1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# cython: language_level = 3
"""Dataset is currently unstable. APIs subject to change without notice."""
from cython.operator cimport dereference as deref
import codecs
import collections
import os
import warnings
from libcpp cimport bool
import pyarrow as pa
from pyarrow.lib cimport *
from pyarrow.lib import ArrowTypeError, frombytes, tobytes, _pc
from pyarrow.includes.libarrow_dataset cimport *
from pyarrow._compute cimport Expression, _bind
from pyarrow._fs cimport FileSystem, FileInfo, FileSelector
from pyarrow._csv cimport (
ConvertOptions, ParseOptions, ReadOptions, WriteOptions)
from pyarrow.util import _is_iterable, _is_path_like, _stringify_path
def _forbid_instantiation(klass, subclasses_instead=True):
msg = '{} is an abstract class thus cannot be initialized.'.format(
klass.__name__
)
if subclasses_instead:
subclasses = [cls.__name__ for cls in klass.__subclasses__]
msg += ' Use one of the subclasses instead: {}'.format(
', '.join(subclasses)
)
raise TypeError(msg)
_orc_fileformat = None
_orc_imported = False
def _get_orc_fileformat():
"""
Import OrcFileFormat on first usage (to avoid circular import issue
when `pyarrow._dataset_orc` would be imported first)
"""
global _orc_fileformat
global _orc_imported
if not _orc_imported:
try:
from pyarrow._dataset_orc import OrcFileFormat
_orc_fileformat = OrcFileFormat
except ImportError as e:
_orc_fileformat = None
finally:
_orc_imported = True
return _orc_fileformat
_dataset_pq = False
def _get_parquet_classes():
"""
Import Parquet class files on first usage (to avoid circular import issue
when `pyarrow._dataset_parquet` would be imported first)
"""
global _dataset_pq
if _dataset_pq is False:
try:
import pyarrow._dataset_parquet as _dataset_pq
except ImportError:
_dataset_pq = None
def _get_parquet_symbol(name):
"""
Get a symbol from pyarrow.parquet if the latter is importable, otherwise
return None.
"""
_get_parquet_classes()
return _dataset_pq and getattr(_dataset_pq, name)
cdef CFileSource _make_file_source(object file, FileSystem filesystem=None):
cdef:
CFileSource c_source
shared_ptr[CFileSystem] c_filesystem
c_string c_path
shared_ptr[CRandomAccessFile] c_file
shared_ptr[CBuffer] c_buffer
if isinstance(file, Buffer):
c_buffer = pyarrow_unwrap_buffer(file)
c_source = CFileSource(move(c_buffer))
elif _is_path_like(file):
if filesystem is None:
raise ValueError("cannot construct a FileSource from "
"a path without a FileSystem")
c_filesystem = filesystem.unwrap()
c_path = tobytes(_stringify_path(file))
c_source = CFileSource(move(c_path), move(c_filesystem))
elif hasattr(file, 'read'):
# Optimistically hope this is file-like
c_file = get_native_file(file, False).get_random_access_file()
c_source = CFileSource(move(c_file))
else:
raise TypeError("cannot construct a FileSource "
"from " + str(file))
return c_source
cdef CSegmentEncoding _get_segment_encoding(str segment_encoding):
if segment_encoding == "none":
return CSegmentEncodingNone
elif segment_encoding == "uri":
return CSegmentEncodingUri
raise ValueError(f"Unknown segment encoding: {segment_encoding}")
cdef Expression _true = Expression._scalar(True)
cdef class Dataset(_Weakrefable):
"""
Collection of data fragments and potentially child datasets.
Arrow Datasets allow you to query against data that has been split across
multiple files. This sharding of data may indicate partitioning, which
can accelerate queries that only touch some partitions (files).
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CDataset]& sp):
self.wrapped = sp
self.dataset = sp.get()
self._scan_options = dict()
@staticmethod
cdef wrap(const shared_ptr[CDataset]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'union': UnionDataset,
'filesystem': FileSystemDataset,
'in-memory': InMemoryDataset,
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef Dataset self = class_.__new__(class_)
self.init(sp)
return self
cdef shared_ptr[CDataset] unwrap(self) nogil:
return self.wrapped
@property
def partition_expression(self):
"""
An Expression which evaluates to true for all data viewed by this
Dataset.
"""
return Expression.wrap(self.dataset.partition_expression())
def replace_schema(self, Schema schema not None):
"""
Return a copy of this Dataset with a different schema.
The copy will view the same Fragments. If the new schema is not
compatible with the original dataset's schema then an error will
be raised.
Parameters
----------
schema : Schema
The new dataset schema.
"""
cdef shared_ptr[CDataset] copy = GetResultValue(
self.dataset.ReplaceSchema(pyarrow_unwrap_schema(schema))
)
d = Dataset.wrap(move(copy))
if self._scan_options:
# Preserve scan options if set.
d._scan_options = self._scan_options.copy()
return d
def get_fragments(self, Expression filter=None):
"""Returns an iterator over the fragments in this dataset.
Parameters
----------
filter : Expression, default None
Return fragments matching the optional filter, either using the
partition_expression or internal information like Parquet's
statistics.
Returns
-------
fragments : iterator of Fragment
"""
if self._scan_options.get("filter") is not None:
# Accessing fragments of a filtered dataset is not supported.
# It would be unclear if you wanted to filter the fragments
# or the rows in those fragments.
raise ValueError(
"Retrieving fragments of a filtered or projected "
"dataset is not allowed. Remove the filtering."
)
return self._get_fragments(filter)
def _get_fragments(self, Expression filter):
cdef:
CExpression c_filter
CFragmentIterator c_iterator
if filter is None:
c_fragments = move(GetResultValue(self.dataset.GetFragments()))
else:
c_filter = _bind(filter, self.schema)
c_fragments = move(GetResultValue(
self.dataset.GetFragments(c_filter)))
for maybe_fragment in c_fragments:
yield Fragment.wrap(GetResultValue(move(maybe_fragment)))
def _scanner_options(self, options):
"""Returns the default options to create a new Scanner.
This is automatically invoked by :meth:`Dataset.scanner`
and there is no need to use it.
"""
new_options = options.copy()
# at the moment only support filter
requested_filter = options.get("filter")
current_filter = self._scan_options.get("filter")
if requested_filter is not None and current_filter is not None:
new_options["filter"] = current_filter & requested_filter
elif current_filter is not None:
new_options["filter"] = current_filter
return new_options
def scanner(self, **kwargs):
"""
Build a scan operation against the dataset.
Data is not loaded immediately. Instead, this produces a Scanner,
which exposes further operations (e.g. loading all data as a
table, counting rows).
See the :meth:`Scanner.from_dataset` method for further information.
Parameters
----------
**kwargs : dict, optional
Arguments for `Scanner.from_dataset`.
Returns
-------
scanner : Scanner
Examples
--------
>>> import pyarrow as pa
>>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021],
... 'n_legs': [2, 2, 4, 4, 5, 100],
... 'animal': ["Flamingo", "Parrot", "Dog", "Horse",
... "Brittle stars", "Centipede"]})
>>>
>>> import pyarrow.parquet as pq
>>> pq.write_table(table, "dataset_scanner.parquet")
>>> import pyarrow.dataset as ds
>>> dataset = ds.dataset("dataset_scanner.parquet")
Selecting a subset of the columns:
>>> dataset.scanner(columns=["year", "n_legs"]).to_table()
pyarrow.Table
year: int64
n_legs: int64
----
year: [[2020,2022,2021,2022,2019,2021]]
n_legs: [[2,2,4,4,5,100]]
Projecting selected columns using an expression:
>>> dataset.scanner(columns={
... "n_legs_uint": ds.field("n_legs").cast("uint8"),
... }).to_table()
pyarrow.Table
n_legs_uint: uint8
----
n_legs_uint: [[2,2,4,4,5,100]]
Filtering rows while scanning:
>>> dataset.scanner(filter=ds.field("year") > 2020).to_table()
pyarrow.Table
year: int64
n_legs: int64
animal: string
----
year: [[2022,2021,2022,2021]]
n_legs: [[2,4,4,100]]
animal: [["Parrot","Dog","Horse","Centipede"]]
"""
return Scanner.from_dataset(self, **kwargs)
def to_batches(self, **kwargs):
"""
Read the dataset as materialized record batches.
Parameters
----------
**kwargs : dict, optional
Arguments for `Scanner.from_dataset`.
Returns
-------
record_batches : iterator of RecordBatch
"""
return self.scanner(**kwargs).to_batches()
def to_table(self, **kwargs):
"""
Read the dataset to an Arrow table.
Note that this method reads all the selected data from the dataset
into memory.
Parameters
----------
**kwargs : dict, optional
Arguments for `Scanner.from_dataset`.
Returns
-------
table : Table
"""
return self.scanner(**kwargs).to_table()
def take(self, object indices, **kwargs):
"""
Select rows of data by index.
Parameters
----------
indices : Array or array-like
indices of rows to select in the dataset.
**kwargs : dict, optional
See scanner() method for full parameter description.
Returns
-------
table : Table
"""
return self.scanner(**kwargs).take(indices)
def head(self, int num_rows, **kwargs):
"""
Load the first N rows of the dataset.
Parameters
----------
num_rows : int
The number of rows to load.
**kwargs : dict, optional
See scanner() method for full parameter description.
Returns
-------
table : Table
"""
return self.scanner(**kwargs).head(num_rows)
def count_rows(self, **kwargs):
"""
Count rows matching the scanner filter.
Parameters
----------
**kwargs : dict, optional
See scanner() method for full parameter description.
Returns
-------
count : int
"""
return self.scanner(**kwargs).count_rows()
@property
def schema(self):
"""The common schema of the full Dataset"""
return pyarrow_wrap_schema(self.dataset.schema())
def filter(self, expression not None):
"""
Apply a row filter to the dataset.
Parameters
----------
expression : Expression
The filter that should be applied to the dataset.
Returns
-------
Dataset
"""
cdef:
Dataset filtered_dataset
new_filter = expression
current_filter = self._scan_options.get("filter")
if current_filter is not None and new_filter is not None:
new_filter = current_filter & new_filter
filtered_dataset = self.__class__.__new__(self.__class__)
filtered_dataset.init(self.wrapped)
filtered_dataset._scan_options = dict(filter=new_filter)
return filtered_dataset
def sort_by(self, sorting, **kwargs):
"""
Sort the Dataset by one or multiple columns.
Parameters
----------
sorting : str or list[tuple(name, order)]
Name of the column to use to sort (ascending), or
a list of multiple sorting conditions where
each entry is a tuple with column name
and sorting order ("ascending" or "descending")
**kwargs : dict, optional
Additional sorting options.
As allowed by :class:`SortOptions`
Returns
-------
InMemoryDataset
A new dataset sorted according to the sort keys.
"""
if isinstance(sorting, str):
sorting = [(sorting, "ascending")]
res = _pc()._exec_plan._sort_source(self, output_type=InMemoryDataset,
sort_options=_pc().SortOptions(
sort_keys=sorting, **kwargs
))
return res
def join(self, right_dataset, keys, right_keys=None, join_type="left outer",
left_suffix=None, right_suffix=None, coalesce_keys=True,
use_threads=True):
"""
Perform a join between this dataset and another one.
Result of the join will be a new dataset, where further
operations can be applied.
Parameters
----------
right_dataset : dataset
The dataset to join to the current one, acting as the right dataset
in the join operation.
keys : str or list[str]
The columns from current dataset that should be used as keys
of the join operation left side.
right_keys : str or list[str], default None
The columns from the right_dataset that should be used as keys
on the join operation right side.
When ``None`` use the same key names as the left dataset.
join_type : str, default "left outer"
The kind of join that should be performed, one of
("left semi", "right semi", "left anti", "right anti",
"inner", "left outer", "right outer", "full outer")
left_suffix : str, default None
Which suffix to add to right column names. This prevents confusion
when the columns in left and right datasets have colliding names.
right_suffix : str, default None
Which suffic to add to the left column names. This prevents confusion
when the columns in left and right datasets have colliding names.
coalesce_keys : bool, default True
If the duplicated keys should be omitted from one of the sides
in the join result.
use_threads : bool, default True
Whenever to use multithreading or not.
Returns
-------
InMemoryDataset
"""
if right_keys is None:
right_keys = keys
return _pc()._exec_plan._perform_join(join_type, self, keys, right_dataset, right_keys,
left_suffix=left_suffix, right_suffix=right_suffix,
use_threads=use_threads, coalesce_keys=coalesce_keys,
output_type=InMemoryDataset)
cdef class InMemoryDataset(Dataset):
"""
A Dataset wrapping in-memory data.
Parameters
----------
source : RecordBatch, Table, list, tuple
The data for this dataset. Can be a RecordBatch, Table, list of
RecordBatch/Table, iterable of RecordBatch, or a RecordBatchReader
If an iterable is provided, the schema must also be provided.
schema : Schema, optional
Only required if passing an iterable as the source
"""
cdef:
CInMemoryDataset* in_memory_dataset
def __init__(self, source, Schema schema=None):
cdef:
RecordBatchReader reader
shared_ptr[CInMemoryDataset] in_memory_dataset
if isinstance(source, (pa.RecordBatch, pa.Table)):
source = [source]
if isinstance(source, (list, tuple)):
batches = []
for item in source:
if isinstance(item, pa.RecordBatch):
batches.append(item)
elif isinstance(item, pa.Table):
batches.extend(item.to_batches())
else:
raise TypeError(
'Expected a list of tables or batches. The given list '
'contains a ' + type(item).__name__)
if schema is None:
schema = item.schema
elif not schema.equals(item.schema):
raise ArrowTypeError(
f'Item has schema\n{item.schema}\nwhich does not '
f'match expected schema\n{schema}')
if not batches and schema is None:
raise ValueError('Must provide schema to construct in-memory '
'dataset from an empty list')
table = pa.Table.from_batches(batches, schema=schema)
in_memory_dataset = make_shared[CInMemoryDataset](
pyarrow_unwrap_table(table))
else:
raise TypeError(
'Expected a table, batch, or list of tables/batches '
'instead of the given type: ' +
type(source).__name__
)
self.init(<shared_ptr[CDataset]> in_memory_dataset)
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.in_memory_dataset = <CInMemoryDataset*> sp.get()
cdef class UnionDataset(Dataset):
"""
A Dataset wrapping child datasets.
Children's schemas must agree with the provided schema.
Parameters
----------
schema : Schema
A known schema to conform to.
children : list of Dataset
One or more input children
"""
cdef:
CUnionDataset* union_dataset
def __init__(self, Schema schema not None, children):
cdef:
Dataset child
CDatasetVector c_children
shared_ptr[CUnionDataset] union_dataset
for child in children:
c_children.push_back(child.wrapped)
union_dataset = GetResultValue(CUnionDataset.Make(
pyarrow_unwrap_schema(schema), move(c_children)))
self.init(<shared_ptr[CDataset]> union_dataset)
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.union_dataset = <CUnionDataset*> sp.get()
def __reduce__(self):
return UnionDataset, (self.schema, self.children)
@property
def children(self):
cdef CDatasetVector children = self.union_dataset.children()
return [Dataset.wrap(children[i]) for i in range(children.size())]
cdef class FileSystemDataset(Dataset):
"""
A Dataset of file fragments.
A FileSystemDataset is composed of one or more FileFragment.
Parameters
----------
fragments : list[Fragments]
List of fragments to consume.
schema : Schema
The top-level schema of the Dataset.
format : FileFormat
File format of the fragments, currently only ParquetFileFormat,
IpcFileFormat, and CsvFileFormat are supported.
filesystem : FileSystem
FileSystem of the fragments.
root_partition : Expression, optional
The top-level partition of the DataDataset.
"""
cdef:
CFileSystemDataset* filesystem_dataset
def __init__(self, fragments, Schema schema, FileFormat format,
FileSystem filesystem=None, root_partition=None):
cdef:
FileFragment fragment=None
vector[shared_ptr[CFileFragment]] c_fragments
CResult[shared_ptr[CDataset]] result
shared_ptr[CFileSystem] c_filesystem
if root_partition is None:
root_partition = _true
elif not isinstance(root_partition, Expression):
raise TypeError(
"Argument 'root_partition' has incorrect type (expected "
"Epression, got {0})".format(type(root_partition))
)
for fragment in fragments:
c_fragments.push_back(
static_pointer_cast[CFileFragment, CFragment](
fragment.unwrap()))
if filesystem is None:
filesystem = fragment.filesystem
if filesystem is not None:
c_filesystem = filesystem.unwrap()
result = CFileSystemDataset.Make(
pyarrow_unwrap_schema(schema),
(<Expression> root_partition).unwrap(),
format.unwrap(),
c_filesystem,
c_fragments
)
self.init(GetResultValue(result))
@property
def filesystem(self):
return FileSystem.wrap(self.filesystem_dataset.filesystem())
@property
def partitioning(self):
"""
The partitioning of the Dataset source, if discovered.
If the FileSystemDataset is created using the ``dataset()`` factory
function with a partitioning specified, this will return the
finalized Partitioning object from the dataset discovery. In all
other cases, this returns None.
"""
c_partitioning = self.filesystem_dataset.partitioning()
if c_partitioning.get() == nullptr:
return None
try:
return Partitioning.wrap(c_partitioning)
except TypeError:
# e.g. type_name "default"
return None
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.filesystem_dataset = <CFileSystemDataset*> sp.get()
def __reduce__(self):
return FileSystemDataset, (
list(self.get_fragments()),
self.schema,
self.format,
self.filesystem,
self.partition_expression
)
@classmethod
def from_paths(cls, paths, schema=None, format=None,
filesystem=None, partitions=None, root_partition=None):
"""A Dataset created from a list of paths on a particular filesystem.
Parameters
----------
paths : list of str
List of file paths to create the fragments from.
schema : Schema
The top-level schema of the DataDataset.
format : FileFormat
File format to create fragments from, currently only
ParquetFileFormat, IpcFileFormat, and CsvFileFormat are supported.
filesystem : FileSystem
The filesystem which files are from.
partitions : list[Expression], optional
Attach additional partition information for the file paths.
root_partition : Expression, optional
The top-level partition of the DataDataset.
"""
cdef:
FileFragment fragment
if root_partition is None:
root_partition = _true
for arg, class_, name in [
(schema, Schema, 'schema'),
(format, FileFormat, 'format'),
(filesystem, FileSystem, 'filesystem'),
(root_partition, Expression, 'root_partition')
]:
if not isinstance(arg, class_):
raise TypeError(
"Argument '{0}' has incorrect type (expected {1}, "
"got {2})".format(name, class_.__name__, type(arg))
)
partitions = partitions or [_true] * len(paths)
if len(paths) != len(partitions):
raise ValueError(
'The number of files resulting from paths_or_selector '
'must be equal to the number of partitions.'
)
fragments = [
format.make_fragment(path, filesystem, partitions[i])
for i, path in enumerate(paths)
]
return FileSystemDataset(fragments, schema, format,
filesystem, root_partition)
@property
def files(self):
"""List of the files"""
cdef vector[c_string] files = self.filesystem_dataset.files()
return [frombytes(f) for f in files]
@property
def format(self):
"""The FileFormat of this source."""
return FileFormat.wrap(self.filesystem_dataset.format())
cdef class FileWriteOptions(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
self.wrapped = sp
self.c_options = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFileWriteOptions]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'csv': CsvFileWriteOptions,
'ipc': IpcFileWriteOptions,
'parquet': _get_parquet_symbol('ParquetFileWriteOptions'),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FileWriteOptions self = class_.__new__(class_)
self.init(sp)
return self
@property
def format(self):
return FileFormat.wrap(self.c_options.format())
cdef inline shared_ptr[CFileWriteOptions] unwrap(self):
return self.wrapped
cdef class FileFormat(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFileFormat]& sp):
self.wrapped = sp
self.format = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFileFormat]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'ipc': IpcFileFormat,
'csv': CsvFileFormat,
'parquet': _get_parquet_symbol('ParquetFileFormat'),
'orc': _get_orc_fileformat(),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FileFormat self = class_.__new__(class_)
self.init(sp)
return self
cdef WrittenFile _finish_write(self, path, base_dir,
CFileWriter* file_writer):
parquet_metadata = None
size = GetResultValue(file_writer.GetBytesWritten())
return WrittenFile(path, parquet_metadata, size)
cdef inline shared_ptr[CFileFormat] unwrap(self):
return self.wrapped
def inspect(self, file, filesystem=None):
"""
Infer the schema of a file.
Parameters
----------
file : file-like object, path-like or str
The file or file path to infer a schema from.
filesystem : Filesystem, optional
If `filesystem` is given, `file` must be a string and specifies
the path of the file to read from the filesystem.
Returns
-------
schema : Schema
The schema inferred from the file
"""
cdef:
CFileSource c_source = _make_file_source(file, filesystem)
CResult[shared_ptr[CSchema]] c_result
with nogil:
c_result = self.format.Inspect(c_source)
c_schema = GetResultValue(c_result)
return pyarrow_wrap_schema(move(c_schema))
def make_fragment(self, file, filesystem=None,
Expression partition_expression=None):
"""
Make a FileFragment from a given file.
Parameters
----------
file : file-like object, path-like or str
The file or file path to make a fragment from.
filesystem : Filesystem, optional
If `filesystem` is given, `file` must be a string and specifies
the path of the file to read from the filesystem.
partition_expression : Expression
The filter expression.
"""
if partition_expression is None:
partition_expression = _true
c_source = _make_file_source(file, filesystem)
c_fragment = <shared_ptr[CFragment]> GetResultValue(
self.format.MakeFragment(move(c_source),
partition_expression.unwrap(),
<shared_ptr[CSchema]>nullptr))
return Fragment.wrap(move(c_fragment))
def make_write_options(self):
sp_write_options = self.format.DefaultWriteOptions()
if sp_write_options.get() == nullptr:
# DefaultWriteOptions() may return `nullptr` which means that
# the format does not yet support writing datasets.
raise NotImplementedError(
"Writing datasets not yet implemented for this file format."
)
return FileWriteOptions.wrap(sp_write_options)
@property
def default_extname(self):
return frombytes(self.format.type_name())
@property
def default_fragment_scan_options(self):
dfso = FragmentScanOptions.wrap(
self.wrapped.get().default_fragment_scan_options)
# CsvFileFormat stores a Python-specific encoding field that needs
# to be restored because it does not exist in the C++ struct
if isinstance(self, CsvFileFormat):
if self._read_options_py is not None:
dfso.read_options = self._read_options_py
return dfso
@default_fragment_scan_options.setter
def default_fragment_scan_options(self, FragmentScanOptions options):
if options is None:
self.wrapped.get().default_fragment_scan_options =\
<shared_ptr[CFragmentScanOptions]>nullptr
else:
self._set_default_fragment_scan_options(options)
cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
raise ValueError(f"Cannot set fragment scan options for "
f"'{options.type_name}' on {self.__class__.__name__}")
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class Fragment(_Weakrefable):
"""Fragment of data from a Dataset."""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFragment]& sp):
self.wrapped = sp
self.fragment = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFragment]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
# IpcFileFormat, CsvFileFormat and OrcFileFormat do not have
# corresponding subclasses of FileFragment
'ipc': FileFragment,
'csv': FileFragment,
'orc': FileFragment,
'parquet': _get_parquet_symbol('ParquetFileFragment'),
}
class_ = classes.get(type_name, None)
if class_ is None:
class_ = Fragment
cdef Fragment self = class_.__new__(class_)
self.init(sp)
return self
cdef inline shared_ptr[CFragment] unwrap(self):
return self.wrapped
@property
def physical_schema(self):
"""Return the physical schema of this Fragment. This schema can be
different from the dataset read schema."""
cdef:
CResult[shared_ptr[CSchema]] maybe_schema
with nogil:
maybe_schema = self.fragment.ReadPhysicalSchema()
return pyarrow_wrap_schema(GetResultValue(maybe_schema))
@property
def partition_expression(self):
"""An Expression which evaluates to true for all data viewed by this
Fragment.
"""
return Expression.wrap(self.fragment.partition_expression())
def scanner(self, Schema schema=None, **kwargs):
"""
Build a scan operation against the fragment.
Data is not loaded immediately. Instead, this produces a Scanner,
which exposes further operations (e.g. loading all data as a
table, counting rows).
Parameters
----------
schema : Schema
Schema to use for scanning. This is used to unify a Fragment to
it's Dataset's schema. If not specified this will use the
Fragment's physical schema which might differ for each Fragment.
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
scanner : Scanner
"""
return Scanner.from_fragment(self, schema=schema, **kwargs)
def to_batches(self, Schema schema=None, **kwargs):
"""
Read the fragment as materialized record batches.
Parameters
----------
schema : Schema, optional
Concrete schema to use for scanning.
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
record_batches : iterator of RecordBatch
"""
return self.scanner(schema=schema, **kwargs).to_batches()
def to_table(self, Schema schema=None, **kwargs):
"""
Convert this Fragment into a Table.
Use this convenience utility with care. This will serially materialize
the Scan result in memory before creating the Table.
Parameters
----------
schema : Schema, optional
Concrete schema to use for scanning.
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
table : Table
"""
return self.scanner(schema=schema, **kwargs).to_table()
def take(self, object indices, **kwargs):
"""
Select rows of data by index.
Parameters
----------
indices : Array or array-like
The indices of row to select in the dataset.
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
Table
"""
return self.scanner(**kwargs).take(indices)
def head(self, int num_rows, **kwargs):
"""
Load the first N rows of the fragment.
Parameters
----------
num_rows : int
The number of rows to load.
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
Table
"""
return self.scanner(**kwargs).head(num_rows)
def count_rows(self, **kwargs):
"""
Count rows matching the scanner filter.
Parameters
----------
**kwargs : dict, optional
Arguments for `Scanner.from_fragment`.
Returns
-------
count : int
"""
return self.scanner(**kwargs).count_rows()
cdef class FileFragment(Fragment):
"""A Fragment representing a data file."""
cdef void init(self, const shared_ptr[CFragment]& sp):
Fragment.init(self, sp)
self.file_fragment = <CFileFragment*> sp.get()
def __repr__(self):
type_name = frombytes(self.fragment.type_name())
if type_name != "parquet":
typ = f" type={type_name}"
else:
# parquet has a subclass -> type embedded in class name
typ = ""
partition_dict = _get_partition_keys(self.partition_expression)
partition = ", ".join(
[f"{key}={val}" for key, val in partition_dict.items()]
)
if partition:
partition = f" partition=[{partition}]"
return "<pyarrow.dataset.{0}{1} path={2}{3}>".format(
self.__class__.__name__, typ, self.path, partition
)
def __reduce__(self):
buffer = self.buffer
return self.format.make_fragment, (
self.path if buffer is None else buffer,
self.filesystem,
self.partition_expression
)
def open(self):
"""
Open a NativeFile of the buffer or file viewed by this fragment.
"""
cdef:
shared_ptr[CFileSystem] c_filesystem
shared_ptr[CRandomAccessFile] opened
c_string c_path
NativeFile out = NativeFile()
if self.buffer is not None:
return pa.BufferReader(self.buffer)
c_path = tobytes(self.file_fragment.source().path())
with nogil:
c_filesystem = self.file_fragment.source().filesystem()
opened = GetResultValue(c_filesystem.get().OpenInputFile(c_path))
out.set_random_access_file(opened)
out.is_readable = True
return out
@property
def path(self):
"""
The path of the data file viewed by this fragment, if it views a
file. If instead it views a buffer, this will be "<Buffer>".
"""
return frombytes(self.file_fragment.source().path())
@property
def filesystem(self):
"""
The FileSystem containing the data file viewed by this fragment, if
it views a file. If instead it views a buffer, this will be None.
"""
cdef:
shared_ptr[CFileSystem] c_fs
c_fs = self.file_fragment.source().filesystem()
if c_fs.get() == nullptr:
return None
return FileSystem.wrap(c_fs)
@property
def buffer(self):
"""
The buffer viewed by this fragment, if it views a buffer. If
instead it views a file, this will be None.
"""
cdef:
shared_ptr[CBuffer] c_buffer
c_buffer = self.file_fragment.source().buffer()
if c_buffer.get() == nullptr:
return None
return pyarrow_wrap_buffer(c_buffer)
@property
def format(self):
"""
The format of the data file viewed by this fragment.
"""
return FileFormat.wrap(self.file_fragment.format())
cdef class FragmentScanOptions(_Weakrefable):
"""Scan options specific to a particular fragment and scan operation."""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
self.wrapped = sp
@staticmethod
cdef wrap(const shared_ptr[CFragmentScanOptions]& sp):
if not sp:
return None
type_name = frombytes(sp.get().type_name())
classes = {
'csv': CsvFragmentScanOptions,
'parquet': _get_parquet_symbol('ParquetFragmentScanOptions'),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FragmentScanOptions self = class_.__new__(class_)
self.init(sp)
return self
@property
def type_name(self):
return frombytes(self.wrapped.get().type_name())
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class IpcFileWriteOptions(FileWriteOptions):
cdef:
CIpcFileWriteOptions* ipc_options
def __init__(self):
_forbid_instantiation(self.__class__)
@property
def write_options(self):
out = IpcWriteOptions()
out.c_options = CIpcWriteOptions(deref(self.ipc_options.options))
return out
@write_options.setter
def write_options(self, IpcWriteOptions write_options not None):
self.ipc_options.options.reset(
new CIpcWriteOptions(write_options.c_options))
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
FileWriteOptions.init(self, sp)
self.ipc_options = <CIpcFileWriteOptions*> sp.get()
cdef class IpcFileFormat(FileFormat):
def __init__(self):
self.init(shared_ptr[CFileFormat](new CIpcFileFormat()))
def equals(self, IpcFileFormat other):
return True
def make_write_options(self, **kwargs):
cdef IpcFileWriteOptions opts = \
<IpcFileWriteOptions> FileFormat.make_write_options(self)
opts.write_options = IpcWriteOptions(**kwargs)
return opts
@property
def default_extname(self):
return "arrow"
def __reduce__(self):
return IpcFileFormat, tuple()
cdef class FeatherFileFormat(IpcFileFormat):
@property
def default_extname(self):
return "feather"
cdef class CsvFileFormat(FileFormat):
"""
FileFormat for CSV files.
Parameters
----------
parse_options : pyarrow.csv.ParseOptions
Options regarding CSV parsing.
default_fragment_scan_options : CsvFragmentScanOptions
Default options for fragments scan.
convert_options : pyarrow.csv.ConvertOptions
Options regarding value conversion.
read_options : pyarrow.csv.ReadOptions
General read options.
"""
cdef:
CCsvFileFormat* csv_format
# The encoding field in ReadOptions does not exist in the C++ struct.
# We need to store it here and override it when reading
# default_fragment_scan_options.read_options
public ReadOptions _read_options_py
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, ParseOptions parse_options=None,
default_fragment_scan_options=None,
ConvertOptions convert_options=None,
ReadOptions read_options=None):
self.init(shared_ptr[CFileFormat](new CCsvFileFormat()))
if parse_options is not None:
self.parse_options = parse_options
if convert_options is not None or read_options is not None:
if default_fragment_scan_options:
raise ValueError('If `default_fragment_scan_options` is '
'given, cannot specify convert_options '
'or read_options')
self.default_fragment_scan_options = CsvFragmentScanOptions(
convert_options=convert_options, read_options=read_options)
elif isinstance(default_fragment_scan_options, dict):
self.default_fragment_scan_options = CsvFragmentScanOptions(
**default_fragment_scan_options)
elif isinstance(default_fragment_scan_options, CsvFragmentScanOptions):
self.default_fragment_scan_options = default_fragment_scan_options
elif default_fragment_scan_options is not None:
raise TypeError('`default_fragment_scan_options` must be either '
'a dictionary or an instance of '
'CsvFragmentScanOptions')
if read_options is not None:
self._read_options_py = read_options
cdef void init(self, const shared_ptr[CFileFormat]& sp):
FileFormat.init(self, sp)
self.csv_format = <CCsvFileFormat*> sp.get()
def make_write_options(self, **kwargs):
cdef CsvFileWriteOptions opts = \
<CsvFileWriteOptions> FileFormat.make_write_options(self)
opts.write_options = WriteOptions(**kwargs)
return opts
@property
def parse_options(self):
return ParseOptions.wrap(self.csv_format.parse_options)
@parse_options.setter
def parse_options(self, ParseOptions parse_options not None):
self.csv_format.parse_options = deref(parse_options.options)
cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
if options.type_name == 'csv':
self.csv_format.default_fragment_scan_options = options.wrapped
self.default_fragment_scan_options.read_options = options.read_options
self._read_options_py = options.read_options
else:
super()._set_default_fragment_scan_options(options)
def equals(self, CsvFileFormat other):
return (
self.parse_options.equals(other.parse_options) and
self.default_fragment_scan_options ==
other.default_fragment_scan_options)
def __reduce__(self):
return CsvFileFormat, (self.parse_options,
self.default_fragment_scan_options)
def __repr__(self):
return f"<CsvFileFormat parse_options={self.parse_options}>"
cdef class CsvFragmentScanOptions(FragmentScanOptions):
"""
Scan-specific options for CSV fragments.
Parameters
----------
convert_options : pyarrow.csv.ConvertOptions
Options regarding value conversion.
read_options : pyarrow.csv.ReadOptions
General read options.
"""
cdef:
CCsvFragmentScanOptions* csv_options
# The encoding field in ReadOptions does not exist in the C++ struct.
# We need to store it here and override it when reading read_options
ReadOptions _read_options_py
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, ConvertOptions convert_options=None,
ReadOptions read_options=None):
self.init(shared_ptr[CFragmentScanOptions](
new CCsvFragmentScanOptions()))
if convert_options is not None:
self.convert_options = convert_options
if read_options is not None:
self.read_options = read_options
self._read_options_py = read_options
cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
FragmentScanOptions.init(self, sp)
self.csv_options = <CCsvFragmentScanOptions*> sp.get()
@property
def convert_options(self):
return ConvertOptions.wrap(self.csv_options.convert_options)
@convert_options.setter
def convert_options(self, ConvertOptions convert_options not None):
self.csv_options.convert_options = deref(convert_options.options)
@property
def read_options(self):
read_options = ReadOptions.wrap(self.csv_options.read_options)
if self._read_options_py is not None:
read_options.encoding = self._read_options_py.encoding
return read_options
@read_options.setter
def read_options(self, ReadOptions read_options not None):
self.csv_options.read_options = deref(read_options.options)
self._read_options_py = read_options
if codecs.lookup(read_options.encoding).name != 'utf-8':
self.csv_options.stream_transform_func = deref(
make_streamwrap_func(read_options.encoding, 'utf-8'))
def equals(self, CsvFragmentScanOptions other):
return (
other and
self.convert_options.equals(other.convert_options) and
self.read_options.equals(other.read_options))
def __reduce__(self):
return CsvFragmentScanOptions, (self.convert_options,
self.read_options)
cdef class CsvFileWriteOptions(FileWriteOptions):
cdef:
CCsvFileWriteOptions* csv_options
object _properties
def __init__(self):
_forbid_instantiation(self.__class__)
@property
def write_options(self):
return WriteOptions.wrap(deref(self.csv_options.write_options))
@write_options.setter
def write_options(self, WriteOptions write_options not None):
self.csv_options.write_options.reset(
new CCSVWriteOptions(deref(write_options.options)))
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
FileWriteOptions.init(self, sp)
self.csv_options = <CCsvFileWriteOptions*> sp.get()
cdef class Partitioning(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioning]& sp):
self.wrapped = sp
self.partitioning = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CPartitioning]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'directory': DirectoryPartitioning,
'hive': HivePartitioning,
'filename': FilenamePartitioning,
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef Partitioning self = class_.__new__(class_)
self.init(sp)
return self
cdef inline shared_ptr[CPartitioning] unwrap(self):
return self.wrapped
def parse(self, path):
cdef CResult[CExpression] result
result = self.partitioning.Parse(tobytes(path))
return Expression.wrap(GetResultValue(result))
@property
def schema(self):
"""The arrow Schema attached to the partitioning."""
return pyarrow_wrap_schema(self.partitioning.schema())
cdef class PartitioningFactory(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioningFactory]& sp):
self.wrapped = sp
self.factory = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CPartitioningFactory]& sp):
cdef PartitioningFactory self = PartitioningFactory.__new__(
PartitioningFactory
)
self.init(sp)
return self
cdef inline shared_ptr[CPartitioningFactory] unwrap(self):
return self.wrapped
@property
def type_name(self):
return frombytes(self.factory.type_name())
cdef vector[shared_ptr[CArray]] _partitioning_dictionaries(
Schema schema, dictionaries) except *:
cdef:
vector[shared_ptr[CArray]] c_dictionaries
dictionaries = dictionaries or {}
for field in schema:
dictionary = dictionaries.get(field.name)
if (isinstance(field.type, pa.DictionaryType) and
dictionary is not None):
c_dictionaries.push_back(pyarrow_unwrap_array(dictionary))
else:
c_dictionaries.push_back(<shared_ptr[CArray]> nullptr)
return c_dictionaries
cdef class KeyValuePartitioning(Partitioning):
cdef:
CKeyValuePartitioning* keyvalue_partitioning
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioning]& sp):
Partitioning.init(self, sp)
self.keyvalue_partitioning = <CKeyValuePartitioning*> sp.get()
self.wrapped = sp
self.partitioning = sp.get()
@property
def dictionaries(self):
"""
The unique values for each partition field, if available.
Those values are only available if the Partitioning object was
created through dataset discovery from a PartitioningFactory, or
if the dictionaries were manually specified in the constructor.
If no dictionary field is available, this returns an empty list.
"""
cdef vector[shared_ptr[CArray]] c_arrays
c_arrays = self.keyvalue_partitioning.dictionaries()
res = []
for arr in c_arrays:
if arr.get() == nullptr:
# Partitioning object has not been created through
# inspected Factory
res.append(None)
else:
res.append(pyarrow_wrap_array(arr))
return res
cdef class DirectoryPartitioning(KeyValuePartitioning):
"""
A Partitioning based on a specified Schema.
The DirectoryPartitioning expects one segment in the file path for each
field in the schema (all fields are required to be present).
For example given schema<year:int16, month:int8> the path "/2009/11" would
be parsed to ("year"_ == 2009 and "month"_ == 11).
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
DirectoryPartitioning
Examples
--------
>>> from pyarrow.dataset import DirectoryPartitioning
>>> partitioning = DirectoryPartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("/2009/11/"))
((year == 2009) and (month == 11))
"""
cdef:
CDirectoryPartitioning* directory_partitioning
def __init__(self, Schema schema not None, dictionaries=None,
segment_encoding="uri"):
cdef:
shared_ptr[CDirectoryPartitioning] c_partitioning
CKeyValuePartitioningOptions c_options
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CDirectoryPartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.directory_partitioning = <CDirectoryPartitioning*> sp.get()
@staticmethod
def discover(field_names=None, infer_dictionary=False,
max_partition_dictionary_size=0,
schema=None, segment_encoding="uri"):
"""
Discover a DirectoryPartitioning.
Parameters
----------
field_names : list of str
The names to associate with the values from the subdirectory names.
If schema is given, will be populated from the schema.
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain types. This can be more efficient
when materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
max_partition_dictionary_size : int, default 0
Synonymous with infer_dictionary for backwards compatibility with
1.0: setting this to -1 or None is equivalent to passing
infer_dictionary=True.
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CPartitioningFactoryOptions c_options
vector[c_string] c_field_names
if max_partition_dictionary_size in {-1, None}:
infer_dictionary = True
elif max_partition_dictionary_size != 0:
raise NotImplementedError("max_partition_dictionary_size must be "
"0, -1, or None")
if infer_dictionary:
c_options.infer_dictionary = True
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_field_names = [tobytes(f.name) for f in schema]
elif not field_names:
raise ValueError(
"Neither field_names nor schema was passed; "
"cannot infer field_names")
else:
c_field_names = [tobytes(s) for s in field_names]
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CDirectoryPartitioning.MakeFactory(c_field_names, c_options))
cdef class HivePartitioning(KeyValuePartitioning):
"""
A Partitioning for "/$key=$value/" nested directories as found in
Apache Hive.
Multi-level, directory based partitioning scheme originating from
Apache Hive with all data files stored in the leaf directories. Data is
partitioned by static values of a particular column in the schema.
Partition keys are represented in the form $key=$value in directory names.
Field order is ignored, as are missing or unrecognized field names.
For example, given schema<year:int16, month:int8, day:int8>, a possible
path would be "/year=2009/month=11/day=15".
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
null_fallback : str, default "__HIVE_DEFAULT_PARTITION__"
If any field is None then this fallback will be used as a label
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
HivePartitioning
Examples
--------
>>> from pyarrow.dataset import HivePartitioning
>>> partitioning = HivePartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("/year=2009/month=11/"))
((year == 2009) and (month == 11))
"""
cdef:
CHivePartitioning* hive_partitioning
def __init__(self,
Schema schema not None,
dictionaries=None,
null_fallback="__HIVE_DEFAULT_PARTITION__",
segment_encoding="uri"):
cdef:
shared_ptr[CHivePartitioning] c_partitioning
CHivePartitioningOptions c_options
c_options.null_fallback = tobytes(null_fallback)
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CHivePartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.hive_partitioning = <CHivePartitioning*> sp.get()
@staticmethod
def discover(infer_dictionary=False,
max_partition_dictionary_size=0,
null_fallback="__HIVE_DEFAULT_PARTITION__",
schema=None,
segment_encoding="uri"):
"""
Discover a HivePartitioning.
Parameters
----------
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain. This can be more efficient when
materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
max_partition_dictionary_size : int, default 0
Synonymous with infer_dictionary for backwards compatibility with
1.0: setting this to -1 or None is equivalent to passing
infer_dictionary=True.
null_fallback : str, default "__HIVE_DEFAULT_PARTITION__"
When inferring a schema for partition fields this value will be
replaced by null. The default is set to __HIVE_DEFAULT_PARTITION__
for compatibility with Spark
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CHivePartitioningFactoryOptions c_options
if max_partition_dictionary_size in {-1, None}:
infer_dictionary = True
elif max_partition_dictionary_size != 0:
raise NotImplementedError("max_partition_dictionary_size must be "
"0, -1, or None")
if infer_dictionary:
c_options.infer_dictionary = True
c_options.null_fallback = tobytes(null_fallback)
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CHivePartitioning.MakeFactory(c_options))
cdef class FilenamePartitioning(KeyValuePartitioning):
"""
A Partitioning based on a specified Schema.
The FilenamePartitioning expects one segment in the file name for each
field in the schema (all fields are required to be present) separated
by '_'. For example given schema<year:int16, month:int8> the name
``"2009_11_"`` would be parsed to ("year" == 2009 and "month" == 11).
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
FilenamePartitioning
Examples
--------
>>> from pyarrow.dataset import FilenamePartitioning
>>> partitioning = FilenamePartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("2009_11_data.parquet"))
((year == 2009) and (month == 11))
"""
cdef:
CFilenamePartitioning* filename_partitioning
def __init__(self, Schema schema not None, dictionaries=None,
segment_encoding="uri"):
cdef:
shared_ptr[CFilenamePartitioning] c_partitioning
CKeyValuePartitioningOptions c_options
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CFilenamePartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.filename_partitioning = <CFilenamePartitioning*> sp.get()
@staticmethod
def discover(field_names=None, infer_dictionary=False,
schema=None, segment_encoding="uri"):
"""
Discover a FilenamePartitioning.
Parameters
----------
field_names : list of str
The names to associate with the values from the subdirectory names.
If schema is given, will be populated from the schema.
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain types. This can be more efficient
when materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CPartitioningFactoryOptions c_options
vector[c_string] c_field_names
if infer_dictionary:
c_options.infer_dictionary = True
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_field_names = [tobytes(f.name) for f in schema]
elif not field_names:
raise TypeError(
"Neither field_names nor schema was passed; "
"cannot infer field_names")
else:
c_field_names = [tobytes(s) for s in field_names]
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CFilenamePartitioning.MakeFactory(c_field_names, c_options))
cdef class DatasetFactory(_Weakrefable):
"""
DatasetFactory is used to create a Dataset, inspect the Schema
of the fragments contained in it, and declare a partitioning.
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CDatasetFactory]& sp):
self.wrapped = sp
self.factory = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CDatasetFactory]& sp):
cdef DatasetFactory self = \
DatasetFactory.__new__(DatasetFactory)
self.init(sp)
return self
cdef inline shared_ptr[CDatasetFactory] unwrap(self) nogil:
return self.wrapped
@property
def root_partition(self):
return Expression.wrap(self.factory.root_partition())
@root_partition.setter
def root_partition(self, Expression expr):
check_status(self.factory.SetRootPartition(expr.unwrap()))
def inspect_schemas(self):
cdef CResult[vector[shared_ptr[CSchema]]] result
cdef CInspectOptions options
with nogil:
result = self.factory.InspectSchemas(options)
schemas = []
for s in GetResultValue(result):
schemas.append(pyarrow_wrap_schema(s))
return schemas
def inspect(self):
"""
Inspect all data fragments and return a common Schema.
Returns
-------
Schema
"""
cdef:
CInspectOptions options
CResult[shared_ptr[CSchema]] result
with nogil:
result = self.factory.Inspect(options)
return pyarrow_wrap_schema(GetResultValue(result))
def finish(self, Schema schema=None):
"""
Create a Dataset using the inspected schema or an explicit schema
(if given).
Parameters
----------
schema : Schema, default None
The schema to conform the source to. If None, the inspected
schema is used.
Returns
-------
Dataset
"""
cdef:
shared_ptr[CSchema] sp_schema
CResult[shared_ptr[CDataset]] result
if schema is not None:
sp_schema = pyarrow_unwrap_schema(schema)
with nogil:
result = self.factory.FinishWithSchema(sp_schema)
else:
with nogil:
result = self.factory.Finish()
return Dataset.wrap(GetResultValue(result))
cdef class FileSystemFactoryOptions(_Weakrefable):
"""
Influences the discovery of filesystem paths.
Parameters
----------
partition_base_dir : str, optional
For the purposes of applying the partitioning, paths will be
stripped of the partition_base_dir. Files not matching the
partition_base_dir prefix will be skipped for partitioning discovery.
The ignored files will still be part of the Dataset, but will not
have partition information.
partitioning : Partitioning/PartitioningFactory, optional
Apply the Partitioning to every discovered Fragment. See Partitioning or
PartitioningFactory documentation.
exclude_invalid_files : bool, optional (default True)
If True, invalid files will be excluded (file format specific check).
This will incur IO for each files in a serial and single threaded
fashion. Disabling this feature will skip the IO, but unsupported
files may be present in the Dataset (resulting in an error at scan
time).
selector_ignore_prefixes : list, optional
When discovering from a Selector (and not from an explicit file list),
ignore files and directories matching any of these prefixes.
By default this is ['.', '_'].
"""
cdef:
CFileSystemFactoryOptions options
__slots__ = () # avoid mistakingly creating attributes
def __init__(self, partition_base_dir=None, partitioning=None,
exclude_invalid_files=None,
list selector_ignore_prefixes=None):
if isinstance(partitioning, PartitioningFactory):
self.partitioning_factory = partitioning
elif isinstance(partitioning, Partitioning):
self.partitioning = partitioning
if partition_base_dir is not None:
self.partition_base_dir = partition_base_dir
if exclude_invalid_files is not None:
self.exclude_invalid_files = exclude_invalid_files
if selector_ignore_prefixes is not None:
self.selector_ignore_prefixes = selector_ignore_prefixes
cdef inline CFileSystemFactoryOptions unwrap(self):
return self.options
@property
def partitioning(self):
"""Partitioning to apply to discovered files.
NOTE: setting this property will overwrite partitioning_factory.
"""
c_partitioning = self.options.partitioning.partitioning()
if c_partitioning.get() == nullptr:
return None
return Partitioning.wrap(c_partitioning)
@partitioning.setter
def partitioning(self, Partitioning value):
self.options.partitioning = (<Partitioning> value).unwrap()
@property
def partitioning_factory(self):
"""PartitioningFactory to apply to discovered files and
discover a Partitioning.
NOTE: setting this property will overwrite partitioning.
"""
c_factory = self.options.partitioning.factory()
if c_factory.get() == nullptr:
return None
return PartitioningFactory.wrap(c_factory)
@partitioning_factory.setter
def partitioning_factory(self, PartitioningFactory value):
self.options.partitioning = (<PartitioningFactory> value).unwrap()
@property
def partition_base_dir(self):
"""
Base directory to strip paths before applying the partitioning.
"""
return frombytes(self.options.partition_base_dir)
@partition_base_dir.setter
def partition_base_dir(self, value):
self.options.partition_base_dir = tobytes(value)
@property
def exclude_invalid_files(self):
"""Whether to exclude invalid files."""
return self.options.exclude_invalid_files
@exclude_invalid_files.setter
def exclude_invalid_files(self, bint value):
self.options.exclude_invalid_files = value
@property
def selector_ignore_prefixes(self):
"""
List of prefixes. Files matching one of those prefixes will be
ignored by the discovery process.
"""
return [frombytes(p) for p in self.options.selector_ignore_prefixes]
@selector_ignore_prefixes.setter
def selector_ignore_prefixes(self, values):
self.options.selector_ignore_prefixes = [tobytes(v) for v in values]
cdef class FileSystemDatasetFactory(DatasetFactory):
"""
Create a DatasetFactory from a list of paths with schema inspection.
Parameters
----------
filesystem : pyarrow.fs.FileSystem
Filesystem to discover.
paths_or_selector : pyarrow.fs.FileSelector or list of path-likes
Either a Selector object or a list of path-like objects.
format : FileFormat
Currently only ParquetFileFormat and IpcFileFormat are supported.
options : FileSystemFactoryOptions, optional
Various flags influencing the discovery of filesystem paths.
"""
cdef:
CFileSystemDatasetFactory* filesystem_factory
def __init__(self, FileSystem filesystem not None, paths_or_selector,
FileFormat format not None,
FileSystemFactoryOptions options=None):
cdef:
vector[c_string] paths
CFileSelector c_selector
CResult[shared_ptr[CDatasetFactory]] result
shared_ptr[CFileSystem] c_filesystem
shared_ptr[CFileFormat] c_format
CFileSystemFactoryOptions c_options
options = options or FileSystemFactoryOptions()
c_options = options.unwrap()
c_filesystem = filesystem.unwrap()
c_format = format.unwrap()
if isinstance(paths_or_selector, FileSelector):
with nogil:
c_selector = (<FileSelector> paths_or_selector).selector
result = CFileSystemDatasetFactory.MakeFromSelector(
c_filesystem,
c_selector,
c_format,
c_options
)
elif isinstance(paths_or_selector, (list, tuple)):
paths = [tobytes(s) for s in paths_or_selector]
with nogil:
result = CFileSystemDatasetFactory.MakeFromPaths(
c_filesystem,
paths,
c_format,
c_options
)
else:
raise TypeError('Must pass either paths or a FileSelector, but '
'passed {}'.format(type(paths_or_selector)))
self.init(GetResultValue(result))
cdef init(self, shared_ptr[CDatasetFactory]& sp):
DatasetFactory.init(self, sp)
self.filesystem_factory = <CFileSystemDatasetFactory*> sp.get()
cdef class UnionDatasetFactory(DatasetFactory):
"""
Provides a way to inspect/discover a Dataset's expected schema before
materialization.
Parameters
----------
factories : list of DatasetFactory
"""
cdef:
CUnionDatasetFactory* union_factory
def __init__(self, list factories):
cdef:
DatasetFactory factory
vector[shared_ptr[CDatasetFactory]] c_factories
for factory in factories:
c_factories.push_back(factory.unwrap())
self.init(GetResultValue(CUnionDatasetFactory.Make(c_factories)))
cdef init(self, const shared_ptr[CDatasetFactory]& sp):
DatasetFactory.init(self, sp)
self.union_factory = <CUnionDatasetFactory*> sp.get()
cdef class RecordBatchIterator(_Weakrefable):
"""An iterator over a sequence of record batches."""
cdef:
# An object that must be kept alive with the iterator.
object iterator_owner
# Iterator is a non-POD type and Cython uses offsetof, leading
# to a compiler warning unless wrapped like so
shared_ptr[CRecordBatchIterator] iterator
def __init__(self):
_forbid_instantiation(self.__class__, subclasses_instead=False)
@staticmethod
cdef wrap(object owner, CRecordBatchIterator iterator):
cdef RecordBatchIterator self = \
RecordBatchIterator.__new__(RecordBatchIterator)
self.iterator_owner = owner
self.iterator = make_shared[CRecordBatchIterator](move(iterator))
return self
cdef inline shared_ptr[CRecordBatchIterator] unwrap(self) nogil:
return self.iterator
def __iter__(self):
return self
def __next__(self):
cdef shared_ptr[CRecordBatch] record_batch
with nogil:
record_batch = GetResultValue(move(self.iterator.get().Next()))
if record_batch == NULL:
raise StopIteration
return pyarrow_wrap_batch(record_batch)
class TaggedRecordBatch(collections.namedtuple(
"TaggedRecordBatch", ["record_batch", "fragment"])):
"""
A combination of a record batch and the fragment it came from.
Parameters
----------
record_batch : RecordBatch
The record batch.
fragment : Fragment
Fragment of the record batch.
"""
cdef class TaggedRecordBatchIterator(_Weakrefable):
"""An iterator over a sequence of record batches with fragments."""
cdef:
object iterator_owner
shared_ptr[CTaggedRecordBatchIterator] iterator
def __init__(self):
_forbid_instantiation(self.__class__, subclasses_instead=False)
@staticmethod
cdef wrap(object owner, CTaggedRecordBatchIterator iterator):
cdef TaggedRecordBatchIterator self = \
TaggedRecordBatchIterator.__new__(TaggedRecordBatchIterator)
self.iterator_owner = owner
self.iterator = make_shared[CTaggedRecordBatchIterator](
move(iterator))
return self
def __iter__(self):
return self
def __next__(self):
cdef CTaggedRecordBatch batch
with nogil:
batch = GetResultValue(move(self.iterator.get().Next()))
if batch.record_batch == NULL:
raise StopIteration
return TaggedRecordBatch(
record_batch=pyarrow_wrap_batch(batch.record_batch),
fragment=Fragment.wrap(batch.fragment))
_DEFAULT_BATCH_SIZE = 2**17
_DEFAULT_BATCH_READAHEAD = 16
_DEFAULT_FRAGMENT_READAHEAD = 4
cdef void _populate_builder(const shared_ptr[CScannerBuilder]& ptr,
object columns=None, Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
bint use_threads=True, MemoryPool memory_pool=None,
FragmentScanOptions fragment_scan_options=None)\
except *:
cdef:
CScannerBuilder *builder
vector[CExpression] c_exprs
builder = ptr.get()
check_status(builder.Filter(_bind(
filter, pyarrow_wrap_schema(builder.schema()))))
if columns is not None:
if isinstance(columns, dict):
for expr in columns.values():
if not isinstance(expr, Expression):
raise TypeError(
"Expected an Expression for a 'column' dictionary "
"value, got {} instead".format(type(expr))
)
c_exprs.push_back((<Expression> expr).unwrap())
check_status(
builder.Project(c_exprs, [tobytes(c) for c in columns.keys()])
)
elif isinstance(columns, list):
check_status(builder.ProjectColumns([tobytes(c) for c in columns]))
else:
raise ValueError(
"Expected a list or a dict for 'columns', "
"got {} instead.".format(type(columns))
)
check_status(builder.BatchSize(batch_size))
check_status(builder.BatchReadahead(batch_readahead))
check_status(builder.FragmentReadahead(fragment_readahead))
check_status(builder.UseThreads(use_threads))
check_status(builder.Pool(maybe_unbox_memory_pool(memory_pool)))
if fragment_scan_options:
check_status(
builder.FragmentScanOptions(fragment_scan_options.wrapped))
cdef class Scanner(_Weakrefable):
"""A materialized scan operation with context and options bound.
A scanner is the class that glues the scan tasks, data fragments and data
sources together.
Parameters
----------
dataset : Dataset
Dataset to scan.
columns : list of str or dict, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {{new_column_name: expression}} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected.
Raises an exception if any of the referenced column names does
not exist in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 128Ki
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
use_async : bool, default True
This flag is deprecated and is being kept for this release for
backwards compatibility. It will be removed in the next release.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CScanner]& sp):
self.wrapped = sp
self.scanner = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CScanner]& sp):
cdef Scanner self = Scanner.__new__(Scanner)
self.init(sp)
return self
cdef inline shared_ptr[CScanner] unwrap(self):
return self.wrapped
@staticmethod
cdef shared_ptr[CScanOptions] _make_scan_options(Dataset dataset, dict py_scanoptions) except *:
cdef:
shared_ptr[CScannerBuilder] builder = make_shared[CScannerBuilder](dataset.unwrap())
py_scanoptions = dataset._scanner_options(py_scanoptions)
# Need to explicitly expand the arguments as Cython doesn't support
# keyword expansion in cdef functions.
_populate_builder(
builder,
columns=py_scanoptions.get("columns"),
filter=py_scanoptions.get("filter"),
batch_size=py_scanoptions.get("batch_size", _DEFAULT_BATCH_SIZE),
batch_readahead=py_scanoptions.get(
"batch_readahead", _DEFAULT_BATCH_READAHEAD),
fragment_readahead=py_scanoptions.get(
"fragment_readahead", _DEFAULT_FRAGMENT_READAHEAD),
use_threads=py_scanoptions.get("use_threads", True),
memory_pool=py_scanoptions.get("memory_pool"),
fragment_scan_options=py_scanoptions.get("fragment_scan_options"))
return GetResultValue(deref(builder).GetScanOptions())
@staticmethod
def from_dataset(Dataset dataset not None, *,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, object use_async=None,
MemoryPool memory_pool=None):
"""
Create Scanner from Dataset,
Parameters
----------
dataset : Dataset
Dataset to scan.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 128Ki
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
use_async : bool, default True
This flag is deprecated and is being kept for this release for
backwards compatibility. It will be removed in the next
release.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScanOptions] options
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
if use_async is not None:
warnings.warn('The use_async flag is deprecated and has no '
'effect. It will be removed in the next release.',
FutureWarning)
options = Scanner._make_scan_options(
dataset,
dict(columns=columns, filter=filter, batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead, use_threads=use_threads,
memory_pool=memory_pool, fragment_scan_options=fragment_scan_options)
)
builder = make_shared[CScannerBuilder](dataset.unwrap(), options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@staticmethod
def from_fragment(Fragment fragment not None, *, Schema schema=None,
object columns=None, Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, object use_async=None,
MemoryPool memory_pool=None,):
"""
Create Scanner from Fragment,
Parameters
----------
fragment : Fragment
fragment to scan.
schema : Schema, optional
The schema of the fragment.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 128Ki
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
use_async : bool, default True
This flag is deprecated and is being kept for this release for
backwards compatibility. It will be removed in the next
release.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
use_async : bool, default True
This flag is deprecated and is being kept for this release for
backwards compatibility. It will be removed in the next
release.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScanOptions] options = make_shared[CScanOptions]()
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
schema = schema or fragment.physical_schema
if use_async is not None:
warnings.warn('The use_async flag is deprecated and has no '
'effect. It will be removed in the next release.',
FutureWarning)
builder = make_shared[CScannerBuilder](pyarrow_unwrap_schema(schema),
fragment.unwrap(), options)
_populate_builder(builder, columns=columns, filter=filter,
batch_size=batch_size, batch_readahead=batch_readahead,
fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
use_threads=use_threads,
memory_pool=memory_pool,
fragment_scan_options=fragment_scan_options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@staticmethod
def from_batches(source, *, Schema schema=None, object columns=None,
Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, object use_async=None,
MemoryPool memory_pool=None):
"""
Create a Scanner from an iterator of batches.
This creates a scanner which can be used only once. It is
intended to support writing a dataset (which takes a scanner)
from a source which can be read only once (e.g. a
RecordBatchReader or generator).
Parameters
----------
source : Iterator
The iterator of Batches.
schema : Schema
The schema of the batches.
columns : list of str or dict, default None
The columns to project.
filter : Expression, default None
Scan will return only the rows matching the filter.
batch_size : int, default 128Ki
The maximum row count for scanned record batches.
fragment_scan_options : FragmentScanOptions
The fragment scan options.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
use_async : bool, default True
This flag is deprecated and is being kept for this release for
backwards compatibility. It will be removed in the next
release.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScanOptions] options = make_shared[CScanOptions]()
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
RecordBatchReader reader
if isinstance(source, pa.ipc.RecordBatchReader):
if schema:
raise ValueError('Cannot specify a schema when providing '
'a RecordBatchReader')
reader = source
elif _is_iterable(source):
if schema is None:
raise ValueError('Must provide schema to construct scanner '
'from an iterable')
reader = pa.ipc.RecordBatchReader.from_batches(schema, source)
else:
raise TypeError('Expected a RecordBatchReader or an iterable of '
'batches instead of the given type: ' +
type(source).__name__)
builder = CScannerBuilder.FromRecordBatchReader(reader.reader)
if use_async is not None:
warnings.warn('The use_async flag is deprecated and has no '
'effect. It will be removed in the next release.',
FutureWarning)
_populate_builder(builder, columns=columns, filter=filter,
batch_size=batch_size, batch_readahead=_DEFAULT_BATCH_READAHEAD,
fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD, use_threads=use_threads,
memory_pool=memory_pool,
fragment_scan_options=fragment_scan_options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@property
def dataset_schema(self):
"""The schema with which batches will be read from fragments."""
return pyarrow_wrap_schema(
self.scanner.options().get().dataset_schema)
@property
def projected_schema(self):
"""
The materialized schema of the data, accounting for projections.
This is the schema of any data returned from the scanner.
"""
return pyarrow_wrap_schema(
self.scanner.options().get().projected_schema)
def to_batches(self):
"""
Consume a Scanner in record batches.
Returns
-------
record_batches : iterator of RecordBatch
"""
def _iterator(batch_iter):
for batch in batch_iter:
yield batch.record_batch
# Don't make ourselves a generator so errors are raised immediately
return _iterator(self.scan_batches())
def scan_batches(self):
"""
Consume a Scanner in record batches with corresponding fragments.
Returns
-------
record_batches : iterator of TaggedRecordBatch
"""
cdef CTaggedRecordBatchIterator iterator
with nogil:
iterator = move(GetResultValue(self.scanner.ScanBatches()))
# Don't make ourselves a generator so errors are raised immediately
return TaggedRecordBatchIterator.wrap(self, move(iterator))
def to_table(self):
"""
Convert a Scanner into a Table.
Use this convenience utility with care. This will serially materialize
the Scan result in memory before creating the Table.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
with nogil:
result = self.scanner.ToTable()
return pyarrow_wrap_table(GetResultValue(result))
def take(self, object indices):
"""
Select rows of data by index.
Will only consume as many batches of the underlying dataset as
needed. Otherwise, this is equivalent to
``to_table().take(indices)``.
Parameters
----------
indices : Array or array-like
indices of rows to select in the dataset.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
cdef shared_ptr[CArray] c_indices
if not isinstance(indices, pa.Array):
indices = pa.array(indices)
c_indices = pyarrow_unwrap_array(indices)
with nogil:
result = self.scanner.TakeRows(deref(c_indices))
return pyarrow_wrap_table(GetResultValue(result))
def head(self, int num_rows):
"""
Load the first N rows of the dataset.
Parameters
----------
num_rows : int
The number of rows to load.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
with nogil:
result = self.scanner.Head(num_rows)
return pyarrow_wrap_table(GetResultValue(result))
def count_rows(self):
"""
Count rows matching the scanner filter.
Returns
-------
count : int
"""
cdef CResult[int64_t] result
with nogil:
result = self.scanner.CountRows()
return GetResultValue(result)
def to_reader(self):
"""Consume this scanner as a RecordBatchReader.
Returns
-------
RecordBatchReader
"""
cdef RecordBatchReader reader
reader = RecordBatchReader.__new__(RecordBatchReader)
reader.reader = GetResultValue(self.scanner.ToRecordBatchReader())
return reader
def _get_partition_keys(Expression partition_expression):
"""
Extract partition keys (equality constraints between a field and a scalar)
from an expression as a dict mapping the field's name to its value.
NB: All expressions yielded by a HivePartitioning or DirectoryPartitioning
will be conjunctions of equality conditions and are accessible through this
function. Other subexpressions will be ignored.
For example, an expression of
<pyarrow.dataset.Expression ((part == A:string) and (year == 2016:int32))>
is converted to {'part': 'A', 'year': 2016}
"""
cdef:
CExpression expr = partition_expression.unwrap()
pair[CFieldRef, CDatum] ref_val
out = {}
for ref_val in GetResultValue(CExtractKnownFieldValues(expr)).map:
assert ref_val.first.name() != nullptr
assert ref_val.second.kind() == DatumType_SCALAR
val = pyarrow_wrap_scalar(ref_val.second.scalar())
out[frombytes(deref(ref_val.first.name()))] = val.as_py()
return out
cdef class WrittenFile(_Weakrefable):
"""
Metadata information about files written as
part of a dataset write operation
Parameters
----------
path : str
Path to the file.
metadata : pyarrow.parquet.FileMetaData, optional
For Parquet files, the Parquet file metadata.
size : int
The size of the file in bytes.
"""
def __init__(self, path, metadata, size):
self.path = path
self.metadata = metadata
self.size = size
cdef void _filesystemdataset_write_visitor(
dict visit_args,
CFileWriter* file_writer):
cdef:
str path
str base_dir
WrittenFile written_file
object parquet_metadata
FileFormat file_format
parquet_metadata = None
path = frombytes(deref(file_writer).destination().path)
base_dir = frombytes(visit_args['base_dir'])
file_format = FileFormat.wrap(file_writer.format())
written_file = file_format._finish_write(path, base_dir, file_writer)
visit_args['file_visitor'](written_file)
def _filesystemdataset_write(
Scanner data not None,
object base_dir not None,
str basename_template not None,
FileSystem filesystem not None,
Partitioning partitioning not None,
FileWriteOptions file_options not None,
int max_partitions,
object file_visitor,
str existing_data_behavior not None,
int max_open_files,
int max_rows_per_file,
int min_rows_per_group,
int max_rows_per_group,
bool create_dir
):
"""
CFileSystemDataset.Write wrapper
"""
cdef:
CFileSystemDatasetWriteOptions c_options
shared_ptr[CScanner] c_scanner
vector[shared_ptr[CRecordBatch]] c_batches
dict visit_args
c_options.file_write_options = file_options.unwrap()
c_options.filesystem = filesystem.unwrap()
c_options.base_dir = tobytes(_stringify_path(base_dir))
c_options.partitioning = partitioning.unwrap()
c_options.max_partitions = max_partitions
c_options.max_open_files = max_open_files
c_options.max_rows_per_file = max_rows_per_file
c_options.max_rows_per_group = max_rows_per_group
c_options.min_rows_per_group = min_rows_per_group
c_options.basename_template = tobytes(basename_template)
if existing_data_behavior == 'error':
c_options.existing_data_behavior = ExistingDataBehavior_ERROR
elif existing_data_behavior == 'overwrite_or_ignore':
c_options.existing_data_behavior =\
ExistingDataBehavior_OVERWRITE_OR_IGNORE
elif existing_data_behavior == 'delete_matching':
c_options.existing_data_behavior = ExistingDataBehavior_DELETE_MATCHING
else:
raise ValueError(
("existing_data_behavior must be one of 'error', ",
"'overwrite_or_ignore' or 'delete_matching'")
)
c_options.create_dir = create_dir
if file_visitor is not None:
visit_args = {'base_dir': c_options.base_dir,
'file_visitor': file_visitor}
# Need to use post_finish because parquet metadata is not available
# until after Finish has been called
c_options.writer_post_finish = BindFunction[cb_writer_finish_internal](
&_filesystemdataset_write_visitor, visit_args)
c_scanner = data.unwrap()
with nogil:
check_status(CFileSystemDataset.Write(c_options, c_scanner))
|