summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/H2o.py
diff options
context:
space:
mode:
Diffstat (limited to 'g4f/Provider/H2o.py')
-rw-r--r--g4f/Provider/H2o.py133
1 files changed, 70 insertions, 63 deletions
diff --git a/g4f/Provider/H2o.py b/g4f/Provider/H2o.py
index ea4d0825..ac5fcfb7 100644
--- a/g4f/Provider/H2o.py
+++ b/g4f/Provider/H2o.py
@@ -1,78 +1,85 @@
-import json, uuid, requests
+import json
+import uuid
+from aiohttp import ClientSession
-from ..typing import Any, CreateResult
-from .base_provider import BaseProvider
+from ..typing import AsyncGenerator
+from .base_provider import AsyncGeneratorProvider, format_prompt
-class H2o(BaseProvider):
- url = "https://gpt-gm.h2o.ai"
- working = True
+class H2o(AsyncGeneratorProvider):
+ url = "https://gpt-gm.h2o.ai"
+ working = True
supports_stream = True
model = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1"
- @staticmethod
- def create_completion(
+ @classmethod
+ async def create_async_generator(
+ cls,
model: str,
messages: list[dict[str, str]],
- stream: bool, **kwargs: Any) -> CreateResult:
-
- conversation = ""
- for message in messages:
- conversation += "%s: %s\n" % (message["role"], message["content"])
- conversation += "assistant: "
-
- session = requests.Session()
-
- headers = {"Referer": "https://gpt-gm.h2o.ai/r/jGfKSwU"}
- data = {
- "ethicsModalAccepted" : "true",
- "shareConversationsWithModelAuthors": "true",
- "ethicsModalAcceptedAt" : "",
- "activeModel" : model,
- "searchEnabled" : "true",
- }
-
- session.post("https://gpt-gm.h2o.ai/settings",
- headers=headers, data=data)
-
+ proxy: str = None,
+ **kwargs
+ ) -> AsyncGenerator:
+ model = model if model else cls.model
headers = {"Referer": "https://gpt-gm.h2o.ai/"}
- data = {"model": model}
-
- response = session.post("https://gpt-gm.h2o.ai/conversation",
- headers=headers, json=data).json()
-
- if "conversationId" not in response:
- return
- data = {
- "inputs": conversation,
- "parameters": {
- "temperature" : kwargs.get("temperature", 0.4),
- "truncate" : kwargs.get("truncate", 2048),
- "max_new_tokens" : kwargs.get("max_new_tokens", 1024),
- "do_sample" : kwargs.get("do_sample", True),
- "repetition_penalty": kwargs.get("repetition_penalty", 1.2),
- "return_full_text" : kwargs.get("return_full_text", False),
- },
- "stream" : True,
- "options": {
- "id" : kwargs.get("id", str(uuid.uuid4())),
- "response_id" : kwargs.get("response_id", str(uuid.uuid4())),
- "is_retry" : False,
- "use_cache" : False,
- "web_search_id": "",
- },
- }
+ async with ClientSession(
+ headers=headers
+ ) as session:
+ data = {
+ "ethicsModalAccepted": "true",
+ "shareConversationsWithModelAuthors": "true",
+ "ethicsModalAcceptedAt": "",
+ "activeModel": model,
+ "searchEnabled": "true",
+ }
+ async with session.post(
+ "https://gpt-gm.h2o.ai/settings",
+ proxy=proxy,
+ data=data
+ ) as response:
+ response.raise_for_status()
- response = session.post(f"https://gpt-gm.h2o.ai/conversation/{response['conversationId']}",
- headers=headers, json=data)
-
- response.raise_for_status()
- response.encoding = "utf-8"
- generated_text = response.text.replace("\n", "").split("data:")
- generated_text = json.loads(generated_text[-1])
+ async with session.post(
+ "https://gpt-gm.h2o.ai/conversation",
+ proxy=proxy,
+ json={"model": model},
+ ) as response:
+ response.raise_for_status()
+ conversationId = (await response.json())["conversationId"]
- yield generated_text["generated_text"]
+ data = {
+ "inputs": format_prompt(messages),
+ "parameters": {
+ "temperature": 0.4,
+ "truncate": 2048,
+ "max_new_tokens": 1024,
+ "do_sample": True,
+ "repetition_penalty": 1.2,
+ "return_full_text": False,
+ **kwargs
+ },
+ "stream": True,
+ "options": {
+ "id": str(uuid.uuid4()),
+ "response_id": str(uuid.uuid4()),
+ "is_retry": False,
+ "use_cache": False,
+ "web_search_id": "",
+ },
+ }
+ async with session.post(
+ f"https://gpt-gm.h2o.ai/conversation/{conversationId}",
+ proxy=proxy,
+ json=data
+ ) as response:
+ start = "data:"
+ async for line in response.content:
+ line = line.decode("utf-8")
+ if line and line.startswith(start):
+ line = json.loads(line[len(start):-1])
+ if not line["token"]["special"]:
+ yield line["token"]["text"]
@classmethod
@property