summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/H2o.py
blob: f9b799bb43fc189111525cae6141f2d77634efe1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import json
import uuid

import requests

from ..typing import Any, CreateResult
from .base_provider import BaseProvider


class H2o(BaseProvider):
    url = "https://gpt-gm.h2o.ai"
    working = True
    supports_stream = True

    @staticmethod
    def create_completion(
        model: str,
        messages: list[dict[str, str]],
        stream: bool,
        **kwargs: Any,
    ) -> CreateResult:
        conversation = ""
        for message in messages:
            conversation += "%s: %s\n" % (message["role"], message["content"])
        conversation += "assistant: "

        session = requests.Session()

        headers = {"Referer": "https://gpt-gm.h2o.ai/r/jGfKSwU"}
        data = {
            "ethicsModalAccepted": "true",
            "shareConversationsWithModelAuthors": "true",
            "ethicsModalAcceptedAt": "",
            "activeModel": model,
            "searchEnabled": "true",
        }
        session.post(
            "https://gpt-gm.h2o.ai/settings",
            headers=headers,
            data=data,
        )

        headers = {"Referer": "https://gpt-gm.h2o.ai/"}
        data = {"model": model}

        response = session.post(
            "https://gpt-gm.h2o.ai/conversation",
            headers=headers,
            json=data,
        )
        conversation_id = response.json()["conversationId"]

        data = {
            "inputs": conversation,
            "parameters": {
                "temperature": kwargs.get("temperature", 0.4),
                "truncate": kwargs.get("truncate", 2048),
                "max_new_tokens": kwargs.get("max_new_tokens", 1024),
                "do_sample": kwargs.get("do_sample", True),
                "repetition_penalty": kwargs.get("repetition_penalty", 1.2),
                "return_full_text": kwargs.get("return_full_text", False),
            },
            "stream": True,
            "options": {
                "id": kwargs.get("id", str(uuid.uuid4())),
                "response_id": kwargs.get("response_id", str(uuid.uuid4())),
                "is_retry": False,
                "use_cache": False,
                "web_search_id": "",
            },
        }

        response = session.post(
            f"https://gpt-gm.h2o.ai/conversation/{conversation_id}",
            headers=headers,
            json=data,
        )
        response.raise_for_status()
        response.encoding = "utf-8"
        generated_text = response.text.replace("\n", "").split("data:")
        generated_text = json.loads(generated_text[-1])

        yield generated_text["generated_text"]

    @classmethod
    @property
    def params(cls):
        params = [
            ("model", "str"),
            ("messages", "list[dict[str, str]]"),
            ("stream", "bool"),
            ("temperature", "float"),
            ("truncate", "int"),
            ("max_new_tokens", "int"),
            ("do_sample", "bool"),
            ("repetition_penalty", "float"),
            ("return_full_text", "bool"),
        ]
        param = ", ".join([": ".join(p) for p in params])
        return f"g4f.provider.{cls.__name__} supports: ({param})"