch( pExpr->eType ){ - case FTSQUERY_NEAR: - case FTSQUERY_AND: { - Fts3Expr *pLeft = pExpr->pLeft; - Fts3Expr *pRight = pExpr->pRight; - assert( !pLeft->bDeferred || !pRight->bDeferred ); - - if( pLeft->bDeferred ){ - /* LHS is entirely deferred. So we assume it matches every row. - ** Advance the RHS iterator to find the next row visited. */ - fts3EvalNextRow(pCsr, pRight, pRc); - pExpr->iDocid = pRight->iDocid; - pExpr->bEof = pRight->bEof; - }else if( pRight->bDeferred ){ - /* RHS is entirely deferred. So we assume it matches every row. - ** Advance the LHS iterator to find the next row visited. */ - fts3EvalNextRow(pCsr, pLeft, pRc); - pExpr->iDocid = pLeft->iDocid; - pExpr->bEof = pLeft->bEof; - }else{ - /* Neither the RHS or LHS are deferred. */ - fts3EvalNextRow(pCsr, pLeft, pRc); - fts3EvalNextRow(pCsr, pRight, pRc); - while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ - sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); - if( iDiff==0 ) break; - if( iDiff<0 ){ - fts3EvalNextRow(pCsr, pLeft, pRc); - }else{ - fts3EvalNextRow(pCsr, pRight, pRc); - } - } - pExpr->iDocid = pLeft->iDocid; - pExpr->bEof = (pLeft->bEof || pRight->bEof); - } - break; - } - - case FTSQUERY_OR: { - Fts3Expr *pLeft = pExpr->pLeft; - Fts3Expr *pRight = pExpr->pRight; - sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); - - assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); - assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); - - if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ - fts3EvalNextRow(pCsr, pLeft, pRc); - }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){ - fts3EvalNextRow(pCsr, pRight, pRc); - }else{ - fts3EvalNextRow(pCsr, pLeft, pRc); - fts3EvalNextRow(pCsr, pRight, pRc); - } - - pExpr->bEof = (pLeft->bEof && pRight->bEof); - iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); - if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ - pExpr->iDocid = pLeft->iDocid; - }else{ - pExpr->iDocid = pRight->iDocid; - } - - break; - } - - case FTSQUERY_NOT: { - Fts3Expr *pLeft = pExpr->pLeft; - Fts3Expr *pRight = pExpr->pRight; - - if( pRight->bStart==0 ){ - fts3EvalNextRow(pCsr, pRight, pRc); - assert( *pRc!=SQLITE_OK || pRight->bStart ); - } - - fts3EvalNextRow(pCsr, pLeft, pRc); - if( pLeft->bEof==0 ){ - while( !*pRc - && !pRight->bEof - && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 - ){ - fts3EvalNextRow(pCsr, pRight, pRc); - } - } - pExpr->iDocid = pLeft->iDocid; - pExpr->bEof = pLeft->bEof; - break; - } - - default: { - Fts3Phrase *pPhrase = pExpr->pPhrase; - fts3EvalInvalidatePoslist(pPhrase); - *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); - pExpr->iDocid = pPhrase->doclist.iDocid; - break; - } - } - } -} - -/* -** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR -** cluster, then this function returns 1 immediately. -** -** Otherwise, it checks if the current row really does match the NEAR -** expression, using the data currently stored in the position lists -** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. -** -** If the current row is a match, the position list associated with each -** phrase in the NEAR expression is edited in place to contain only those -** phrase instances sufficiently close to their peers to satisfy all NEAR -** constraints. In this case it returns 1. If the NEAR expression does not -** match the current row, 0 is returned. The position lists may or may not -** be edited if 0 is returned. -*/ -static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ - int res = 1; - - /* The following block runs if pExpr is the root of a NEAR query. - ** For example, the query: - ** - ** "w" NEAR "x" NEAR "y" NEAR "z" - ** - ** which is represented in tree form as: - ** - ** | - ** +--NEAR--+ <-- root of NEAR query - ** | | - ** +--NEAR--+ "z" - ** | | - ** +--NEAR--+ "y" - ** | | - ** "w" "x" - ** - ** The right-hand child of a NEAR node is always a phrase. The - ** left-hand child may be either a phrase or a NEAR node. There are - ** no exceptions to this - it's the way the parser in fts3_expr.c works. - */ - if( *pRc==SQLITE_OK - && pExpr->eType==FTSQUERY_NEAR - && pExpr->bEof==0 - && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) - ){ - Fts3Expr *p; - int nTmp = 0; /* Bytes of temp space */ - char *aTmp; /* Temp space for PoslistNearMerge() */ - - /* Allocate temporary working space. */ - for(p=pExpr; p->pLeft; p=p->pLeft){ - nTmp += p->pRight->pPhrase->doclist.nList; - } - nTmp += p->pPhrase->doclist.nList; - if( nTmp==0 ){ - res = 0; - }else{ - aTmp = sqlite3_malloc(nTmp*2); - if( !aTmp ){ - *pRc = SQLITE_NOMEM; - res = 0; - }else{ - char *aPoslist = p->pPhrase->doclist.pList; - int nToken = p->pPhrase->nToken; - - for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ - Fts3Phrase *pPhrase = p->pRight->pPhrase; - int nNear = p->nNear; - res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); - } - - aPoslist = pExpr->pRight->pPhrase->doclist.pList; - nToken = pExpr->pRight->pPhrase->nToken; - for(p=pExpr->pLeft; p && res; p=p->pLeft){ - int nNear; - Fts3Phrase *pPhrase; - assert( p->pParent && p->pParent->pLeft==p ); - nNear = p->pParent->nNear; - pPhrase = ( - p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase - ); - res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); - } - } - - sqlite3_free(aTmp); - } - } - - return res; -} - -/* -** This function is a helper function for fts3EvalTestDeferredAndNear(). -** Assuming no error occurs or has occurred, It returns non-zero if the -** expression passed as the second argument matches the row that pCsr -** currently points to, or zero if it does not. -** -** If *pRc is not SQLITE_OK when this function is called, it is a no-op. -** If an error occurs during execution of this function, *pRc is set to -** the appropriate SQLite error code. In this case the returned value is -** undefined. -*/ -static int fts3EvalTestExpr( - Fts3Cursor *pCsr, /* FTS cursor handle */ - Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ - int *pRc /* IN/OUT: Error code */ -){ - int bHit = 1; /* Return value */ - if( *pRc==SQLITE_OK ){ - switch( pExpr->eType ){ - case FTSQUERY_NEAR: - case FTSQUERY_AND: - bHit = ( - fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) - && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) - && fts3EvalNearTest(pExpr, pRc) - ); - - /* If the NEAR expression does not match any rows, zero the doclist for - ** all phrases involved in the NEAR. This is because the snippet(), - ** offsets() and matchinfo() functions are not supposed to recognize - ** any instances of phrases that are part of unmatched NEAR queries. - ** For example if this expression: - ** - ** ... MATCH 'a OR (b NEAR c)' - ** - ** is matched against a row containing: - ** - ** 'a b d e' - ** - ** then any snippet() should ony highlight the "a" term, not the "b" - ** (as "b" is part of a non-matching NEAR clause). - */ - if( bHit==0 - && pExpr->eType==FTSQUERY_NEAR - && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) - ){ - Fts3Expr *p; - for(p=pExpr; p->pPhrase==0; p=p->pLeft){ - if( p->pRight->iDocid==pCsr->iPrevId ){ - fts3EvalInvalidatePoslist(p->pRight->pPhrase); - } - } - if( p->iDocid==pCsr->iPrevId ){ - fts3EvalInvalidatePoslist(p->pPhrase); - } - } - - break; - - case FTSQUERY_OR: { - int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); - int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); - bHit = bHit1 || bHit2; - break; - } - - case FTSQUERY_NOT: - bHit = ( - fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) - && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) - ); - break; - - default: { -#ifndef SQLITE_DISABLE_FTS4_DEFERRED - if( pCsr->pDeferred - && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred) - ){ - Fts3Phrase *pPhrase = pExpr->pPhrase; - assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 ); - if( pExpr->bDeferred ){ - fts3EvalInvalidatePoslist(pPhrase); - } - *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); - bHit = (pPhrase->doclist.pList!=0); - pExpr->iDocid = pCsr->iPrevId; - }else -#endif - { - bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId); - } - break; - } - } - } - return bHit; -} - -/* -** This function is called as the second part of each xNext operation when -** iterating through the results of a full-text query. At this point the -** cursor points to a row that matches the query expression, with the -** following caveats: -** -** * Up until this point, "NEAR" operators in the expression have been -** treated as "AND". -** -** * Deferred tokens have not yet been considered. -** -** If *pRc is not SQLITE_OK when this function is called, it immediately -** returns 0. Otherwise, it tests whether or not after considering NEAR -** operators and deferred tokens the current row is still a match for the -** expression. It returns 1 if both of the following are true: -** -** 1. *pRc is SQLITE_OK when this function returns, and -** -** 2. After scanning the current FTS table row for the deferred tokens, -** it is determined that the row does *not* match the query. -** -** Or, if no error occurs and it seems the current row does match the FTS -** query, return 0. -*/ -static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){ - int rc = *pRc; - int bMiss = 0; - if( rc==SQLITE_OK ){ - - /* If there are one or more deferred tokens, load the current row into - ** memory and scan it to determine the position list for each deferred - ** token. Then, see if this row is really a match, considering deferred - ** tokens and NEAR operators (neither of which were taken into account - ** earlier, by fts3EvalNextRow()). - */ - if( pCsr->pDeferred ){ - rc = fts3CursorSeek(0, pCsr); - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3CacheDeferredDoclists(pCsr); - } - } - bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); - - /* Free the position-lists accumulated for each deferred token above. */ - sqlite3Fts3FreeDeferredDoclists(pCsr); - *pRc = rc; - } - return (rc==SQLITE_OK && bMiss); -} - -/* -** Advance to the next document that matches the FTS expression in -** Fts3Cursor.pExpr. -*/ -static int fts3EvalNext(Fts3Cursor *pCsr){ - int rc = SQLITE_OK; /* Return Code */ - Fts3Expr *pExpr = pCsr->pExpr; - assert( pCsr->isEof==0 ); - if( pExpr==0 ){ - pCsr->isEof = 1; - }else{ - do { - if( pCsr->isRequireSeek==0 ){ - sqlite3_reset(pCsr->pStmt); - } - assert( sqlite3_data_count(pCsr->pStmt)==0 ); - fts3EvalNextRow(pCsr, pExpr, &rc); - pCsr->isEof = pExpr->bEof; - pCsr->isRequireSeek = 1; - pCsr->isMatchinfoNeeded = 1; - pCsr->iPrevId = pExpr->iDocid; - }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) ); - } - return rc; -} - -/* -** Restart interation for expression pExpr so that the next call to -** fts3EvalNext() visits the first row. Do not allow incremental -** loading or merging of phrase doclists for this iteration. -** -** If *pRc is other than SQLITE_OK when this function is called, it is -** a no-op. If an error occurs within this function, *pRc is set to an -** SQLite error code before returning. -*/ -static void fts3EvalRestart( - Fts3Cursor *pCsr, - Fts3Expr *pExpr, - int *pRc -){ - if( pExpr && *pRc==SQLITE_OK ){ - Fts3Phrase *pPhrase = pExpr->pPhrase; - - if( pPhrase ){ - fts3EvalInvalidatePoslist(pPhrase); - if( pPhrase->bIncr ){ - assert( pPhrase->nToken==1 ); - assert( pPhrase->aToken[0].pSegcsr ); - sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr); - *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); - } - - pPhrase->doclist.pNextDocid = 0; - pPhrase->doclist.iDocid = 0; - } - - pExpr->iDocid = 0; - pExpr->bEof = 0; - pExpr->bStart = 0; - - fts3EvalRestart(pCsr, pExpr->pLeft, pRc); - fts3EvalRestart(pCsr, pExpr->pRight, pRc); - } -} - -/* -** After allocating the Fts3Expr.aMI[] array for each phrase in the -** expression rooted at pExpr, the cursor iterates through all rows matched -** by pExpr, calling this function for each row. This function increments -** the values in Fts3Expr.aMI[] according to the position-list currently -** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase -** expression nodes. -*/ -static void fts3EvalUpdateCounts(Fts3Expr *pExpr){ - if( pExpr ){ - Fts3Phrase *pPhrase = pExpr->pPhrase; - if( pPhrase && pPhrase->doclist.pList ){ - int iCol = 0; - char *p = pPhrase->doclist.pList; - - assert( *p ); - while( 1 ){ - u8 c = 0; - int iCnt = 0; - while( 0xFE & (*p | c) ){ - if( (c&0x80)==0 ) iCnt++; - c = *p++ & 0x80; - } - - /* aMI[iCol*3 + 1] = Number of occurrences - ** aMI[iCol*3 + 2] = Number of rows containing at least one instance - */ - pExpr->aMI[iCol*3 + 1] += iCnt; - pExpr->aMI[iCol*3 + 2] += (iCnt>0); - if( *p==0x00 ) break; - p++; - p += sqlite3Fts3GetVarint32(p, &iCol); - } - } - - fts3EvalUpdateCounts(pExpr->pLeft); - fts3EvalUpdateCounts(pExpr->pRight); - } -} - -/* -** Expression pExpr must be of type FTSQUERY_PHRASE. -** -** If it is not already allocated and populated, this function allocates and -** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part -** of a NEAR expression, then it also allocates and populates the same array -** for all other phrases that are part of the NEAR expression. -** -** SQLITE_OK is returned if the aMI[] array is successfully allocated and -** populated. Otherwise, if an error occurs, an SQLite error code is returned. -*/ -static int fts3EvalGatherStats( - Fts3Cursor *pCsr, /* Cursor object */ - Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ -){ - int rc = SQLITE_OK; /* Return code */ - - assert( pExpr->eType==FTSQUERY_PHRASE ); - if( pExpr->aMI==0 ){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - Fts3Expr *pRoot; /* Root of NEAR expression */ - Fts3Expr *p; /* Iterator used for several purposes */ - - sqlite3_int64 iPrevId = pCsr->iPrevId; - sqlite3_int64 iDocid; - u8 bEof; - - /* Find the root of the NEAR expression */ - pRoot = pExpr; - while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){ - pRoot = pRoot->pParent; - } - iDocid = pRoot->iDocid; - bEof = pRoot->bEof; - assert( pRoot->bStart ); - - /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ - for(p=pRoot; p; p=p->pLeft){ - Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight); - assert( pE->aMI==0 ); - pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32)); - if( !pE->aMI ) return SQLITE_NOMEM; - memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); - } - - fts3EvalRestart(pCsr, pRoot, &rc); - - while( pCsr->isEof==0 && rc==SQLITE_OK ){ - - do { - /* Ensure the %_content statement is reset. */ - if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); - assert( sqlite3_data_count(pCsr->pStmt)==0 ); - - /* Advance to the next document */ - fts3EvalNextRow(pCsr, pRoot, &rc); - pCsr->isEof = pRoot->bEof; - pCsr->isRequireSeek = 1; - pCsr->isMatchinfoNeeded = 1; - pCsr->iPrevId = pRoot->iDocid; - }while( pCsr->isEof==0 - && pRoot->eType==FTSQUERY_NEAR - && fts3EvalTestDeferredAndNear(pCsr, &rc) - ); - - if( rc==SQLITE_OK && pCsr->isEof==0 ){ - fts3EvalUpdateCounts(pRoot); - } - } - - pCsr->isEof = 0; - pCsr->iPrevId = iPrevId; - - if( bEof ){ - pRoot->bEof = bEof; - }else{ - /* Caution: pRoot may iterate through docids in ascending or descending - ** order. For this reason, even though it seems more defensive, the - ** do loop can not be written: - ** - ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK ); - */ - fts3EvalRestart(pCsr, pRoot, &rc); - do { - fts3EvalNextRow(pCsr, pRoot, &rc); - assert( pRoot->bEof==0 ); - }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); - fts3EvalTestDeferredAndNear(pCsr, &rc); - } - } - return rc; -} - -/* -** This function is used by the matchinfo() module to query a phrase -** expression node for the following information: -** -** 1. The total number of occurrences of the phrase in each column of -** the FTS table (considering all rows), and -** -** 2. For each column, the number of rows in the table for which the -** column contains at least one instance of the phrase. -** -** If no error occurs, SQLITE_OK is returned and the values for each column -** written into the array aiOut as follows: -** -** aiOut[iCol*3 + 1] = Number of occurrences -** aiOut[iCol*3 + 2] = Number of rows containing at least one instance -** -** Caveats: -** -** * If a phrase consists entirely of deferred tokens, then all output -** values are set to the number of documents in the table. In other -** words we assume that very common tokens occur exactly once in each -** column of each row of the table. -** -** * If a phrase contains some deferred tokens (and some non-deferred -** tokens), count the potential occurrence identified by considering -** the non-deferred tokens instead of actual phrase occurrences. -** -** * If the phrase is part of a NEAR expression, then only phrase instances -** that meet the NEAR constraint are included in the counts. -*/ -SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats( - Fts3Cursor *pCsr, /* FTS cursor handle */ - Fts3Expr *pExpr, /* Phrase expression */ - u32 *aiOut /* Array to write results into (see above) */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc = SQLITE_OK; - int iCol; - - if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ - assert( pCsr->nDoc>0 ); - for(iCol=0; iCol<pTab->nColumn; iCol++){ - aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; - aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; - } - }else{ - rc = fts3EvalGatherStats(pCsr, pExpr); - if( rc==SQLITE_OK ){ - assert( pExpr->aMI ); - for(iCol=0; iCol<pTab->nColumn; iCol++){ - aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; - aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; - } - } - } - - return rc; -} - -/* -** The expression pExpr passed as the second argument to this function -** must be of type FTSQUERY_PHRASE. -** -** The returned value is either NULL or a pointer to a buffer containing -** a position-list indicating the occurrences of the phrase in column iCol -** of the current row. -** -** More specifically, the returned buffer contains 1 varint for each -** occurrence of the phrase in the column, stored using the normal (delta+2) -** compression and is terminated by either an 0x01 or 0x00 byte. For example, -** if the requested column contains "a b X c d X X" and the position-list -** for 'X' is requested, the buffer returned may contain: -** -** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 -** -** This function works regardless of whether or not the phrase is deferred, -** incremental, or neither. -*/ -SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist( - Fts3Cursor *pCsr, /* FTS3 cursor object */ - Fts3Expr *pExpr, /* Phrase to return doclist for */ - int iCol, /* Column to return position list for */ - char **ppOut /* OUT: Pointer to position list */ -){ - Fts3Phrase *pPhrase = pExpr->pPhrase; - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - char *pIter; - int iThis; - sqlite3_int64 iDocid; - - /* If this phrase is applies specifically to some column other than - ** column iCol, return a NULL pointer. */ - *ppOut = 0; - assert( iCol>=0 && iCol<pTab->nColumn ); - if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){ - return SQLITE_OK; - } - - iDocid = pExpr->iDocid; - pIter = pPhrase->doclist.pList; - if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ - int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ - int bOr = 0; - u8 bEof = 0; - Fts3Expr *p; - - /* Check if this phrase descends from an OR expression node. If not, - ** return NULL. Otherwise, the entry that corresponds to docid - ** pCsr->iPrevId may lie earlier in the doclist buffer. */ - for(p=pExpr->pParent; p; p=p->pParent){ - if( p->eType==FTSQUERY_OR ) bOr = 1; - } - if( bOr==0 ) return SQLITE_OK; - - /* This is the descendent of an OR node. In this case we cannot use - ** an incremental phrase. Load the entire doclist for the phrase - ** into memory in this case. */ - if( pPhrase->bIncr ){ - int rc = SQLITE_OK; - int bEofSave = pExpr->bEof; - fts3EvalRestart(pCsr, pExpr, &rc); - while( rc==SQLITE_OK && !pExpr->bEof ){ - fts3EvalNextRow(pCsr, pExpr, &rc); - if( bEofSave==0 && pExpr->iDocid==iDocid ) break; - } - pIter = pPhrase->doclist.pList; - assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); - if( rc!=SQLITE_OK ) return rc; - } - - if( pExpr->bEof ){ - pIter = 0; - iDocid = 0; - } - bEof = (pPhrase->doclist.nAll==0); - assert( bDescDoclist==0 || bDescDoclist==1 ); - assert( pCsr->bDesc==0 || pCsr->bDesc==1 ); - - if( pCsr->bDesc==bDescDoclist ){ - int dummy; - while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ - sqlite3Fts3DoclistPrev( - bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, - &pIter, &iDocid, &dummy, &bEof - ); - } - }else{ - while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ - sqlite3Fts3DoclistNext( - bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, - &pIter, &iDocid, &bEof - ); - } - } - - if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0; - } - if( pIter==0 ) return SQLITE_OK; - - if( *pIter==0x01 ){ - pIter++; - pIter += sqlite3Fts3GetVarint32(pIter, &iThis); - }else{ - iThis = 0; - } - while( iThis<iCol ){ - fts3ColumnlistCopy(0, &pIter); - if( *pIter==0x00 ) return 0; - pIter++; - pIter += sqlite3Fts3GetVarint32(pIter, &iThis); - } - - *ppOut = ((iCol==iThis)?pIter:0); - return SQLITE_OK; -} - -/* -** Free all components of the Fts3Phrase structure that were allocated by -** the eval module. Specifically, this means to free: -** -** * the contents of pPhrase->doclist, and -** * any Fts3MultiSegReader objects held by phrase tokens. -*/ -SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ - if( pPhrase ){ - int i; - sqlite3_free(pPhrase->doclist.aAll); - fts3EvalInvalidatePoslist(pPhrase); - memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); - for(i=0; i<pPhrase->nToken; i++){ - fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); - pPhrase->aToken[i].pSegcsr = 0; - } - } -} - - -/* -** Return SQLITE_CORRUPT_VTAB. -*/ -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE int sqlite3Fts3Corrupt(){ - return SQLITE_CORRUPT_VTAB; -} -#endif - -#if !SQLITE_CORE -/* -** Initialize API pointer table, if required. -*/ -SQLITE_API int sqlite3_extension_init( - sqlite3 *db, - char **pzErrMsg, - const sqlite3_api_routines *pApi -){ - SQLITE_EXTENSION_INIT2(pApi) - return sqlite3Fts3Init(db); -} -#endif - -#endif - -/************** End of fts3.c ************************************************/ -/************** Begin file fts3_aux.c ****************************************/ -/* -** 2011 Jan 27 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <string.h> */ -/* #include <assert.h> */ - -typedef struct Fts3auxTable Fts3auxTable; -typedef struct Fts3auxCursor Fts3auxCursor; - -struct Fts3auxTable { - sqlite3_vtab base; /* Base class used by SQLite core */ - Fts3Table *pFts3Tab; -}; - -struct Fts3auxCursor { - sqlite3_vtab_cursor base; /* Base class used by SQLite core */ - Fts3MultiSegReader csr; /* Must be right after "base" */ - Fts3SegFilter filter; - char *zStop; - int nStop; /* Byte-length of string zStop */ - int isEof; /* True if cursor is at EOF */ - sqlite3_int64 iRowid; /* Current rowid */ - - int iCol; /* Current value of 'col' column */ - int nStat; /* Size of aStat[] array */ - struct Fts3auxColstats { - sqlite3_int64 nDoc; /* 'documents' values for current csr row */ - sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */ - } *aStat; -}; - -/* -** Schema of the terms table. -*/ -#define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, col, documents, occurrences)" - -/* -** This function does all the work for both the xConnect and xCreate methods. -** These tables have no persistent representation of their own, so xConnect -** and xCreate are identical operations. -*/ -static int fts3auxConnectMethod( - sqlite3 *db, /* Database connection */ - void *pUnused, /* Unused */ - int argc, /* Number of elements in argv array */ - const char * const *argv, /* xCreate/xConnect argument array */ - sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ - char **pzErr /* OUT: sqlite3_malloc'd error message */ -){ - char const *zDb; /* Name of database (e.g. "main") */ - char const *zFts3; /* Name of fts3 table */ - int nDb; /* Result of strlen(zDb) */ - int nFts3; /* Result of strlen(zFts3) */ - int nByte; /* Bytes of space to allocate here */ - int rc; /* value returned by declare_vtab() */ - Fts3auxTable *p; /* Virtual table object to return */ - - UNUSED_PARAMETER(pUnused); - - /* The user should specify a single argument - the name of an fts3 table. */ - if( argc!=4 ){ - *pzErr = sqlite3_mprintf( - "wrong number of arguments to fts4aux constructor" - ); - return SQLITE_ERROR; - } - - zDb = argv[1]; - nDb = (int)strlen(zDb); - zFts3 = argv[3]; - nFts3 = (int)strlen(zFts3); - - rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA); - if( rc!=SQLITE_OK ) return rc; - - nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2; - p = (Fts3auxTable *)sqlite3_malloc(nByte); - if( !p ) return SQLITE_NOMEM; - memset(p, 0, nByte); - - p->pFts3Tab = (Fts3Table *)&p[1]; - p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1]; - p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1]; - p->pFts3Tab->db = db; - p->pFts3Tab->nIndex = 1; - - memcpy((char *)p->pFts3Tab->zDb, zDb, nDb); - memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3); - sqlite3Fts3Dequote((char *)p->pFts3Tab->zName); - - *ppVtab = (sqlite3_vtab *)p; - return SQLITE_OK; -} - -/* -** This function does the work for both the xDisconnect and xDestroy methods. -** These tables have no persistent representation of their own, so xDisconnect -** and xDestroy are identical operations. -*/ -static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){ - Fts3auxTable *p = (Fts3auxTable *)pVtab; - Fts3Table *pFts3 = p->pFts3Tab; - int i; - - /* Free any prepared statements held */ - for(i=0; i<SizeofArray(pFts3->aStmt); i++){ - sqlite3_finalize(pFts3->aStmt[i]); - } - sqlite3_free(pFts3->zSegmentsTbl); - sqlite3_free(p); - return SQLITE_OK; -} - -#define FTS4AUX_EQ_CONSTRAINT 1 -#define FTS4AUX_GE_CONSTRAINT 2 -#define FTS4AUX_LE_CONSTRAINT 4 - -/* -** xBestIndex - Analyze a WHERE and ORDER BY clause. -*/ -static int fts3auxBestIndexMethod( - sqlite3_vtab *pVTab, - sqlite3_index_info *pInfo -){ - int i; - int iEq = -1; - int iGe = -1; - int iLe = -1; - - UNUSED_PARAMETER(pVTab); - - /* This vtab delivers always results in "ORDER BY term ASC" order. */ - if( pInfo->nOrderBy==1 - && pInfo->aOrderBy[0].iColumn==0 - && pInfo->aOrderBy[0].desc==0 - ){ - pInfo->orderByConsumed = 1; - } - - /* Search for equality and range constraints on the "term" column. */ - for(i=0; i<pInfo->nConstraint; i++){ - if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 ){ - int op = pInfo->aConstraint[i].op; - if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i; - if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i; - if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i; - if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i; - if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i; - } - } - - if( iEq>=0 ){ - pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT; - pInfo->aConstraintUsage[iEq].argvIndex = 1; - pInfo->estimatedCost = 5; - }else{ - pInfo->idxNum = 0; - pInfo->estimatedCost = 20000; - if( iGe>=0 ){ - pInfo->idxNum += FTS4AUX_GE_CONSTRAINT; - pInfo->aConstraintUsage[iGe].argvIndex = 1; - pInfo->estimatedCost /= 2; - } - if( iLe>=0 ){ - pInfo->idxNum += FTS4AUX_LE_CONSTRAINT; - pInfo->aConstraintUsage[iLe].argvIndex = 1 + (iGe>=0); - pInfo->estimatedCost /= 2; - } - } - - return SQLITE_OK; -} - -/* -** xOpen - Open a cursor. -*/ -static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ - Fts3auxCursor *pCsr; /* Pointer to cursor object to return */ - - UNUSED_PARAMETER(pVTab); - - pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor)); - if( !pCsr ) return SQLITE_NOMEM; - memset(pCsr, 0, sizeof(Fts3auxCursor)); - - *ppCsr = (sqlite3_vtab_cursor *)pCsr; - return SQLITE_OK; -} - -/* -** xClose - Close a cursor. -*/ -static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){ - Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; - Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; - - sqlite3Fts3SegmentsClose(pFts3); - sqlite3Fts3SegReaderFinish(&pCsr->csr); - sqlite3_free((void *)pCsr->filter.zTerm); - sqlite3_free(pCsr->zStop); - sqlite3_free(pCsr->aStat); - sqlite3_free(pCsr); - return SQLITE_OK; -} - -static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){ - if( nSize>pCsr->nStat ){ - struct Fts3auxColstats *aNew; - aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat, - sizeof(struct Fts3auxColstats) * nSize - ); - if( aNew==0 ) return SQLITE_NOMEM; - memset(&aNew[pCsr->nStat], 0, - sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat) - ); - pCsr->aStat = aNew; - pCsr->nStat = nSize; - } - return SQLITE_OK; -} - -/* -** xNext - Advance the cursor to the next row, if any. -*/ -static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){ - Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; - Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; - int rc; - - /* Increment our pretend rowid value. */ - pCsr->iRowid++; - - for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){ - if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK; - } - - rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr); - if( rc==SQLITE_ROW ){ - int i = 0; - int nDoclist = pCsr->csr.nDoclist; - char *aDoclist = pCsr->csr.aDoclist; - int iCol; - - int eState = 0; - - if( pCsr->zStop ){ - int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm; - int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n); - if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){ - pCsr->isEof = 1; - return SQLITE_OK; - } - } - - if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM; - memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat); - iCol = 0; - - while( i<nDoclist ){ - sqlite3_int64 v = 0; - - i += sqlite3Fts3GetVarint(&aDoclist[i], &v); - switch( eState ){ - /* State 0. In this state the integer just read was a docid. */ - case 0: - pCsr->aStat[0].nDoc++; - eState = 1; - iCol = 0; - break; - - /* State 1. In this state we are expecting either a 1, indicating - ** that the following integer will be a column number, or the - ** start of a position list for column 0. - ** - ** The only difference between state 1 and state 2 is that if the - ** integer encountered in state 1 is not 0 or 1, then we need to - ** increment the column 0 "nDoc" count for this term. - */ - case 1: - assert( iCol==0 ); - if( v>1 ){ - pCsr->aStat[1].nDoc++; - } - eState = 2; - /* fall through */ - - case 2: - if( v==0 ){ /* 0x00. Next integer will be a docid. */ - eState = 0; - }else if( v==1 ){ /* 0x01. Next integer will be a column number. */ - eState = 3; - }else{ /* 2 or greater. A position. */ - pCsr->aStat[iCol+1].nOcc++; - pCsr->aStat[0].nOcc++; - } - break; - - /* State 3. The integer just read is a column number. */ - default: assert( eState==3 ); - iCol = (int)v; - if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM; - pCsr->aStat[iCol+1].nDoc++; - eState = 2; - break; - } - } - - pCsr->iCol = 0; - rc = SQLITE_OK; - }else{ - pCsr->isEof = 1; - } - return rc; -} - -/* -** xFilter - Initialize a cursor to point at the start of its data. -*/ -static int fts3auxFilterMethod( - sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ - int idxNum, /* Strategy index */ - const char *idxStr, /* Unused */ - int nVal, /* Number of elements in apVal */ - sqlite3_value **apVal /* Arguments for the indexing scheme */ -){ - Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; - Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; - int rc; - int isScan; - - UNUSED_PARAMETER(nVal); - UNUSED_PARAMETER(idxStr); - - assert( idxStr==0 ); - assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0 - || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT - || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) - ); - isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT); - - /* In case this cursor is being reused, close and zero it. */ - testcase(pCsr->filter.zTerm); - sqlite3Fts3SegReaderFinish(&pCsr->csr); - sqlite3_free((void *)pCsr->filter.zTerm); - sqlite3_free(pCsr->aStat); - memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr); - - pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; - if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN; - - if( idxNum&(FTS4AUX_EQ_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ){ - const unsigned char *zStr = sqlite3_value_text(apVal[0]); - if( zStr ){ - pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr); - pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]); - if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM; - } - } - if( idxNum&FTS4AUX_LE_CONSTRAINT ){ - int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0; - pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx])); - pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]); - if( pCsr->zStop==0 ) return SQLITE_NOMEM; - } - - rc = sqlite3Fts3SegReaderCursor(pFts3, 0, 0, FTS3_SEGCURSOR_ALL, - pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr - ); - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter); - } - - if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor); - return rc; -} - -/* -** xEof - Return true if the cursor is at EOF, or false otherwise. -*/ -static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){ - Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; - return pCsr->isEof; -} - -/* -** xColumn - Return a column value. -*/ -static int fts3auxColumnMethod( - sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ - sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */ - int iCol /* Index of column to read value from */ -){ - Fts3auxCursor *p = (Fts3auxCursor *)pCursor; - - assert( p->isEof==0 ); - if( iCol==0 ){ /* Column "term" */ - sqlite3_result_text(pContext, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT); - }else if( iCol==1 ){ /* Column "col" */ - if( p->iCol ){ - sqlite3_result_int(pContext, p->iCol-1); - }else{ - sqlite3_result_text(pContext, "*", -1, SQLITE_STATIC); - } - }else if( iCol==2 ){ /* Column "documents" */ - sqlite3_result_int64(pContext, p->aStat[p->iCol].nDoc); - }else{ /* Column "occurrences" */ - sqlite3_result_int64(pContext, p->aStat[p->iCol].nOcc); - } - - return SQLITE_OK; -} - -/* -** xRowid - Return the current rowid for the cursor. -*/ -static int fts3auxRowidMethod( - sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ - sqlite_int64 *pRowid /* OUT: Rowid value */ -){ - Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; - *pRowid = pCsr->iRowid; - return SQLITE_OK; -} - -/* -** Register the fts3aux module with database connection db. Return SQLITE_OK -** if successful or an error code if sqlite3_create_module() fails. -*/ -SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){ - static const sqlite3_module fts3aux_module = { - 0, /* iVersion */ - fts3auxConnectMethod, /* xCreate */ - fts3auxConnectMethod, /* xConnect */ - fts3auxBestIndexMethod, /* xBestIndex */ - fts3auxDisconnectMethod, /* xDisconnect */ - fts3auxDisconnectMethod, /* xDestroy */ - fts3auxOpenMethod, /* xOpen */ - fts3auxCloseMethod, /* xClose */ - fts3auxFilterMethod, /* xFilter */ - fts3auxNextMethod, /* xNext */ - fts3auxEofMethod, /* xEof */ - fts3auxColumnMethod, /* xColumn */ - fts3auxRowidMethod, /* xRowid */ - 0, /* xUpdate */ - 0, /* xBegin */ - 0, /* xSync */ - 0, /* xCommit */ - 0, /* xRollback */ - 0, /* xFindFunction */ - 0, /* xRename */ - 0, /* xSavepoint */ - 0, /* xRelease */ - 0 /* xRollbackTo */ - }; - int rc; /* Return code */ - - rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0); - return rc; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_aux.c ********************************************/ -/************** Begin file fts3_expr.c ***************************************/ -/* -** 2008 Nov 28 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This module contains code that implements a parser for fts3 query strings -** (the right-hand argument to the MATCH operator). Because the supported -** syntax is relatively simple, the whole tokenizer/parser system is -** hand-coded. -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* -** By default, this module parses the legacy syntax that has been -** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS -** is defined, then it uses the new syntax. The differences between -** the new and the old syntaxes are: -** -** a) The new syntax supports parenthesis. The old does not. -** -** b) The new syntax supports the AND and NOT operators. The old does not. -** -** c) The old syntax supports the "-" token qualifier. This is not -** supported by the new syntax (it is replaced by the NOT operator). -** -** d) When using the old syntax, the OR operator has a greater precedence -** than an implicit AND. When using the new, both implicity and explicit -** AND operators have a higher precedence than OR. -** -** If compiled with SQLITE_TEST defined, then this module exports the -** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable -** to zero causes the module to use the old syntax. If it is set to -** non-zero the new syntax is activated. This is so both syntaxes can -** be tested using a single build of testfixture. -** -** The following describes the syntax supported by the fts3 MATCH -** operator in a similar format to that used by the lemon parser -** generator. This module does not use actually lemon, it uses a -** custom parser. -** -** query ::= andexpr (OR andexpr)*. -** -** andexpr ::= notexpr (AND? notexpr)*. -** -** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*. -** notexpr ::= LP query RP. -** -** nearexpr ::= phrase (NEAR distance_opt nearexpr)*. -** -** distance_opt ::= . -** distance_opt ::= / INTEGER. -** -** phrase ::= TOKEN. -** phrase ::= COLUMN:TOKEN. -** phrase ::= "TOKEN TOKEN TOKEN...". -*/ - -#ifdef SQLITE_TEST -SQLITE_API int sqlite3_fts3_enable_parentheses = 0; -#else -# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS -# define sqlite3_fts3_enable_parentheses 1 -# else -# define sqlite3_fts3_enable_parentheses 0 -# endif -#endif - -/* -** Default span for NEAR operators. -*/ -#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 - -/* #include <string.h> */ -/* #include <assert.h> */ - -/* -** isNot: -** This variable is used by function getNextNode(). When getNextNode() is -** called, it sets ParseContext.isNot to true if the 'next node' is a -** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the -** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to -** zero. -*/ -typedef struct ParseContext ParseContext; -struct ParseContext { - sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ - int iLangid; /* Language id used with tokenizer */ - const char **azCol; /* Array of column names for fts3 table */ - int bFts4; /* True to allow FTS4-only syntax */ - int nCol; /* Number of entries in azCol[] */ - int iDefaultCol; /* Default column to query */ - int isNot; /* True if getNextNode() sees a unary - */ - sqlite3_context *pCtx; /* Write error message here */ - int nNest; /* Number of nested brackets */ -}; - -/* -** This function is equivalent to the standard isspace() function. -** -** The standard isspace() can be awkward to use safely, because although it -** is defined to accept an argument of type int, its behavior when passed -** an integer that falls outside of the range of the unsigned char type -** is undefined (and sometimes, "undefined" means segfault). This wrapper -** is defined to accept an argument of type char, and always returns 0 for -** any values that fall outside of the range of the unsigned char type (i.e. -** negative values). -*/ -static int fts3isspace(char c){ - return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; -} - -/* -** Allocate nByte bytes of memory using sqlite3_malloc(). If successful, -** zero the memory before returning a pointer to it. If unsuccessful, -** return NULL. -*/ -static void *fts3MallocZero(int nByte){ - void *pRet = sqlite3_malloc(nByte); - if( pRet ) memset(pRet, 0, nByte); - return pRet; -} - -SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer( - sqlite3_tokenizer *pTokenizer, - int iLangid, - const char *z, - int n, - sqlite3_tokenizer_cursor **ppCsr -){ - sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; - sqlite3_tokenizer_cursor *pCsr = 0; - int rc; - - rc = pModule->xOpen(pTokenizer, z, n, &pCsr); - assert( rc==SQLITE_OK || pCsr==0 ); - if( rc==SQLITE_OK ){ - pCsr->pTokenizer = pTokenizer; - if( pModule->iVersion>=1 ){ - rc = pModule->xLanguageid(pCsr, iLangid); - if( rc!=SQLITE_OK ){ - pModule->xClose(pCsr); - pCsr = 0; - } - } - } - *ppCsr = pCsr; - return rc; -} - - -/* -** Extract the next token from buffer z (length n) using the tokenizer -** and other information (column names etc.) in pParse. Create an Fts3Expr -** structure of type FTSQUERY_PHRASE containing a phrase consisting of this -** single token and set *ppExpr to point to it. If the end of the buffer is -** reached before a token is found, set *ppExpr to zero. It is the -** responsibility of the caller to eventually deallocate the allocated -** Fts3Expr structure (if any) by passing it to sqlite3_free(). -** -** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation -** fails. -*/ -static int getNextToken( - ParseContext *pParse, /* fts3 query parse context */ - int iCol, /* Value for Fts3Phrase.iColumn */ - const char *z, int n, /* Input string */ - Fts3Expr **ppExpr, /* OUT: expression */ - int *pnConsumed /* OUT: Number of bytes consumed */ -){ - sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; - sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; - int rc; - sqlite3_tokenizer_cursor *pCursor; - Fts3Expr *pRet = 0; - int nConsumed = 0; - - rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, n, &pCursor); - if( rc==SQLITE_OK ){ - const char *zToken; - int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0; - int nByte; /* total space to allocate */ - - rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition); - if( rc==SQLITE_OK ){ - nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken; - pRet = (Fts3Expr *)fts3MallocZero(nByte); - if( !pRet ){ - rc = SQLITE_NOMEM; - }else{ - pRet->eType = FTSQUERY_PHRASE; - pRet->pPhrase = (Fts3Phrase *)&pRet[1]; - pRet->pPhrase->nToken = 1; - pRet->pPhrase->iColumn = iCol; - pRet->pPhrase->aToken[0].n = nToken; - pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1]; - memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken); - - if( iEnd<n && z[iEnd]=='*' ){ - pRet->pPhrase->aToken[0].isPrefix = 1; - iEnd++; - } - - while( 1 ){ - if( !sqlite3_fts3_enable_parentheses - && iStart>0 && z[iStart-1]=='-' - ){ - pParse->isNot = 1; - iStart--; - }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){ - pRet->pPhrase->aToken[0].bFirst = 1; - iStart--; - }else{ - break; - } - } - - } - nConsumed = iEnd; - } - - pModule->xClose(pCursor); - } - - *pnConsumed = nConsumed; - *ppExpr = pRet; - return rc; -} - - -/* -** Enlarge a memory allocation. If an out-of-memory allocation occurs, -** then free the old allocation. -*/ -static void *fts3ReallocOrFree(void *pOrig, int nNew){ - void *pRet = sqlite3_realloc(pOrig, nNew); - if( !pRet ){ - sqlite3_free(pOrig); - } - return pRet; -} - -/* -** Buffer zInput, length nInput, contains the contents of a quoted string -** that appeared as part of an fts3 query expression. Neither quote character -** is included in the buffer. This function attempts to tokenize the entire -** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE -** containing the results. -** -** If successful, SQLITE_OK is returned and *ppExpr set to point at the -** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory -** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set -** to 0. -*/ -static int getNextString( - ParseContext *pParse, /* fts3 query parse context */ - const char *zInput, int nInput, /* Input string */ - Fts3Expr **ppExpr /* OUT: expression */ -){ - sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; - sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; - int rc; - Fts3Expr *p = 0; - sqlite3_tokenizer_cursor *pCursor = 0; - char *zTemp = 0; - int nTemp = 0; - - const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase); - int nToken = 0; - - /* The final Fts3Expr data structure, including the Fts3Phrase, - ** Fts3PhraseToken structures token buffers are all stored as a single - ** allocation so that the expression can be freed with a single call to - ** sqlite3_free(). Setting this up requires a two pass approach. - ** - ** The first pass, in the block below, uses a tokenizer cursor to iterate - ** through the tokens in the expression. This pass uses fts3ReallocOrFree() - ** to assemble data in two dynamic buffers: - ** - ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase - ** structure, followed by the array of Fts3PhraseToken - ** structures. This pass only populates the Fts3PhraseToken array. - ** - ** Buffer zTemp: Contains copies of all tokens. - ** - ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below, - ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase - ** structures. - */ - rc = sqlite3Fts3OpenTokenizer( - pTokenizer, pParse->iLangid, zInput, nInput, &pCursor); - if( rc==SQLITE_OK ){ - int ii; - for(ii=0; rc==SQLITE_OK; ii++){ - const char *zByte; - int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0; - rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos); - if( rc==SQLITE_OK ){ - Fts3PhraseToken *pToken; - - p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken)); - if( !p ) goto no_mem; - - zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte); - if( !zTemp ) goto no_mem; - - assert( nToken==ii ); - pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii]; - memset(pToken, 0, sizeof(Fts3PhraseToken)); - - memcpy(&zTemp[nTemp], zByte, nByte); - nTemp += nByte; - - pToken->n = nByte; - pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*'); - pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^'); - nToken = ii+1; - } - } - - pModule->xClose(pCursor); - pCursor = 0; - } - - if( rc==SQLITE_DONE ){ - int jj; - char *zBuf = 0; - - p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp); - if( !p ) goto no_mem; - memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p); - p->eType = FTSQUERY_PHRASE; - p->pPhrase = (Fts3Phrase *)&p[1]; - p->pPhrase->iColumn = pParse->iDefaultCol; - p->pPhrase->nToken = nToken; - - zBuf = (char *)&p->pPhrase->aToken[nToken]; - if( zTemp ){ - memcpy(zBuf, zTemp, nTemp); - sqlite3_free(zTemp); - }else{ - assert( nTemp==0 ); - } - - for(jj=0; jj<p->pPhrase->nToken; jj++){ - p->pPhrase->aToken[jj].z = zBuf; - zBuf += p->pPhrase->aToken[jj].n; - } - rc = SQLITE_OK; - } - - *ppExpr = p; - return rc; -no_mem: - - if( pCursor ){ - pModule->xClose(pCursor); - } - sqlite3_free(zTemp); - sqlite3_free(p); - *ppExpr = 0; - return SQLITE_NOMEM; -} - -/* -** Function getNextNode(), which is called by fts3ExprParse(), may itself -** call fts3ExprParse(). So this forward declaration is required. -*/ -static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *); - -/* -** The output variable *ppExpr is populated with an allocated Fts3Expr -** structure, or set to 0 if the end of the input buffer is reached. -** -** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM -** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered. -** If SQLITE_ERROR is returned, pContext is populated with an error message. -*/ -static int getNextNode( - ParseContext *pParse, /* fts3 query parse context */ - const char *z, int n, /* Input string */ - Fts3Expr **ppExpr, /* OUT: expression */ - int *pnConsumed /* OUT: Number of bytes consumed */ -){ - static const struct Fts3Keyword { - char *z; /* Keyword text */ - unsigned char n; /* Length of the keyword */ - unsigned char parenOnly; /* Only valid in paren mode */ - unsigned char eType; /* Keyword code */ - } aKeyword[] = { - { "OR" , 2, 0, FTSQUERY_OR }, - { "AND", 3, 1, FTSQUERY_AND }, - { "NOT", 3, 1, FTSQUERY_NOT }, - { "NEAR", 4, 0, FTSQUERY_NEAR } - }; - int ii; - int iCol; - int iColLen; - int rc; - Fts3Expr *pRet = 0; - - const char *zInput = z; - int nInput = n; - - pParse->isNot = 0; - - /* Skip over any whitespace before checking for a keyword, an open or - ** close bracket, or a quoted string. - */ - while( nInput>0 && fts3isspace(*zInput) ){ - nInput--; - zInput++; - } - if( nInput==0 ){ - return SQLITE_DONE; - } - - /* See if we are dealing with a keyword. */ - for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){ - const struct Fts3Keyword *pKey = &aKeyword[ii]; - - if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){ - continue; - } - - if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){ - int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; - int nKey = pKey->n; - char cNext; - - /* If this is a "NEAR" keyword, check for an explicit nearness. */ - if( pKey->eType==FTSQUERY_NEAR ){ - assert( nKey==4 ); - if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){ - nNear = 0; - for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){ - nNear = nNear * 10 + (zInput[nKey] - '0'); - } - } - } - - /* At this point this is probably a keyword. But for that to be true, - ** the next byte must contain either whitespace, an open or close - ** parenthesis, a quote character, or EOF. - */ - cNext = zInput[nKey]; - if( fts3isspace(cNext) - || cNext=='"' || cNext=='(' || cNext==')' || cNext==0 - ){ - pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr)); - if( !pRet ){ - return SQLITE_NOMEM; - } - pRet->eType = pKey->eType; - pRet->nNear = nNear; - *ppExpr = pRet; - *pnConsumed = (int)((zInput - z) + nKey); - return SQLITE_OK; - } - - /* Turns out that wasn't a keyword after all. This happens if the - ** user has supplied a token such as "ORacle". Continue. - */ - } - } - - /* Check for an open bracket. */ - if( sqlite3_fts3_enable_parentheses ){ - if( *zInput=='(' ){ - int nConsumed; - pParse->nNest++; - rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed); - if( rc==SQLITE_OK && !*ppExpr ){ - rc = SQLITE_DONE; - } - *pnConsumed = (int)((zInput - z) + 1 + nConsumed); - return rc; - } - - /* Check for a close bracket. */ - if( *zInput==')' ){ - pParse->nNest--; - *pnConsumed = (int)((zInput - z) + 1); - return SQLITE_DONE; - } - } - - /* See if we are dealing with a quoted phrase. If this is the case, then - ** search for the closing quote and pass the whole string to getNextString() - ** for processing. This is easy to do, as fts3 has no syntax for escaping - ** a quote character embedded in a string. - */ - if( *zInput=='"' ){ - for(ii=1; ii<nInput && zInput[ii]!='"'; ii++); - *pnConsumed = (int)((zInput - z) + ii + 1); - if( ii==nInput ){ - return SQLITE_ERROR; - } - return getNextString(pParse, &zInput[1], ii-1, ppExpr); - } - - - /* If control flows to this point, this must be a regular token, or - ** the end of the input. Read a regular token using the sqlite3_tokenizer - ** interface. Before doing so, figure out if there is an explicit - ** column specifier for the token. - ** - ** TODO: Strangely, it is not possible to associate a column specifier - ** with a quoted phrase, only with a single token. Not sure if this was - ** an implementation artifact or an intentional decision when fts3 was - ** first implemented. Whichever it was, this module duplicates the - ** limitation. - */ - iCol = pParse->iDefaultCol; - iColLen = 0; - for(ii=0; ii<pParse->nCol; ii++){ - const char *zStr = pParse->azCol[ii]; - int nStr = (int)strlen(zStr); - if( nInput>nStr && zInput[nStr]==':' - && sqlite3_strnicmp(zStr, zInput, nStr)==0 - ){ - iCol = ii; - iColLen = (int)((zInput - z) + nStr + 1); - break; - } - } - rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed); - *pnConsumed += iColLen; - return rc; -} - -/* -** The argument is an Fts3Expr structure for a binary operator (any type -** except an FTSQUERY_PHRASE). Return an integer value representing the -** precedence of the operator. Lower values have a higher precedence (i.e. -** group more tightly). For example, in the C language, the == operator -** groups more tightly than ||, and would therefore have a higher precedence. -** -** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS -** is defined), the order of the operators in precedence from highest to -** lowest is: -** -** NEAR -** NOT -** AND (including implicit ANDs) -** OR -** -** Note that when using the old query syntax, the OR operator has a higher -** precedence than the AND operator. -*/ -static int opPrecedence(Fts3Expr *p){ - assert( p->eType!=FTSQUERY_PHRASE ); - if( sqlite3_fts3_enable_parentheses ){ - return p->eType; - }else if( p->eType==FTSQUERY_NEAR ){ - return 1; - }else if( p->eType==FTSQUERY_OR ){ - return 2; - } - assert( p->eType==FTSQUERY_AND ); - return 3; -} - -/* -** Argument ppHead contains a pointer to the current head of a query -** expression tree being parsed. pPrev is the expression node most recently -** inserted into the tree. This function adds pNew, which is always a binary -** operator node, into the expression tree based on the relative precedence -** of pNew and the existing nodes of the tree. This may result in the head -** of the tree changing, in which case *ppHead is set to the new root node. -*/ -static void insertBinaryOperator( - Fts3Expr **ppHead, /* Pointer to the root node of a tree */ - Fts3Expr *pPrev, /* Node most recently inserted into the tree */ - Fts3Expr *pNew /* New binary node to insert into expression tree */ -){ - Fts3Expr *pSplit = pPrev; - while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){ - pSplit = pSplit->pParent; - } - - if( pSplit->pParent ){ - assert( pSplit->pParent->pRight==pSplit ); - pSplit->pParent->pRight = pNew; - pNew->pParent = pSplit->pParent; - }else{ - *ppHead = pNew; - } - pNew->pLeft = pSplit; - pSplit->pParent = pNew; -} - -/* -** Parse the fts3 query expression found in buffer z, length n. This function -** returns either when the end of the buffer is reached or an unmatched -** closing bracket - ')' - is encountered. -** -** If successful, SQLITE_OK is returned, *ppExpr is set to point to the -** parsed form of the expression and *pnConsumed is set to the number of -** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM -** (out of memory error) or SQLITE_ERROR (parse error) is returned. -*/ -static int fts3ExprParse( - ParseContext *pParse, /* fts3 query parse context */ - const char *z, int n, /* Text of MATCH query */ - Fts3Expr **ppExpr, /* OUT: Parsed query structure */ - int *pnConsumed /* OUT: Number of bytes consumed */ -){ - Fts3Expr *pRet = 0; - Fts3Expr *pPrev = 0; - Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */ - int nIn = n; - const char *zIn = z; - int rc = SQLITE_OK; - int isRequirePhrase = 1; - - while( rc==SQLITE_OK ){ - Fts3Expr *p = 0; - int nByte = 0; - rc = getNextNode(pParse, zIn, nIn, &p, &nByte); - if( rc==SQLITE_OK ){ - int isPhrase; - - if( !sqlite3_fts3_enable_parentheses - && p->eType==FTSQUERY_PHRASE && pParse->isNot - ){ - /* Create an implicit NOT operator. */ - Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr)); - if( !pNot ){ - sqlite3Fts3ExprFree(p); - rc = SQLITE_NOMEM; - goto exprparse_out; - } - pNot->eType = FTSQUERY_NOT; - pNot->pRight = p; - if( pNotBranch ){ - pNot->pLeft = pNotBranch; - } - pNotBranch = pNot; - p = pPrev; - }else{ - int eType = p->eType; - isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft); - - /* The isRequirePhrase variable is set to true if a phrase or - ** an expression contained in parenthesis is required. If a - ** binary operator (AND, OR, NOT or NEAR) is encounted when - ** isRequirePhrase is set, this is a syntax error. - */ - if( !isPhrase && isRequirePhrase ){ - sqlite3Fts3ExprFree(p); - rc = SQLITE_ERROR; - goto exprparse_out; - } - - if( isPhrase && !isRequirePhrase ){ - /* Insert an implicit AND operator. */ - Fts3Expr *pAnd; - assert( pRet && pPrev ); - pAnd = fts3MallocZero(sizeof(Fts3Expr)); - if( !pAnd ){ - sqlite3Fts3ExprFree(p); - rc = SQLITE_NOMEM; - goto exprparse_out; - } - pAnd->eType = FTSQUERY_AND; - insertBinaryOperator(&pRet, pPrev, pAnd); - pPrev = pAnd; - } - - /* This test catches attempts to make either operand of a NEAR - ** operator something other than a phrase. For example, either of - ** the following: - ** - ** (bracketed expression) NEAR phrase - ** phrase NEAR (bracketed expression) - ** - ** Return an error in either case. - */ - if( pPrev && ( - (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE) - || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR) - )){ - sqlite3Fts3ExprFree(p); - rc = SQLITE_ERROR; - goto exprparse_out; - } - - if( isPhrase ){ - if( pRet ){ - assert( pPrev && pPrev->pLeft && pPrev->pRight==0 ); - pPrev->pRight = p; - p->pParent = pPrev; - }else{ - pRet = p; - } - }else{ - insertBinaryOperator(&pRet, pPrev, p); - } - isRequirePhrase = !isPhrase; - } - assert( nByte>0 ); - } - assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) ); - nIn -= nByte; - zIn += nByte; - pPrev = p; - } - - if( rc==SQLITE_DONE && pRet && isRequirePhrase ){ - rc = SQLITE_ERROR; - } - - if( rc==SQLITE_DONE ){ - rc = SQLITE_OK; - if( !sqlite3_fts3_enable_parentheses && pNotBranch ){ - if( !pRet ){ - rc = SQLITE_ERROR; - }else{ - Fts3Expr *pIter = pNotBranch; - while( pIter->pLeft ){ - pIter = pIter->pLeft; - } - pIter->pLeft = pRet; - pRet = pNotBranch; - } - } - } - *pnConsumed = n - nIn; - -exprparse_out: - if( rc!=SQLITE_OK ){ - sqlite3Fts3ExprFree(pRet); - sqlite3Fts3ExprFree(pNotBranch); - pRet = 0; - } - *ppExpr = pRet; - return rc; -} - -/* -** Parameters z and n contain a pointer to and length of a buffer containing -** an fts3 query expression, respectively. This function attempts to parse the -** query expression and create a tree of Fts3Expr structures representing the -** parsed expression. If successful, *ppExpr is set to point to the head -** of the parsed expression tree and SQLITE_OK is returned. If an error -** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse -** error) is returned and *ppExpr is set to 0. -** -** If parameter n is a negative number, then z is assumed to point to a -** nul-terminated string and the length is determined using strlen(). -** -** The first parameter, pTokenizer, is passed the fts3 tokenizer module to -** use to normalize query tokens while parsing the expression. The azCol[] -** array, which is assumed to contain nCol entries, should contain the names -** of each column in the target fts3 table, in order from left to right. -** Column names must be nul-terminated strings. -** -** The iDefaultCol parameter should be passed the index of the table column -** that appears on the left-hand-side of the MATCH operator (the default -** column to match against for tokens for which a column name is not explicitly -** specified as part of the query string), or -1 if tokens may by default -** match any table column. -*/ -SQLITE_PRIVATE int sqlite3Fts3ExprParse( - sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ - int iLangid, /* Language id for tokenizer */ - char **azCol, /* Array of column names for fts3 table */ - int bFts4, /* True to allow FTS4-only syntax */ - int nCol, /* Number of entries in azCol[] */ - int iDefaultCol, /* Default column to query */ - const char *z, int n, /* Text of MATCH query */ - Fts3Expr **ppExpr /* OUT: Parsed query structure */ -){ - int nParsed; - int rc; - ParseContext sParse; - - memset(&sParse, 0, sizeof(ParseContext)); - sParse.pTokenizer = pTokenizer; - sParse.iLangid = iLangid; - sParse.azCol = (const char **)azCol; - sParse.nCol = nCol; - sParse.iDefaultCol = iDefaultCol; - sParse.bFts4 = bFts4; - if( z==0 ){ - *ppExpr = 0; - return SQLITE_OK; - } - if( n<0 ){ - n = (int)strlen(z); - } - rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed); - - /* Check for mismatched parenthesis */ - if( rc==SQLITE_OK && sParse.nNest ){ - rc = SQLITE_ERROR; - sqlite3Fts3ExprFree(*ppExpr); - *ppExpr = 0; - } - - return rc; -} - -/* -** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). -*/ -SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *p){ - if( p ){ - assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 ); - sqlite3Fts3ExprFree(p->pLeft); - sqlite3Fts3ExprFree(p->pRight); - sqlite3Fts3EvalPhraseCleanup(p->pPhrase); - sqlite3_free(p->aMI); - sqlite3_free(p); - } -} - -/**************************************************************************** -***************************************************************************** -** Everything after this point is just test code. -*/ - -#ifdef SQLITE_TEST - -/* #include <stdio.h> */ - -/* -** Function to query the hash-table of tokenizers (see README.tokenizers). -*/ -static int queryTestTokenizer( - sqlite3 *db, - const char *zName, - const sqlite3_tokenizer_module **pp -){ - int rc; - sqlite3_stmt *pStmt; - const char zSql[] = "SELECT fts3_tokenizer(?)"; - - *pp = 0; - rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - - sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ - memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); - } - } - - return sqlite3_finalize(pStmt); -} - -/* -** Return a pointer to a buffer containing a text representation of the -** expression passed as the first argument. The buffer is obtained from -** sqlite3_malloc(). It is the responsibility of the caller to use -** sqlite3_free() to release the memory. If an OOM condition is encountered, -** NULL is returned. -** -** If the second argument is not NULL, then its contents are prepended to -** the returned expression text and then freed using sqlite3_free(). -*/ -static char *exprToString(Fts3Expr *pExpr, char *zBuf){ - switch( pExpr->eType ){ - case FTSQUERY_PHRASE: { - Fts3Phrase *pPhrase = pExpr->pPhrase; - int i; - zBuf = sqlite3_mprintf( - "%zPHRASE %d 0", zBuf, pPhrase->iColumn); - for(i=0; zBuf && i<pPhrase->nToken; i++){ - zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, - pPhrase->aToken[i].n, pPhrase->aToken[i].z, - (pPhrase->aToken[i].isPrefix?"+":"") - ); - } - return zBuf; - } - - case FTSQUERY_NEAR: - zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear); - break; - case FTSQUERY_NOT: - zBuf = sqlite3_mprintf("%zNOT ", zBuf); - break; - case FTSQUERY_AND: - zBuf = sqlite3_mprintf("%zAND ", zBuf); - break; - case FTSQUERY_OR: - zBuf = sqlite3_mprintf("%zOR ", zBuf); - break; - } - - if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf); - if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf); - if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf); - - if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf); - if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf); - - return zBuf; -} - -/* -** This is the implementation of a scalar SQL function used to test the -** expression parser. It should be called as follows: -** -** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...); -** -** The first argument, <tokenizer>, is the name of the fts3 tokenizer used -** to parse the query expression (see README.tokenizers). The second argument -** is the query expression to parse. Each subsequent argument is the name -** of a column of the fts3 table that the query expression may refer to. -** For example: -** -** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); -*/ -static void fts3ExprTest( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - sqlite3_tokenizer_module const *pModule = 0; - sqlite3_tokenizer *pTokenizer = 0; - int rc; - char **azCol = 0; - const char *zExpr; - int nExpr; - int nCol; - int ii; - Fts3Expr *pExpr; - char *zBuf = 0; - sqlite3 *db = sqlite3_context_db_handle(context); - - if( argc<3 ){ - sqlite3_result_error(context, - "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 - ); - return; - } - - rc = queryTestTokenizer(db, - (const char *)sqlite3_value_text(argv[0]), &pModule); - if( rc==SQLITE_NOMEM ){ - sqlite3_result_error_nomem(context); - goto exprtest_out; - }else if( !pModule ){ - sqlite3_result_error(context, "No such tokenizer module", -1); - goto exprtest_out; - } - - rc = pModule->xCreate(0, 0, &pTokenizer); - assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); - if( rc==SQLITE_NOMEM ){ - sqlite3_result_error_nomem(context); - goto exprtest_out; - } - pTokenizer->pModule = pModule; - - zExpr = (const char *)sqlite3_value_text(argv[1]); - nExpr = sqlite3_value_bytes(argv[1]); - nCol = argc-2; - azCol = (char **)sqlite3_malloc(nCol*sizeof(char *)); - if( !azCol ){ - sqlite3_result_error_nomem(context); - goto exprtest_out; - } - for(ii=0; ii<nCol; ii++){ - azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]); - } - - rc = sqlite3Fts3ExprParse( - pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr - ); - if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){ - sqlite3_result_error(context, "Error parsing expression", -1); - }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){ - sqlite3_result_error_nomem(context); - }else{ - sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); - sqlite3_free(zBuf); - } - - sqlite3Fts3ExprFree(pExpr); - -exprtest_out: - if( pModule && pTokenizer ){ - rc = pModule->xDestroy(pTokenizer); - } - sqlite3_free(azCol); -} - -/* -** Register the query expression parser test function fts3_exprtest() -** with database connection db. -*/ -SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3* db){ - return sqlite3_create_function( - db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0 - ); -} - -#endif -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_expr.c *******************************************/ -/************** Begin file fts3_hash.c ***************************************/ -/* -** 2001 September 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This is the implementation of generic hash-tables used in SQLite. -** We've modified it slightly to serve as a standalone hash table -** implementation for the full-text indexing module. -*/ - -/* -** The code in this file is only compiled if: -** -** * The FTS3 module is being built as an extension -** (in which case SQLITE_CORE is not defined), or -** -** * The FTS3 module is being built into the core of -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <assert.h> */ -/* #include <stdlib.h> */ -/* #include <string.h> */ - - -/* -** Malloc and Free functions -*/ -static void *fts3HashMalloc(int n){ - void *p = sqlite3_malloc(n); - if( p ){ - memset(p, 0, n); - } - return p; -} -static void fts3HashFree(void *p){ - sqlite3_free(p); -} - -/* Turn bulk memory into a hash table object by initializing the -** fields of the Hash structure. -** -** "pNew" is a pointer to the hash table that is to be initialized. -** keyClass is one of the constants -** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass -** determines what kind of key the hash table will use. "copyKey" is -** true if the hash table should make its own private copy of keys and -** false if it should just use the supplied pointer. -*/ -SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){ - assert( pNew!=0 ); - assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY ); - pNew->keyClass = keyClass; - pNew->copyKey = copyKey; - pNew->first = 0; - pNew->count = 0; - pNew->htsize = 0; - pNew->ht = 0; -} - -/* Remove all entries from a hash table. Reclaim all memory. -** Call this routine to delete a hash table or to reset a hash table -** to the empty state. -*/ -SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){ - Fts3HashElem *elem; /* For looping over all elements of the table */ - - assert( pH!=0 ); - elem = pH->first; - pH->first = 0; - fts3HashFree(pH->ht); - pH->ht = 0; - pH->htsize = 0; - while( elem ){ - Fts3HashElem *next_elem = elem->next; - if( pH->copyKey && elem->pKey ){ - fts3HashFree(elem->pKey); - } - fts3HashFree(elem); - elem = next_elem; - } - pH->count = 0; -} - -/* -** Hash and comparison functions when the mode is FTS3_HASH_STRING -*/ -static int fts3StrHash(const void *pKey, int nKey){ - const char *z = (const char *)pKey; - int h = 0; - if( nKey<=0 ) nKey = (int) strlen(z); - while( nKey > 0 ){ - h = (h<<3) ^ h ^ *z++; - nKey--; - } - return h & 0x7fffffff; -} -static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ - if( n1!=n2 ) return 1; - return strncmp((const char*)pKey1,(const char*)pKey2,n1); -} - -/* -** Hash and comparison functions when the mode is FTS3_HASH_BINARY -*/ -static int fts3BinHash(const void *pKey, int nKey){ - int h = 0; - const char *z = (const char *)pKey; - while( nKey-- > 0 ){ - h = (h<<3) ^ h ^ *(z++); - } - return h & 0x7fffffff; -} -static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){ - if( n1!=n2 ) return 1; - return memcmp(pKey1,pKey2,n1); -} - -/* -** Return a pointer to the appropriate hash function given the key class. -** -** The C syntax in this function definition may be unfamilar to some -** programmers, so we provide the following additional explanation: -** -** The name of the function is "ftsHashFunction". The function takes a -** single parameter "keyClass". The return value of ftsHashFunction() -** is a pointer to another function. Specifically, the return value -** of ftsHashFunction() is a pointer to a function that takes two parameters -** with types "const void*" and "int" and returns an "int". -*/ -static int (*ftsHashFunction(int keyClass))(const void*,int){ - if( keyClass==FTS3_HASH_STRING ){ - return &fts3StrHash; - }else{ - assert( keyClass==FTS3_HASH_BINARY ); - return &fts3BinHash; - } -} - -/* -** Return a pointer to the appropriate hash function given the key class. -** -** For help in interpreted the obscure C code in the function definition, -** see the header comment on the previous function. -*/ -static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){ - if( keyClass==FTS3_HASH_STRING ){ - return &fts3StrCompare; - }else{ - assert( keyClass==FTS3_HASH_BINARY ); - return &fts3BinCompare; - } -} - -/* Link an element into the hash table -*/ -static void fts3HashInsertElement( - Fts3Hash *pH, /* The complete hash table */ - struct _fts3ht *pEntry, /* The entry into which pNew is inserted */ - Fts3HashElem *pNew /* The element to be inserted */ -){ - Fts3HashElem *pHead; /* First element already in pEntry */ - pHead = pEntry->chain; - if( pHead ){ - pNew->next = pHead; - pNew->prev = pHead->prev; - if( pHead->prev ){ pHead->prev->next = pNew; } - else { pH->first = pNew; } - pHead->prev = pNew; - }else{ - pNew->next = pH->first; - if( pH->first ){ pH->first->prev = pNew; } - pNew->prev = 0; - pH->first = pNew; - } - pEntry->count++; - pEntry->chain = pNew; -} - - -/* Resize the hash table so that it cantains "new_size" buckets. -** "new_size" must be a power of 2. The hash table might fail -** to resize if sqliteMalloc() fails. -** -** Return non-zero if a memory allocation error occurs. -*/ -static int fts3Rehash(Fts3Hash *pH, int new_size){ - struct _fts3ht *new_ht; /* The new hash table */ - Fts3HashElem *elem, *next_elem; /* For looping over existing elements */ - int (*xHash)(const void*,int); /* The hash function */ - - assert( (new_size & (new_size-1))==0 ); - new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) ); - if( new_ht==0 ) return 1; - fts3HashFree(pH->ht); - pH->ht = new_ht; - pH->htsize = new_size; - xHash = ftsHashFunction(pH->keyClass); - for(elem=pH->first, pH->first=0; elem; elem = next_elem){ - int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); - next_elem = elem->next; - fts3HashInsertElement(pH, &new_ht[h], elem); - } - return 0; -} - -/* This function (for internal use only) locates an element in an -** hash table that matches the given key. The hash for this key has -** already been computed and is passed as the 4th parameter. -*/ -static Fts3HashElem *fts3FindElementByHash( - const Fts3Hash *pH, /* The pH to be searched */ - const void *pKey, /* The key we are searching for */ - int nKey, - int h /* The hash for this key. */ -){ - Fts3HashElem *elem; /* Used to loop thru the element list */ - int count; /* Number of elements left to test */ - int (*xCompare)(const void*,int,const void*,int); /* comparison function */ - - if( pH->ht ){ - struct _fts3ht *pEntry = &pH->ht[h]; - elem = pEntry->chain; - count = pEntry->count; - xCompare = ftsCompareFunction(pH->keyClass); - while( count-- && elem ){ - if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ - return elem; - } - elem = elem->next; - } - } - return 0; -} - -/* Remove a single entry from the hash table given a pointer to that -** element and a hash on the element's key. -*/ -static void fts3RemoveElementByHash( - Fts3Hash *pH, /* The pH containing "elem" */ - Fts3HashElem* elem, /* The element to be removed from the pH */ - int h /* Hash value for the element */ -){ - struct _fts3ht *pEntry; - if( elem->prev ){ - elem->prev->next = elem->next; - }else{ - pH->first = elem->next; - } - if( elem->next ){ - elem->next->prev = elem->prev; - } - pEntry = &pH->ht[h]; - if( pEntry->chain==elem ){ - pEntry->chain = elem->next; - } - pEntry->count--; - if( pEntry->count<=0 ){ - pEntry->chain = 0; - } - if( pH->copyKey && elem->pKey ){ - fts3HashFree(elem->pKey); - } - fts3HashFree( elem ); - pH->count--; - if( pH->count<=0 ){ - assert( pH->first==0 ); - assert( pH->count==0 ); - fts3HashClear(pH); - } -} - -SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem( - const Fts3Hash *pH, - const void *pKey, - int nKey -){ - int h; /* A hash on key */ - int (*xHash)(const void*,int); /* The hash function */ - - if( pH==0 || pH->ht==0 ) return 0; - xHash = ftsHashFunction(pH->keyClass); - assert( xHash!=0 ); - h = (*xHash)(pKey,nKey); - assert( (pH->htsize & (pH->htsize-1))==0 ); - return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1)); -} - -/* -** Attempt to locate an element of the hash table pH with a key -** that matches pKey,nKey. Return the data for this element if it is -** found, or NULL if there is no match. -*/ -SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){ - Fts3HashElem *pElem; /* The element that matches key (if any) */ - - pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey); - return pElem ? pElem->data : 0; -} - -/* Insert an element into the hash table pH. The key is pKey,nKey -** and the data is "data". -** -** If no element exists with a matching key, then a new -** element is created. A copy of the key is made if the copyKey -** flag is set. NULL is returned. -** -** If another element already exists with the same key, then the -** new data replaces the old data and the old data is returned. -** The key is not copied in this instance. If a malloc fails, then -** the new data is returned and the hash table is unchanged. -** -** If the "data" parameter to this function is NULL, then the -** element corresponding to "key" is removed from the hash table. -*/ -SQLITE_PRIVATE void *sqlite3Fts3HashInsert( - Fts3Hash *pH, /* The hash table to insert into */ - const void *pKey, /* The key */ - int nKey, /* Number of bytes in the key */ - void *data /* The data */ -){ - int hraw; /* Raw hash value of the key */ - int h; /* the hash of the key modulo hash table size */ - Fts3HashElem *elem; /* Used to loop thru the element list */ - Fts3HashElem *new_elem; /* New element added to the pH */ - int (*xHash)(const void*,int); /* The hash function */ - - assert( pH!=0 ); - xHash = ftsHashFunction(pH->keyClass); - assert( xHash!=0 ); - hraw = (*xHash)(pKey, nKey); - assert( (pH->htsize & (pH->htsize-1))==0 ); - h = hraw & (pH->htsize-1); - elem = fts3FindElementByHash(pH,pKey,nKey,h); - if( elem ){ - void *old_data = elem->data; - if( data==0 ){ - fts3RemoveElementByHash(pH,elem,h); - }else{ - elem->data = data; - } - return old_data; - } - if( data==0 ) return 0; - if( (pH->htsize==0 && fts3Rehash(pH,8)) - || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2)) - ){ - pH->count = 0; - return data; - } - assert( pH->htsize>0 ); - new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) ); - if( new_elem==0 ) return data; - if( pH->copyKey && pKey!=0 ){ - new_elem->pKey = fts3HashMalloc( nKey ); - if( new_elem->pKey==0 ){ - fts3HashFree(new_elem); - return data; - } - memcpy((void*)new_elem->pKey, pKey, nKey); - }else{ - new_elem->pKey = (void*)pKey; - } - new_elem->nKey = nKey; - pH->count++; - assert( pH->htsize>0 ); - assert( (pH->htsize & (pH->htsize-1))==0 ); - h = hraw & (pH->htsize-1); - fts3HashInsertElement(pH, &pH->ht[h], new_elem); - new_elem->data = data; - return 0; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_hash.c *******************************************/ -/************** Begin file fts3_porter.c *************************************/ -/* -** 2006 September 30 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Implementation of the full-text-search tokenizer that implements -** a Porter stemmer. -*/ - -/* -** The code in this file is only compiled if: -** -** * The FTS3 module is being built as an extension -** (in which case SQLITE_CORE is not defined), or -** -** * The FTS3 module is being built into the core of -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <assert.h> */ -/* #include <stdlib.h> */ -/* #include <stdio.h> */ -/* #include <string.h> */ - - -/* -** Class derived from sqlite3_tokenizer -*/ -typedef struct porter_tokenizer { - sqlite3_tokenizer base; /* Base class */ -} porter_tokenizer; - -/* -** Class derived from sqlite3_tokenizer_cursor -*/ -typedef struct porter_tokenizer_cursor { - sqlite3_tokenizer_cursor base; - const char *zInput; /* input we are tokenizing */ - int nInput; /* size of the input */ - int iOffset; /* current position in zInput */ - int iToken; /* index of next token to be returned */ - char *zToken; /* storage for current token */ - int nAllocated; /* space allocated to zToken buffer */ -} porter_tokenizer_cursor; - - -/* -** Create a new tokenizer instance. -*/ -static int porterCreate( - int argc, const char * const *argv, - sqlite3_tokenizer **ppTokenizer -){ - porter_tokenizer *t; - - UNUSED_PARAMETER(argc); - UNUSED_PARAMETER(argv); - - t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); - if( t==NULL ) return SQLITE_NOMEM; - memset(t, 0, sizeof(*t)); - *ppTokenizer = &t->base; - return SQLITE_OK; -} - -/* -** Destroy a tokenizer -*/ -static int porterDestroy(sqlite3_tokenizer *pTokenizer){ - sqlite3_free(pTokenizer); - return SQLITE_OK; -} - -/* -** Prepare to begin tokenizing a particular string. The input -** string to be tokenized is zInput[0..nInput-1]. A cursor -** used to incrementally tokenize this string is returned in -** *ppCursor. -*/ -static int porterOpen( - sqlite3_tokenizer *pTokenizer, /* The tokenizer */ - const char *zInput, int nInput, /* String to be tokenized */ - sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ -){ - porter_tokenizer_cursor *c; - - UNUSED_PARAMETER(pTokenizer); - - c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); - if( c==NULL ) return SQLITE_NOMEM; - - c->zInput = zInput; - if( zInput==0 ){ - c->nInput = 0; - }else if( nInput<0 ){ - c->nInput = (int)strlen(zInput); - }else{ - c->nInput = nInput; - } - c->iOffset = 0; /* start tokenizing at the beginning */ - c->iToken = 0; - c->zToken = NULL; /* no space allocated, yet. */ - c->nAllocated = 0; - - *ppCursor = &c->base; - return SQLITE_OK; -} - -/* -** Close a tokenization cursor previously opened by a call to -** porterOpen() above. -*/ -static int porterClose(sqlite3_tokenizer_cursor *pCursor){ - porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; - sqlite3_free(c->zToken); - sqlite3_free(c); - return SQLITE_OK; -} -/* -** Vowel or consonant -*/ -static const char cType[] = { - 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, - 1, 1, 1, 2, 1 -}; - -/* -** isConsonant() and isVowel() determine if their first character in -** the string they point to is a consonant or a vowel, according -** to Porter ruls. -** -** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. -** 'Y' is a consonant unless it follows another consonant, -** in which case it is a vowel. -** -** In these routine, the letters are in reverse order. So the 'y' rule -** is that 'y' is a consonant unless it is followed by another -** consonent. -*/ -static int isVowel(const char*); -static int isConsonant(const char *z){ - int j; - char x = *z; - if( x==0 ) return 0; - assert( x>='a' && x<='z' ); - j = cType[x-'a']; - if( j<2 ) return j; - return z[1]==0 || isVowel(z + 1); -} -static int isVowel(const char *z){ - int j; - char x = *z; - if( x==0 ) return 0; - assert( x>='a' && x<='z' ); - j = cType[x-'a']; - if( j<2 ) return 1-j; - return isConsonant(z + 1); -} - -/* -** Let any sequence of one or more vowels be represented by V and let -** C be sequence of one or more consonants. Then every word can be -** represented as: -** -** [C] (VC){m} [V] -** -** In prose: A word is an optional consonant followed by zero or -** vowel-consonant pairs followed by an optional vowel. "m" is the -** number of vowel consonant pairs. This routine computes the value -** of m for the first i bytes of a word. -** -** Return true if the m-value for z is 1 or more. In other words, -** return true if z contains at least one vowel that is followed -** by a consonant. -** -** In this routine z[] is in reverse order. So we are really looking -** for an instance of of a consonant followed by a vowel. -*/ -static int m_gt_0(const char *z){ - while( isVowel(z) ){ z++; } - if( *z==0 ) return 0; - while( isConsonant(z) ){ z++; } - return *z!=0; -} - -/* Like mgt0 above except we are looking for a value of m which is -** exactly 1 -*/ -static int m_eq_1(const char *z){ - while( isVowel(z) ){ z++; } - if( *z==0 ) return 0; - while( isConsonant(z) ){ z++; } - if( *z==0 ) return 0; - while( isVowel(z) ){ z++; } - if( *z==0 ) return 1; - while( isConsonant(z) ){ z++; } - return *z==0; -} - -/* Like mgt0 above except we are looking for a value of m>1 instead -** or m>0 -*/ -static int m_gt_1(const char *z){ - while( isVowel(z) ){ z++; } - if( *z==0 ) return 0; - while( isConsonant(z) ){ z++; } - if( *z==0 ) return 0; - while( isVowel(z) ){ z++; } - if( *z==0 ) return 0; - while( isConsonant(z) ){ z++; } - return *z!=0; -} - -/* -** Return TRUE if there is a vowel anywhere within z[0..n-1] -*/ -static int hasVowel(const char *z){ - while( isConsonant(z) ){ z++; } - return *z!=0; -} - -/* -** Return TRUE if the word ends in a double consonant. -** -** The text is reversed here. So we are really looking at -** the first two characters of z[]. -*/ -static int doubleConsonant(const char *z){ - return isConsonant(z) && z[0]==z[1]; -} - -/* -** Return TRUE if the word ends with three letters which -** are consonant-vowel-consonent and where the final consonant -** is not 'w', 'x', or 'y'. -** -** The word is reversed here. So we are really checking the -** first three letters and the first one cannot be in [wxy]. -*/ -static int star_oh(const char *z){ - return - isConsonant(z) && - z[0]!='w' && z[0]!='x' && z[0]!='y' && - isVowel(z+1) && - isConsonant(z+2); -} - -/* -** If the word ends with zFrom and xCond() is true for the stem -** of the word that preceeds the zFrom ending, then change the -** ending to zTo. -** -** The input word *pz and zFrom are both in reverse order. zTo -** is in normal order. -** -** Return TRUE if zFrom matches. Return FALSE if zFrom does not -** match. Not that TRUE is returned even if xCond() fails and -** no substitution occurs. -*/ -static int stem( - char **pz, /* The word being stemmed (Reversed) */ - const char *zFrom, /* If the ending matches this... (Reversed) */ - const char *zTo, /* ... change the ending to this (not reversed) */ - int (*xCond)(const char*) /* Condition that must be true */ -){ - char *z = *pz; - while( *zFrom && *zFrom==*z ){ z++; zFrom++; } - if( *zFrom!=0 ) return 0; - if( xCond && !xCond(z) ) return 1; - while( *zTo ){ - *(--z) = *(zTo++); - } - *pz = z; - return 1; -} - -/* -** This is the fallback stemmer used when the porter stemmer is -** inappropriate. The input word is copied into the output with -** US-ASCII case folding. If the input word is too long (more -** than 20 bytes if it contains no digits or more than 6 bytes if -** it contains digits) then word is truncated to 20 or 6 bytes -** by taking 10 or 3 bytes from the beginning and end. -*/ -static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ - int i, mx, j; - int hasDigit = 0; - for(i=0; i<nIn; i++){ - char c = zIn[i]; - if( c>='A' && c<='Z' ){ - zOut[i] = c - 'A' + 'a'; - }else{ - if( c>='0' && c<='9' ) hasDigit = 1; - zOut[i] = c; - } - } - mx = hasDigit ? 3 : 10; - if( nIn>mx*2 ){ - for(j=mx, i=nIn-mx; i<nIn; i++, j++){ - zOut[j] = zOut[i]; - } - i = j; - } - zOut[i] = 0; - *pnOut = i; -} - - -/* -** Stem the input word zIn[0..nIn-1]. Store the output in zOut. -** zOut is at least big enough to hold nIn bytes. Write the actual -** size of the output word (exclusive of the '\0' terminator) into *pnOut. -** -** Any upper-case characters in the US-ASCII character set ([A-Z]) -** are converted to lower case. Upper-case UTF characters are -** unchanged. -** -** Words that are longer than about 20 bytes are stemmed by retaining -** a few bytes from the beginning and the end of the word. If the -** word contains digits, 3 bytes are taken from the beginning and -** 3 bytes from the end. For long words without digits, 10 bytes -** are taken from each end. US-ASCII case folding still applies. -** -** If the input word contains not digits but does characters not -** in [a-zA-Z] then no stemming is attempted and this routine just -** copies the input into the input into the output with US-ASCII -** case folding. -** -** Stemming never increases the length of the word. So there is -** no chance of overflowing the zOut buffer. -*/ -static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ - int i, j; - char zReverse[28]; - char *z, *z2; - if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){ - /* The word is too big or too small for the porter stemmer. - ** Fallback to the copy stemmer */ - copy_stemmer(zIn, nIn, zOut, pnOut); - return; - } - for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){ - char c = zIn[i]; - if( c>='A' && c<='Z' ){ - zReverse[j] = c + 'a' - 'A'; - }else if( c>='a' && c<='z' ){ - zReverse[j] = c; - }else{ - /* The use of a character not in [a-zA-Z] means that we fallback - ** to the copy stemmer */ - copy_stemmer(zIn, nIn, zOut, pnOut); - return; - } - } - memset(&zReverse[sizeof(zReverse)-5], 0, 5); - z = &zReverse[j+1]; - - - /* Step 1a */ - if( z[0]=='s' ){ - if( - !stem(&z, "sess", "ss", 0) && - !stem(&z, "sei", "i", 0) && - !stem(&z, "ss", "ss", 0) - ){ - z++; - } - } - - /* Step 1b */ - z2 = z; - if( stem(&z, "dee", "ee", m_gt_0) ){ - /* Do nothing. The work was all in the test */ - }else if( - (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) - && z!=z2 - ){ - if( stem(&z, "ta", "ate", 0) || - stem(&z, "lb", "ble", 0) || - stem(&z, "zi", "ize", 0) ){ - /* Do nothing. The work was all in the test */ - }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ - z++; - }else if( m_eq_1(z) && star_oh(z) ){ - *(--z) = 'e'; - } - } - - /* Step 1c */ - if( z[0]=='y' && hasVowel(z+1) ){ - z[0] = 'i'; - } - - /* Step 2 */ - switch( z[1] ){ - case 'a': - stem(&z, "lanoita", "ate", m_gt_0) || - stem(&z, "lanoit", "tion", m_gt_0); - break; - case 'c': - stem(&z, "icne", "ence", m_gt_0) || - stem(&z, "icna", "ance", m_gt_0); - break; - case 'e': - stem(&z, "rezi", "ize", m_gt_0); - break; - case 'g': - stem(&z, "igol", "log", m_gt_0); - break; - case 'l': - stem(&z, "ilb", "ble", m_gt_0) || - stem(&z, "illa", "al", m_gt_0) || - stem(&z, "iltne", "ent", m_gt_0) || - stem(&z, "ile", "e", m_gt_0) || - stem(&z, "ilsuo", "ous", m_gt_0); - break; - case 'o': - stem(&z, "noitazi", "ize", m_gt_0) || - stem(&z, "noita", "ate", m_gt_0) || - stem(&z, "rota", "ate", m_gt_0); - break; - case 's': - stem(&z, "msila", "al", m_gt_0) || - stem(&z, "ssenevi", "ive", m_gt_0) || - stem(&z, "ssenluf", "ful", m_gt_0) || - stem(&z, "ssensuo", "ous", m_gt_0); - break; - case 't': - stem(&z, "itila", "al", m_gt_0) || - stem(&z, "itivi", "ive", m_gt_0) || - stem(&z, "itilib", "ble", m_gt_0); - break; - } - - /* Step 3 */ - switch( z[0] ){ - case 'e': - stem(&z, "etaci", "ic", m_gt_0) || - stem(&z, "evita", "", m_gt_0) || - stem(&z, "ezila", "al", m_gt_0); - break; - case 'i': - stem(&z, "itici", "ic", m_gt_0); - break; - case 'l': - stem(&z, "laci", "ic", m_gt_0) || - stem(&z, "luf", "", m_gt_0); - break; - case 's': - stem(&z, "ssen", "", m_gt_0); - break; - } - - /* Step 4 */ - switch( z[1] ){ - case 'a': - if( z[0]=='l' && m_gt_1(z+2) ){ - z += 2; - } - break; - case 'c': - if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ - z += 4; - } - break; - case 'e': - if( z[0]=='r' && m_gt_1(z+2) ){ - z += 2; - } - break; - case 'i': - if( z[0]=='c' && m_gt_1(z+2) ){ - z += 2; - } - break; - case 'l': - if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ - z += 4; - } - break; - case 'n': - if( z[0]=='t' ){ - if( z[2]=='a' ){ - if( m_gt_1(z+3) ){ - z += 3; - } - }else if( z[2]=='e' ){ - stem(&z, "tneme", "", m_gt_1) || - stem(&z, "tnem", "", m_gt_1) || - stem(&z, "tne", "", m_gt_1); - } - } - break; - case 'o': - if( z[0]=='u' ){ - if( m_gt_1(z+2) ){ - z += 2; - } - }else if( z[3]=='s' || z[3]=='t' ){ - stem(&z, "noi", "", m_gt_1); - } - break; - case 's': - if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ - z += 3; - } - break; - case 't': - stem(&z, "eta", "", m_gt_1) || - stem(&z, "iti", "", m_gt_1); - break; - case 'u': - if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ - z += 3; - } - break; - case 'v': - case 'z': - if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ - z += 3; - } - break; - } - - /* Step 5a */ - if( z[0]=='e' ){ - if( m_gt_1(z+1) ){ - z++; - }else if( m_eq_1(z+1) && !star_oh(z+1) ){ - z++; - } - } - - /* Step 5b */ - if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ - z++; - } - - /* z[] is now the stemmed word in reverse order. Flip it back - ** around into forward order and return. - */ - *pnOut = i = (int)strlen(z); - zOut[i] = 0; - while( *z ){ - zOut[--i] = *(z++); - } -} - -/* -** Characters that can be part of a token. We assume any character -** whose value is greater than 0x80 (any UTF character) can be -** part of a token. In other words, delimiters all must have -** values of 0x7f or lower. -*/ -static const char porterIdChar[] = { -/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ -}; -#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) - -/* -** Extract the next token from a tokenization cursor. The cursor must -** have been opened by a prior call to porterOpen(). -*/ -static int porterNext( - sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ - const char **pzToken, /* OUT: *pzToken is the token text */ - int *pnBytes, /* OUT: Number of bytes in token */ - int *piStartOffset, /* OUT: Starting offset of token */ - int *piEndOffset, /* OUT: Ending offset of token */ - int *piPosition /* OUT: Position integer of token */ -){ - porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; - const char *z = c->zInput; - - while( c->iOffset<c->nInput ){ - int iStartOffset, ch; - - /* Scan past delimiter characters */ - while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){ - c->iOffset++; - } - - /* Count non-delimiter characters. */ - iStartOffset = c->iOffset; - while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){ - c->iOffset++; - } - - if( c->iOffset>iStartOffset ){ - int n = c->iOffset-iStartOffset; - if( n>c->nAllocated ){ - char *pNew; - c->nAllocated = n+20; - pNew = sqlite3_realloc(c->zToken, c->nAllocated); - if( !pNew ) return SQLITE_NOMEM; - c->zToken = pNew; - } - porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); - *pzToken = c->zToken; - *piStartOffset = iStartOffset; - *piEndOffset = c->iOffset; - *piPosition = c->iToken++; - return SQLITE_OK; - } - } - return SQLITE_DONE; -} - -/* -** The set of routines that implement the porter-stemmer tokenizer -*/ -static const sqlite3_tokenizer_module porterTokenizerModule = { - 0, - porterCreate, - porterDestroy, - porterOpen, - porterClose, - porterNext, - 0 -}; - -/* -** Allocate a new porter tokenizer. Return a pointer to the new -** tokenizer in *ppModule -*/ -SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule( - sqlite3_tokenizer_module const**ppModule -){ - *ppModule = &porterTokenizerModule; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_porter.c *****************************************/ -/************** Begin file fts3_tokenizer.c **********************************/ -/* -** 2007 June 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This is part of an SQLite module implementing full-text search. -** This particular file implements the generic tokenizer interface. -*/ - -/* -** The code in this file is only compiled if: -** -** * The FTS3 module is being built as an extension -** (in which case SQLITE_CORE is not defined), or -** -** * The FTS3 module is being built into the core of -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <assert.h> */ -/* #include <string.h> */ - -/* -** Implementation of the SQL scalar function for accessing the underlying -** hash table. This function may be called as follows: -** -** SELECT <function-name>(<key-name>); -** SELECT <function-name>(<key-name>, <pointer>); -** -** where <function-name> is the name passed as the second argument -** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer'). -** -** If the <pointer> argument is specified, it must be a blob value -** containing a pointer to be stored as the hash data corresponding -** to the string <key-name>. If <pointer> is not specified, then -** the string <key-name> must already exist in the has table. Otherwise, -** an error is returned. -** -** Whether or not the <pointer> argument is specified, the value returned -** is a blob containing the pointer stored as the hash data corresponding -** to string <key-name> (after the hash-table is updated, if applicable). -*/ -static void scalarFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - Fts3Hash *pHash; - void *pPtr = 0; - const unsigned char *zName; - int nName; - - assert( argc==1 || argc==2 ); - - pHash = (Fts3Hash *)sqlite3_user_data(context); - - zName = sqlite3_value_text(argv[0]); - nName = sqlite3_value_bytes(argv[0])+1; - - if( argc==2 ){ - void *pOld; - int n = sqlite3_value_bytes(argv[1]); - if( n!=sizeof(pPtr) ){ - sqlite3_result_error(context, "argument type mismatch", -1); - return; - } - pPtr = *(void **)sqlite3_value_blob(argv[1]); - pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); - if( pOld==pPtr ){ - sqlite3_result_error(context, "out of memory", -1); - return; - } - }else{ - pPtr = sqlite3Fts3HashFind(pHash, zName, nName); - if( !pPtr ){ - char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); - sqlite3_result_error(context, zErr, -1); - sqlite3_free(zErr); - return; - } - } - - sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT); -} - -SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){ - static const char isFtsIdChar[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ - 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ - }; - return (c&0x80 || isFtsIdChar[(int)(c)]); -} - -SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){ - const char *z1; - const char *z2 = 0; - - /* Find the start of the next token. */ - z1 = zStr; - while( z2==0 ){ - char c = *z1; - switch( c ){ - case '\0': return 0; /* No more tokens here */ - case '\'': - case '"': - case '`': { - z2 = z1; - while( *++z2 && (*z2!=c || *++z2==c) ); - break; - } - case '[': - z2 = &z1[1]; - while( *z2 && z2[0]!=']' ) z2++; - if( *z2 ) z2++; - break; - - default: - if( sqlite3Fts3IsIdChar(*z1) ){ - z2 = &z1[1]; - while( sqlite3Fts3IsIdChar(*z2) ) z2++; - }else{ - z1++; - } - } - } - - *pn = (int)(z2-z1); - return z1; -} - -SQLITE_PRIVATE int sqlite3Fts3InitTokenizer( - Fts3Hash *pHash, /* Tokenizer hash table */ - const char *zArg, /* Tokenizer name */ - sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */ - char **pzErr /* OUT: Set to malloced error message */ -){ - int rc; - char *z = (char *)zArg; - int n = 0; - char *zCopy; - char *zEnd; /* Pointer to nul-term of zCopy */ - sqlite3_tokenizer_module *m; - - zCopy = sqlite3_mprintf("%s", zArg); - if( !zCopy ) return SQLITE_NOMEM; - zEnd = &zCopy[strlen(zCopy)]; - - z = (char *)sqlite3Fts3NextToken(zCopy, &n); - z[n] = '\0'; - sqlite3Fts3Dequote(z); - - m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1); - if( !m ){ - *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z); - rc = SQLITE_ERROR; - }else{ - char const **aArg = 0; - int iArg = 0; - z = &z[n+1]; - while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){ - int nNew = sizeof(char *)*(iArg+1); - char const **aNew = (const char **)sqlite3_realloc((void *)aArg, nNew); - if( !aNew ){ - sqlite3_free(zCopy); - sqlite3_free((void *)aArg); - return SQLITE_NOMEM; - } - aArg = aNew; - aArg[iArg++] = z; - z[n] = '\0'; - sqlite3Fts3Dequote(z); - z = &z[n+1]; - } - rc = m->xCreate(iArg, aArg, ppTok); - assert( rc!=SQLITE_OK || *ppTok ); - if( rc!=SQLITE_OK ){ - *pzErr = sqlite3_mprintf("unknown tokenizer"); - }else{ - (*ppTok)->pModule = m; - } - sqlite3_free((void *)aArg); - } - - sqlite3_free(zCopy); - return rc; -} - - -#ifdef SQLITE_TEST - -/* #include <tcl.h> */ -/* #include <string.h> */ - -/* -** Implementation of a special SQL scalar function for testing tokenizers -** designed to be used in concert with the Tcl testing framework. This -** function must be called with two or more arguments: -** -** SELECT <function-name>(<key-name>, ..., <input-string>); -** -** where <function-name> is the name passed as the second argument -** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer') -** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test'). -** -** The return value is a string that may be interpreted as a Tcl -** list. For each token in the <input-string>, three elements are -** added to the returned list. The first is the token position, the -** second is the token text (folded, stemmed, etc.) and the third is the -** substring of <input-string> associated with the token. For example, -** using the built-in "simple" tokenizer: -** -** SELECT fts_tokenizer_test('simple', 'I don't see how'); -** -** will return the string: -** -** "{0 i I 1 dont don't 2 see see 3 how how}" -** -*/ -static void testFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - Fts3Hash *pHash; - sqlite3_tokenizer_module *p; - sqlite3_tokenizer *pTokenizer = 0; - sqlite3_tokenizer_cursor *pCsr = 0; - - const char *zErr = 0; - - const char *zName; - int nName; - const char *zInput; - int nInput; - - const char *azArg[64]; - - const char *zToken; - int nToken = 0; - int iStart = 0; - int iEnd = 0; - int iPos = 0; - int i; - - Tcl_Obj *pRet; - - if( argc<2 ){ - sqlite3_result_error(context, "insufficient arguments", -1); - return; - } - - nName = sqlite3_value_bytes(argv[0]); - zName = (const char *)sqlite3_value_text(argv[0]); - nInput = sqlite3_value_bytes(argv[argc-1]); - zInput = (const char *)sqlite3_value_text(argv[argc-1]); - - pHash = (Fts3Hash *)sqlite3_user_data(context); - p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); - - if( !p ){ - char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); - sqlite3_result_error(context, zErr, -1); - sqlite3_free(zErr); - return; - } - - pRet = Tcl_NewObj(); - Tcl_IncrRefCount(pRet); - - for(i=1; i<argc-1; i++){ - azArg[i-1] = (const char *)sqlite3_value_text(argv[i]); - } - - if( SQLITE_OK!=p->xCreate(argc-2, azArg, &pTokenizer) ){ - zErr = "error in xCreate()"; - goto finish; - } - pTokenizer->pModule = p; - if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){ - zErr = "error in xOpen()"; - goto finish; - } - - while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){ - Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos)); - Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); - zToken = &zInput[iStart]; - nToken = iEnd-iStart; - Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); - } - - if( SQLITE_OK!=p->xClose(pCsr) ){ - zErr = "error in xClose()"; - goto finish; - } - if( SQLITE_OK!=p->xDestroy(pTokenizer) ){ - zErr = "error in xDestroy()"; - goto finish; - } - -finish: - if( zErr ){ - sqlite3_result_error(context, zErr, -1); - }else{ - sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); - } - Tcl_DecrRefCount(pRet); -} - -static -int registerTokenizer( - sqlite3 *db, - char *zName, - const sqlite3_tokenizer_module *p -){ - int rc; - sqlite3_stmt *pStmt; - const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; - - rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - - sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); - sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); - sqlite3_step(pStmt); - - return sqlite3_finalize(pStmt); -} - -static -int queryTokenizer( - sqlite3 *db, - char *zName, - const sqlite3_tokenizer_module **pp -){ - int rc; - sqlite3_stmt *pStmt; - const char zSql[] = "SELECT fts3_tokenizer(?)"; - - *pp = 0; - rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - - sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ - memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); - } - } - - return sqlite3_finalize(pStmt); -} - -SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); - -/* -** Implementation of the scalar function fts3_tokenizer_internal_test(). -** This function is used for testing only, it is not included in the -** build unless SQLITE_TEST is defined. -** -** The purpose of this is to test that the fts3_tokenizer() function -** can be used as designed by the C-code in the queryTokenizer and -** registerTokenizer() functions above. These two functions are repeated -** in the README.tokenizer file as an example, so it is important to -** test them. -** -** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar -** function with no arguments. An assert() will fail if a problem is -** detected. i.e.: -** -** SELECT fts3_tokenizer_internal_test(); -** -*/ -static void intTestFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - int rc; - const sqlite3_tokenizer_module *p1; - const sqlite3_tokenizer_module *p2; - sqlite3 *db = (sqlite3 *)sqlite3_user_data(context); - - UNUSED_PARAMETER(argc); - UNUSED_PARAMETER(argv); - - /* Test the query function */ - sqlite3Fts3SimpleTokenizerModule(&p1); - rc = queryTokenizer(db, "simple", &p2); - assert( rc==SQLITE_OK ); - assert( p1==p2 ); - rc = queryTokenizer(db, "nosuchtokenizer", &p2); - assert( rc==SQLITE_ERROR ); - assert( p2==0 ); - assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") ); - - /* Test the storage function */ - rc = registerTokenizer(db, "nosuchtokenizer", p1); - assert( rc==SQLITE_OK ); - rc = queryTokenizer(db, "nosuchtokenizer", &p2); - assert( rc==SQLITE_OK ); - assert( p2==p1 ); - - sqlite3_result_text(context, "ok", -1, SQLITE_STATIC); -} - -#endif - -/* -** Set up SQL objects in database db used to access the contents of -** the hash table pointed to by argument pHash. The hash table must -** been initialized to use string keys, and to take a private copy -** of the key when a value is inserted. i.e. by a call similar to: -** -** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); -** -** This function adds a scalar function (see header comment above -** scalarFunc() in this file for details) and, if ENABLE_TABLE is -** defined at compilation time, a temporary virtual table (see header -** comment above struct HashTableVtab) to the database schema. Both -** provide read/write access to the contents of *pHash. -** -** The third argument to this function, zName, is used as the name -** of both the scalar and, if created, the virtual table. -*/ -SQLITE_PRIVATE int sqlite3Fts3InitHashTable( - sqlite3 *db, - Fts3Hash *pHash, - const char *zName -){ - int rc = SQLITE_OK; - void *p = (void *)pHash; - const int any = SQLITE_ANY; - -#ifdef SQLITE_TEST - char *zTest = 0; - char *zTest2 = 0; - void *pdb = (void *)db; - zTest = sqlite3_mprintf("%s_test", zName); - zTest2 = sqlite3_mprintf("%s_internal_test", zName); - if( !zTest || !zTest2 ){ - rc = SQLITE_NOMEM; - } -#endif - - if( SQLITE_OK==rc ){ - rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0); - } - if( SQLITE_OK==rc ){ - rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0); - } -#ifdef SQLITE_TEST - if( SQLITE_OK==rc ){ - rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0); - } - if( SQLITE_OK==rc ){ - rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0); - } -#endif - -#ifdef SQLITE_TEST - sqlite3_free(zTest); - sqlite3_free(zTest2); -#endif - - return rc; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_tokenizer.c **************************************/ -/************** Begin file fts3_tokenizer1.c *********************************/ -/* -** 2006 Oct 10 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** Implementation of the "simple" full-text-search tokenizer. -*/ - -/* -** The code in this file is only compiled if: -** -** * The FTS3 module is being built as an extension -** (in which case SQLITE_CORE is not defined), or -** -** * The FTS3 module is being built into the core of -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <assert.h> */ -/* #include <stdlib.h> */ -/* #include <stdio.h> */ -/* #include <string.h> */ - - -typedef struct simple_tokenizer { - sqlite3_tokenizer base; - char delim[128]; /* flag ASCII delimiters */ -} simple_tokenizer; - -typedef struct simple_tokenizer_cursor { - sqlite3_tokenizer_cursor base; - const char *pInput; /* input we are tokenizing */ - int nBytes; /* size of the input */ - int iOffset; /* current position in pInput */ - int iToken; /* index of next token to be returned */ - char *pToken; /* storage for current token */ - int nTokenAllocated; /* space allocated to zToken buffer */ -} simple_tokenizer_cursor; - - -static int simpleDelim(simple_tokenizer *t, unsigned char c){ - return c<0x80 && t->delim[c]; -} -static int fts3_isalnum(int x){ - return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); -} - -/* -** Create a new tokenizer instance. -*/ -static int simpleCreate( - int argc, const char * const *argv, - sqlite3_tokenizer **ppTokenizer -){ - simple_tokenizer *t; - - t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t)); - if( t==NULL ) return SQLITE_NOMEM; - memset(t, 0, sizeof(*t)); - - /* TODO(shess) Delimiters need to remain the same from run to run, - ** else we need to reindex. One solution would be a meta-table to - ** track such information in the database, then we'd only want this - ** information on the initial create. - */ - if( argc>1 ){ - int i, n = (int)strlen(argv[1]); - for(i=0; i<n; i++){ - unsigned char ch = argv[1][i]; - /* We explicitly don't support UTF-8 delimiters for now. */ - if( ch>=0x80 ){ - sqlite3_free(t); - return SQLITE_ERROR; - } - t->delim[ch] = 1; - } - } else { - /* Mark non-alphanumeric ASCII characters as delimiters */ - int i; - for(i=1; i<0x80; i++){ - t->delim[i] = !fts3_isalnum(i) ? -1 : 0; - } - } - - *ppTokenizer = &t->base; - return SQLITE_OK; -} - -/* -** Destroy a tokenizer -*/ -static int simpleDestroy(sqlite3_tokenizer *pTokenizer){ - sqlite3_free(pTokenizer); - return SQLITE_OK; -} - -/* -** Prepare to begin tokenizing a particular string. The input -** string to be tokenized is pInput[0..nBytes-1]. A cursor -** used to incrementally tokenize this string is returned in -** *ppCursor. -*/ -static int simpleOpen( - sqlite3_tokenizer *pTokenizer, /* The tokenizer */ - const char *pInput, int nBytes, /* String to be tokenized */ - sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ -){ - simple_tokenizer_cursor *c; - - UNUSED_PARAMETER(pTokenizer); - - c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); - if( c==NULL ) return SQLITE_NOMEM; - - c->pInput = pInput; - if( pInput==0 ){ - c->nBytes = 0; - }else if( nBytes<0 ){ - c->nBytes = (int)strlen(pInput); - }else{ - c->nBytes = nBytes; - } - c->iOffset = 0; /* start tokenizing at the beginning */ - c->iToken = 0; - c->pToken = NULL; /* no space allocated, yet. */ - c->nTokenAllocated = 0; - - *ppCursor = &c->base; - return SQLITE_OK; -} - -/* -** Close a tokenization cursor previously opened by a call to -** simpleOpen() above. -*/ -static int simpleClose(sqlite3_tokenizer_cursor *pCursor){ - simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; - sqlite3_free(c->pToken); - sqlite3_free(c); - return SQLITE_OK; -} - -/* -** Extract the next token from a tokenization cursor. The cursor must -** have been opened by a prior call to simpleOpen(). -*/ -static int simpleNext( - sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ - const char **ppToken, /* OUT: *ppToken is the token text */ - int *pnBytes, /* OUT: Number of bytes in token */ - int *piStartOffset, /* OUT: Starting offset of token */ - int *piEndOffset, /* OUT: Ending offset of token */ - int *piPosition /* OUT: Position integer of token */ -){ - simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; - simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer; - unsigned char *p = (unsigned char *)c->pInput; - - while( c->iOffset<c->nBytes ){ - int iStartOffset; - - /* Scan past delimiter characters */ - while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){ - c->iOffset++; - } - - /* Count non-delimiter characters. */ - iStartOffset = c->iOffset; - while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){ - c->iOffset++; - } - - if( c->iOffset>iStartOffset ){ - int i, n = c->iOffset-iStartOffset; - if( n>c->nTokenAllocated ){ - char *pNew; - c->nTokenAllocated = n+20; - pNew = sqlite3_realloc(c->pToken, c->nTokenAllocated); - if( !pNew ) return SQLITE_NOMEM; - c->pToken = pNew; - } - for(i=0; i<n; i++){ - /* TODO(shess) This needs expansion to handle UTF-8 - ** case-insensitivity. - */ - unsigned char ch = p[iStartOffset+i]; - c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch); - } - *ppToken = c->pToken; - *pnBytes = n; - *piStartOffset = iStartOffset; - *piEndOffset = c->iOffset; - *piPosition = c->iToken++; - - return SQLITE_OK; - } - } - return SQLITE_DONE; -} - -/* -** The set of routines that implement the simple tokenizer -*/ -static const sqlite3_tokenizer_module simpleTokenizerModule = { - 0, - simpleCreate, - simpleDestroy, - simpleOpen, - simpleClose, - simpleNext, - 0, -}; - -/* -** Allocate a new simple tokenizer. Return a pointer to the new -** tokenizer in *ppModule -*/ -SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule( - sqlite3_tokenizer_module const**ppModule -){ - *ppModule = &simpleTokenizerModule; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_tokenizer1.c *************************************/ -/************** Begin file fts3_write.c **************************************/ -/* -** 2009 Oct 23 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** This file is part of the SQLite FTS3 extension module. Specifically, -** this file contains code to insert, update and delete rows from FTS3 -** tables. It also contains code to merge FTS3 b-tree segments. Some -** of the sub-routines used to merge segments are also used by the query -** code in fts3.c. -*/ - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <string.h> */ -/* #include <assert.h> */ -/* #include <stdlib.h> */ - - -#define FTS_MAX_APPENDABLE_HEIGHT 16 - -/* -** When full-text index nodes are loaded from disk, the buffer that they -** are loaded into has the following number of bytes of padding at the end -** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer -** of 920 bytes is allocated for it. -** -** This means that if we have a pointer into a buffer containing node data, -** it is always safe to read up to two varints from it without risking an -** overread, even if the node data is corrupted. -*/ -#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) - -/* -** Under certain circumstances, b-tree nodes (doclists) can be loaded into -** memory incrementally instead of all at once. This can be a big performance -** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() -** method before retrieving all query results (as may happen, for example, -** if a query has a LIMIT clause). -** -** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD -** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. -** The code is written so that the hard lower-limit for each of these values -** is 1. Clearly such small values would be inefficient, but can be useful -** for testing purposes. -** -** If this module is built with SQLITE_TEST defined, these constants may -** be overridden at runtime for testing purposes. File fts3_test.c contains -** a Tcl interface to read and write the values. -*/ -#ifdef SQLITE_TEST -int test_fts3_node_chunksize = (4*1024); -int test_fts3_node_chunk_threshold = (4*1024)*4; -# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize -# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold -#else -# define FTS3_NODE_CHUNKSIZE (4*1024) -# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) -#endif - -/* -** The two values that may be meaningfully bound to the :1 parameter in -** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. -*/ -#define FTS_STAT_DOCTOTAL 0 -#define FTS_STAT_INCRMERGEHINT 1 -#define FTS_STAT_AUTOINCRMERGE 2 - -/* -** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic -** and incremental merge operation that takes place. This is used for -** debugging FTS only, it should not usually be turned on in production -** systems. -*/ -#ifdef FTS3_LOG_MERGES -static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ - sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); -} -#else -#define fts3LogMerge(x, y) -#endif - - -typedef struct PendingList PendingList; -typedef struct SegmentNode SegmentNode; -typedef struct SegmentWriter SegmentWriter; - -/* -** An instance of the following data structure is used to build doclists -** incrementally. See function fts3PendingListAppend() for details. -*/ -struct PendingList { - int nData; - char *aData; - int nSpace; - sqlite3_int64 iLastDocid; - sqlite3_int64 iLastCol; - sqlite3_int64 iLastPos; -}; - - -/* -** Each cursor has a (possibly empty) linked list of the following objects. -*/ -struct Fts3DeferredToken { - Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ - int iCol; /* Column token must occur in */ - Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ - PendingList *pList; /* Doclist is assembled here */ -}; - -/* -** An instance of this structure is used to iterate through the terms on -** a contiguous set of segment b-tree leaf nodes. Although the details of -** this structure are only manipulated by code in this file, opaque handles -** of type Fts3SegReader* are also used by code in fts3.c to iterate through -** terms when querying the full-text index. See functions: -** -** sqlite3Fts3SegReaderNew() -** sqlite3Fts3SegReaderFree() -** sqlite3Fts3SegReaderIterate() -** -** Methods used to manipulate Fts3SegReader structures: -** -** fts3SegReaderNext() -** fts3SegReaderFirstDocid() -** fts3SegReaderNextDocid() -*/ -struct Fts3SegReader { - int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ - u8 bLookup; /* True for a lookup only */ - u8 rootOnly; /* True for a root-only reader */ - - sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ - sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ - sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ - sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ - - char *aNode; /* Pointer to node data (or NULL) */ - int nNode; /* Size of buffer at aNode (or 0) */ - int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ - sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ - - Fts3HashElem **ppNextElem; - - /* Variables set by fts3SegReaderNext(). These may be read directly - ** by the caller. They are valid from the time SegmentReaderNew() returns - ** until SegmentReaderNext() returns something other than SQLITE_OK - ** (i.e. SQLITE_DONE). - */ - int nTerm; /* Number of bytes in current term */ - char *zTerm; /* Pointer to current term */ - int nTermAlloc; /* Allocated size of zTerm buffer */ - char *aDoclist; /* Pointer to doclist of current entry */ - int nDoclist; /* Size of doclist in current entry */ - - /* The following variables are used by fts3SegReaderNextDocid() to iterate - ** through the current doclist (aDoclist/nDoclist). - */ - char *pOffsetList; - int nOffsetList; /* For descending pending seg-readers only */ - sqlite3_int64 iDocid; -}; - -#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) -#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) - -/* -** An instance of this structure is used to create a segment b-tree in the -** database. The internal details of this type are only accessed by the -** following functions: -** -** fts3SegWriterAdd() -** fts3SegWriterFlush() -** fts3SegWriterFree() -*/ -struct SegmentWriter { - SegmentNode *pTree; /* Pointer to interior tree structure */ - sqlite3_int64 iFirst; /* First slot in %_segments written */ - sqlite3_int64 iFree; /* Next free slot in %_segments */ - char *zTerm; /* Pointer to previous term buffer */ - int nTerm; /* Number of bytes in zTerm */ - int nMalloc; /* Size of malloc'd buffer at zMalloc */ - char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ - int nSize; /* Size of allocation at aData */ - int nData; /* Bytes of data in aData */ - char *aData; /* Pointer to block from malloc() */ -}; - -/* -** Type SegmentNode is used by the following three functions to create -** the interior part of the segment b+-tree structures (everything except -** the leaf nodes). These functions and type are only ever used by code -** within the fts3SegWriterXXX() family of functions described above. -** -** fts3NodeAddTerm() -** fts3NodeWrite() -** fts3NodeFree() -** -** When a b+tree is written to the database (either as a result of a merge -** or the pending-terms table being flushed), leaves are written into the -** database file as soon as they are completely populated. The interior of -** the tree is assembled in memory and written out only once all leaves have -** been populated and stored. This is Ok, as the b+-tree fanout is usually -** very large, meaning that the interior of the tree consumes relatively -** little memory. -*/ -struct SegmentNode { - SegmentNode *pParent; /* Parent node (or NULL for root node) */ - SegmentNode *pRight; /* Pointer to right-sibling */ - SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ - int nEntry; /* Number of terms written to node so far */ - char *zTerm; /* Pointer to previous term buffer */ - int nTerm; /* Number of bytes in zTerm */ - int nMalloc; /* Size of malloc'd buffer at zMalloc */ - char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ - int nData; /* Bytes of valid data so far */ - char *aData; /* Node data */ -}; - -/* -** Valid values for the second argument to fts3SqlStmt(). -*/ -#define SQL_DELETE_CONTENT 0 -#define SQL_IS_EMPTY 1 -#define SQL_DELETE_ALL_CONTENT 2 -#define SQL_DELETE_ALL_SEGMENTS 3 -#define SQL_DELETE_ALL_SEGDIR 4 -#define SQL_DELETE_ALL_DOCSIZE 5 -#define SQL_DELETE_ALL_STAT 6 -#define SQL_SELECT_CONTENT_BY_ROWID 7 -#define SQL_NEXT_SEGMENT_INDEX 8 -#define SQL_INSERT_SEGMENTS 9 -#define SQL_NEXT_SEGMENTS_ID 10 -#define SQL_INSERT_SEGDIR 11 -#define SQL_SELECT_LEVEL 12 -#define SQL_SELECT_LEVEL_RANGE 13 -#define SQL_SELECT_LEVEL_COUNT 14 -#define SQL_SELECT_SEGDIR_MAX_LEVEL 15 -#define SQL_DELETE_SEGDIR_LEVEL 16 -#define SQL_DELETE_SEGMENTS_RANGE 17 -#define SQL_CONTENT_INSERT 18 -#define SQL_DELETE_DOCSIZE 19 -#define SQL_REPLACE_DOCSIZE 20 -#define SQL_SELECT_DOCSIZE 21 -#define SQL_SELECT_STAT 22 -#define SQL_REPLACE_STAT 23 - -#define SQL_SELECT_ALL_PREFIX_LEVEL 24 -#define SQL_DELETE_ALL_TERMS_SEGDIR 25 -#define SQL_DELETE_SEGDIR_RANGE 26 -#define SQL_SELECT_ALL_LANGID 27 -#define SQL_FIND_MERGE_LEVEL 28 -#define SQL_MAX_LEAF_NODE_ESTIMATE 29 -#define SQL_DELETE_SEGDIR_ENTRY 30 -#define SQL_SHIFT_SEGDIR_ENTRY 31 -#define SQL_SELECT_SEGDIR 32 -#define SQL_CHOMP_SEGDIR 33 -#define SQL_SEGMENT_IS_APPENDABLE 34 -#define SQL_SELECT_INDEXES 35 -#define SQL_SELECT_MXLEVEL 36 - -/* -** This function is used to obtain an SQLite prepared statement handle -** for the statement identified by the second argument. If successful, -** *pp is set to the requested statement handle and SQLITE_OK returned. -** Otherwise, an SQLite error code is returned and *pp is set to 0. -** -** If argument apVal is not NULL, then it must point to an array with -** at least as many entries as the requested statement has bound -** parameters. The values are bound to the statements parameters before -** returning. -*/ -static int fts3SqlStmt( - Fts3Table *p, /* Virtual table handle */ - int eStmt, /* One of the SQL_XXX constants above */ - sqlite3_stmt **pp, /* OUT: Statement handle */ - sqlite3_value **apVal /* Values to bind to statement */ -){ - const char *azSql[] = { -/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", -/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", -/* 2 */ "DELETE FROM %Q.'%q_content'", -/* 3 */ "DELETE FROM %Q.'%q_segments'", -/* 4 */ "DELETE FROM %Q.'%q_segdir'", -/* 5 */ "DELETE FROM %Q.'%q_docsize'", -/* 6 */ "DELETE FROM %Q.'%q_stat'", -/* 7 */ "SELECT %s WHERE rowid=?", -/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", -/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", -/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", -/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", - - /* Return segments in order from oldest to newest.*/ -/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " - "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", -/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " - "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" - "ORDER BY level DESC, idx ASC", - -/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", -/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", - -/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", -/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", -/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", -/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", -/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", -/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", -/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", -/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", -/* 24 */ "", -/* 25 */ "", - -/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", -/* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'", - -/* This statement is used to determine which level to read the input from -** when performing an incremental merge. It returns the absolute level number -** of the oldest level in the db that contains at least ? segments. Or, -** if no level in the FTS index contains more than ? segments, the statement -** returns zero rows. */ -/* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?" - " ORDER BY (level %% 1024) ASC LIMIT 1", - -/* Estimate the upper limit on the number of leaf nodes in a new segment -** created by merging the oldest :2 segments from absolute level :1. See -** function sqlite3Fts3Incrmerge() for details. */ -/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " - " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", - -/* SQL_DELETE_SEGDIR_ENTRY -** Delete the %_segdir entry on absolute level :1 with index :2. */ -/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", - -/* SQL_SHIFT_SEGDIR_ENTRY -** Modify the idx value for the segment with idx=:3 on absolute level :2 -** to :1. */ -/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", - -/* SQL_SELECT_SEGDIR -** Read a single entry from the %_segdir table. The entry from absolute -** level :1 with index value :2. */ -/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " - "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", - -/* SQL_CHOMP_SEGDIR -** Update the start_block (:1) and root (:2) fields of the %_segdir -** entry located on absolute level :3 with index :4. */ -/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" - "WHERE level = ? AND idx = ?", - -/* SQL_SEGMENT_IS_APPENDABLE -** Return a single row if the segment with end_block=? is appendable. Or -** no rows otherwise. */ -/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", - -/* SQL_SELECT_INDEXES -** Return the list of valid segment indexes for absolute level ? */ -/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", - -/* SQL_SELECT_MXLEVEL -** Return the largest relative level in the FTS index or indexes. */ -/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'" - }; - int rc = SQLITE_OK; - sqlite3_stmt *pStmt; - - assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); - assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); - - pStmt = p->aStmt[eStmt]; - if( !pStmt ){ - char *zSql; - if( eStmt==SQL_CONTENT_INSERT ){ - zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); - }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ - zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); - }else{ - zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); - } - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); - sqlite3_free(zSql); - assert( rc==SQLITE_OK || pStmt==0 ); - p->aStmt[eStmt] = pStmt; - } - } - if( apVal ){ - int i; - int nParam = sqlite3_bind_parameter_count(pStmt); - for(i=0; rc==SQLITE_OK && i<nParam; i++){ - rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); - } - } - *pp = pStmt; - return rc; -} - - -static int fts3SelectDocsize( - Fts3Table *pTab, /* FTS3 table handle */ - sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ - sqlite3_stmt **ppStmt /* OUT: Statement handle */ -){ - sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ - int rc; /* Return code */ - - rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pStmt, 1, iDocid); - rc = sqlite3_step(pStmt); - if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ - rc = sqlite3_reset(pStmt); - if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; - pStmt = 0; - }else{ - rc = SQLITE_OK; - } - } - - *ppStmt = pStmt; - return rc; -} - -SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal( - Fts3Table *pTab, /* Fts3 table handle */ - sqlite3_stmt **ppStmt /* OUT: Statement handle */ -){ - sqlite3_stmt *pStmt = 0; - int rc; - rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); - if( sqlite3_step(pStmt)!=SQLITE_ROW - || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB - ){ - rc = sqlite3_reset(pStmt); - if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; - pStmt = 0; - } - } - *ppStmt = pStmt; - return rc; -} - -SQLITE_PRIVATE int sqlite3Fts3SelectDocsize( - Fts3Table *pTab, /* Fts3 table handle */ - sqlite3_int64 iDocid, /* Docid to read size data for */ - sqlite3_stmt **ppStmt /* OUT: Statement handle */ -){ - return fts3SelectDocsize(pTab, iDocid, ppStmt); -} - -/* -** Similar to fts3SqlStmt(). Except, after binding the parameters in -** array apVal[] to the SQL statement identified by eStmt, the statement -** is executed. -** -** Returns SQLITE_OK if the statement is successfully executed, or an -** SQLite error code otherwise. -*/ -static void fts3SqlExec( - int *pRC, /* Result code */ - Fts3Table *p, /* The FTS3 table */ - int eStmt, /* Index of statement to evaluate */ - sqlite3_value **apVal /* Parameters to bind */ -){ - sqlite3_stmt *pStmt; - int rc; - if( *pRC ) return; - rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); - if( rc==SQLITE_OK ){ - sqlite3_step(pStmt); - rc = sqlite3_reset(pStmt); - } - *pRC = rc; -} - - -/* -** This function ensures that the caller has obtained a shared-cache -** table-lock on the %_content table. This is required before reading -** data from the fts3 table. If this lock is not acquired first, then -** the caller may end up holding read-locks on the %_segments and %_segdir -** tables, but no read-lock on the %_content table. If this happens -** a second connection will be able to write to the fts3 table, but -** attempting to commit those writes might return SQLITE_LOCKED or -** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain -** write-locks on the %_segments and %_segdir ** tables). -** -** We try to avoid this because if FTS3 returns any error when committing -** a transaction, the whole transaction will be rolled back. And this is -** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can -** still happen if the user reads data directly from the %_segments or -** %_segdir tables instead of going through FTS3 though. -** -** This reasoning does not apply to a content=xxx table. -*/ -SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *p){ - int rc; /* Return code */ - sqlite3_stmt *pStmt; /* Statement used to obtain lock */ - - if( p->zContentTbl==0 ){ - rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_null(pStmt, 1); - sqlite3_step(pStmt); - rc = sqlite3_reset(pStmt); - } - }else{ - rc = SQLITE_OK; - } - - return rc; -} - -/* -** FTS maintains a separate indexes for each language-id (a 32-bit integer). -** Within each language id, a separate index is maintained to store the -** document terms, and each configured prefix size (configured the FTS -** "prefix=" option). And each index consists of multiple levels ("relative -** levels"). -** -** All three of these values (the language id, the specific index and the -** level within the index) are encoded in 64-bit integer values stored -** in the %_segdir table on disk. This function is used to convert three -** separate component values into the single 64-bit integer value that -** can be used to query the %_segdir table. -** -** Specifically, each language-id/index combination is allocated 1024 -** 64-bit integer level values ("absolute levels"). The main terms index -** for language-id 0 is allocate values 0-1023. The first prefix index -** (if any) for language-id 0 is allocated values 1024-2047. And so on. -** Language 1 indexes are allocated immediately following language 0. -** -** So, for a system with nPrefix prefix indexes configured, the block of -** absolute levels that corresponds to language-id iLangid and index -** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). -*/ -static sqlite3_int64 getAbsoluteLevel( - Fts3Table *p, /* FTS3 table handle */ - int iLangid, /* Language id */ - int iIndex, /* Index in p->aIndex[] */ - int iLevel /* Level of segments */ -){ - sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ - assert( iLangid>=0 ); - assert( p->nIndex>0 ); - assert( iIndex>=0 && iIndex<p->nIndex ); - - iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; - return iBase + iLevel; -} - -/* -** Set *ppStmt to a statement handle that may be used to iterate through -** all rows in the %_segdir table, from oldest to newest. If successful, -** return SQLITE_OK. If an error occurs while preparing the statement, -** return an SQLite error code. -** -** There is only ever one instance of this SQL statement compiled for -** each FTS3 table. -** -** The statement returns the following columns from the %_segdir table: -** -** 0: idx -** 1: start_block -** 2: leaves_end_block -** 3: end_block -** 4: root -*/ -SQLITE_PRIVATE int sqlite3Fts3AllSegdirs( - Fts3Table *p, /* FTS3 table */ - int iLangid, /* Language being queried */ - int iIndex, /* Index for p->aIndex[] */ - int iLevel, /* Level to select (relative level) */ - sqlite3_stmt **ppStmt /* OUT: Compiled statement */ -){ - int rc; - sqlite3_stmt *pStmt = 0; - - assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); - assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); - assert( iIndex>=0 && iIndex<p->nIndex ); - - if( iLevel<0 ){ - /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ - rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); - sqlite3_bind_int64(pStmt, 2, - getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) - ); - } - }else{ - /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ - rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); - } - } - *ppStmt = pStmt; - return rc; -} - - -/* -** Append a single varint to a PendingList buffer. SQLITE_OK is returned -** if successful, or an SQLite error code otherwise. -** -** This function also serves to allocate the PendingList structure itself. -** For example, to create a new PendingList structure containing two -** varints: -** -** PendingList *p = 0; -** fts3PendingListAppendVarint(&p, 1); -** fts3PendingListAppendVarint(&p, 2); -*/ -static int fts3PendingListAppendVarint( - PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ - sqlite3_int64 i /* Value to append to data */ -){ - PendingList *p = *pp; - - /* Allocate or grow the PendingList as required. */ - if( !p ){ - p = sqlite3_malloc(sizeof(*p) + 100); - if( !p ){ - return SQLITE_NOMEM; - } - p->nSpace = 100; - p->aData = (char *)&p[1]; - p->nData = 0; - } - else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ - int nNew = p->nSpace * 2; - p = sqlite3_realloc(p, sizeof(*p) + nNew); - if( !p ){ - sqlite3_free(*pp); - *pp = 0; - return SQLITE_NOMEM; - } - p->nSpace = nNew; - p->aData = (char *)&p[1]; - } - - /* Append the new serialized varint to the end of the list. */ - p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); - p->aData[p->nData] = '\0'; - *pp = p; - return SQLITE_OK; -} - -/* -** Add a docid/column/position entry to a PendingList structure. Non-zero -** is returned if the structure is sqlite3_realloced as part of adding -** the entry. Otherwise, zero. -** -** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. -** Zero is always returned in this case. Otherwise, if no OOM error occurs, -** it is set to SQLITE_OK. -*/ -static int fts3PendingListAppend( - PendingList **pp, /* IN/OUT: PendingList structure */ - sqlite3_int64 iDocid, /* Docid for entry to add */ - sqlite3_int64 iCol, /* Column for entry to add */ - sqlite3_int64 iPos, /* Position of term for entry to add */ - int *pRc /* OUT: Return code */ -){ - PendingList *p = *pp; - int rc = SQLITE_OK; - - assert( !p || p->iLastDocid<=iDocid ); - - if( !p || p->iLastDocid!=iDocid ){ - sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); - if( p ){ - assert( p->nData<p->nSpace ); - assert( p->aData[p->nData]==0 ); - p->nData++; - } - if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ - goto pendinglistappend_out; - } - p->iLastCol = -1; - p->iLastPos = 0; - p->iLastDocid = iDocid; - } - if( iCol>0 && p->iLastCol!=iCol ){ - if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) - || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) - ){ - goto pendinglistappend_out; - } - p->iLastCol = iCol; - p->iLastPos = 0; - } - if( iCol>=0 ){ - assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); - rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); - if( rc==SQLITE_OK ){ - p->iLastPos = iPos; - } - } - - pendinglistappend_out: - *pRc = rc; - if( p!=*pp ){ - *pp = p; - return 1; - } - return 0; -} - -/* -** Free a PendingList object allocated by fts3PendingListAppend(). -*/ -static void fts3PendingListDelete(PendingList *pList){ - sqlite3_free(pList); -} - -/* -** Add an entry to one of the pending-terms hash tables. -*/ -static int fts3PendingTermsAddOne( - Fts3Table *p, - int iCol, - int iPos, - Fts3Hash *pHash, /* Pending terms hash table to add entry to */ - const char *zToken, - int nToken -){ - PendingList *pList; - int rc = SQLITE_OK; - - pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); - if( pList ){ - p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); - } - if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ - if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ - /* Malloc failed while inserting the new entry. This can only - ** happen if there was no previous entry for this token. - */ - assert( 0==fts3HashFind(pHash, zToken, nToken) ); - sqlite3_free(pList); - rc = SQLITE_NOMEM; - } - } - if( rc==SQLITE_OK ){ - p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); - } - return rc; -} - -/* -** Tokenize the nul-terminated string zText and add all tokens to the -** pending-terms hash-table. The docid used is that currently stored in -** p->iPrevDocid, and the column is specified by argument iCol. -** -** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. -*/ -static int fts3PendingTermsAdd( - Fts3Table *p, /* Table into which text will be inserted */ - int iLangid, /* Language id to use */ - const char *zText, /* Text of document to be inserted */ - int iCol, /* Column into which text is being inserted */ - u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ -){ - int rc; - int iStart = 0; - int iEnd = 0; - int iPos = 0; - int nWord = 0; - - char const *zToken; - int nToken = 0; - - sqlite3_tokenizer *pTokenizer = p->pTokenizer; - sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; - sqlite3_tokenizer_cursor *pCsr; - int (*xNext)(sqlite3_tokenizer_cursor *pCursor, - const char**,int*,int*,int*,int*); - - assert( pTokenizer && pModule ); - - /* If the user has inserted a NULL value, this function may be called with - ** zText==0. In this case, add zero token entries to the hash table and - ** return early. */ - if( zText==0 ){ - *pnWord = 0; - return SQLITE_OK; - } - - rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); - if( rc!=SQLITE_OK ){ - return rc; - } - - xNext = pModule->xNext; - while( SQLITE_OK==rc - && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) - ){ - int i; - if( iPos>=nWord ) nWord = iPos+1; - - /* Positions cannot be negative; we use -1 as a terminator internally. - ** Tokens must have a non-zero length. - */ - if( iPos<0 || !zToken || nToken<=0 ){ - rc = SQLITE_ERROR; - break; - } - - /* Add the term to the terms index */ - rc = fts3PendingTermsAddOne( - p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken - ); - - /* Add the term to each of the prefix indexes that it is not too - ** short for. */ - for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ - struct Fts3Index *pIndex = &p->aIndex[i]; - if( nToken<pIndex->nPrefix ) continue; - rc = fts3PendingTermsAddOne( - p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix - ); - } - } - - pModule->xClose(pCsr); - *pnWord += nWord; - return (rc==SQLITE_DONE ? SQLITE_OK : rc); -} - -/* -** Calling this function indicates that subsequent calls to -** fts3PendingTermsAdd() are to add term/position-list pairs for the -** contents of the document with docid iDocid. -*/ -static int fts3PendingTermsDocid( - Fts3Table *p, /* Full-text table handle */ - int iLangid, /* Language id of row being written */ - sqlite_int64 iDocid /* Docid of row being written */ -){ - assert( iLangid>=0 ); - - /* TODO(shess) Explore whether partially flushing the buffer on - ** forced-flush would provide better performance. I suspect that if - ** we ordered the doclists by size and flushed the largest until the - ** buffer was half empty, that would let the less frequent terms - ** generate longer doclists. - */ - if( iDocid<=p->iPrevDocid - || p->iPrevLangid!=iLangid - || p->nPendingData>p->nMaxPendingData - ){ - int rc = sqlite3Fts3PendingTermsFlush(p); - if( rc!=SQLITE_OK ) return rc; - } - p->iPrevDocid = iDocid; - p->iPrevLangid = iLangid; - return SQLITE_OK; -} - -/* -** Discard the contents of the pending-terms hash tables. -*/ -SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){ - int i; - for(i=0; i<p->nIndex; i++){ - Fts3HashElem *pElem; - Fts3Hash *pHash = &p->aIndex[i].hPending; - for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ - PendingList *pList = (PendingList *)fts3HashData(pElem); - fts3PendingListDelete(pList); - } - fts3HashClear(pHash); - } - p->nPendingData = 0; -} - -/* -** This function is called by the xUpdate() method as part of an INSERT -** operation. It adds entries for each term in the new record to the -** pendingTerms hash table. -** -** Argument apVal is the same as the similarly named argument passed to -** fts3InsertData(). Parameter iDocid is the docid of the new row. -*/ -static int fts3InsertTerms( - Fts3Table *p, - int iLangid, - sqlite3_value **apVal, - u32 *aSz -){ - int i; /* Iterator variable */ - for(i=2; i<p->nColumn+2; i++){ - const char *zText = (const char *)sqlite3_value_text(apVal[i]); - int rc = fts3PendingTermsAdd(p, iLangid, zText, i-2, &aSz[i-2]); - if( rc!=SQLITE_OK ){ - return rc; - } - aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); - } - return SQLITE_OK; -} - -/* -** This function is called by the xUpdate() method for an INSERT operation. -** The apVal parameter is passed a copy of the apVal argument passed by -** SQLite to the xUpdate() method. i.e: -** -** apVal[0] Not used for INSERT. -** apVal[1] rowid -** apVal[2] Left-most user-defined column -** ... -** apVal[p->nColumn+1] Right-most user-defined column -** apVal[p->nColumn+2] Hidden column with same name as table -** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) -** apVal[p->nColumn+4] Hidden languageid column -*/ -static int fts3InsertData( - Fts3Table *p, /* Full-text table */ - sqlite3_value **apVal, /* Array of values to insert */ - sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ -){ - int rc; /* Return code */ - sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ - - if( p->zContentTbl ){ - sqlite3_value *pRowid = apVal[p->nColumn+3]; - if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ - pRowid = apVal[1]; - } - if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ - return SQLITE_CONSTRAINT; - } - *piDocid = sqlite3_value_int64(pRowid); - return SQLITE_OK; - } - - /* Locate the statement handle used to insert data into the %_content - ** table. The SQL for this statement is: - ** - ** INSERT INTO %_content VALUES(?, ?, ?, ...) - ** - ** The statement features N '?' variables, where N is the number of user - ** defined columns in the FTS3 table, plus one for the docid field. - */ - rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); - if( rc==SQLITE_OK && p->zLanguageid ){ - rc = sqlite3_bind_int( - pContentInsert, p->nColumn+2, - sqlite3_value_int(apVal[p->nColumn+4]) - ); - } - if( rc!=SQLITE_OK ) return rc; - - /* There is a quirk here. The users INSERT statement may have specified - ** a value for the "rowid" field, for the "docid" field, or for both. - ** Which is a problem, since "rowid" and "docid" are aliases for the - ** same value. For example: - ** - ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); - ** - ** In FTS3, this is an error. It is an error to specify non-NULL values - ** for both docid and some other rowid alias. - */ - if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ - if( SQLITE_NULL==sqlite3_value_type(apVal[0]) - && SQLITE_NULL!=sqlite3_value_type(apVal[1]) - ){ - /* A rowid/docid conflict. */ - return SQLITE_ERROR; - } - rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); - if( rc!=SQLITE_OK ) return rc; - } - - /* Execute the statement to insert the record. Set *piDocid to the - ** new docid value. - */ - sqlite3_step(pContentInsert); - rc = sqlite3_reset(pContentInsert); - - *piDocid = sqlite3_last_insert_rowid(p->db); - return rc; -} - - - -/* -** Remove all data from the FTS3 table. Clear the hash table containing -** pending terms. -*/ -static int fts3DeleteAll(Fts3Table *p, int bContent){ - int rc = SQLITE_OK; /* Return code */ - - /* Discard the contents of the pending-terms hash table. */ - sqlite3Fts3PendingTermsClear(p); - - /* Delete everything from the shadow tables. Except, leave %_content as - ** is if bContent is false. */ - assert( p->zContentTbl==0 || bContent==0 ); - if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); - fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); - fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); - if( p->bHasDocsize ){ - fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); - } - if( p->bHasStat ){ - fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); - } - return rc; -} - -/* -** -*/ -static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ - int iLangid = 0; - if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); - return iLangid; -} - -/* -** The first element in the apVal[] array is assumed to contain the docid -** (an integer) of a row about to be deleted. Remove all terms from the -** full-text index. -*/ -static void fts3DeleteTerms( - int *pRC, /* Result code */ - Fts3Table *p, /* The FTS table to delete from */ - sqlite3_value *pRowid, /* The docid to be deleted */ - u32 *aSz, /* Sizes of deleted document written here */ - int *pbFound /* OUT: Set to true if row really does exist */ -){ - int rc; - sqlite3_stmt *pSelect; - - assert( *pbFound==0 ); - if( *pRC ) return; - rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); - if( rc==SQLITE_OK ){ - if( SQLITE_ROW==sqlite3_step(pSelect) ){ - int i; - int iLangid = langidFromSelect(p, pSelect); - rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); - for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ - const char *zText = (const char *)sqlite3_column_text(pSelect, i); - rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[i-1]); - aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); - } - if( rc!=SQLITE_OK ){ - sqlite3_reset(pSelect); - *pRC = rc; - return; - } - *pbFound = 1; - } - rc = sqlite3_reset(pSelect); - }else{ - sqlite3_reset(pSelect); - } - *pRC = rc; -} - -/* -** Forward declaration to account for the circular dependency between -** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). -*/ -static int fts3SegmentMerge(Fts3Table *, int, int, int); - -/* -** This function allocates a new level iLevel index in the segdir table. -** Usually, indexes are allocated within a level sequentially starting -** with 0, so the allocated index is one greater than the value returned -** by: -** -** SELECT max(idx) FROM %_segdir WHERE level = :iLevel -** -** However, if there are already FTS3_MERGE_COUNT indexes at the requested -** level, they are merged into a single level (iLevel+1) segment and the -** allocated index is 0. -** -** If successful, *piIdx is set to the allocated index slot and SQLITE_OK -** returned. Otherwise, an SQLite error code is returned. -*/ -static int fts3AllocateSegdirIdx( - Fts3Table *p, - int iLangid, /* Language id */ - int iIndex, /* Index for p->aIndex */ - int iLevel, - int *piIdx -){ - int rc; /* Return Code */ - sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ - int iNext = 0; /* Result of query pNextIdx */ - - assert( iLangid>=0 ); - assert( p->nIndex>=1 ); - - /* Set variable iNext to the next available segdir index at level iLevel. */ - rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64( - pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) - ); - if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ - iNext = sqlite3_column_int(pNextIdx, 0); - } - rc = sqlite3_reset(pNextIdx); - } - - if( rc==SQLITE_OK ){ - /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already - ** full, merge all segments in level iLevel into a single iLevel+1 - ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, - ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. - */ - if( iNext>=FTS3_MERGE_COUNT ){ - fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); - rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); - *piIdx = 0; - }else{ - *piIdx = iNext; - } - } - - return rc; -} - -/* -** The %_segments table is declared as follows: -** -** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) -** -** This function reads data from a single row of the %_segments table. The -** specific row is identified by the iBlockid parameter. If paBlob is not -** NULL, then a buffer is allocated using sqlite3_malloc() and populated -** with the contents of the blob stored in the "block" column of the -** identified table row is. Whether or not paBlob is NULL, *pnBlob is set -** to the size of the blob in bytes before returning. -** -** If an error occurs, or the table does not contain the specified row, -** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If -** paBlob is non-NULL, then it is the responsibility of the caller to -** eventually free the returned buffer. -** -** This function may leave an open sqlite3_blob* handle in the -** Fts3Table.pSegments variable. This handle is reused by subsequent calls -** to this function. The handle may be closed by calling the -** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy -** performance improvement, but the blob handle should always be closed -** before control is returned to the user (to prevent a lock being held -** on the database file for longer than necessary). Thus, any virtual table -** method (xFilter etc.) that may directly or indirectly call this function -** must call sqlite3Fts3SegmentsClose() before returning. -*/ -SQLITE_PRIVATE int sqlite3Fts3ReadBlock( - Fts3Table *p, /* FTS3 table handle */ - sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ - char **paBlob, /* OUT: Blob data in malloc'd buffer */ - int *pnBlob, /* OUT: Size of blob data */ - int *pnLoad /* OUT: Bytes actually loaded */ -){ - int rc; /* Return code */ - - /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ - assert( pnBlob ); - - if( p->pSegments ){ - rc = sqlite3_blob_reopen(p->pSegments, iBlockid); - }else{ - if( 0==p->zSegmentsTbl ){ - p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); - if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; - } - rc = sqlite3_blob_open( - p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments - ); - } - - if( rc==SQLITE_OK ){ - int nByte = sqlite3_blob_bytes(p->pSegments); - *pnBlob = nByte; - if( paBlob ){ - char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); - if( !aByte ){ - rc = SQLITE_NOMEM; - }else{ - if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ - nByte = FTS3_NODE_CHUNKSIZE; - *pnLoad = nByte; - } - rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); - memset(&aByte[nByte], 0, FTS3_NODE_PADDING); - if( rc!=SQLITE_OK ){ - sqlite3_free(aByte); - aByte = 0; - } - } - *paBlob = aByte; - } - } - - return rc; -} - -/* -** Close the blob handle at p->pSegments, if it is open. See comments above -** the sqlite3Fts3ReadBlock() function for details. -*/ -SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){ - sqlite3_blob_close(p->pSegments); - p->pSegments = 0; -} - -static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ - int nRead; /* Number of bytes to read */ - int rc; /* Return code */ - - nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); - rc = sqlite3_blob_read( - pReader->pBlob, - &pReader->aNode[pReader->nPopulate], - nRead, - pReader->nPopulate - ); - - if( rc==SQLITE_OK ){ - pReader->nPopulate += nRead; - memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); - if( pReader->nPopulate==pReader->nNode ){ - sqlite3_blob_close(pReader->pBlob); - pReader->pBlob = 0; - pReader->nPopulate = 0; - } - } - return rc; -} - -static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ - int rc = SQLITE_OK; - assert( !pReader->pBlob - || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) - ); - while( pReader->pBlob && rc==SQLITE_OK - && (pFrom - pReader->aNode + nByte)>pReader->nPopulate - ){ - rc = fts3SegReaderIncrRead(pReader); - } - return rc; -} - -/* -** Set an Fts3SegReader cursor to point at EOF. -*/ -static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ - if( !fts3SegReaderIsRootOnly(pSeg) ){ - sqlite3_free(pSeg->aNode); - sqlite3_blob_close(pSeg->pBlob); - pSeg->pBlob = 0; - } - pSeg->aNode = 0; -} - -/* -** Move the iterator passed as the first argument to the next term in the -** segment. If successful, SQLITE_OK is returned. If there is no next term, -** SQLITE_DONE. Otherwise, an SQLite error code. -*/ -static int fts3SegReaderNext( - Fts3Table *p, - Fts3SegReader *pReader, - int bIncr -){ - int rc; /* Return code of various sub-routines */ - char *pNext; /* Cursor variable */ - int nPrefix; /* Number of bytes in term prefix */ - int nSuffix; /* Number of bytes in term suffix */ - - if( !pReader->aDoclist ){ - pNext = pReader->aNode; - }else{ - pNext = &pReader->aDoclist[pReader->nDoclist]; - } - - if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ - - if( fts3SegReaderIsPending(pReader) ){ - Fts3HashElem *pElem = *(pReader->ppNextElem); - if( pElem==0 ){ - pReader->aNode = 0; - }else{ - PendingList *pList = (PendingList *)fts3HashData(pElem); - pReader->zTerm = (char *)fts3HashKey(pElem); - pReader->nTerm = fts3HashKeysize(pElem); - pReader->nNode = pReader->nDoclist = pList->nData + 1; - pReader->aNode = pReader->aDoclist = pList->aData; - pReader->ppNextElem++; - assert( pReader->aNode ); - } - return SQLITE_OK; - } - - fts3SegReaderSetEof(pReader); - - /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf - ** blocks have already been traversed. */ - assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock ); - if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ - return SQLITE_OK; - } - - rc = sqlite3Fts3ReadBlock( - p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, - (bIncr ? &pReader->nPopulate : 0) - ); - if( rc!=SQLITE_OK ) return rc; - assert( pReader->pBlob==0 ); - if( bIncr && pReader->nPopulate<pReader->nNode ){ - pReader->pBlob = p->pSegments; - p->pSegments = 0; - } - pNext = pReader->aNode; - } - - assert( !fts3SegReaderIsPending(pReader) ); - - rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); - if( rc!=SQLITE_OK ) return rc; - - /* Because of the FTS3_NODE_PADDING bytes of padding, the following is - ** safe (no risk of overread) even if the node data is corrupted. */ - pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix); - pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix); - if( nPrefix<0 || nSuffix<=0 - || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] - ){ - return FTS_CORRUPT_VTAB; - } - - if( nPrefix+nSuffix>pReader->nTermAlloc ){ - int nNew = (nPrefix+nSuffix)*2; - char *zNew = sqlite3_realloc(pReader->zTerm, nNew); - if( !zNew ){ - return SQLITE_NOMEM; - } - pReader->zTerm = zNew; - pReader->nTermAlloc = nNew; - } - - rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); - if( rc!=SQLITE_OK ) return rc; - - memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); - pReader->nTerm = nPrefix+nSuffix; - pNext += nSuffix; - pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist); - pReader->aDoclist = pNext; - pReader->pOffsetList = 0; - - /* Check that the doclist does not appear to extend past the end of the - ** b-tree node. And that the final byte of the doclist is 0x00. If either - ** of these statements is untrue, then the data structure is corrupt. - */ - if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] - || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) - ){ - return FTS_CORRUPT_VTAB; - } - return SQLITE_OK; -} - -/* -** Set the SegReader to point to the first docid in the doclist associated -** with the current term. -*/ -static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ - int rc = SQLITE_OK; - assert( pReader->aDoclist ); - assert( !pReader->pOffsetList ); - if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ - u8 bEof = 0; - pReader->iDocid = 0; - pReader->nOffsetList = 0; - sqlite3Fts3DoclistPrev(0, - pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, - &pReader->iDocid, &pReader->nOffsetList, &bEof - ); - }else{ - rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); - if( rc==SQLITE_OK ){ - int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); - pReader->pOffsetList = &pReader->aDoclist[n]; - } - } - return rc; -} - -/* -** Advance the SegReader to point to the next docid in the doclist -** associated with the current term. -** -** If arguments ppOffsetList and pnOffsetList are not NULL, then -** *ppOffsetList is set to point to the first column-offset list -** in the doclist entry (i.e. immediately past the docid varint). -** *pnOffsetList is set to the length of the set of column-offset -** lists, not including the nul-terminator byte. For example: -*/ -static int fts3SegReaderNextDocid( - Fts3Table *pTab, - Fts3SegReader *pReader, /* Reader to advance to next docid */ - char **ppOffsetList, /* OUT: Pointer to current position-list */ - int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ -){ - int rc = SQLITE_OK; - char *p = pReader->pOffsetList; - char c = 0; - - assert( p ); - - if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ - /* A pending-terms seg-reader for an FTS4 table that uses order=desc. - ** Pending-terms doclists are always built up in ascending order, so - ** we have to iterate through them backwards here. */ - u8 bEof = 0; - if( ppOffsetList ){ - *ppOffsetList = pReader->pOffsetList; - *pnOffsetList = pReader->nOffsetList - 1; - } - sqlite3Fts3DoclistPrev(0, - pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, - &pReader->nOffsetList, &bEof - ); - if( bEof ){ - pReader->pOffsetList = 0; - }else{ - pReader->pOffsetList = p; - } - }else{ - char *pEnd = &pReader->aDoclist[pReader->nDoclist]; - - /* Pointer p currently points at the first byte of an offset list. The - ** following block advances it to point one byte past the end of - ** the same offset list. */ - while( 1 ){ - - /* The following line of code (and the "p++" below the while() loop) is - ** normally all that is required to move pointer p to the desired - ** position. The exception is if this node is being loaded from disk - ** incrementally and pointer "p" now points to the first byte passed - ** the populated part of pReader->aNode[]. - */ - while( *p | c ) c = *p++ & 0x80; - assert( *p==0 ); - - if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; - rc = fts3SegReaderIncrRead(pReader); - if( rc!=SQLITE_OK ) return rc; - } - p++; - - /* If required, populate the output variables with a pointer to and the - ** size of the previous offset-list. - */ - if( ppOffsetList ){ - *ppOffsetList = pReader->pOffsetList; - *pnOffsetList = (int)(p - pReader->pOffsetList - 1); - } - - /* List may have been edited in place by fts3EvalNearTrim() */ - while( p<pEnd && *p==0 ) p++; - - /* If there are no more entries in the doclist, set pOffsetList to - ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and - ** Fts3SegReader.pOffsetList to point to the next offset list before - ** returning. - */ - if( p>=pEnd ){ - pReader->pOffsetList = 0; - }else{ - rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); - if( rc==SQLITE_OK ){ - sqlite3_int64 iDelta; - pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); - if( pTab->bDescIdx ){ - pReader->iDocid -= iDelta; - }else{ - pReader->iDocid += iDelta; - } - } - } - } - - return SQLITE_OK; -} - - -SQLITE_PRIVATE int sqlite3Fts3MsrOvfl( - Fts3Cursor *pCsr, - Fts3MultiSegReader *pMsr, - int *pnOvfl -){ - Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; - int nOvfl = 0; - int ii; - int rc = SQLITE_OK; - int pgsz = p->nPgsz; - - assert( p->bFts4 ); - assert( pgsz>0 ); - - for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ - Fts3SegReader *pReader = pMsr->apSegment[ii]; - if( !fts3SegReaderIsPending(pReader) - && !fts3SegReaderIsRootOnly(pReader) - ){ - sqlite3_int64 jj; - for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ - int nBlob; - rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); - if( rc!=SQLITE_OK ) break; - if( (nBlob+35)>pgsz ){ - nOvfl += (nBlob + 34)/pgsz; - } - } - } - } - *pnOvfl = nOvfl; - return rc; -} - -/* -** Free all allocations associated with the iterator passed as the -** second argument. -*/ -SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ - if( pReader && !fts3SegReaderIsPending(pReader) ){ - sqlite3_free(pReader->zTerm); - if( !fts3SegReaderIsRootOnly(pReader) ){ - sqlite3_free(pReader->aNode); - sqlite3_blob_close(pReader->pBlob); - } - } - sqlite3_free(pReader); -} - -/* -** Allocate a new SegReader object. -*/ -SQLITE_PRIVATE int sqlite3Fts3SegReaderNew( - int iAge, /* Segment "age". */ - int bLookup, /* True for a lookup only */ - sqlite3_int64 iStartLeaf, /* First leaf to traverse */ - sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ - sqlite3_int64 iEndBlock, /* Final block of segment */ - const char *zRoot, /* Buffer containing root node */ - int nRoot, /* Size of buffer containing root node */ - Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ -){ - Fts3SegReader *pReader; /* Newly allocated SegReader object */ - int nExtra = 0; /* Bytes to allocate segment root node */ - - assert( iStartLeaf<=iEndLeaf ); - if( iStartLeaf==0 ){ - nExtra = nRoot + FTS3_NODE_PADDING; - } - - pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); - if( !pReader ){ - return SQLITE_NOMEM; - } - memset(pReader, 0, sizeof(Fts3SegReader)); - pReader->iIdx = iAge; - pReader->bLookup = bLookup!=0; - pReader->iStartBlock = iStartLeaf; - pReader->iLeafEndBlock = iEndLeaf; - pReader->iEndBlock = iEndBlock; - - if( nExtra ){ - /* The entire segment is stored in the root node. */ - pReader->aNode = (char *)&pReader[1]; - pReader->rootOnly = 1; - pReader->nNode = nRoot; - memcpy(pReader->aNode, zRoot, nRoot); - memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); - }else{ - pReader->iCurrentBlock = iStartLeaf-1; - } - *ppReader = pReader; - return SQLITE_OK; -} - -/* -** This is a comparison function used as a qsort() callback when sorting -** an array of pending terms by term. This occurs as part of flushing -** the contents of the pending-terms hash table to the database. -*/ -static int fts3CompareElemByTerm(const void *lhs, const void *rhs){ - char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); - char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); - int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); - int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); - - int n = (n1<n2 ? n1 : n2); - int c = memcmp(z1, z2, n); - if( c==0 ){ - c = n1 - n2; - } - return c; -} - -/* -** This function is used to allocate an Fts3SegReader that iterates through -** a subset of the terms stored in the Fts3Table.pendingTerms array. -** -** If the isPrefixIter parameter is zero, then the returned SegReader iterates -** through each term in the pending-terms table. Or, if isPrefixIter is -** non-zero, it iterates through each term and its prefixes. For example, if -** the pending terms hash table contains the terms "sqlite", "mysql" and -** "firebird", then the iterator visits the following 'terms' (in the order -** shown): -** -** f fi fir fire fireb firebi firebir firebird -** m my mys mysq mysql -** s sq sql sqli sqlit sqlite -** -** Whereas if isPrefixIter is zero, the terms visited are: -** -** firebird mysql sqlite -*/ -SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( - Fts3Table *p, /* Virtual table handle */ - int iIndex, /* Index for p->aIndex */ - const char *zTerm, /* Term to search for */ - int nTerm, /* Size of buffer zTerm */ - int bPrefix, /* True for a prefix iterator */ - Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ -){ - Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ - Fts3HashElem *pE; /* Iterator variable */ - Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ - int nElem = 0; /* Size of array at aElem */ - int rc = SQLITE_OK; /* Return Code */ - Fts3Hash *pHash; - - pHash = &p->aIndex[iIndex].hPending; - if( bPrefix ){ - int nAlloc = 0; /* Size of allocated array at aElem */ - - for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ - char *zKey = (char *)fts3HashKey(pE); - int nKey = fts3HashKeysize(pE); - if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ - if( nElem==nAlloc ){ - Fts3HashElem **aElem2; - nAlloc += 16; - aElem2 = (Fts3HashElem **)sqlite3_realloc( - aElem, nAlloc*sizeof(Fts3HashElem *) - ); - if( !aElem2 ){ - rc = SQLITE_NOMEM; - nElem = 0; - break; - } - aElem = aElem2; - } - - aElem[nElem++] = pE; - } - } - - /* If more than one term matches the prefix, sort the Fts3HashElem - ** objects in term order using qsort(). This uses the same comparison - ** callback as is used when flushing terms to disk. - */ - if( nElem>1 ){ - qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); - } - - }else{ - /* The query is a simple term lookup that matches at most one term in - ** the index. All that is required is a straight hash-lookup. - ** - ** Because the stack address of pE may be accessed via the aElem pointer - ** below, the "Fts3HashElem *pE" must be declared so that it is valid - ** within this entire function, not just this "else{...}" block. - */ - pE = fts3HashFindElem(pHash, zTerm, nTerm); - if( pE ){ - aElem = &pE; - nElem = 1; - } - } - - if( nElem>0 ){ - int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); - pReader = (Fts3SegReader *)sqlite3_malloc(nByte); - if( !pReader ){ - rc = SQLITE_NOMEM; - }else{ - memset(pReader, 0, nByte); - pReader->iIdx = 0x7FFFFFFF; - pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; - memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); - } - } - - if( bPrefix ){ - sqlite3_free(aElem); - } - *ppReader = pReader; - return rc; -} - -/* -** Compare the entries pointed to by two Fts3SegReader structures. -** Comparison is as follows: -** -** 1) EOF is greater than not EOF. -** -** 2) The current terms (if any) are compared using memcmp(). If one -** term is a prefix of another, the longer term is considered the -** larger. -** -** 3) By segment age. An older segment is considered larger. -*/ -static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ - int rc; - if( pLhs->aNode && pRhs->aNode ){ - int rc2 = pLhs->nTerm - pRhs->nTerm; - if( rc2<0 ){ - rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); - }else{ - rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); - } - if( rc==0 ){ - rc = rc2; - } - }else{ - rc = (pLhs->aNode==0) - (pRhs->aNode==0); - } - if( rc==0 ){ - rc = pRhs->iIdx - pLhs->iIdx; - } - assert( rc!=0 ); - return rc; -} - -/* -** A different comparison function for SegReader structures. In this -** version, it is assumed that each SegReader points to an entry in -** a doclist for identical terms. Comparison is made as follows: -** -** 1) EOF (end of doclist in this case) is greater than not EOF. -** -** 2) By current docid. -** -** 3) By segment age. An older segment is considered larger. -*/ -static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ - int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); - if( rc==0 ){ - if( pLhs->iDocid==pRhs->iDocid ){ - rc = pRhs->iIdx - pLhs->iIdx; - }else{ - rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; - } - } - assert( pLhs->aNode && pRhs->aNode ); - return rc; -} -static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ - int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); - if( rc==0 ){ - if( pLhs->iDocid==pRhs->iDocid ){ - rc = pRhs->iIdx - pLhs->iIdx; - }else{ - rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; - } - } - assert( pLhs->aNode && pRhs->aNode ); - return rc; -} - -/* -** Compare the term that the Fts3SegReader object passed as the first argument -** points to with the term specified by arguments zTerm and nTerm. -** -** If the pSeg iterator is already at EOF, return 0. Otherwise, return -** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are -** equal, or +ve if the pSeg term is greater than zTerm/nTerm. -*/ -static int fts3SegReaderTermCmp( - Fts3SegReader *pSeg, /* Segment reader object */ - const char *zTerm, /* Term to compare to */ - int nTerm /* Size of term zTerm in bytes */ -){ - int res = 0; - if( pSeg->aNode ){ - if( pSeg->nTerm>nTerm ){ - res = memcmp(pSeg->zTerm, zTerm, nTerm); - }else{ - res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); - } - if( res==0 ){ - res = pSeg->nTerm-nTerm; - } - } - return res; -} - -/* -** Argument apSegment is an array of nSegment elements. It is known that -** the final (nSegment-nSuspect) members are already in sorted order -** (according to the comparison function provided). This function shuffles -** the array around until all entries are in sorted order. -*/ -static void fts3SegReaderSort( - Fts3SegReader **apSegment, /* Array to sort entries of */ - int nSegment, /* Size of apSegment array */ - int nSuspect, /* Unsorted entry count */ - int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ -){ - int i; /* Iterator variable */ - - assert( nSuspect<=nSegment ); - - if( nSuspect==nSegment ) nSuspect--; - for(i=nSuspect-1; i>=0; i--){ - int j; - for(j=i; j<(nSegment-1); j++){ - Fts3SegReader *pTmp; - if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; - pTmp = apSegment[j+1]; - apSegment[j+1] = apSegment[j]; - apSegment[j] = pTmp; - } - } - -#ifndef NDEBUG - /* Check that the list really is sorted now. */ - for(i=0; i<(nSuspect-1); i++){ - assert( xCmp(apSegment[i], apSegment[i+1])<0 ); - } -#endif -} - -/* -** Insert a record into the %_segments table. -*/ -static int fts3WriteSegment( - Fts3Table *p, /* Virtual table handle */ - sqlite3_int64 iBlock, /* Block id for new block */ - char *z, /* Pointer to buffer containing block data */ - int n /* Size of buffer z in bytes */ -){ - sqlite3_stmt *pStmt; - int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pStmt, 1, iBlock); - sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); - sqlite3_step(pStmt); - rc = sqlite3_reset(pStmt); - } - return rc; -} - -/* -** Find the largest relative level number in the table. If successful, set -** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, -** set *pnMax to zero and return an SQLite error code. -*/ -SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ - int rc; - int mxLevel = 0; - sqlite3_stmt *pStmt = 0; - - rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); - if( rc==SQLITE_OK ){ - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - mxLevel = sqlite3_column_int(pStmt, 0); - } - rc = sqlite3_reset(pStmt); - } - *pnMax = mxLevel; - return rc; -} - -/* -** Insert a record into the %_segdir table. -*/ -static int fts3WriteSegdir( - Fts3Table *p, /* Virtual table handle */ - sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ - int iIdx, /* Value for "idx" field */ - sqlite3_int64 iStartBlock, /* Value for "start_block" field */ - sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ - sqlite3_int64 iEndBlock, /* Value for "end_block" field */ - char *zRoot, /* Blob value for "root" field */ - int nRoot /* Number of bytes in buffer zRoot */ -){ - sqlite3_stmt *pStmt; - int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pStmt, 1, iLevel); - sqlite3_bind_int(pStmt, 2, iIdx); - sqlite3_bind_int64(pStmt, 3, iStartBlock); - sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); - sqlite3_bind_int64(pStmt, 5, iEndBlock); - sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); - sqlite3_step(pStmt); - rc = sqlite3_reset(pStmt); - } - return rc; -} - -/* -** Return the size of the common prefix (if any) shared by zPrev and -** zNext, in bytes. For example, -** -** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 -** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 -** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 -*/ -static int fts3PrefixCompress( - const char *zPrev, /* Buffer containing previous term */ - int nPrev, /* Size of buffer zPrev in bytes */ - const char *zNext, /* Buffer containing next term */ - int nNext /* Size of buffer zNext in bytes */ -){ - int n; - UNUSED_PARAMETER(nNext); - for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++); - return n; -} - -/* -** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger -** (according to memcmp) than the previous term. -*/ -static int fts3NodeAddTerm( - Fts3Table *p, /* Virtual table handle */ - SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ - int isCopyTerm, /* True if zTerm/nTerm is transient */ - const char *zTerm, /* Pointer to buffer containing term */ - int nTerm /* Size of term in bytes */ -){ - SegmentNode *pTree = *ppTree; - int rc; - SegmentNode *pNew; - - /* First try to append the term to the current node. Return early if - ** this is possible. - */ - if( pTree ){ - int nData = pTree->nData; /* Current size of node in bytes */ - int nReq = nData; /* Required space after adding zTerm */ - int nPrefix; /* Number of bytes of prefix compression */ - int nSuffix; /* Suffix length */ - - nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); - nSuffix = nTerm-nPrefix; - - nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; - if( nReq<=p->nNodeSize || !pTree->zTerm ){ - - if( nReq>p->nNodeSize ){ - /* An unusual case: this is the first term to be added to the node - ** and the static node buffer (p->nNodeSize bytes) is not large - ** enough. Use a separately malloced buffer instead This wastes - ** p->nNodeSize bytes, but since this scenario only comes about when - ** the database contain two terms that share a prefix of almost 2KB, - ** this is not expected to be a serious problem. - */ - assert( pTree->aData==(char *)&pTree[1] ); - pTree->aData = (char *)sqlite3_malloc(nReq); - if( !pTree->aData ){ - return SQLITE_NOMEM; - } - } - - if( pTree->zTerm ){ - /* There is no prefix-length field for first term in a node */ - nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); - } - - nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); - memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); - pTree->nData = nData + nSuffix; - pTree->nEntry++; - - if( isCopyTerm ){ - if( pTree->nMalloc<nTerm ){ - char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2); - if( !zNew ){ - return SQLITE_NOMEM; - } - pTree->nMalloc = nTerm*2; - pTree->zMalloc = zNew; - } - pTree->zTerm = pTree->zMalloc; - memcpy(pTree->zTerm, zTerm, nTerm); - pTree->nTerm = nTerm; - }else{ - pTree->zTerm = (char *)zTerm; - pTree->nTerm = nTerm; - } - return SQLITE_OK; - } - } - - /* If control flows to here, it was not possible to append zTerm to the - ** current node. Create a new node (a right-sibling of the current node). - ** If this is the first node in the tree, the term is added to it. - ** - ** Otherwise, the term is not added to the new node, it is left empty for - ** now. Instead, the term is inserted into the parent of pTree. If pTree - ** has no parent, one is created here. - */ - pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); - if( !pNew ){ - return SQLITE_NOMEM; - } - memset(pNew, 0, sizeof(SegmentNode)); - pNew->nData = 1 + FTS3_VARINT_MAX; - pNew->aData = (char *)&pNew[1]; - - if( pTree ){ - SegmentNode *pParent = pTree->pParent; - rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); - if( pTree->pParent==0 ){ - pTree->pParent = pParent; - } - pTree->pRight = pNew; - pNew->pLeftmost = pTree->pLeftmost; - pNew->pParent = pParent; - pNew->zMalloc = pTree->zMalloc; - pNew->nMalloc = pTree->nMalloc; - pTree->zMalloc = 0; - }else{ - pNew->pLeftmost = pNew; - rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); - } - - *ppTree = pNew; - return rc; -} - -/* -** Helper function for fts3NodeWrite(). -*/ -static int fts3TreeFinishNode( - SegmentNode *pTree, - int iHeight, - sqlite3_int64 iLeftChild -){ - int nStart; - assert( iHeight>=1 && iHeight<128 ); - nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); - pTree->aData[nStart] = (char)iHeight; - sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); - return nStart; -} - -/* -** Write the buffer for the segment node pTree and all of its peers to the -** database. Then call this function recursively to write the parent of -** pTree and its peers to the database. -** -** Except, if pTree is a root node, do not write it to the database. Instead, -** set output variables *paRoot and *pnRoot to contain the root node. -** -** If successful, SQLITE_OK is returned and output variable *piLast is -** set to the largest blockid written to the database (or zero if no -** blocks were written to the db). Otherwise, an SQLite error code is -** returned. -*/ -static int fts3NodeWrite( - Fts3Table *p, /* Virtual table handle */ - SegmentNode *pTree, /* SegmentNode handle */ - int iHeight, /* Height of this node in tree */ - sqlite3_int64 iLeaf, /* Block id of first leaf node */ - sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ - sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ - char **paRoot, /* OUT: Data for root node */ - int *pnRoot /* OUT: Size of root node in bytes */ -){ - int rc = SQLITE_OK; - - if( !pTree->pParent ){ - /* Root node of the tree. */ - int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); - *piLast = iFree-1; - *pnRoot = pTree->nData - nStart; - *paRoot = &pTree->aData[nStart]; - }else{ - SegmentNode *pIter; - sqlite3_int64 iNextFree = iFree; - sqlite3_int64 iNextLeaf = iLeaf; - for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ - int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); - int nWrite = pIter->nData - nStart; - - rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); - iNextFree++; - iNextLeaf += (pIter->nEntry+1); - } - if( rc==SQLITE_OK ){ - assert( iNextLeaf==iFree ); - rc = fts3NodeWrite( - p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot - ); - } - } - - return rc; -} - -/* -** Free all memory allocations associated with the tree pTree. -*/ -static void fts3NodeFree(SegmentNode *pTree){ - if( pTree ){ - SegmentNode *p = pTree->pLeftmost; - fts3NodeFree(p->pParent); - while( p ){ - SegmentNode *pRight = p->pRight; - if( p->aData!=(char *)&p[1] ){ - sqlite3_free(p->aData); - } - assert( pRight==0 || p->zMalloc==0 ); - sqlite3_free(p->zMalloc); - sqlite3_free(p); - p = pRight; - } - } -} - -/* -** Add a term to the segment being constructed by the SegmentWriter object -** *ppWriter. When adding the first term to a segment, *ppWriter should -** be passed NULL. This function will allocate a new SegmentWriter object -** and return it via the input/output variable *ppWriter in this case. -** -** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. -*/ -static int fts3SegWriterAdd( - Fts3Table *p, /* Virtual table handle */ - SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ - int isCopyTerm, /* True if buffer zTerm must be copied */ - const char *zTerm, /* Pointer to buffer containing term */ - int nTerm, /* Size of term in bytes */ - const char *aDoclist, /* Pointer to buffer containing doclist */ - int nDoclist /* Size of doclist in bytes */ -){ - int nPrefix; /* Size of term prefix in bytes */ - int nSuffix; /* Size of term suffix in bytes */ - int nReq; /* Number of bytes required on leaf page */ - int nData; - SegmentWriter *pWriter = *ppWriter; - - if( !pWriter ){ - int rc; - sqlite3_stmt *pStmt; - - /* Allocate the SegmentWriter structure */ - pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); - if( !pWriter ) return SQLITE_NOMEM; - memset(pWriter, 0, sizeof(SegmentWriter)); - *ppWriter = pWriter; - - /* Allocate a buffer in which to accumulate data */ - pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); - if( !pWriter->aData ) return SQLITE_NOMEM; - pWriter->nSize = p->nNodeSize; - - /* Find the next free blockid in the %_segments table */ - rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); - if( rc!=SQLITE_OK ) return rc; - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - pWriter->iFree = sqlite3_column_int64(pStmt, 0); - pWriter->iFirst = pWriter->iFree; - } - rc = sqlite3_reset(pStmt); - if( rc!=SQLITE_OK ) return rc; - } - nData = pWriter->nData; - - nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); - nSuffix = nTerm-nPrefix; - - /* Figure out how many bytes are required by this new entry */ - nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ - sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ - nSuffix + /* Term suffix */ - sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ - nDoclist; /* Doclist data */ - - if( nData>0 && nData+nReq>p->nNodeSize ){ - int rc; - - /* The current leaf node is full. Write it out to the database. */ - rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); - if( rc!=SQLITE_OK ) return rc; - p->nLeafAdd++; - - /* Add the current term to the interior node tree. The term added to - ** the interior tree must: - ** - ** a) be greater than the largest term on the leaf node just written - ** to the database (still available in pWriter->zTerm), and - ** - ** b) be less than or equal to the term about to be added to the new - ** leaf node (zTerm/nTerm). - ** - ** In other words, it must be the prefix of zTerm 1 byte longer than - ** the common prefix (if any) of zTerm and pWriter->zTerm. - */ - assert( nPrefix<nTerm ); - rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); - if( rc!=SQLITE_OK ) return rc; - - nData = 0; - pWriter->nTerm = 0; - - nPrefix = 0; - nSuffix = nTerm; - nReq = 1 + /* varint containing prefix size */ - sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ - nTerm + /* Term suffix */ - sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ - nDoclist; /* Doclist data */ - } - - /* If the buffer currently allocated is too small for this entry, realloc - ** the buffer to make it large enough. - */ - if( nReq>pWriter->nSize ){ - char *aNew = sqlite3_realloc(pWriter->aData, nReq); - if( !aNew ) return SQLITE_NOMEM; - pWriter->aData = aNew; - pWriter->nSize = nReq; - } - assert( nData+nReq<=pWriter->nSize ); - - /* Append the prefix-compressed term and doclist to the buffer. */ - nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); - nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); - memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); - nData += nSuffix; - nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); - memcpy(&pWriter->aData[nData], aDoclist, nDoclist); - pWriter->nData = nData + nDoclist; - - /* Save the current term so that it can be used to prefix-compress the next. - ** If the isCopyTerm parameter is true, then the buffer pointed to by - ** zTerm is transient, so take a copy of the term data. Otherwise, just - ** store a copy of the pointer. - */ - if( isCopyTerm ){ - if( nTerm>pWriter->nMalloc ){ - char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); - if( !zNew ){ - return SQLITE_NOMEM; - } - pWriter->nMalloc = nTerm*2; - pWriter->zMalloc = zNew; - pWriter->zTerm = zNew; - } - assert( pWriter->zTerm==pWriter->zMalloc ); - memcpy(pWriter->zTerm, zTerm, nTerm); - }else{ - pWriter->zTerm = (char *)zTerm; - } - pWriter->nTerm = nTerm; - - return SQLITE_OK; -} - -/* -** Flush all data associated with the SegmentWriter object pWriter to the -** database. This function must be called after all terms have been added -** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is -** returned. Otherwise, an SQLite error code. -*/ -static int fts3SegWriterFlush( - Fts3Table *p, /* Virtual table handle */ - SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ - sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ - int iIdx /* Value for 'idx' column of %_segdir */ -){ - int rc; /* Return code */ - if( pWriter->pTree ){ - sqlite3_int64 iLast = 0; /* Largest block id written to database */ - sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ - char *zRoot = NULL; /* Pointer to buffer containing root node */ - int nRoot = 0; /* Size of buffer zRoot */ - - iLastLeaf = pWriter->iFree; - rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); - if( rc==SQLITE_OK ){ - rc = fts3NodeWrite(p, pWriter->pTree, 1, - pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); - } - if( rc==SQLITE_OK ){ - rc = fts3WriteSegdir( - p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot); - } - }else{ - /* The entire tree fits on the root node. Write it to the segdir table. */ - rc = fts3WriteSegdir( - p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData); - } - p->nLeafAdd++; - return rc; -} - -/* -** Release all memory held by the SegmentWriter object passed as the -** first argument. -*/ -static void fts3SegWriterFree(SegmentWriter *pWriter){ - if( pWriter ){ - sqlite3_free(pWriter->aData); - sqlite3_free(pWriter->zMalloc); - fts3NodeFree(pWriter->pTree); - sqlite3_free(pWriter); - } -} - -/* -** The first value in the apVal[] array is assumed to contain an integer. -** This function tests if there exist any documents with docid values that -** are different from that integer. i.e. if deleting the document with docid -** pRowid would mean the FTS3 table were empty. -** -** If successful, *pisEmpty is set to true if the table is empty except for -** document pRowid, or false otherwise, and SQLITE_OK is returned. If an -** error occurs, an SQLite error code is returned. -*/ -static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ - sqlite3_stmt *pStmt; - int rc; - if( p->zContentTbl ){ - /* If using the content=xxx option, assume the table is never empty */ - *pisEmpty = 0; - rc = SQLITE_OK; - }else{ - rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); - if( rc==SQLITE_OK ){ - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - *pisEmpty = sqlite3_column_int(pStmt, 0); - } - rc = sqlite3_reset(pStmt); - } - } - return rc; -} - -/* -** Set *pnMax to the largest segment level in the database for the index -** iIndex. -** -** Segment levels are stored in the 'level' column of the %_segdir table. -** -** Return SQLITE_OK if successful, or an SQLite error code if not. -*/ -static int fts3SegmentMaxLevel( - Fts3Table *p, - int iLangid, - int iIndex, - sqlite3_int64 *pnMax -){ - sqlite3_stmt *pStmt; - int rc; - assert( iIndex>=0 && iIndex<p->nIndex ); - - /* Set pStmt to the compiled version of: - ** - ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? - ** - ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). - */ - rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); - if( rc!=SQLITE_OK ) return rc; - sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); - sqlite3_bind_int64(pStmt, 2, - getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) - ); - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - *pnMax = sqlite3_column_int64(pStmt, 0); - } - return sqlite3_reset(pStmt); -} - -/* -** Delete all entries in the %_segments table associated with the segment -** opened with seg-reader pSeg. This function does not affect the contents -** of the %_segdir table. -*/ -static int fts3DeleteSegment( - Fts3Table *p, /* FTS table handle */ - Fts3SegReader *pSeg /* Segment to delete */ -){ - int rc = SQLITE_OK; /* Return code */ - if( pSeg->iStartBlock ){ - sqlite3_stmt *pDelete; /* SQL statement to delete rows */ - rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); - sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); - sqlite3_step(pDelete); - rc = sqlite3_reset(pDelete); - } - } - return rc; -} - -/* -** This function is used after merging multiple segments into a single large -** segment to delete the old, now redundant, segment b-trees. Specifically, -** it: -** -** 1) Deletes all %_segments entries for the segments associated with -** each of the SegReader objects in the array passed as the third -** argument, and -** -** 2) deletes all %_segdir entries with level iLevel, or all %_segdir -** entries regardless of level if (iLevel<0). -** -** SQLITE_OK is returned if successful, otherwise an SQLite error code. -*/ -static int fts3DeleteSegdir( - Fts3Table *p, /* Virtual table handle */ - int iLangid, /* Language id */ - int iIndex, /* Index for p->aIndex */ - int iLevel, /* Level of %_segdir entries to delete */ - Fts3SegReader **apSegment, /* Array of SegReader objects */ - int nReader /* Size of array apSegment */ -){ - int rc = SQLITE_OK; /* Return Code */ - int i; /* Iterator variable */ - sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ - - for(i=0; rc==SQLITE_OK && i<nReader; i++){ - rc = fts3DeleteSegment(p, apSegment[i]); - } - if( rc!=SQLITE_OK ){ - return rc; - } - - assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); - if( iLevel==FTS3_SEGCURSOR_ALL ){ - rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); - sqlite3_bind_int64(pDelete, 2, - getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) - ); - } - }else{ - rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64( - pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) - ); - } - } - - if( rc==SQLITE_OK ){ - sqlite3_step(pDelete); - rc = sqlite3_reset(pDelete); - } - - return rc; -} - -/* -** When this function is called, buffer *ppList (size *pnList bytes) contains -** a position list that may (or may not) feature multiple columns. This -** function adjusts the pointer *ppList and the length *pnList so that they -** identify the subset of the position list that corresponds to column iCol. -** -** If there are no entries in the input position list for column iCol, then -** *pnList is set to zero before returning. -** -** If parameter bZero is non-zero, then any part of the input list following -** the end of the output list is zeroed before returning. -*/ -static void fts3ColumnFilter( - int iCol, /* Column to filter on */ - int bZero, /* Zero out anything following *ppList */ - char **ppList, /* IN/OUT: Pointer to position list */ - int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ -){ - char *pList = *ppList; - int nList = *pnList; - char *pEnd = &pList[nList]; - int iCurrent = 0; - char *p = pList; - - assert( iCol>=0 ); - while( 1 ){ - char c = 0; - while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; - - if( iCol==iCurrent ){ - nList = (int)(p - pList); - break; - } - - nList -= (int)(p - pList); - pList = p; - if( nList==0 ){ - break; - } - p = &pList[1]; - p += sqlite3Fts3GetVarint32(p, &iCurrent); - } - - if( bZero && &pList[nList]!=pEnd ){ - memset(&pList[nList], 0, pEnd - &pList[nList]); - } - *ppList = pList; - *pnList = nList; -} - -/* -** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any -** existing data). Grow the buffer if required. -** -** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered -** trying to resize the buffer, return SQLITE_NOMEM. -*/ -static int fts3MsrBufferData( - Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ - char *pList, - int nList -){ - if( nList>pMsr->nBuffer ){ - char *pNew; - pMsr->nBuffer = nList*2; - pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); - if( !pNew ) return SQLITE_NOMEM; - pMsr->aBuffer = pNew; - } - - memcpy(pMsr->aBuffer, pList, nList); - return SQLITE_OK; -} - -SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( - Fts3Table *p, /* Virtual table handle */ - Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ - sqlite3_int64 *piDocid, /* OUT: Docid value */ - char **paPoslist, /* OUT: Pointer to position list */ - int *pnPoslist /* OUT: Size of position list in bytes */ -){ - int nMerge = pMsr->nAdvance; - Fts3SegReader **apSegment = pMsr->apSegment; - int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( - p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp - ); - - if( nMerge==0 ){ - *paPoslist = 0; - return SQLITE_OK; - } - - while( 1 ){ - Fts3SegReader *pSeg; - pSeg = pMsr->apSegment[0]; - - if( pSeg->pOffsetList==0 ){ - *paPoslist = 0; - break; - }else{ - int rc; - char *pList; - int nList; - int j; - sqlite3_int64 iDocid = apSegment[0]->iDocid; - - rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); - j = 1; - while( rc==SQLITE_OK - && j<nMerge - && apSegment[j]->pOffsetList - && apSegment[j]->iDocid==iDocid - ){ - rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); - j++; - } - if( rc!=SQLITE_OK ) return rc; - fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); - - if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ - rc = fts3MsrBufferData(pMsr, pList, nList+1); - if( rc!=SQLITE_OK ) return rc; - assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); - pList = pMsr->aBuffer; - } - - if( pMsr->iColFilter>=0 ){ - fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); - } - - if( nList>0 ){ - *paPoslist = pList; - *piDocid = iDocid; - *pnPoslist = nList; - break; - } - } - } - - return SQLITE_OK; -} - -static int fts3SegReaderStart( - Fts3Table *p, /* Virtual table handle */ - Fts3MultiSegReader *pCsr, /* Cursor object */ - const char *zTerm, /* Term searched for (or NULL) */ - int nTerm /* Length of zTerm in bytes */ -){ - int i; - int nSeg = pCsr->nSegment; - - /* If the Fts3SegFilter defines a specific term (or term prefix) to search - ** for, then advance each segment iterator until it points to a term of - ** equal or greater value than the specified term. This prevents many - ** unnecessary merge/sort operations for the case where single segment - ** b-tree leaf nodes contain more than one term. - */ - for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ - int res = 0; - Fts3SegReader *pSeg = pCsr->apSegment[i]; - do { - int rc = fts3SegReaderNext(p, pSeg, 0); - if( rc!=SQLITE_OK ) return rc; - }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); - - if( pSeg->bLookup && res!=0 ){ - fts3SegReaderSetEof(pSeg); - } - } - fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); - - return SQLITE_OK; -} - -SQLITE_PRIVATE int sqlite3Fts3SegReaderStart( - Fts3Table *p, /* Virtual table handle */ - Fts3MultiSegReader *pCsr, /* Cursor object */ - Fts3SegFilter *pFilter /* Restrictions on range of iteration */ -){ - pCsr->pFilter = pFilter; - return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); -} - -SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( - Fts3Table *p, /* Virtual table handle */ - Fts3MultiSegReader *pCsr, /* Cursor object */ - int iCol, /* Column to match on. */ - const char *zTerm, /* Term to iterate through a doclist for */ - int nTerm /* Number of bytes in zTerm */ -){ - int i; - int rc; - int nSegment = pCsr->nSegment; - int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( - p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp - ); - - assert( pCsr->pFilter==0 ); - assert( zTerm && nTerm>0 ); - - /* Advance each segment iterator until it points to the term zTerm/nTerm. */ - rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); - if( rc!=SQLITE_OK ) return rc; - - /* Determine how many of the segments actually point to zTerm/nTerm. */ - for(i=0; i<nSegment; i++){ - Fts3SegReader *pSeg = pCsr->apSegment[i]; - if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ - break; - } - } - pCsr->nAdvance = i; - - /* Advance each of the segments to point to the first docid. */ - for(i=0; i<pCsr->nAdvance; i++){ - rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); - if( rc!=SQLITE_OK ) return rc; - } - fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); - - assert( iCol<0 || iCol<p->nColumn ); - pCsr->iColFilter = iCol; - - return SQLITE_OK; -} - -/* -** This function is called on a MultiSegReader that has been started using -** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also -** have been made. Calling this function puts the MultiSegReader in such -** a state that if the next two calls are: -** -** sqlite3Fts3SegReaderStart() -** sqlite3Fts3SegReaderStep() -** -** then the entire doclist for the term is available in -** MultiSegReader.aDoclist/nDoclist. -*/ -SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ - int i; /* Used to iterate through segment-readers */ - - assert( pCsr->zTerm==0 ); - assert( pCsr->nTerm==0 ); - assert( pCsr->aDoclist==0 ); - assert( pCsr->nDoclist==0 ); - - pCsr->nAdvance = 0; - pCsr->bRestart = 1; - for(i=0; i<pCsr->nSegment; i++){ - pCsr->apSegment[i]->pOffsetList = 0; - pCsr->apSegment[i]->nOffsetList = 0; - pCsr->apSegment[i]->iDocid = 0; - } - - return SQLITE_OK; -} - - -SQLITE_PRIVATE int sqlite3Fts3SegReaderStep( - Fts3Table *p, /* Virtual table handle */ - Fts3MultiSegReader *pCsr /* Cursor object */ -){ - int rc = SQLITE_OK; - - int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); - int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); - int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); - int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); - int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); - int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); - - Fts3SegReader **apSegment = pCsr->apSegment; - int nSegment = pCsr->nSegment; - Fts3SegFilter *pFilter = pCsr->pFilter; - int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( - p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp - ); - - if( pCsr->nSegment==0 ) return SQLITE_OK; - - do { - int nMerge; - int i; - - /* Advance the first pCsr->nAdvance entries in the apSegment[] array - ** forward. Then sort the list in order of current term again. - */ - for(i=0; i<pCsr->nAdvance; i++){ - Fts3SegReader *pSeg = apSegment[i]; - if( pSeg->bLookup ){ - fts3SegReaderSetEof(pSeg); - }else{ - rc = fts3SegReaderNext(p, pSeg, 0); - } - if( rc!=SQLITE_OK ) return rc; - } - fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); - pCsr->nAdvance = 0; - - /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ - assert( rc==SQLITE_OK ); - if( apSegment[0]->aNode==0 ) break; - - pCsr->nTerm = apSegment[0]->nTerm; - pCsr->zTerm = apSegment[0]->zTerm; - - /* If this is a prefix-search, and if the term that apSegment[0] points - ** to does not share a suffix with pFilter->zTerm/nTerm, then all - ** required callbacks have been made. In this case exit early. - ** - ** Similarly, if this is a search for an exact match, and the first term - ** of segment apSegment[0] is not a match, exit early. - */ - if( pFilter->zTerm && !isScan ){ - if( pCsr->nTerm<pFilter->nTerm - || (!isPrefix && pCsr->nTerm>pFilter->nTerm) - || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) - ){ - break; - } - } - - nMerge = 1; - while( nMerge<nSegment - && apSegment[nMerge]->aNode - && apSegment[nMerge]->nTerm==pCsr->nTerm - && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) - ){ - nMerge++; - } - - assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); - if( nMerge==1 - && !isIgnoreEmpty - && !isFirst - && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) - ){ - pCsr->nDoclist = apSegment[0]->nDoclist; - if( fts3SegReaderIsPending(apSegment[0]) ){ - rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); - pCsr->aDoclist = pCsr->aBuffer; - }else{ - pCsr->aDoclist = apSegment[0]->aDoclist; - } - if( rc==SQLITE_OK ) rc = SQLITE_ROW; - }else{ - int nDoclist = 0; /* Size of doclist */ - sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ - - /* The current term of the first nMerge entries in the array - ** of Fts3SegReader objects is the same. The doclists must be merged - ** and a single term returned with the merged doclist. - */ - for(i=0; i<nMerge; i++){ - fts3SegReaderFirstDocid(p, apSegment[i]); - } - fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); - while( apSegment[0]->pOffsetList ){ - int j; /* Number of segments that share a docid */ - char *pList; - int nList; - int nByte; - sqlite3_int64 iDocid = apSegment[0]->iDocid; - fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); - j = 1; - while( j<nMerge - && apSegment[j]->pOffsetList - && apSegment[j]->iDocid==iDocid - ){ - fts3SegReaderNextDocid(p, apSegment[j], 0, 0); - j++; - } - - if( isColFilter ){ - fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); - } - - if( !isIgnoreEmpty || nList>0 ){ - - /* Calculate the 'docid' delta value to write into the merged - ** doclist. */ - sqlite3_int64 iDelta; - if( p->bDescIdx && nDoclist>0 ){ - iDelta = iPrev - iDocid; - }else{ - iDelta = iDocid - iPrev; - } - assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) ); - assert( nDoclist>0 || iDelta==iDocid ); - - nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); - if( nDoclist+nByte>pCsr->nBuffer ){ - char *aNew; - pCsr->nBuffer = (nDoclist+nByte)*2; - aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); - if( !aNew ){ - return SQLITE_NOMEM; - } - pCsr->aBuffer = aNew; - } - - if( isFirst ){ - char *a = &pCsr->aBuffer[nDoclist]; - int nWrite; - - nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); - if( nWrite ){ - iPrev = iDocid; - nDoclist += nWrite; - } - }else{ - nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); - iPrev = iDocid; - if( isRequirePos ){ - memcpy(&pCsr->aBuffer[nDoclist], pList, nList); - nDoclist += nList; - pCsr->aBuffer[nDoclist++] = '\0'; - } - } - } - - fts3SegReaderSort(apSegment, nMerge, j, xCmp); - } - if( nDoclist>0 ){ - pCsr->aDoclist = pCsr->aBuffer; - pCsr->nDoclist = nDoclist; - rc = SQLITE_ROW; - } - } - pCsr->nAdvance = nMerge; - }while( rc==SQLITE_OK ); - - return rc; -} - - -SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish( - Fts3MultiSegReader *pCsr /* Cursor object */ -){ - if( pCsr ){ - int i; - for(i=0; i<pCsr->nSegment; i++){ - sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); - } - sqlite3_free(pCsr->apSegment); - sqlite3_free(pCsr->aBuffer); - - pCsr->nSegment = 0; - pCsr->apSegment = 0; - pCsr->aBuffer = 0; - } -} - -/* -** Merge all level iLevel segments in the database into a single -** iLevel+1 segment. Or, if iLevel<0, merge all segments into a -** single segment with a level equal to the numerically largest level -** currently present in the database. -** -** If this function is called with iLevel<0, but there is only one -** segment in the database, SQLITE_DONE is returned immediately. -** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, -** an SQLite error code is returned. -*/ -static int fts3SegmentMerge( - Fts3Table *p, - int iLangid, /* Language id to merge */ - int iIndex, /* Index in p->aIndex[] to merge */ - int iLevel /* Level to merge */ -){ - int rc; /* Return code */ - int iIdx = 0; /* Index of new segment */ - sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ - SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ - Fts3SegFilter filter; /* Segment term filter condition */ - Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ - int bIgnoreEmpty = 0; /* True to ignore empty segments */ - - assert( iLevel==FTS3_SEGCURSOR_ALL - || iLevel==FTS3_SEGCURSOR_PENDING - || iLevel>=0 - ); - assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); - assert( iIndex>=0 && iIndex<p->nIndex ); - - rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); - if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; - - if( iLevel==FTS3_SEGCURSOR_ALL ){ - /* This call is to merge all segments in the database to a single - ** segment. The level of the new segment is equal to the numerically - ** greatest segment level currently present in the database for this - ** index. The idx of the new segment is always 0. */ - if( csr.nSegment==1 ){ - rc = SQLITE_DONE; - goto finished; - } - rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iNewLevel); - bIgnoreEmpty = 1; - - }else if( iLevel==FTS3_SEGCURSOR_PENDING ){ - iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, 0); - rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, 0, &iIdx); - }else{ - /* This call is to merge all segments at level iLevel. find the next - ** available segment index at level iLevel+1. The call to - ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to - ** a single iLevel+2 segment if necessary. */ - rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); - iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); - } - if( rc!=SQLITE_OK ) goto finished; - assert( csr.nSegment>0 ); - assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); - assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) ); - - memset(&filter, 0, sizeof(Fts3SegFilter)); - filter.flags = FTS3_SEGMENT_REQUIRE_POS; - filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); - - rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); - while( SQLITE_OK==rc ){ - rc = sqlite3Fts3SegReaderStep(p, &csr); - if( rc!=SQLITE_ROW ) break; - rc = fts3SegWriterAdd(p, &pWriter, 1, - csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); - } - if( rc!=SQLITE_OK ) goto finished; - assert( pWriter ); - - if( iLevel!=FTS3_SEGCURSOR_PENDING ){ - rc = fts3DeleteSegdir( - p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment - ); - if( rc!=SQLITE_OK ) goto finished; - } - rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); - - finished: - fts3SegWriterFree(pWriter); - sqlite3Fts3SegReaderFinish(&csr); - return rc; -} - - -/* -** Flush the contents of pendingTerms to level 0 segments. -*/ -SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ - int rc = SQLITE_OK; - int i; - - for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ - rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); - if( rc==SQLITE_DONE ) rc = SQLITE_OK; - } - sqlite3Fts3PendingTermsClear(p); - - /* Determine the auto-incr-merge setting if unknown. If enabled, - ** estimate the number of leaf blocks of content to be written - */ - if( rc==SQLITE_OK && p->bHasStat - && p->bAutoincrmerge==0xff && p->nLeafAdd>0 - ){ - sqlite3_stmt *pStmt = 0; - rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); - rc = sqlite3_step(pStmt); - p->bAutoincrmerge = (rc==SQLITE_ROW && sqlite3_column_int(pStmt, 0)); - rc = sqlite3_reset(pStmt); - } - } - return rc; -} - -/* -** Encode N integers as varints into a blob. -*/ -static void fts3EncodeIntArray( - int N, /* The number of integers to encode */ - u32 *a, /* The integer values */ - char *zBuf, /* Write the BLOB here */ - int *pNBuf /* Write number of bytes if zBuf[] used here */ -){ - int i, j; - for(i=j=0; i<N; i++){ - j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); - } - *pNBuf = j; -} - -/* -** Decode a blob of varints into N integers -*/ -static void fts3DecodeIntArray( - int N, /* The number of integers to decode */ - u32 *a, /* Write the integer values */ - const char *zBuf, /* The BLOB containing the varints */ - int nBuf /* size of the BLOB */ -){ - int i, j; - UNUSED_PARAMETER(nBuf); - for(i=j=0; i<N; i++){ - sqlite3_int64 x; - j += sqlite3Fts3GetVarint(&zBuf[j], &x); - assert(j<=nBuf); - a[i] = (u32)(x & 0xffffffff); - } -} - -/* -** Insert the sizes (in tokens) for each column of the document -** with docid equal to p->iPrevDocid. The sizes are encoded as -** a blob of varints. -*/ -static void fts3InsertDocsize( - int *pRC, /* Result code */ - Fts3Table *p, /* Table into which to insert */ - u32 *aSz /* Sizes of each column, in tokens */ -){ - char *pBlob; /* The BLOB encoding of the document size */ - int nBlob; /* Number of bytes in the BLOB */ - sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ - int rc; /* Result code from subfunctions */ - - if( *pRC ) return; - pBlob = sqlite3_malloc( 10*p->nColumn ); - if( pBlob==0 ){ - *pRC = SQLITE_NOMEM; - return; - } - fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); - rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); - if( rc ){ - sqlite3_free(pBlob); - *pRC = rc; - return; - } - sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); - sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); - sqlite3_step(pStmt); - *pRC = sqlite3_reset(pStmt); -} - -/* -** Record 0 of the %_stat table contains a blob consisting of N varints, -** where N is the number of user defined columns in the fts3 table plus -** two. If nCol is the number of user defined columns, then values of the -** varints are set as follows: -** -** Varint 0: Total number of rows in the table. -** -** Varint 1..nCol: For each column, the total number of tokens stored in -** the column for all rows of the table. -** -** Varint 1+nCol: The total size, in bytes, of all text values in all -** columns of all rows of the table. -** -*/ -static void fts3UpdateDocTotals( - int *pRC, /* The result code */ - Fts3Table *p, /* Table being updated */ - u32 *aSzIns, /* Size increases */ - u32 *aSzDel, /* Size decreases */ - int nChng /* Change in the number of documents */ -){ - char *pBlob; /* Storage for BLOB written into %_stat */ - int nBlob; /* Size of BLOB written into %_stat */ - u32 *a; /* Array of integers that becomes the BLOB */ - sqlite3_stmt *pStmt; /* Statement for reading and writing */ - int i; /* Loop counter */ - int rc; /* Result code from subfunctions */ - - const int nStat = p->nColumn+2; - - if( *pRC ) return; - a = sqlite3_malloc( (sizeof(u32)+10)*nStat ); - if( a==0 ){ - *pRC = SQLITE_NOMEM; - return; - } - pBlob = (char*)&a[nStat]; - rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); - if( rc ){ - sqlite3_free(a); - *pRC = rc; - return; - } - sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); - if( sqlite3_step(pStmt)==SQLITE_ROW ){ - fts3DecodeIntArray(nStat, a, - sqlite3_column_blob(pStmt, 0), - sqlite3_column_bytes(pStmt, 0)); - }else{ - memset(a, 0, sizeof(u32)*(nStat) ); - } - rc = sqlite3_reset(pStmt); - if( rc!=SQLITE_OK ){ - sqlite3_free(a); - *pRC = rc; - return; - } - if( nChng<0 && a[0]<(u32)(-nChng) ){ - a[0] = 0; - }else{ - a[0] += nChng; - } - for(i=0; i<p->nColumn+1; i++){ - u32 x = a[i+1]; - if( x+aSzIns[i] < aSzDel[i] ){ - x = 0; - }else{ - x = x + aSzIns[i] - aSzDel[i]; - } - a[i+1] = x; - } - fts3EncodeIntArray(nStat, a, pBlob, &nBlob); - rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); - if( rc ){ - sqlite3_free(a); - *pRC = rc; - return; - } - sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); - sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); - sqlite3_step(pStmt); - *pRC = sqlite3_reset(pStmt); - sqlite3_free(a); -} - -/* -** Merge the entire database so that there is one segment for each -** iIndex/iLangid combination. -*/ -static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ - int bSeenDone = 0; - int rc; - sqlite3_stmt *pAllLangid = 0; - - rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); - if( rc==SQLITE_OK ){ - int rc2; - sqlite3_bind_int(pAllLangid, 1, p->nIndex); - while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ - int i; - int iLangid = sqlite3_column_int(pAllLangid, 0); - for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ - rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); - if( rc==SQLITE_DONE ){ - bSeenDone = 1; - rc = SQLITE_OK; - } - } - } - rc2 = sqlite3_reset(pAllLangid); - if( rc==SQLITE_OK ) rc = rc2; - } - - sqlite3Fts3SegmentsClose(p); - sqlite3Fts3PendingTermsClear(p); - - return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; -} - -/* -** This function is called when the user executes the following statement: -** -** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); -** -** The entire FTS index is discarded and rebuilt. If the table is one -** created using the content=xxx option, then the new index is based on -** the current contents of the xxx table. Otherwise, it is rebuilt based -** on the contents of the %_content table. -*/ -static int fts3DoRebuild(Fts3Table *p){ - int rc; /* Return Code */ - - rc = fts3DeleteAll(p, 0); - if( rc==SQLITE_OK ){ - u32 *aSz = 0; - u32 *aSzIns = 0; - u32 *aSzDel = 0; - sqlite3_stmt *pStmt = 0; - int nEntry = 0; - - /* Compose and prepare an SQL statement to loop through the content table */ - char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); - sqlite3_free(zSql); - } - - if( rc==SQLITE_OK ){ - int nByte = sizeof(u32) * (p->nColumn+1)*3; - aSz = (u32 *)sqlite3_malloc(nByte); - if( aSz==0 ){ - rc = SQLITE_NOMEM; - }else{ - memset(aSz, 0, nByte); - aSzIns = &aSz[p->nColumn+1]; - aSzDel = &aSzIns[p->nColumn+1]; - } - } - - while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ - int iCol; - int iLangid = langidFromSelect(p, pStmt); - rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); - memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); - for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ - const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); - rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); - aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); - } - if( p->bHasDocsize ){ - fts3InsertDocsize(&rc, p, aSz); - } - if( rc!=SQLITE_OK ){ - sqlite3_finalize(pStmt); - pStmt = 0; - }else{ - nEntry++; - for(iCol=0; iCol<=p->nColumn; iCol++){ - aSzIns[iCol] += aSz[iCol]; - } - } - } - if( p->bFts4 ){ - fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); - } - sqlite3_free(aSz); - - if( pStmt ){ - int rc2 = sqlite3_finalize(pStmt); - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - } - - return rc; -} - - -/* -** This function opens a cursor used to read the input data for an -** incremental merge operation. Specifically, it opens a cursor to scan -** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute -** level iAbsLevel. -*/ -static int fts3IncrmergeCsr( - Fts3Table *p, /* FTS3 table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level to open */ - int nSeg, /* Number of segments to merge */ - Fts3MultiSegReader *pCsr /* Cursor object to populate */ -){ - int rc; /* Return Code */ - sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ - int nByte; /* Bytes allocated at pCsr->apSegment[] */ - - /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ - memset(pCsr, 0, sizeof(*pCsr)); - nByte = sizeof(Fts3SegReader *) * nSeg; - pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); - - if( pCsr->apSegment==0 ){ - rc = SQLITE_NOMEM; - }else{ - memset(pCsr->apSegment, 0, nByte); - rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); - } - if( rc==SQLITE_OK ){ - int i; - int rc2; - sqlite3_bind_int64(pStmt, 1, iAbsLevel); - assert( pCsr->nSegment==0 ); - for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ - rc = sqlite3Fts3SegReaderNew(i, 0, - sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ - sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ - sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ - sqlite3_column_blob(pStmt, 4), /* segdir.root */ - sqlite3_column_bytes(pStmt, 4), /* segdir.root */ - &pCsr->apSegment[i] - ); - pCsr->nSegment++; - } - rc2 = sqlite3_reset(pStmt); - if( rc==SQLITE_OK ) rc = rc2; - } - - return rc; -} - -typedef struct IncrmergeWriter IncrmergeWriter; -typedef struct NodeWriter NodeWriter; -typedef struct Blob Blob; -typedef struct NodeReader NodeReader; - -/* -** An instance of the following structure is used as a dynamic buffer -** to build up nodes or other blobs of data in. -** -** The function blobGrowBuffer() is used to extend the allocation. -*/ -struct Blob { - char *a; /* Pointer to allocation */ - int n; /* Number of valid bytes of data in a[] */ - int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ -}; - -/* -** This structure is used to build up buffers containing segment b-tree -** nodes (blocks). -*/ -struct NodeWriter { - sqlite3_int64 iBlock; /* Current block id */ - Blob key; /* Last key written to the current block */ - Blob block; /* Current block image */ -}; - -/* -** An object of this type contains the state required to create or append -** to an appendable b-tree segment. -*/ -struct IncrmergeWriter { - int nLeafEst; /* Space allocated for leaf blocks */ - int nWork; /* Number of leaf pages flushed */ - sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ - int iIdx; /* Index of *output* segment in iAbsLevel+1 */ - sqlite3_int64 iStart; /* Block number of first allocated block */ - sqlite3_int64 iEnd; /* Block number of last allocated block */ - NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; -}; - -/* -** An object of the following type is used to read data from a single -** FTS segment node. See the following functions: -** -** nodeReaderInit() -** nodeReaderNext() -** nodeReaderRelease() -*/ -struct NodeReader { - const char *aNode; - int nNode; - int iOff; /* Current offset within aNode[] */ - - /* Output variables. Containing the current node entry. */ - sqlite3_int64 iChild; /* Pointer to child node */ - Blob term; /* Current term */ - const char *aDoclist; /* Pointer to doclist */ - int nDoclist; /* Size of doclist in bytes */ -}; - -/* -** If *pRc is not SQLITE_OK when this function is called, it is a no-op. -** Otherwise, if the allocation at pBlob->a is not already at least nMin -** bytes in size, extend (realloc) it to be so. -** -** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a -** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc -** to reflect the new size of the pBlob->a[] buffer. -*/ -static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ - if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ - int nAlloc = nMin; - char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); - if( a ){ - pBlob->nAlloc = nAlloc; - pBlob->a = a; - }else{ - *pRc = SQLITE_NOMEM; - } - } -} - -/* -** Attempt to advance the node-reader object passed as the first argument to -** the next entry on the node. -** -** Return an error code if an error occurs (SQLITE_NOMEM is possible). -** Otherwise return SQLITE_OK. If there is no next entry on the node -** (e.g. because the current entry is the last) set NodeReader->aNode to -** NULL to indicate EOF. Otherwise, populate the NodeReader structure output -** variables for the new entry. -*/ -static int nodeReaderNext(NodeReader *p){ - int bFirst = (p->term.n==0); /* True for first term on the node */ - int nPrefix = 0; /* Bytes to copy from previous term */ - int nSuffix = 0; /* Bytes to append to the prefix */ - int rc = SQLITE_OK; /* Return code */ - - assert( p->aNode ); - if( p->iChild && bFirst==0 ) p->iChild++; - if( p->iOff>=p->nNode ){ - /* EOF */ - p->aNode = 0; - }else{ - if( bFirst==0 ){ - p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); - } - p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); - - blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); - if( rc==SQLITE_OK ){ - memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); - p->term.n = nPrefix+nSuffix; - p->iOff += nSuffix; - if( p->iChild==0 ){ - p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); - p->aDoclist = &p->aNode[p->iOff]; - p->iOff += p->nDoclist; - } - } - } - - assert( p->iOff<=p->nNode ); - - return rc; -} - -/* -** Release all dynamic resources held by node-reader object *p. -*/ -static void nodeReaderRelease(NodeReader *p){ - sqlite3_free(p->term.a); -} - -/* -** Initialize a node-reader object to read the node in buffer aNode/nNode. -** -** If successful, SQLITE_OK is returned and the NodeReader object set to -** point to the first entry on the node (if any). Otherwise, an SQLite -** error code is returned. -*/ -static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ - memset(p, 0, sizeof(NodeReader)); - p->aNode = aNode; - p->nNode = nNode; - - /* Figure out if this is a leaf or an internal node. */ - if( p->aNode[0] ){ - /* An internal node. */ - p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); - }else{ - p->iOff = 1; - } - - return nodeReaderNext(p); -} - -/* -** This function is called while writing an FTS segment each time a leaf o -** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed -** to be greater than the largest key on the node just written, but smaller -** than or equal to the first key that will be written to the next leaf -** node. -** -** The block id of the leaf node just written to disk may be found in -** (pWriter->aNodeWriter[0].iBlock) when this function is called. -*/ -static int fts3IncrmergePush( - Fts3Table *p, /* Fts3 table handle */ - IncrmergeWriter *pWriter, /* Writer object */ - const char *zTerm, /* Term to write to internal node */ - int nTerm /* Bytes at zTerm */ -){ - sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; - int iLayer; - - assert( nTerm>0 ); - for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ - sqlite3_int64 iNextPtr = 0; - NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; - int rc = SQLITE_OK; - int nPrefix; - int nSuffix; - int nSpace; - - /* Figure out how much space the key will consume if it is written to - ** the current node of layer iLayer. Due to the prefix compression, - ** the space required changes depending on which node the key is to - ** be added to. */ - nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); - nSuffix = nTerm - nPrefix; - nSpace = sqlite3Fts3VarintLen(nPrefix); - nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; - - if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ - /* If the current node of layer iLayer contains zero keys, or if adding - ** the key to it will not cause it to grow to larger than nNodeSize - ** bytes in size, write the key here. */ - - Blob *pBlk = &pNode->block; - if( pBlk->n==0 ){ - blobGrowBuffer(pBlk, p->nNodeSize, &rc); - if( rc==SQLITE_OK ){ - pBlk->a[0] = (char)iLayer; - pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); - } - } - blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); - blobGrowBuffer(&pNode->key, nTerm, &rc); - - if( rc==SQLITE_OK ){ - if( pNode->key.n ){ - pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); - } - pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); - memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); - pBlk->n += nSuffix; - - memcpy(pNode->key.a, zTerm, nTerm); - pNode->key.n = nTerm; - } - }else{ - /* Otherwise, flush the current node of layer iLayer to disk. - ** Then allocate a new, empty sibling node. The key will be written - ** into the parent of this node. */ - rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); - - assert( pNode->block.nAlloc>=p->nNodeSize ); - pNode->block.a[0] = (char)iLayer; - pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); - - iNextPtr = pNode->iBlock; - pNode->iBlock++; - pNode->key.n = 0; - } - - if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; - iPtr = iNextPtr; - } - - assert( 0 ); - return 0; -} - -/* -** Append a term and (optionally) doclist to the FTS segment node currently -** stored in blob *pNode. The node need not contain any terms, but the -** header must be written before this function is called. -** -** A node header is a single 0x00 byte for a leaf node, or a height varint -** followed by the left-hand-child varint for an internal node. -** -** The term to be appended is passed via arguments zTerm/nTerm. For a -** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal -** node, both aDoclist and nDoclist must be passed 0. -** -** If the size of the value in blob pPrev is zero, then this is the first -** term written to the node. Otherwise, pPrev contains a copy of the -** previous term. Before this function returns, it is updated to contain a -** copy of zTerm/nTerm. -** -** It is assumed that the buffer associated with pNode is already large -** enough to accommodate the new entry. The buffer associated with pPrev -** is extended by this function if requrired. -** -** If an error (i.e. OOM condition) occurs, an SQLite error code is -** returned. Otherwise, SQLITE_OK. -*/ -static int fts3AppendToNode( - Blob *pNode, /* Current node image to append to */ - Blob *pPrev, /* Buffer containing previous term written */ - const char *zTerm, /* New term to write */ - int nTerm, /* Size of zTerm in bytes */ - const char *aDoclist, /* Doclist (or NULL) to write */ - int nDoclist /* Size of aDoclist in bytes */ -){ - int rc = SQLITE_OK; /* Return code */ - int bFirst = (pPrev->n==0); /* True if this is the first term written */ - int nPrefix; /* Size of term prefix in bytes */ - int nSuffix; /* Size of term suffix in bytes */ - - /* Node must have already been started. There must be a doclist for a - ** leaf node, and there must not be a doclist for an internal node. */ - assert( pNode->n>0 ); - assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); - - blobGrowBuffer(pPrev, nTerm, &rc); - if( rc!=SQLITE_OK ) return rc; - - nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); - nSuffix = nTerm - nPrefix; - memcpy(pPrev->a, zTerm, nTerm); - pPrev->n = nTerm; - - if( bFirst==0 ){ - pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); - } - pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); - memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); - pNode->n += nSuffix; - - if( aDoclist ){ - pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); - memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); - pNode->n += nDoclist; - } - - assert( pNode->n<=pNode->nAlloc ); - - return SQLITE_OK; -} - -/* -** Append the current term and doclist pointed to by cursor pCsr to the -** appendable b-tree segment opened for writing by pWriter. -** -** Return SQLITE_OK if successful, or an SQLite error code otherwise. -*/ -static int fts3IncrmergeAppend( - Fts3Table *p, /* Fts3 table handle */ - IncrmergeWriter *pWriter, /* Writer object */ - Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ -){ - const char *zTerm = pCsr->zTerm; - int nTerm = pCsr->nTerm; - const char *aDoclist = pCsr->aDoclist; - int nDoclist = pCsr->nDoclist; - int rc = SQLITE_OK; /* Return code */ - int nSpace; /* Total space in bytes required on leaf */ - int nPrefix; /* Size of prefix shared with previous term */ - int nSuffix; /* Size of suffix (nTerm - nPrefix) */ - NodeWriter *pLeaf; /* Object used to write leaf nodes */ - - pLeaf = &pWriter->aNodeWriter[0]; - nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); - nSuffix = nTerm - nPrefix; - - nSpace = sqlite3Fts3VarintLen(nPrefix); - nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; - nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; - - /* If the current block is not empty, and if adding this term/doclist - ** to the current block would make it larger than Fts3Table.nNodeSize - ** bytes, write this block out to the database. */ - if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ - rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); - pWriter->nWork++; - - /* Add the current term to the parent node. The term added to the - ** parent must: - ** - ** a) be greater than the largest term on the leaf node just written - ** to the database (still available in pLeaf->key), and - ** - ** b) be less than or equal to the term about to be added to the new - ** leaf node (zTerm/nTerm). - ** - ** In other words, it must be the prefix of zTerm 1 byte longer than - ** the common prefix (if any) of zTerm and pWriter->zTerm. - */ - if( rc==SQLITE_OK ){ - rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); - } - - /* Advance to the next output block */ - pLeaf->iBlock++; - pLeaf->key.n = 0; - pLeaf->block.n = 0; - - nSuffix = nTerm; - nSpace = 1; - nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; - nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; - } - - blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); - - if( rc==SQLITE_OK ){ - if( pLeaf->block.n==0 ){ - pLeaf->block.n = 1; - pLeaf->block.a[0] = '\0'; - } - rc = fts3AppendToNode( - &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist - ); - } - - return rc; -} - -/* -** This function is called to release all dynamic resources held by the -** merge-writer object pWriter, and if no error has occurred, to flush -** all outstanding node buffers held by pWriter to disk. -** -** If *pRc is not SQLITE_OK when this function is called, then no attempt -** is made to write any data to disk. Instead, this function serves only -** to release outstanding resources. -** -** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while -** flushing buffers to disk, *pRc is set to an SQLite error code before -** returning. -*/ -static void fts3IncrmergeRelease( - Fts3Table *p, /* FTS3 table handle */ - IncrmergeWriter *pWriter, /* Merge-writer object */ - int *pRc /* IN/OUT: Error code */ -){ - int i; /* Used to iterate through non-root layers */ - int iRoot; /* Index of root in pWriter->aNodeWriter */ - NodeWriter *pRoot; /* NodeWriter for root node */ - int rc = *pRc; /* Error code */ - - /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment - ** root node. If the segment fits entirely on a single leaf node, iRoot - ** will be set to 0. If the root node is the parent of the leaves, iRoot - ** will be 1. And so on. */ - for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ - NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; - if( pNode->block.n>0 ) break; - assert( *pRc || pNode->block.nAlloc==0 ); - assert( *pRc || pNode->key.nAlloc==0 ); - sqlite3_free(pNode->block.a); - sqlite3_free(pNode->key.a); - } - - /* Empty output segment. This is a no-op. */ - if( iRoot<0 ) return; - - /* The entire output segment fits on a single node. Normally, this means - ** the node would be stored as a blob in the "root" column of the %_segdir - ** table. However, this is not permitted in this case. The problem is that - ** space has already been reserved in the %_segments table, and so the - ** start_block and end_block fields of the %_segdir table must be populated. - ** And, by design or by accident, released versions of FTS cannot handle - ** segments that fit entirely on the root node with start_block!=0. - ** - ** Instead, create a synthetic root node that contains nothing but a - ** pointer to the single content node. So that the segment consists of a - ** single leaf and a single interior (root) node. - ** - ** Todo: Better might be to defer allocating space in the %_segments - ** table until we are sure it is needed. - */ - if( iRoot==0 ){ - Blob *pBlock = &pWriter->aNodeWriter[1].block; - blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); - if( rc==SQLITE_OK ){ - pBlock->a[0] = 0x01; - pBlock->n = 1 + sqlite3Fts3PutVarint( - &pBlock->a[1], pWriter->aNodeWriter[0].iBlock - ); - } - iRoot = 1; - } - pRoot = &pWriter->aNodeWriter[iRoot]; - - /* Flush all currently outstanding nodes to disk. */ - for(i=0; i<iRoot; i++){ - NodeWriter *pNode = &pWriter->aNodeWriter[i]; - if( pNode->block.n>0 && rc==SQLITE_OK ){ - rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); - } - sqlite3_free(pNode->block.a); - sqlite3_free(pNode->key.a); - } - - /* Write the %_segdir record. */ - if( rc==SQLITE_OK ){ - rc = fts3WriteSegdir(p, - pWriter->iAbsLevel+1, /* level */ - pWriter->iIdx, /* idx */ - pWriter->iStart, /* start_block */ - pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ - pWriter->iEnd, /* end_block */ - pRoot->block.a, pRoot->block.n /* root */ - ); - } - sqlite3_free(pRoot->block.a); - sqlite3_free(pRoot->key.a); - - *pRc = rc; -} - -/* -** Compare the term in buffer zLhs (size in bytes nLhs) with that in -** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of -** the other, it is considered to be smaller than the other. -** -** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve -** if it is greater. -*/ -static int fts3TermCmp( - const char *zLhs, int nLhs, /* LHS of comparison */ - const char *zRhs, int nRhs /* RHS of comparison */ -){ - int nCmp = MIN(nLhs, nRhs); - int res; - - res = memcmp(zLhs, zRhs, nCmp); - if( res==0 ) res = nLhs - nRhs; - - return res; -} - - -/* -** Query to see if the entry in the %_segments table with blockid iEnd is -** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before -** returning. Otherwise, set *pbRes to 0. -** -** Or, if an error occurs while querying the database, return an SQLite -** error code. The final value of *pbRes is undefined in this case. -** -** This is used to test if a segment is an "appendable" segment. If it -** is, then a NULL entry has been inserted into the %_segments table -** with blockid %_segdir.end_block. -*/ -static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ - int bRes = 0; /* Result to set *pbRes to */ - sqlite3_stmt *pCheck = 0; /* Statement to query database with */ - int rc; /* Return code */ - - rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pCheck, 1, iEnd); - if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; - rc = sqlite3_reset(pCheck); - } - - *pbRes = bRes; - return rc; -} - -/* -** This function is called when initializing an incremental-merge operation. -** It checks if the existing segment with index value iIdx at absolute level -** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the -** merge-writer object *pWriter is initialized to write to it. -** -** An existing segment can be appended to by an incremental merge if: -** -** * It was initially created as an appendable segment (with all required -** space pre-allocated), and -** -** * The first key read from the input (arguments zKey and nKey) is -** greater than the largest key currently stored in the potential -** output segment. -*/ -static int fts3IncrmergeLoad( - Fts3Table *p, /* Fts3 table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ - int iIdx, /* Index of candidate output segment */ - const char *zKey, /* First key to write */ - int nKey, /* Number of bytes in nKey */ - IncrmergeWriter *pWriter /* Populate this object */ -){ - int rc; /* Return code */ - sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ - - rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); - if( rc==SQLITE_OK ){ - sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ - sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ - sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ - const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ - int nRoot = 0; /* Size of aRoot[] in bytes */ - int rc2; /* Return code from sqlite3_reset() */ - int bAppendable = 0; /* Set to true if segment is appendable */ - - /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ - sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); - sqlite3_bind_int(pSelect, 2, iIdx); - if( sqlite3_step(pSelect)==SQLITE_ROW ){ - iStart = sqlite3_column_int64(pSelect, 1); - iLeafEnd = sqlite3_column_int64(pSelect, 2); - iEnd = sqlite3_column_int64(pSelect, 3); - nRoot = sqlite3_column_bytes(pSelect, 4); - aRoot = sqlite3_column_blob(pSelect, 4); - }else{ - return sqlite3_reset(pSelect); - } - - /* Check for the zero-length marker in the %_segments table */ - rc = fts3IsAppendable(p, iEnd, &bAppendable); - - /* Check that zKey/nKey is larger than the largest key the candidate */ - if( rc==SQLITE_OK && bAppendable ){ - char *aLeaf = 0; - int nLeaf = 0; - - rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); - if( rc==SQLITE_OK ){ - NodeReader reader; - for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); - rc==SQLITE_OK && reader.aNode; - rc = nodeReaderNext(&reader) - ){ - assert( reader.aNode ); - } - if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ - bAppendable = 0; - } - nodeReaderRelease(&reader); - } - sqlite3_free(aLeaf); - } - - if( rc==SQLITE_OK && bAppendable ){ - /* It is possible to append to this segment. Set up the IncrmergeWriter - ** object to do so. */ - int i; - int nHeight = (int)aRoot[0]; - NodeWriter *pNode; - - pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; - pWriter->iStart = iStart; - pWriter->iEnd = iEnd; - pWriter->iAbsLevel = iAbsLevel; - pWriter->iIdx = iIdx; - - for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ - pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; - } - - pNode = &pWriter->aNodeWriter[nHeight]; - pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; - blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); - if( rc==SQLITE_OK ){ - memcpy(pNode->block.a, aRoot, nRoot); - pNode->block.n = nRoot; - } - - for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ - NodeReader reader; - pNode = &pWriter->aNodeWriter[i]; - - rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); - while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); - blobGrowBuffer(&pNode->key, reader.term.n, &rc); - if( rc==SQLITE_OK ){ - memcpy(pNode->key.a, reader.term.a, reader.term.n); - pNode->key.n = reader.term.n; - if( i>0 ){ - char *aBlock = 0; - int nBlock = 0; - pNode = &pWriter->aNodeWriter[i-1]; - pNode->iBlock = reader.iChild; - rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); - blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); - if( rc==SQLITE_OK ){ - memcpy(pNode->block.a, aBlock, nBlock); - pNode->block.n = nBlock; - } - sqlite3_free(aBlock); - } - } - nodeReaderRelease(&reader); - } - } - - rc2 = sqlite3_reset(pSelect); - if( rc==SQLITE_OK ) rc = rc2; - } - - return rc; -} - -/* -** Determine the largest segment index value that exists within absolute -** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus -** one before returning SQLITE_OK. Or, if there are no segments at all -** within level iAbsLevel, set *piIdx to zero. -** -** If an error occurs, return an SQLite error code. The final value of -** *piIdx is undefined in this case. -*/ -static int fts3IncrmergeOutputIdx( - Fts3Table *p, /* FTS Table handle */ - sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ - int *piIdx /* OUT: Next free index at iAbsLevel+1 */ -){ - int rc; - sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ - - rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); - sqlite3_step(pOutputIdx); - *piIdx = sqlite3_column_int(pOutputIdx, 0); - rc = sqlite3_reset(pOutputIdx); - } - - return rc; -} - -/* -** Allocate an appendable output segment on absolute level iAbsLevel+1 -** with idx value iIdx. -** -** In the %_segdir table, a segment is defined by the values in three -** columns: -** -** start_block -** leaves_end_block -** end_block -** -** When an appendable segment is allocated, it is estimated that the -** maximum number of leaf blocks that may be required is the sum of the -** number of leaf blocks consumed by the input segments, plus the number -** of input segments, multiplied by two. This value is stored in stack -** variable nLeafEst. -** -** A total of 16*nLeafEst blocks are allocated when an appendable segment -** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous -** array of leaf nodes starts at the first block allocated. The array -** of interior nodes that are parents of the leaf nodes start at block -** (start_block + (1 + end_block - start_block) / 16). And so on. -** -** In the actual code below, the value "16" is replaced with the -** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. -*/ -static int fts3IncrmergeWriter( - Fts3Table *p, /* Fts3 table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ - int iIdx, /* Index of new output segment */ - Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ - IncrmergeWriter *pWriter /* Populate this object */ -){ - int rc; /* Return Code */ - int i; /* Iterator variable */ - int nLeafEst = 0; /* Blocks allocated for leaf nodes */ - sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ - sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ - - /* Calculate nLeafEst. */ - rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); - sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); - if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ - nLeafEst = sqlite3_column_int(pLeafEst, 0); - } - rc = sqlite3_reset(pLeafEst); - } - if( rc!=SQLITE_OK ) return rc; - - /* Calculate the first block to use in the output segment */ - rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); - if( rc==SQLITE_OK ){ - if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ - pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); - pWriter->iEnd = pWriter->iStart - 1; - pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; - } - rc = sqlite3_reset(pFirstBlock); - } - if( rc!=SQLITE_OK ) return rc; - - /* Insert the marker in the %_segments table to make sure nobody tries - ** to steal the space just allocated. This is also used to identify - ** appendable segments. */ - rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); - if( rc!=SQLITE_OK ) return rc; - - pWriter->iAbsLevel = iAbsLevel; - pWriter->nLeafEst = nLeafEst; - pWriter->iIdx = iIdx; - - /* Set up the array of NodeWriter objects */ - for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ - pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; - } - return SQLITE_OK; -} - -/* -** Remove an entry from the %_segdir table. This involves running the -** following two statements: -** -** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx -** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx -** -** The DELETE statement removes the specific %_segdir level. The UPDATE -** statement ensures that the remaining segments have contiguously allocated -** idx values. -*/ -static int fts3RemoveSegdirEntry( - Fts3Table *p, /* FTS3 table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ - int iIdx /* Index of %_segdir entry to delete */ -){ - int rc; /* Return code */ - sqlite3_stmt *pDelete = 0; /* DELETE statement */ - - rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pDelete, 1, iAbsLevel); - sqlite3_bind_int(pDelete, 2, iIdx); - sqlite3_step(pDelete); - rc = sqlite3_reset(pDelete); - } - - return rc; -} - -/* -** One or more segments have just been removed from absolute level iAbsLevel. -** Update the 'idx' values of the remaining segments in the level so that -** the idx values are a contiguous sequence starting from 0. -*/ -static int fts3RepackSegdirLevel( - Fts3Table *p, /* FTS3 table handle */ - sqlite3_int64 iAbsLevel /* Absolute level to repack */ -){ - int rc; /* Return code */ - int *aIdx = 0; /* Array of remaining idx values */ - int nIdx = 0; /* Valid entries in aIdx[] */ - int nAlloc = 0; /* Allocated size of aIdx[] */ - int i; /* Iterator variable */ - sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ - sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ - - rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); - if( rc==SQLITE_OK ){ - int rc2; - sqlite3_bind_int64(pSelect, 1, iAbsLevel); - while( SQLITE_ROW==sqlite3_step(pSelect) ){ - if( nIdx>=nAlloc ){ - int *aNew; - nAlloc += 16; - aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); - if( !aNew ){ - rc = SQLITE_NOMEM; - break; - } - aIdx = aNew; - } - aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); - } - rc2 = sqlite3_reset(pSelect); - if( rc==SQLITE_OK ) rc = rc2; - } - - if( rc==SQLITE_OK ){ - rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); - } - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pUpdate, 2, iAbsLevel); - } - - assert( p->bIgnoreSavepoint==0 ); - p->bIgnoreSavepoint = 1; - for(i=0; rc==SQLITE_OK && i<nIdx; i++){ - if( aIdx[i]!=i ){ - sqlite3_bind_int(pUpdate, 3, aIdx[i]); - sqlite3_bind_int(pUpdate, 1, i); - sqlite3_step(pUpdate); - rc = sqlite3_reset(pUpdate); - } - } - p->bIgnoreSavepoint = 0; - - sqlite3_free(aIdx); - return rc; -} - -static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ - pNode->a[0] = (char)iHeight; - if( iChild ){ - assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); - pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); - }else{ - assert( pNode->nAlloc>=1 ); - pNode->n = 1; - } -} - -/* -** The first two arguments are a pointer to and the size of a segment b-tree -** node. The node may be a leaf or an internal node. -** -** This function creates a new node image in blob object *pNew by copying -** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) -** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. -*/ -static int fts3TruncateNode( - const char *aNode, /* Current node image */ - int nNode, /* Size of aNode in bytes */ - Blob *pNew, /* OUT: Write new node image here */ - const char *zTerm, /* Omit all terms smaller than this */ - int nTerm, /* Size of zTerm in bytes */ - sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ -){ - NodeReader reader; /* Reader object */ - Blob prev = {0, 0, 0}; /* Previous term written to new node */ - int rc = SQLITE_OK; /* Return code */ - int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ - - /* Allocate required output space */ - blobGrowBuffer(pNew, nNode, &rc); - if( rc!=SQLITE_OK ) return rc; - pNew->n = 0; - - /* Populate new node buffer */ - for(rc = nodeReaderInit(&reader, aNode, nNode); - rc==SQLITE_OK && reader.aNode; - rc = nodeReaderNext(&reader) - ){ - if( pNew->n==0 ){ - int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); - if( res<0 || (bLeaf==0 && res==0) ) continue; - fts3StartNode(pNew, (int)aNode[0], reader.iChild); - *piBlock = reader.iChild; - } - rc = fts3AppendToNode( - pNew, &prev, reader.term.a, reader.term.n, - reader.aDoclist, reader.nDoclist - ); - if( rc!=SQLITE_OK ) break; - } - if( pNew->n==0 ){ - fts3StartNode(pNew, (int)aNode[0], reader.iChild); - *piBlock = reader.iChild; - } - assert( pNew->n<=pNew->nAlloc ); - - nodeReaderRelease(&reader); - sqlite3_free(prev.a); - return rc; -} - -/* -** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute -** level iAbsLevel. This may involve deleting entries from the %_segments -** table, and modifying existing entries in both the %_segments and %_segdir -** tables. -** -** SQLITE_OK is returned if the segment is updated successfully. Or an -** SQLite error code otherwise. -*/ -static int fts3TruncateSegment( - Fts3Table *p, /* FTS3 table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ - int iIdx, /* Index within level of segment to modify */ - const char *zTerm, /* Remove terms smaller than this */ - int nTerm /* Number of bytes in buffer zTerm */ -){ - int rc = SQLITE_OK; /* Return code */ - Blob root = {0,0,0}; /* New root page image */ - Blob block = {0,0,0}; /* Buffer used for any other block */ - sqlite3_int64 iBlock = 0; /* Block id */ - sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ - sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ - sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ - - rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); - if( rc==SQLITE_OK ){ - int rc2; /* sqlite3_reset() return code */ - sqlite3_bind_int64(pFetch, 1, iAbsLevel); - sqlite3_bind_int(pFetch, 2, iIdx); - if( SQLITE_ROW==sqlite3_step(pFetch) ){ - const char *aRoot = sqlite3_column_blob(pFetch, 4); - int nRoot = sqlite3_column_bytes(pFetch, 4); - iOldStart = sqlite3_column_int64(pFetch, 1); - rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); - } - rc2 = sqlite3_reset(pFetch); - if( rc==SQLITE_OK ) rc = rc2; - } - - while( rc==SQLITE_OK && iBlock ){ - char *aBlock = 0; - int nBlock = 0; - iNewStart = iBlock; - - rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); - if( rc==SQLITE_OK ){ - rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); - } - if( rc==SQLITE_OK ){ - rc = fts3WriteSegment(p, iNewStart, block.a, block.n); - } - sqlite3_free(aBlock); - } - - /* Variable iNewStart now contains the first valid leaf node. */ - if( rc==SQLITE_OK && iNewStart ){ - sqlite3_stmt *pDel = 0; - rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pDel, 1, iOldStart); - sqlite3_bind_int64(pDel, 2, iNewStart-1); - sqlite3_step(pDel); - rc = sqlite3_reset(pDel); - } - } - - if( rc==SQLITE_OK ){ - sqlite3_stmt *pChomp = 0; - rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pChomp, 1, iNewStart); - sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); - sqlite3_bind_int64(pChomp, 3, iAbsLevel); - sqlite3_bind_int(pChomp, 4, iIdx); - sqlite3_step(pChomp); - rc = sqlite3_reset(pChomp); - } - } - - sqlite3_free(root.a); - sqlite3_free(block.a); - return rc; -} - -/* -** This function is called after an incrmental-merge operation has run to -** merge (or partially merge) two or more segments from absolute level -** iAbsLevel. -** -** Each input segment is either removed from the db completely (if all of -** its data was copied to the output segment by the incrmerge operation) -** or modified in place so that it no longer contains those entries that -** have been duplicated in the output segment. -*/ -static int fts3IncrmergeChomp( - Fts3Table *p, /* FTS table handle */ - sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ - Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ - int *pnRem /* Number of segments not deleted */ -){ - int i; - int nRem = 0; - int rc = SQLITE_OK; - - for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ - Fts3SegReader *pSeg = 0; - int j; - - /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding - ** somewhere in the pCsr->apSegment[] array. */ - for(j=0; ALWAYS(j<pCsr->nSegment); j++){ - pSeg = pCsr->apSegment[j]; - if( pSeg->iIdx==i ) break; - } - assert( j<pCsr->nSegment && pSeg->iIdx==i ); - - if( pSeg->aNode==0 ){ - /* Seg-reader is at EOF. Remove the entire input segment. */ - rc = fts3DeleteSegment(p, pSeg); - if( rc==SQLITE_OK ){ - rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); - } - *pnRem = 0; - }else{ - /* The incremental merge did not copy all the data from this - ** segment to the upper level. The segment is modified in place - ** so that it contains no keys smaller than zTerm/nTerm. */ - const char *zTerm = pSeg->zTerm; - int nTerm = pSeg->nTerm; - rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); - nRem++; - } - } - - if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ - rc = fts3RepackSegdirLevel(p, iAbsLevel); - } - - *pnRem = nRem; - return rc; -} - -/* -** Store an incr-merge hint in the database. -*/ -static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ - sqlite3_stmt *pReplace = 0; - int rc; /* Return code */ - - rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); - if( rc==SQLITE_OK ){ - sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); - sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); - sqlite3_step(pReplace); - rc = sqlite3_reset(pReplace); - } - - return rc; -} - -/* -** Load an incr-merge hint from the database. The incr-merge hint, if one -** exists, is stored in the rowid==1 row of the %_stat table. -** -** If successful, populate blob *pHint with the value read from the %_stat -** table and return SQLITE_OK. Otherwise, if an error occurs, return an -** SQLite error code. -*/ -static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ - sqlite3_stmt *pSelect = 0; - int rc; - - pHint->n = 0; - rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); - if( rc==SQLITE_OK ){ - int rc2; - sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); - if( SQLITE_ROW==sqlite3_step(pSelect) ){ - const char *aHint = sqlite3_column_blob(pSelect, 0); - int nHint = sqlite3_column_bytes(pSelect, 0); - if( aHint ){ - blobGrowBuffer(pHint, nHint, &rc); - if( rc==SQLITE_OK ){ - memcpy(pHint->a, aHint, nHint); - pHint->n = nHint; - } - } - } - rc2 = sqlite3_reset(pSelect); - if( rc==SQLITE_OK ) rc = rc2; - } - - return rc; -} - -/* -** If *pRc is not SQLITE_OK when this function is called, it is a no-op. -** Otherwise, append an entry to the hint stored in blob *pHint. Each entry -** consists of two varints, the absolute level number of the input segments -** and the number of input segments. -** -** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, -** set *pRc to an SQLite error code before returning. -*/ -static void fts3IncrmergeHintPush( - Blob *pHint, /* Hint blob to append to */ - i64 iAbsLevel, /* First varint to store in hint */ - int nInput, /* Second varint to store in hint */ - int *pRc /* IN/OUT: Error code */ -){ - blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); - if( *pRc==SQLITE_OK ){ - pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); - pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); - } -} - -/* -** Read the last entry (most recently pushed) from the hint blob *pHint -** and then remove the entry. Write the two values read to *piAbsLevel and -** *pnInput before returning. -** -** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does -** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. -*/ -static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ - const int nHint = pHint->n; - int i; - - i = pHint->n-2; - while( i>0 && (pHint->a[i-1] & 0x80) ) i--; - while( i>0 && (pHint->a[i-1] & 0x80) ) i--; - - pHint->n = i; - i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); - i += sqlite3Fts3GetVarint32(&pHint->a[i], pnInput); - if( i!=nHint ) return SQLITE_CORRUPT_VTAB; - - return SQLITE_OK; -} - - -/* -** Attempt an incremental merge that writes nMerge leaf blocks. -** -** Incremental merges happen nMin segments at a time. The two -** segments to be merged are the nMin oldest segments (the ones with -** the smallest indexes) in the highest level that contains at least -** nMin segments. Multiple merges might occur in an attempt to write the -** quota of nMerge leaf blocks. -*/ -SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ - int rc; /* Return code */ - int nRem = nMerge; /* Number of leaf pages yet to be written */ - Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ - Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ - IncrmergeWriter *pWriter; /* Writer object */ - int nSeg = 0; /* Number of input segments */ - sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ - Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ - int bDirtyHint = 0; /* True if blob 'hint' has been modified */ - - /* Allocate space for the cursor, filter and writer objects */ - const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); - pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); - if( !pWriter ) return SQLITE_NOMEM; - pFilter = (Fts3SegFilter *)&pWriter[1]; - pCsr = (Fts3MultiSegReader *)&pFilter[1]; - - rc = fts3IncrmergeHintLoad(p, &hint); - while( rc==SQLITE_OK && nRem>0 ){ - const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; - sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ - int bUseHint = 0; /* True if attempting to append */ - - /* Search the %_segdir table for the absolute level with the smallest - ** relative level number that contains at least nMin segments, if any. - ** If one is found, set iAbsLevel to the absolute level number and - ** nSeg to nMin. If no level with at least nMin segments can be found, - ** set nSeg to -1. - */ - rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); - sqlite3_bind_int(pFindLevel, 1, nMin); - if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ - iAbsLevel = sqlite3_column_int64(pFindLevel, 0); - nSeg = nMin; - }else{ - nSeg = -1; - } - rc = sqlite3_reset(pFindLevel); - - /* If the hint read from the %_stat table is not empty, check if the - ** last entry in it specifies a relative level smaller than or equal - ** to the level identified by the block above (if any). If so, this - ** iteration of the loop will work on merging at the hinted level. - */ - if( rc==SQLITE_OK && hint.n ){ - int nHint = hint.n; - sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ - int nHintSeg = 0; /* Hint number of segments */ - - rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); - if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ - iAbsLevel = iHintAbsLevel; - nSeg = nHintSeg; - bUseHint = 1; - bDirtyHint = 1; - }else{ - /* This undoes the effect of the HintPop() above - so that no entry - ** is removed from the hint blob. */ - hint.n = nHint; - } - } - - /* If nSeg is less that zero, then there is no level with at least - ** nMin segments and no hint in the %_stat table. No work to do. - ** Exit early in this case. */ - if( nSeg<0 ) break; - - /* Open a cursor to iterate through the contents of the oldest nSeg - ** indexes of absolute level iAbsLevel. If this cursor is opened using - ** the 'hint' parameters, it is possible that there are less than nSeg - ** segments available in level iAbsLevel. In this case, no work is - ** done on iAbsLevel - fall through to the next iteration of the loop - ** to start work on some other level. */ - memset(pWriter, 0, nAlloc); - pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; - if( rc==SQLITE_OK ){ - rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); - } - if( SQLITE_OK==rc && pCsr->nSegment==nSeg - && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) - && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) - ){ - int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ - rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); - if( rc==SQLITE_OK ){ - if( bUseHint && iIdx>0 ){ - const char *zKey = pCsr->zTerm; - int nKey = pCsr->nTerm; - rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); - }else{ - rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); - } - } - - if( rc==SQLITE_OK && pWriter->nLeafEst ){ - fts3LogMerge(nSeg, iAbsLevel); - do { - rc = fts3IncrmergeAppend(p, pWriter, pCsr); - if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); - if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; - }while( rc==SQLITE_ROW ); - - /* Update or delete the input segments */ - if( rc==SQLITE_OK ){ - nRem -= (1 + pWriter->nWork); - rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); - if( nSeg!=0 ){ - bDirtyHint = 1; - fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); - } - } - } - - fts3IncrmergeRelease(p, pWriter, &rc); - } - - sqlite3Fts3SegReaderFinish(pCsr); - } - - /* Write the hint values into the %_stat table for the next incr-merger */ - if( bDirtyHint && rc==SQLITE_OK ){ - rc = fts3IncrmergeHintStore(p, &hint); - } - - sqlite3_free(pWriter); - sqlite3_free(hint.a); - return rc; -} - -/* -** Convert the text beginning at *pz into an integer and return -** its value. Advance *pz to point to the first character past -** the integer. -*/ -static int fts3Getint(const char **pz){ - const char *z = *pz; - int i = 0; - while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0'; - *pz = z; - return i; -} - -/* -** Process statements of the form: -** -** INSERT INTO table(table) VALUES('merge=A,B'); -** -** A and B are integers that decode to be the number of leaf pages -** written for the merge, and the minimum number of segments on a level -** before it will be selected for a merge, respectively. -*/ -static int fts3DoIncrmerge( - Fts3Table *p, /* FTS3 table handle */ - const char *zParam /* Nul-terminated string containing "A,B" */ -){ - int rc; - int nMin = (FTS3_MERGE_COUNT / 2); - int nMerge = 0; - const char *z = zParam; - - /* Read the first integer value */ - nMerge = fts3Getint(&z); - - /* If the first integer value is followed by a ',', read the second - ** integer value. */ - if( z[0]==',' && z[1]!='\0' ){ - z++; - nMin = fts3Getint(&z); - } - - if( z[0]!='\0' || nMin<2 ){ - rc = SQLITE_ERROR; - }else{ - rc = SQLITE_OK; - if( !p->bHasStat ){ - assert( p->bFts4==0 ); - sqlite3Fts3CreateStatTable(&rc, p); - } - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); - } - sqlite3Fts3SegmentsClose(p); - } - return rc; -} - -/* -** Process statements of the form: -** -** INSERT INTO table(table) VALUES('automerge=X'); -** -** where X is an integer. X==0 means to turn automerge off. X!=0 means -** turn it on. The setting is persistent. -*/ -static int fts3DoAutoincrmerge( - Fts3Table *p, /* FTS3 table handle */ - const char *zParam /* Nul-terminated string containing boolean */ -){ - int rc = SQLITE_OK; - sqlite3_stmt *pStmt = 0; - p->bAutoincrmerge = fts3Getint(&zParam)!=0; - if( !p->bHasStat ){ - assert( p->bFts4==0 ); - sqlite3Fts3CreateStatTable(&rc, p); - if( rc ) return rc; - } - rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); - if( rc ) return rc;; - sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); - sqlite3_bind_int(pStmt, 2, p->bAutoincrmerge); - sqlite3_step(pStmt); - rc = sqlite3_reset(pStmt); - return rc; -} - -/* -** Return a 64-bit checksum for the FTS index entry specified by the -** arguments to this function. -*/ -static u64 fts3ChecksumEntry( - const char *zTerm, /* Pointer to buffer containing term */ - int nTerm, /* Size of zTerm in bytes */ - int iLangid, /* Language id for current row */ - int iIndex, /* Index (0..Fts3Table.nIndex-1) */ - i64 iDocid, /* Docid for current row. */ - int iCol, /* Column number */ - int iPos /* Position */ -){ - int i; - u64 ret = (u64)iDocid; - - ret += (ret<<3) + iLangid; - ret += (ret<<3) + iIndex; - ret += (ret<<3) + iCol; - ret += (ret<<3) + iPos; - for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; - - return ret; -} - -/* -** Return a checksum of all entries in the FTS index that correspond to -** language id iLangid. The checksum is calculated by XORing the checksums -** of each individual entry (see fts3ChecksumEntry()) together. -** -** If successful, the checksum value is returned and *pRc set to SQLITE_OK. -** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The -** return value is undefined in this case. -*/ -static u64 fts3ChecksumIndex( - Fts3Table *p, /* FTS3 table handle */ - int iLangid, /* Language id to return cksum for */ - int iIndex, /* Index to cksum (0..p->nIndex-1) */ - int *pRc /* OUT: Return code */ -){ - Fts3SegFilter filter; - Fts3MultiSegReader csr; - int rc; - u64 cksum = 0; - - assert( *pRc==SQLITE_OK ); - - memset(&filter, 0, sizeof(filter)); - memset(&csr, 0, sizeof(csr)); - filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; - filter.flags |= FTS3_SEGMENT_SCAN; - - rc = sqlite3Fts3SegReaderCursor( - p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr - ); - if( rc==SQLITE_OK ){ - rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); - } - - if( rc==SQLITE_OK ){ - while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ - char *pCsr = csr.aDoclist; - char *pEnd = &pCsr[csr.nDoclist]; - - i64 iDocid = 0; - i64 iCol = 0; - i64 iPos = 0; - - pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); - while( pCsr<pEnd ){ - i64 iVal = 0; - pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); - if( pCsr<pEnd ){ - if( iVal==0 || iVal==1 ){ - iCol = 0; - iPos = 0; - if( iVal ){ - pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); - }else{ - pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); - iDocid += iVal; - } - }else{ - iPos += (iVal - 2); - cksum = cksum ^ fts3ChecksumEntry( - csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, - (int)iCol, (int)iPos - ); - } - } - } - } - } - sqlite3Fts3SegReaderFinish(&csr); - - *pRc = rc; - return cksum; -} - -/* -** Check if the contents of the FTS index match the current contents of the -** content table. If no error occurs and the contents do match, set *pbOk -** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk -** to false before returning. -** -** If an error occurs (e.g. an OOM or IO error), return an SQLite error -** code. The final value of *pbOk is undefined in this case. -*/ -static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ - int rc = SQLITE_OK; /* Return code */ - u64 cksum1 = 0; /* Checksum based on FTS index contents */ - u64 cksum2 = 0; /* Checksum based on %_content contents */ - sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ - - /* This block calculates the checksum according to the FTS index. */ - rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); - if( rc==SQLITE_OK ){ - int rc2; - sqlite3_bind_int(pAllLangid, 1, p->nIndex); - while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ - int iLangid = sqlite3_column_int(pAllLangid, 0); - int i; - for(i=0; i<p->nIndex; i++){ - cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); - } - } - rc2 = sqlite3_reset(pAllLangid); - if( rc==SQLITE_OK ) rc = rc2; - } - - /* This block calculates the checksum according to the %_content table */ - rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); - if( rc==SQLITE_OK ){ - sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; - sqlite3_stmt *pStmt = 0; - char *zSql; - - zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); - sqlite3_free(zSql); - } - - while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ - i64 iDocid = sqlite3_column_int64(pStmt, 0); - int iLang = langidFromSelect(p, pStmt); - int iCol; - - for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ - const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); - int nText = sqlite3_column_bytes(pStmt, iCol+1); - sqlite3_tokenizer_cursor *pT = 0; - - rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText, &pT); - while( rc==SQLITE_OK ){ - char const *zToken; /* Buffer containing token */ - int nToken = 0; /* Number of bytes in token */ - int iDum1 = 0, iDum2 = 0; /* Dummy variables */ - int iPos = 0; /* Position of token in zText */ - - rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); - if( rc==SQLITE_OK ){ - int i; - cksum2 = cksum2 ^ fts3ChecksumEntry( - zToken, nToken, iLang, 0, iDocid, iCol, iPos - ); - for(i=1; i<p->nIndex; i++){ - if( p->aIndex[i].nPrefix<=nToken ){ - cksum2 = cksum2 ^ fts3ChecksumEntry( - zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos - ); - } - } - } - } - if( pT ) pModule->xClose(pT); - if( rc==SQLITE_DONE ) rc = SQLITE_OK; - } - } - - sqlite3_finalize(pStmt); - } - - *pbOk = (cksum1==cksum2); - return rc; -} - -/* -** Run the integrity-check. If no error occurs and the current contents of -** the FTS index are correct, return SQLITE_OK. Or, if the contents of the -** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. -** -** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite -** error code. -** -** The integrity-check works as follows. For each token and indexed token -** prefix in the document set, a 64-bit checksum is calculated (by code -** in fts3ChecksumEntry()) based on the following: -** -** + The index number (0 for the main index, 1 for the first prefix -** index etc.), -** + The token (or token prefix) text itself, -** + The language-id of the row it appears in, -** + The docid of the row it appears in, -** + The column it appears in, and -** + The tokens position within that column. -** -** The checksums for all entries in the index are XORed together to create -** a single checksum for the entire index. -** -** The integrity-check code calculates the same checksum in two ways: -** -** 1. By scanning the contents of the FTS index, and -** 2. By scanning and tokenizing the content table. -** -** If the two checksums are identical, the integrity-check is deemed to have -** passed. -*/ -static int fts3DoIntegrityCheck( - Fts3Table *p /* FTS3 table handle */ -){ - int rc; - int bOk = 0; - rc = fts3IntegrityCheck(p, &bOk); - if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB; - return rc; -} - -/* -** Handle a 'special' INSERT of the form: -** -** "INSERT INTO tbl(tbl) VALUES(<expr>)" -** -** Argument pVal contains the result of <expr>. Currently the only -** meaningful value to insert is the text 'optimize'. -*/ -static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ - int rc; /* Return Code */ - const char *zVal = (const char *)sqlite3_value_text(pVal); - int nVal = sqlite3_value_bytes(pVal); - - if( !zVal ){ - return SQLITE_NOMEM; - }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ - rc = fts3DoOptimize(p, 0); - }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ - rc = fts3DoRebuild(p); - }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ - rc = fts3DoIntegrityCheck(p); - }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ - rc = fts3DoIncrmerge(p, &zVal[6]); - }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ - rc = fts3DoAutoincrmerge(p, &zVal[10]); -#ifdef SQLITE_TEST - }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ - p->nNodeSize = atoi(&zVal[9]); - rc = SQLITE_OK; - }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ - p->nMaxPendingData = atoi(&zVal[11]); - rc = SQLITE_OK; -#endif - }else{ - rc = SQLITE_ERROR; - } - - return rc; -} - -#ifndef SQLITE_DISABLE_FTS4_DEFERRED -/* -** Delete all cached deferred doclists. Deferred doclists are cached -** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. -*/ -SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ - Fts3DeferredToken *pDef; - for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ - fts3PendingListDelete(pDef->pList); - pDef->pList = 0; - } -} - -/* -** Free all entries in the pCsr->pDeffered list. Entries are added to -** this list using sqlite3Fts3DeferToken(). -*/ -SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ - Fts3DeferredToken *pDef; - Fts3DeferredToken *pNext; - for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ - pNext = pDef->pNext; - fts3PendingListDelete(pDef->pList); - sqlite3_free(pDef); - } - pCsr->pDeferred = 0; -} - -/* -** Generate deferred-doclists for all tokens in the pCsr->pDeferred list -** based on the row that pCsr currently points to. -** -** A deferred-doclist is like any other doclist with position information -** included, except that it only contains entries for a single row of the -** table, not for all rows. -*/ -SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ - int rc = SQLITE_OK; /* Return code */ - if( pCsr->pDeferred ){ - int i; /* Used to iterate through table columns */ - sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ - Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ - - Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; - sqlite3_tokenizer *pT = p->pTokenizer; - sqlite3_tokenizer_module const *pModule = pT->pModule; - - assert( pCsr->isRequireSeek==0 ); - iDocid = sqlite3_column_int64(pCsr->pStmt, 0); - - for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ - const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); - sqlite3_tokenizer_cursor *pTC = 0; - - rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); - while( rc==SQLITE_OK ){ - char const *zToken; /* Buffer containing token */ - int nToken = 0; /* Number of bytes in token */ - int iDum1 = 0, iDum2 = 0; /* Dummy variables */ - int iPos = 0; /* Position of token in zText */ - - rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); - for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ - Fts3PhraseToken *pPT = pDef->pToken; - if( (pDef->iCol>=p->nColumn || pDef->iCol==i) - && (pPT->bFirst==0 || iPos==0) - && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) - && (0==memcmp(zToken, pPT->z, pPT->n)) - ){ - fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); - } - } - } - if( pTC ) pModule->xClose(pTC); - if( rc==SQLITE_DONE ) rc = SQLITE_OK; - } - - for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ - if( pDef->pList ){ - rc = fts3PendingListAppendVarint(&pDef->pList, 0); - } - } - } - - return rc; -} - -SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList( - Fts3DeferredToken *p, - char **ppData, - int *pnData -){ - char *pRet; - int nSkip; - sqlite3_int64 dummy; - - *ppData = 0; - *pnData = 0; - - if( p->pList==0 ){ - return SQLITE_OK; - } - - pRet = (char *)sqlite3_malloc(p->pList->nData); - if( !pRet ) return SQLITE_NOMEM; - - nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); - *pnData = p->pList->nData - nSkip; - *ppData = pRet; - - memcpy(pRet, &p->pList->aData[nSkip], *pnData); - return SQLITE_OK; -} - -/* -** Add an entry for token pToken to the pCsr->pDeferred list. -*/ -SQLITE_PRIVATE int sqlite3Fts3DeferToken( - Fts3Cursor *pCsr, /* Fts3 table cursor */ - Fts3PhraseToken *pToken, /* Token to defer */ - int iCol /* Column that token must appear in (or -1) */ -){ - Fts3DeferredToken *pDeferred; - pDeferred = sqlite3_malloc(sizeof(*pDeferred)); - if( !pDeferred ){ - return SQLITE_NOMEM; - } - memset(pDeferred, 0, sizeof(*pDeferred)); - pDeferred->pToken = pToken; - pDeferred->pNext = pCsr->pDeferred; - pDeferred->iCol = iCol; - pCsr->pDeferred = pDeferred; - - assert( pToken->pDeferred==0 ); - pToken->pDeferred = pDeferred; - - return SQLITE_OK; -} -#endif - -/* -** SQLite value pRowid contains the rowid of a row that may or may not be -** present in the FTS3 table. If it is, delete it and adjust the contents -** of subsiduary data structures accordingly. -*/ -static int fts3DeleteByRowid( - Fts3Table *p, - sqlite3_value *pRowid, - int *pnChng, /* IN/OUT: Decrement if row is deleted */ - u32 *aSzDel -){ - int rc = SQLITE_OK; /* Return code */ - int bFound = 0; /* True if *pRowid really is in the table */ - - fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); - if( bFound && rc==SQLITE_OK ){ - int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ - rc = fts3IsEmpty(p, pRowid, &isEmpty); - if( rc==SQLITE_OK ){ - if( isEmpty ){ - /* Deleting this row means the whole table is empty. In this case - ** delete the contents of all three tables and throw away any - ** data in the pendingTerms hash table. */ - rc = fts3DeleteAll(p, 1); - *pnChng = 0; - memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); - }else{ - *pnChng = *pnChng - 1; - if( p->zContentTbl==0 ){ - fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); - } - if( p->bHasDocsize ){ - fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); - } - } - } - } - - return rc; -} - -/* -** This function does the work for the xUpdate method of FTS3 virtual -** tables. The schema of the virtual table being: -** -** CREATE TABLE <table name>( -** <user columns>, -** <table name> HIDDEN, -** docid HIDDEN, -** <langid> HIDDEN -** ); -** -** -*/ -SQLITE_PRIVATE int sqlite3Fts3UpdateMethod( - sqlite3_vtab *pVtab, /* FTS3 vtab object */ - int nArg, /* Size of argument array */ - sqlite3_value **apVal, /* Array of arguments */ - sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ -){ - Fts3Table *p = (Fts3Table *)pVtab; - int rc = SQLITE_OK; /* Return Code */ - int isRemove = 0; /* True for an UPDATE or DELETE */ - u32 *aSzIns = 0; /* Sizes of inserted documents */ - u32 *aSzDel = 0; /* Sizes of deleted documents */ - int nChng = 0; /* Net change in number of documents */ - int bInsertDone = 0; - - assert( p->pSegments==0 ); - assert( - nArg==1 /* DELETE operations */ - || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ - ); - - /* Check for a "special" INSERT operation. One of the form: - ** - ** INSERT INTO xyz(xyz) VALUES('command'); - */ - if( nArg>1 - && sqlite3_value_type(apVal[0])==SQLITE_NULL - && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL - ){ - rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); - goto update_out; - } - - if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ - rc = SQLITE_CONSTRAINT; - goto update_out; - } - - /* Allocate space to hold the change in document sizes */ - aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 ); - if( aSzDel==0 ){ - rc = SQLITE_NOMEM; - goto update_out; - } - aSzIns = &aSzDel[p->nColumn+1]; - memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); - - /* If this is an INSERT operation, or an UPDATE that modifies the rowid - ** value, then this operation requires constraint handling. - ** - ** If the on-conflict mode is REPLACE, this means that the existing row - ** should be deleted from the database before inserting the new row. Or, - ** if the on-conflict mode is other than REPLACE, then this method must - ** detect the conflict and return SQLITE_CONSTRAINT before beginning to - ** modify the database file. - */ - if( nArg>1 && p->zContentTbl==0 ){ - /* Find the value object that holds the new rowid value. */ - sqlite3_value *pNewRowid = apVal[3+p->nColumn]; - if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ - pNewRowid = apVal[1]; - } - - if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( - sqlite3_value_type(apVal[0])==SQLITE_NULL - || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) - )){ - /* The new rowid is not NULL (in this case the rowid will be - ** automatically assigned and there is no chance of a conflict), and - ** the statement is either an INSERT or an UPDATE that modifies the - ** rowid column. So if the conflict mode is REPLACE, then delete any - ** existing row with rowid=pNewRowid. - ** - ** Or, if the conflict mode is not REPLACE, insert the new record into - ** the %_content table. If we hit the duplicate rowid constraint (or any - ** other error) while doing so, return immediately. - ** - ** This branch may also run if pNewRowid contains a value that cannot - ** be losslessly converted to an integer. In this case, the eventual - ** call to fts3InsertData() (either just below or further on in this - ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is - ** invoked, it will delete zero rows (since no row will have - ** docid=$pNewRowid if $pNewRowid is not an integer value). - */ - if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ - rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); - }else{ - rc = fts3InsertData(p, apVal, pRowid); - bInsertDone = 1; - } - } - } - if( rc!=SQLITE_OK ){ - goto update_out; - } - - /* If this is a DELETE or UPDATE operation, remove the old record. */ - if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ - assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); - rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); - isRemove = 1; - } - - /* If this is an INSERT or UPDATE operation, insert the new record. */ - if( nArg>1 && rc==SQLITE_OK ){ - int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); - if( bInsertDone==0 ){ - rc = fts3InsertData(p, apVal, pRowid); - if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ - rc = FTS_CORRUPT_VTAB; - } - } - if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ - rc = fts3PendingTermsDocid(p, iLangid, *pRowid); - } - if( rc==SQLITE_OK ){ - assert( p->iPrevDocid==*pRowid ); - rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); - } - if( p->bHasDocsize ){ - fts3InsertDocsize(&rc, p, aSzIns); - } - nChng++; - } - - if( p->bFts4 ){ - fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); - } - - update_out: - sqlite3_free(aSzDel); - sqlite3Fts3SegmentsClose(p); - return rc; -} - -/* -** Flush any data in the pending-terms hash table to disk. If successful, -** merge all segments in the database (including the new segment, if -** there was any data to flush) into a single segment. -*/ -SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){ - int rc; - rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); - if( rc==SQLITE_OK ){ - rc = fts3DoOptimize(p, 1); - if( rc==SQLITE_OK || rc==SQLITE_DONE ){ - int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); - if( rc2!=SQLITE_OK ) rc = rc2; - }else{ - sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); - sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); - } - } - sqlite3Fts3SegmentsClose(p); - return rc; -} - -#endif - -/************** End of fts3_write.c ******************************************/ -/************** Begin file fts3_snippet.c ************************************/ -/* -** 2009 Oct 23 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -*/ - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <string.h> */ -/* #include <assert.h> */ - -/* -** Characters that may appear in the second argument to matchinfo(). -*/ -#define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */ -#define FTS3_MATCHINFO_NCOL 'c' /* 1 value */ -#define FTS3_MATCHINFO_NDOC 'n' /* 1 value */ -#define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */ -#define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */ -#define FTS3_MATCHINFO_LCS 's' /* nCol values */ -#define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */ - -/* -** The default value for the second argument to matchinfo(). -*/ -#define FTS3_MATCHINFO_DEFAULT "pcx" - - -/* -** Used as an fts3ExprIterate() context when loading phrase doclists to -** Fts3Expr.aDoclist[]/nDoclist. -*/ -typedef struct LoadDoclistCtx LoadDoclistCtx; -struct LoadDoclistCtx { - Fts3Cursor *pCsr; /* FTS3 Cursor */ - int nPhrase; /* Number of phrases seen so far */ - int nToken; /* Number of tokens seen so far */ -}; - -/* -** The following types are used as part of the implementation of the -** fts3BestSnippet() routine. -*/ -typedef struct SnippetIter SnippetIter; -typedef struct SnippetPhrase SnippetPhrase; -typedef struct SnippetFragment SnippetFragment; - -struct SnippetIter { - Fts3Cursor *pCsr; /* Cursor snippet is being generated from */ - int iCol; /* Extract snippet from this column */ - int nSnippet; /* Requested snippet length (in tokens) */ - int nPhrase; /* Number of phrases in query */ - SnippetPhrase *aPhrase; /* Array of size nPhrase */ - int iCurrent; /* First token of current snippet */ -}; - -struct SnippetPhrase { - int nToken; /* Number of tokens in phrase */ - char *pList; /* Pointer to start of phrase position list */ - int iHead; /* Next value in position list */ - char *pHead; /* Position list data following iHead */ - int iTail; /* Next value in trailing position list */ - char *pTail; /* Position list data following iTail */ -}; - -struct SnippetFragment { - int iCol; /* Column snippet is extracted from */ - int iPos; /* Index of first token in snippet */ - u64 covered; /* Mask of query phrases covered */ - u64 hlmask; /* Mask of snippet terms to highlight */ -}; - -/* -** This type is used as an fts3ExprIterate() context object while -** accumulating the data returned by the matchinfo() function. -*/ -typedef struct MatchInfo MatchInfo; -struct MatchInfo { - Fts3Cursor *pCursor; /* FTS3 Cursor */ - int nCol; /* Number of columns in table */ - int nPhrase; /* Number of matchable phrases in query */ - sqlite3_int64 nDoc; /* Number of docs in database */ - u32 *aMatchinfo; /* Pre-allocated buffer */ -}; - - - -/* -** The snippet() and offsets() functions both return text values. An instance -** of the following structure is used to accumulate those values while the -** functions are running. See fts3StringAppend() for details. -*/ -typedef struct StrBuffer StrBuffer; -struct StrBuffer { - char *z; /* Pointer to buffer containing string */ - int n; /* Length of z in bytes (excl. nul-term) */ - int nAlloc; /* Allocated size of buffer z in bytes */ -}; - - -/* -** This function is used to help iterate through a position-list. A position -** list is a list of unique integers, sorted from smallest to largest. Each -** element of the list is represented by an FTS3 varint that takes the value -** of the difference between the current element and the previous one plus -** two. For example, to store the position-list: -** -** 4 9 113 -** -** the three varints: -** -** 6 7 106 -** -** are encoded. -** -** When this function is called, *pp points to the start of an element of -** the list. *piPos contains the value of the previous entry in the list. -** After it returns, *piPos contains the value of the next element of the -** list and *pp is advanced to the following varint. -*/ -static void fts3GetDeltaPosition(char **pp, int *piPos){ - int iVal; - *pp += sqlite3Fts3GetVarint32(*pp, &iVal); - *piPos += (iVal-2); -} - -/* -** Helper function for fts3ExprIterate() (see below). -*/ -static int fts3ExprIterate2( - Fts3Expr *pExpr, /* Expression to iterate phrases of */ - int *piPhrase, /* Pointer to phrase counter */ - int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ - void *pCtx /* Second argument to pass to callback */ -){ - int rc; /* Return code */ - int eType = pExpr->eType; /* Type of expression node pExpr */ - - if( eType!=FTSQUERY_PHRASE ){ - assert( pExpr->pLeft && pExpr->pRight ); - rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx); - if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){ - rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx); - } - }else{ - rc = x(pExpr, *piPhrase, pCtx); - (*piPhrase)++; - } - return rc; -} - -/* -** Iterate through all phrase nodes in an FTS3 query, except those that -** are part of a sub-tree that is the right-hand-side of a NOT operator. -** For each phrase node found, the supplied callback function is invoked. -** -** If the callback function returns anything other than SQLITE_OK, -** the iteration is abandoned and the error code returned immediately. -** Otherwise, SQLITE_OK is returned after a callback has been made for -** all eligible phrase nodes. -*/ -static int fts3ExprIterate( - Fts3Expr *pExpr, /* Expression to iterate phrases of */ - int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ - void *pCtx /* Second argument to pass to callback */ -){ - int iPhrase = 0; /* Variable used as the phrase counter */ - return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx); -} - -/* -** This is an fts3ExprIterate() callback used while loading the doclists -** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also -** fts3ExprLoadDoclists(). -*/ -static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ - int rc = SQLITE_OK; - Fts3Phrase *pPhrase = pExpr->pPhrase; - LoadDoclistCtx *p = (LoadDoclistCtx *)ctx; - - UNUSED_PARAMETER(iPhrase); - - p->nPhrase++; - p->nToken += pPhrase->nToken; - - return rc; -} - -/* -** Load the doclists for each phrase in the query associated with FTS3 cursor -** pCsr. -** -** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable -** phrases in the expression (all phrases except those directly or -** indirectly descended from the right-hand-side of a NOT operator). If -** pnToken is not NULL, then it is set to the number of tokens in all -** matchable phrases of the expression. -*/ -static int fts3ExprLoadDoclists( - Fts3Cursor *pCsr, /* Fts3 cursor for current query */ - int *pnPhrase, /* OUT: Number of phrases in query */ - int *pnToken /* OUT: Number of tokens in query */ -){ - int rc; /* Return Code */ - LoadDoclistCtx sCtx = {0,0,0}; /* Context for fts3ExprIterate() */ - sCtx.pCsr = pCsr; - rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx); - if( pnPhrase ) *pnPhrase = sCtx.nPhrase; - if( pnToken ) *pnToken = sCtx.nToken; - return rc; -} - -static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ - (*(int *)ctx)++; - UNUSED_PARAMETER(pExpr); - UNUSED_PARAMETER(iPhrase); - return SQLITE_OK; -} -static int fts3ExprPhraseCount(Fts3Expr *pExpr){ - int nPhrase = 0; - (void)fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase); - return nPhrase; -} - -/* -** Advance the position list iterator specified by the first two -** arguments so that it points to the first element with a value greater -** than or equal to parameter iNext. -*/ -static void fts3SnippetAdvance(char **ppIter, int *piIter, int iNext){ - char *pIter = *ppIter; - if( pIter ){ - int iIter = *piIter; - - while( iIter<iNext ){ - if( 0==(*pIter & 0xFE) ){ - iIter = -1; - pIter = 0; - break; - } - fts3GetDeltaPosition(&pIter, &iIter); - } - - *piIter = iIter; - *ppIter = pIter; - } -} - -/* -** Advance the snippet iterator to the next candidate snippet. -*/ -static int fts3SnippetNextCandidate(SnippetIter *pIter){ - int i; /* Loop counter */ - - if( pIter->iCurrent<0 ){ - /* The SnippetIter object has just been initialized. The first snippet - ** candidate always starts at offset 0 (even if this candidate has a - ** score of 0.0). - */ - pIter->iCurrent = 0; - - /* Advance the 'head' iterator of each phrase to the first offset that - ** is greater than or equal to (iNext+nSnippet). - */ - for(i=0; i<pIter->nPhrase; i++){ - SnippetPhrase *pPhrase = &pIter->aPhrase[i]; - fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet); - } - }else{ - int iStart; - int iEnd = 0x7FFFFFFF; - - for(i=0; i<pIter->nPhrase; i++){ - SnippetPhrase *pPhrase = &pIter->aPhrase[i]; - if( pPhrase->pHead && pPhrase->iHead<iEnd ){ - iEnd = pPhrase->iHead; - } - } - if( iEnd==0x7FFFFFFF ){ - return 1; - } - - pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1; - for(i=0; i<pIter->nPhrase; i++){ - SnippetPhrase *pPhrase = &pIter->aPhrase[i]; - fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1); - fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart); - } - } - - return 0; -} - -/* -** Retrieve information about the current candidate snippet of snippet -** iterator pIter. -*/ -static void fts3SnippetDetails( - SnippetIter *pIter, /* Snippet iterator */ - u64 mCovered, /* Bitmask of phrases already covered */ - int *piToken, /* OUT: First token of proposed snippet */ - int *piScore, /* OUT: "Score" for this snippet */ - u64 *pmCover, /* OUT: Bitmask of phrases covered */ - u64 *pmHighlight /* OUT: Bitmask of terms to highlight */ -){ - int iStart = pIter->iCurrent; /* First token of snippet */ - int iScore = 0; /* Score of this snippet */ - int i; /* Loop counter */ - u64 mCover = 0; /* Mask of phrases covered by this snippet */ - u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */ - - for(i=0; i<pIter->nPhrase; i++){ - SnippetPhrase *pPhrase = &pIter->aPhrase[i]; - if( pPhrase->pTail ){ - char *pCsr = pPhrase->pTail; - int iCsr = pPhrase->iTail; - - while( iCsr<(iStart+pIter->nSnippet) ){ - int j; - u64 mPhrase = (u64)1 << i; - u64 mPos = (u64)1 << (iCsr - iStart); - assert( iCsr>=iStart ); - if( (mCover|mCovered)&mPhrase ){ - iScore++; - }else{ - iScore += 1000; - } - mCover |= mPhrase; - - for(j=0; j<pPhrase->nToken; j++){ - mHighlight |= (mPos>>j); - } - - if( 0==(*pCsr & 0x0FE) ) break; - fts3GetDeltaPosition(&pCsr, &iCsr); - } - } - } - - /* Set the output variables before returning. */ - *piToken = iStart; - *piScore = iScore; - *pmCover = mCover; - *pmHighlight = mHighlight; -} - -/* -** This function is an fts3ExprIterate() callback used by fts3BestSnippet(). -** Each invocation populates an element of the SnippetIter.aPhrase[] array. -*/ -static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){ - SnippetIter *p = (SnippetIter *)ctx; - SnippetPhrase *pPhrase = &p->aPhrase[iPhrase]; - char *pCsr; - int rc; - - pPhrase->nToken = pExpr->pPhrase->nToken; - rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr); - assert( rc==SQLITE_OK || pCsr==0 ); - if( pCsr ){ - int iFirst = 0; - pPhrase->pList = pCsr; - fts3GetDeltaPosition(&pCsr, &iFirst); - assert( iFirst>=0 ); - pPhrase->pHead = pCsr; - pPhrase->pTail = pCsr; - pPhrase->iHead = iFirst; - pPhrase->iTail = iFirst; - }else{ - assert( rc!=SQLITE_OK || ( - pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0 - )); - } - - return rc; -} - -/* -** Select the fragment of text consisting of nFragment contiguous tokens -** from column iCol that represent the "best" snippet. The best snippet -** is the snippet with the highest score, where scores are calculated -** by adding: -** -** (a) +1 point for each occurrence of a matchable phrase in the snippet. -** -** (b) +1000 points for the first occurrence of each matchable phrase in -** the snippet for which the corresponding mCovered bit is not set. -** -** The selected snippet parameters are stored in structure *pFragment before -** returning. The score of the selected snippet is stored in *piScore -** before returning. -*/ -static int fts3BestSnippet( - int nSnippet, /* Desired snippet length */ - Fts3Cursor *pCsr, /* Cursor to create snippet for */ - int iCol, /* Index of column to create snippet from */ - u64 mCovered, /* Mask of phrases already covered */ - u64 *pmSeen, /* IN/OUT: Mask of phrases seen */ - SnippetFragment *pFragment, /* OUT: Best snippet found */ - int *piScore /* OUT: Score of snippet pFragment */ -){ - int rc; /* Return Code */ - int nList; /* Number of phrases in expression */ - SnippetIter sIter; /* Iterates through snippet candidates */ - int nByte; /* Number of bytes of space to allocate */ - int iBestScore = -1; /* Best snippet score found so far */ - int i; /* Loop counter */ - - memset(&sIter, 0, sizeof(sIter)); - - /* Iterate through the phrases in the expression to count them. The same - ** callback makes sure the doclists are loaded for each phrase. - */ - rc = fts3ExprLoadDoclists(pCsr, &nList, 0); - if( rc!=SQLITE_OK ){ - return rc; - } - - /* Now that it is known how many phrases there are, allocate and zero - ** the required space using malloc(). - */ - nByte = sizeof(SnippetPhrase) * nList; - sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc(nByte); - if( !sIter.aPhrase ){ - return SQLITE_NOMEM; - } - memset(sIter.aPhrase, 0, nByte); - - /* Initialize the contents of the SnippetIter object. Then iterate through - ** the set of phrases in the expression to populate the aPhrase[] array. - */ - sIter.pCsr = pCsr; - sIter.iCol = iCol; - sIter.nSnippet = nSnippet; - sIter.nPhrase = nList; - sIter.iCurrent = -1; - (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter); - - /* Set the *pmSeen output variable. */ - for(i=0; i<nList; i++){ - if( sIter.aPhrase[i].pHead ){ - *pmSeen |= (u64)1 << i; - } - } - - /* Loop through all candidate snippets. Store the best snippet in - ** *pFragment. Store its associated 'score' in iBestScore. - */ - pFragment->iCol = iCol; - while( !fts3SnippetNextCandidate(&sIter) ){ - int iPos; - int iScore; - u64 mCover; - u64 mHighlight; - fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover, &mHighlight); - assert( iScore>=0 ); - if( iScore>iBestScore ){ - pFragment->iPos = iPos; - pFragment->hlmask = mHighlight; - pFragment->covered = mCover; - iBestScore = iScore; - } - } - - sqlite3_free(sIter.aPhrase); - *piScore = iBestScore; - return SQLITE_OK; -} - - -/* -** Append a string to the string-buffer passed as the first argument. -** -** If nAppend is negative, then the length of the string zAppend is -** determined using strlen(). -*/ -static int fts3StringAppend( - StrBuffer *pStr, /* Buffer to append to */ - const char *zAppend, /* Pointer to data to append to buffer */ - int nAppend /* Size of zAppend in bytes (or -1) */ -){ - if( nAppend<0 ){ - nAppend = (int)strlen(zAppend); - } - - /* If there is insufficient space allocated at StrBuffer.z, use realloc() - ** to grow the buffer until so that it is big enough to accomadate the - ** appended data. - */ - if( pStr->n+nAppend+1>=pStr->nAlloc ){ - int nAlloc = pStr->nAlloc+nAppend+100; - char *zNew = sqlite3_realloc(pStr->z, nAlloc); - if( !zNew ){ - return SQLITE_NOMEM; - } - pStr->z = zNew; - pStr->nAlloc = nAlloc; - } - - /* Append the data to the string buffer. */ - memcpy(&pStr->z[pStr->n], zAppend, nAppend); - pStr->n += nAppend; - pStr->z[pStr->n] = '\0'; - - return SQLITE_OK; -} - -/* -** The fts3BestSnippet() function often selects snippets that end with a -** query term. That is, the final term of the snippet is always a term -** that requires highlighting. For example, if 'X' is a highlighted term -** and '.' is a non-highlighted term, BestSnippet() may select: -** -** ........X.....X -** -** This function "shifts" the beginning of the snippet forward in the -** document so that there are approximately the same number of -** non-highlighted terms to the right of the final highlighted term as there -** are to the left of the first highlighted term. For example, to this: -** -** ....X.....X.... -** -** This is done as part of extracting the snippet text, not when selecting -** the snippet. Snippet selection is done based on doclists only, so there -** is no way for fts3BestSnippet() to know whether or not the document -** actually contains terms that follow the final highlighted term. -*/ -static int fts3SnippetShift( - Fts3Table *pTab, /* FTS3 table snippet comes from */ - int iLangid, /* Language id to use in tokenizing */ - int nSnippet, /* Number of tokens desired for snippet */ - const char *zDoc, /* Document text to extract snippet from */ - int nDoc, /* Size of buffer zDoc in bytes */ - int *piPos, /* IN/OUT: First token of snippet */ - u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */ -){ - u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */ - - if( hlmask ){ - int nLeft; /* Tokens to the left of first highlight */ - int nRight; /* Tokens to the right of last highlight */ - int nDesired; /* Ideal number of tokens to shift forward */ - - for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++); - for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++); - nDesired = (nLeft-nRight)/2; - - /* Ideally, the start of the snippet should be pushed forward in the - ** document nDesired tokens. This block checks if there are actually - ** nDesired tokens to the right of the snippet. If so, *piPos and - ** *pHlMask are updated to shift the snippet nDesired tokens to the - ** right. Otherwise, the snippet is shifted by the number of tokens - ** available. - */ - if( nDesired>0 ){ - int nShift; /* Number of tokens to shift snippet by */ - int iCurrent = 0; /* Token counter */ - int rc; /* Return Code */ - sqlite3_tokenizer_module *pMod; - sqlite3_tokenizer_cursor *pC; - pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; - - /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired) - ** or more tokens in zDoc/nDoc. - */ - rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC); - if( rc!=SQLITE_OK ){ - return rc; - } - while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){ - const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0; - rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent); - } - pMod->xClose(pC); - if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; } - - nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet; - assert( nShift<=nDesired ); - if( nShift>0 ){ - *piPos += nShift; - *pHlmask = hlmask >> nShift; - } - } - } - return SQLITE_OK; -} - -/* -** Extract the snippet text for fragment pFragment from cursor pCsr and -** append it to string buffer pOut. -*/ -static int fts3SnippetText( - Fts3Cursor *pCsr, /* FTS3 Cursor */ - SnippetFragment *pFragment, /* Snippet to extract */ - int iFragment, /* Fragment number */ - int isLast, /* True for final fragment in snippet */ - int nSnippet, /* Number of tokens in extracted snippet */ - const char *zOpen, /* String inserted before highlighted term */ - const char *zClose, /* String inserted after highlighted term */ - const char *zEllipsis, /* String inserted between snippets */ - StrBuffer *pOut /* Write output here */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc; /* Return code */ - const char *zDoc; /* Document text to extract snippet from */ - int nDoc; /* Size of zDoc in bytes */ - int iCurrent = 0; /* Current token number of document */ - int iEnd = 0; /* Byte offset of end of current token */ - int isShiftDone = 0; /* True after snippet is shifted */ - int iPos = pFragment->iPos; /* First token of snippet */ - u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */ - int iCol = pFragment->iCol+1; /* Query column to extract text from */ - sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */ - sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */ - - zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol); - if( zDoc==0 ){ - if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){ - return SQLITE_NOMEM; - } - return SQLITE_OK; - } - nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol); - - /* Open a token cursor on the document. */ - pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; - rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC); - if( rc!=SQLITE_OK ){ - return rc; - } - - while( rc==SQLITE_OK ){ - const char *ZDUMMY; /* Dummy argument used with tokenizer */ - int DUMMY1 = -1; /* Dummy argument used with tokenizer */ - int iBegin = 0; /* Offset in zDoc of start of token */ - int iFin = 0; /* Offset in zDoc of end of token */ - int isHighlight = 0; /* True for highlighted terms */ - - /* Variable DUMMY1 is initialized to a negative value above. Elsewhere - ** in the FTS code the variable that the third argument to xNext points to - ** is initialized to zero before the first (*but not necessarily - ** subsequent*) call to xNext(). This is done for a particular application - ** that needs to know whether or not the tokenizer is being used for - ** snippet generation or for some other purpose. - ** - ** Extreme care is required when writing code to depend on this - ** initialization. It is not a documented part of the tokenizer interface. - ** If a tokenizer is used directly by any code outside of FTS, this - ** convention might not be respected. */ - rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent); - if( rc!=SQLITE_OK ){ - if( rc==SQLITE_DONE ){ - /* Special case - the last token of the snippet is also the last token - ** of the column. Append any punctuation that occurred between the end - ** of the previous token and the end of the document to the output. - ** Then break out of the loop. */ - rc = fts3StringAppend(pOut, &zDoc[iEnd], -1); - } - break; - } - if( iCurrent<iPos ){ continue; } - - if( !isShiftDone ){ - int n = nDoc - iBegin; - rc = fts3SnippetShift( - pTab, pCsr->iLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask - ); - isShiftDone = 1; - - /* Now that the shift has been done, check if the initial "..." are - ** required. They are required if (a) this is not the first fragment, - ** or (b) this fragment does not begin at position 0 of its column. - */ - if( rc==SQLITE_OK && (iPos>0 || iFragment>0) ){ - rc = fts3StringAppend(pOut, zEllipsis, -1); - } - if( rc!=SQLITE_OK || iCurrent<iPos ) continue; - } - - if( iCurrent>=(iPos+nSnippet) ){ - if( isLast ){ - rc = fts3StringAppend(pOut, zEllipsis, -1); - } - break; - } - - /* Set isHighlight to true if this term should be highlighted. */ - isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0; - - if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd); - if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1); - if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin); - if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1); - - iEnd = iFin; - } - - pMod->xClose(pC); - return rc; -} - - -/* -** This function is used to count the entries in a column-list (a -** delta-encoded list of term offsets within a single column of a single -** row). When this function is called, *ppCollist should point to the -** beginning of the first varint in the column-list (the varint that -** contains the position of the first matching term in the column data). -** Before returning, *ppCollist is set to point to the first byte after -** the last varint in the column-list (either the 0x00 signifying the end -** of the position-list, or the 0x01 that precedes the column number of -** the next column in the position-list). -** -** The number of elements in the column-list is returned. -*/ -static int fts3ColumnlistCount(char **ppCollist){ - char *pEnd = *ppCollist; - char c = 0; - int nEntry = 0; - - /* A column-list is terminated by either a 0x01 or 0x00. */ - while( 0xFE & (*pEnd | c) ){ - c = *pEnd++ & 0x80; - if( !c ) nEntry++; - } - - *ppCollist = pEnd; - return nEntry; -} - -/* -** fts3ExprIterate() callback used to collect the "global" matchinfo stats -** for a single query. -** -** fts3ExprIterate() callback to load the 'global' elements of a -** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements -** of the matchinfo array that are constant for all rows returned by the -** current query. -** -** Argument pCtx is actually a pointer to a struct of type MatchInfo. This -** function populates Matchinfo.aMatchinfo[] as follows: -** -** for(iCol=0; iCol<nCol; iCol++){ -** aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X; -** aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y; -** } -** -** where X is the number of matches for phrase iPhrase is column iCol of all -** rows of the table. Y is the number of rows for which column iCol contains -** at least one instance of phrase iPhrase. -** -** If the phrase pExpr consists entirely of deferred tokens, then all X and -** Y values are set to nDoc, where nDoc is the number of documents in the -** file system. This is done because the full-text index doclist is required -** to calculate these values properly, and the full-text index doclist is -** not available for deferred tokens. -*/ -static int fts3ExprGlobalHitsCb( - Fts3Expr *pExpr, /* Phrase expression node */ - int iPhrase, /* Phrase number (numbered from zero) */ - void *pCtx /* Pointer to MatchInfo structure */ -){ - MatchInfo *p = (MatchInfo *)pCtx; - return sqlite3Fts3EvalPhraseStats( - p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol] - ); -} - -/* -** fts3ExprIterate() callback used to collect the "local" part of the -** FTS3_MATCHINFO_HITS array. The local stats are those elements of the -** array that are different for each row returned by the query. -*/ -static int fts3ExprLocalHitsCb( - Fts3Expr *pExpr, /* Phrase expression node */ - int iPhrase, /* Phrase number */ - void *pCtx /* Pointer to MatchInfo structure */ -){ - int rc = SQLITE_OK; - MatchInfo *p = (MatchInfo *)pCtx; - int iStart = iPhrase * p->nCol * 3; - int i; - - for(i=0; i<p->nCol && rc==SQLITE_OK; i++){ - char *pCsr; - rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr); - if( pCsr ){ - p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr); - }else{ - p->aMatchinfo[iStart+i*3] = 0; - } - } - - return rc; -} - -static int fts3MatchinfoCheck( - Fts3Table *pTab, - char cArg, - char **pzErr -){ - if( (cArg==FTS3_MATCHINFO_NPHRASE) - || (cArg==FTS3_MATCHINFO_NCOL) - || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4) - || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4) - || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize) - || (cArg==FTS3_MATCHINFO_LCS) - || (cArg==FTS3_MATCHINFO_HITS) - ){ - return SQLITE_OK; - } - *pzErr = sqlite3_mprintf("unrecognized matchinfo request: %c", cArg); - return SQLITE_ERROR; -} - -static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){ - int nVal; /* Number of integers output by cArg */ - - switch( cArg ){ - case FTS3_MATCHINFO_NDOC: - case FTS3_MATCHINFO_NPHRASE: - case FTS3_MATCHINFO_NCOL: - nVal = 1; - break; - - case FTS3_MATCHINFO_AVGLENGTH: - case FTS3_MATCHINFO_LENGTH: - case FTS3_MATCHINFO_LCS: - nVal = pInfo->nCol; - break; - - default: - assert( cArg==FTS3_MATCHINFO_HITS ); - nVal = pInfo->nCol * pInfo->nPhrase * 3; - break; - } - - return nVal; -} - -static int fts3MatchinfoSelectDoctotal( - Fts3Table *pTab, - sqlite3_stmt **ppStmt, - sqlite3_int64 *pnDoc, - const char **paLen -){ - sqlite3_stmt *pStmt; - const char *a; - sqlite3_int64 nDoc; - - if( !*ppStmt ){ - int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt); - if( rc!=SQLITE_OK ) return rc; - } - pStmt = *ppStmt; - assert( sqlite3_data_count(pStmt)==1 ); - - a = sqlite3_column_blob(pStmt, 0); - a += sqlite3Fts3GetVarint(a, &nDoc); - if( nDoc==0 ) return FTS_CORRUPT_VTAB; - *pnDoc = (u32)nDoc; - - if( paLen ) *paLen = a; - return SQLITE_OK; -} - -/* -** An instance of the following structure is used to store state while -** iterating through a multi-column position-list corresponding to the -** hits for a single phrase on a single row in order to calculate the -** values for a matchinfo() FTS3_MATCHINFO_LCS request. -*/ -typedef struct LcsIterator LcsIterator; -struct LcsIterator { - Fts3Expr *pExpr; /* Pointer to phrase expression */ - int iPosOffset; /* Tokens count up to end of this phrase */ - char *pRead; /* Cursor used to iterate through aDoclist */ - int iPos; /* Current position */ -}; - -/* -** If LcsIterator.iCol is set to the following value, the iterator has -** finished iterating through all offsets for all columns. -*/ -#define LCS_ITERATOR_FINISHED 0x7FFFFFFF; - -static int fts3MatchinfoLcsCb( - Fts3Expr *pExpr, /* Phrase expression node */ - int iPhrase, /* Phrase number (numbered from zero) */ - void *pCtx /* Pointer to MatchInfo structure */ -){ - LcsIterator *aIter = (LcsIterator *)pCtx; - aIter[iPhrase].pExpr = pExpr; - return SQLITE_OK; -} - -/* -** Advance the iterator passed as an argument to the next position. Return -** 1 if the iterator is at EOF or if it now points to the start of the -** position list for the next column. -*/ -static int fts3LcsIteratorAdvance(LcsIterator *pIter){ - char *pRead = pIter->pRead; - sqlite3_int64 iRead; - int rc = 0; - - pRead += sqlite3Fts3GetVarint(pRead, &iRead); - if( iRead==0 || iRead==1 ){ - pRead = 0; - rc = 1; - }else{ - pIter->iPos += (int)(iRead-2); - } - - pIter->pRead = pRead; - return rc; -} - -/* -** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag. -** -** If the call is successful, the longest-common-substring lengths for each -** column are written into the first nCol elements of the pInfo->aMatchinfo[] -** array before returning. SQLITE_OK is returned in this case. -** -** Otherwise, if an error occurs, an SQLite error code is returned and the -** data written to the first nCol elements of pInfo->aMatchinfo[] is -** undefined. -*/ -static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){ - LcsIterator *aIter; - int i; - int iCol; - int nToken = 0; - - /* Allocate and populate the array of LcsIterator objects. The array - ** contains one element for each matchable phrase in the query. - **/ - aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase); - if( !aIter ) return SQLITE_NOMEM; - memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase); - (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter); - - for(i=0; i<pInfo->nPhrase; i++){ - LcsIterator *pIter = &aIter[i]; - nToken -= pIter->pExpr->pPhrase->nToken; - pIter->iPosOffset = nToken; - } - - for(iCol=0; iCol<pInfo->nCol; iCol++){ - int nLcs = 0; /* LCS value for this column */ - int nLive = 0; /* Number of iterators in aIter not at EOF */ - - for(i=0; i<pInfo->nPhrase; i++){ - int rc; - LcsIterator *pIt = &aIter[i]; - rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead); - if( rc!=SQLITE_OK ) return rc; - if( pIt->pRead ){ - pIt->iPos = pIt->iPosOffset; - fts3LcsIteratorAdvance(&aIter[i]); - nLive++; - } - } - - while( nLive>0 ){ - LcsIterator *pAdv = 0; /* The iterator to advance by one position */ - int nThisLcs = 0; /* LCS for the current iterator positions */ - - for(i=0; i<pInfo->nPhrase; i++){ - LcsIterator *pIter = &aIter[i]; - if( pIter->pRead==0 ){ - /* This iterator is already at EOF for this column. */ - nThisLcs = 0; - }else{ - if( pAdv==0 || pIter->iPos<pAdv->iPos ){ - pAdv = pIter; - } - if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){ - nThisLcs++; - }else{ - nThisLcs = 1; - } - if( nThisLcs>nLcs ) nLcs = nThisLcs; - } - } - if( fts3LcsIteratorAdvance(pAdv) ) nLive--; - } - - pInfo->aMatchinfo[iCol] = nLcs; - } - - sqlite3_free(aIter); - return SQLITE_OK; -} - -/* -** Populate the buffer pInfo->aMatchinfo[] with an array of integers to -** be returned by the matchinfo() function. Argument zArg contains the -** format string passed as the second argument to matchinfo (or the -** default value "pcx" if no second argument was specified). The format -** string has already been validated and the pInfo->aMatchinfo[] array -** is guaranteed to be large enough for the output. -** -** If bGlobal is true, then populate all fields of the matchinfo() output. -** If it is false, then assume that those fields that do not change between -** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS) -** have already been populated. -** -** Return SQLITE_OK if successful, or an SQLite error code if an error -** occurs. If a value other than SQLITE_OK is returned, the state the -** pInfo->aMatchinfo[] buffer is left in is undefined. -*/ -static int fts3MatchinfoValues( - Fts3Cursor *pCsr, /* FTS3 cursor object */ - int bGlobal, /* True to grab the global stats */ - MatchInfo *pInfo, /* Matchinfo context object */ - const char *zArg /* Matchinfo format string */ -){ - int rc = SQLITE_OK; - int i; - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - sqlite3_stmt *pSelect = 0; - - for(i=0; rc==SQLITE_OK && zArg[i]; i++){ - - switch( zArg[i] ){ - case FTS3_MATCHINFO_NPHRASE: - if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase; - break; - - case FTS3_MATCHINFO_NCOL: - if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol; - break; - - case FTS3_MATCHINFO_NDOC: - if( bGlobal ){ - sqlite3_int64 nDoc = 0; - rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0); - pInfo->aMatchinfo[0] = (u32)nDoc; - } - break; - - case FTS3_MATCHINFO_AVGLENGTH: - if( bGlobal ){ - sqlite3_int64 nDoc; /* Number of rows in table */ - const char *a; /* Aggregate column length array */ - - rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a); - if( rc==SQLITE_OK ){ - int iCol; - for(iCol=0; iCol<pInfo->nCol; iCol++){ - u32 iVal; - sqlite3_int64 nToken; - a += sqlite3Fts3GetVarint(a, &nToken); - iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc); - pInfo->aMatchinfo[iCol] = iVal; - } - } - } - break; - - case FTS3_MATCHINFO_LENGTH: { - sqlite3_stmt *pSelectDocsize = 0; - rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize); - if( rc==SQLITE_OK ){ - int iCol; - const char *a = sqlite3_column_blob(pSelectDocsize, 0); - for(iCol=0; iCol<pInfo->nCol; iCol++){ - sqlite3_int64 nToken; - a += sqlite3Fts3GetVarint(a, &nToken); - pInfo->aMatchinfo[iCol] = (u32)nToken; - } - } - sqlite3_reset(pSelectDocsize); - break; - } - - case FTS3_MATCHINFO_LCS: - rc = fts3ExprLoadDoclists(pCsr, 0, 0); - if( rc==SQLITE_OK ){ - rc = fts3MatchinfoLcs(pCsr, pInfo); - } - break; - - default: { - Fts3Expr *pExpr; - assert( zArg[i]==FTS3_MATCHINFO_HITS ); - pExpr = pCsr->pExpr; - rc = fts3ExprLoadDoclists(pCsr, 0, 0); - if( rc!=SQLITE_OK ) break; - if( bGlobal ){ - if( pCsr->pDeferred ){ - rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc, 0); - if( rc!=SQLITE_OK ) break; - } - rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo); - if( rc!=SQLITE_OK ) break; - } - (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo); - break; - } - } - - pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]); - } - - sqlite3_reset(pSelect); - return rc; -} - - -/* -** Populate pCsr->aMatchinfo[] with data for the current row. The -** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32). -*/ -static int fts3GetMatchinfo( - Fts3Cursor *pCsr, /* FTS3 Cursor object */ - const char *zArg /* Second argument to matchinfo() function */ -){ - MatchInfo sInfo; - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc = SQLITE_OK; - int bGlobal = 0; /* Collect 'global' stats as well as local */ - - memset(&sInfo, 0, sizeof(MatchInfo)); - sInfo.pCursor = pCsr; - sInfo.nCol = pTab->nColumn; - - /* If there is cached matchinfo() data, but the format string for the - ** cache does not match the format string for this request, discard - ** the cached data. */ - if( pCsr->zMatchinfo && strcmp(pCsr->zMatchinfo, zArg) ){ - assert( pCsr->aMatchinfo ); - sqlite3_free(pCsr->aMatchinfo); - pCsr->zMatchinfo = 0; - pCsr->aMatchinfo = 0; - } - - /* If Fts3Cursor.aMatchinfo[] is NULL, then this is the first time the - ** matchinfo function has been called for this query. In this case - ** allocate the array used to accumulate the matchinfo data and - ** initialize those elements that are constant for every row. - */ - if( pCsr->aMatchinfo==0 ){ - int nMatchinfo = 0; /* Number of u32 elements in match-info */ - int nArg; /* Bytes in zArg */ - int i; /* Used to iterate through zArg */ - - /* Determine the number of phrases in the query */ - pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr); - sInfo.nPhrase = pCsr->nPhrase; - - /* Determine the number of integers in the buffer returned by this call. */ - for(i=0; zArg[i]; i++){ - nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]); - } - - /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */ - nArg = (int)strlen(zArg); - pCsr->aMatchinfo = (u32 *)sqlite3_malloc(sizeof(u32)*nMatchinfo + nArg + 1); - if( !pCsr->aMatchinfo ) return SQLITE_NOMEM; - - pCsr->zMatchinfo = (char *)&pCsr->aMatchinfo[nMatchinfo]; - pCsr->nMatchinfo = nMatchinfo; - memcpy(pCsr->zMatchinfo, zArg, nArg+1); - memset(pCsr->aMatchinfo, 0, sizeof(u32)*nMatchinfo); - pCsr->isMatchinfoNeeded = 1; - bGlobal = 1; - } - - sInfo.aMatchinfo = pCsr->aMatchinfo; - sInfo.nPhrase = pCsr->nPhrase; - if( pCsr->isMatchinfoNeeded ){ - rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg); - pCsr->isMatchinfoNeeded = 0; - } - - return rc; -} - -/* -** Implementation of snippet() function. -*/ -SQLITE_PRIVATE void sqlite3Fts3Snippet( - sqlite3_context *pCtx, /* SQLite function call context */ - Fts3Cursor *pCsr, /* Cursor object */ - const char *zStart, /* Snippet start text - "<b>" */ - const char *zEnd, /* Snippet end text - "</b>" */ - const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */ - int iCol, /* Extract snippet from this column */ - int nToken /* Approximate number of tokens in snippet */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc = SQLITE_OK; - int i; - StrBuffer res = {0, 0, 0}; - - /* The returned text includes up to four fragments of text extracted from - ** the data in the current row. The first iteration of the for(...) loop - ** below attempts to locate a single fragment of text nToken tokens in - ** size that contains at least one instance of all phrases in the query - ** expression that appear in the current row. If such a fragment of text - ** cannot be found, the second iteration of the loop attempts to locate - ** a pair of fragments, and so on. - */ - int nSnippet = 0; /* Number of fragments in this snippet */ - SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */ - int nFToken = -1; /* Number of tokens in each fragment */ - - if( !pCsr->pExpr ){ - sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); - return; - } - - for(nSnippet=1; 1; nSnippet++){ - - int iSnip; /* Loop counter 0..nSnippet-1 */ - u64 mCovered = 0; /* Bitmask of phrases covered by snippet */ - u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */ - - if( nToken>=0 ){ - nFToken = (nToken+nSnippet-1) / nSnippet; - }else{ - nFToken = -1 * nToken; - } - - for(iSnip=0; iSnip<nSnippet; iSnip++){ - int iBestScore = -1; /* Best score of columns checked so far */ - int iRead; /* Used to iterate through columns */ - SnippetFragment *pFragment = &aSnippet[iSnip]; - - memset(pFragment, 0, sizeof(*pFragment)); - - /* Loop through all columns of the table being considered for snippets. - ** If the iCol argument to this function was negative, this means all - ** columns of the FTS3 table. Otherwise, only column iCol is considered. - */ - for(iRead=0; iRead<pTab->nColumn; iRead++){ - SnippetFragment sF = {0, 0, 0, 0}; - int iS; - if( iCol>=0 && iRead!=iCol ) continue; - - /* Find the best snippet of nFToken tokens in column iRead. */ - rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS); - if( rc!=SQLITE_OK ){ - goto snippet_out; - } - if( iS>iBestScore ){ - *pFragment = sF; - iBestScore = iS; - } - } - - mCovered |= pFragment->covered; - } - - /* If all query phrases seen by fts3BestSnippet() are present in at least - ** one of the nSnippet snippet fragments, break out of the loop. - */ - assert( (mCovered&mSeen)==mCovered ); - if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break; - } - - assert( nFToken>0 ); - - for(i=0; i<nSnippet && rc==SQLITE_OK; i++){ - rc = fts3SnippetText(pCsr, &aSnippet[i], - i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res - ); - } - - snippet_out: - sqlite3Fts3SegmentsClose(pTab); - if( rc!=SQLITE_OK ){ - sqlite3_result_error_code(pCtx, rc); - sqlite3_free(res.z); - }else{ - sqlite3_result_text(pCtx, res.z, -1, sqlite3_free); - } -} - - -typedef struct TermOffset TermOffset; -typedef struct TermOffsetCtx TermOffsetCtx; - -struct TermOffset { - char *pList; /* Position-list */ - int iPos; /* Position just read from pList */ - int iOff; /* Offset of this term from read positions */ -}; - -struct TermOffsetCtx { - Fts3Cursor *pCsr; - int iCol; /* Column of table to populate aTerm for */ - int iTerm; - sqlite3_int64 iDocid; - TermOffset *aTerm; -}; - -/* -** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets(). -*/ -static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){ - TermOffsetCtx *p = (TermOffsetCtx *)ctx; - int nTerm; /* Number of tokens in phrase */ - int iTerm; /* For looping through nTerm phrase terms */ - char *pList; /* Pointer to position list for phrase */ - int iPos = 0; /* First position in position-list */ - int rc; - - UNUSED_PARAMETER(iPhrase); - rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList); - nTerm = pExpr->pPhrase->nToken; - if( pList ){ - fts3GetDeltaPosition(&pList, &iPos); - assert( iPos>=0 ); - } - - for(iTerm=0; iTerm<nTerm; iTerm++){ - TermOffset *pT = &p->aTerm[p->iTerm++]; - pT->iOff = nTerm-iTerm-1; - pT->pList = pList; - pT->iPos = iPos; - } - - return rc; -} - -/* -** Implementation of offsets() function. -*/ -SQLITE_PRIVATE void sqlite3Fts3Offsets( - sqlite3_context *pCtx, /* SQLite function call context */ - Fts3Cursor *pCsr /* Cursor object */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule; - int rc; /* Return Code */ - int nToken; /* Number of tokens in query */ - int iCol; /* Column currently being processed */ - StrBuffer res = {0, 0, 0}; /* Result string */ - TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */ - - if( !pCsr->pExpr ){ - sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); - return; - } - - memset(&sCtx, 0, sizeof(sCtx)); - assert( pCsr->isRequireSeek==0 ); - - /* Count the number of terms in the query */ - rc = fts3ExprLoadDoclists(pCsr, 0, &nToken); - if( rc!=SQLITE_OK ) goto offsets_out; - - /* Allocate the array of TermOffset iterators. */ - sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken); - if( 0==sCtx.aTerm ){ - rc = SQLITE_NOMEM; - goto offsets_out; - } - sCtx.iDocid = pCsr->iPrevId; - sCtx.pCsr = pCsr; - - /* Loop through the table columns, appending offset information to - ** string-buffer res for each column. - */ - for(iCol=0; iCol<pTab->nColumn; iCol++){ - sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */ - const char *ZDUMMY; /* Dummy argument used with xNext() */ - int NDUMMY = 0; /* Dummy argument used with xNext() */ - int iStart = 0; - int iEnd = 0; - int iCurrent = 0; - const char *zDoc; - int nDoc; - - /* Initialize the contents of sCtx.aTerm[] for column iCol. There is - ** no way that this operation can fail, so the return code from - ** fts3ExprIterate() can be discarded. - */ - sCtx.iCol = iCol; - sCtx.iTerm = 0; - (void)fts3ExprIterate(pCsr->pExpr, fts3ExprTermOffsetInit, (void *)&sCtx); - - /* Retreive the text stored in column iCol. If an SQL NULL is stored - ** in column iCol, jump immediately to the next iteration of the loop. - ** If an OOM occurs while retrieving the data (this can happen if SQLite - ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM - ** to the caller. - */ - zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1); - nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1); - if( zDoc==0 ){ - if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){ - continue; - } - rc = SQLITE_NOMEM; - goto offsets_out; - } - - /* Initialize a tokenizer iterator to iterate through column iCol. */ - rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, - zDoc, nDoc, &pC - ); - if( rc!=SQLITE_OK ) goto offsets_out; - - rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); - while( rc==SQLITE_OK ){ - int i; /* Used to loop through terms */ - int iMinPos = 0x7FFFFFFF; /* Position of next token */ - TermOffset *pTerm = 0; /* TermOffset associated with next token */ - - for(i=0; i<nToken; i++){ - TermOffset *pT = &sCtx.aTerm[i]; - if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){ - iMinPos = pT->iPos-pT->iOff; - pTerm = pT; - } - } - - if( !pTerm ){ - /* All offsets for this column have been gathered. */ - rc = SQLITE_DONE; - }else{ - assert( iCurrent<=iMinPos ); - if( 0==(0xFE&*pTerm->pList) ){ - pTerm->pList = 0; - }else{ - fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos); - } - while( rc==SQLITE_OK && iCurrent<iMinPos ){ - rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); - } - if( rc==SQLITE_OK ){ - char aBuffer[64]; - sqlite3_snprintf(sizeof(aBuffer), aBuffer, - "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart - ); - rc = fts3StringAppend(&res, aBuffer, -1); - }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){ - rc = FTS_CORRUPT_VTAB; - } - } - } - if( rc==SQLITE_DONE ){ - rc = SQLITE_OK; - } - - pMod->xClose(pC); - if( rc!=SQLITE_OK ) goto offsets_out; - } - - offsets_out: - sqlite3_free(sCtx.aTerm); - assert( rc!=SQLITE_DONE ); - sqlite3Fts3SegmentsClose(pTab); - if( rc!=SQLITE_OK ){ - sqlite3_result_error_code(pCtx, rc); - sqlite3_free(res.z); - }else{ - sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free); - } - return; -} - -/* -** Implementation of matchinfo() function. -*/ -SQLITE_PRIVATE void sqlite3Fts3Matchinfo( - sqlite3_context *pContext, /* Function call context */ - Fts3Cursor *pCsr, /* FTS3 table cursor */ - const char *zArg /* Second arg to matchinfo() function */ -){ - Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; - int rc; - int i; - const char *zFormat; - - if( zArg ){ - for(i=0; zArg[i]; i++){ - char *zErr = 0; - if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){ - sqlite3_result_error(pContext, zErr, -1); - sqlite3_free(zErr); - return; - } - } - zFormat = zArg; - }else{ - zFormat = FTS3_MATCHINFO_DEFAULT; - } - - if( !pCsr->pExpr ){ - sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC); - return; - } - - /* Retrieve matchinfo() data. */ - rc = fts3GetMatchinfo(pCsr, zFormat); - sqlite3Fts3SegmentsClose(pTab); - - if( rc!=SQLITE_OK ){ - sqlite3_result_error_code(pContext, rc); - }else{ - int n = pCsr->nMatchinfo * sizeof(u32); - sqlite3_result_blob(pContext, pCsr->aMatchinfo, n, SQLITE_TRANSIENT); - } -} - -#endif - -/************** End of fts3_snippet.c ****************************************/ -/************** Begin file fts3_unicode.c ************************************/ -/* -** 2012 May 24 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -** -** Implementation of the "unicode" full-text-search tokenizer. -*/ - -#ifdef SQLITE_ENABLE_FTS4_UNICODE61 - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) - -/* #include <assert.h> */ -/* #include <stdlib.h> */ -/* #include <stdio.h> */ -/* #include <string.h> */ - - -/* -** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied -** from the sqlite3 source file utf.c. If this file is compiled as part -** of the amalgamation, they are not required. -*/ -#ifndef SQLITE_AMALGAMATION - -static const unsigned char sqlite3Utf8Trans1[] = { - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, - 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, - 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, -}; - -#define READ_UTF8(zIn, zTerm, c) \ - c = *(zIn++); \ - if( c>=0xc0 ){ \ - c = sqlite3Utf8Trans1[c-0xc0]; \ - while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ - c = (c<<6) + (0x3f & *(zIn++)); \ - } \ - if( c<0x80 \ - || (c&0xFFFFF800)==0xD800 \ - || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ - } - -#define WRITE_UTF8(zOut, c) { \ - if( c<0x00080 ){ \ - *zOut++ = (u8)(c&0xFF); \ - } \ - else if( c<0x00800 ){ \ - *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - } \ - else if( c<0x10000 ){ \ - *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - }else{ \ - *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ - *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ - *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ - *zOut++ = 0x80 + (u8)(c & 0x3F); \ - } \ -} - -#endif /* ifndef SQLITE_AMALGAMATION */ - -typedef struct unicode_tokenizer unicode_tokenizer; -typedef struct unicode_cursor unicode_cursor; - -struct unicode_tokenizer { - sqlite3_tokenizer base; - int bRemoveDiacritic; - int nException; - int *aiException; -}; - -struct unicode_cursor { - sqlite3_tokenizer_cursor base; - const unsigned char *aInput; /* Input text being tokenized */ - int nInput; /* Size of aInput[] in bytes */ - int iOff; /* Current offset within aInput[] */ - int iToken; /* Index of next token to be returned */ - char *zToken; /* storage for current token */ - int nAlloc; /* space allocated at zToken */ -}; - - -/* -** Destroy a tokenizer allocated by unicodeCreate(). -*/ -static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){ - if( pTokenizer ){ - unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer; - sqlite3_free(p->aiException); - sqlite3_free(p); - } - return SQLITE_OK; -} - -/* -** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE -** statement has specified that the tokenizer for this table shall consider -** all characters in string zIn/nIn to be separators (if bAlnum==0) or -** token characters (if bAlnum==1). -** -** For each codepoint in the zIn/nIn string, this function checks if the -** sqlite3FtsUnicodeIsalnum() function already returns the desired result. -** If so, no action is taken. Otherwise, the codepoint is added to the -** unicode_tokenizer.aiException[] array. For the purposes of tokenization, -** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all -** codepoints in the aiException[] array. -** -** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic() -** identifies as a diacritic) occurs in the zIn/nIn string it is ignored. -** It is not possible to change the behavior of the tokenizer with respect -** to these codepoints. -*/ -static int unicodeAddExceptions( - unicode_tokenizer *p, /* Tokenizer to add exceptions to */ - int bAlnum, /* Replace Isalnum() return value with this */ - const char *zIn, /* Array of characters to make exceptions */ - int nIn /* Length of z in bytes */ -){ - const unsigned char *z = (const unsigned char *)zIn; - const unsigned char *zTerm = &z[nIn]; - int iCode; - int nEntry = 0; - - assert( bAlnum==0 || bAlnum==1 ); - - while( z<zTerm ){ - READ_UTF8(z, zTerm, iCode); - assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 ); - if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum - && sqlite3FtsUnicodeIsdiacritic(iCode)==0 - ){ - nEntry++; - } - } - - if( nEntry ){ - int *aNew; /* New aiException[] array */ - int nNew; /* Number of valid entries in array aNew[] */ - - aNew = sqlite3_realloc(p->aiException, (p->nException+nEntry)*sizeof(int)); - if( aNew==0 ) return SQLITE_NOMEM; - nNew = p->nException; - - z = (const unsigned char *)zIn; - while( z<zTerm ){ - READ_UTF8(z, zTerm, iCode); - if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum - && sqlite3FtsUnicodeIsdiacritic(iCode)==0 - ){ - int i, j; - for(i=0; i<nNew && aNew[i]<iCode; i++); - for(j=nNew; j>i; j--) aNew[j] = aNew[j-1]; - aNew[i] = iCode; - nNew++; - } - } - p->aiException = aNew; - p->nException = nNew; - } - - return SQLITE_OK; -} - -/* -** Return true if the p->aiException[] array contains the value iCode. -*/ -static int unicodeIsException(unicode_tokenizer *p, int iCode){ - if( p->nException>0 ){ - int *a = p->aiException; - int iLo = 0; - int iHi = p->nException-1; - - while( iHi>=iLo ){ - int iTest = (iHi + iLo) / 2; - if( iCode==a[iTest] ){ - return 1; - }else if( iCode>a[iTest] ){ - iLo = iTest+1; - }else{ - iHi = iTest-1; - } - } - } - - return 0; -} - -/* -** Return true if, for the purposes of tokenization, codepoint iCode is -** considered a token character (not a separator). -*/ -static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){ - assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 ); - return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode); -} - -/* -** Create a new tokenizer instance. -*/ -static int unicodeCreate( - int nArg, /* Size of array argv[] */ - const char * const *azArg, /* Tokenizer creation arguments */ - sqlite3_tokenizer **pp /* OUT: New tokenizer handle */ -){ - unicode_tokenizer *pNew; /* New tokenizer object */ - int i; - int rc = SQLITE_OK; - - pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer)); - if( pNew==NULL ) return SQLITE_NOMEM; - memset(pNew, 0, sizeof(unicode_tokenizer)); - pNew->bRemoveDiacritic = 1; - - for(i=0; rc==SQLITE_OK && i<nArg; i++){ - const char *z = azArg[i]; - int n = strlen(z); - - if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){ - pNew->bRemoveDiacritic = 1; - } - else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){ - pNew->bRemoveDiacritic = 0; - } - else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){ - rc = unicodeAddExceptions(pNew, 1, &z[11], n-11); - } - else if( n>=11 && memcmp("separators=", z, 11)==0 ){ - rc = unicodeAddExceptions(pNew, 0, &z[11], n-11); - } - else{ - /* Unrecognized argument */ - rc = SQLITE_ERROR; - } - } - - if( rc!=SQLITE_OK ){ - unicodeDestroy((sqlite3_tokenizer *)pNew); - pNew = 0; - } - *pp = (sqlite3_tokenizer *)pNew; - return rc; -} - -/* -** Prepare to begin tokenizing a particular string. The input -** string to be tokenized is pInput[0..nBytes-1]. A cursor -** used to incrementally tokenize this string is returned in -** *ppCursor. -*/ -static int unicodeOpen( - sqlite3_tokenizer *p, /* The tokenizer */ - const char *aInput, /* Input string */ - int nInput, /* Size of string aInput in bytes */ - sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */ -){ - unicode_cursor *pCsr; - - pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor)); - if( pCsr==0 ){ - return SQLITE_NOMEM; - } - memset(pCsr, 0, sizeof(unicode_cursor)); - - pCsr->aInput = (const unsigned char *)aInput; - if( aInput==0 ){ - pCsr->nInput = 0; - }else if( nInput<0 ){ - pCsr->nInput = (int)strlen(aInput); - }else{ - pCsr->nInput = nInput; - } - - *pp = &pCsr->base; - UNUSED_PARAMETER(p); - return SQLITE_OK; -} - -/* -** Close a tokenization cursor previously opened by a call to -** simpleOpen() above. -*/ -static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){ - unicode_cursor *pCsr = (unicode_cursor *) pCursor; - sqlite3_free(pCsr->zToken); - sqlite3_free(pCsr); - return SQLITE_OK; -} - -/* -** Extract the next token from a tokenization cursor. The cursor must -** have been opened by a prior call to simpleOpen(). -*/ -static int unicodeNext( - sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */ - const char **paToken, /* OUT: Token text */ - int *pnToken, /* OUT: Number of bytes at *paToken */ - int *piStart, /* OUT: Starting offset of token */ - int *piEnd, /* OUT: Ending offset of token */ - int *piPos /* OUT: Position integer of token */ -){ - unicode_cursor *pCsr = (unicode_cursor *)pC; - unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer); - int iCode; - char *zOut; - const unsigned char *z = &pCsr->aInput[pCsr->iOff]; - const unsigned char *zStart = z; - const unsigned char *zEnd; - const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput]; - - /* Scan past any delimiter characters before the start of the next token. - ** Return SQLITE_DONE early if this takes us all the way to the end of - ** the input. */ - while( z<zTerm ){ - READ_UTF8(z, zTerm, iCode); - if( unicodeIsAlnum(p, iCode) ) break; - zStart = z; - } - if( zStart>=zTerm ) return SQLITE_DONE; - - zOut = pCsr->zToken; - do { - int iOut; - - /* Grow the output buffer if required. */ - if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){ - char *zNew = sqlite3_realloc(pCsr->zToken, pCsr->nAlloc+64); - if( !zNew ) return SQLITE_NOMEM; - zOut = &zNew[zOut - pCsr->zToken]; - pCsr->zToken = zNew; - pCsr->nAlloc += 64; - } - - /* Write the folded case of the last character read to the output */ - zEnd = z; - iOut = sqlite3FtsUnicodeFold(iCode, p->bRemoveDiacritic); - if( iOut ){ - WRITE_UTF8(zOut, iOut); - } - - /* If the cursor is not at EOF, read the next character */ - if( z>=zTerm ) break; - READ_UTF8(z, zTerm, iCode); - }while( unicodeIsAlnum(p, iCode) - || sqlite3FtsUnicodeIsdiacritic(iCode) - ); - - /* Set the output variables and return. */ - pCsr->iOff = (z - pCsr->aInput); - *paToken = pCsr->zToken; - *pnToken = zOut - pCsr->zToken; - *piStart = (zStart - pCsr->aInput); - *piEnd = (zEnd - pCsr->aInput); - *piPos = pCsr->iToken++; - return SQLITE_OK; -} - -/* -** Set *ppModule to a pointer to the sqlite3_tokenizer_module -** structure for the unicode tokenizer. -*/ -SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){ - static const sqlite3_tokenizer_module module = { - 0, - unicodeCreate, - unicodeDestroy, - unicodeOpen, - unicodeClose, - unicodeNext, - 0, - }; - *ppModule = &module; -} - -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ -#endif /* ifndef SQLITE_ENABLE_FTS4_UNICODE61 */ - -/************** End of fts3_unicode.c ****************************************/ -/************** Begin file fts3_unicode2.c ***********************************/ -/* -** 2012 May 25 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -****************************************************************************** -*/ - -/* -** DO NOT EDIT THIS MACHINE GENERATED FILE. -*/ - -#if defined(SQLITE_ENABLE_FTS4_UNICODE61) -#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) - -/* #include <assert.h> */ - -/* -** Return true if the argument corresponds to a unicode codepoint -** classified as either a letter or a number. Otherwise false. -** -** The results are undefined if the value passed to this function -** is less than zero. -*/ -SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){ - /* Each unsigned integer in the following array corresponds to a contiguous - ** range of unicode codepoints that are not either letters or numbers (i.e. - ** codepoints for which this function should return 0). - ** - ** The most significant 22 bits in each 32-bit value contain the first - ** codepoint in the range. The least significant 10 bits are used to store - ** the size of the range (always at least 1). In other words, the value - ** ((C<<22) + N) represents a range of N codepoints starting with codepoint - ** C. It is not possible to represent a range larger than 1023 codepoints - ** using this format. - */ - const static unsigned int aEntry[] = { - 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07, - 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01, - 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401, - 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01, - 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01, - 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802, - 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F, - 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401, - 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804, - 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403, - 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812, - 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001, - 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802, - 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805, - 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401, - 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03, - 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807, - 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001, - 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01, - 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804, - 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001, - 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802, - 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01, - 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06, - 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007, - 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006, - 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417, - 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14, - 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07, - 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01, - 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001, - 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802, - 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F, - 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002, - 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802, - 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006, - 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D, - 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802, - 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027, - 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403, - 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805, - 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04, - 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401, - 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005, - 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B, - 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A, - 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001, - 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59, - 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807, - 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01, - 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E, - 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100, - 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10, - 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402, - 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804, - 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012, - 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004, - 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002, - 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803, - 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07, - 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02, - 0x037FFC02, 0x03E3FC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, - 0x03F4F802, 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, - 0x03F95013, 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, - 0x03FCEC06, 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, - 0x04040003, 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, - 0x040E7C01, 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, - 0x04280403, 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, - 0x04294009, 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, - 0x04420003, 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, - 0x04460003, 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, - 0x05BD442E, 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, - 0x07480046, 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, - 0x075C5401, 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, - 0x075EA401, 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, - 0x07C2800F, 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, - 0x07C4C03C, 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, - 0x07C94002, 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, - 0x07CE8025, 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, - 0x07D108B6, 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, - 0x07D7EC46, 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, - 0x38008060, 0x380400F0, 0x3C000001, 0x3FFFF401, 0x40000001, - 0x43FFF401, - }; - static const unsigned int aAscii[4] = { - 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001, - }; - - if( c<128 ){ - return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 ); - }else if( c<(1<<22) ){ - unsigned int key = (((unsigned int)c)<<10) | 0x000003FF; - int iRes; - int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; - int iLo = 0; - while( iHi>=iLo ){ - int iTest = (iHi + iLo) / 2; - if( key >= aEntry[iTest] ){ - iRes = iTest; - iLo = iTest+1; - }else{ - iHi = iTest-1; - } - } - assert( aEntry[0]<key ); - assert( key>=aEntry[iRes] ); - return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF))); - } - return 1; -} - - -/* -** If the argument is a codepoint corresponding to a lowercase letter -** in the ASCII range with a diacritic added, return the codepoint -** of the ASCII letter only. For example, if passed 235 - "LATIN -** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER -** E"). The resuls of passing a codepoint that corresponds to an -** uppercase letter are undefined. -*/ -static int remove_diacritic(int c){ - unsigned short aDia[] = { - 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995, - 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286, - 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732, - 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336, - 3456, 3696, 3712, 3728, 3744, 3896, 3912, 3928, - 3968, 4008, 4040, 4106, 4138, 4170, 4202, 4234, - 4266, 4296, 4312, 4344, 4408, 4424, 4472, 4504, - 6148, 6198, 6264, 6280, 6360, 6429, 6505, 6529, - 61448, 61468, 61534, 61592, 61642, 61688, 61704, 61726, - 61784, 61800, 61836, 61880, 61914, 61948, 61998, 62122, - 62154, 62200, 62218, 62302, 62364, 62442, 62478, 62536, - 62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730, - 62924, 63050, 63082, 63274, 63390, - }; - char aChar[] = { - '\0', 'a', 'c', 'e', 'i', 'n', 'o', 'u', 'y', 'y', 'a', 'c', - 'd', 'e', 'e', 'g', 'h', 'i', 'j', 'k', 'l', 'n', 'o', 'r', - 's', 't', 'u', 'u', 'w', 'y', 'z', 'o', 'u', 'a', 'i', 'o', - 'u', 'g', 'k', 'o', 'j', 'g', 'n', 'a', 'e', 'i', 'o', 'r', - 'u', 's', 't', 'h', 'a', 'e', 'o', 'y', '\0', '\0', '\0', '\0', - '\0', '\0', '\0', '\0', 'a', 'b', 'd', 'd', 'e', 'f', 'g', 'h', - 'h', 'i', 'k', 'l', 'l', 'm', 'n', 'p', 'r', 'r', 's', 't', - 'u', 'v', 'w', 'w', 'x', 'y', 'z', 'h', 't', 'w', 'y', 'a', - 'e', 'i', 'o', 'u', 'y', - }; - - unsigned int key = (((unsigned int)c)<<3) | 0x00000007; - int iRes = 0; - int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1; - int iLo = 0; - while( iHi>=iLo ){ - int iTest = (iHi + iLo) / 2; - if( key >= aDia[iTest] ){ - iRes = iTest; - iLo = iTest+1; - }else{ - iHi = iTest-1; - } - } - assert( key>=aDia[iRes] ); - return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]); -}; - - -/* -** Return true if the argument interpreted as a unicode codepoint -** is a diacritical modifier character. -*/ -SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){ - unsigned int mask0 = 0x08029FDF; - unsigned int mask1 = 0x000361F8; - if( c<768 || c>817 ) return 0; - return (c < 768+32) ? - (mask0 & (1 << (c-768))) : - (mask1 & (1 << (c-768-32))); -} - - -/* -** Interpret the argument as a unicode codepoint. If the codepoint -** is an upper case character that has a lower case equivalent, -** return the codepoint corresponding to the lower case version. -** Otherwise, return a copy of the argument. -** -** The results are undefined if the value passed to this function -** is less than zero. -*/ -SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int bRemoveDiacritic){ - /* Each entry in the following array defines a rule for folding a range - ** of codepoints to lower case. The rule applies to a range of nRange - ** codepoints starting at codepoint iCode. - ** - ** If the least significant bit in flags is clear, then the rule applies - ** to all nRange codepoints (i.e. all nRange codepoints are upper case and - ** need to be folded). Or, if it is set, then the rule only applies to - ** every second codepoint in the range, starting with codepoint C. - ** - ** The 7 most significant bits in flags are an index into the aiOff[] - ** array. If a specific codepoint C does require folding, then its lower - ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF). - ** - ** The contents of this array are generated by parsing the CaseFolding.txt - ** file distributed as part of the "Unicode Character Database". See - ** http://www.unicode.org for details. - */ - static const struct TableEntry { - unsigned short iCode; - unsigned char flags; - unsigned char nRange; - } aEntry[] = { - {65, 14, 26}, {181, 64, 1}, {192, 14, 23}, - {216, 14, 7}, {256, 1, 48}, {306, 1, 6}, - {313, 1, 16}, {330, 1, 46}, {376, 116, 1}, - {377, 1, 6}, {383, 104, 1}, {385, 50, 1}, - {386, 1, 4}, {390, 44, 1}, {391, 0, 1}, - {393, 42, 2}, {395, 0, 1}, {398, 32, 1}, - {399, 38, 1}, {400, 40, 1}, {401, 0, 1}, - {403, 42, 1}, {404, 46, 1}, {406, 52, 1}, - {407, 48, 1}, {408, 0, 1}, {412, 52, 1}, - {413, 54, 1}, {415, 56, 1}, {416, 1, 6}, - {422, 60, 1}, {423, 0, 1}, {425, 60, 1}, - {428, 0, 1}, {430, 60, 1}, {431, 0, 1}, - {433, 58, 2}, {435, 1, 4}, {439, 62, 1}, - {440, 0, 1}, {444, 0, 1}, {452, 2, 1}, - {453, 0, 1}, {455, 2, 1}, {456, 0, 1}, - {458, 2, 1}, {459, 1, 18}, {478, 1, 18}, - {497, 2, 1}, {498, 1, 4}, {502, 122, 1}, - {503, 134, 1}, {504, 1, 40}, {544, 110, 1}, - {546, 1, 18}, {570, 70, 1}, {571, 0, 1}, - {573, 108, 1}, {574, 68, 1}, {577, 0, 1}, - {579, 106, 1}, {580, 28, 1}, {581, 30, 1}, - {582, 1, 10}, {837, 36, 1}, {880, 1, 4}, - {886, 0, 1}, {902, 18, 1}, {904, 16, 3}, - {908, 26, 1}, {910, 24, 2}, {913, 14, 17}, - {931, 14, 9}, {962, 0, 1}, {975, 4, 1}, - {976, 140, 1}, {977, 142, 1}, {981, 146, 1}, - {982, 144, 1}, {984, 1, 24}, {1008, 136, 1}, - {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1}, - {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1}, - {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32}, - {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1}, - {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38}, - {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1}, - {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1}, - {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6}, - {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6}, - {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8}, - {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2}, - {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1}, - {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2}, - {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2}, - {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2}, - {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1}, - {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16}, - {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47}, - {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1}, - {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1}, - {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1}, - {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2}, - {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1}, - {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14}, - {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1}, - {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1}, - {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1}, - {65313, 14, 26}, - }; - static const unsigned short aiOff[] = { - 1, 2, 8, 15, 16, 26, 28, 32, - 37, 38, 40, 48, 63, 64, 69, 71, - 79, 80, 116, 202, 203, 205, 206, 207, - 209, 210, 211, 213, 214, 217, 218, 219, - 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721, - 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274, - 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406, - 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462, - 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511, - 65514, 65521, 65527, 65528, 65529, - }; - - int ret = c; - - assert( c>=0 ); - assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 ); - - if( c<128 ){ - if( c>='A' && c<='Z' ) ret = c + ('a' - 'A'); - }else if( c<65536 ){ - int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; - int iLo = 0; - int iRes = -1; - - while( iHi>=iLo ){ - int iTest = (iHi + iLo) / 2; - int cmp = (c - aEntry[iTest].iCode); - if( cmp>=0 ){ - iRes = iTest; - iLo = iTest+1; - }else{ - iHi = iTest-1; - } - } - assert( iRes<0 || c>=aEntry[iRes].iCode ); - - if( iRes>=0 ){ - const struct TableEntry *p = &aEntry[iRes]; - if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){ - ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF; - assert( ret>0 ); - } - } - - if( bRemoveDiacritic ) ret = remove_diacritic(ret); - } - - else if( c>=66560 && c<66600 ){ - ret = c + 40; - } - - return ret; -} -#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */ -#endif /* !defined(SQLITE_ENABLE_FTS4_UNICODE61) */ - -/************** End of fts3_unicode2.c ***************************************/ -/************** Begin file rtree.c *******************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code for implementations of the r-tree and r*-tree -** algorithms packaged as an SQLite virtual table module. -*/ - -/* -** Database Format of R-Tree Tables -** -------------------------------- -** -** The data structure for a single virtual r-tree table is stored in three -** native SQLite tables declared as follows. In each case, the '%' character -** in the table name is replaced with the user-supplied name of the r-tree -** table. -** -** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) -** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) -** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) -** -** The data for each node of the r-tree structure is stored in the %_node -** table. For each node that is not the root node of the r-tree, there is -** an entry in the %_parent table associating the node with its parent. -** And for each row of data in the table, there is an entry in the %_rowid -** table that maps from the entries rowid to the id of the node that it -** is stored on. -** -** The root node of an r-tree always exists, even if the r-tree table is -** empty. The nodeno of the root node is always 1. All other nodes in the -** table must be the same size as the root node. The content of each node -** is formatted as follows: -** -** 1. If the node is the root node (node 1), then the first 2 bytes -** of the node contain the tree depth as a big-endian integer. -** For non-root nodes, the first 2 bytes are left unused. -** -** 2. The next 2 bytes contain the number of entries currently -** stored in the node. -** -** 3. The remainder of the node contains the node entries. Each entry -** consists of a single 8-byte integer followed by an even number -** of 4-byte coordinates. For leaf nodes the integer is the rowid -** of a record. For internal nodes it is the node number of a -** child page. -*/ - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) - -/* -** This file contains an implementation of a couple of different variants -** of the r-tree algorithm. See the README file for further details. The -** same data-structure is used for all, but the algorithms for insert and -** delete operations vary. The variants used are selected at compile time -** by defining the following symbols: -*/ - -/* Either, both or none of the following may be set to activate -** r*tree variant algorithms. -*/ -#define VARIANT_RSTARTREE_CHOOSESUBTREE 0 -#define VARIANT_RSTARTREE_REINSERT 1 - -/* -** Exactly one of the following must be set to 1. -*/ -#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 -#define VARIANT_GUTTMAN_LINEAR_SPLIT 0 -#define VARIANT_RSTARTREE_SPLIT 1 - -#define VARIANT_GUTTMAN_SPLIT \ - (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) - -#if VARIANT_GUTTMAN_QUADRATIC_SPLIT - #define PickNext QuadraticPickNext - #define PickSeeds QuadraticPickSeeds - #define AssignCells splitNodeGuttman -#endif -#if VARIANT_GUTTMAN_LINEAR_SPLIT - #define PickNext LinearPickNext - #define PickSeeds LinearPickSeeds - #define AssignCells splitNodeGuttman -#endif -#if VARIANT_RSTARTREE_SPLIT - #define AssignCells splitNodeStartree -#endif - -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif - -#ifndef SQLITE_CORE - SQLITE_EXTENSION_INIT1 -#else -#endif - -/* #include <string.h> */ -/* #include <assert.h> */ - -#ifndef SQLITE_AMALGAMATION -#include "sqlite3rtree.h" -typedef sqlite3_int64 i64; -typedef unsigned char u8; -typedef unsigned int u32; -#endif - -/* The following macro is used to suppress compiler warnings. -*/ -#ifndef UNUSED_PARAMETER -# define UNUSED_PARAMETER(x) (void)(x) -#endif - -typedef struct Rtree Rtree; -typedef struct RtreeCursor RtreeCursor; -typedef struct RtreeNode RtreeNode; -typedef struct RtreeCell RtreeCell; -typedef struct RtreeConstraint RtreeConstraint; -typedef struct RtreeMatchArg RtreeMatchArg; -typedef struct RtreeGeomCallback RtreeGeomCallback; -typedef union RtreeCoord RtreeCoord; - -/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ -#define RTREE_MAX_DIMENSIONS 5 - -/* Size of hash table Rtree.aHash. This hash table is not expected to -** ever contain very many entries, so a fixed number of buckets is -** used. -*/ -#define HASHSIZE 128 - -/* -** An rtree virtual-table object. -*/ -struct Rtree { - sqlite3_vtab base; - sqlite3 *db; /* Host database connection */ - int iNodeSize; /* Size in bytes of each node in the node table */ - int nDim; /* Number of dimensions */ - int nBytesPerCell; /* Bytes consumed per cell */ - int iDepth; /* Current depth of the r-tree structure */ - char *zDb; /* Name of database containing r-tree table */ - char *zName; /* Name of r-tree table */ - RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ - int nBusy; /* Current number of users of this structure */ - - /* List of nodes removed during a CondenseTree operation. List is - ** linked together via the pointer normally used for hash chains - - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree - ** headed by the node (leaf nodes have RtreeNode.iNode==0). - */ - RtreeNode *pDeleted; - int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ - - /* Statements to read/write/delete a record from xxx_node */ - sqlite3_stmt *pReadNode; - sqlite3_stmt *pWriteNode; - sqlite3_stmt *pDeleteNode; - - /* Statements to read/write/delete a record from xxx_rowid */ - sqlite3_stmt *pReadRowid; - sqlite3_stmt *pWriteRowid; - sqlite3_stmt *pDeleteRowid; - - /* Statements to read/write/delete a record from xxx_parent */ - sqlite3_stmt *pReadParent; - sqlite3_stmt *pWriteParent; - sqlite3_stmt *pDeleteParent; - - int eCoordType; -}; - -/* Possible values for eCoordType: */ -#define RTREE_COORD_REAL32 0 -#define RTREE_COORD_INT32 1 - -/* -** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will -** only deal with integer coordinates. No floating point operations -** will be done. -*/ -#ifdef SQLITE_RTREE_INT_ONLY - typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ - typedef int RtreeValue; /* Low accuracy coordinate */ -#else - typedef double RtreeDValue; /* High accuracy coordinate */ - typedef float RtreeValue; /* Low accuracy coordinate */ -#endif - -/* -** The minimum number of cells allowed for a node is a third of the -** maximum. In Gutman's notation: -** -** m = M/3 -** -** If an R*-tree "Reinsert" operation is required, the same number of -** cells are removed from the overfull node and reinserted into the tree. -*/ -#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) -#define RTREE_REINSERT(p) RTREE_MINCELLS(p) -#define RTREE_MAXCELLS 51 - -/* -** The smallest possible node-size is (512-64)==448 bytes. And the largest -** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). -** Therefore all non-root nodes must contain at least 3 entries. Since -** 2^40 is greater than 2^64, an r-tree structure always has a depth of -** 40 or less. -*/ -#define RTREE_MAX_DEPTH 40 - -/* -** An rtree cursor object. -*/ -struct RtreeCursor { - sqlite3_vtab_cursor base; - RtreeNode *pNode; /* Node cursor is currently pointing at */ - int iCell; /* Index of current cell in pNode */ - int iStrategy; /* Copy of idxNum search parameter */ - int nConstraint; /* Number of entries in aConstraint */ - RtreeConstraint *aConstraint; /* Search constraints. */ -}; - -union RtreeCoord { - RtreeValue f; - int i; -}; - -/* -** The argument is an RtreeCoord. Return the value stored within the RtreeCoord -** formatted as a RtreeDValue (double or int64). This macro assumes that local -** variable pRtree points to the Rtree structure associated with the -** RtreeCoord. -*/ -#ifdef SQLITE_RTREE_INT_ONLY -# define DCOORD(coord) ((RtreeDValue)coord.i) -#else -# define DCOORD(coord) ( \ - (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ - ((double)coord.f) : \ - ((double)coord.i) \ - ) -#endif - -/* -** A search constraint. -*/ -struct RtreeConstraint { - int iCoord; /* Index of constrained coordinate */ - int op; /* Constraining operation */ - RtreeDValue rValue; /* Constraint value. */ - int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); - sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ -}; - -/* Possible values for RtreeConstraint.op */ -#define RTREE_EQ 0x41 -#define RTREE_LE 0x42 -#define RTREE_LT 0x43 -#define RTREE_GE 0x44 -#define RTREE_GT 0x45 -#define RTREE_MATCH 0x46 - -/* -** An rtree structure node. -*/ -struct RtreeNode { - RtreeNode *pParent; /* Parent node */ - i64 iNode; - int nRef; - int isDirty; - u8 *zData; - RtreeNode *pNext; /* Next node in this hash chain */ -}; -#define NCELL(pNode) readInt16(&(pNode)->zData[2]) - -/* -** Structure to store a deserialized rtree record. -*/ -struct RtreeCell { - i64 iRowid; - RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; -}; - - -/* -** Value for the first field of every RtreeMatchArg object. The MATCH -** operator tests that the first field of a blob operand matches this -** value to avoid operating on invalid blobs (which could cause a segfault). -*/ -#define RTREE_GEOMETRY_MAGIC 0x891245AB - -/* -** An instance of this structure must be supplied as a blob argument to -** the right-hand-side of an SQL MATCH operator used to constrain an -** r-tree query. -*/ -struct RtreeMatchArg { - u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ - int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *); - void *pContext; - int nParam; - RtreeDValue aParam[1]; -}; - -/* -** When a geometry callback is created (see sqlite3_rtree_geometry_callback), -** a single instance of the following structure is allocated. It is used -** as the context for the user-function created by by s_r_g_c(). The object -** is eventually deleted by the destructor mechanism provided by -** sqlite3_create_function_v2() (which is called by s_r_g_c() to create -** the geometry callback function). -*/ -struct RtreeGeomCallback { - int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); - void *pContext; -}; - -#ifndef MAX -# define MAX(x,y) ((x) < (y) ? (y) : (x)) -#endif -#ifndef MIN -# define MIN(x,y) ((x) > (y) ? (y) : (x)) -#endif - -/* -** Functions to deserialize a 16 bit integer, 32 bit real number and -** 64 bit integer. The deserialized value is returned. -*/ -static int readInt16(u8 *p){ - return (p[0]<<8) + p[1]; -} -static void readCoord(u8 *p, RtreeCoord *pCoord){ - u32 i = ( - (((u32)p[0]) << 24) + - (((u32)p[1]) << 16) + - (((u32)p[2]) << 8) + - (((u32)p[3]) << 0) - ); - *(u32 *)pCoord = i; -} -static i64 readInt64(u8 *p){ - return ( - (((i64)p[0]) << 56) + - (((i64)p[1]) << 48) + - (((i64)p[2]) << 40) + - (((i64)p[3]) << 32) + - (((i64)p[4]) << 24) + - (((i64)p[5]) << 16) + - (((i64)p[6]) << 8) + - (((i64)p[7]) << 0) - ); -} - -/* -** Functions to serialize a 16 bit integer, 32 bit real number and -** 64 bit integer. The value returned is the number of bytes written -** to the argument buffer (always 2, 4 and 8 respectively). -*/ -static int writeInt16(u8 *p, int i){ - p[0] = (i>> 8)&0xFF; - p[1] = (i>> 0)&0xFF; - return 2; -} -static int writeCoord(u8 *p, RtreeCoord *pCoord){ - u32 i; - assert( sizeof(RtreeCoord)==4 ); - assert( sizeof(u32)==4 ); - i = *(u32 *)pCoord; - p[0] = (i>>24)&0xFF; - p[1] = (i>>16)&0xFF; - p[2] = (i>> 8)&0xFF; - p[3] = (i>> 0)&0xFF; - return 4; -} -static int writeInt64(u8 *p, i64 i){ - p[0] = (i>>56)&0xFF; - p[1] = (i>>48)&0xFF; - p[2] = (i>>40)&0xFF; - p[3] = (i>>32)&0xFF; - p[4] = (i>>24)&0xFF; - p[5] = (i>>16)&0xFF; - p[6] = (i>> 8)&0xFF; - p[7] = (i>> 0)&0xFF; - return 8; -} - -/* -** Increment the reference count of node p. -*/ -static void nodeReference(RtreeNode *p){ - if( p ){ - p->nRef++; - } -} - -/* -** Clear the content of node p (set all bytes to 0x00). -*/ -static void nodeZero(Rtree *pRtree, RtreeNode *p){ - memset(&p->zData[2], 0, pRtree->iNodeSize-2); - p->isDirty = 1; -} - -/* -** Given a node number iNode, return the corresponding key to use -** in the Rtree.aHash table. -*/ -static int nodeHash(i64 iNode){ - return ( - (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ - (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) - ) % HASHSIZE; -} - -/* -** Search the node hash table for node iNode. If found, return a pointer -** to it. Otherwise, return 0. -*/ -static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ - RtreeNode *p; - for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); - return p; -} - -/* -** Add node pNode to the node hash table. -*/ -static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ - int iHash; - assert( pNode->pNext==0 ); - iHash = nodeHash(pNode->iNode); - pNode->pNext = pRtree->aHash[iHash]; - pRtree->aHash[iHash] = pNode; -} - -/* -** Remove node pNode from the node hash table. -*/ -static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ - RtreeNode **pp; - if( pNode->iNode!=0 ){ - pp = &pRtree->aHash[nodeHash(pNode->iNode)]; - for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } - *pp = pNode->pNext; - pNode->pNext = 0; - } -} - -/* -** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), -** indicating that node has not yet been assigned a node number. It is -** assigned a node number when nodeWrite() is called to write the -** node contents out to the database. -*/ -static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ - RtreeNode *pNode; - pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); - if( pNode ){ - memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); - pNode->zData = (u8 *)&pNode[1]; - pNode->nRef = 1; - pNode->pParent = pParent; - pNode->isDirty = 1; - nodeReference(pParent); - } - return pNode; -} - -/* -** Obtain a reference to an r-tree node. -*/ -static int -nodeAcquire( - Rtree *pRtree, /* R-tree structure */ - i64 iNode, /* Node number to load */ - RtreeNode *pParent, /* Either the parent node or NULL */ - RtreeNode **ppNode /* OUT: Acquired node */ -){ - int rc; - int rc2 = SQLITE_OK; - RtreeNode *pNode; - - /* Check if the requested node is already in the hash table. If so, - ** increase its reference count and return it. - */ - if( (pNode = nodeHashLookup(pRtree, iNode)) ){ - assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); - if( pParent && !pNode->pParent ){ - nodeReference(pParent); - pNode->pParent = pParent; - } - pNode->nRef++; - *ppNode = pNode; - return SQLITE_OK; - } - - sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); - rc = sqlite3_step(pRtree->pReadNode); - if( rc==SQLITE_ROW ){ - const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); - if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){ - pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); - if( !pNode ){ - rc2 = SQLITE_NOMEM; - }else{ - pNode->pParent = pParent; - pNode->zData = (u8 *)&pNode[1]; - pNode->nRef = 1; - pNode->iNode = iNode; - pNode->isDirty = 0; - pNode->pNext = 0; - memcpy(pNode->zData, zBlob, pRtree->iNodeSize); - nodeReference(pParent); - } - } - } - rc = sqlite3_reset(pRtree->pReadNode); - if( rc==SQLITE_OK ) rc = rc2; - - /* If the root node was just loaded, set pRtree->iDepth to the height - ** of the r-tree structure. A height of zero means all data is stored on - ** the root node. A height of one means the children of the root node - ** are the leaves, and so on. If the depth as specified on the root node - ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. - */ - if( pNode && iNode==1 ){ - pRtree->iDepth = readInt16(pNode->zData); - if( pRtree->iDepth>RTREE_MAX_DEPTH ){ - rc = SQLITE_CORRUPT_VTAB; - } - } - - /* If no error has occurred so far, check if the "number of entries" - ** field on the node is too large. If so, set the return code to - ** SQLITE_CORRUPT_VTAB. - */ - if( pNode && rc==SQLITE_OK ){ - if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ - rc = SQLITE_CORRUPT_VTAB; - } - } - - if( rc==SQLITE_OK ){ - if( pNode!=0 ){ - nodeHashInsert(pRtree, pNode); - }else{ - rc = SQLITE_CORRUPT_VTAB; - } - *ppNode = pNode; - }else{ - sqlite3_free(pNode); - *ppNode = 0; - } - - return rc; -} - -/* -** Overwrite cell iCell of node pNode with the contents of pCell. -*/ -static void nodeOverwriteCell( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell, - int iCell -){ - int ii; - u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; - p += writeInt64(p, pCell->iRowid); - for(ii=0; ii<(pRtree->nDim*2); ii++){ - p += writeCoord(p, &pCell->aCoord[ii]); - } - pNode->isDirty = 1; -} - -/* -** Remove cell the cell with index iCell from node pNode. -*/ -static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ - u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; - u8 *pSrc = &pDst[pRtree->nBytesPerCell]; - int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; - memmove(pDst, pSrc, nByte); - writeInt16(&pNode->zData[2], NCELL(pNode)-1); - pNode->isDirty = 1; -} - -/* -** Insert the contents of cell pCell into node pNode. If the insert -** is successful, return SQLITE_OK. -** -** If there is not enough free space in pNode, return SQLITE_FULL. -*/ -static int -nodeInsertCell( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell -){ - int nCell; /* Current number of cells in pNode */ - int nMaxCell; /* Maximum number of cells for pNode */ - - nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; - nCell = NCELL(pNode); - - assert( nCell<=nMaxCell ); - if( nCell<nMaxCell ){ - nodeOverwriteCell(pRtree, pNode, pCell, nCell); - writeInt16(&pNode->zData[2], nCell+1); - pNode->isDirty = 1; - } - - return (nCell==nMaxCell); -} - -/* -** If the node is dirty, write it out to the database. -*/ -static int -nodeWrite(Rtree *pRtree, RtreeNode *pNode){ - int rc = SQLITE_OK; - if( pNode->isDirty ){ - sqlite3_stmt *p = pRtree->pWriteNode; - if( pNode->iNode ){ - sqlite3_bind_int64(p, 1, pNode->iNode); - }else{ - sqlite3_bind_null(p, 1); - } - sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); - sqlite3_step(p); - pNode->isDirty = 0; - rc = sqlite3_reset(p); - if( pNode->iNode==0 && rc==SQLITE_OK ){ - pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); - nodeHashInsert(pRtree, pNode); - } - } - return rc; -} - -/* -** Release a reference to a node. If the node is dirty and the reference -** count drops to zero, the node data is written to the database. -*/ -static int -nodeRelease(Rtree *pRtree, RtreeNode *pNode){ - int rc = SQLITE_OK; - if( pNode ){ - assert( pNode->nRef>0 ); - pNode->nRef--; - if( pNode->nRef==0 ){ - if( pNode->iNode==1 ){ - pRtree->iDepth = -1; - } - if( pNode->pParent ){ - rc = nodeRelease(pRtree, pNode->pParent); - } - if( rc==SQLITE_OK ){ - rc = nodeWrite(pRtree, pNode); - } - nodeHashDelete(pRtree, pNode); - sqlite3_free(pNode); - } - } - return rc; -} - -/* -** Return the 64-bit integer value associated with cell iCell of -** node pNode. If pNode is a leaf node, this is a rowid. If it is -** an internal node, then the 64-bit integer is a child page number. -*/ -static i64 nodeGetRowid( - Rtree *pRtree, - RtreeNode *pNode, - int iCell -){ - assert( iCell<NCELL(pNode) ); - return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); -} - -/* -** Return coordinate iCoord from cell iCell in node pNode. -*/ -static void nodeGetCoord( - Rtree *pRtree, - RtreeNode *pNode, - int iCell, - int iCoord, - RtreeCoord *pCoord /* Space to write result to */ -){ - readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); -} - -/* -** Deserialize cell iCell of node pNode. Populate the structure pointed -** to by pCell with the results. -*/ -static void nodeGetCell( - Rtree *pRtree, - RtreeNode *pNode, - int iCell, - RtreeCell *pCell -){ - int ii; - pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); - for(ii=0; ii<pRtree->nDim*2; ii++){ - nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); - } -} - - -/* Forward declaration for the function that does the work of -** the virtual table module xCreate() and xConnect() methods. -*/ -static int rtreeInit( - sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int -); - -/* -** Rtree virtual table module xCreate method. -*/ -static int rtreeCreate( - sqlite3 *db, - void *pAux, - int argc, const char *const*argv, - sqlite3_vtab **ppVtab, - char **pzErr -){ - return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); -} - -/* -** Rtree virtual table module xConnect method. -*/ -static int rtreeConnect( - sqlite3 *db, - void *pAux, - int argc, const char *const*argv, - sqlite3_vtab **ppVtab, - char **pzErr -){ - return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); -} - -/* -** Increment the r-tree reference count. -*/ -static void rtreeReference(Rtree *pRtree){ - pRtree->nBusy++; -} - -/* -** Decrement the r-tree reference count. When the reference count reaches -** zero the structure is deleted. -*/ -static void rtreeRelease(Rtree *pRtree){ - pRtree->nBusy--; - if( pRtree->nBusy==0 ){ - sqlite3_finalize(pRtree->pReadNode); - sqlite3_finalize(pRtree->pWriteNode); - sqlite3_finalize(pRtree->pDeleteNode); - sqlite3_finalize(pRtree->pReadRowid); - sqlite3_finalize(pRtree->pWriteRowid); - sqlite3_finalize(pRtree->pDeleteRowid); - sqlite3_finalize(pRtree->pReadParent); - sqlite3_finalize(pRtree->pWriteParent); - sqlite3_finalize(pRtree->pDeleteParent); - sqlite3_free(pRtree); - } -} - -/* -** Rtree virtual table module xDisconnect method. -*/ -static int rtreeDisconnect(sqlite3_vtab *pVtab){ - rtreeRelease((Rtree *)pVtab); - return SQLITE_OK; -} - -/* -** Rtree virtual table module xDestroy method. -*/ -static int rtreeDestroy(sqlite3_vtab *pVtab){ - Rtree *pRtree = (Rtree *)pVtab; - int rc; - char *zCreate = sqlite3_mprintf( - "DROP TABLE '%q'.'%q_node';" - "DROP TABLE '%q'.'%q_rowid';" - "DROP TABLE '%q'.'%q_parent';", - pRtree->zDb, pRtree->zName, - pRtree->zDb, pRtree->zName, - pRtree->zDb, pRtree->zName - ); - if( !zCreate ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); - sqlite3_free(zCreate); - } - if( rc==SQLITE_OK ){ - rtreeRelease(pRtree); - } - - return rc; -} - -/* -** Rtree virtual table module xOpen method. -*/ -static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ - int rc = SQLITE_NOMEM; - RtreeCursor *pCsr; - - pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); - if( pCsr ){ - memset(pCsr, 0, sizeof(RtreeCursor)); - pCsr->base.pVtab = pVTab; - rc = SQLITE_OK; - } - *ppCursor = (sqlite3_vtab_cursor *)pCsr; - - return rc; -} - - -/* -** Free the RtreeCursor.aConstraint[] array and its contents. -*/ -static void freeCursorConstraints(RtreeCursor *pCsr){ - if( pCsr->aConstraint ){ - int i; /* Used to iterate through constraint array */ - for(i=0; i<pCsr->nConstraint; i++){ - sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; - if( pGeom ){ - if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); - sqlite3_free(pGeom); - } - } - sqlite3_free(pCsr->aConstraint); - pCsr->aConstraint = 0; - } -} - -/* -** Rtree virtual table module xClose method. -*/ -static int rtreeClose(sqlite3_vtab_cursor *cur){ - Rtree *pRtree = (Rtree *)(cur->pVtab); - int rc; - RtreeCursor *pCsr = (RtreeCursor *)cur; - freeCursorConstraints(pCsr); - rc = nodeRelease(pRtree, pCsr->pNode); - sqlite3_free(pCsr); - return rc; -} - -/* -** Rtree virtual table module xEof method. -** -** Return non-zero if the cursor does not currently point to a valid -** record (i.e if the scan has finished), or zero otherwise. -*/ -static int rtreeEof(sqlite3_vtab_cursor *cur){ - RtreeCursor *pCsr = (RtreeCursor *)cur; - return (pCsr->pNode==0); -} - -/* -** The r-tree constraint passed as the second argument to this function is -** guaranteed to be a MATCH constraint. -*/ -static int testRtreeGeom( - Rtree *pRtree, /* R-Tree object */ - RtreeConstraint *pConstraint, /* MATCH constraint to test */ - RtreeCell *pCell, /* Cell to test */ - int *pbRes /* OUT: Test result */ -){ - int i; - RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2]; - int nCoord = pRtree->nDim*2; - - assert( pConstraint->op==RTREE_MATCH ); - assert( pConstraint->pGeom ); - - for(i=0; i<nCoord; i++){ - aCoord[i] = DCOORD(pCell->aCoord[i]); - } - return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); -} - -/* -** Cursor pCursor currently points to a cell in a non-leaf page. -** Set *pbEof to true if the sub-tree headed by the cell is filtered -** (excluded) by the constraints in the pCursor->aConstraint[] -** array, or false otherwise. -** -** Return SQLITE_OK if successful or an SQLite error code if an error -** occurs within a geometry callback. -*/ -static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ - RtreeCell cell; - int ii; - int bRes = 0; - int rc = SQLITE_OK; - - nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); - for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ - RtreeConstraint *p = &pCursor->aConstraint[ii]; - RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); - RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); - - assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE - || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH - ); - - switch( p->op ){ - case RTREE_LE: case RTREE_LT: - bRes = p->rValue<cell_min; - break; - - case RTREE_GE: case RTREE_GT: - bRes = p->rValue>cell_max; - break; - - case RTREE_EQ: - bRes = (p->rValue>cell_max || p->rValue<cell_min); - break; - - default: { - assert( p->op==RTREE_MATCH ); - rc = testRtreeGeom(pRtree, p, &cell, &bRes); - bRes = !bRes; - break; - } - } - } - - *pbEof = bRes; - return rc; -} - -/* -** Test if the cell that cursor pCursor currently points to -** would be filtered (excluded) by the constraints in the -** pCursor->aConstraint[] array. If so, set *pbEof to true before -** returning. If the cell is not filtered (excluded) by the constraints, -** set pbEof to zero. -** -** Return SQLITE_OK if successful or an SQLite error code if an error -** occurs within a geometry callback. -** -** This function assumes that the cell is part of a leaf node. -*/ -static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ - RtreeCell cell; - int ii; - *pbEof = 0; - - nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); - for(ii=0; ii<pCursor->nConstraint; ii++){ - RtreeConstraint *p = &pCursor->aConstraint[ii]; - RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]); - int res; - assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE - || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH - ); - switch( p->op ){ - case RTREE_LE: res = (coord<=p->rValue); break; - case RTREE_LT: res = (coord<p->rValue); break; - case RTREE_GE: res = (coord>=p->rValue); break; - case RTREE_GT: res = (coord>p->rValue); break; - case RTREE_EQ: res = (coord==p->rValue); break; - default: { - int rc; - assert( p->op==RTREE_MATCH ); - rc = testRtreeGeom(pRtree, p, &cell, &res); - if( rc!=SQLITE_OK ){ - return rc; - } - break; - } - } - - if( !res ){ - *pbEof = 1; - return SQLITE_OK; - } - } - - return SQLITE_OK; -} - -/* -** Cursor pCursor currently points at a node that heads a sub-tree of -** height iHeight (if iHeight==0, then the node is a leaf). Descend -** to point to the left-most cell of the sub-tree that matches the -** configured constraints. -*/ -static int descendToCell( - Rtree *pRtree, - RtreeCursor *pCursor, - int iHeight, - int *pEof /* OUT: Set to true if cannot descend */ -){ - int isEof; - int rc; - int ii; - RtreeNode *pChild; - sqlite3_int64 iRowid; - - RtreeNode *pSavedNode = pCursor->pNode; - int iSavedCell = pCursor->iCell; - - assert( iHeight>=0 ); - - if( iHeight==0 ){ - rc = testRtreeEntry(pRtree, pCursor, &isEof); - }else{ - rc = testRtreeCell(pRtree, pCursor, &isEof); - } - if( rc!=SQLITE_OK || isEof || iHeight==0 ){ - goto descend_to_cell_out; - } - - iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); - rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); - if( rc!=SQLITE_OK ){ - goto descend_to_cell_out; - } - - nodeRelease(pRtree, pCursor->pNode); - pCursor->pNode = pChild; - isEof = 1; - for(ii=0; isEof && ii<NCELL(pChild); ii++){ - pCursor->iCell = ii; - rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); - if( rc!=SQLITE_OK ){ - goto descend_to_cell_out; - } - } - - if( isEof ){ - assert( pCursor->pNode==pChild ); - nodeReference(pSavedNode); - nodeRelease(pRtree, pChild); - pCursor->pNode = pSavedNode; - pCursor->iCell = iSavedCell; - } - -descend_to_cell_out: - *pEof = isEof; - return rc; -} - -/* -** One of the cells in node pNode is guaranteed to have a 64-bit -** integer value equal to iRowid. Return the index of this cell. -*/ -static int nodeRowidIndex( - Rtree *pRtree, - RtreeNode *pNode, - i64 iRowid, - int *piIndex -){ - int ii; - int nCell = NCELL(pNode); - for(ii=0; ii<nCell; ii++){ - if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ - *piIndex = ii; - return SQLITE_OK; - } - } - return SQLITE_CORRUPT_VTAB; -} - -/* -** Return the index of the cell containing a pointer to node pNode -** in its parent. If pNode is the root node, return -1. -*/ -static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ - RtreeNode *pParent = pNode->pParent; - if( pParent ){ - return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); - } - *piIndex = -1; - return SQLITE_OK; -} - -/* -** Rtree virtual table module xNext method. -*/ -static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ - Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); - RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; - int rc = SQLITE_OK; - - /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is - ** already at EOF. It is against the rules to call the xNext() method of - ** a cursor that has already reached EOF. - */ - assert( pCsr->pNode ); - - if( pCsr->iStrategy==1 ){ - /* This "scan" is a direct lookup by rowid. There is no next entry. */ - nodeRelease(pRtree, pCsr->pNode); - pCsr->pNode = 0; - }else{ - /* Move to the next entry that matches the configured constraints. */ - int iHeight = 0; - while( pCsr->pNode ){ - RtreeNode *pNode = pCsr->pNode; - int nCell = NCELL(pNode); - for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ - int isEof; - rc = descendToCell(pRtree, pCsr, iHeight, &isEof); - if( rc!=SQLITE_OK || !isEof ){ - return rc; - } - } - pCsr->pNode = pNode->pParent; - rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); - if( rc!=SQLITE_OK ){ - return rc; - } - nodeReference(pCsr->pNode); - nodeRelease(pRtree, pNode); - iHeight++; - } - } - - return rc; -} - -/* -** Rtree virtual table module xRowid method. -*/ -static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ - Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; - RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; - - assert(pCsr->pNode); - *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); - - return SQLITE_OK; -} - -/* -** Rtree virtual table module xColumn method. -*/ -static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ - Rtree *pRtree = (Rtree *)cur->pVtab; - RtreeCursor *pCsr = (RtreeCursor *)cur; - - if( i==0 ){ - i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); - sqlite3_result_int64(ctx, iRowid); - }else{ - RtreeCoord c; - nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); -#ifndef SQLITE_RTREE_INT_ONLY - if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ - sqlite3_result_double(ctx, c.f); - }else -#endif - { - assert( pRtree->eCoordType==RTREE_COORD_INT32 ); - sqlite3_result_int(ctx, c.i); - } - } - - return SQLITE_OK; -} - -/* -** Use nodeAcquire() to obtain the leaf node containing the record with -** rowid iRowid. If successful, set *ppLeaf to point to the node and -** return SQLITE_OK. If there is no such record in the table, set -** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf -** to zero and return an SQLite error code. -*/ -static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ - int rc; - *ppLeaf = 0; - sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); - if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ - i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); - rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); - sqlite3_reset(pRtree->pReadRowid); - }else{ - rc = sqlite3_reset(pRtree->pReadRowid); - } - return rc; -} - -/* -** This function is called to configure the RtreeConstraint object passed -** as the second argument for a MATCH constraint. The value passed as the -** first argument to this function is the right-hand operand to the MATCH -** operator. -*/ -static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ - RtreeMatchArg *p; - sqlite3_rtree_geometry *pGeom; - int nBlob; - - /* Check that value is actually a blob. */ - if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; - - /* Check that the blob is roughly the right size. */ - nBlob = sqlite3_value_bytes(pValue); - if( nBlob<(int)sizeof(RtreeMatchArg) - || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0 - ){ - return SQLITE_ERROR; - } - - pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( - sizeof(sqlite3_rtree_geometry) + nBlob - ); - if( !pGeom ) return SQLITE_NOMEM; - memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); - p = (RtreeMatchArg *)&pGeom[1]; - - memcpy(p, sqlite3_value_blob(pValue), nBlob); - if( p->magic!=RTREE_GEOMETRY_MAGIC - || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue)) - ){ - sqlite3_free(pGeom); - return SQLITE_ERROR; - } - - pGeom->pContext = p->pContext; - pGeom->nParam = p->nParam; - pGeom->aParam = p->aParam; - - pCons->xGeom = p->xGeom; - pCons->pGeom = pGeom; - return SQLITE_OK; -} - -/* -** Rtree virtual table module xFilter method. -*/ -static int rtreeFilter( - sqlite3_vtab_cursor *pVtabCursor, - int idxNum, const char *idxStr, - int argc, sqlite3_value **argv -){ - Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; - RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; - - RtreeNode *pRoot = 0; - int ii; - int rc = SQLITE_OK; - - rtreeReference(pRtree); - - freeCursorConstraints(pCsr); - pCsr->iStrategy = idxNum; - - if( idxNum==1 ){ - /* Special case - lookup by rowid. */ - RtreeNode *pLeaf; /* Leaf on which the required cell resides */ - i64 iRowid = sqlite3_value_int64(argv[0]); - rc = findLeafNode(pRtree, iRowid, &pLeaf); - pCsr->pNode = pLeaf; - if( pLeaf ){ - assert( rc==SQLITE_OK ); - rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); - } - }else{ - /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array - ** with the configured constraints. - */ - if( argc>0 ){ - pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); - pCsr->nConstraint = argc; - if( !pCsr->aConstraint ){ - rc = SQLITE_NOMEM; - }else{ - memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); - assert( (idxStr==0 && argc==0) - || (idxStr && (int)strlen(idxStr)==argc*2) ); - for(ii=0; ii<argc; ii++){ - RtreeConstraint *p = &pCsr->aConstraint[ii]; - p->op = idxStr[ii*2]; - p->iCoord = idxStr[ii*2+1]-'a'; - if( p->op==RTREE_MATCH ){ - /* A MATCH operator. The right-hand-side must be a blob that - ** can be cast into an RtreeMatchArg object. One created using - ** an sqlite3_rtree_geometry_callback() SQL user function. - */ - rc = deserializeGeometry(argv[ii], p); - if( rc!=SQLITE_OK ){ - break; - } - }else{ -#ifdef SQLITE_RTREE_INT_ONLY - p->rValue = sqlite3_value_int64(argv[ii]); -#else - p->rValue = sqlite3_value_double(argv[ii]); -#endif - } - } - } - } - - if( rc==SQLITE_OK ){ - pCsr->pNode = 0; - rc = nodeAcquire(pRtree, 1, 0, &pRoot); - } - if( rc==SQLITE_OK ){ - int isEof = 1; - int nCell = NCELL(pRoot); - pCsr->pNode = pRoot; - for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ - assert( pCsr->pNode==pRoot ); - rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); - if( !isEof ){ - break; - } - } - if( rc==SQLITE_OK && isEof ){ - assert( pCsr->pNode==pRoot ); - nodeRelease(pRtree, pRoot); - pCsr->pNode = 0; - } - assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); - } - } - - rtreeRelease(pRtree); - return rc; -} - -/* -** Rtree virtual table module xBestIndex method. There are three -** table scan strategies to choose from (in order from most to -** least desirable): -** -** idxNum idxStr Strategy -** ------------------------------------------------ -** 1 Unused Direct lookup by rowid. -** 2 See below R-tree query or full-table scan. -** ------------------------------------------------ -** -** If strategy 1 is used, then idxStr is not meaningful. If strategy -** 2 is used, idxStr is formatted to contain 2 bytes for each -** constraint used. The first two bytes of idxStr correspond to -** the constraint in sqlite3_index_info.aConstraintUsage[] with -** (argvIndex==1) etc. -** -** The first of each pair of bytes in idxStr identifies the constraint -** operator as follows: -** -** Operator Byte Value -** ---------------------- -** = 0x41 ('A') -** <= 0x42 ('B') -** < 0x43 ('C') -** >= 0x44 ('D') -** > 0x45 ('E') -** MATCH 0x46 ('F') -** ---------------------- -** -** The second of each pair of bytes identifies the coordinate column -** to which the constraint applies. The leftmost coordinate column -** is 'a', the second from the left 'b' etc. -*/ -static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ - int rc = SQLITE_OK; - int ii; - - int iIdx = 0; - char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; - memset(zIdxStr, 0, sizeof(zIdxStr)); - UNUSED_PARAMETER(tab); - - assert( pIdxInfo->idxStr==0 ); - for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ - struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; - - if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ - /* We have an equality constraint on the rowid. Use strategy 1. */ - int jj; - for(jj=0; jj<ii; jj++){ - pIdxInfo->aConstraintUsage[jj].argvIndex = 0; - pIdxInfo->aConstraintUsage[jj].omit = 0; - } - pIdxInfo->idxNum = 1; - pIdxInfo->aConstraintUsage[ii].argvIndex = 1; - pIdxInfo->aConstraintUsage[jj].omit = 1; - - /* This strategy involves a two rowid lookups on an B-Tree structures - ** and then a linear search of an R-Tree node. This should be - ** considered almost as quick as a direct rowid lookup (for which - ** sqlite uses an internal cost of 0.0). - */ - pIdxInfo->estimatedCost = 10.0; - return SQLITE_OK; - } - - if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ - u8 op; - switch( p->op ){ - case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; - case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; - case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; - case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; - case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; - default: - assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); - op = RTREE_MATCH; - break; - } - zIdxStr[iIdx++] = op; - zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; - pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); - pIdxInfo->aConstraintUsage[ii].omit = 1; - } - } - - pIdxInfo->idxNum = 2; - pIdxInfo->needToFreeIdxStr = 1; - if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ - return SQLITE_NOMEM; - } - assert( iIdx>=0 ); - pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); - return rc; -} - -/* -** Return the N-dimensional volumn of the cell stored in *p. -*/ -static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ - RtreeDValue area = (RtreeDValue)1; - int ii; - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]))); - } - return area; -} - -/* -** Return the margin length of cell p. The margin length is the sum -** of the objects size in each dimension. -*/ -static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ - RtreeDValue margin = (RtreeDValue)0; - int ii; - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); - } - return margin; -} - -/* -** Store the union of cells p1 and p2 in p1. -*/ -static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ - int ii; - if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); - p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); - } - }else{ - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); - p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); - } - } -} - -/* -** Return true if the area covered by p2 is a subset of the area covered -** by p1. False otherwise. -*/ -static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ - int ii; - int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - RtreeCoord *a1 = &p1->aCoord[ii]; - RtreeCoord *a2 = &p2->aCoord[ii]; - if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) - || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) - ){ - return 0; - } - } - return 1; -} - -/* -** Return the amount cell p would grow by if it were unioned with pCell. -*/ -static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ - RtreeDValue area; - RtreeCell cell; - memcpy(&cell, p, sizeof(RtreeCell)); - area = cellArea(pRtree, &cell); - cellUnion(pRtree, &cell, pCell); - return (cellArea(pRtree, &cell)-area); -} - -#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT -static RtreeDValue cellOverlap( - Rtree *pRtree, - RtreeCell *p, - RtreeCell *aCell, - int nCell, - int iExclude -){ - int ii; - RtreeDValue overlap = 0.0; - for(ii=0; ii<nCell; ii++){ -#if VARIANT_RSTARTREE_CHOOSESUBTREE - if( ii!=iExclude ) -#else - assert( iExclude==-1 ); - UNUSED_PARAMETER(iExclude); -#endif - { - int jj; - RtreeDValue o = (RtreeDValue)1; - for(jj=0; jj<(pRtree->nDim*2); jj+=2){ - RtreeDValue x1, x2; - - x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); - x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); - - if( x2<x1 ){ - o = 0.0; - break; - }else{ - o = o * (x2-x1); - } - } - overlap += o; - } - } - return overlap; -} -#endif - -#if VARIANT_RSTARTREE_CHOOSESUBTREE -static RtreeDValue cellOverlapEnlargement( - Rtree *pRtree, - RtreeCell *p, - RtreeCell *pInsert, - RtreeCell *aCell, - int nCell, - int iExclude -){ - RtreeDValue before, after; - before = cellOverlap(pRtree, p, aCell, nCell, iExclude); - cellUnion(pRtree, p, pInsert); - after = cellOverlap(pRtree, p, aCell, nCell, iExclude); - return (after-before); -} -#endif - - -/* -** This function implements the ChooseLeaf algorithm from Gutman[84]. -** ChooseSubTree in r*tree terminology. -*/ -static int ChooseLeaf( - Rtree *pRtree, /* Rtree table */ - RtreeCell *pCell, /* Cell to insert into rtree */ - int iHeight, /* Height of sub-tree rooted at pCell */ - RtreeNode **ppLeaf /* OUT: Selected leaf page */ -){ - int rc; - int ii; - RtreeNode *pNode; - rc = nodeAcquire(pRtree, 1, 0, &pNode); - - for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ - int iCell; - sqlite3_int64 iBest = 0; - - RtreeDValue fMinGrowth = 0.0; - RtreeDValue fMinArea = 0.0; -#if VARIANT_RSTARTREE_CHOOSESUBTREE - RtreeDValue fMinOverlap = 0.0; - RtreeDValue overlap; -#endif - - int nCell = NCELL(pNode); - RtreeCell cell; - RtreeNode *pChild; - - RtreeCell *aCell = 0; - -#if VARIANT_RSTARTREE_CHOOSESUBTREE - if( ii==(pRtree->iDepth-1) ){ - int jj; - aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); - if( !aCell ){ - rc = SQLITE_NOMEM; - nodeRelease(pRtree, pNode); - pNode = 0; - continue; - } - for(jj=0; jj<nCell; jj++){ - nodeGetCell(pRtree, pNode, jj, &aCell[jj]); - } - } -#endif - - /* Select the child node which will be enlarged the least if pCell - ** is inserted into it. Resolve ties by choosing the entry with - ** the smallest area. - */ - for(iCell=0; iCell<nCell; iCell++){ - int bBest = 0; - RtreeDValue growth; - RtreeDValue area; - nodeGetCell(pRtree, pNode, iCell, &cell); - growth = cellGrowth(pRtree, &cell, pCell); - area = cellArea(pRtree, &cell); - -#if VARIANT_RSTARTREE_CHOOSESUBTREE - if( ii==(pRtree->iDepth-1) ){ - overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); - }else{ - overlap = 0.0; - } - if( (iCell==0) - || (overlap<fMinOverlap) - || (overlap==fMinOverlap && growth<fMinGrowth) - || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) - ){ - bBest = 1; - fMinOverlap = overlap; - } -#else - if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ - bBest = 1; - } -#endif - if( bBest ){ - fMinGrowth = growth; - fMinArea = area; - iBest = cell.iRowid; - } - } - - sqlite3_free(aCell); - rc = nodeAcquire(pRtree, iBest, pNode, &pChild); - nodeRelease(pRtree, pNode); - pNode = pChild; - } - - *ppLeaf = pNode; - return rc; -} - -/* -** A cell with the same content as pCell has just been inserted into -** the node pNode. This function updates the bounding box cells in -** all ancestor elements. -*/ -static int AdjustTree( - Rtree *pRtree, /* Rtree table */ - RtreeNode *pNode, /* Adjust ancestry of this node. */ - RtreeCell *pCell /* This cell was just inserted */ -){ - RtreeNode *p = pNode; - while( p->pParent ){ - RtreeNode *pParent = p->pParent; - RtreeCell cell; - int iCell; - - if( nodeParentIndex(pRtree, p, &iCell) ){ - return SQLITE_CORRUPT_VTAB; - } - - nodeGetCell(pRtree, pParent, iCell, &cell); - if( !cellContains(pRtree, &cell, pCell) ){ - cellUnion(pRtree, &cell, pCell); - nodeOverwriteCell(pRtree, pParent, &cell, iCell); - } - - p = pParent; - } - return SQLITE_OK; -} - -/* -** Write mapping (iRowid->iNode) to the <rtree>_rowid table. -*/ -static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ - sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); - sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); - sqlite3_step(pRtree->pWriteRowid); - return sqlite3_reset(pRtree->pWriteRowid); -} - -/* -** Write mapping (iNode->iPar) to the <rtree>_parent table. -*/ -static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ - sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); - sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); - sqlite3_step(pRtree->pWriteParent); - return sqlite3_reset(pRtree->pWriteParent); -} - -static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); - -#if VARIANT_GUTTMAN_LINEAR_SPLIT -/* -** Implementation of the linear variant of the PickNext() function from -** Guttman[84]. -*/ -static RtreeCell *LinearPickNext( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeCell *pLeftBox, - RtreeCell *pRightBox, - int *aiUsed -){ - int ii; - for(ii=0; aiUsed[ii]; ii++); - aiUsed[ii] = 1; - return &aCell[ii]; -} - -/* -** Implementation of the linear variant of the PickSeeds() function from -** Guttman[84]. -*/ -static void LinearPickSeeds( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - int *piLeftSeed, - int *piRightSeed -){ - int i; - int iLeftSeed = 0; - int iRightSeed = 1; - RtreeDValue maxNormalInnerWidth = (RtreeDValue)0; - - /* Pick two "seed" cells from the array of cells. The algorithm used - ** here is the LinearPickSeeds algorithm from Gutman[1984]. The - ** indices of the two seed cells in the array are stored in local - ** variables iLeftSeek and iRightSeed. - */ - for(i=0; i<pRtree->nDim; i++){ - RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]); - RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]); - RtreeDValue x3 = x1; - RtreeDValue x4 = x2; - int jj; - - int iCellLeft = 0; - int iCellRight = 0; - - for(jj=1; jj<nCell; jj++){ - RtreeDValue left = DCOORD(aCell[jj].aCoord[i*2]); - RtreeDValue right = DCOORD(aCell[jj].aCoord[i*2+1]); - - if( left<x1 ) x1 = left; - if( right>x4 ) x4 = right; - if( left>x3 ){ - x3 = left; - iCellRight = jj; - } - if( right<x2 ){ - x2 = right; - iCellLeft = jj; - } - } - - if( x4!=x1 ){ - RtreeDValue normalwidth = (x3 - x2) / (x4 - x1); - if( normalwidth>maxNormalInnerWidth ){ - iLeftSeed = iCellLeft; - iRightSeed = iCellRight; - } - } - } - - *piLeftSeed = iLeftSeed; - *piRightSeed = iRightSeed; -} -#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ - -#if VARIANT_GUTTMAN_QUADRATIC_SPLIT -/* -** Implementation of the quadratic variant of the PickNext() function from -** Guttman[84]. -*/ -static RtreeCell *QuadraticPickNext( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeCell *pLeftBox, - RtreeCell *pRightBox, - int *aiUsed -){ - #define FABS(a) ((a)<0.0?-1.0*(a):(a)) - - int iSelect = -1; - RtreeDValue fDiff; - int ii; - for(ii=0; ii<nCell; ii++){ - if( aiUsed[ii]==0 ){ - RtreeDValue left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); - RtreeDValue right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); - RtreeDValue diff = FABS(right-left); - if( iSelect<0 || diff>fDiff ){ - fDiff = diff; - iSelect = ii; - } - } - } - aiUsed[iSelect] = 1; - return &aCell[iSelect]; -} - -/* -** Implementation of the quadratic variant of the PickSeeds() function from -** Guttman[84]. -*/ -static void QuadraticPickSeeds( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - int *piLeftSeed, - int *piRightSeed -){ - int ii; - int jj; - - int iLeftSeed = 0; - int iRightSeed = 1; - RtreeDValue fWaste = 0.0; - - for(ii=0; ii<nCell; ii++){ - for(jj=ii+1; jj<nCell; jj++){ - RtreeDValue right = cellArea(pRtree, &aCell[jj]); - RtreeDValue growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); - RtreeDValue waste = growth - right; - - if( waste>fWaste ){ - iLeftSeed = ii; - iRightSeed = jj; - fWaste = waste; - } - } - } - - *piLeftSeed = iLeftSeed; - *piRightSeed = iRightSeed; -} -#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ - -/* -** Arguments aIdx, aDistance and aSpare all point to arrays of size -** nIdx. The aIdx array contains the set of integers from 0 to -** (nIdx-1) in no particular order. This function sorts the values -** in aIdx according to the indexed values in aDistance. For -** example, assuming the inputs: -** -** aIdx = { 0, 1, 2, 3 } -** aDistance = { 5.0, 2.0, 7.0, 6.0 } -** -** this function sets the aIdx array to contain: -** -** aIdx = { 0, 1, 2, 3 } -** -** The aSpare array is used as temporary working space by the -** sorting algorithm. -*/ -static void SortByDistance( - int *aIdx, - int nIdx, - RtreeDValue *aDistance, - int *aSpare -){ - if( nIdx>1 ){ - int iLeft = 0; - int iRight = 0; - - int nLeft = nIdx/2; - int nRight = nIdx-nLeft; - int *aLeft = aIdx; - int *aRight = &aIdx[nLeft]; - - SortByDistance(aLeft, nLeft, aDistance, aSpare); - SortByDistance(aRight, nRight, aDistance, aSpare); - - memcpy(aSpare, aLeft, sizeof(int)*nLeft); - aLeft = aSpare; - - while( iLeft<nLeft || iRight<nRight ){ - if( iLeft==nLeft ){ - aIdx[iLeft+iRight] = aRight[iRight]; - iRight++; - }else if( iRight==nRight ){ - aIdx[iLeft+iRight] = aLeft[iLeft]; - iLeft++; - }else{ - RtreeDValue fLeft = aDistance[aLeft[iLeft]]; - RtreeDValue fRight = aDistance[aRight[iRight]]; - if( fLeft<fRight ){ - aIdx[iLeft+iRight] = aLeft[iLeft]; - iLeft++; - }else{ - aIdx[iLeft+iRight] = aRight[iRight]; - iRight++; - } - } - } - -#if 0 - /* Check that the sort worked */ - { - int jj; - for(jj=1; jj<nIdx; jj++){ - RtreeDValue left = aDistance[aIdx[jj-1]]; - RtreeDValue right = aDistance[aIdx[jj]]; - assert( left<=right ); - } - } -#endif - } -} - -/* -** Arguments aIdx, aCell and aSpare all point to arrays of size -** nIdx. The aIdx array contains the set of integers from 0 to -** (nIdx-1) in no particular order. This function sorts the values -** in aIdx according to dimension iDim of the cells in aCell. The -** minimum value of dimension iDim is considered first, the -** maximum used to break ties. -** -** The aSpare array is used as temporary working space by the -** sorting algorithm. -*/ -static void SortByDimension( - Rtree *pRtree, - int *aIdx, - int nIdx, - int iDim, - RtreeCell *aCell, - int *aSpare -){ - if( nIdx>1 ){ - - int iLeft = 0; - int iRight = 0; - - int nLeft = nIdx/2; - int nRight = nIdx-nLeft; - int *aLeft = aIdx; - int *aRight = &aIdx[nLeft]; - - SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); - SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); - - memcpy(aSpare, aLeft, sizeof(int)*nLeft); - aLeft = aSpare; - while( iLeft<nLeft || iRight<nRight ){ - RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); - RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); - RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); - RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); - if( (iLeft!=nLeft) && ((iRight==nRight) - || (xleft1<xright1) - || (xleft1==xright1 && xleft2<xright2) - )){ - aIdx[iLeft+iRight] = aLeft[iLeft]; - iLeft++; - }else{ - aIdx[iLeft+iRight] = aRight[iRight]; - iRight++; - } - } - -#if 0 - /* Check that the sort worked */ - { - int jj; - for(jj=1; jj<nIdx; jj++){ - RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; - RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; - RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; - RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; - assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); - } - } -#endif - } -} - -#if VARIANT_RSTARTREE_SPLIT -/* -** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. -*/ -static int splitNodeStartree( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeNode *pLeft, - RtreeNode *pRight, - RtreeCell *pBboxLeft, - RtreeCell *pBboxRight -){ - int **aaSorted; - int *aSpare; - int ii; - - int iBestDim = 0; - int iBestSplit = 0; - RtreeDValue fBestMargin = 0.0; - - int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); - - aaSorted = (int **)sqlite3_malloc(nByte); - if( !aaSorted ){ - return SQLITE_NOMEM; - } - - aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; - memset(aaSorted, 0, nByte); - for(ii=0; ii<pRtree->nDim; ii++){ - int jj; - aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; - for(jj=0; jj<nCell; jj++){ - aaSorted[ii][jj] = jj; - } - SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); - } - - for(ii=0; ii<pRtree->nDim; ii++){ - RtreeDValue margin = 0.0; - RtreeDValue fBestOverlap = 0.0; - RtreeDValue fBestArea = 0.0; - int iBestLeft = 0; - int nLeft; - - for( - nLeft=RTREE_MINCELLS(pRtree); - nLeft<=(nCell-RTREE_MINCELLS(pRtree)); - nLeft++ - ){ - RtreeCell left; - RtreeCell right; - int kk; - RtreeDValue overlap; - RtreeDValue area; - - memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); - memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); - for(kk=1; kk<(nCell-1); kk++){ - if( kk<nLeft ){ - cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); - }else{ - cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); - } - } - margin += cellMargin(pRtree, &left); - margin += cellMargin(pRtree, &right); - overlap = cellOverlap(pRtree, &left, &right, 1, -1); - area = cellArea(pRtree, &left) + cellArea(pRtree, &right); - if( (nLeft==RTREE_MINCELLS(pRtree)) - || (overlap<fBestOverlap) - || (overlap==fBestOverlap && area<fBestArea) - ){ - iBestLeft = nLeft; - fBestOverlap = overlap; - fBestArea = area; - } - } - - if( ii==0 || margin<fBestMargin ){ - iBestDim = ii; - fBestMargin = margin; - iBestSplit = iBestLeft; - } - } - - memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); - memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); - for(ii=0; ii<nCell; ii++){ - RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; - RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; - RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; - nodeInsertCell(pRtree, pTarget, pCell); - cellUnion(pRtree, pBbox, pCell); - } - - sqlite3_free(aaSorted); - return SQLITE_OK; -} -#endif - -#if VARIANT_GUTTMAN_SPLIT -/* -** Implementation of the regular R-tree SplitNode from Guttman[1984]. -*/ -static int splitNodeGuttman( - Rtree *pRtree, - RtreeCell *aCell, - int nCell, - RtreeNode *pLeft, - RtreeNode *pRight, - RtreeCell *pBboxLeft, - RtreeCell *pBboxRight -){ - int iLeftSeed = 0; - int iRightSeed = 1; - int *aiUsed; - int i; - - aiUsed = sqlite3_malloc(sizeof(int)*nCell); - if( !aiUsed ){ - return SQLITE_NOMEM; - } - memset(aiUsed, 0, sizeof(int)*nCell); - - PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); - - memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); - memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); - nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); - nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); - aiUsed[iLeftSeed] = 1; - aiUsed[iRightSeed] = 1; - - for(i=nCell-2; i>0; i--){ - RtreeCell *pNext; - pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); - RtreeDValue diff = - cellGrowth(pRtree, pBboxLeft, pNext) - - cellGrowth(pRtree, pBboxRight, pNext) - ; - if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) - || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) - ){ - nodeInsertCell(pRtree, pRight, pNext); - cellUnion(pRtree, pBboxRight, pNext); - }else{ - nodeInsertCell(pRtree, pLeft, pNext); - cellUnion(pRtree, pBboxLeft, pNext); - } - } - - sqlite3_free(aiUsed); - return SQLITE_OK; -} -#endif - -static int updateMapping( - Rtree *pRtree, - i64 iRowid, - RtreeNode *pNode, - int iHeight -){ - int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); - xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); - if( iHeight>0 ){ - RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); - if( pChild ){ - nodeRelease(pRtree, pChild->pParent); - nodeReference(pNode); - pChild->pParent = pNode; - } - } - return xSetMapping(pRtree, iRowid, pNode->iNode); -} - -static int SplitNode( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell, - int iHeight -){ - int i; - int newCellIsRight = 0; - - int rc = SQLITE_OK; - int nCell = NCELL(pNode); - RtreeCell *aCell; - int *aiUsed; - - RtreeNode *pLeft = 0; - RtreeNode *pRight = 0; - - RtreeCell leftbbox; - RtreeCell rightbbox; - - /* Allocate an array and populate it with a copy of pCell and - ** all cells from node pLeft. Then zero the original node. - */ - aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); - if( !aCell ){ - rc = SQLITE_NOMEM; - goto splitnode_out; - } - aiUsed = (int *)&aCell[nCell+1]; - memset(aiUsed, 0, sizeof(int)*(nCell+1)); - for(i=0; i<nCell; i++){ - nodeGetCell(pRtree, pNode, i, &aCell[i]); - } - nodeZero(pRtree, pNode); - memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); - nCell++; - - if( pNode->iNode==1 ){ - pRight = nodeNew(pRtree, pNode); - pLeft = nodeNew(pRtree, pNode); - pRtree->iDepth++; - pNode->isDirty = 1; - writeInt16(pNode->zData, pRtree->iDepth); - }else{ - pLeft = pNode; - pRight = nodeNew(pRtree, pLeft->pParent); - nodeReference(pLeft); - } - - if( !pLeft || !pRight ){ - rc = SQLITE_NOMEM; - goto splitnode_out; - } - - memset(pLeft->zData, 0, pRtree->iNodeSize); - memset(pRight->zData, 0, pRtree->iNodeSize); - - rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); - if( rc!=SQLITE_OK ){ - goto splitnode_out; - } - - /* Ensure both child nodes have node numbers assigned to them by calling - ** nodeWrite(). Node pRight always needs a node number, as it was created - ** by nodeNew() above. But node pLeft sometimes already has a node number. - ** In this case avoid the all to nodeWrite(). - */ - if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) - || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) - ){ - goto splitnode_out; - } - - rightbbox.iRowid = pRight->iNode; - leftbbox.iRowid = pLeft->iNode; - - if( pNode->iNode==1 ){ - rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); - if( rc!=SQLITE_OK ){ - goto splitnode_out; - } - }else{ - RtreeNode *pParent = pLeft->pParent; - int iCell; - rc = nodeParentIndex(pRtree, pLeft, &iCell); - if( rc==SQLITE_OK ){ - nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); - rc = AdjustTree(pRtree, pParent, &leftbbox); - } - if( rc!=SQLITE_OK ){ - goto splitnode_out; - } - } - if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ - goto splitnode_out; - } - - for(i=0; i<NCELL(pRight); i++){ - i64 iRowid = nodeGetRowid(pRtree, pRight, i); - rc = updateMapping(pRtree, iRowid, pRight, iHeight); - if( iRowid==pCell->iRowid ){ - newCellIsRight = 1; - } - if( rc!=SQLITE_OK ){ - goto splitnode_out; - } - } - if( pNode->iNode==1 ){ - for(i=0; i<NCELL(pLeft); i++){ - i64 iRowid = nodeGetRowid(pRtree, pLeft, i); - rc = updateMapping(pRtree, iRowid, pLeft, iHeight); - if( rc!=SQLITE_OK ){ - goto splitnode_out; - } - } - }else if( newCellIsRight==0 ){ - rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); - } - - if( rc==SQLITE_OK ){ - rc = nodeRelease(pRtree, pRight); - pRight = 0; - } - if( rc==SQLITE_OK ){ - rc = nodeRelease(pRtree, pLeft); - pLeft = 0; - } - -splitnode_out: - nodeRelease(pRtree, pRight); - nodeRelease(pRtree, pLeft); - sqlite3_free(aCell); - return rc; -} - -/* -** If node pLeaf is not the root of the r-tree and its pParent pointer is -** still NULL, load all ancestor nodes of pLeaf into memory and populate -** the pLeaf->pParent chain all the way up to the root node. -** -** This operation is required when a row is deleted (or updated - an update -** is implemented as a delete followed by an insert). SQLite provides the -** rowid of the row to delete, which can be used to find the leaf on which -** the entry resides (argument pLeaf). Once the leaf is located, this -** function is called to determine its ancestry. -*/ -static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ - int rc = SQLITE_OK; - RtreeNode *pChild = pLeaf; - while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ - int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ - sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); - rc = sqlite3_step(pRtree->pReadParent); - if( rc==SQLITE_ROW ){ - RtreeNode *pTest; /* Used to test for reference loops */ - i64 iNode; /* Node number of parent node */ - - /* Before setting pChild->pParent, test that we are not creating a - ** loop of references (as we would if, say, pChild==pParent). We don't - ** want to do this as it leads to a memory leak when trying to delete - ** the referenced counted node structures. - */ - iNode = sqlite3_column_int64(pRtree->pReadParent, 0); - for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); - if( !pTest ){ - rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); - } - } - rc = sqlite3_reset(pRtree->pReadParent); - if( rc==SQLITE_OK ) rc = rc2; - if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB; - pChild = pChild->pParent; - } - return rc; -} - -static int deleteCell(Rtree *, RtreeNode *, int, int); - -static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ - int rc; - int rc2; - RtreeNode *pParent = 0; - int iCell; - - assert( pNode->nRef==1 ); - - /* Remove the entry in the parent cell. */ - rc = nodeParentIndex(pRtree, pNode, &iCell); - if( rc==SQLITE_OK ){ - pParent = pNode->pParent; - pNode->pParent = 0; - rc = deleteCell(pRtree, pParent, iCell, iHeight+1); - } - rc2 = nodeRelease(pRtree, pParent); - if( rc==SQLITE_OK ){ - rc = rc2; - } - if( rc!=SQLITE_OK ){ - return rc; - } - - /* Remove the xxx_node entry. */ - sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); - sqlite3_step(pRtree->pDeleteNode); - if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ - return rc; - } - - /* Remove the xxx_parent entry. */ - sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); - sqlite3_step(pRtree->pDeleteParent); - if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ - return rc; - } - - /* Remove the node from the in-memory hash table and link it into - ** the Rtree.pDeleted list. Its contents will be re-inserted later on. - */ - nodeHashDelete(pRtree, pNode); - pNode->iNode = iHeight; - pNode->pNext = pRtree->pDeleted; - pNode->nRef++; - pRtree->pDeleted = pNode; - - return SQLITE_OK; -} - -static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ - RtreeNode *pParent = pNode->pParent; - int rc = SQLITE_OK; - if( pParent ){ - int ii; - int nCell = NCELL(pNode); - RtreeCell box; /* Bounding box for pNode */ - nodeGetCell(pRtree, pNode, 0, &box); - for(ii=1; ii<nCell; ii++){ - RtreeCell cell; - nodeGetCell(pRtree, pNode, ii, &cell); - cellUnion(pRtree, &box, &cell); - } - box.iRowid = pNode->iNode; - rc = nodeParentIndex(pRtree, pNode, &ii); - if( rc==SQLITE_OK ){ - nodeOverwriteCell(pRtree, pParent, &box, ii); - rc = fixBoundingBox(pRtree, pParent); - } - } - return rc; -} - -/* -** Delete the cell at index iCell of node pNode. After removing the -** cell, adjust the r-tree data structure if required. -*/ -static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ - RtreeNode *pParent; - int rc; - - if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ - return rc; - } - - /* Remove the cell from the node. This call just moves bytes around - ** the in-memory node image, so it cannot fail. - */ - nodeDeleteCell(pRtree, pNode, iCell); - - /* If the node is not the tree root and now has less than the minimum - ** number of cells, remove it from the tree. Otherwise, update the - ** cell in the parent node so that it tightly contains the updated - ** node. - */ - pParent = pNode->pParent; - assert( pParent || pNode->iNode==1 ); - if( pParent ){ - if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ - rc = removeNode(pRtree, pNode, iHeight); - }else{ - rc = fixBoundingBox(pRtree, pNode); - } - } - - return rc; -} - -static int Reinsert( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell, - int iHeight -){ - int *aOrder; - int *aSpare; - RtreeCell *aCell; - RtreeDValue *aDistance; - int nCell; - RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; - int iDim; - int ii; - int rc = SQLITE_OK; - int n; - - memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); - - nCell = NCELL(pNode)+1; - n = (nCell+1)&(~1); - - /* Allocate the buffers used by this operation. The allocation is - ** relinquished before this function returns. - */ - aCell = (RtreeCell *)sqlite3_malloc(n * ( - sizeof(RtreeCell) + /* aCell array */ - sizeof(int) + /* aOrder array */ - sizeof(int) + /* aSpare array */ - sizeof(RtreeDValue) /* aDistance array */ - )); - if( !aCell ){ - return SQLITE_NOMEM; - } - aOrder = (int *)&aCell[n]; - aSpare = (int *)&aOrder[n]; - aDistance = (RtreeDValue *)&aSpare[n]; - - for(ii=0; ii<nCell; ii++){ - if( ii==(nCell-1) ){ - memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); - }else{ - nodeGetCell(pRtree, pNode, ii, &aCell[ii]); - } - aOrder[ii] = ii; - for(iDim=0; iDim<pRtree->nDim; iDim++){ - aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); - aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); - } - } - for(iDim=0; iDim<pRtree->nDim; iDim++){ - aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); - } - - for(ii=0; ii<nCell; ii++){ - aDistance[ii] = 0.0; - for(iDim=0; iDim<pRtree->nDim; iDim++){ - RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - - DCOORD(aCell[ii].aCoord[iDim*2])); - aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); - } - } - - SortByDistance(aOrder, nCell, aDistance, aSpare); - nodeZero(pRtree, pNode); - - for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ - RtreeCell *p = &aCell[aOrder[ii]]; - nodeInsertCell(pRtree, pNode, p); - if( p->iRowid==pCell->iRowid ){ - if( iHeight==0 ){ - rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); - }else{ - rc = parentWrite(pRtree, p->iRowid, pNode->iNode); - } - } - } - if( rc==SQLITE_OK ){ - rc = fixBoundingBox(pRtree, pNode); - } - for(; rc==SQLITE_OK && ii<nCell; ii++){ - /* Find a node to store this cell in. pNode->iNode currently contains - ** the height of the sub-tree headed by the cell. - */ - RtreeNode *pInsert; - RtreeCell *p = &aCell[aOrder[ii]]; - rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); - if( rc==SQLITE_OK ){ - int rc2; - rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); - rc2 = nodeRelease(pRtree, pInsert); - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - } - - sqlite3_free(aCell); - return rc; -} - -/* -** Insert cell pCell into node pNode. Node pNode is the head of a -** subtree iHeight high (leaf nodes have iHeight==0). -*/ -static int rtreeInsertCell( - Rtree *pRtree, - RtreeNode *pNode, - RtreeCell *pCell, - int iHeight -){ - int rc = SQLITE_OK; - if( iHeight>0 ){ - RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); - if( pChild ){ - nodeRelease(pRtree, pChild->pParent); - nodeReference(pNode); - pChild->pParent = pNode; - } - } - if( nodeInsertCell(pRtree, pNode, pCell) ){ -#if VARIANT_RSTARTREE_REINSERT - if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ - rc = SplitNode(pRtree, pNode, pCell, iHeight); - }else{ - pRtree->iReinsertHeight = iHeight; - rc = Reinsert(pRtree, pNode, pCell, iHeight); - } -#else - rc = SplitNode(pRtree, pNode, pCell, iHeight); -#endif - }else{ - rc = AdjustTree(pRtree, pNode, pCell); - if( rc==SQLITE_OK ){ - if( iHeight==0 ){ - rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); - }else{ - rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); - } - } - } - return rc; -} - -static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ - int ii; - int rc = SQLITE_OK; - int nCell = NCELL(pNode); - - for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ - RtreeNode *pInsert; - RtreeCell cell; - nodeGetCell(pRtree, pNode, ii, &cell); - - /* Find a node to store this cell in. pNode->iNode currently contains - ** the height of the sub-tree headed by the cell. - */ - rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); - if( rc==SQLITE_OK ){ - int rc2; - rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); - rc2 = nodeRelease(pRtree, pInsert); - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - } - return rc; -} - -/* -** Select a currently unused rowid for a new r-tree record. -*/ -static int newRowid(Rtree *pRtree, i64 *piRowid){ - int rc; - sqlite3_bind_null(pRtree->pWriteRowid, 1); - sqlite3_bind_null(pRtree->pWriteRowid, 2); - sqlite3_step(pRtree->pWriteRowid); - rc = sqlite3_reset(pRtree->pWriteRowid); - *piRowid = sqlite3_last_insert_rowid(pRtree->db); - return rc; -} - -/* -** Remove the entry with rowid=iDelete from the r-tree structure. -*/ -static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ - int rc; /* Return code */ - RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ - int iCell; /* Index of iDelete cell in pLeaf */ - RtreeNode *pRoot; /* Root node of rtree structure */ - - - /* Obtain a reference to the root node to initialize Rtree.iDepth */ - rc = nodeAcquire(pRtree, 1, 0, &pRoot); - - /* Obtain a reference to the leaf node that contains the entry - ** about to be deleted. - */ - if( rc==SQLITE_OK ){ - rc = findLeafNode(pRtree, iDelete, &pLeaf); - } - - /* Delete the cell in question from the leaf node. */ - if( rc==SQLITE_OK ){ - int rc2; - rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); - if( rc==SQLITE_OK ){ - rc = deleteCell(pRtree, pLeaf, iCell, 0); - } - rc2 = nodeRelease(pRtree, pLeaf); - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - - /* Delete the corresponding entry in the <rtree>_rowid table. */ - if( rc==SQLITE_OK ){ - sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); - sqlite3_step(pRtree->pDeleteRowid); - rc = sqlite3_reset(pRtree->pDeleteRowid); - } - - /* Check if the root node now has exactly one child. If so, remove - ** it, schedule the contents of the child for reinsertion and - ** reduce the tree height by one. - ** - ** This is equivalent to copying the contents of the child into - ** the root node (the operation that Gutman's paper says to perform - ** in this scenario). - */ - if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ - int rc2; - RtreeNode *pChild; - i64 iChild = nodeGetRowid(pRtree, pRoot, 0); - rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); - if( rc==SQLITE_OK ){ - rc = removeNode(pRtree, pChild, pRtree->iDepth-1); - } - rc2 = nodeRelease(pRtree, pChild); - if( rc==SQLITE_OK ) rc = rc2; - if( rc==SQLITE_OK ){ - pRtree->iDepth--; - writeInt16(pRoot->zData, pRtree->iDepth); - pRoot->isDirty = 1; - } - } - - /* Re-insert the contents of any underfull nodes removed from the tree. */ - for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ - if( rc==SQLITE_OK ){ - rc = reinsertNodeContent(pRtree, pLeaf); - } - pRtree->pDeleted = pLeaf->pNext; - sqlite3_free(pLeaf); - } - - /* Release the reference to the root node. */ - if( rc==SQLITE_OK ){ - rc = nodeRelease(pRtree, pRoot); - }else{ - nodeRelease(pRtree, pRoot); - } - - return rc; -} - -/* -** Rounding constants for float->double conversion. -*/ -#define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ -#define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ - -#if !defined(SQLITE_RTREE_INT_ONLY) -/* -** Convert an sqlite3_value into an RtreeValue (presumably a float) -** while taking care to round toward negative or positive, respectively. -*/ -static RtreeValue rtreeValueDown(sqlite3_value *v){ - double d = sqlite3_value_double(v); - float f = (float)d; - if( f>d ){ - f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); - } - return f; -} -static RtreeValue rtreeValueUp(sqlite3_value *v){ - double d = sqlite3_value_double(v); - float f = (float)d; - if( f<d ){ - f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); - } - return f; -} -#endif /* !defined(SQLITE_RTREE_INT_ONLY) */ - - -/* -** The xUpdate method for rtree module virtual tables. -*/ -static int rtreeUpdate( - sqlite3_vtab *pVtab, - int nData, - sqlite3_value **azData, - sqlite_int64 *pRowid -){ - Rtree *pRtree = (Rtree *)pVtab; - int rc = SQLITE_OK; - RtreeCell cell; /* New cell to insert if nData>1 */ - int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ - - rtreeReference(pRtree); - assert(nData>=1); - - /* Constraint handling. A write operation on an r-tree table may return - ** SQLITE_CONSTRAINT for two reasons: - ** - ** 1. A duplicate rowid value, or - ** 2. The supplied data violates the "x2>=x1" constraint. - ** - ** In the first case, if the conflict-handling mode is REPLACE, then - ** the conflicting row can be removed before proceeding. In the second - ** case, SQLITE_CONSTRAINT must be returned regardless of the - ** conflict-handling mode specified by the user. - */ - if( nData>1 ){ - int ii; - - /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ - assert( nData==(pRtree->nDim*2 + 3) ); -#ifndef SQLITE_RTREE_INT_ONLY - if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]); - cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]); - if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ - rc = SQLITE_CONSTRAINT; - goto constraint; - } - } - }else -#endif - { - for(ii=0; ii<(pRtree->nDim*2); ii+=2){ - cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); - cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); - if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ - rc = SQLITE_CONSTRAINT; - goto constraint; - } - } - } - - /* If a rowid value was supplied, check if it is already present in - ** the table. If so, the constraint has failed. */ - if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){ - cell.iRowid = sqlite3_value_int64(azData[2]); - if( sqlite3_value_type(azData[0])==SQLITE_NULL - || sqlite3_value_int64(azData[0])!=cell.iRowid - ){ - int steprc; - sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); - steprc = sqlite3_step(pRtree->pReadRowid); - rc = sqlite3_reset(pRtree->pReadRowid); - if( SQLITE_ROW==steprc ){ - if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ - rc = rtreeDeleteRowid(pRtree, cell.iRowid); - }else{ - rc = SQLITE_CONSTRAINT; - goto constraint; - } - } - } - bHaveRowid = 1; - } - } - - /* If azData[0] is not an SQL NULL value, it is the rowid of a - ** record to delete from the r-tree table. The following block does - ** just that. - */ - if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ - rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0])); - } - - /* If the azData[] array contains more than one element, elements - ** (azData[2]..azData[argc-1]) contain a new record to insert into - ** the r-tree structure. - */ - if( rc==SQLITE_OK && nData>1 ){ - /* Insert the new record into the r-tree */ - RtreeNode *pLeaf = 0; - - /* Figure out the rowid of the new row. */ - if( bHaveRowid==0 ){ - rc = newRowid(pRtree, &cell.iRowid); - } - *pRowid = cell.iRowid; - - if( rc==SQLITE_OK ){ - rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); - } - if( rc==SQLITE_OK ){ - int rc2; - pRtree->iReinsertHeight = -1; - rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); - rc2 = nodeRelease(pRtree, pLeaf); - if( rc==SQLITE_OK ){ - rc = rc2; - } - } - } - -constraint: - rtreeRelease(pRtree); - return rc; -} - -/* -** The xRename method for rtree module virtual tables. -*/ -static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ - Rtree *pRtree = (Rtree *)pVtab; - int rc = SQLITE_NOMEM; - char *zSql = sqlite3_mprintf( - "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" - "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" - "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" - , pRtree->zDb, pRtree->zName, zNewName - , pRtree->zDb, pRtree->zName, zNewName - , pRtree->zDb, pRtree->zName, zNewName - ); - if( zSql ){ - rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); - sqlite3_free(zSql); - } - return rc; -} - -static sqlite3_module rtreeModule = { - 0, /* iVersion */ - rtreeCreate, /* xCreate - create a table */ - rtreeConnect, /* xConnect - connect to an existing table */ - rtreeBestIndex, /* xBestIndex - Determine search strategy */ - rtreeDisconnect, /* xDisconnect - Disconnect from a table */ - rtreeDestroy, /* xDestroy - Drop a table */ - rtreeOpen, /* xOpen - open a cursor */ - rtreeClose, /* xClose - close a cursor */ - rtreeFilter, /* xFilter - configure scan constraints */ - rtreeNext, /* xNext - advance a cursor */ - rtreeEof, /* xEof */ - rtreeColumn, /* xColumn - read data */ - rtreeRowid, /* xRowid - read data */ - rtreeUpdate, /* xUpdate - write data */ - 0, /* xBegin - begin transaction */ - 0, /* xSync - sync transaction */ - 0, /* xCommit - commit transaction */ - 0, /* xRollback - rollback transaction */ - 0, /* xFindFunction - function overloading */ - rtreeRename, /* xRename - rename the table */ - 0, /* xSavepoint */ - 0, /* xRelease */ - 0 /* xRollbackTo */ -}; - -static int rtreeSqlInit( - Rtree *pRtree, - sqlite3 *db, - const char *zDb, - const char *zPrefix, - int isCreate -){ - int rc = SQLITE_OK; - - #define N_STATEMENT 9 - static const char *azSql[N_STATEMENT] = { - /* Read and write the xxx_node table */ - "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", - "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", - "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", - - /* Read and write the xxx_rowid table */ - "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", - "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", - "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", - - /* Read and write the xxx_parent table */ - "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", - "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", - "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" - }; - sqlite3_stmt **appStmt[N_STATEMENT]; - int i; - - pRtree->db = db; - - if( isCreate ){ - char *zCreate = sqlite3_mprintf( -"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" -"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" -"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" -"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", - zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize - ); - if( !zCreate ){ - return SQLITE_NOMEM; - } - rc = sqlite3_exec(db, zCreate, 0, 0, 0); - sqlite3_free(zCreate); - if( rc!=SQLITE_OK ){ - return rc; - } - } - - appStmt[0] = &pRtree->pReadNode; - appStmt[1] = &pRtree->pWriteNode; - appStmt[2] = &pRtree->pDeleteNode; - appStmt[3] = &pRtree->pReadRowid; - appStmt[4] = &pRtree->pWriteRowid; - appStmt[5] = &pRtree->pDeleteRowid; - appStmt[6] = &pRtree->pReadParent; - appStmt[7] = &pRtree->pWriteParent; - appStmt[8] = &pRtree->pDeleteParent; - - for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ - char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); - if( zSql ){ - rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); - }else{ - rc = SQLITE_NOMEM; - } - sqlite3_free(zSql); - } - - return rc; -} - -/* -** The second argument to this function contains the text of an SQL statement -** that returns a single integer value. The statement is compiled and executed -** using database connection db. If successful, the integer value returned -** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error -** code is returned and the value of *piVal after returning is not defined. -*/ -static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ - int rc = SQLITE_NOMEM; - if( zSql ){ - sqlite3_stmt *pStmt = 0; - rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); - if( rc==SQLITE_OK ){ - if( SQLITE_ROW==sqlite3_step(pStmt) ){ - *piVal = sqlite3_column_int(pStmt, 0); - } - rc = sqlite3_finalize(pStmt); - } - } - return rc; -} - -/* -** This function is called from within the xConnect() or xCreate() method to -** determine the node-size used by the rtree table being created or connected -** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. -** Otherwise, an SQLite error code is returned. -** -** If this function is being called as part of an xConnect(), then the rtree -** table already exists. In this case the node-size is determined by inspecting -** the root node of the tree. -** -** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. -** This ensures that each node is stored on a single database page. If the -** database page-size is so large that more than RTREE_MAXCELLS entries -** would fit in a single node, use a smaller node-size. -*/ -static int getNodeSize( - sqlite3 *db, /* Database handle */ - Rtree *pRtree, /* Rtree handle */ - int isCreate, /* True for xCreate, false for xConnect */ - char **pzErr /* OUT: Error message, if any */ -){ - int rc; - char *zSql; - if( isCreate ){ - int iPageSize = 0; - zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); - rc = getIntFromStmt(db, zSql, &iPageSize); - if( rc==SQLITE_OK ){ - pRtree->iNodeSize = iPageSize-64; - if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ - pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; - } - }else{ - *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); - } - }else{ - zSql = sqlite3_mprintf( - "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", - pRtree->zDb, pRtree->zName - ); - rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); - if( rc!=SQLITE_OK ){ - *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); - } - } - - sqlite3_free(zSql); - return rc; -} - -/* -** This function is the implementation of both the xConnect and xCreate -** methods of the r-tree virtual table. -** -** argv[0] -> module name -** argv[1] -> database name -** argv[2] -> table name -** argv[...] -> column names... -*/ -static int rtreeInit( - sqlite3 *db, /* Database connection */ - void *pAux, /* One of the RTREE_COORD_* constants */ - int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ - sqlite3_vtab **ppVtab, /* OUT: New virtual table */ - char **pzErr, /* OUT: Error message, if any */ - int isCreate /* True for xCreate, false for xConnect */ -){ - int rc = SQLITE_OK; - Rtree *pRtree; - int nDb; /* Length of string argv[1] */ - int nName; /* Length of string argv[2] */ - int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); - - const char *aErrMsg[] = { - 0, /* 0 */ - "Wrong number of columns for an rtree table", /* 1 */ - "Too few columns for an rtree table", /* 2 */ - "Too many columns for an rtree table" /* 3 */ - }; - - int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; - if( aErrMsg[iErr] ){ - *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); - return SQLITE_ERROR; - } - - sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); - - /* Allocate the sqlite3_vtab structure */ - nDb = (int)strlen(argv[1]); - nName = (int)strlen(argv[2]); - pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); - if( !pRtree ){ - return SQLITE_NOMEM; - } - memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); - pRtree->nBusy = 1; - pRtree->base.pModule = &rtreeModule; - pRtree->zDb = (char *)&pRtree[1]; - pRtree->zName = &pRtree->zDb[nDb+1]; - pRtree->nDim = (argc-4)/2; - pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; - pRtree->eCoordType = eCoordType; - memcpy(pRtree->zDb, argv[1], nDb); - memcpy(pRtree->zName, argv[2], nName); - - /* Figure out the node size to use. */ - rc = getNodeSize(db, pRtree, isCreate, pzErr); - - /* Create/Connect to the underlying relational database schema. If - ** that is successful, call sqlite3_declare_vtab() to configure - ** the r-tree table schema. - */ - if( rc==SQLITE_OK ){ - if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ - *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); - }else{ - char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); - char *zTmp; - int ii; - for(ii=4; zSql && ii<argc; ii++){ - zTmp = zSql; - zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); - sqlite3_free(zTmp); - } - if( zSql ){ - zTmp = zSql; - zSql = sqlite3_mprintf("%s);", zTmp); - sqlite3_free(zTmp); - } - if( !zSql ){ - rc = SQLITE_NOMEM; - }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ - *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); - } - sqlite3_free(zSql); - } - } - - if( rc==SQLITE_OK ){ - *ppVtab = (sqlite3_vtab *)pRtree; - }else{ - rtreeRelease(pRtree); - } - return rc; -} - - -/* -** Implementation of a scalar function that decodes r-tree nodes to -** human readable strings. This can be used for debugging and analysis. -** -** The scalar function takes two arguments, a blob of data containing -** an r-tree node, and the number of dimensions the r-tree indexes. -** For a two-dimensional r-tree structure called "rt", to deserialize -** all nodes, a statement like: -** -** SELECT rtreenode(2, data) FROM rt_node; -** -** The human readable string takes the form of a Tcl list with one -** entry for each cell in the r-tree node. Each entry is itself a -** list, containing the 8-byte rowid/pageno followed by the -** <num-dimension>*2 coordinates. -*/ -static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ - char *zText = 0; - RtreeNode node; - Rtree tree; - int ii; - - UNUSED_PARAMETER(nArg); - memset(&node, 0, sizeof(RtreeNode)); - memset(&tree, 0, sizeof(Rtree)); - tree.nDim = sqlite3_value_int(apArg[0]); - tree.nBytesPerCell = 8 + 8 * tree.nDim; - node.zData = (u8 *)sqlite3_value_blob(apArg[1]); - - for(ii=0; ii<NCELL(&node); ii++){ - char zCell[512]; - int nCell = 0; - RtreeCell cell; - int jj; - - nodeGetCell(&tree, &node, ii, &cell); - sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); - nCell = (int)strlen(zCell); - for(jj=0; jj<tree.nDim*2; jj++){ -#ifndef SQLITE_RTREE_INT_ONLY - sqlite3_snprintf(512-nCell,&zCell[nCell], " %f", - (double)cell.aCoord[jj].f); -#else - sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", - cell.aCoord[jj].i); -#endif - nCell = (int)strlen(zCell); - } - - if( zText ){ - char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); - sqlite3_free(zText); - zText = zTextNew; - }else{ - zText = sqlite3_mprintf("{%s}", zCell); - } - } - - sqlite3_result_text(ctx, zText, -1, sqlite3_free); -} - -static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ - UNUSED_PARAMETER(nArg); - if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB - || sqlite3_value_bytes(apArg[0])<2 - ){ - sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); - }else{ - u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); - sqlite3_result_int(ctx, readInt16(zBlob)); - } -} - -/* -** Register the r-tree module with database handle db. This creates the -** virtual table module "rtree" and the debugging/analysis scalar -** function "rtreenode". -*/ -SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){ - const int utf8 = SQLITE_UTF8; - int rc; - - rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); - if( rc==SQLITE_OK ){ - rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); - } - if( rc==SQLITE_OK ){ -#ifdef SQLITE_RTREE_INT_ONLY - void *c = (void *)RTREE_COORD_INT32; -#else - void *c = (void *)RTREE_COORD_REAL32; -#endif - rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); - } - if( rc==SQLITE_OK ){ - void *c = (void *)RTREE_COORD_INT32; - rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); - } - - return rc; -} - -/* -** A version of sqlite3_free() that can be used as a callback. This is used -** in two places - as the destructor for the blob value returned by the -** invocation of a geometry function, and as the destructor for the geometry -** functions themselves. -*/ -static void doSqlite3Free(void *p){ - sqlite3_free(p); -} - -/* -** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite -** scalar user function. This C function is the callback used for all such -** registered SQL functions. -** -** The scalar user functions return a blob that is interpreted by r-tree -** table MATCH operators. -*/ -static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ - RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); - RtreeMatchArg *pBlob; - int nBlob; - - nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue); - pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); - if( !pBlob ){ - sqlite3_result_error_nomem(ctx); - }else{ - int i; - pBlob->magic = RTREE_GEOMETRY_MAGIC; - pBlob->xGeom = pGeomCtx->xGeom; - pBlob->pContext = pGeomCtx->pContext; - pBlob->nParam = nArg; - for(i=0; i<nArg; i++){ -#ifdef SQLITE_RTREE_INT_ONLY - pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); -#else - pBlob->aParam[i] = sqlite3_value_double(aArg[i]); -#endif - } - sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); - } -} - -/* -** Register a new geometry function for use with the r-tree MATCH operator. -*/ -SQLITE_API int sqlite3_rtree_geometry_callback( - sqlite3 *db, - const char *zGeom, - int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *), - void *pContext -){ - RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ - - /* Allocate and populate the context object. */ - pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); - if( !pGeomCtx ) return SQLITE_NOMEM; - pGeomCtx->xGeom = xGeom; - pGeomCtx->pContext = pContext; - - /* Create the new user-function. Register a destructor function to delete - ** the context object when it is no longer required. */ - return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, - (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free - ); -} - -#if !SQLITE_CORE -SQLITE_API int sqlite3_extension_init( - sqlite3 *db, - char **pzErrMsg, - const sqlite3_api_routines *pApi -){ - SQLITE_EXTENSION_INIT2(pApi) - return sqlite3RtreeInit(db); -} -#endif - -#endif - -/************** End of rtree.c ***********************************************/ -/************** Begin file icu.c *********************************************/ -/* -** 2007 May 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $ -** -** This file implements an integration between the ICU library -** ("International Components for Unicode", an open-source library -** for handling unicode data) and SQLite. The integration uses -** ICU to provide the following to SQLite: -** -** * An implementation of the SQL regexp() function (and hence REGEXP -** operator) using the ICU uregex_XX() APIs. -** -** * Implementations of the SQL scalar upper() and lower() functions -** for case mapping. -** -** * Integration of ICU and SQLite collation seqences. -** -** * An implementation of the LIKE operator that uses ICU to -** provide case-independent matching. -*/ - -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) - -/* Include ICU headers */ -#include <unicode/utypes.h> -#include <unicode/uregex.h> -#include <unicode/ustring.h> -#include <unicode/ucol.h> - -/* #include <assert.h> */ - -#ifndef SQLITE_CORE - SQLITE_EXTENSION_INIT1 -#else -#endif - -/* -** Maximum length (in bytes) of the pattern in a LIKE or GLOB -** operator. -*/ -#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH -# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 -#endif - -/* -** Version of sqlite3_free() that is always a function, never a macro. -*/ -static void xFree(void *p){ - sqlite3_free(p); -} - -/* -** Compare two UTF-8 strings for equality where the first string is -** a "LIKE" expression. Return true (1) if they are the same and -** false (0) if they are different. -*/ -static int icuLikeCompare( - const uint8_t *zPattern, /* LIKE pattern */ - const uint8_t *zString, /* The UTF-8 string to compare against */ - const UChar32 uEsc /* The escape character */ -){ - static const int MATCH_ONE = (UChar32)'_'; - static const int MATCH_ALL = (UChar32)'%'; - - int iPattern = 0; /* Current byte index in zPattern */ - int iString = 0; /* Current byte index in zString */ - - int prevEscape = 0; /* True if the previous character was uEsc */ - - while( zPattern[iPattern]!=0 ){ - - /* Read (and consume) the next character from the input pattern. */ - UChar32 uPattern; - U8_NEXT_UNSAFE(zPattern, iPattern, uPattern); - assert(uPattern!=0); - - /* There are now 4 possibilities: - ** - ** 1. uPattern is an unescaped match-all character "%", - ** 2. uPattern is an unescaped match-one character "_", - ** 3. uPattern is an unescaped escape character, or - ** 4. uPattern is to be handled as an ordinary character - */ - if( !prevEscape && uPattern==MATCH_ALL ){ - /* Case 1. */ - uint8_t c; - - /* Skip any MATCH_ALL or MATCH_ONE characters that follow a - ** MATCH_ALL. For each MATCH_ONE, skip one character in the - ** test string. - */ - while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){ - if( c==MATCH_ONE ){ - if( zString[iString]==0 ) return 0; - U8_FWD_1_UNSAFE(zString, iString); - } - iPattern++; - } - - if( zPattern[iPattern]==0 ) return 1; - - while( zString[iString] ){ - if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){ - return 1; - } - U8_FWD_1_UNSAFE(zString, iString); - } - return 0; - - }else if( !prevEscape && uPattern==MATCH_ONE ){ - /* Case 2. */ - if( zString[iString]==0 ) return 0; - U8_FWD_1_UNSAFE(zString, iString); - - }else if( !prevEscape && uPattern==uEsc){ - /* Case 3. */ - prevEscape = 1; - - }else{ - /* Case 4. */ - UChar32 uString; - U8_NEXT_UNSAFE(zString, iString, uString); - uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT); - uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT); - if( uString!=uPattern ){ - return 0; - } - prevEscape = 0; - } - } - - return zString[iString]==0; -} - -/* -** Implementation of the like() SQL function. This function implements -** the build-in LIKE operator. The first argument to the function is the -** pattern and the second argument is the string. So, the SQL statements: -** -** A LIKE B -** -** is implemented as like(B, A). If there is an escape character E, -** -** A LIKE B ESCAPE E -** -** is mapped to like(B, A, E). -*/ -static void icuLikeFunc( - sqlite3_context *context, - int argc, - sqlite3_value **argv -){ - const unsigned char *zA = sqlite3_value_text(argv[0]); - const unsigned char *zB = sqlite3_value_text(argv[1]); - UChar32 uEsc = 0; - - /* Limit the length of the LIKE or GLOB pattern to avoid problems - ** of deep recursion and N*N behavior in patternCompare(). - */ - if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ - sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); - return; - } - - - if( argc==3 ){ - /* The escape character string must consist of a single UTF-8 character. - ** Otherwise, return an error. - */ - int nE= sqlite3_value_bytes(argv[2]); - const unsigned char *zE = sqlite3_value_text(argv[2]); - int i = 0; - if( zE==0 ) return; - U8_NEXT(zE, i, nE, uEsc); - if( i!=nE){ - sqlite3_result_error(context, - "ESCAPE expression must be a single character", -1); - return; - } - } - - if( zA && zB ){ - sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc)); - } -} - -/* -** This function is called when an ICU function called from within -** the implementation of an SQL scalar function returns an error. -** -** The scalar function context passed as the first argument is -** loaded with an error message based on the following two args. -*/ -static void icuFunctionError( - sqlite3_context *pCtx, /* SQLite scalar function context */ - const char *zName, /* Name of ICU function that failed */ - UErrorCode e /* Error code returned by ICU function */ -){ - char zBuf[128]; - sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e)); - zBuf[127] = '\0'; - sqlite3_result_error(pCtx, zBuf, -1); -} - -/* -** Function to delete compiled regexp objects. Registered as -** a destructor function with sqlite3_set_auxdata(). -*/ -static void icuRegexpDelete(void *p){ - URegularExpression *pExpr = (URegularExpression *)p; - uregex_close(pExpr); -} - -/* -** Implementation of SQLite REGEXP operator. This scalar function takes -** two arguments. The first is a regular expression pattern to compile -** the second is a string to match against that pattern. If either -** argument is an SQL NULL, then NULL Is returned. Otherwise, the result -** is 1 if the string matches the pattern, or 0 otherwise. -** -** SQLite maps the regexp() function to the regexp() operator such -** that the following two are equivalent: -** -** zString REGEXP zPattern -** regexp(zPattern, zString) -** -** Uses the following ICU regexp APIs: -** -** uregex_open() -** uregex_matches() -** uregex_close() -*/ -static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ - UErrorCode status = U_ZERO_ERROR; - URegularExpression *pExpr; - UBool res; - const UChar *zString = sqlite3_value_text16(apArg[1]); - - (void)nArg; /* Unused parameter */ - - /* If the left hand side of the regexp operator is NULL, - ** then the result is also NULL. - */ - if( !zString ){ - return; - } - - pExpr = sqlite3_get_auxdata(p, 0); - if( !pExpr ){ - const UChar *zPattern = sqlite3_value_text16(apArg[0]); - if( !zPattern ){ - return; - } - pExpr = uregex_open(zPattern, -1, 0, 0, &status); - - if( U_SUCCESS(status) ){ - sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete); - }else{ - assert(!pExpr); - icuFunctionError(p, "uregex_open", status); - return; - } - } - - /* Configure the text that the regular expression operates on. */ - uregex_setText(pExpr, zString, -1, &status); - if( !U_SUCCESS(status) ){ - icuFunctionError(p, "uregex_setText", status); - return; - } - - /* Attempt the match */ - res = uregex_matches(pExpr, 0, &status); - if( !U_SUCCESS(status) ){ - icuFunctionError(p, "uregex_matches", status); - return; - } - - /* Set the text that the regular expression operates on to a NULL - ** pointer. This is not really necessary, but it is tidier than - ** leaving the regular expression object configured with an invalid - ** pointer after this function returns. - */ - uregex_setText(pExpr, 0, 0, &status); - - /* Return 1 or 0. */ - sqlite3_result_int(p, res ? 1 : 0); -} - -/* -** Implementations of scalar functions for case mapping - upper() and -** lower(). Function upper() converts its input to upper-case (ABC). -** Function lower() converts to lower-case (abc). -** -** ICU provides two types of case mapping, "general" case mapping and -** "language specific". Refer to ICU documentation for the differences -** between the two. -** -** To utilise "general" case mapping, the upper() or lower() scalar -** functions are invoked with one argument: -** -** upper('ABC') -> 'abc' -** lower('abc') -> 'ABC' -** -** To access ICU "language specific" case mapping, upper() or lower() -** should be invoked with two arguments. The second argument is the name -** of the locale to use. Passing an empty string ("") or SQL NULL value -** as the second argument is the same as invoking the 1 argument version -** of upper() or lower(). -** -** lower('I', 'en_us') -> 'i' -** lower('I', 'tr_tr') -> 'ı' (small dotless i) -** -** http://www.icu-project.org/userguide/posix.html#case_mappings -*/ -static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){ - const UChar *zInput; - UChar *zOutput; - int nInput; - int nOutput; - - UErrorCode status = U_ZERO_ERROR; - const char *zLocale = 0; - - assert(nArg==1 || nArg==2); - if( nArg==2 ){ - zLocale = (const char *)sqlite3_value_text(apArg[1]); - } - - zInput = sqlite3_value_text16(apArg[0]); - if( !zInput ){ - return; - } - nInput = sqlite3_value_bytes16(apArg[0]); - - nOutput = nInput * 2 + 2; - zOutput = sqlite3_malloc(nOutput); - if( !zOutput ){ - return; - } - - if( sqlite3_user_data(p) ){ - u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); - }else{ - u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); - } - - if( !U_SUCCESS(status) ){ - icuFunctionError(p, "u_strToLower()/u_strToUpper", status); - return; - } - - sqlite3_result_text16(p, zOutput, -1, xFree); -} - -/* -** Collation sequence destructor function. The pCtx argument points to -** a UCollator structure previously allocated using ucol_open(). -*/ -static void icuCollationDel(void *pCtx){ - UCollator *p = (UCollator *)pCtx; - ucol_close(p); -} - -/* -** Collation sequence comparison function. The pCtx argument points to -** a UCollator structure previously allocated using ucol_open(). -*/ -static int icuCollationColl( - void *pCtx, - int nLeft, - const void *zLeft, - int nRight, - const void *zRight -){ - UCollationResult res; - UCollator *p = (UCollator *)pCtx; - res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2); - switch( res ){ - case UCOL_LESS: return -1; - case UCOL_GREATER: return +1; - case UCOL_EQUAL: return 0; - } - assert(!"Unexpected return value from ucol_strcoll()"); - return 0; -} - -/* -** Implementation of the scalar function icu_load_collation(). -** -** This scalar function is used to add ICU collation based collation -** types to an SQLite database connection. It is intended to be called -** as follows: -** -** SELECT icu_load_collation(<locale>, <collation-name>); -** -** Where <locale> is a string containing an ICU locale identifier (i.e. -** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the -** collation sequence to create. -*/ -static void icuLoadCollation( - sqlite3_context *p, - int nArg, - sqlite3_value **apArg -){ - sqlite3 *db = (sqlite3 *)sqlite3_user_data(p); - UErrorCode status = U_ZERO_ERROR; - const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ - const char *zName; /* SQL Collation sequence name (eg. "japanese") */ - UCollator *pUCollator; /* ICU library collation object */ - int rc; /* Return code from sqlite3_create_collation_x() */ - - assert(nArg==2); - zLocale = (const char *)sqlite3_value_text(apArg[0]); - zName = (const char *)sqlite3_value_text(apArg[1]); - - if( !zLocale || !zName ){ - return; - } - - pUCollator = ucol_open(zLocale, &status); - if( !U_SUCCESS(status) ){ - icuFunctionError(p, "ucol_open", status); - return; - } - assert(p); - - rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator, - icuCollationColl, icuCollationDel - ); - if( rc!=SQLITE_OK ){ - ucol_close(pUCollator); - sqlite3_result_error(p, "Error registering collation function", -1); - } -} - -/* -** Register the ICU extension functions with database db. -*/ -SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){ - struct IcuScalar { - const char *zName; /* Function name */ - int nArg; /* Number of arguments */ - int enc; /* Optimal text encoding */ - void *pContext; /* sqlite3_user_data() context */ - void (*xFunc)(sqlite3_context*,int,sqlite3_value**); - } scalars[] = { - {"regexp", 2, SQLITE_ANY, 0, icuRegexpFunc}, - - {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16}, - {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16}, - {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16}, - {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16}, - - {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16}, - {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16}, - {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16}, - {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16}, - - {"like", 2, SQLITE_UTF8, 0, icuLikeFunc}, - {"like", 3, SQLITE_UTF8, 0, icuLikeFunc}, - - {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation}, - }; - - int rc = SQLITE_OK; - int i; - - for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){ - struct IcuScalar *p = &scalars[i]; - rc = sqlite3_create_function( - db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0 - ); - } - - return rc; -} - -#if !SQLITE_CORE -SQLITE_API int sqlite3_extension_init( - sqlite3 *db, - char **pzErrMsg, - const sqlite3_api_routines *pApi -){ - SQLITE_EXTENSION_INIT2(pApi) - return sqlite3IcuInit(db); -} -#endif - -#endif - -/************** End of icu.c *************************************************/ -/************** Begin file fts3_icu.c ****************************************/ -/* -** 2007 June 22 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file implements a tokenizer for fts3 based on the ICU library. -*/ -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) -#ifdef SQLITE_ENABLE_ICU - -/* #include <assert.h> */ -/* #include <string.h> */ - -#include <unicode/ubrk.h> -/* #include <unicode/ucol.h> */ -/* #include <unicode/ustring.h> */ -#include <unicode/utf16.h> - -typedef struct IcuTokenizer IcuTokenizer; -typedef struct IcuCursor IcuCursor; - -struct IcuTokenizer { - sqlite3_tokenizer base; - char *zLocale; -}; - -struct IcuCursor { - sqlite3_tokenizer_cursor base; - - UBreakIterator *pIter; /* ICU break-iterator object */ - int nChar; /* Number of UChar elements in pInput */ - UChar *aChar; /* Copy of input using utf-16 encoding */ - int *aOffset; /* Offsets of each character in utf-8 input */ - - int nBuffer; - char *zBuffer; - - int iToken; -}; - -/* -** Create a new tokenizer instance. -*/ -static int icuCreate( - int argc, /* Number of entries in argv[] */ - const char * const *argv, /* Tokenizer creation arguments */ - sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ -){ - IcuTokenizer *p; - int n = 0; - - if( argc>0 ){ - n = strlen(argv[0])+1; - } - p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n); - if( !p ){ - return SQLITE_NOMEM; - } - memset(p, 0, sizeof(IcuTokenizer)); - - if( n ){ - p->zLocale = (char *)&p[1]; - memcpy(p->zLocale, argv[0], n); - } - - *ppTokenizer = (sqlite3_tokenizer *)p; - - return SQLITE_OK; -} - -/* -** Destroy a tokenizer -*/ -static int icuDestroy(sqlite3_tokenizer *pTokenizer){ - IcuTokenizer *p = (IcuTokenizer *)pTokenizer; - sqlite3_free(p); - return SQLITE_OK; -} - -/* -** Prepare to begin tokenizing a particular string. The input -** string to be tokenized is pInput[0..nBytes-1]. A cursor -** used to incrementally tokenize this string is returned in -** *ppCursor. -*/ -static int icuOpen( - sqlite3_tokenizer *pTokenizer, /* The tokenizer */ - const char *zInput, /* Input string */ - int nInput, /* Length of zInput in bytes */ - sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ -){ - IcuTokenizer *p = (IcuTokenizer *)pTokenizer; - IcuCursor *pCsr; - - const int32_t opt = U_FOLD_CASE_DEFAULT; - UErrorCode status = U_ZERO_ERROR; - int nChar; - - UChar32 c; - int iInput = 0; - int iOut = 0; - - *ppCursor = 0; - - if( zInput==0 ){ - nInput = 0; - zInput = ""; - }else if( nInput<0 ){ - nInput = strlen(zInput); - } - nChar = nInput+1; - pCsr = (IcuCursor *)sqlite3_malloc( - sizeof(IcuCursor) + /* IcuCursor */ - ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */ - (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */ - ); - if( !pCsr ){ - return SQLITE_NOMEM; - } - memset(pCsr, 0, sizeof(IcuCursor)); - pCsr->aChar = (UChar *)&pCsr[1]; - pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3]; - - pCsr->aOffset[iOut] = iInput; - U8_NEXT(zInput, iInput, nInput, c); - while( c>0 ){ - int isError = 0; - c = u_foldCase(c, opt); - U16_APPEND(pCsr->aChar, iOut, nChar, c, isError); - if( isError ){ - sqlite3_free(pCsr); - return SQLITE_ERROR; - } - pCsr->aOffset[iOut] = iInput; - - if( iInput<nInput ){ - U8_NEXT(zInput, iInput, nInput, c); - }else{ - c = 0; - } - } - - pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status); - if( !U_SUCCESS(status) ){ - sqlite3_free(pCsr); - return SQLITE_ERROR; - } - pCsr->nChar = iOut; - - ubrk_first(pCsr->pIter); - *ppCursor = (sqlite3_tokenizer_cursor *)pCsr; - return SQLITE_OK; -} - -/* -** Close a tokenization cursor previously opened by a call to icuOpen(). -*/ -static int icuClose(sqlite3_tokenizer_cursor *pCursor){ - IcuCursor *pCsr = (IcuCursor *)pCursor; - ubrk_close(pCsr->pIter); - sqlite3_free(pCsr->zBuffer); - sqlite3_free(pCsr); - return SQLITE_OK; -} - -/* -** Extract the next token from a tokenization cursor. -*/ -static int icuNext( - sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ - const char **ppToken, /* OUT: *ppToken is the token text */ - int *pnBytes, /* OUT: Number of bytes in token */ - int *piStartOffset, /* OUT: Starting offset of token */ - int *piEndOffset, /* OUT: Ending offset of token */ - int *piPosition /* OUT: Position integer of token */ -){ - IcuCursor *pCsr = (IcuCursor *)pCursor; - - int iStart = 0; - int iEnd = 0; - int nByte = 0; - - while( iStart==iEnd ){ - UChar32 c; - - iStart = ubrk_current(pCsr->pIter); - iEnd = ubrk_next(pCsr->pIter); - if( iEnd==UBRK_DONE ){ - return SQLITE_DONE; - } - - while( iStart<iEnd ){ - int iWhite = iStart; - U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c); - if( u_isspace(c) ){ - iStart = iWhite; - }else{ - break; - } - } - assert(iStart<=iEnd); - } - - do { - UErrorCode status = U_ZERO_ERROR; - if( nByte ){ - char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte); - if( !zNew ){ - return SQLITE_NOMEM; - } - pCsr->zBuffer = zNew; - pCsr->nBuffer = nByte; - } - - u_strToUTF8( - pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */ - &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */ - &status /* Output success/failure */ - ); - } while( nByte>pCsr->nBuffer ); - - *ppToken = pCsr->zBuffer; - *pnBytes = nByte; - *piStartOffset = pCsr->aOffset[iStart]; - *piEndOffset = pCsr->aOffset[iEnd]; - *piPosition = pCsr->iToken++; - - return SQLITE_OK; -} - -/* -** The set of routines that implement the simple tokenizer -*/ -static const sqlite3_tokenizer_module icuTokenizerModule = { - 0, /* iVersion */ - icuCreate, /* xCreate */ - icuDestroy, /* xCreate */ - icuOpen, /* xOpen */ - icuClose, /* xClose */ - icuNext, /* xNext */ -}; - -/* -** Set *ppModule to point at the implementation of the ICU tokenizer. -*/ -SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule( - sqlite3_tokenizer_module const**ppModule -){ - *ppModule = &icuTokenizerModule; -} - -#endif /* defined(SQLITE_ENABLE_ICU) */ -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ - -/************** End of fts3_icu.c ********************************************/ |