summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/bing/upload_image.py
diff options
context:
space:
mode:
Diffstat (limited to 'g4f/Provider/bing/upload_image.py')
-rw-r--r--g4f/Provider/bing/upload_image.py51
1 files changed, 20 insertions, 31 deletions
diff --git a/g4f/Provider/bing/upload_image.py b/g4f/Provider/bing/upload_image.py
index bb5687a8..f9e11561 100644
--- a/g4f/Provider/bing/upload_image.py
+++ b/g4f/Provider/bing/upload_image.py
@@ -1,17 +1,14 @@
"""
Module to handle image uploading and processing for Bing AI integrations.
"""
-
from __future__ import annotations
-import string
-import random
+
import json
import math
-from aiohttp import ClientSession
-from PIL import Image
+from aiohttp import ClientSession, FormData
from ...typing import ImageType, Tuple
-from ...image import to_image, process_image, to_base64, ImageResponse
+from ...image import to_image, process_image, to_base64_jpg, ImageRequest, Image
IMAGE_CONFIG = {
"maxImagePixels": 360000,
@@ -24,7 +21,7 @@ async def upload_image(
image_data: ImageType,
tone: str,
proxy: str = None
-) -> ImageResponse:
+) -> ImageRequest:
"""
Uploads an image to Bing's AI service and returns the image response.
@@ -38,22 +35,22 @@ async def upload_image(
RuntimeError: If the image upload fails.
Returns:
- ImageResponse: The response from the image upload.
+ ImageRequest: The response from the image upload.
"""
image = to_image(image_data)
new_width, new_height = calculate_new_dimensions(image)
- processed_img = process_image(image, new_width, new_height)
- img_binary_data = to_base64(processed_img, IMAGE_CONFIG['imageCompressionRate'])
+ image = process_image(image, new_width, new_height)
+ img_binary_data = to_base64_jpg(image, IMAGE_CONFIG['imageCompressionRate'])
- data, boundary = build_image_upload_payload(img_binary_data, tone)
- headers = prepare_headers(session, boundary)
+ data = build_image_upload_payload(img_binary_data, tone)
+ headers = prepare_headers(session)
async with session.post("https://www.bing.com/images/kblob", data=data, headers=headers, proxy=proxy) as response:
if response.status != 200:
raise RuntimeError("Failed to upload image.")
return parse_image_response(await response.json())
-def calculate_new_dimensions(image: Image.Image) -> Tuple[int, int]:
+def calculate_new_dimensions(image: Image) -> Tuple[int, int]:
"""
Calculates the new dimensions for the image based on the maximum allowed pixels.
@@ -70,7 +67,7 @@ def calculate_new_dimensions(image: Image.Image) -> Tuple[int, int]:
return int(width * scale_factor), int(height * scale_factor)
return width, height
-def build_image_upload_payload(image_bin: str, tone: str) -> Tuple[str, str]:
+def build_image_upload_payload(image_bin: str, tone: str) -> FormData:
"""
Builds the payload for image uploading.
@@ -81,18 +78,11 @@ def build_image_upload_payload(image_bin: str, tone: str) -> Tuple[str, str]:
Returns:
Tuple[str, str]: The data and boundary for the payload.
"""
- boundary = "----WebKitFormBoundary" + ''.join(random.choices(string.ascii_letters + string.digits, k=16))
- data = f"""--{boundary}
-Content-Disposition: form-data; name="knowledgeRequest"
-
-{json.dumps(build_knowledge_request(tone), ensure_ascii=False)}
---{boundary}
-Content-Disposition: form-data; name="imageBase64"
-
-{image_bin}
---{boundary}--
-"""
- return data, boundary
+ data = FormData()
+ knowledge_request = json.dumps(build_knowledge_request(tone), ensure_ascii=False)
+ data.add_field('knowledgeRequest', knowledge_request, content_type="application/json")
+ data.add_field('imageBase64', image_bin)
+ return data
def build_knowledge_request(tone: str) -> dict:
"""
@@ -119,7 +109,7 @@ def build_knowledge_request(tone: str) -> dict:
}
}
-def prepare_headers(session: ClientSession, boundary: str) -> dict:
+def prepare_headers(session: ClientSession) -> dict:
"""
Prepares the headers for the image upload request.
@@ -131,12 +121,11 @@ def prepare_headers(session: ClientSession, boundary: str) -> dict:
dict: The headers for the request.
"""
headers = session.headers.copy()
- headers["Content-Type"] = f'multipart/form-data; boundary={boundary}'
headers["Referer"] = 'https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx'
headers["Origin"] = 'https://www.bing.com'
return headers
-def parse_image_response(response: dict) -> ImageResponse:
+def parse_image_response(response: dict) -> ImageRequest:
"""
Parses the response from the image upload.
@@ -147,7 +136,7 @@ def parse_image_response(response: dict) -> ImageResponse:
RuntimeError: If parsing the image info fails.
Returns:
- ImageResponse: The parsed image response.
+ ImageRequest: The parsed image response.
"""
if not response.get('blobId'):
raise RuntimeError("Failed to parse image info.")
@@ -160,4 +149,4 @@ def parse_image_response(response: dict) -> ImageResponse:
if IMAGE_CONFIG["enableFaceBlurDebug"] else
f"https://www.bing.com/images/blob?bcid={result['bcid']}"
)
- return ImageResponse(result["imageUrl"], "", result) \ No newline at end of file
+ return ImageRequest(result["imageUrl"], "", result) \ No newline at end of file