summaryrefslogtreecommitdiffstats
path: root/interference/app.py
diff options
context:
space:
mode:
authorCommenter123321 <36051603+Commenter123321@users.noreply.github.com>2023-10-09 18:02:06 +0200
committerCommenter123321 <36051603+Commenter123321@users.noreply.github.com>2023-10-09 18:02:06 +0200
commit119817c96349807efaf87ee432ce46446542b66a (patch)
tree1dbdf4d4dbf4f6c8a8247274ef500a2f1de765d1 /interference/app.py
parentaivvm's no life creator keeps patching it, but I'm just better 😉 (diff)
parentMerge branch 'main' of https://github.com/xtekky/gpt4free (diff)
downloadgpt4free-119817c96349807efaf87ee432ce46446542b66a.tar
gpt4free-119817c96349807efaf87ee432ce46446542b66a.tar.gz
gpt4free-119817c96349807efaf87ee432ce46446542b66a.tar.bz2
gpt4free-119817c96349807efaf87ee432ce46446542b66a.tar.lz
gpt4free-119817c96349807efaf87ee432ce46446542b66a.tar.xz
gpt4free-119817c96349807efaf87ee432ce46446542b66a.tar.zst
gpt4free-119817c96349807efaf87ee432ce46446542b66a.zip
Diffstat (limited to '')
-rw-r--r--interference/app.py160
1 files changed, 0 insertions, 160 deletions
diff --git a/interference/app.py b/interference/app.py
deleted file mode 100644
index f25785f6..00000000
--- a/interference/app.py
+++ /dev/null
@@ -1,160 +0,0 @@
-import json
-import random
-import string
-import time
-from typing import Any
-import requests
-from flask import Flask, request
-from flask_cors import CORS
-from transformers import AutoTokenizer
-from g4f import ChatCompletion
-
-app = Flask(__name__)
-CORS(app)
-
-
-@app.route("/chat/completions", methods=["POST"])
-def chat_completions():
- model = request.get_json().get("model", "gpt-3.5-turbo")
- stream = request.get_json().get("stream", False)
- messages = request.get_json().get("messages")
-
- response = ChatCompletion.create(model=model, stream=stream, messages=messages)
-
- completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
- completion_timestamp = int(time.time())
-
- if not stream:
- return {
- "id": f"chatcmpl-{completion_id}",
- "object": "chat.completion",
- "created": completion_timestamp,
- "model": model,
- "choices": [
- {
- "index": 0,
- "message": {
- "role": "assistant",
- "content": response,
- },
- "finish_reason": "stop",
- }
- ],
- "usage": {
- "prompt_tokens": None,
- "completion_tokens": None,
- "total_tokens": None,
- },
- }
-
- def streaming():
- for chunk in response:
- completion_data = {
- "id": f"chatcmpl-{completion_id}",
- "object": "chat.completion.chunk",
- "created": completion_timestamp,
- "model": model,
- "choices": [
- {
- "index": 0,
- "delta": {
- "content": chunk,
- },
- "finish_reason": None,
- }
- ],
- }
-
- content = json.dumps(completion_data, separators=(",", ":"))
- yield f"data: {content}\n\n"
- time.sleep(0.1)
-
- end_completion_data: dict[str, Any] = {
- "id": f"chatcmpl-{completion_id}",
- "object": "chat.completion.chunk",
- "created": completion_timestamp,
- "model": model,
- "choices": [
- {
- "index": 0,
- "delta": {},
- "finish_reason": "stop",
- }
- ],
- }
- content = json.dumps(end_completion_data, separators=(",", ":"))
- yield f"data: {content}\n\n"
-
- return app.response_class(streaming(), mimetype="text/event-stream")
-
-
-#Get the embedding from huggingface
-def get_embedding(input_text, token):
- huggingface_token = token
- embedding_model = "sentence-transformers/all-mpnet-base-v2"
- max_token_length = 500
-
- # Load the tokenizer for the "all-mpnet-base-v2" model
- tokenizer = AutoTokenizer.from_pretrained(embedding_model)
- # Tokenize the text and split the tokens into chunks of 500 tokens each
- tokens = tokenizer.tokenize(input_text)
- token_chunks = [tokens[i:i + max_token_length] for i in range(0, len(tokens), max_token_length)]
-
- # Initialize an empty list
- embeddings = []
-
- # Create embeddings for each chunk
- for chunk in token_chunks:
- # Convert the chunk tokens back to text
- chunk_text = tokenizer.convert_tokens_to_string(chunk)
-
- # Use the Hugging Face API to get embeddings for the chunk
- api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
- headers = {"Authorization": f"Bearer {huggingface_token}"}
- chunk_text = chunk_text.replace("\n", " ")
-
- # Make a POST request to get the chunk's embedding
- response = requests.post(api_url, headers=headers, json={"inputs": chunk_text, "options": {"wait_for_model": True}})
-
- # Parse the response and extract the embedding
- chunk_embedding = response.json()
- # Append the embedding to the list
- embeddings.append(chunk_embedding)
-
- #averaging all the embeddings
- #this isn't very effective
- #someone a better idea?
- num_embeddings = len(embeddings)
- average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
- embedding = average_embedding
- return embedding
-
-
-@app.route("/embeddings", methods=["POST"])
-def embeddings():
- input_text_list = request.get_json().get("input")
- input_text = ' '.join(map(str, input_text_list))
- token = request.headers.get('Authorization').replace("Bearer ", "")
- embedding = get_embedding(input_text, token)
- return {
- "data": [
- {
- "embedding": embedding,
- "index": 0,
- "object": "embedding"
- }
- ],
- "model": "text-embedding-ada-002",
- "object": "list",
- "usage": {
- "prompt_tokens": None,
- "total_tokens": None
- }
- }
-
-def main():
- app.run(host="0.0.0.0", port=1337, debug=True)
-
-
-if __name__ == "__main__":
- main() \ No newline at end of file