summaryrefslogtreecommitdiffstats
path: root/venv/lib/python3.9/site-packages/numpy/linalg/linalg.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/lib/python3.9/site-packages/numpy/linalg/linalg.py')
-rw-r--r--venv/lib/python3.9/site-packages/numpy/linalg/linalg.py2795
1 files changed, 2795 insertions, 0 deletions
diff --git a/venv/lib/python3.9/site-packages/numpy/linalg/linalg.py b/venv/lib/python3.9/site-packages/numpy/linalg/linalg.py
new file mode 100644
index 00000000..69719332
--- /dev/null
+++ b/venv/lib/python3.9/site-packages/numpy/linalg/linalg.py
@@ -0,0 +1,2795 @@
+"""Lite version of scipy.linalg.
+
+Notes
+-----
+This module is a lite version of the linalg.py module in SciPy which
+contains high-level Python interface to the LAPACK library. The lite
+version only accesses the following LAPACK functions: dgesv, zgesv,
+dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
+zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
+"""
+
+__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
+ 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
+ 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank',
+ 'LinAlgError', 'multi_dot']
+
+import functools
+import operator
+import warnings
+
+from numpy.core import (
+ array, asarray, zeros, empty, empty_like, intc, single, double,
+ csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot,
+ add, multiply, sqrt, sum, isfinite,
+ finfo, errstate, geterrobj, moveaxis, amin, amax, product, abs,
+ atleast_2d, intp, asanyarray, object_, matmul,
+ swapaxes, divide, count_nonzero, isnan, sign, argsort, sort,
+ reciprocal
+)
+from numpy.core.multiarray import normalize_axis_index
+from numpy.core.overrides import set_module
+from numpy.core import overrides
+from numpy.lib.twodim_base import triu, eye
+from numpy.linalg import _umath_linalg
+
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy.linalg')
+
+
+fortran_int = intc
+
+
+@set_module('numpy.linalg')
+class LinAlgError(Exception):
+ """
+ Generic Python-exception-derived object raised by linalg functions.
+
+ General purpose exception class, derived from Python's exception.Exception
+ class, programmatically raised in linalg functions when a Linear
+ Algebra-related condition would prevent further correct execution of the
+ function.
+
+ Parameters
+ ----------
+ None
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> LA.inv(np.zeros((2,2)))
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ File "...linalg.py", line 350,
+ in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
+ File "...linalg.py", line 249,
+ in solve
+ raise LinAlgError('Singular matrix')
+ numpy.linalg.LinAlgError: Singular matrix
+
+ """
+
+
+def _determine_error_states():
+ errobj = geterrobj()
+ bufsize = errobj[0]
+
+ with errstate(invalid='call', over='ignore',
+ divide='ignore', under='ignore'):
+ invalid_call_errmask = geterrobj()[1]
+
+ return [bufsize, invalid_call_errmask, None]
+
+# Dealing with errors in _umath_linalg
+_linalg_error_extobj = _determine_error_states()
+del _determine_error_states
+
+def _raise_linalgerror_singular(err, flag):
+ raise LinAlgError("Singular matrix")
+
+def _raise_linalgerror_nonposdef(err, flag):
+ raise LinAlgError("Matrix is not positive definite")
+
+def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
+ raise LinAlgError("Eigenvalues did not converge")
+
+def _raise_linalgerror_svd_nonconvergence(err, flag):
+ raise LinAlgError("SVD did not converge")
+
+def _raise_linalgerror_lstsq(err, flag):
+ raise LinAlgError("SVD did not converge in Linear Least Squares")
+
+def _raise_linalgerror_qr(err, flag):
+ raise LinAlgError("Incorrect argument found while performing "
+ "QR factorization")
+
+def get_linalg_error_extobj(callback):
+ extobj = list(_linalg_error_extobj) # make a copy
+ extobj[2] = callback
+ return extobj
+
+def _makearray(a):
+ new = asarray(a)
+ wrap = getattr(a, "__array_prepare__", new.__array_wrap__)
+ return new, wrap
+
+def isComplexType(t):
+ return issubclass(t, complexfloating)
+
+_real_types_map = {single : single,
+ double : double,
+ csingle : single,
+ cdouble : double}
+
+_complex_types_map = {single : csingle,
+ double : cdouble,
+ csingle : csingle,
+ cdouble : cdouble}
+
+def _realType(t, default=double):
+ return _real_types_map.get(t, default)
+
+def _complexType(t, default=cdouble):
+ return _complex_types_map.get(t, default)
+
+def _commonType(*arrays):
+ # in lite version, use higher precision (always double or cdouble)
+ result_type = single
+ is_complex = False
+ for a in arrays:
+ if issubclass(a.dtype.type, inexact):
+ if isComplexType(a.dtype.type):
+ is_complex = True
+ rt = _realType(a.dtype.type, default=None)
+ if rt is None:
+ # unsupported inexact scalar
+ raise TypeError("array type %s is unsupported in linalg" %
+ (a.dtype.name,))
+ else:
+ rt = double
+ if rt is double:
+ result_type = double
+ if is_complex:
+ t = cdouble
+ result_type = _complex_types_map[result_type]
+ else:
+ t = double
+ return t, result_type
+
+
+def _to_native_byte_order(*arrays):
+ ret = []
+ for arr in arrays:
+ if arr.dtype.byteorder not in ('=', '|'):
+ ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
+ else:
+ ret.append(arr)
+ if len(ret) == 1:
+ return ret[0]
+ else:
+ return ret
+
+
+def _assert_2d(*arrays):
+ for a in arrays:
+ if a.ndim != 2:
+ raise LinAlgError('%d-dimensional array given. Array must be '
+ 'two-dimensional' % a.ndim)
+
+def _assert_stacked_2d(*arrays):
+ for a in arrays:
+ if a.ndim < 2:
+ raise LinAlgError('%d-dimensional array given. Array must be '
+ 'at least two-dimensional' % a.ndim)
+
+def _assert_stacked_square(*arrays):
+ for a in arrays:
+ m, n = a.shape[-2:]
+ if m != n:
+ raise LinAlgError('Last 2 dimensions of the array must be square')
+
+def _assert_finite(*arrays):
+ for a in arrays:
+ if not isfinite(a).all():
+ raise LinAlgError("Array must not contain infs or NaNs")
+
+def _is_empty_2d(arr):
+ # check size first for efficiency
+ return arr.size == 0 and product(arr.shape[-2:]) == 0
+
+
+def transpose(a):
+ """
+ Transpose each matrix in a stack of matrices.
+
+ Unlike np.transpose, this only swaps the last two axes, rather than all of
+ them
+
+ Parameters
+ ----------
+ a : (...,M,N) array_like
+
+ Returns
+ -------
+ aT : (...,N,M) ndarray
+ """
+ return swapaxes(a, -1, -2)
+
+# Linear equations
+
+def _tensorsolve_dispatcher(a, b, axes=None):
+ return (a, b)
+
+
+@array_function_dispatch(_tensorsolve_dispatcher)
+def tensorsolve(a, b, axes=None):
+ """
+ Solve the tensor equation ``a x = b`` for x.
+
+ It is assumed that all indices of `x` are summed over in the product,
+ together with the rightmost indices of `a`, as is done in, for example,
+ ``tensordot(a, x, axes=x.ndim)``.
+
+ Parameters
+ ----------
+ a : array_like
+ Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
+ the shape of that sub-tensor of `a` consisting of the appropriate
+ number of its rightmost indices, and must be such that
+ ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
+ 'square').
+ b : array_like
+ Right-hand tensor, which can be of any shape.
+ axes : tuple of ints, optional
+ Axes in `a` to reorder to the right, before inversion.
+ If None (default), no reordering is done.
+
+ Returns
+ -------
+ x : ndarray, shape Q
+
+ Raises
+ ------
+ LinAlgError
+ If `a` is singular or not 'square' (in the above sense).
+
+ See Also
+ --------
+ numpy.tensordot, tensorinv, numpy.einsum
+
+ Examples
+ --------
+ >>> a = np.eye(2*3*4)
+ >>> a.shape = (2*3, 4, 2, 3, 4)
+ >>> b = np.random.randn(2*3, 4)
+ >>> x = np.linalg.tensorsolve(a, b)
+ >>> x.shape
+ (2, 3, 4)
+ >>> np.allclose(np.tensordot(a, x, axes=3), b)
+ True
+
+ """
+ a, wrap = _makearray(a)
+ b = asarray(b)
+ an = a.ndim
+
+ if axes is not None:
+ allaxes = list(range(0, an))
+ for k in axes:
+ allaxes.remove(k)
+ allaxes.insert(an, k)
+ a = a.transpose(allaxes)
+
+ oldshape = a.shape[-(an-b.ndim):]
+ prod = 1
+ for k in oldshape:
+ prod *= k
+
+ if a.size != prod ** 2:
+ raise LinAlgError(
+ "Input arrays must satisfy the requirement \
+ prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
+ )
+
+ a = a.reshape(prod, prod)
+ b = b.ravel()
+ res = wrap(solve(a, b))
+ res.shape = oldshape
+ return res
+
+
+def _solve_dispatcher(a, b):
+ return (a, b)
+
+
+@array_function_dispatch(_solve_dispatcher)
+def solve(a, b):
+ """
+ Solve a linear matrix equation, or system of linear scalar equations.
+
+ Computes the "exact" solution, `x`, of the well-determined, i.e., full
+ rank, linear matrix equation `ax = b`.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Coefficient matrix.
+ b : {(..., M,), (..., M, K)}, array_like
+ Ordinate or "dependent variable" values.
+
+ Returns
+ -------
+ x : {(..., M,), (..., M, K)} ndarray
+ Solution to the system a x = b. Returned shape is identical to `b`.
+
+ Raises
+ ------
+ LinAlgError
+ If `a` is singular or not square.
+
+ See Also
+ --------
+ scipy.linalg.solve : Similar function in SciPy.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The solutions are computed using LAPACK routine ``_gesv``.
+
+ `a` must be square and of full-rank, i.e., all rows (or, equivalently,
+ columns) must be linearly independent; if either is not true, use
+ `lstsq` for the least-squares best "solution" of the
+ system/equation.
+
+ References
+ ----------
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
+ FL, Academic Press, Inc., 1980, pg. 22.
+
+ Examples
+ --------
+ Solve the system of equations ``x0 + 2 * x1 = 1`` and ``3 * x0 + 5 * x1 = 2``:
+
+ >>> a = np.array([[1, 2], [3, 5]])
+ >>> b = np.array([1, 2])
+ >>> x = np.linalg.solve(a, b)
+ >>> x
+ array([-1., 1.])
+
+ Check that the solution is correct:
+
+ >>> np.allclose(np.dot(a, x), b)
+ True
+
+ """
+ a, _ = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ b, wrap = _makearray(b)
+ t, result_t = _commonType(a, b)
+
+ # We use the b = (..., M,) logic, only if the number of extra dimensions
+ # match exactly
+ if b.ndim == a.ndim - 1:
+ gufunc = _umath_linalg.solve1
+ else:
+ gufunc = _umath_linalg.solve
+
+ signature = 'DD->D' if isComplexType(t) else 'dd->d'
+ extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
+ r = gufunc(a, b, signature=signature, extobj=extobj)
+
+ return wrap(r.astype(result_t, copy=False))
+
+
+def _tensorinv_dispatcher(a, ind=None):
+ return (a,)
+
+
+@array_function_dispatch(_tensorinv_dispatcher)
+def tensorinv(a, ind=2):
+ """
+ Compute the 'inverse' of an N-dimensional array.
+
+ The result is an inverse for `a` relative to the tensordot operation
+ ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
+ ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
+ tensordot operation.
+
+ Parameters
+ ----------
+ a : array_like
+ Tensor to 'invert'. Its shape must be 'square', i. e.,
+ ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
+ ind : int, optional
+ Number of first indices that are involved in the inverse sum.
+ Must be a positive integer, default is 2.
+
+ Returns
+ -------
+ b : ndarray
+ `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
+
+ Raises
+ ------
+ LinAlgError
+ If `a` is singular or not 'square' (in the above sense).
+
+ See Also
+ --------
+ numpy.tensordot, tensorsolve
+
+ Examples
+ --------
+ >>> a = np.eye(4*6)
+ >>> a.shape = (4, 6, 8, 3)
+ >>> ainv = np.linalg.tensorinv(a, ind=2)
+ >>> ainv.shape
+ (8, 3, 4, 6)
+ >>> b = np.random.randn(4, 6)
+ >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
+ True
+
+ >>> a = np.eye(4*6)
+ >>> a.shape = (24, 8, 3)
+ >>> ainv = np.linalg.tensorinv(a, ind=1)
+ >>> ainv.shape
+ (8, 3, 24)
+ >>> b = np.random.randn(24)
+ >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
+ True
+
+ """
+ a = asarray(a)
+ oldshape = a.shape
+ prod = 1
+ if ind > 0:
+ invshape = oldshape[ind:] + oldshape[:ind]
+ for k in oldshape[ind:]:
+ prod *= k
+ else:
+ raise ValueError("Invalid ind argument.")
+ a = a.reshape(prod, -1)
+ ia = inv(a)
+ return ia.reshape(*invshape)
+
+
+# Matrix inversion
+
+def _unary_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_unary_dispatcher)
+def inv(a):
+ """
+ Compute the (multiplicative) inverse of a matrix.
+
+ Given a square matrix `a`, return the matrix `ainv` satisfying
+ ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Matrix to be inverted.
+
+ Returns
+ -------
+ ainv : (..., M, M) ndarray or matrix
+ (Multiplicative) inverse of the matrix `a`.
+
+ Raises
+ ------
+ LinAlgError
+ If `a` is not square or inversion fails.
+
+ See Also
+ --------
+ scipy.linalg.inv : Similar function in SciPy.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ Examples
+ --------
+ >>> from numpy.linalg import inv
+ >>> a = np.array([[1., 2.], [3., 4.]])
+ >>> ainv = inv(a)
+ >>> np.allclose(np.dot(a, ainv), np.eye(2))
+ True
+ >>> np.allclose(np.dot(ainv, a), np.eye(2))
+ True
+
+ If a is a matrix object, then the return value is a matrix as well:
+
+ >>> ainv = inv(np.matrix(a))
+ >>> ainv
+ matrix([[-2. , 1. ],
+ [ 1.5, -0.5]])
+
+ Inverses of several matrices can be computed at once:
+
+ >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
+ >>> inv(a)
+ array([[[-2. , 1. ],
+ [ 1.5 , -0.5 ]],
+ [[-1.25, 0.75],
+ [ 0.75, -0.25]]])
+
+ """
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+
+ signature = 'D->D' if isComplexType(t) else 'd->d'
+ extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
+ ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
+ return wrap(ainv.astype(result_t, copy=False))
+
+
+def _matrix_power_dispatcher(a, n):
+ return (a,)
+
+
+@array_function_dispatch(_matrix_power_dispatcher)
+def matrix_power(a, n):
+ """
+ Raise a square matrix to the (integer) power `n`.
+
+ For positive integers `n`, the power is computed by repeated matrix
+ squarings and matrix multiplications. If ``n == 0``, the identity matrix
+ of the same shape as M is returned. If ``n < 0``, the inverse
+ is computed and then raised to the ``abs(n)``.
+
+ .. note:: Stacks of object matrices are not currently supported.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Matrix to be "powered".
+ n : int
+ The exponent can be any integer or long integer, positive,
+ negative, or zero.
+
+ Returns
+ -------
+ a**n : (..., M, M) ndarray or matrix object
+ The return value is the same shape and type as `M`;
+ if the exponent is positive or zero then the type of the
+ elements is the same as those of `M`. If the exponent is
+ negative the elements are floating-point.
+
+ Raises
+ ------
+ LinAlgError
+ For matrices that are not square or that (for negative powers) cannot
+ be inverted numerically.
+
+ Examples
+ --------
+ >>> from numpy.linalg import matrix_power
+ >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
+ >>> matrix_power(i, 3) # should = -i
+ array([[ 0, -1],
+ [ 1, 0]])
+ >>> matrix_power(i, 0)
+ array([[1, 0],
+ [0, 1]])
+ >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
+ array([[ 0., 1.],
+ [-1., 0.]])
+
+ Somewhat more sophisticated example
+
+ >>> q = np.zeros((4, 4))
+ >>> q[0:2, 0:2] = -i
+ >>> q[2:4, 2:4] = i
+ >>> q # one of the three quaternion units not equal to 1
+ array([[ 0., -1., 0., 0.],
+ [ 1., 0., 0., 0.],
+ [ 0., 0., 0., 1.],
+ [ 0., 0., -1., 0.]])
+ >>> matrix_power(q, 2) # = -np.eye(4)
+ array([[-1., 0., 0., 0.],
+ [ 0., -1., 0., 0.],
+ [ 0., 0., -1., 0.],
+ [ 0., 0., 0., -1.]])
+
+ """
+ a = asanyarray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+
+ try:
+ n = operator.index(n)
+ except TypeError as e:
+ raise TypeError("exponent must be an integer") from e
+
+ # Fall back on dot for object arrays. Object arrays are not supported by
+ # the current implementation of matmul using einsum
+ if a.dtype != object:
+ fmatmul = matmul
+ elif a.ndim == 2:
+ fmatmul = dot
+ else:
+ raise NotImplementedError(
+ "matrix_power not supported for stacks of object arrays")
+
+ if n == 0:
+ a = empty_like(a)
+ a[...] = eye(a.shape[-2], dtype=a.dtype)
+ return a
+
+ elif n < 0:
+ a = inv(a)
+ n = abs(n)
+
+ # short-cuts.
+ if n == 1:
+ return a
+
+ elif n == 2:
+ return fmatmul(a, a)
+
+ elif n == 3:
+ return fmatmul(fmatmul(a, a), a)
+
+ # Use binary decomposition to reduce the number of matrix multiplications.
+ # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
+ # increasing powers of 2, and multiply into the result as needed.
+ z = result = None
+ while n > 0:
+ z = a if z is None else fmatmul(z, z)
+ n, bit = divmod(n, 2)
+ if bit:
+ result = z if result is None else fmatmul(result, z)
+
+ return result
+
+
+# Cholesky decomposition
+
+
+@array_function_dispatch(_unary_dispatcher)
+def cholesky(a):
+ """
+ Cholesky decomposition.
+
+ Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
+ where `L` is lower-triangular and .H is the conjugate transpose operator
+ (which is the ordinary transpose if `a` is real-valued). `a` must be
+ Hermitian (symmetric if real-valued) and positive-definite. No
+ checking is performed to verify whether `a` is Hermitian or not.
+ In addition, only the lower-triangular and diagonal elements of `a`
+ are used. Only `L` is actually returned.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Hermitian (symmetric if all elements are real), positive-definite
+ input matrix.
+
+ Returns
+ -------
+ L : (..., M, M) array_like
+ Lower-triangular Cholesky factor of `a`. Returns a matrix object if
+ `a` is a matrix object.
+
+ Raises
+ ------
+ LinAlgError
+ If the decomposition fails, for example, if `a` is not
+ positive-definite.
+
+ See Also
+ --------
+ scipy.linalg.cholesky : Similar function in SciPy.
+ scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
+ positive-definite matrix.
+ scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
+ `scipy.linalg.cho_solve`.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The Cholesky decomposition is often used as a fast way of solving
+
+ .. math:: A \\mathbf{x} = \\mathbf{b}
+
+ (when `A` is both Hermitian/symmetric and positive-definite).
+
+ First, we solve for :math:`\\mathbf{y}` in
+
+ .. math:: L \\mathbf{y} = \\mathbf{b},
+
+ and then for :math:`\\mathbf{x}` in
+
+ .. math:: L.H \\mathbf{x} = \\mathbf{y}.
+
+ Examples
+ --------
+ >>> A = np.array([[1,-2j],[2j,5]])
+ >>> A
+ array([[ 1.+0.j, -0.-2.j],
+ [ 0.+2.j, 5.+0.j]])
+ >>> L = np.linalg.cholesky(A)
+ >>> L
+ array([[1.+0.j, 0.+0.j],
+ [0.+2.j, 1.+0.j]])
+ >>> np.dot(L, L.T.conj()) # verify that L * L.H = A
+ array([[1.+0.j, 0.-2.j],
+ [0.+2.j, 5.+0.j]])
+ >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
+ >>> np.linalg.cholesky(A) # an ndarray object is returned
+ array([[1.+0.j, 0.+0.j],
+ [0.+2.j, 1.+0.j]])
+ >>> # But a matrix object is returned if A is a matrix object
+ >>> np.linalg.cholesky(np.matrix(A))
+ matrix([[ 1.+0.j, 0.+0.j],
+ [ 0.+2.j, 1.+0.j]])
+
+ """
+ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef)
+ gufunc = _umath_linalg.cholesky_lo
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+ signature = 'D->D' if isComplexType(t) else 'd->d'
+ r = gufunc(a, signature=signature, extobj=extobj)
+ return wrap(r.astype(result_t, copy=False))
+
+
+# QR decomposition
+
+def _qr_dispatcher(a, mode=None):
+ return (a,)
+
+
+@array_function_dispatch(_qr_dispatcher)
+def qr(a, mode='reduced'):
+ """
+ Compute the qr factorization of a matrix.
+
+ Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
+ upper-triangular.
+
+ Parameters
+ ----------
+ a : array_like, shape (..., M, N)
+ An array-like object with the dimensionality of at least 2.
+ mode : {'reduced', 'complete', 'r', 'raw'}, optional
+ If K = min(M, N), then
+
+ * 'reduced' : returns q, r with dimensions
+ (..., M, K), (..., K, N) (default)
+ * 'complete' : returns q, r with dimensions (..., M, M), (..., M, N)
+ * 'r' : returns r only with dimensions (..., K, N)
+ * 'raw' : returns h, tau with dimensions (..., N, M), (..., K,)
+
+ The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
+ see the notes for more information. The default is 'reduced', and to
+ maintain backward compatibility with earlier versions of numpy both
+ it and the old default 'full' can be omitted. Note that array h
+ returned in 'raw' mode is transposed for calling Fortran. The
+ 'economic' mode is deprecated. The modes 'full' and 'economic' may
+ be passed using only the first letter for backwards compatibility,
+ but all others must be spelled out. See the Notes for more
+ explanation.
+
+
+ Returns
+ -------
+ q : ndarray of float or complex, optional
+ A matrix with orthonormal columns. When mode = 'complete' the
+ result is an orthogonal/unitary matrix depending on whether or not
+ a is real/complex. The determinant may be either +/- 1 in that
+ case. In case the number of dimensions in the input array is
+ greater than 2 then a stack of the matrices with above properties
+ is returned.
+ r : ndarray of float or complex, optional
+ The upper-triangular matrix or a stack of upper-triangular
+ matrices if the number of dimensions in the input array is greater
+ than 2.
+ (h, tau) : ndarrays of np.double or np.cdouble, optional
+ The array h contains the Householder reflectors that generate q
+ along with r. The tau array contains scaling factors for the
+ reflectors. In the deprecated 'economic' mode only h is returned.
+
+ Raises
+ ------
+ LinAlgError
+ If factoring fails.
+
+ See Also
+ --------
+ scipy.linalg.qr : Similar function in SciPy.
+ scipy.linalg.rq : Compute RQ decomposition of a matrix.
+
+ Notes
+ -----
+ This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
+ ``dorgqr``, and ``zungqr``.
+
+ For more information on the qr factorization, see for example:
+ https://en.wikipedia.org/wiki/QR_factorization
+
+ Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
+ `a` is of type `matrix`, all the return values will be matrices too.
+
+ New 'reduced', 'complete', and 'raw' options for mode were added in
+ NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In
+ addition the options 'full' and 'economic' were deprecated. Because
+ 'full' was the previous default and 'reduced' is the new default,
+ backward compatibility can be maintained by letting `mode` default.
+ The 'raw' option was added so that LAPACK routines that can multiply
+ arrays by q using the Householder reflectors can be used. Note that in
+ this case the returned arrays are of type np.double or np.cdouble and
+ the h array is transposed to be FORTRAN compatible. No routines using
+ the 'raw' return are currently exposed by numpy, but some are available
+ in lapack_lite and just await the necessary work.
+
+ Examples
+ --------
+ >>> a = np.random.randn(9, 6)
+ >>> q, r = np.linalg.qr(a)
+ >>> np.allclose(a, np.dot(q, r)) # a does equal qr
+ True
+ >>> r2 = np.linalg.qr(a, mode='r')
+ >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'
+ True
+ >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
+ >>> q, r = np.linalg.qr(a)
+ >>> q.shape
+ (3, 2, 2)
+ >>> r.shape
+ (3, 2, 2)
+ >>> np.allclose(a, np.matmul(q, r))
+ True
+
+ Example illustrating a common use of `qr`: solving of least squares
+ problems
+
+ What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
+ the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
+ and you'll see that it should be y0 = 0, m = 1.) The answer is provided
+ by solving the over-determined matrix equation ``Ax = b``, where::
+
+ A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
+ x = array([[y0], [m]])
+ b = array([[1], [0], [2], [1]])
+
+ If A = qr such that q is orthonormal (which is always possible via
+ Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice,
+ however, we simply use `lstsq`.)
+
+ >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
+ >>> A
+ array([[0, 1],
+ [1, 1],
+ [1, 1],
+ [2, 1]])
+ >>> b = np.array([1, 2, 2, 3])
+ >>> q, r = np.linalg.qr(A)
+ >>> p = np.dot(q.T, b)
+ >>> np.dot(np.linalg.inv(r), p)
+ array([ 1., 1.])
+
+ """
+ if mode not in ('reduced', 'complete', 'r', 'raw'):
+ if mode in ('f', 'full'):
+ # 2013-04-01, 1.8
+ msg = "".join((
+ "The 'full' option is deprecated in favor of 'reduced'.\n",
+ "For backward compatibility let mode default."))
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
+ mode = 'reduced'
+ elif mode in ('e', 'economic'):
+ # 2013-04-01, 1.8
+ msg = "The 'economic' option is deprecated."
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
+ mode = 'economic'
+ else:
+ raise ValueError(f"Unrecognized mode '{mode}'")
+
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ m, n = a.shape[-2:]
+ t, result_t = _commonType(a)
+ a = a.astype(t, copy=True)
+ a = _to_native_byte_order(a)
+ mn = min(m, n)
+
+ if m <= n:
+ gufunc = _umath_linalg.qr_r_raw_m
+ else:
+ gufunc = _umath_linalg.qr_r_raw_n
+
+ signature = 'D->D' if isComplexType(t) else 'd->d'
+ extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
+ tau = gufunc(a, signature=signature, extobj=extobj)
+
+ # handle modes that don't return q
+ if mode == 'r':
+ r = triu(a[..., :mn, :])
+ r = r.astype(result_t, copy=False)
+ return wrap(r)
+
+ if mode == 'raw':
+ q = transpose(a)
+ q = q.astype(result_t, copy=False)
+ tau = tau.astype(result_t, copy=False)
+ return wrap(q), tau
+
+ if mode == 'economic':
+ a = a.astype(result_t, copy=False)
+ return wrap(a)
+
+ # mc is the number of columns in the resulting q
+ # matrix. If the mode is complete then it is
+ # same as number of rows, and if the mode is reduced,
+ # then it is the minimum of number of rows and columns.
+ if mode == 'complete' and m > n:
+ mc = m
+ gufunc = _umath_linalg.qr_complete
+ else:
+ mc = mn
+ gufunc = _umath_linalg.qr_reduced
+
+ signature = 'DD->D' if isComplexType(t) else 'dd->d'
+ extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
+ q = gufunc(a, tau, signature=signature, extobj=extobj)
+ r = triu(a[..., :mc, :])
+
+ q = q.astype(result_t, copy=False)
+ r = r.astype(result_t, copy=False)
+
+ return wrap(q), wrap(r)
+
+# Eigenvalues
+
+
+@array_function_dispatch(_unary_dispatcher)
+def eigvals(a):
+ """
+ Compute the eigenvalues of a general matrix.
+
+ Main difference between `eigvals` and `eig`: the eigenvectors aren't
+ returned.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ A complex- or real-valued matrix whose eigenvalues will be computed.
+
+ Returns
+ -------
+ w : (..., M,) ndarray
+ The eigenvalues, each repeated according to its multiplicity.
+ They are not necessarily ordered, nor are they necessarily
+ real for real matrices.
+
+ Raises
+ ------
+ LinAlgError
+ If the eigenvalue computation does not converge.
+
+ See Also
+ --------
+ eig : eigenvalues and right eigenvectors of general arrays
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
+ (conjugate symmetric) arrays.
+ eigh : eigenvalues and eigenvectors of real symmetric or complex
+ Hermitian (conjugate symmetric) arrays.
+ scipy.linalg.eigvals : Similar function in SciPy.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ This is implemented using the ``_geev`` LAPACK routines which compute
+ the eigenvalues and eigenvectors of general square arrays.
+
+ Examples
+ --------
+ Illustration, using the fact that the eigenvalues of a diagonal matrix
+ are its diagonal elements, that multiplying a matrix on the left
+ by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
+ of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
+ if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
+ ``A``:
+
+ >>> from numpy import linalg as LA
+ >>> x = np.random.random()
+ >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
+ >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
+ (1.0, 1.0, 0.0)
+
+ Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:
+
+ >>> D = np.diag((-1,1))
+ >>> LA.eigvals(D)
+ array([-1., 1.])
+ >>> A = np.dot(Q, D)
+ >>> A = np.dot(A, Q.T)
+ >>> LA.eigvals(A)
+ array([ 1., -1.]) # random
+
+ """
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ _assert_finite(a)
+ t, result_t = _commonType(a)
+
+ extobj = get_linalg_error_extobj(
+ _raise_linalgerror_eigenvalues_nonconvergence)
+ signature = 'D->D' if isComplexType(t) else 'd->D'
+ w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj)
+
+ if not isComplexType(t):
+ if all(w.imag == 0):
+ w = w.real
+ result_t = _realType(result_t)
+ else:
+ result_t = _complexType(result_t)
+
+ return w.astype(result_t, copy=False)
+
+
+def _eigvalsh_dispatcher(a, UPLO=None):
+ return (a,)
+
+
+@array_function_dispatch(_eigvalsh_dispatcher)
+def eigvalsh(a, UPLO='L'):
+ """
+ Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
+
+ Main difference from eigh: the eigenvectors are not computed.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ A complex- or real-valued matrix whose eigenvalues are to be
+ computed.
+ UPLO : {'L', 'U'}, optional
+ Specifies whether the calculation is done with the lower triangular
+ part of `a` ('L', default) or the upper triangular part ('U').
+ Irrespective of this value only the real parts of the diagonal will
+ be considered in the computation to preserve the notion of a Hermitian
+ matrix. It therefore follows that the imaginary part of the diagonal
+ will always be treated as zero.
+
+ Returns
+ -------
+ w : (..., M,) ndarray
+ The eigenvalues in ascending order, each repeated according to
+ its multiplicity.
+
+ Raises
+ ------
+ LinAlgError
+ If the eigenvalue computation does not converge.
+
+ See Also
+ --------
+ eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
+ (conjugate symmetric) arrays.
+ eigvals : eigenvalues of general real or complex arrays.
+ eig : eigenvalues and right eigenvectors of general real or complex
+ arrays.
+ scipy.linalg.eigvalsh : Similar function in SciPy.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> a = np.array([[1, -2j], [2j, 5]])
+ >>> LA.eigvalsh(a)
+ array([ 0.17157288, 5.82842712]) # may vary
+
+ >>> # demonstrate the treatment of the imaginary part of the diagonal
+ >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
+ >>> a
+ array([[5.+2.j, 9.-2.j],
+ [0.+2.j, 2.-1.j]])
+ >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
+ >>> # with:
+ >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
+ >>> b
+ array([[5.+0.j, 0.-2.j],
+ [0.+2.j, 2.+0.j]])
+ >>> wa = LA.eigvalsh(a)
+ >>> wb = LA.eigvals(b)
+ >>> wa; wb
+ array([1., 6.])
+ array([6.+0.j, 1.+0.j])
+
+ """
+ UPLO = UPLO.upper()
+ if UPLO not in ('L', 'U'):
+ raise ValueError("UPLO argument must be 'L' or 'U'")
+
+ extobj = get_linalg_error_extobj(
+ _raise_linalgerror_eigenvalues_nonconvergence)
+ if UPLO == 'L':
+ gufunc = _umath_linalg.eigvalsh_lo
+ else:
+ gufunc = _umath_linalg.eigvalsh_up
+
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+ signature = 'D->d' if isComplexType(t) else 'd->d'
+ w = gufunc(a, signature=signature, extobj=extobj)
+ return w.astype(_realType(result_t), copy=False)
+
+def _convertarray(a):
+ t, result_t = _commonType(a)
+ a = a.astype(t).T.copy()
+ return a, t, result_t
+
+
+# Eigenvectors
+
+
+@array_function_dispatch(_unary_dispatcher)
+def eig(a):
+ """
+ Compute the eigenvalues and right eigenvectors of a square array.
+
+ Parameters
+ ----------
+ a : (..., M, M) array
+ Matrices for which the eigenvalues and right eigenvectors will
+ be computed
+
+ Returns
+ -------
+ w : (..., M) array
+ The eigenvalues, each repeated according to its multiplicity.
+ The eigenvalues are not necessarily ordered. The resulting
+ array will be of complex type, unless the imaginary part is
+ zero in which case it will be cast to a real type. When `a`
+ is real the resulting eigenvalues will be real (0 imaginary
+ part) or occur in conjugate pairs
+
+ v : (..., M, M) array
+ The normalized (unit "length") eigenvectors, such that the
+ column ``v[:,i]`` is the eigenvector corresponding to the
+ eigenvalue ``w[i]``.
+
+ Raises
+ ------
+ LinAlgError
+ If the eigenvalue computation does not converge.
+
+ See Also
+ --------
+ eigvals : eigenvalues of a non-symmetric array.
+ eigh : eigenvalues and eigenvectors of a real symmetric or complex
+ Hermitian (conjugate symmetric) array.
+ eigvalsh : eigenvalues of a real symmetric or complex Hermitian
+ (conjugate symmetric) array.
+ scipy.linalg.eig : Similar function in SciPy that also solves the
+ generalized eigenvalue problem.
+ scipy.linalg.schur : Best choice for unitary and other non-Hermitian
+ normal matrices.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ This is implemented using the ``_geev`` LAPACK routines which compute
+ the eigenvalues and eigenvectors of general square arrays.
+
+ The number `w` is an eigenvalue of `a` if there exists a vector
+ `v` such that ``a @ v = w * v``. Thus, the arrays `a`, `w`, and
+ `v` satisfy the equations ``a @ v[:,i] = w[i] * v[:,i]``
+ for :math:`i \\in \\{0,...,M-1\\}`.
+
+ The array `v` of eigenvectors may not be of maximum rank, that is, some
+ of the columns may be linearly dependent, although round-off error may
+ obscure that fact. If the eigenvalues are all different, then theoretically
+ the eigenvectors are linearly independent and `a` can be diagonalized by
+ a similarity transformation using `v`, i.e, ``inv(v) @ a @ v`` is diagonal.
+
+ For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
+ is preferred because the matrix `v` is guaranteed to be unitary, which is
+ not the case when using `eig`. The Schur factorization produces an
+ upper triangular matrix rather than a diagonal matrix, but for normal
+ matrices only the diagonal of the upper triangular matrix is needed, the
+ rest is roundoff error.
+
+ Finally, it is emphasized that `v` consists of the *right* (as in
+ right-hand side) eigenvectors of `a`. A vector `y` satisfying
+ ``y.T @ a = z * y.T`` for some number `z` is called a *left*
+ eigenvector of `a`, and, in general, the left and right eigenvectors
+ of a matrix are not necessarily the (perhaps conjugate) transposes
+ of each other.
+
+ References
+ ----------
+ G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
+ Academic Press, Inc., 1980, Various pp.
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+
+ (Almost) trivial example with real e-values and e-vectors.
+
+ >>> w, v = LA.eig(np.diag((1, 2, 3)))
+ >>> w; v
+ array([1., 2., 3.])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ Real matrix possessing complex e-values and e-vectors; note that the
+ e-values are complex conjugates of each other.
+
+ >>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
+ >>> w; v
+ array([1.+1.j, 1.-1.j])
+ array([[0.70710678+0.j , 0.70710678-0.j ],
+ [0. -0.70710678j, 0. +0.70710678j]])
+
+ Complex-valued matrix with real e-values (but complex-valued e-vectors);
+ note that ``a.conj().T == a``, i.e., `a` is Hermitian.
+
+ >>> a = np.array([[1, 1j], [-1j, 1]])
+ >>> w, v = LA.eig(a)
+ >>> w; v
+ array([2.+0.j, 0.+0.j])
+ array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary
+ [ 0.70710678+0.j , -0. +0.70710678j]])
+
+ Be careful about round-off error!
+
+ >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
+ >>> # Theor. e-values are 1 +/- 1e-9
+ >>> w, v = LA.eig(a)
+ >>> w; v
+ array([1., 1.])
+ array([[1., 0.],
+ [0., 1.]])
+
+ """
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ _assert_finite(a)
+ t, result_t = _commonType(a)
+
+ extobj = get_linalg_error_extobj(
+ _raise_linalgerror_eigenvalues_nonconvergence)
+ signature = 'D->DD' if isComplexType(t) else 'd->DD'
+ w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj)
+
+ if not isComplexType(t) and all(w.imag == 0.0):
+ w = w.real
+ vt = vt.real
+ result_t = _realType(result_t)
+ else:
+ result_t = _complexType(result_t)
+
+ vt = vt.astype(result_t, copy=False)
+ return w.astype(result_t, copy=False), wrap(vt)
+
+
+@array_function_dispatch(_eigvalsh_dispatcher)
+def eigh(a, UPLO='L'):
+ """
+ Return the eigenvalues and eigenvectors of a complex Hermitian
+ (conjugate symmetric) or a real symmetric matrix.
+
+ Returns two objects, a 1-D array containing the eigenvalues of `a`, and
+ a 2-D square array or matrix (depending on the input type) of the
+ corresponding eigenvectors (in columns).
+
+ Parameters
+ ----------
+ a : (..., M, M) array
+ Hermitian or real symmetric matrices whose eigenvalues and
+ eigenvectors are to be computed.
+ UPLO : {'L', 'U'}, optional
+ Specifies whether the calculation is done with the lower triangular
+ part of `a` ('L', default) or the upper triangular part ('U').
+ Irrespective of this value only the real parts of the diagonal will
+ be considered in the computation to preserve the notion of a Hermitian
+ matrix. It therefore follows that the imaginary part of the diagonal
+ will always be treated as zero.
+
+ Returns
+ -------
+ w : (..., M) ndarray
+ The eigenvalues in ascending order, each repeated according to
+ its multiplicity.
+ v : {(..., M, M) ndarray, (..., M, M) matrix}
+ The column ``v[:, i]`` is the normalized eigenvector corresponding
+ to the eigenvalue ``w[i]``. Will return a matrix object if `a` is
+ a matrix object.
+
+ Raises
+ ------
+ LinAlgError
+ If the eigenvalue computation does not converge.
+
+ See Also
+ --------
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
+ (conjugate symmetric) arrays.
+ eig : eigenvalues and right eigenvectors for non-symmetric arrays.
+ eigvals : eigenvalues of non-symmetric arrays.
+ scipy.linalg.eigh : Similar function in SciPy (but also solves the
+ generalized eigenvalue problem).
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
+ ``_heevd``.
+
+ The eigenvalues of real symmetric or complex Hermitian matrices are
+ always real. [1]_ The array `v` of (column) eigenvectors is unitary
+ and `a`, `w`, and `v` satisfy the equations
+ ``dot(a, v[:, i]) = w[i] * v[:, i]``.
+
+ References
+ ----------
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
+ FL, Academic Press, Inc., 1980, pg. 222.
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> a = np.array([[1, -2j], [2j, 5]])
+ >>> a
+ array([[ 1.+0.j, -0.-2.j],
+ [ 0.+2.j, 5.+0.j]])
+ >>> w, v = LA.eigh(a)
+ >>> w; v
+ array([0.17157288, 5.82842712])
+ array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
+ [ 0. +0.38268343j, 0. -0.92387953j]])
+
+ >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
+ array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
+ >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
+ array([0.+0.j, 0.+0.j])
+
+ >>> A = np.matrix(a) # what happens if input is a matrix object
+ >>> A
+ matrix([[ 1.+0.j, -0.-2.j],
+ [ 0.+2.j, 5.+0.j]])
+ >>> w, v = LA.eigh(A)
+ >>> w; v
+ array([0.17157288, 5.82842712])
+ matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
+ [ 0. +0.38268343j, 0. -0.92387953j]])
+
+ >>> # demonstrate the treatment of the imaginary part of the diagonal
+ >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
+ >>> a
+ array([[5.+2.j, 9.-2.j],
+ [0.+2.j, 2.-1.j]])
+ >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
+ >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
+ >>> b
+ array([[5.+0.j, 0.-2.j],
+ [0.+2.j, 2.+0.j]])
+ >>> wa, va = LA.eigh(a)
+ >>> wb, vb = LA.eig(b)
+ >>> wa; wb
+ array([1., 6.])
+ array([6.+0.j, 1.+0.j])
+ >>> va; vb
+ array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary
+ [ 0. +0.89442719j, 0. -0.4472136j ]])
+ array([[ 0.89442719+0.j , -0. +0.4472136j],
+ [-0. +0.4472136j, 0.89442719+0.j ]])
+ """
+ UPLO = UPLO.upper()
+ if UPLO not in ('L', 'U'):
+ raise ValueError("UPLO argument must be 'L' or 'U'")
+
+ a, wrap = _makearray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+
+ extobj = get_linalg_error_extobj(
+ _raise_linalgerror_eigenvalues_nonconvergence)
+ if UPLO == 'L':
+ gufunc = _umath_linalg.eigh_lo
+ else:
+ gufunc = _umath_linalg.eigh_up
+
+ signature = 'D->dD' if isComplexType(t) else 'd->dd'
+ w, vt = gufunc(a, signature=signature, extobj=extobj)
+ w = w.astype(_realType(result_t), copy=False)
+ vt = vt.astype(result_t, copy=False)
+ return w, wrap(vt)
+
+
+# Singular value decomposition
+
+def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
+ return (a,)
+
+
+@array_function_dispatch(_svd_dispatcher)
+def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
+ """
+ Singular Value Decomposition.
+
+ When `a` is a 2D array, and ``full_matrices=False``, then it is
+ factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
+ `u` and the Hermitian transpose of `vh` are 2D arrays with
+ orthonormal columns and `s` is a 1D array of `a`'s singular
+ values. When `a` is higher-dimensional, SVD is applied in
+ stacked mode as explained below.
+
+ Parameters
+ ----------
+ a : (..., M, N) array_like
+ A real or complex array with ``a.ndim >= 2``.
+ full_matrices : bool, optional
+ If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
+ ``(..., N, N)``, respectively. Otherwise, the shapes are
+ ``(..., M, K)`` and ``(..., K, N)``, respectively, where
+ ``K = min(M, N)``.
+ compute_uv : bool, optional
+ Whether or not to compute `u` and `vh` in addition to `s`. True
+ by default.
+ hermitian : bool, optional
+ If True, `a` is assumed to be Hermitian (symmetric if real-valued),
+ enabling a more efficient method for finding singular values.
+ Defaults to False.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ u : { (..., M, M), (..., M, K) } array
+ Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
+ size as those of the input `a`. The size of the last two dimensions
+ depends on the value of `full_matrices`. Only returned when
+ `compute_uv` is True.
+ s : (..., K) array
+ Vector(s) with the singular values, within each vector sorted in
+ descending order. The first ``a.ndim - 2`` dimensions have the same
+ size as those of the input `a`.
+ vh : { (..., N, N), (..., K, N) } array
+ Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
+ size as those of the input `a`. The size of the last two dimensions
+ depends on the value of `full_matrices`. Only returned when
+ `compute_uv` is True.
+
+ Raises
+ ------
+ LinAlgError
+ If SVD computation does not converge.
+
+ See Also
+ --------
+ scipy.linalg.svd : Similar function in SciPy.
+ scipy.linalg.svdvals : Compute singular values of a matrix.
+
+ Notes
+ -----
+
+ .. versionchanged:: 1.8.0
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The decomposition is performed using LAPACK routine ``_gesdd``.
+
+ SVD is usually described for the factorization of a 2D matrix :math:`A`.
+ The higher-dimensional case will be discussed below. In the 2D case, SVD is
+ written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
+ :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
+ contains the singular values of `a` and `u` and `vh` are unitary. The rows
+ of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
+ the eigenvectors of :math:`A A^H`. In both cases the corresponding
+ (possibly non-zero) eigenvalues are given by ``s**2``.
+
+ If `a` has more than two dimensions, then broadcasting rules apply, as
+ explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
+ working in "stacked" mode: it iterates over all indices of the first
+ ``a.ndim - 2`` dimensions and for each combination SVD is applied to the
+ last two indices. The matrix `a` can be reconstructed from the
+ decomposition with either ``(u * s[..., None, :]) @ vh`` or
+ ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
+ function ``np.matmul`` for python versions below 3.5.)
+
+ If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
+ all the return values.
+
+ Examples
+ --------
+ >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
+ >>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)
+
+ Reconstruction based on full SVD, 2D case:
+
+ >>> u, s, vh = np.linalg.svd(a, full_matrices=True)
+ >>> u.shape, s.shape, vh.shape
+ ((9, 9), (6,), (6, 6))
+ >>> np.allclose(a, np.dot(u[:, :6] * s, vh))
+ True
+ >>> smat = np.zeros((9, 6), dtype=complex)
+ >>> smat[:6, :6] = np.diag(s)
+ >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
+ True
+
+ Reconstruction based on reduced SVD, 2D case:
+
+ >>> u, s, vh = np.linalg.svd(a, full_matrices=False)
+ >>> u.shape, s.shape, vh.shape
+ ((9, 6), (6,), (6, 6))
+ >>> np.allclose(a, np.dot(u * s, vh))
+ True
+ >>> smat = np.diag(s)
+ >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
+ True
+
+ Reconstruction based on full SVD, 4D case:
+
+ >>> u, s, vh = np.linalg.svd(b, full_matrices=True)
+ >>> u.shape, s.shape, vh.shape
+ ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
+ >>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh))
+ True
+ >>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh))
+ True
+
+ Reconstruction based on reduced SVD, 4D case:
+
+ >>> u, s, vh = np.linalg.svd(b, full_matrices=False)
+ >>> u.shape, s.shape, vh.shape
+ ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
+ >>> np.allclose(b, np.matmul(u * s[..., None, :], vh))
+ True
+ >>> np.allclose(b, np.matmul(u, s[..., None] * vh))
+ True
+
+ """
+ import numpy as _nx
+ a, wrap = _makearray(a)
+
+ if hermitian:
+ # note: lapack svd returns eigenvalues with s ** 2 sorted descending,
+ # but eig returns s sorted ascending, so we re-order the eigenvalues
+ # and related arrays to have the correct order
+ if compute_uv:
+ s, u = eigh(a)
+ sgn = sign(s)
+ s = abs(s)
+ sidx = argsort(s)[..., ::-1]
+ sgn = _nx.take_along_axis(sgn, sidx, axis=-1)
+ s = _nx.take_along_axis(s, sidx, axis=-1)
+ u = _nx.take_along_axis(u, sidx[..., None, :], axis=-1)
+ # singular values are unsigned, move the sign into v
+ vt = transpose(u * sgn[..., None, :]).conjugate()
+ return wrap(u), s, wrap(vt)
+ else:
+ s = eigvalsh(a)
+ s = abs(s)
+ return sort(s)[..., ::-1]
+
+ _assert_stacked_2d(a)
+ t, result_t = _commonType(a)
+
+ extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence)
+
+ m, n = a.shape[-2:]
+ if compute_uv:
+ if full_matrices:
+ if m < n:
+ gufunc = _umath_linalg.svd_m_f
+ else:
+ gufunc = _umath_linalg.svd_n_f
+ else:
+ if m < n:
+ gufunc = _umath_linalg.svd_m_s
+ else:
+ gufunc = _umath_linalg.svd_n_s
+
+ signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
+ u, s, vh = gufunc(a, signature=signature, extobj=extobj)
+ u = u.astype(result_t, copy=False)
+ s = s.astype(_realType(result_t), copy=False)
+ vh = vh.astype(result_t, copy=False)
+ return wrap(u), s, wrap(vh)
+ else:
+ if m < n:
+ gufunc = _umath_linalg.svd_m
+ else:
+ gufunc = _umath_linalg.svd_n
+
+ signature = 'D->d' if isComplexType(t) else 'd->d'
+ s = gufunc(a, signature=signature, extobj=extobj)
+ s = s.astype(_realType(result_t), copy=False)
+ return s
+
+
+def _cond_dispatcher(x, p=None):
+ return (x,)
+
+
+@array_function_dispatch(_cond_dispatcher)
+def cond(x, p=None):
+ """
+ Compute the condition number of a matrix.
+
+ This function is capable of returning the condition number using
+ one of seven different norms, depending on the value of `p` (see
+ Parameters below).
+
+ Parameters
+ ----------
+ x : (..., M, N) array_like
+ The matrix whose condition number is sought.
+ p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
+ Order of the norm used in the condition number computation:
+
+ ===== ============================
+ p norm for matrices
+ ===== ============================
+ None 2-norm, computed directly using the ``SVD``
+ 'fro' Frobenius norm
+ inf max(sum(abs(x), axis=1))
+ -inf min(sum(abs(x), axis=1))
+ 1 max(sum(abs(x), axis=0))
+ -1 min(sum(abs(x), axis=0))
+ 2 2-norm (largest sing. value)
+ -2 smallest singular value
+ ===== ============================
+
+ inf means the `numpy.inf` object, and the Frobenius norm is
+ the root-of-sum-of-squares norm.
+
+ Returns
+ -------
+ c : {float, inf}
+ The condition number of the matrix. May be infinite.
+
+ See Also
+ --------
+ numpy.linalg.norm
+
+ Notes
+ -----
+ The condition number of `x` is defined as the norm of `x` times the
+ norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
+ (root-of-sum-of-squares) or one of a number of other matrix norms.
+
+ References
+ ----------
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
+ Academic Press, Inc., 1980, pg. 285.
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
+ >>> a
+ array([[ 1, 0, -1],
+ [ 0, 1, 0],
+ [ 1, 0, 1]])
+ >>> LA.cond(a)
+ 1.4142135623730951
+ >>> LA.cond(a, 'fro')
+ 3.1622776601683795
+ >>> LA.cond(a, np.inf)
+ 2.0
+ >>> LA.cond(a, -np.inf)
+ 1.0
+ >>> LA.cond(a, 1)
+ 2.0
+ >>> LA.cond(a, -1)
+ 1.0
+ >>> LA.cond(a, 2)
+ 1.4142135623730951
+ >>> LA.cond(a, -2)
+ 0.70710678118654746 # may vary
+ >>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False))
+ 0.70710678118654746 # may vary
+
+ """
+ x = asarray(x) # in case we have a matrix
+ if _is_empty_2d(x):
+ raise LinAlgError("cond is not defined on empty arrays")
+ if p is None or p == 2 or p == -2:
+ s = svd(x, compute_uv=False)
+ with errstate(all='ignore'):
+ if p == -2:
+ r = s[..., -1] / s[..., 0]
+ else:
+ r = s[..., 0] / s[..., -1]
+ else:
+ # Call inv(x) ignoring errors. The result array will
+ # contain nans in the entries where inversion failed.
+ _assert_stacked_2d(x)
+ _assert_stacked_square(x)
+ t, result_t = _commonType(x)
+ signature = 'D->D' if isComplexType(t) else 'd->d'
+ with errstate(all='ignore'):
+ invx = _umath_linalg.inv(x, signature=signature)
+ r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
+ r = r.astype(result_t, copy=False)
+
+ # Convert nans to infs unless the original array had nan entries
+ r = asarray(r)
+ nan_mask = isnan(r)
+ if nan_mask.any():
+ nan_mask &= ~isnan(x).any(axis=(-2, -1))
+ if r.ndim > 0:
+ r[nan_mask] = Inf
+ elif nan_mask:
+ r[()] = Inf
+
+ # Convention is to return scalars instead of 0d arrays
+ if r.ndim == 0:
+ r = r[()]
+
+ return r
+
+
+def _matrix_rank_dispatcher(A, tol=None, hermitian=None):
+ return (A,)
+
+
+@array_function_dispatch(_matrix_rank_dispatcher)
+def matrix_rank(A, tol=None, hermitian=False):
+ """
+ Return matrix rank of array using SVD method
+
+ Rank of the array is the number of singular values of the array that are
+ greater than `tol`.
+
+ .. versionchanged:: 1.14
+ Can now operate on stacks of matrices
+
+ Parameters
+ ----------
+ A : {(M,), (..., M, N)} array_like
+ Input vector or stack of matrices.
+ tol : (...) array_like, float, optional
+ Threshold below which SVD values are considered zero. If `tol` is
+ None, and ``S`` is an array with singular values for `M`, and
+ ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
+ set to ``S.max() * max(M, N) * eps``.
+
+ .. versionchanged:: 1.14
+ Broadcasted against the stack of matrices
+ hermitian : bool, optional
+ If True, `A` is assumed to be Hermitian (symmetric if real-valued),
+ enabling a more efficient method for finding singular values.
+ Defaults to False.
+
+ .. versionadded:: 1.14
+
+ Returns
+ -------
+ rank : (...) array_like
+ Rank of A.
+
+ Notes
+ -----
+ The default threshold to detect rank deficiency is a test on the magnitude
+ of the singular values of `A`. By default, we identify singular values less
+ than ``S.max() * max(M, N) * eps`` as indicating rank deficiency (with
+ the symbols defined above). This is the algorithm MATLAB uses [1]. It also
+ appears in *Numerical recipes* in the discussion of SVD solutions for linear
+ least squares [2].
+
+ This default threshold is designed to detect rank deficiency accounting for
+ the numerical errors of the SVD computation. Imagine that there is a column
+ in `A` that is an exact (in floating point) linear combination of other
+ columns in `A`. Computing the SVD on `A` will not produce a singular value
+ exactly equal to 0 in general: any difference of the smallest SVD value from
+ 0 will be caused by numerical imprecision in the calculation of the SVD.
+ Our threshold for small SVD values takes this numerical imprecision into
+ account, and the default threshold will detect such numerical rank
+ deficiency. The threshold may declare a matrix `A` rank deficient even if
+ the linear combination of some columns of `A` is not exactly equal to
+ another column of `A` but only numerically very close to another column of
+ `A`.
+
+ We chose our default threshold because it is in wide use. Other thresholds
+ are possible. For example, elsewhere in the 2007 edition of *Numerical
+ recipes* there is an alternative threshold of ``S.max() *
+ np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
+ this threshold as being based on "expected roundoff error" (p 71).
+
+ The thresholds above deal with floating point roundoff error in the
+ calculation of the SVD. However, you may have more information about the
+ sources of error in `A` that would make you consider other tolerance values
+ to detect *effective* rank deficiency. The most useful measure of the
+ tolerance depends on the operations you intend to use on your matrix. For
+ example, if your data come from uncertain measurements with uncertainties
+ greater than floating point epsilon, choosing a tolerance near that
+ uncertainty may be preferable. The tolerance may be absolute if the
+ uncertainties are absolute rather than relative.
+
+ References
+ ----------
+ .. [1] MATLAB reference documentation, "Rank"
+ https://www.mathworks.com/help/techdoc/ref/rank.html
+ .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
+ "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
+ page 795.
+
+ Examples
+ --------
+ >>> from numpy.linalg import matrix_rank
+ >>> matrix_rank(np.eye(4)) # Full rank matrix
+ 4
+ >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
+ >>> matrix_rank(I)
+ 3
+ >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
+ 1
+ >>> matrix_rank(np.zeros((4,)))
+ 0
+ """
+ A = asarray(A)
+ if A.ndim < 2:
+ return int(not all(A==0))
+ S = svd(A, compute_uv=False, hermitian=hermitian)
+ if tol is None:
+ tol = S.max(axis=-1, keepdims=True) * max(A.shape[-2:]) * finfo(S.dtype).eps
+ else:
+ tol = asarray(tol)[..., newaxis]
+ return count_nonzero(S > tol, axis=-1)
+
+
+# Generalized inverse
+
+def _pinv_dispatcher(a, rcond=None, hermitian=None):
+ return (a,)
+
+
+@array_function_dispatch(_pinv_dispatcher)
+def pinv(a, rcond=1e-15, hermitian=False):
+ """
+ Compute the (Moore-Penrose) pseudo-inverse of a matrix.
+
+ Calculate the generalized inverse of a matrix using its
+ singular-value decomposition (SVD) and including all
+ *large* singular values.
+
+ .. versionchanged:: 1.14
+ Can now operate on stacks of matrices
+
+ Parameters
+ ----------
+ a : (..., M, N) array_like
+ Matrix or stack of matrices to be pseudo-inverted.
+ rcond : (...) array_like of float
+ Cutoff for small singular values.
+ Singular values less than or equal to
+ ``rcond * largest_singular_value`` are set to zero.
+ Broadcasts against the stack of matrices.
+ hermitian : bool, optional
+ If True, `a` is assumed to be Hermitian (symmetric if real-valued),
+ enabling a more efficient method for finding singular values.
+ Defaults to False.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ B : (..., N, M) ndarray
+ The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
+ is `B`.
+
+ Raises
+ ------
+ LinAlgError
+ If the SVD computation does not converge.
+
+ See Also
+ --------
+ scipy.linalg.pinv : Similar function in SciPy.
+ scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
+ Hermitian matrix.
+
+ Notes
+ -----
+ The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
+ defined as: "the matrix that 'solves' [the least-squares problem]
+ :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
+ :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
+
+ It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
+ value decomposition of A, then
+ :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
+ orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
+ of A's so-called singular values, (followed, typically, by
+ zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
+ consisting of the reciprocals of A's singular values
+ (again, followed by zeros). [1]_
+
+ References
+ ----------
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
+ FL, Academic Press, Inc., 1980, pp. 139-142.
+
+ Examples
+ --------
+ The following example checks that ``a * a+ * a == a`` and
+ ``a+ * a * a+ == a+``:
+
+ >>> a = np.random.randn(9, 6)
+ >>> B = np.linalg.pinv(a)
+ >>> np.allclose(a, np.dot(a, np.dot(B, a)))
+ True
+ >>> np.allclose(B, np.dot(B, np.dot(a, B)))
+ True
+
+ """
+ a, wrap = _makearray(a)
+ rcond = asarray(rcond)
+ if _is_empty_2d(a):
+ m, n = a.shape[-2:]
+ res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
+ return wrap(res)
+ a = a.conjugate()
+ u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
+
+ # discard small singular values
+ cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
+ large = s > cutoff
+ s = divide(1, s, where=large, out=s)
+ s[~large] = 0
+
+ res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
+ return wrap(res)
+
+
+# Determinant
+
+
+@array_function_dispatch(_unary_dispatcher)
+def slogdet(a):
+ """
+ Compute the sign and (natural) logarithm of the determinant of an array.
+
+ If an array has a very small or very large determinant, then a call to
+ `det` may overflow or underflow. This routine is more robust against such
+ issues, because it computes the logarithm of the determinant rather than
+ the determinant itself.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Input array, has to be a square 2-D array.
+
+ Returns
+ -------
+ sign : (...) array_like
+ A number representing the sign of the determinant. For a real matrix,
+ this is 1, 0, or -1. For a complex matrix, this is a complex number
+ with absolute value 1 (i.e., it is on the unit circle), or else 0.
+ logdet : (...) array_like
+ The natural log of the absolute value of the determinant.
+
+ If the determinant is zero, then `sign` will be 0 and `logdet` will be
+ -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``.
+
+ See Also
+ --------
+ det
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ .. versionadded:: 1.6.0
+
+ The determinant is computed via LU factorization using the LAPACK
+ routine ``z/dgetrf``.
+
+
+ Examples
+ --------
+ The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
+
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> (sign, logdet) = np.linalg.slogdet(a)
+ >>> (sign, logdet)
+ (-1, 0.69314718055994529) # may vary
+ >>> sign * np.exp(logdet)
+ -2.0
+
+ Computing log-determinants for a stack of matrices:
+
+ >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
+ >>> a.shape
+ (3, 2, 2)
+ >>> sign, logdet = np.linalg.slogdet(a)
+ >>> (sign, logdet)
+ (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154]))
+ >>> sign * np.exp(logdet)
+ array([-2., -3., -8.])
+
+ This routine succeeds where ordinary `det` does not:
+
+ >>> np.linalg.det(np.eye(500) * 0.1)
+ 0.0
+ >>> np.linalg.slogdet(np.eye(500) * 0.1)
+ (1, -1151.2925464970228)
+
+ """
+ a = asarray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+ real_t = _realType(result_t)
+ signature = 'D->Dd' if isComplexType(t) else 'd->dd'
+ sign, logdet = _umath_linalg.slogdet(a, signature=signature)
+ sign = sign.astype(result_t, copy=False)
+ logdet = logdet.astype(real_t, copy=False)
+ return sign, logdet
+
+
+@array_function_dispatch(_unary_dispatcher)
+def det(a):
+ """
+ Compute the determinant of an array.
+
+ Parameters
+ ----------
+ a : (..., M, M) array_like
+ Input array to compute determinants for.
+
+ Returns
+ -------
+ det : (...) array_like
+ Determinant of `a`.
+
+ See Also
+ --------
+ slogdet : Another way to represent the determinant, more suitable
+ for large matrices where underflow/overflow may occur.
+ scipy.linalg.det : Similar function in SciPy.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.8.0
+
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
+ details.
+
+ The determinant is computed via LU factorization using the LAPACK
+ routine ``z/dgetrf``.
+
+ Examples
+ --------
+ The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
+
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.linalg.det(a)
+ -2.0 # may vary
+
+ Computing determinants for a stack of matrices:
+
+ >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
+ >>> a.shape
+ (3, 2, 2)
+ >>> np.linalg.det(a)
+ array([-2., -3., -8.])
+
+ """
+ a = asarray(a)
+ _assert_stacked_2d(a)
+ _assert_stacked_square(a)
+ t, result_t = _commonType(a)
+ signature = 'D->D' if isComplexType(t) else 'd->d'
+ r = _umath_linalg.det(a, signature=signature)
+ r = r.astype(result_t, copy=False)
+ return r
+
+
+# Linear Least Squares
+
+def _lstsq_dispatcher(a, b, rcond=None):
+ return (a, b)
+
+
+@array_function_dispatch(_lstsq_dispatcher)
+def lstsq(a, b, rcond="warn"):
+ r"""
+ Return the least-squares solution to a linear matrix equation.
+
+ Computes the vector `x` that approximately solves the equation
+ ``a @ x = b``. The equation may be under-, well-, or over-determined
+ (i.e., the number of linearly independent rows of `a` can be less than,
+ equal to, or greater than its number of linearly independent columns).
+ If `a` is square and of full rank, then `x` (but for round-off error)
+ is the "exact" solution of the equation. Else, `x` minimizes the
+ Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
+ solutions, the one with the smallest 2-norm :math:`||x||` is returned.
+
+ Parameters
+ ----------
+ a : (M, N) array_like
+ "Coefficient" matrix.
+ b : {(M,), (M, K)} array_like
+ Ordinate or "dependent variable" values. If `b` is two-dimensional,
+ the least-squares solution is calculated for each of the `K` columns
+ of `b`.
+ rcond : float, optional
+ Cut-off ratio for small singular values of `a`.
+ For the purposes of rank determination, singular values are treated
+ as zero if they are smaller than `rcond` times the largest singular
+ value of `a`.
+
+ .. versionchanged:: 1.14.0
+ If not set, a FutureWarning is given. The previous default
+ of ``-1`` will use the machine precision as `rcond` parameter,
+ the new default will use the machine precision times `max(M, N)`.
+ To silence the warning and use the new default, use ``rcond=None``,
+ to keep using the old behavior, use ``rcond=-1``.
+
+ Returns
+ -------
+ x : {(N,), (N, K)} ndarray
+ Least-squares solution. If `b` is two-dimensional,
+ the solutions are in the `K` columns of `x`.
+ residuals : {(1,), (K,), (0,)} ndarray
+ Sums of squared residuals: Squared Euclidean 2-norm for each column in
+ ``b - a @ x``.
+ If the rank of `a` is < N or M <= N, this is an empty array.
+ If `b` is 1-dimensional, this is a (1,) shape array.
+ Otherwise the shape is (K,).
+ rank : int
+ Rank of matrix `a`.
+ s : (min(M, N),) ndarray
+ Singular values of `a`.
+
+ Raises
+ ------
+ LinAlgError
+ If computation does not converge.
+
+ See Also
+ --------
+ scipy.linalg.lstsq : Similar function in SciPy.
+
+ Notes
+ -----
+ If `b` is a matrix, then all array results are returned as matrices.
+
+ Examples
+ --------
+ Fit a line, ``y = mx + c``, through some noisy data-points:
+
+ >>> x = np.array([0, 1, 2, 3])
+ >>> y = np.array([-1, 0.2, 0.9, 2.1])
+
+ By examining the coefficients, we see that the line should have a
+ gradient of roughly 1 and cut the y-axis at, more or less, -1.
+
+ We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
+ and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
+
+ >>> A = np.vstack([x, np.ones(len(x))]).T
+ >>> A
+ array([[ 0., 1.],
+ [ 1., 1.],
+ [ 2., 1.],
+ [ 3., 1.]])
+
+ >>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
+ >>> m, c
+ (1.0 -0.95) # may vary
+
+ Plot the data along with the fitted line:
+
+ >>> import matplotlib.pyplot as plt
+ >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
+ >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
+ >>> _ = plt.legend()
+ >>> plt.show()
+
+ """
+ a, _ = _makearray(a)
+ b, wrap = _makearray(b)
+ is_1d = b.ndim == 1
+ if is_1d:
+ b = b[:, newaxis]
+ _assert_2d(a, b)
+ m, n = a.shape[-2:]
+ m2, n_rhs = b.shape[-2:]
+ if m != m2:
+ raise LinAlgError('Incompatible dimensions')
+
+ t, result_t = _commonType(a, b)
+ result_real_t = _realType(result_t)
+
+ # Determine default rcond value
+ if rcond == "warn":
+ # 2017-08-19, 1.14.0
+ warnings.warn("`rcond` parameter will change to the default of "
+ "machine precision times ``max(M, N)`` where M and N "
+ "are the input matrix dimensions.\n"
+ "To use the future default and silence this warning "
+ "we advise to pass `rcond=None`, to keep using the old, "
+ "explicitly pass `rcond=-1`.",
+ FutureWarning, stacklevel=3)
+ rcond = -1
+ if rcond is None:
+ rcond = finfo(t).eps * max(n, m)
+
+ if m <= n:
+ gufunc = _umath_linalg.lstsq_m
+ else:
+ gufunc = _umath_linalg.lstsq_n
+
+ signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
+ extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq)
+ if n_rhs == 0:
+ # lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis
+ b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
+ x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
+ if m == 0:
+ x[...] = 0
+ if n_rhs == 0:
+ # remove the item we added
+ x = x[..., :n_rhs]
+ resids = resids[..., :n_rhs]
+
+ # remove the axis we added
+ if is_1d:
+ x = x.squeeze(axis=-1)
+ # we probably should squeeze resids too, but we can't
+ # without breaking compatibility.
+
+ # as documented
+ if rank != n or m <= n:
+ resids = array([], result_real_t)
+
+ # coerce output arrays
+ s = s.astype(result_real_t, copy=False)
+ resids = resids.astype(result_real_t, copy=False)
+ x = x.astype(result_t, copy=True) # Copying lets the memory in r_parts be freed
+ return wrap(x), wrap(resids), rank, s
+
+
+def _multi_svd_norm(x, row_axis, col_axis, op):
+ """Compute a function of the singular values of the 2-D matrices in `x`.
+
+ This is a private utility function used by `numpy.linalg.norm()`.
+
+ Parameters
+ ----------
+ x : ndarray
+ row_axis, col_axis : int
+ The axes of `x` that hold the 2-D matrices.
+ op : callable
+ This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
+
+ Returns
+ -------
+ result : float or ndarray
+ If `x` is 2-D, the return values is a float.
+ Otherwise, it is an array with ``x.ndim - 2`` dimensions.
+ The return values are either the minimum or maximum or sum of the
+ singular values of the matrices, depending on whether `op`
+ is `numpy.amin` or `numpy.amax` or `numpy.sum`.
+
+ """
+ y = moveaxis(x, (row_axis, col_axis), (-2, -1))
+ result = op(svd(y, compute_uv=False), axis=-1)
+ return result
+
+
+def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
+ return (x,)
+
+
+@array_function_dispatch(_norm_dispatcher)
+def norm(x, ord=None, axis=None, keepdims=False):
+ """
+ Matrix or vector norm.
+
+ This function is able to return one of eight different matrix norms,
+ or one of an infinite number of vector norms (described below), depending
+ on the value of the ``ord`` parameter.
+
+ Parameters
+ ----------
+ x : array_like
+ Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
+ is None. If both `axis` and `ord` are None, the 2-norm of
+ ``x.ravel`` will be returned.
+ ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
+ Order of the norm (see table under ``Notes``). inf means numpy's
+ `inf` object. The default is None.
+ axis : {None, int, 2-tuple of ints}, optional.
+ If `axis` is an integer, it specifies the axis of `x` along which to
+ compute the vector norms. If `axis` is a 2-tuple, it specifies the
+ axes that hold 2-D matrices, and the matrix norms of these matrices
+ are computed. If `axis` is None then either a vector norm (when `x`
+ is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
+ is None.
+
+ .. versionadded:: 1.8.0
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are normed over are left in the
+ result as dimensions with size one. With this option the result will
+ broadcast correctly against the original `x`.
+
+ .. versionadded:: 1.10.0
+
+ Returns
+ -------
+ n : float or ndarray
+ Norm of the matrix or vector(s).
+
+ See Also
+ --------
+ scipy.linalg.norm : Similar function in SciPy.
+
+ Notes
+ -----
+ For values of ``ord < 1``, the result is, strictly speaking, not a
+ mathematical 'norm', but it may still be useful for various numerical
+ purposes.
+
+ The following norms can be calculated:
+
+ ===== ============================ ==========================
+ ord norm for matrices norm for vectors
+ ===== ============================ ==========================
+ None Frobenius norm 2-norm
+ 'fro' Frobenius norm --
+ 'nuc' nuclear norm --
+ inf max(sum(abs(x), axis=1)) max(abs(x))
+ -inf min(sum(abs(x), axis=1)) min(abs(x))
+ 0 -- sum(x != 0)
+ 1 max(sum(abs(x), axis=0)) as below
+ -1 min(sum(abs(x), axis=0)) as below
+ 2 2-norm (largest sing. value) as below
+ -2 smallest singular value as below
+ other -- sum(abs(x)**ord)**(1./ord)
+ ===== ============================ ==========================
+
+ The Frobenius norm is given by [1]_:
+
+ :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
+
+ The nuclear norm is the sum of the singular values.
+
+ Both the Frobenius and nuclear norm orders are only defined for
+ matrices and raise a ValueError when ``x.ndim != 2``.
+
+ References
+ ----------
+ .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
+ Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> a = np.arange(9) - 4
+ >>> a
+ array([-4, -3, -2, ..., 2, 3, 4])
+ >>> b = a.reshape((3, 3))
+ >>> b
+ array([[-4, -3, -2],
+ [-1, 0, 1],
+ [ 2, 3, 4]])
+
+ >>> LA.norm(a)
+ 7.745966692414834
+ >>> LA.norm(b)
+ 7.745966692414834
+ >>> LA.norm(b, 'fro')
+ 7.745966692414834
+ >>> LA.norm(a, np.inf)
+ 4.0
+ >>> LA.norm(b, np.inf)
+ 9.0
+ >>> LA.norm(a, -np.inf)
+ 0.0
+ >>> LA.norm(b, -np.inf)
+ 2.0
+
+ >>> LA.norm(a, 1)
+ 20.0
+ >>> LA.norm(b, 1)
+ 7.0
+ >>> LA.norm(a, -1)
+ -4.6566128774142013e-010
+ >>> LA.norm(b, -1)
+ 6.0
+ >>> LA.norm(a, 2)
+ 7.745966692414834
+ >>> LA.norm(b, 2)
+ 7.3484692283495345
+
+ >>> LA.norm(a, -2)
+ 0.0
+ >>> LA.norm(b, -2)
+ 1.8570331885190563e-016 # may vary
+ >>> LA.norm(a, 3)
+ 5.8480354764257312 # may vary
+ >>> LA.norm(a, -3)
+ 0.0
+
+ Using the `axis` argument to compute vector norms:
+
+ >>> c = np.array([[ 1, 2, 3],
+ ... [-1, 1, 4]])
+ >>> LA.norm(c, axis=0)
+ array([ 1.41421356, 2.23606798, 5. ])
+ >>> LA.norm(c, axis=1)
+ array([ 3.74165739, 4.24264069])
+ >>> LA.norm(c, ord=1, axis=1)
+ array([ 6., 6.])
+
+ Using the `axis` argument to compute matrix norms:
+
+ >>> m = np.arange(8).reshape(2,2,2)
+ >>> LA.norm(m, axis=(1,2))
+ array([ 3.74165739, 11.22497216])
+ >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
+ (3.7416573867739413, 11.224972160321824)
+
+ """
+ x = asarray(x)
+
+ if not issubclass(x.dtype.type, (inexact, object_)):
+ x = x.astype(float)
+
+ # Immediately handle some default, simple, fast, and common cases.
+ if axis is None:
+ ndim = x.ndim
+ if ((ord is None) or
+ (ord in ('f', 'fro') and ndim == 2) or
+ (ord == 2 and ndim == 1)):
+
+ x = x.ravel(order='K')
+ if isComplexType(x.dtype.type):
+ x_real = x.real
+ x_imag = x.imag
+ sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
+ else:
+ sqnorm = x.dot(x)
+ ret = sqrt(sqnorm)
+ if keepdims:
+ ret = ret.reshape(ndim*[1])
+ return ret
+
+ # Normalize the `axis` argument to a tuple.
+ nd = x.ndim
+ if axis is None:
+ axis = tuple(range(nd))
+ elif not isinstance(axis, tuple):
+ try:
+ axis = int(axis)
+ except Exception as e:
+ raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
+ axis = (axis,)
+
+ if len(axis) == 1:
+ if ord == Inf:
+ return abs(x).max(axis=axis, keepdims=keepdims)
+ elif ord == -Inf:
+ return abs(x).min(axis=axis, keepdims=keepdims)
+ elif ord == 0:
+ # Zero norm
+ return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
+ elif ord == 1:
+ # special case for speedup
+ return add.reduce(abs(x), axis=axis, keepdims=keepdims)
+ elif ord is None or ord == 2:
+ # special case for speedup
+ s = (x.conj() * x).real
+ return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
+ # None of the str-type keywords for ord ('fro', 'nuc')
+ # are valid for vectors
+ elif isinstance(ord, str):
+ raise ValueError(f"Invalid norm order '{ord}' for vectors")
+ else:
+ absx = abs(x)
+ absx **= ord
+ ret = add.reduce(absx, axis=axis, keepdims=keepdims)
+ ret **= reciprocal(ord, dtype=ret.dtype)
+ return ret
+ elif len(axis) == 2:
+ row_axis, col_axis = axis
+ row_axis = normalize_axis_index(row_axis, nd)
+ col_axis = normalize_axis_index(col_axis, nd)
+ if row_axis == col_axis:
+ raise ValueError('Duplicate axes given.')
+ if ord == 2:
+ ret = _multi_svd_norm(x, row_axis, col_axis, amax)
+ elif ord == -2:
+ ret = _multi_svd_norm(x, row_axis, col_axis, amin)
+ elif ord == 1:
+ if col_axis > row_axis:
+ col_axis -= 1
+ ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
+ elif ord == Inf:
+ if row_axis > col_axis:
+ row_axis -= 1
+ ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
+ elif ord == -1:
+ if col_axis > row_axis:
+ col_axis -= 1
+ ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
+ elif ord == -Inf:
+ if row_axis > col_axis:
+ row_axis -= 1
+ ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
+ elif ord in [None, 'fro', 'f']:
+ ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
+ elif ord == 'nuc':
+ ret = _multi_svd_norm(x, row_axis, col_axis, sum)
+ else:
+ raise ValueError("Invalid norm order for matrices.")
+ if keepdims:
+ ret_shape = list(x.shape)
+ ret_shape[axis[0]] = 1
+ ret_shape[axis[1]] = 1
+ ret = ret.reshape(ret_shape)
+ return ret
+ else:
+ raise ValueError("Improper number of dimensions to norm.")
+
+
+# multi_dot
+
+def _multidot_dispatcher(arrays, *, out=None):
+ yield from arrays
+ yield out
+
+
+@array_function_dispatch(_multidot_dispatcher)
+def multi_dot(arrays, *, out=None):
+ """
+ Compute the dot product of two or more arrays in a single function call,
+ while automatically selecting the fastest evaluation order.
+
+ `multi_dot` chains `numpy.dot` and uses optimal parenthesization
+ of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
+ this can speed up the multiplication a lot.
+
+ If the first argument is 1-D it is treated as a row vector.
+ If the last argument is 1-D it is treated as a column vector.
+ The other arguments must be 2-D.
+
+ Think of `multi_dot` as::
+
+ def multi_dot(arrays): return functools.reduce(np.dot, arrays)
+
+
+ Parameters
+ ----------
+ arrays : sequence of array_like
+ If the first argument is 1-D it is treated as row vector.
+ If the last argument is 1-D it is treated as column vector.
+ The other arguments must be 2-D.
+ out : ndarray, optional
+ Output argument. This must have the exact kind that would be returned
+ if it was not used. In particular, it must have the right type, must be
+ C-contiguous, and its dtype must be the dtype that would be returned
+ for `dot(a, b)`. This is a performance feature. Therefore, if these
+ conditions are not met, an exception is raised, instead of attempting
+ to be flexible.
+
+ .. versionadded:: 1.19.0
+
+ Returns
+ -------
+ output : ndarray
+ Returns the dot product of the supplied arrays.
+
+ See Also
+ --------
+ numpy.dot : dot multiplication with two arguments.
+
+ References
+ ----------
+
+ .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
+ .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
+
+ Examples
+ --------
+ `multi_dot` allows you to write::
+
+ >>> from numpy.linalg import multi_dot
+ >>> # Prepare some data
+ >>> A = np.random.random((10000, 100))
+ >>> B = np.random.random((100, 1000))
+ >>> C = np.random.random((1000, 5))
+ >>> D = np.random.random((5, 333))
+ >>> # the actual dot multiplication
+ >>> _ = multi_dot([A, B, C, D])
+
+ instead of::
+
+ >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
+ >>> # or
+ >>> _ = A.dot(B).dot(C).dot(D)
+
+ Notes
+ -----
+ The cost for a matrix multiplication can be calculated with the
+ following function::
+
+ def cost(A, B):
+ return A.shape[0] * A.shape[1] * B.shape[1]
+
+ Assume we have three matrices
+ :math:`A_{10x100}, B_{100x5}, C_{5x50}`.
+
+ The costs for the two different parenthesizations are as follows::
+
+ cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
+ cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
+
+ """
+ n = len(arrays)
+ # optimization only makes sense for len(arrays) > 2
+ if n < 2:
+ raise ValueError("Expecting at least two arrays.")
+ elif n == 2:
+ return dot(arrays[0], arrays[1], out=out)
+
+ arrays = [asanyarray(a) for a in arrays]
+
+ # save original ndim to reshape the result array into the proper form later
+ ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
+ # Explicitly convert vectors to 2D arrays to keep the logic of the internal
+ # _multi_dot_* functions as simple as possible.
+ if arrays[0].ndim == 1:
+ arrays[0] = atleast_2d(arrays[0])
+ if arrays[-1].ndim == 1:
+ arrays[-1] = atleast_2d(arrays[-1]).T
+ _assert_2d(*arrays)
+
+ # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
+ if n == 3:
+ result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
+ else:
+ order = _multi_dot_matrix_chain_order(arrays)
+ result = _multi_dot(arrays, order, 0, n - 1, out=out)
+
+ # return proper shape
+ if ndim_first == 1 and ndim_last == 1:
+ return result[0, 0] # scalar
+ elif ndim_first == 1 or ndim_last == 1:
+ return result.ravel() # 1-D
+ else:
+ return result
+
+
+def _multi_dot_three(A, B, C, out=None):
+ """
+ Find the best order for three arrays and do the multiplication.
+
+ For three arguments `_multi_dot_three` is approximately 15 times faster
+ than `_multi_dot_matrix_chain_order`
+
+ """
+ a0, a1b0 = A.shape
+ b1c0, c1 = C.shape
+ # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
+ cost1 = a0 * b1c0 * (a1b0 + c1)
+ # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
+ cost2 = a1b0 * c1 * (a0 + b1c0)
+
+ if cost1 < cost2:
+ return dot(dot(A, B), C, out=out)
+ else:
+ return dot(A, dot(B, C), out=out)
+
+
+def _multi_dot_matrix_chain_order(arrays, return_costs=False):
+ """
+ Return a np.array that encodes the optimal order of mutiplications.
+
+ The optimal order array is then used by `_multi_dot()` to do the
+ multiplication.
+
+ Also return the cost matrix if `return_costs` is `True`
+
+ The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
+ Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices.
+
+ cost[i, j] = min([
+ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
+ for k in range(i, j)])
+
+ """
+ n = len(arrays)
+ # p stores the dimensions of the matrices
+ # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
+ p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
+ # m is a matrix of costs of the subproblems
+ # m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
+ m = zeros((n, n), dtype=double)
+ # s is the actual ordering
+ # s[i, j] is the value of k at which we split the product A_i..A_j
+ s = empty((n, n), dtype=intp)
+
+ for l in range(1, n):
+ for i in range(n - l):
+ j = i + l
+ m[i, j] = Inf
+ for k in range(i, j):
+ q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
+ if q < m[i, j]:
+ m[i, j] = q
+ s[i, j] = k # Note that Cormen uses 1-based index
+
+ return (s, m) if return_costs else s
+
+
+def _multi_dot(arrays, order, i, j, out=None):
+ """Actually do the multiplication with the given order."""
+ if i == j:
+ # the initial call with non-None out should never get here
+ assert out is None
+
+ return arrays[i]
+ else:
+ return dot(_multi_dot(arrays, order, i, order[i, j]),
+ _multi_dot(arrays, order, order[i, j] + 1, j),
+ out=out)