summaryrefslogtreecommitdiffstats
path: root/venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py')
-rw-r--r--venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py789
1 files changed, 789 insertions, 0 deletions
diff --git a/venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py b/venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py
new file mode 100644
index 00000000..48291389
--- /dev/null
+++ b/venv/lib/python3.9/site-packages/numpy/polynomial/polyutils.py
@@ -0,0 +1,789 @@
+"""
+Utility classes and functions for the polynomial modules.
+
+This module provides: error and warning objects; a polynomial base class;
+and some routines used in both the `polynomial` and `chebyshev` modules.
+
+Warning objects
+---------------
+
+.. autosummary::
+ :toctree: generated/
+
+ RankWarning raised in least-squares fit for rank-deficient matrix.
+
+Functions
+---------
+
+.. autosummary::
+ :toctree: generated/
+
+ as_series convert list of array_likes into 1-D arrays of common type.
+ trimseq remove trailing zeros.
+ trimcoef remove small trailing coefficients.
+ getdomain return the domain appropriate for a given set of abscissae.
+ mapdomain maps points between domains.
+ mapparms parameters of the linear map between domains.
+
+"""
+import operator
+import functools
+import warnings
+
+import numpy as np
+
+from numpy.core.multiarray import dragon4_positional, dragon4_scientific
+from numpy.core.umath import absolute
+
+__all__ = [
+ 'RankWarning', 'as_series', 'trimseq',
+ 'trimcoef', 'getdomain', 'mapdomain', 'mapparms',
+ 'format_float']
+
+#
+# Warnings and Exceptions
+#
+
+class RankWarning(UserWarning):
+ """Issued by chebfit when the design matrix is rank deficient."""
+ pass
+
+#
+# Helper functions to convert inputs to 1-D arrays
+#
+def trimseq(seq):
+ """Remove small Poly series coefficients.
+
+ Parameters
+ ----------
+ seq : sequence
+ Sequence of Poly series coefficients. This routine fails for
+ empty sequences.
+
+ Returns
+ -------
+ series : sequence
+ Subsequence with trailing zeros removed. If the resulting sequence
+ would be empty, return the first element. The returned sequence may
+ or may not be a view.
+
+ Notes
+ -----
+ Do not lose the type info if the sequence contains unknown objects.
+
+ """
+ if len(seq) == 0:
+ return seq
+ else:
+ for i in range(len(seq) - 1, -1, -1):
+ if seq[i] != 0:
+ break
+ return seq[:i+1]
+
+
+def as_series(alist, trim=True):
+ """
+ Return argument as a list of 1-d arrays.
+
+ The returned list contains array(s) of dtype double, complex double, or
+ object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
+ size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
+ of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
+ raises a Value Error if it is not first reshaped into either a 1-d or 2-d
+ array.
+
+ Parameters
+ ----------
+ alist : array_like
+ A 1- or 2-d array_like
+ trim : boolean, optional
+ When True, trailing zeros are removed from the inputs.
+ When False, the inputs are passed through intact.
+
+ Returns
+ -------
+ [a1, a2,...] : list of 1-D arrays
+ A copy of the input data as a list of 1-d arrays.
+
+ Raises
+ ------
+ ValueError
+ Raised when `as_series` cannot convert its input to 1-d arrays, or at
+ least one of the resulting arrays is empty.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import polyutils as pu
+ >>> a = np.arange(4)
+ >>> pu.as_series(a)
+ [array([0.]), array([1.]), array([2.]), array([3.])]
+ >>> b = np.arange(6).reshape((2,3))
+ >>> pu.as_series(b)
+ [array([0., 1., 2.]), array([3., 4., 5.])]
+
+ >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
+ [array([1.]), array([0., 1., 2.]), array([0., 1.])]
+
+ >>> pu.as_series([2, [1.1, 0.]])
+ [array([2.]), array([1.1])]
+
+ >>> pu.as_series([2, [1.1, 0.]], trim=False)
+ [array([2.]), array([1.1, 0. ])]
+
+ """
+ arrays = [np.array(a, ndmin=1, copy=False) for a in alist]
+ if min([a.size for a in arrays]) == 0:
+ raise ValueError("Coefficient array is empty")
+ if any(a.ndim != 1 for a in arrays):
+ raise ValueError("Coefficient array is not 1-d")
+ if trim:
+ arrays = [trimseq(a) for a in arrays]
+
+ if any(a.dtype == np.dtype(object) for a in arrays):
+ ret = []
+ for a in arrays:
+ if a.dtype != np.dtype(object):
+ tmp = np.empty(len(a), dtype=np.dtype(object))
+ tmp[:] = a[:]
+ ret.append(tmp)
+ else:
+ ret.append(a.copy())
+ else:
+ try:
+ dtype = np.common_type(*arrays)
+ except Exception as e:
+ raise ValueError("Coefficient arrays have no common type") from e
+ ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
+ return ret
+
+
+def trimcoef(c, tol=0):
+ """
+ Remove "small" "trailing" coefficients from a polynomial.
+
+ "Small" means "small in absolute value" and is controlled by the
+ parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
+ ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
+ both the 3-rd and 4-th order coefficients would be "trimmed."
+
+ Parameters
+ ----------
+ c : array_like
+ 1-d array of coefficients, ordered from lowest order to highest.
+ tol : number, optional
+ Trailing (i.e., highest order) elements with absolute value less
+ than or equal to `tol` (default value is zero) are removed.
+
+ Returns
+ -------
+ trimmed : ndarray
+ 1-d array with trailing zeros removed. If the resulting series
+ would be empty, a series containing a single zero is returned.
+
+ Raises
+ ------
+ ValueError
+ If `tol` < 0
+
+ See Also
+ --------
+ trimseq
+
+ Examples
+ --------
+ >>> from numpy.polynomial import polyutils as pu
+ >>> pu.trimcoef((0,0,3,0,5,0,0))
+ array([0., 0., 3., 0., 5.])
+ >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
+ array([0.])
+ >>> i = complex(0,1) # works for complex
+ >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
+ array([0.0003+0.j , 0.001 -0.001j])
+
+ """
+ if tol < 0:
+ raise ValueError("tol must be non-negative")
+
+ [c] = as_series([c])
+ [ind] = np.nonzero(np.abs(c) > tol)
+ if len(ind) == 0:
+ return c[:1]*0
+ else:
+ return c[:ind[-1] + 1].copy()
+
+def getdomain(x):
+ """
+ Return a domain suitable for given abscissae.
+
+ Find a domain suitable for a polynomial or Chebyshev series
+ defined at the values supplied.
+
+ Parameters
+ ----------
+ x : array_like
+ 1-d array of abscissae whose domain will be determined.
+
+ Returns
+ -------
+ domain : ndarray
+ 1-d array containing two values. If the inputs are complex, then
+ the two returned points are the lower left and upper right corners
+ of the smallest rectangle (aligned with the axes) in the complex
+ plane containing the points `x`. If the inputs are real, then the
+ two points are the ends of the smallest interval containing the
+ points `x`.
+
+ See Also
+ --------
+ mapparms, mapdomain
+
+ Examples
+ --------
+ >>> from numpy.polynomial import polyutils as pu
+ >>> points = np.arange(4)**2 - 5; points
+ array([-5, -4, -1, 4])
+ >>> pu.getdomain(points)
+ array([-5., 4.])
+ >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
+ >>> pu.getdomain(c)
+ array([-1.-1.j, 1.+1.j])
+
+ """
+ [x] = as_series([x], trim=False)
+ if x.dtype.char in np.typecodes['Complex']:
+ rmin, rmax = x.real.min(), x.real.max()
+ imin, imax = x.imag.min(), x.imag.max()
+ return np.array((complex(rmin, imin), complex(rmax, imax)))
+ else:
+ return np.array((x.min(), x.max()))
+
+def mapparms(old, new):
+ """
+ Linear map parameters between domains.
+
+ Return the parameters of the linear map ``offset + scale*x`` that maps
+ `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
+
+ Parameters
+ ----------
+ old, new : array_like
+ Domains. Each domain must (successfully) convert to a 1-d array
+ containing precisely two values.
+
+ Returns
+ -------
+ offset, scale : scalars
+ The map ``L(x) = offset + scale*x`` maps the first domain to the
+ second.
+
+ See Also
+ --------
+ getdomain, mapdomain
+
+ Notes
+ -----
+ Also works for complex numbers, and thus can be used to calculate the
+ parameters required to map any line in the complex plane to any other
+ line therein.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import polyutils as pu
+ >>> pu.mapparms((-1,1),(-1,1))
+ (0.0, 1.0)
+ >>> pu.mapparms((1,-1),(-1,1))
+ (-0.0, -1.0)
+ >>> i = complex(0,1)
+ >>> pu.mapparms((-i,-1),(1,i))
+ ((1+1j), (1-0j))
+
+ """
+ oldlen = old[1] - old[0]
+ newlen = new[1] - new[0]
+ off = (old[1]*new[0] - old[0]*new[1])/oldlen
+ scl = newlen/oldlen
+ return off, scl
+
+def mapdomain(x, old, new):
+ """
+ Apply linear map to input points.
+
+ The linear map ``offset + scale*x`` that maps the domain `old` to
+ the domain `new` is applied to the points `x`.
+
+ Parameters
+ ----------
+ x : array_like
+ Points to be mapped. If `x` is a subtype of ndarray the subtype
+ will be preserved.
+ old, new : array_like
+ The two domains that determine the map. Each must (successfully)
+ convert to 1-d arrays containing precisely two values.
+
+ Returns
+ -------
+ x_out : ndarray
+ Array of points of the same shape as `x`, after application of the
+ linear map between the two domains.
+
+ See Also
+ --------
+ getdomain, mapparms
+
+ Notes
+ -----
+ Effectively, this implements:
+
+ .. math::
+ x\\_out = new[0] + m(x - old[0])
+
+ where
+
+ .. math::
+ m = \\frac{new[1]-new[0]}{old[1]-old[0]}
+
+ Examples
+ --------
+ >>> from numpy.polynomial import polyutils as pu
+ >>> old_domain = (-1,1)
+ >>> new_domain = (0,2*np.pi)
+ >>> x = np.linspace(-1,1,6); x
+ array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
+ >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
+ array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary
+ 6.28318531])
+ >>> x - pu.mapdomain(x_out, new_domain, old_domain)
+ array([0., 0., 0., 0., 0., 0.])
+
+ Also works for complex numbers (and thus can be used to map any line in
+ the complex plane to any other line therein).
+
+ >>> i = complex(0,1)
+ >>> old = (-1 - i, 1 + i)
+ >>> new = (-1 + i, 1 - i)
+ >>> z = np.linspace(old[0], old[1], 6); z
+ array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ])
+ >>> new_z = pu.mapdomain(z, old, new); new_z
+ array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary
+
+ """
+ x = np.asanyarray(x)
+ off, scl = mapparms(old, new)
+ return off + scl*x
+
+
+def _nth_slice(i, ndim):
+ sl = [np.newaxis] * ndim
+ sl[i] = slice(None)
+ return tuple(sl)
+
+
+def _vander_nd(vander_fs, points, degrees):
+ r"""
+ A generalization of the Vandermonde matrix for N dimensions
+
+ The result is built by combining the results of 1d Vandermonde matrices,
+
+ .. math::
+ W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}
+
+ where
+
+ .. math::
+ N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
+ M &= \texttt{points[k].ndim} \\
+ V_k &= \texttt{vander\_fs[k]} \\
+ x_k &= \texttt{points[k]} \\
+ 0 \le j_k &\le \texttt{degrees[k]}
+
+ Expanding the one-dimensional :math:`V_k` functions gives:
+
+ .. math::
+ W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}
+
+ where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
+ dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.
+
+ Parameters
+ ----------
+ vander_fs : Sequence[function(array_like, int) -> ndarray]
+ The 1d vander function to use for each axis, such as ``polyvander``
+ points : Sequence[array_like]
+ Arrays of point coordinates, all of the same shape. The dtypes
+ will be converted to either float64 or complex128 depending on
+ whether any of the elements are complex. Scalars are converted to
+ 1-D arrays.
+ This must be the same length as `vander_fs`.
+ degrees : Sequence[int]
+ The maximum degree (inclusive) to use for each axis.
+ This must be the same length as `vander_fs`.
+
+ Returns
+ -------
+ vander_nd : ndarray
+ An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
+ """
+ n_dims = len(vander_fs)
+ if n_dims != len(points):
+ raise ValueError(
+ f"Expected {n_dims} dimensions of sample points, got {len(points)}")
+ if n_dims != len(degrees):
+ raise ValueError(
+ f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
+ if n_dims == 0:
+ raise ValueError("Unable to guess a dtype or shape when no points are given")
+
+ # convert to the same shape and type
+ points = tuple(np.array(tuple(points), copy=False) + 0.0)
+
+ # produce the vandermonde matrix for each dimension, placing the last
+ # axis of each in an independent trailing axis of the output
+ vander_arrays = (
+ vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
+ for i in range(n_dims)
+ )
+
+ # we checked this wasn't empty already, so no `initial` needed
+ return functools.reduce(operator.mul, vander_arrays)
+
+
+def _vander_nd_flat(vander_fs, points, degrees):
+ """
+ Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis
+
+ Used to implement the public ``<type>vander<n>d`` functions.
+ """
+ v = _vander_nd(vander_fs, points, degrees)
+ return v.reshape(v.shape[:-len(degrees)] + (-1,))
+
+
+def _fromroots(line_f, mul_f, roots):
+ """
+ Helper function used to implement the ``<type>fromroots`` functions.
+
+ Parameters
+ ----------
+ line_f : function(float, float) -> ndarray
+ The ``<type>line`` function, such as ``polyline``
+ mul_f : function(array_like, array_like) -> ndarray
+ The ``<type>mul`` function, such as ``polymul``
+ roots
+ See the ``<type>fromroots`` functions for more detail
+ """
+ if len(roots) == 0:
+ return np.ones(1)
+ else:
+ [roots] = as_series([roots], trim=False)
+ roots.sort()
+ p = [line_f(-r, 1) for r in roots]
+ n = len(p)
+ while n > 1:
+ m, r = divmod(n, 2)
+ tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
+ if r:
+ tmp[0] = mul_f(tmp[0], p[-1])
+ p = tmp
+ n = m
+ return p[0]
+
+
+def _valnd(val_f, c, *args):
+ """
+ Helper function used to implement the ``<type>val<n>d`` functions.
+
+ Parameters
+ ----------
+ val_f : function(array_like, array_like, tensor: bool) -> array_like
+ The ``<type>val`` function, such as ``polyval``
+ c, args
+ See the ``<type>val<n>d`` functions for more detail
+ """
+ args = [np.asanyarray(a) for a in args]
+ shape0 = args[0].shape
+ if not all((a.shape == shape0 for a in args[1:])):
+ if len(args) == 3:
+ raise ValueError('x, y, z are incompatible')
+ elif len(args) == 2:
+ raise ValueError('x, y are incompatible')
+ else:
+ raise ValueError('ordinates are incompatible')
+ it = iter(args)
+ x0 = next(it)
+
+ # use tensor on only the first
+ c = val_f(x0, c)
+ for xi in it:
+ c = val_f(xi, c, tensor=False)
+ return c
+
+
+def _gridnd(val_f, c, *args):
+ """
+ Helper function used to implement the ``<type>grid<n>d`` functions.
+
+ Parameters
+ ----------
+ val_f : function(array_like, array_like, tensor: bool) -> array_like
+ The ``<type>val`` function, such as ``polyval``
+ c, args
+ See the ``<type>grid<n>d`` functions for more detail
+ """
+ for xi in args:
+ c = val_f(xi, c)
+ return c
+
+
+def _div(mul_f, c1, c2):
+ """
+ Helper function used to implement the ``<type>div`` functions.
+
+ Implementation uses repeated subtraction of c2 multiplied by the nth basis.
+ For some polynomial types, a more efficient approach may be possible.
+
+ Parameters
+ ----------
+ mul_f : function(array_like, array_like) -> array_like
+ The ``<type>mul`` function, such as ``polymul``
+ c1, c2
+ See the ``<type>div`` functions for more detail
+ """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if c2[-1] == 0:
+ raise ZeroDivisionError()
+
+ lc1 = len(c1)
+ lc2 = len(c2)
+ if lc1 < lc2:
+ return c1[:1]*0, c1
+ elif lc2 == 1:
+ return c1/c2[-1], c1[:1]*0
+ else:
+ quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
+ rem = c1
+ for i in range(lc1 - lc2, - 1, -1):
+ p = mul_f([0]*i + [1], c2)
+ q = rem[-1]/p[-1]
+ rem = rem[:-1] - q*p[:-1]
+ quo[i] = q
+ return quo, trimseq(rem)
+
+
+def _add(c1, c2):
+ """ Helper function used to implement the ``<type>add`` functions. """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if len(c1) > len(c2):
+ c1[:c2.size] += c2
+ ret = c1
+ else:
+ c2[:c1.size] += c1
+ ret = c2
+ return trimseq(ret)
+
+
+def _sub(c1, c2):
+ """ Helper function used to implement the ``<type>sub`` functions. """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if len(c1) > len(c2):
+ c1[:c2.size] -= c2
+ ret = c1
+ else:
+ c2 = -c2
+ c2[:c1.size] += c1
+ ret = c2
+ return trimseq(ret)
+
+
+def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
+ """
+ Helper function used to implement the ``<type>fit`` functions.
+
+ Parameters
+ ----------
+ vander_f : function(array_like, int) -> ndarray
+ The 1d vander function, such as ``polyvander``
+ c1, c2
+ See the ``<type>fit`` functions for more detail
+ """
+ x = np.asarray(x) + 0.0
+ y = np.asarray(y) + 0.0
+ deg = np.asarray(deg)
+
+ # check arguments.
+ if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
+ raise TypeError("deg must be an int or non-empty 1-D array of int")
+ if deg.min() < 0:
+ raise ValueError("expected deg >= 0")
+ if x.ndim != 1:
+ raise TypeError("expected 1D vector for x")
+ if x.size == 0:
+ raise TypeError("expected non-empty vector for x")
+ if y.ndim < 1 or y.ndim > 2:
+ raise TypeError("expected 1D or 2D array for y")
+ if len(x) != len(y):
+ raise TypeError("expected x and y to have same length")
+
+ if deg.ndim == 0:
+ lmax = deg
+ order = lmax + 1
+ van = vander_f(x, lmax)
+ else:
+ deg = np.sort(deg)
+ lmax = deg[-1]
+ order = len(deg)
+ van = vander_f(x, lmax)[:, deg]
+
+ # set up the least squares matrices in transposed form
+ lhs = van.T
+ rhs = y.T
+ if w is not None:
+ w = np.asarray(w) + 0.0
+ if w.ndim != 1:
+ raise TypeError("expected 1D vector for w")
+ if len(x) != len(w):
+ raise TypeError("expected x and w to have same length")
+ # apply weights. Don't use inplace operations as they
+ # can cause problems with NA.
+ lhs = lhs * w
+ rhs = rhs * w
+
+ # set rcond
+ if rcond is None:
+ rcond = len(x)*np.finfo(x.dtype).eps
+
+ # Determine the norms of the design matrix columns.
+ if issubclass(lhs.dtype.type, np.complexfloating):
+ scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
+ else:
+ scl = np.sqrt(np.square(lhs).sum(1))
+ scl[scl == 0] = 1
+
+ # Solve the least squares problem.
+ c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
+ c = (c.T/scl).T
+
+ # Expand c to include non-fitted coefficients which are set to zero
+ if deg.ndim > 0:
+ if c.ndim == 2:
+ cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
+ else:
+ cc = np.zeros(lmax+1, dtype=c.dtype)
+ cc[deg] = c
+ c = cc
+
+ # warn on rank reduction
+ if rank != order and not full:
+ msg = "The fit may be poorly conditioned"
+ warnings.warn(msg, RankWarning, stacklevel=2)
+
+ if full:
+ return c, [resids, rank, s, rcond]
+ else:
+ return c
+
+
+def _pow(mul_f, c, pow, maxpower):
+ """
+ Helper function used to implement the ``<type>pow`` functions.
+
+ Parameters
+ ----------
+ mul_f : function(array_like, array_like) -> ndarray
+ The ``<type>mul`` function, such as ``polymul``
+ c : array_like
+ 1-D array of array of series coefficients
+ pow, maxpower
+ See the ``<type>pow`` functions for more detail
+ """
+ # c is a trimmed copy
+ [c] = as_series([c])
+ power = int(pow)
+ if power != pow or power < 0:
+ raise ValueError("Power must be a non-negative integer.")
+ elif maxpower is not None and power > maxpower:
+ raise ValueError("Power is too large")
+ elif power == 0:
+ return np.array([1], dtype=c.dtype)
+ elif power == 1:
+ return c
+ else:
+ # This can be made more efficient by using powers of two
+ # in the usual way.
+ prd = c
+ for i in range(2, power + 1):
+ prd = mul_f(prd, c)
+ return prd
+
+
+def _deprecate_as_int(x, desc):
+ """
+ Like `operator.index`, but emits a deprecation warning when passed a float
+
+ Parameters
+ ----------
+ x : int-like, or float with integral value
+ Value to interpret as an integer
+ desc : str
+ description to include in any error message
+
+ Raises
+ ------
+ TypeError : if x is a non-integral float or non-numeric
+ DeprecationWarning : if x is an integral float
+ """
+ try:
+ return operator.index(x)
+ except TypeError as e:
+ # Numpy 1.17.0, 2019-03-11
+ try:
+ ix = int(x)
+ except TypeError:
+ pass
+ else:
+ if ix == x:
+ warnings.warn(
+ f"In future, this will raise TypeError, as {desc} will "
+ "need to be an integer not just an integral float.",
+ DeprecationWarning,
+ stacklevel=3
+ )
+ return ix
+
+ raise TypeError(f"{desc} must be an integer") from e
+
+
+def format_float(x, parens=False):
+ if not np.issubdtype(type(x), np.floating):
+ return str(x)
+
+ opts = np.get_printoptions()
+
+ if np.isnan(x):
+ return opts['nanstr']
+ elif np.isinf(x):
+ return opts['infstr']
+
+ exp_format = False
+ if x != 0:
+ a = absolute(x)
+ if a >= 1.e8 or a < 10**min(0, -(opts['precision']-1)//2):
+ exp_format = True
+
+ trim, unique = '0', True
+ if opts['floatmode'] == 'fixed':
+ trim, unique = 'k', False
+
+ if exp_format:
+ s = dragon4_scientific(x, precision=opts['precision'],
+ unique=unique, trim=trim,
+ sign=opts['sign'] == '+')
+ if parens:
+ s = '(' + s + ')'
+ else:
+ s = dragon4_positional(x, precision=opts['precision'],
+ fractional=True,
+ unique=unique, trim=trim,
+ sign=opts['sign'] == '+')
+ return s