summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/needs_auth/OpenaiChat.py
blob: 4b11aeaf7303f07428a7b998164bb43d88062708 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from __future__ import annotations

import uuid, json, asyncio, os
from py_arkose_generator.arkose import get_values_for_request
from async_property import async_cached_property
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

from ..base_provider import AsyncGeneratorProvider
from ..helper import format_prompt, get_cookies
from ...webdriver import get_browser, get_driver_cookies
from ...typing import AsyncResult, Messages
from ...requests import StreamSession
from ...image import to_image, to_bytes, ImageType, ImageResponse
from ... import debug

models = {
    "gpt-3.5":       "text-davinci-002-render-sha",
    "gpt-3.5-turbo": "text-davinci-002-render-sha",
    "gpt-4":         "gpt-4",
    "gpt-4-gizmo":   "gpt-4-gizmo"
}

class OpenaiChat(AsyncGeneratorProvider):
    url                   = "https://chat.openai.com"
    working               = True
    needs_auth            = True
    supports_gpt_35_turbo = True
    supports_gpt_4        = True
    _cookies: dict        = {}
    _default_model: str   = None

    @classmethod
    async def create(
        cls,
        prompt: str = None,
        model: str = "",
        messages: Messages = [],
        history_disabled: bool = False,
        action: str = "next",
        conversation_id: str = None,
        parent_id: str = None,
        image: ImageType = None,
        **kwargs
    ) -> Response:
        if prompt:
            messages.append({
                "role": "user",
                "content": prompt
            })
        generator = cls.create_async_generator(
            model,
            messages,
            history_disabled=history_disabled,
            action=action,
            conversation_id=conversation_id,
            parent_id=parent_id,
            image=image,
            response_fields=True,
            **kwargs
        )
        return Response(
            generator,
            action,
            messages,
            kwargs
        )
    
    @classmethod
    async def upload_image(
        cls,
        session: StreamSession,
        headers: dict,
        image: ImageType
    ) -> ImageResponse:
        image = to_image(image)
        extension = image.format.lower()
        data_bytes = to_bytes(image)
        data = {
            "file_name": f"{image.width}x{image.height}.{extension}",
            "file_size": len(data_bytes),
            "use_case":	"multimodal"
        }
        async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
            response.raise_for_status()
            image_data = {
                **data,
                **await response.json(),
                "mime_type": f"image/{extension}",
                "extension": extension,
                "height": image.height,
                "width": image.width
            }
        async with session.put(
            image_data["upload_url"],
            data=data_bytes,
            headers={
                "Content-Type": image_data["mime_type"],
                "x-ms-blob-type": "BlockBlob"
            }
        ) as response:
            response.raise_for_status()
        async with session.post(
            f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
            json={},
            headers=headers
        ) as response:
            response.raise_for_status()
            download_url = (await response.json())["download_url"]
        return ImageResponse(download_url, image_data["file_name"], image_data)
    
    @classmethod
    async def get_default_model(cls, session: StreamSession, headers: dict):
        if cls._default_model:
            model =  cls._default_model
        else:
            async with session.get(f"{cls.url}/backend-api/models", headers=headers) as response:
                data = await response.json()
                if "categories" in data:
                    model = data["categories"][-1]["default_model"]
                else:
                    RuntimeError(f"Response: {data}")
            cls._default_model = model
        return model
    
    @classmethod
    def create_messages(cls, prompt: str, image_response: ImageResponse = None):
        if not image_response:
            content = {"content_type": "text", "parts": [prompt]}
        else:
            content = {
                "content_type": "multimodal_text",
                "parts": [{
                    "asset_pointer": f"file-service://{image_response.get('file_id')}",
                    "height": image_response.get("height"),
                    "size_bytes": image_response.get("file_size"),
                    "width": image_response.get("width"),
                }, prompt]
            }
        messages = [{
            "id": str(uuid.uuid4()),
            "author": {"role": "user"},
            "content": content,
        }]
        if image_response:
            messages[0]["metadata"] = {
                "attachments": [{
                    "height": image_response.get("height"),
                    "id": image_response.get("file_id"),
                    "mimeType": image_response.get("mime_type"),
                    "name": image_response.get("file_name"),
                    "size": image_response.get("file_size"),
                    "width": image_response.get("width"),
                }]
            }
        return messages
    
    @classmethod
    async def get_image_response(cls, session: StreamSession, headers: dict, line: dict):
        if "parts" in line["message"]["content"]:
            part = line["message"]["content"]["parts"][0]
            if "asset_pointer" in part and part["metadata"]:
                file_id = part["asset_pointer"].split("file-service://", 1)[1]
                prompt = part["metadata"]["dalle"]["prompt"]
                async with session.get(
                    f"{cls.url}/backend-api/files/{file_id}/download",
                    headers=headers
                ) as response:
                    response.raise_for_status()
                    download_url = (await response.json())["download_url"]
                    return ImageResponse(download_url, prompt)

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        timeout: int = 120,
        access_token: str = None,
        cookies: dict = None,
        auto_continue: bool = False,
        history_disabled: bool = True,
        action: str = "next",
        conversation_id: str = None,
        parent_id: str = None,
        image: ImageType = None,
        response_fields: bool = False,
        **kwargs
    ) -> AsyncResult:
        if model in models:
            model = models[model]
        if not parent_id:
            parent_id = str(uuid.uuid4())
        if not cookies:
            cookies = cls._cookies
        if not access_token:
            if not cookies:
                cls._cookies = cookies = get_cookies("chat.openai.com")
            if "access_token" in cookies:
                access_token = cookies["access_token"]
        if not access_token:
            login_url = os.environ.get("G4F_LOGIN_URL")
            if login_url:
                yield f"Please login: [ChatGPT]({login_url})\n\n"
            access_token, cookies = cls.browse_access_token(proxy)
            cls._cookies = cookies
        headers = {
            "Authorization": f"Bearer {access_token}",
        }
        async with StreamSession(
            proxies={"https": proxy},
            impersonate="chrome110",
            timeout=timeout,
            cookies=dict([(name, value) for name, value in cookies.items() if name == "_puid"])
        ) as session:
            if not model:
                model =  await cls.get_default_model(session, headers)
            try:
                image_response = None
                if image:
                    image_response = await cls.upload_image(session, headers, image)
                    yield image_response
            except Exception as e:
                yield e
            end_turn = EndTurn()
            while not end_turn.is_end:
                data = {
                    "action": action,
                    "arkose_token": await cls.get_arkose_token(session),
                    "conversation_id": conversation_id,
                    "parent_message_id": parent_id,
                    "model": model,
                    "history_and_training_disabled": history_disabled and not auto_continue,
                }
                if action != "continue":
                    prompt = format_prompt(messages) if not conversation_id else messages[-1]["content"]
                    data["messages"] = cls.create_messages(prompt, image_response)
                async with session.post(
                    f"{cls.url}/backend-api/conversation",
                    json=data,
                    headers={"Accept": "text/event-stream", **headers}
                ) as response:
                    try:
                        response.raise_for_status()
                    except:
                        raise RuntimeError(f"Response {response.status_code}: {await response.text()}")
                    try:
                        last_message: int = 0
                        async for line in response.iter_lines():
                            if not line.startswith(b"data: "):
                                continue
                            elif line.startswith(b"data: [DONE]"):
                                break
                            try:
                                line = json.loads(line[6:])
                            except:
                                continue
                            if "message" not in line:
                                continue
                            if "error" in line and line["error"]:
                                raise RuntimeError(line["error"])
                            if "message_type" not in line["message"]["metadata"]:
                                continue
                            try:
                                image_response = await cls.get_image_response(session, headers, line)
                                if image_response:
                                    yield image_response
                            except Exception as e:
                                yield e
                            if line["message"]["author"]["role"] != "assistant":
                                continue
                            if line["message"]["metadata"]["message_type"] in ("next", "continue", "variant"):
                                conversation_id = line["conversation_id"]
                                parent_id = line["message"]["id"]
                                if response_fields:
                                    response_fields = False
                                    yield ResponseFields(conversation_id, parent_id, end_turn)
                                if "parts" in line["message"]["content"]:
                                    new_message = line["message"]["content"]["parts"][0]
                                    if len(new_message) > last_message:
                                        yield new_message[last_message:]
                                    last_message = len(new_message)
                            if "finish_details" in line["message"]["metadata"]:
                                if line["message"]["metadata"]["finish_details"]["type"] == "stop":
                                    end_turn.end()
                                    break
                    except Exception as e:
                        yield e
                if not auto_continue:
                    break
                action = "continue"
                await asyncio.sleep(5)
            if history_disabled:
                async with session.patch(
                    f"{cls.url}/backend-api/conversation/{conversation_id}",
                    json={"is_visible": False},
                    headers=headers
                ) as response:
                    response.raise_for_status()

    @classmethod
    def browse_access_token(cls, proxy: str = None) -> tuple[str, dict]:
        driver = get_browser(proxy=proxy)
        try:
            driver.get(f"{cls.url}/")
            WebDriverWait(driver, 1200).until(
                EC.presence_of_element_located((By.ID, "prompt-textarea"))
            )
            javascript = """
access_token = (await (await fetch('/api/auth/session')).json())['accessToken'];
expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 24 * 7); // One week
document.cookie = 'access_token=' + access_token + ';expires=' + expires.toUTCString() + ';path=/';
return access_token;
"""
            return driver.execute_script(javascript), get_driver_cookies(driver)
        finally:
            driver.quit()

    @classmethod     
    async def get_arkose_token(cls, session: StreamSession) -> str:
        config = {
            "pkey": "3D86FBBA-9D22-402A-B512-3420086BA6CC",
            "surl": "https://tcr9i.chat.openai.com",
            "headers": {
                "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36'
            },
            "site": cls.url,
        }
        args_for_request = get_values_for_request(config)
        async with session.post(**args_for_request) as response:
            response.raise_for_status()
            decoded_json = await response.json()
            if "token" in decoded_json:
                return decoded_json["token"]
            raise RuntimeError(f"Response: {decoded_json}")
        
class EndTurn():
    def __init__(self):
        self.is_end = False

    def end(self):
        self.is_end = True

class ResponseFields():
    def __init__(
        self,
        conversation_id: str,
        message_id: str,
        end_turn: EndTurn
    ):
        self.conversation_id = conversation_id
        self.message_id = message_id
        self._end_turn = end_turn
        
class Response():
    def __init__(
        self,
        generator: AsyncResult,
        action: str,
        messages: Messages,
        options: dict
    ):
        self._generator = generator
        self.action: str = action
        self.is_end: bool = False
        self._message = None
        self._messages = messages
        self._options = options
        self._fields = None
        
    async def generator(self):
        if self._generator:
            self._generator = None
            chunks = []
            async for chunk in self._generator:
                if isinstance(chunk, ResponseFields):
                    self._fields = chunk
                else:
                    yield chunk
                    chunks.append(str(chunk))
            self._message = "".join(chunks)
            if not self._fields:
                raise RuntimeError("Missing response fields")
            self.is_end = self._fields._end_turn.is_end

    def __aiter__(self):
        return self.generator()
    
    @async_cached_property
    async def message(self) -> str:
        [_ async for _ in self.generator()]
        return self._message
    
    async def get_fields(self):
        [_ async for _ in self.generator()]
        return {
            "conversation_id": self._fields.conversation_id,
            "parent_id": self._fields.message_id,
        }
    
    async def next(self, prompt: str, **kwargs) -> Response:
        return await OpenaiChat.create(
            **self._options,
            prompt=prompt,
            messages=await self.messages,
            action="next",
            **await self.get_fields(),
            **kwargs
        )
    
    async def do_continue(self, **kwargs) -> Response:
        fields = await self.get_fields()
        if self.is_end:
            raise RuntimeError("Can't continue message. Message already finished.")
        return await OpenaiChat.create(
            **self._options,
            messages=await self.messages,
            action="continue",
            **fields,
            **kwargs
        )
    
    async def variant(self, **kwargs) -> Response:
        if self.action != "next":
            raise RuntimeError("Can't create variant from continue or variant request.")
        return await OpenaiChat.create(
            **self._options,
            messages=self._messages,
            action="variant",
            **await self.get_fields(),
            **kwargs
        )
    
    @async_cached_property
    async def messages(self):
        messages = self._messages
        messages.append({
            "role": "assistant", "content": await self.message
        })
        return messages