1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
import json
import uuid
import requests
from ..typing import Any, CreateResult
from .base_provider import BaseProvider
class H2o(BaseProvider):
url = "https://gpt-gm.h2o.ai"
working = True
supports_stream = True
model = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1"
@staticmethod
def create_completion(
model: str,
messages: list[dict[str, str]],
stream: bool,
**kwargs: Any,
) -> CreateResult:
conversation = ""
for message in messages:
conversation += "%s: %s\n" % (message["role"], message["content"])
conversation += "assistant: "
session = requests.Session()
headers = {"Referer": "https://gpt-gm.h2o.ai/r/jGfKSwU"}
data = {
"ethicsModalAccepted": "true",
"shareConversationsWithModelAuthors": "true",
"ethicsModalAcceptedAt": "",
"activeModel": model,
"searchEnabled": "true",
}
session.post(
"https://gpt-gm.h2o.ai/settings",
headers=headers,
data=data,
)
headers = {"Referer": "https://gpt-gm.h2o.ai/"}
data = {"model": model}
response = session.post(
"https://gpt-gm.h2o.ai/conversation",
headers=headers,
json=data,
).json()
if "conversationId" not in response:
return
data = {
"inputs": conversation,
"parameters": {
"temperature": kwargs.get("temperature", 0.4),
"truncate": kwargs.get("truncate", 2048),
"max_new_tokens": kwargs.get("max_new_tokens", 1024),
"do_sample": kwargs.get("do_sample", True),
"repetition_penalty": kwargs.get("repetition_penalty", 1.2),
"return_full_text": kwargs.get("return_full_text", False),
},
"stream": True,
"options": {
"id": kwargs.get("id", str(uuid.uuid4())),
"response_id": kwargs.get("response_id", str(uuid.uuid4())),
"is_retry": False,
"use_cache": False,
"web_search_id": "",
},
}
response = session.post(
f"https://gpt-gm.h2o.ai/conversation/{response['conversationId']}",
headers=headers,
json=data,
)
response.raise_for_status()
response.encoding = "utf-8"
generated_text = response.text.replace("\n", "").split("data:")
generated_text = json.loads(generated_text[-1])
yield generated_text["generated_text"]
@classmethod
@property
def params(cls):
params = [
("model", "str"),
("messages", "list[dict[str, str]]"),
("stream", "bool"),
("temperature", "float"),
("truncate", "int"),
("max_new_tokens", "int"),
("do_sample", "bool"),
("repetition_penalty", "float"),
("return_full_text", "bool"),
]
param = ", ".join([": ".join(p) for p in params])
return f"g4f.provider.{cls.__name__} supports: ({param})"
|