summaryrefslogtreecommitdiffstats
path: root/venv/lib/python3.9/site-packages/numpy/polynomial/chebyshev.py
blob: c663ffab06fd125aba558b7f49abc3152c95058c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
"""
====================================================
Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
====================================================

This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a `Chebyshev` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).

Classes
-------

.. autosummary::
   :toctree: generated/

   Chebyshev


Constants
---------

.. autosummary::
   :toctree: generated/

   chebdomain
   chebzero
   chebone
   chebx

Arithmetic
----------

.. autosummary::
   :toctree: generated/

   chebadd
   chebsub
   chebmulx
   chebmul
   chebdiv
   chebpow
   chebval
   chebval2d
   chebval3d
   chebgrid2d
   chebgrid3d

Calculus
--------

.. autosummary::
   :toctree: generated/

   chebder
   chebint

Misc Functions
--------------

.. autosummary::
   :toctree: generated/

   chebfromroots
   chebroots
   chebvander
   chebvander2d
   chebvander3d
   chebgauss
   chebweight
   chebcompanion
   chebfit
   chebpts1
   chebpts2
   chebtrim
   chebline
   cheb2poly
   poly2cheb
   chebinterpolate

See also
--------
`numpy.polynomial`

Notes
-----
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:

.. math::
    T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
    z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.

where

.. math:: x = \\frac{z + z^{-1}}{2}.

These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series.  In this module, this sort of Laurent series
is referred to as a "z-series."

References
----------
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
  Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
  (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)

"""
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index

from . import polyutils as pu
from ._polybase import ABCPolyBase

__all__ = [
    'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
    'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
    'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
    'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
    'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
    'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
    'chebgauss', 'chebweight', 'chebinterpolate']

chebtrim = pu.trimcoef

#
# A collection of functions for manipulating z-series. These are private
# functions and do minimal error checking.
#

def _cseries_to_zseries(c):
    """Convert Chebyshev series to z-series.

    Convert a Chebyshev series to the equivalent z-series. The result is
    never an empty array. The dtype of the return is the same as that of
    the input. No checks are run on the arguments as this routine is for
    internal use.

    Parameters
    ----------
    c : 1-D ndarray
        Chebyshev coefficients, ordered from low to high

    Returns
    -------
    zs : 1-D ndarray
        Odd length symmetric z-series, ordered from  low to high.

    """
    n = c.size
    zs = np.zeros(2*n-1, dtype=c.dtype)
    zs[n-1:] = c/2
    return zs + zs[::-1]


def _zseries_to_cseries(zs):
    """Convert z-series to a Chebyshev series.

    Convert a z series to the equivalent Chebyshev series. The result is
    never an empty array. The dtype of the return is the same as that of
    the input. No checks are run on the arguments as this routine is for
    internal use.

    Parameters
    ----------
    zs : 1-D ndarray
        Odd length symmetric z-series, ordered from  low to high.

    Returns
    -------
    c : 1-D ndarray
        Chebyshev coefficients, ordered from  low to high.

    """
    n = (zs.size + 1)//2
    c = zs[n-1:].copy()
    c[1:n] *= 2
    return c


def _zseries_mul(z1, z2):
    """Multiply two z-series.

    Multiply two z-series to produce a z-series.

    Parameters
    ----------
    z1, z2 : 1-D ndarray
        The arrays must be 1-D but this is not checked.

    Returns
    -------
    product : 1-D ndarray
        The product z-series.

    Notes
    -----
    This is simply convolution. If symmetric/anti-symmetric z-series are
    denoted by S/A then the following rules apply:

    S*S, A*A -> S
    S*A, A*S -> A

    """
    return np.convolve(z1, z2)


def _zseries_div(z1, z2):
    """Divide the first z-series by the second.

    Divide `z1` by `z2` and return the quotient and remainder as z-series.
    Warning: this implementation only applies when both z1 and z2 have the
    same symmetry, which is sufficient for present purposes.

    Parameters
    ----------
    z1, z2 : 1-D ndarray
        The arrays must be 1-D and have the same symmetry, but this is not
        checked.

    Returns
    -------

    (quotient, remainder) : 1-D ndarrays
        Quotient and remainder as z-series.

    Notes
    -----
    This is not the same as polynomial division on account of the desired form
    of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
    then the following rules apply:

    S/S -> S,S
    A/A -> S,A

    The restriction to types of the same symmetry could be fixed but seems like
    unneeded generality. There is no natural form for the remainder in the case
    where there is no symmetry.

    """
    z1 = z1.copy()
    z2 = z2.copy()
    lc1 = len(z1)
    lc2 = len(z2)
    if lc2 == 1:
        z1 /= z2
        return z1, z1[:1]*0
    elif lc1 < lc2:
        return z1[:1]*0, z1
    else:
        dlen = lc1 - lc2
        scl = z2[0]
        z2 /= scl
        quo = np.empty(dlen + 1, dtype=z1.dtype)
        i = 0
        j = dlen
        while i < j:
            r = z1[i]
            quo[i] = z1[i]
            quo[dlen - i] = r
            tmp = r*z2
            z1[i:i+lc2] -= tmp
            z1[j:j+lc2] -= tmp
            i += 1
            j -= 1
        r = z1[i]
        quo[i] = r
        tmp = r*z2
        z1[i:i+lc2] -= tmp
        quo /= scl
        rem = z1[i+1:i-1+lc2].copy()
        return quo, rem


def _zseries_der(zs):
    """Differentiate a z-series.

    The derivative is with respect to x, not z. This is achieved using the
    chain rule and the value of dx/dz given in the module notes.

    Parameters
    ----------
    zs : z-series
        The z-series to differentiate.

    Returns
    -------
    derivative : z-series
        The derivative

    Notes
    -----
    The zseries for x (ns) has been multiplied by two in order to avoid
    using floats that are incompatible with Decimal and likely other
    specialized scalar types. This scaling has been compensated by
    multiplying the value of zs by two also so that the two cancels in the
    division.

    """
    n = len(zs)//2
    ns = np.array([-1, 0, 1], dtype=zs.dtype)
    zs *= np.arange(-n, n+1)*2
    d, r = _zseries_div(zs, ns)
    return d


def _zseries_int(zs):
    """Integrate a z-series.

    The integral is with respect to x, not z. This is achieved by a change
    of variable using dx/dz given in the module notes.

    Parameters
    ----------
    zs : z-series
        The z-series to integrate

    Returns
    -------
    integral : z-series
        The indefinite integral

    Notes
    -----
    The zseries for x (ns) has been multiplied by two in order to avoid
    using floats that are incompatible with Decimal and likely other
    specialized scalar types. This scaling has been compensated by
    dividing the resulting zs by two.

    """
    n = 1 + len(zs)//2
    ns = np.array([-1, 0, 1], dtype=zs.dtype)
    zs = _zseries_mul(zs, ns)
    div = np.arange(-n, n+1)*2
    zs[:n] /= div[:n]
    zs[n+1:] /= div[n+1:]
    zs[n] = 0
    return zs

#
# Chebyshev series functions
#


def poly2cheb(pol):
    """
    Convert a polynomial to a Chebyshev series.

    Convert an array representing the coefficients of a polynomial (relative
    to the "standard" basis) ordered from lowest degree to highest, to an
    array of the coefficients of the equivalent Chebyshev series, ordered
    from lowest to highest degree.

    Parameters
    ----------
    pol : array_like
        1-D array containing the polynomial coefficients

    Returns
    -------
    c : ndarray
        1-D array containing the coefficients of the equivalent Chebyshev
        series.

    See Also
    --------
    cheb2poly

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> p = P.Polynomial(range(4))
    >>> p
    Polynomial([0., 1., 2., 3.], domain=[-1,  1], window=[-1,  1])
    >>> c = p.convert(kind=P.Chebyshev)
    >>> c
    Chebyshev([1.  , 3.25, 1.  , 0.75], domain=[-1.,  1.], window=[-1.,  1.])
    >>> P.chebyshev.poly2cheb(range(4))
    array([1.  , 3.25, 1.  , 0.75])

    """
    [pol] = pu.as_series([pol])
    deg = len(pol) - 1
    res = 0
    for i in range(deg, -1, -1):
        res = chebadd(chebmulx(res), pol[i])
    return res


def cheb2poly(c):
    """
    Convert a Chebyshev series to a polynomial.

    Convert an array representing the coefficients of a Chebyshev series,
    ordered from lowest degree to highest, to an array of the coefficients
    of the equivalent polynomial (relative to the "standard" basis) ordered
    from lowest to highest degree.

    Parameters
    ----------
    c : array_like
        1-D array containing the Chebyshev series coefficients, ordered
        from lowest order term to highest.

    Returns
    -------
    pol : ndarray
        1-D array containing the coefficients of the equivalent polynomial
        (relative to the "standard" basis) ordered from lowest order term
        to highest.

    See Also
    --------
    poly2cheb

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> c = P.Chebyshev(range(4))
    >>> c
    Chebyshev([0., 1., 2., 3.], domain=[-1,  1], window=[-1,  1])
    >>> p = c.convert(kind=P.Polynomial)
    >>> p
    Polynomial([-2., -8.,  4., 12.], domain=[-1.,  1.], window=[-1.,  1.])
    >>> P.chebyshev.cheb2poly(range(4))
    array([-2.,  -8.,   4.,  12.])

    """
    from .polynomial import polyadd, polysub, polymulx

    [c] = pu.as_series([c])
    n = len(c)
    if n < 3:
        return c
    else:
        c0 = c[-2]
        c1 = c[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1):
            tmp = c0
            c0 = polysub(c[i - 2], c1)
            c1 = polyadd(tmp, polymulx(c1)*2)
        return polyadd(c0, polymulx(c1))


#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Chebyshev default domain.
chebdomain = np.array([-1, 1])

# Chebyshev coefficients representing zero.
chebzero = np.array([0])

# Chebyshev coefficients representing one.
chebone = np.array([1])

# Chebyshev coefficients representing the identity x.
chebx = np.array([0, 1])


def chebline(off, scl):
    """
    Chebyshev series whose graph is a straight line.

    Parameters
    ----------
    off, scl : scalars
        The specified line is given by ``off + scl*x``.

    Returns
    -------
    y : ndarray
        This module's representation of the Chebyshev series for
        ``off + scl*x``.

    See Also
    --------
    numpy.polynomial.polynomial.polyline
    numpy.polynomial.legendre.legline
    numpy.polynomial.laguerre.lagline
    numpy.polynomial.hermite.hermline
    numpy.polynomial.hermite_e.hermeline

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebline(3,2)
    array([3, 2])
    >>> C.chebval(-3, C.chebline(3,2)) # should be -3
    -3.0

    """
    if scl != 0:
        return np.array([off, scl])
    else:
        return np.array([off])


def chebfromroots(roots):
    """
    Generate a Chebyshev series with given roots.

    The function returns the coefficients of the polynomial

    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

    in Chebyshev form, where the `r_n` are the roots specified in `roots`.
    If a zero has multiplicity n, then it must appear in `roots` n times.
    For instance, if 2 is a root of multiplicity three and 3 is a root of
    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
    roots can appear in any order.

    If the returned coefficients are `c`, then

    .. math:: p(x) = c_0 + c_1 * T_1(x) + ... +  c_n * T_n(x)

    The coefficient of the last term is not generally 1 for monic
    polynomials in Chebyshev form.

    Parameters
    ----------
    roots : array_like
        Sequence containing the roots.

    Returns
    -------
    out : ndarray
        1-D array of coefficients.  If all roots are real then `out` is a
        real array, if some of the roots are complex, then `out` is complex
        even if all the coefficients in the result are real (see Examples
        below).

    See Also
    --------
    numpy.polynomial.polynomial.polyfromroots
    numpy.polynomial.legendre.legfromroots
    numpy.polynomial.laguerre.lagfromroots
    numpy.polynomial.hermite.hermfromroots
    numpy.polynomial.hermite_e.hermefromroots

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
    array([ 0.  , -0.25,  0.  ,  0.25])
    >>> j = complex(0,1)
    >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
    array([1.5+0.j, 0. +0.j, 0.5+0.j])

    """
    return pu._fromroots(chebline, chebmul, roots)


def chebadd(c1, c2):
    """
    Add one Chebyshev series to another.

    Returns the sum of two Chebyshev series `c1` + `c2`.  The arguments
    are sequences of coefficients ordered from lowest order term to
    highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the Chebyshev series of their sum.

    See Also
    --------
    chebsub, chebmulx, chebmul, chebdiv, chebpow

    Notes
    -----
    Unlike multiplication, division, etc., the sum of two Chebyshev series
    is a Chebyshev series (without having to "reproject" the result onto
    the basis set) so addition, just like that of "standard" polynomials,
    is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebadd(c1,c2)
    array([4., 4., 4.])

    """
    return pu._add(c1, c2)


def chebsub(c1, c2):
    """
    Subtract one Chebyshev series from another.

    Returns the difference of two Chebyshev series `c1` - `c2`.  The
    sequences of coefficients are from lowest order term to highest, i.e.,
    [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Chebyshev series coefficients representing their difference.

    See Also
    --------
    chebadd, chebmulx, chebmul, chebdiv, chebpow

    Notes
    -----
    Unlike multiplication, division, etc., the difference of two Chebyshev
    series is a Chebyshev series (without having to "reproject" the result
    onto the basis set) so subtraction, just like that of "standard"
    polynomials, is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebsub(c1,c2)
    array([-2.,  0.,  2.])
    >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
    array([ 2.,  0., -2.])

    """
    return pu._sub(c1, c2)


def chebmulx(c):
    """Multiply a Chebyshev series by x.

    Multiply the polynomial `c` by x, where x is the independent
    variable.


    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the result of the multiplication.

    Notes
    -----

    .. versionadded:: 1.5.0

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> C.chebmulx([1,2,3])
    array([1. , 2.5, 1. , 1.5])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    # The zero series needs special treatment
    if len(c) == 1 and c[0] == 0:
        return c

    prd = np.empty(len(c) + 1, dtype=c.dtype)
    prd[0] = c[0]*0
    prd[1] = c[0]
    if len(c) > 1:
        tmp = c[1:]/2
        prd[2:] = tmp
        prd[0:-2] += tmp
    return prd


def chebmul(c1, c2):
    """
    Multiply one Chebyshev series by another.

    Returns the product of two Chebyshev series `c1` * `c2`.  The arguments
    are sequences of coefficients, from lowest order "term" to highest,
    e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Chebyshev series coefficients representing their product.

    See Also
    --------
    chebadd, chebsub, chebmulx, chebdiv, chebpow

    Notes
    -----
    In general, the (polynomial) product of two C-series results in terms
    that are not in the Chebyshev polynomial basis set.  Thus, to express
    the product as a C-series, it is typically necessary to "reproject"
    the product onto said basis set, which typically produces
    "unintuitive live" (but correct) results; see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
    array([  6.5,  12. ,  12. ,   4. ,   1.5])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    z1 = _cseries_to_zseries(c1)
    z2 = _cseries_to_zseries(c2)
    prd = _zseries_mul(z1, z2)
    ret = _zseries_to_cseries(prd)
    return pu.trimseq(ret)


def chebdiv(c1, c2):
    """
    Divide one Chebyshev series by another.

    Returns the quotient-with-remainder of two Chebyshev series
    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
    order "term" to highest, e.g., [1,2,3] represents the series
    ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    [quo, rem] : ndarrays
        Of Chebyshev series coefficients representing the quotient and
        remainder.

    See Also
    --------
    chebadd, chebsub, chebmulx, chebmul, chebpow

    Notes
    -----
    In general, the (polynomial) division of one C-series by another
    results in quotient and remainder terms that are not in the Chebyshev
    polynomial basis set.  Thus, to express these results as C-series, it
    is typically necessary to "reproject" the results onto said basis
    set, which typically produces "unintuitive" (but correct) results;
    see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
    (array([3.]), array([-8., -4.]))
    >>> c2 = (0,1,2,3)
    >>> C.chebdiv(c2,c1) # neither "intuitive"
    (array([0., 2.]), array([-2., -4.]))

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if c2[-1] == 0:
        raise ZeroDivisionError()

    # note: this is more efficient than `pu._div(chebmul, c1, c2)`
    lc1 = len(c1)
    lc2 = len(c2)
    if lc1 < lc2:
        return c1[:1]*0, c1
    elif lc2 == 1:
        return c1/c2[-1], c1[:1]*0
    else:
        z1 = _cseries_to_zseries(c1)
        z2 = _cseries_to_zseries(c2)
        quo, rem = _zseries_div(z1, z2)
        quo = pu.trimseq(_zseries_to_cseries(quo))
        rem = pu.trimseq(_zseries_to_cseries(rem))
        return quo, rem


def chebpow(c, pow, maxpower=16):
    """Raise a Chebyshev series to a power.

    Returns the Chebyshev series `c` raised to the power `pow`. The
    argument `c` is a sequence of coefficients ordered from low to high.
    i.e., [1,2,3] is the series  ``T_0 + 2*T_1 + 3*T_2.``

    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to
        high.
    pow : integer
        Power to which the series will be raised
    maxpower : integer, optional
        Maximum power allowed. This is mainly to limit growth of the series
        to unmanageable size. Default is 16

    Returns
    -------
    coef : ndarray
        Chebyshev series of power.

    See Also
    --------
    chebadd, chebsub, chebmulx, chebmul, chebdiv

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> C.chebpow([1, 2, 3, 4], 2)
    array([15.5, 22. , 16. , ..., 12.5, 12. ,  8. ])

    """
    # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
    # avoids converting between z and c series repeatedly

    # c is a trimmed copy
    [c] = pu.as_series([c])
    power = int(pow)
    if power != pow or power < 0:
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower:
        raise ValueError("Power is too large")
    elif power == 0:
        return np.array([1], dtype=c.dtype)
    elif power == 1:
        return c
    else:
        # This can be made more efficient by using powers of two
        # in the usual way.
        zs = _cseries_to_zseries(c)
        prd = zs
        for i in range(2, power + 1):
            prd = np.convolve(prd, zs)
        return _zseries_to_cseries(prd)


def chebder(c, m=1, scl=1, axis=0):
    """
    Differentiate a Chebyshev series.

    Returns the Chebyshev series coefficients `c` differentiated `m` times
    along `axis`.  At each iteration the result is multiplied by `scl` (the
    scaling factor is for use in a linear change of variable). The argument
    `c` is an array of coefficients from low to high degree along each
    axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
    while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
    2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
    ``y``.

    Parameters
    ----------
    c : array_like
        Array of Chebyshev series coefficients. If c is multidimensional
        the different axis correspond to different variables with the
        degree in each axis given by the corresponding index.
    m : int, optional
        Number of derivatives taken, must be non-negative. (Default: 1)
    scl : scalar, optional
        Each differentiation is multiplied by `scl`.  The end result is
        multiplication by ``scl**m``.  This is for use in a linear change of
        variable. (Default: 1)
    axis : int, optional
        Axis over which the derivative is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    der : ndarray
        Chebyshev series of the derivative.

    See Also
    --------
    chebint

    Notes
    -----
    In general, the result of differentiating a C-series needs to be
    "reprojected" onto the C-series basis set. Thus, typically, the
    result of this function is "unintuitive," albeit correct; see Examples
    section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c = (1,2,3,4)
    >>> C.chebder(c)
    array([14., 12., 24.])
    >>> C.chebder(c,3)
    array([96.])
    >>> C.chebder(c,scl=-1)
    array([-14., -12., -24.])
    >>> C.chebder(c,2,-1)
    array([12.,  96.])

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    cnt = pu._deprecate_as_int(m, "the order of derivation")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of derivation must be non-negative")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt):
            n = n - 1
            c *= scl
            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
            for j in range(n, 2, -1):
                der[j - 1] = (2*j)*c[j]
                c[j - 2] += (j*c[j])/(j - 2)
            if n > 1:
                der[1] = 4*c[2]
            der[0] = c[1]
            c = der
    c = np.moveaxis(c, 0, iaxis)
    return c


def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
    """
    Integrate a Chebyshev series.

    Returns the Chebyshev series coefficients `c` integrated `m` times from
    `lbnd` along `axis`. At each iteration the resulting series is
    **multiplied** by `scl` and an integration constant, `k`, is added.
    The scaling factor is for use in a linear change of variable.  ("Buyer
    beware": note that, depending on what one is doing, one may want `scl`
    to be the reciprocal of what one might expect; for more information,
    see the Notes section below.)  The argument `c` is an array of
    coefficients from low to high degree along each axis, e.g., [1,2,3]
    represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
    represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
    2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.

    Parameters
    ----------
    c : array_like
        Array of Chebyshev series coefficients. If c is multidimensional
        the different axis correspond to different variables with the
        degree in each axis given by the corresponding index.
    m : int, optional
        Order of integration, must be positive. (Default: 1)
    k : {[], list, scalar}, optional
        Integration constant(s).  The value of the first integral at zero
        is the first value in the list, the value of the second integral
        at zero is the second value, etc.  If ``k == []`` (the default),
        all constants are set to zero.  If ``m == 1``, a single scalar can
        be given instead of a list.
    lbnd : scalar, optional
        The lower bound of the integral. (Default: 0)
    scl : scalar, optional
        Following each integration the result is *multiplied* by `scl`
        before the integration constant is added. (Default: 1)
    axis : int, optional
        Axis over which the integral is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    S : ndarray
        C-series coefficients of the integral.

    Raises
    ------
    ValueError
        If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
        ``np.ndim(scl) != 0``.

    See Also
    --------
    chebder

    Notes
    -----
    Note that the result of each integration is *multiplied* by `scl`.
    Why is this important to note?  Say one is making a linear change of
    variable :math:`u = ax + b` in an integral relative to `x`.  Then
    :math:`dx = du/a`, so one will need to set `scl` equal to
    :math:`1/a`- perhaps not what one would have first thought.

    Also note that, in general, the result of integrating a C-series needs
    to be "reprojected" onto the C-series basis set.  Thus, typically,
    the result of this function is "unintuitive," albeit correct; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c = (1,2,3)
    >>> C.chebint(c)
    array([ 0.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,3)
    array([ 0.03125   , -0.1875    ,  0.04166667, -0.05208333,  0.01041667, # may vary
        0.00625   ])
    >>> C.chebint(c, k=3)
    array([ 3.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,lbnd=-2)
    array([ 8.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,scl=-2)
    array([-1.,  1., -1., -1.])

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if not np.iterable(k):
        k = [k]
    cnt = pu._deprecate_as_int(m, "the order of integration")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of integration must be non-negative")
    if len(k) > cnt:
        raise ValueError("Too many integration constants")
    if np.ndim(lbnd) != 0:
        raise ValueError("lbnd must be a scalar.")
    if np.ndim(scl) != 0:
        raise ValueError("scl must be a scalar.")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    k = list(k) + [0]*(cnt - len(k))
    for i in range(cnt):
        n = len(c)
        c *= scl
        if n == 1 and np.all(c[0] == 0):
            c[0] += k[i]
        else:
            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
            tmp[0] = c[0]*0
            tmp[1] = c[0]
            if n > 1:
                tmp[2] = c[1]/4
            for j in range(2, n):
                tmp[j + 1] = c[j]/(2*(j + 1))
                tmp[j - 1] -= c[j]/(2*(j - 1))
            tmp[0] += k[i] - chebval(lbnd, tmp)
            c = tmp
    c = np.moveaxis(c, 0, iaxis)
    return c


def chebval(x, c, tensor=True):
    """
    Evaluate a Chebyshev series at points x.

    If `c` is of length `n + 1`, this function returns the value:

    .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)

    The parameter `x` is converted to an array only if it is a tuple or a
    list, otherwise it is treated as a scalar. In either case, either `x`
    or its elements must support multiplication and addition both with
    themselves and with the elements of `c`.

    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
    `c` is multidimensional, then the shape of the result depends on the
    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
    scalars have shape (,).

    Trailing zeros in the coefficients will be used in the evaluation, so
    they should be avoided if efficiency is a concern.

    Parameters
    ----------
    x : array_like, compatible object
        If `x` is a list or tuple, it is converted to an ndarray, otherwise
        it is left unchanged and treated as a scalar. In either case, `x`
        or its elements must support addition and multiplication with
        themselves and with the elements of `c`.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree n are contained in c[n]. If `c` is multidimensional the
        remaining indices enumerate multiple polynomials. In the two
        dimensional case the coefficients may be thought of as stored in
        the columns of `c`.
    tensor : boolean, optional
        If True, the shape of the coefficient array is extended with ones
        on the right, one for each dimension of `x`. Scalars have dimension 0
        for this action. The result is that every column of coefficients in
        `c` is evaluated for every element of `x`. If False, `x` is broadcast
        over the columns of `c` for the evaluation.  This keyword is useful
        when `c` is multidimensional. The default value is True.

        .. versionadded:: 1.7.0

    Returns
    -------
    values : ndarray, algebra_like
        The shape of the return value is described above.

    See Also
    --------
    chebval2d, chebgrid2d, chebval3d, chebgrid3d

    Notes
    -----
    The evaluation uses Clenshaw recursion, aka synthetic division.

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray) and tensor:
        c = c.reshape(c.shape + (1,)*x.ndim)

    if len(c) == 1:
        c0 = c[0]
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]
        c1 = c[1]
    else:
        x2 = 2*x
        c0 = c[-2]
        c1 = c[-1]
        for i in range(3, len(c) + 1):
            tmp = c0
            c0 = c[-i] - c1
            c1 = tmp + c1*x2
    return c0 + c1*x


def chebval2d(x, y, c):
    """
    Evaluate a 2-D Chebyshev series at points (x, y).

    This function returns the values:

    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars and they
    must have the same shape after conversion. In either case, either `x`
    and `y` or their elements must support multiplication and addition both
    with themselves and with the elements of `c`.

    If `c` is a 1-D array a one is implicitly appended to its shape to make
    it 2-D. The shape of the result will be c.shape[2:] + x.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points `(x, y)`,
        where `x` and `y` must have the same shape. If `x` or `y` is a list
        or tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and if it isn't an ndarray it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term
        of multi-degree i,j is contained in ``c[i,j]``. If `c` has
        dimension greater than 2 the remaining indices enumerate multiple
        sets of coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional Chebyshev series at points formed
        from pairs of corresponding values from `x` and `y`.

    See Also
    --------
    chebval, chebgrid2d, chebval3d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(chebval, c, x, y)


def chebgrid2d(x, y, c):
    """
    Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

    This function returns the values:

    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),

    where the points `(a, b)` consist of all pairs formed by taking
    `a` from `x` and `b` from `y`. The resulting points form a grid with
    `x` in the first dimension and `y` in the second.

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars. In either
    case, either `x` and `y` or their elements must support multiplication
    and addition both with themselves and with the elements of `c`.

    If `c` has fewer than two dimensions, ones are implicitly appended to
    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
    x.shape + y.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points in the
        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
        tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and, if it isn't an ndarray, it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional Chebyshev series at points in the
        Cartesian product of `x` and `y`.

    See Also
    --------
    chebval, chebval2d, chebval3d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(chebval, c, x, y)


def chebval3d(x, y, z, c):
    """
    Evaluate a 3-D Chebyshev series at points (x, y, z).

    This function returns the values:

    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)

    The parameters `x`, `y`, and `z` are converted to arrays only if
    they are tuples or a lists, otherwise they are treated as a scalars and
    they must have the same shape after conversion. In either case, either
    `x`, `y`, and `z` or their elements must support multiplication and
    addition both with themselves and with the elements of `c`.

    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
    shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible object
        The three dimensional series is evaluated at the points
        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
        any of `x`, `y`, or `z` is a list or tuple, it is first converted
        to an ndarray, otherwise it is left unchanged and if it isn't an
        ndarray it is  treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
        greater than 3 the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the multidimensional polynomial on points formed with
        triples of corresponding values from `x`, `y`, and `z`.

    See Also
    --------
    chebval, chebval2d, chebgrid2d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(chebval, c, x, y, z)


def chebgrid3d(x, y, z, c):
    """
    Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

    This function returns the values:

    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)

    where the points `(a, b, c)` consist of all triples formed by taking
    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
    a grid with `x` in the first dimension, `y` in the second, and `z` in
    the third.

    The parameters `x`, `y`, and `z` are converted to arrays only if they
    are tuples or a lists, otherwise they are treated as a scalars. In
    either case, either `x`, `y`, and `z` or their elements must support
    multiplication and addition both with themselves and with the elements
    of `c`.

    If `c` has fewer than three dimensions, ones are implicitly appended to
    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape + y.shape + z.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible objects
        The three dimensional series is evaluated at the points in the
        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
        list or tuple, it is first converted to an ndarray, otherwise it is
        left unchanged and, if it isn't an ndarray, it is treated as a
        scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    chebval, chebval2d, chebgrid2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(chebval, c, x, y, z)


def chebvander(x, deg):
    """Pseudo-Vandermonde matrix of given degree.

    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
    `x`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., i] = T_i(x),

    where `0 <= i <= deg`. The leading indices of `V` index the elements of
    `x` and the last index is the degree of the Chebyshev polynomial.

    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
    matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
    ``chebval(x, c)`` are the same up to roundoff.  This equivalence is
    useful both for least squares fitting and for the evaluation of a large
    number of Chebyshev series of the same degree and sample points.

    Parameters
    ----------
    x : array_like
        Array of points. The dtype is converted to float64 or complex128
        depending on whether any of the elements are complex. If `x` is
        scalar it is converted to a 1-D array.
    deg : int
        Degree of the resulting matrix.

    Returns
    -------
    vander : ndarray
        The pseudo Vandermonde matrix. The shape of the returned matrix is
        ``x.shape + (deg + 1,)``, where The last index is the degree of the
        corresponding Chebyshev polynomial.  The dtype will be the same as
        the converted `x`.

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=False, ndmin=1) + 0.0
    dims = (ideg + 1,) + x.shape
    dtyp = x.dtype
    v = np.empty(dims, dtype=dtyp)
    # Use forward recursion to generate the entries.
    v[0] = x*0 + 1
    if ideg > 0:
        x2 = 2*x
        v[1] = x
        for i in range(2, ideg + 1):
            v[i] = v[i-1]*x2 - v[i-2]
    return np.moveaxis(v, 0, -1)


def chebvander2d(x, y, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y)`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),

    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
    `V` index the points `(x, y)` and the last index encodes the degrees of
    the Chebyshev polynomials.

    If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
    correspond to the elements of a 2-D coefficient array `c` of shape
    (xdeg + 1, ydeg + 1) in the order

    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...

    and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
    up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 2-D Chebyshev
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y : array_like
        Arrays of point coordinates, all of the same shape. The dtypes
        will be converted to either float64 or complex128 depending on
        whether any of the elements are complex. Scalars are converted to
        1-D arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg].

    Returns
    -------
    vander2d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg[1]+1)`.  The dtype will be the same
        as the converted `x` and `y`.

    See Also
    --------
    chebvander, chebvander3d, chebval2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)


def chebvander3d(x, y, z, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
    then The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),

    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
    indices of `V` index the points `(x, y, z)` and the last index encodes
    the degrees of the Chebyshev polynomials.

    If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
    of `V` correspond to the elements of a 3-D coefficient array `c` of
    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...

    and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
    same up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 3-D Chebyshev
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y, z : array_like
        Arrays of point coordinates, all of the same shape. The dtypes will
        be converted to either float64 or complex128 depending on whether
        any of the elements are complex. Scalars are converted to 1-D
        arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg, z_deg].

    Returns
    -------
    vander3d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`.  The dtype will
        be the same as the converted `x`, `y`, and `z`.

    See Also
    --------
    chebvander, chebvander3d, chebval2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)


def chebfit(x, y, deg, rcond=None, full=False, w=None):
    """
    Least squares fit of Chebyshev series to data.

    Return the coefficients of a Chebyshev series of degree `deg` that is the
    least squares fit to the data values `y` given at points `x`. If `y` is
    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
    fits are done, one for each column of `y`, and the resulting
    coefficients are stored in the corresponding columns of a 2-D return.
    The fitted polynomial(s) are in the form

    .. math::  p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),

    where `n` is `deg`.

    Parameters
    ----------
    x : array_like, shape (M,)
        x-coordinates of the M sample points ``(x[i], y[i])``.
    y : array_like, shape (M,) or (M, K)
        y-coordinates of the sample points. Several data sets of sample
        points sharing the same x-coordinates can be fitted at once by
        passing in a 2D-array that contains one dataset per column.
    deg : int or 1-D array_like
        Degree(s) of the fitting polynomials. If `deg` is a single integer,
        all terms up to and including the `deg`'th term are included in the
        fit. For NumPy versions >= 1.11.0 a list of integers specifying the
        degrees of the terms to include may be used instead.
    rcond : float, optional
        Relative condition number of the fit. Singular values smaller than
        this relative to the largest singular value will be ignored. The
        default value is len(x)*eps, where eps is the relative precision of
        the float type, about 2e-16 in most cases.
    full : bool, optional
        Switch determining nature of return value. When it is False (the
        default) just the coefficients are returned, when True diagnostic
        information from the singular value decomposition is also returned.
    w : array_like, shape (`M`,), optional
        Weights. If not None, the weight ``w[i]`` applies to the unsquared
        residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
        chosen so that the errors of the products ``w[i]*y[i]`` all have the
        same variance.  When using inverse-variance weighting, use
        ``w[i] = 1/sigma(y[i])``.  The default value is None.

        .. versionadded:: 1.5.0

    Returns
    -------
    coef : ndarray, shape (M,) or (M, K)
        Chebyshev coefficients ordered from low to high. If `y` was 2-D,
        the coefficients for the data in column k  of `y` are in column
        `k`.

    [residuals, rank, singular_values, rcond] : list
        These values are only returned if ``full == True``

        - residuals -- sum of squared residuals of the least squares fit
        - rank -- the numerical rank of the scaled Vandermonde matrix
        - singular_values -- singular values of the scaled Vandermonde matrix
        - rcond -- value of `rcond`.

        For more details, see `numpy.linalg.lstsq`.

    Warns
    -----
    RankWarning
        The rank of the coefficient matrix in the least-squares fit is
        deficient. The warning is only raised if ``full == False``.  The
        warnings can be turned off by

        >>> import warnings
        >>> warnings.simplefilter('ignore', np.RankWarning)

    See Also
    --------
    numpy.polynomial.polynomial.polyfit
    numpy.polynomial.legendre.legfit
    numpy.polynomial.laguerre.lagfit
    numpy.polynomial.hermite.hermfit
    numpy.polynomial.hermite_e.hermefit
    chebval : Evaluates a Chebyshev series.
    chebvander : Vandermonde matrix of Chebyshev series.
    chebweight : Chebyshev weight function.
    numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
    scipy.interpolate.UnivariateSpline : Computes spline fits.

    Notes
    -----
    The solution is the coefficients of the Chebyshev series `p` that
    minimizes the sum of the weighted squared errors

    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,

    where :math:`w_j` are the weights. This problem is solved by setting up
    as the (typically) overdetermined matrix equation

    .. math:: V(x) * c = w * y,

    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
    coefficients to be solved for, `w` are the weights, and `y` are the
    observed values.  This equation is then solved using the singular value
    decomposition of `V`.

    If some of the singular values of `V` are so small that they are
    neglected, then a `RankWarning` will be issued. This means that the
    coefficient values may be poorly determined. Using a lower order fit
    will usually get rid of the warning.  The `rcond` parameter can also be
    set to a value smaller than its default, but the resulting fit may be
    spurious and have large contributions from roundoff error.

    Fits using Chebyshev series are usually better conditioned than fits
    using power series, but much can depend on the distribution of the
    sample points and the smoothness of the data. If the quality of the fit
    is inadequate splines may be a good alternative.

    References
    ----------
    .. [1] Wikipedia, "Curve fitting",
           https://en.wikipedia.org/wiki/Curve_fitting

    Examples
    --------

    """
    return pu._fit(chebvander, x, y, deg, rcond, full, w)


def chebcompanion(c):
    """Return the scaled companion matrix of c.

    The basis polynomials are scaled so that the companion matrix is
    symmetric when `c` is a Chebyshev basis polynomial. This provides
    better eigenvalue estimates than the unscaled case and for basis
    polynomials the eigenvalues are guaranteed to be real if
    `numpy.linalg.eigvalsh` is used to obtain them.

    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to high
        degree.

    Returns
    -------
    mat : ndarray
        Scaled companion matrix of dimensions (deg, deg).

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        raise ValueError('Series must have maximum degree of at least 1.')
    if len(c) == 2:
        return np.array([[-c[0]/c[1]]])

    n = len(c) - 1
    mat = np.zeros((n, n), dtype=c.dtype)
    scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
    top = mat.reshape(-1)[1::n+1]
    bot = mat.reshape(-1)[n::n+1]
    top[0] = np.sqrt(.5)
    top[1:] = 1/2
    bot[...] = top
    mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
    return mat


def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    numpy.polynomial.polynomial.polyroots
    numpy.polynomial.legendre.legroots
    numpy.polynomial.laguerre.lagroots
    numpy.polynomial.hermite.hermroots
    numpy.polynomial.hermite_e.hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00]) # may vary

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    # rotated companion matrix reduces error
    m = chebcompanion(c)[::-1,::-1]
    r = la.eigvals(m)
    r.sort()
    return r


def chebinterpolate(func, deg, args=()):
    """Interpolate a function at the Chebyshev points of the first kind.

    Returns the Chebyshev series that interpolates `func` at the Chebyshev
    points of the first kind in the interval [-1, 1]. The interpolating
    series tends to a minmax approximation to `func` with increasing `deg`
    if the function is continuous in the interval.

    .. versionadded:: 1.14.0

    Parameters
    ----------
    func : function
        The function to be approximated. It must be a function of a single
        variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
        extra arguments passed in the `args` parameter.
    deg : int
        Degree of the interpolating polynomial
    args : tuple, optional
        Extra arguments to be used in the function call. Default is no extra
        arguments.

    Returns
    -------
    coef : ndarray, shape (deg + 1,)
        Chebyshev coefficients of the interpolating series ordered from low to
        high.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
    array([  5.00000000e-01,   8.11675684e-01,  -9.86864911e-17,
            -5.42457905e-02,  -2.71387850e-16,   4.51658839e-03,
             2.46716228e-17,  -3.79694221e-04,  -3.26899002e-16])

    Notes
    -----

    The Chebyshev polynomials used in the interpolation are orthogonal when
    sampled at the Chebyshev points of the first kind. If it is desired to
    constrain some of the coefficients they can simply be set to the desired
    value after the interpolation, no new interpolation or fit is needed. This
    is especially useful if it is known apriori that some of coefficients are
    zero. For instance, if the function is even then the coefficients of the
    terms of odd degree in the result can be set to zero.

    """
    deg = np.asarray(deg)

    # check arguments.
    if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
        raise TypeError("deg must be an int")
    if deg < 0:
        raise ValueError("expected deg >= 0")

    order = deg + 1
    xcheb = chebpts1(order)
    yfunc = func(xcheb, *args)
    m = chebvander(xcheb, deg)
    c = np.dot(m.T, yfunc)
    c[0] /= order
    c[1:] /= 0.5*order

    return c


def chebgauss(deg):
    """
    Gauss-Chebyshev quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    These sample points and weights will correctly integrate polynomials of
    degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
    the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.

    Parameters
    ----------
    deg : int
        Number of sample points and weights. It must be >= 1.

    Returns
    -------
    x : ndarray
        1-D ndarray containing the sample points.
    y : ndarray
        1-D ndarray containing the weights.

    Notes
    -----

    .. versionadded:: 1.7.0

    The results have only been tested up to degree 100, higher degrees may
    be problematic. For Gauss-Chebyshev there are closed form solutions for
    the sample points and weights. If n = `deg`, then

    .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))

    .. math:: w_i = \\pi / n

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg <= 0:
        raise ValueError("deg must be a positive integer")

    x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
    w = np.ones(ideg)*(np.pi/ideg)

    return x, w


def chebweight(x):
    """
    The weight function of the Chebyshev polynomials.

    The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
    integration is :math:`[-1, 1]`. The Chebyshev polynomials are
    orthogonal, but not normalized, with respect to this weight function.

    Parameters
    ----------
    x : array_like
       Values at which the weight function will be computed.

    Returns
    -------
    w : ndarray
       The weight function at `x`.

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
    return w


def chebpts1(npts):
    """
    Chebyshev points of the first kind.

    The Chebyshev points of the first kind are the points ``cos(x)``,
    where ``x = [pi*(k + .5)/npts for k in range(npts)]``.

    Parameters
    ----------
    npts : int
        Number of sample points desired.

    Returns
    -------
    pts : ndarray
        The Chebyshev points of the first kind.

    See Also
    --------
    chebpts2

    Notes
    -----

    .. versionadded:: 1.5.0

    """
    _npts = int(npts)
    if _npts != npts:
        raise ValueError("npts must be integer")
    if _npts < 1:
        raise ValueError("npts must be >= 1")

    x = 0.5 * np.pi / _npts * np.arange(-_npts+1, _npts+1, 2)
    return np.sin(x)


def chebpts2(npts):
    """
    Chebyshev points of the second kind.

    The Chebyshev points of the second kind are the points ``cos(x)``,
    where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending
    order.

    Parameters
    ----------
    npts : int
        Number of sample points desired.

    Returns
    -------
    pts : ndarray
        The Chebyshev points of the second kind.

    Notes
    -----

    .. versionadded:: 1.5.0

    """
    _npts = int(npts)
    if _npts != npts:
        raise ValueError("npts must be integer")
    if _npts < 2:
        raise ValueError("npts must be >= 2")

    x = np.linspace(-np.pi, 0, _npts)
    return np.cos(x)


#
# Chebyshev series class
#

class Chebyshev(ABCPolyBase):
    """A Chebyshev series class.

    The Chebyshev class provides the standard Python numerical methods
    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
    methods listed below.

    Parameters
    ----------
    coef : array_like
        Chebyshev coefficients in order of increasing degree, i.e.,
        ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
    domain : (2,) array_like, optional
        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
        to the interval ``[window[0], window[1]]`` by shifting and scaling.
        The default value is [-1, 1].
    window : (2,) array_like, optional
        Window, see `domain` for its use. The default value is [-1, 1].

        .. versionadded:: 1.6.0

    """
    # Virtual Functions
    _add = staticmethod(chebadd)
    _sub = staticmethod(chebsub)
    _mul = staticmethod(chebmul)
    _div = staticmethod(chebdiv)
    _pow = staticmethod(chebpow)
    _val = staticmethod(chebval)
    _int = staticmethod(chebint)
    _der = staticmethod(chebder)
    _fit = staticmethod(chebfit)
    _line = staticmethod(chebline)
    _roots = staticmethod(chebroots)
    _fromroots = staticmethod(chebfromroots)

    @classmethod
    def interpolate(cls, func, deg, domain=None, args=()):
        """Interpolate a function at the Chebyshev points of the first kind.

        Returns the series that interpolates `func` at the Chebyshev points of
        the first kind scaled and shifted to the `domain`. The resulting series
        tends to a minmax approximation of `func` when the function is
        continuous in the domain.

        .. versionadded:: 1.14.0

        Parameters
        ----------
        func : function
            The function to be interpolated. It must be a function of a single
            variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
            extra arguments passed in the `args` parameter.
        deg : int
            Degree of the interpolating polynomial.
        domain : {None, [beg, end]}, optional
            Domain over which `func` is interpolated. The default is None, in
            which case the domain is [-1, 1].
        args : tuple, optional
            Extra arguments to be used in the function call. Default is no
            extra arguments.

        Returns
        -------
        polynomial : Chebyshev instance
            Interpolating Chebyshev instance.

        Notes
        -----
        See `numpy.polynomial.chebfromfunction` for more details.

        """
        if domain is None:
            domain = cls.domain
        xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
        coef = chebinterpolate(xfunc, deg)
        return cls(coef, domain=domain)

    # Virtual properties
    domain = np.array(chebdomain)
    window = np.array(chebdomain)
    basis_name = 'T'