summaryrefslogtreecommitdiffstats
path: root/src/vehicles/Floater.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/vehicles/Floater.cpp195
1 files changed, 195 insertions, 0 deletions
diff --git a/src/vehicles/Floater.cpp b/src/vehicles/Floater.cpp
new file mode 100644
index 00000000..cabe00c3
--- /dev/null
+++ b/src/vehicles/Floater.cpp
@@ -0,0 +1,195 @@
+#include "common.h"
+#include "patcher.h"
+#include "Timer.h"
+#include "WaterLevel.h"
+#include "ModelIndices.h"
+#include "Physical.h"
+#include "Vehicle.h"
+#include "Floater.h"
+
+cBuoyancy &mod_Buoyancy = *(cBuoyancy*)0x8F2674;
+
+//static float fVolMultiplier = 1.0f;
+static float &fVolMultiplier = *(float*)0x601394;
+// amount of boat volume in bounding box
+// 1.0-volume is the empty space in the bbox
+static float fBoatVolumeDistribution[9] = {
+ // rear
+ 0.75f, 0.9f, 0.75f,
+ 0.95f, 1.0f, 0.95f,
+ 0.3f, 0.7f, 0.3f
+ // bow
+};
+
+bool
+cBuoyancy::ProcessBuoyancy(CPhysical *phys, float buoyancy, CVector *impulse, CVector *point)
+{
+ m_numSteps = 2.0f;
+
+ if(!CWaterLevel::GetWaterLevel(phys->GetPosition(), &m_waterlevel, phys->m_flagD8))
+ return false;
+ m_matrix = phys->GetMatrix();
+
+ PreCalcSetup(phys, buoyancy);
+ SimpleCalcBuoyancy();
+ float f = CalcBuoyancyForce(phys, impulse, point);
+ if(m_isBoat)
+ return true;
+ return f != 0.0f;
+}
+
+void
+cBuoyancy::PreCalcSetup(CPhysical *phys, float buoyancy)
+{
+ CColModel *colModel;
+
+ m_isBoat = phys->IsVehicle() && ((CVehicle*)phys)->IsBoat();
+ colModel = phys->GetColModel();
+ m_dimMin = colModel->boundingBox.min;
+ m_dimMax = colModel->boundingBox.max;
+
+ if(m_isBoat){
+ if(phys->GetModelIndex() == MI_PREDATOR){
+ m_dimMax.y *= 0.9f;
+ m_dimMin.y *= 0.9f;
+ }else if(phys->GetModelIndex() == MI_SPEEDER){
+ m_dimMax.y *= 1.1f;
+ m_dimMin.y *= 0.9f;
+ }else if(phys->GetModelIndex() == MI_REEFER){
+ m_dimMin.y *= 0.9f;
+ }else{
+ m_dimMax.y *= 0.9f;
+ m_dimMin.y *= 0.9f;
+ }
+ }
+
+ m_step = (m_dimMax - m_dimMin)/m_numSteps;
+
+ if(m_step.z > m_step.x && m_step.z > m_step.y){
+ m_stepRatio.x = m_step.x/m_step.z;
+ m_stepRatio.y = m_step.y/m_step.z;
+ m_stepRatio.z = 1.0f;
+ }else if(m_step.y > m_step.x && m_step.y > m_step.z){
+ m_stepRatio.x = m_step.x/m_step.y;
+ m_stepRatio.y = 1.0f;
+ m_stepRatio.z = m_step.z/m_step.y;
+ }else{
+ m_stepRatio.x = 1.0f;
+ m_stepRatio.y = m_step.y/m_step.x;
+ m_stepRatio.z = m_step.z/m_step.x;
+ }
+
+ m_haveVolume = false;
+ m_numPartialVolumes = 1.0f;
+ m_volumeUnderWater = 0.0f;
+ m_impulse = CVector(0.0f, 0.0f, 0.0f);
+ m_position = phys->GetPosition();
+ m_positionZ = CVector(0.0f, 0.0f, m_position.z);
+ m_buoyancy = buoyancy;
+ m_waterlevel += m_waterLevelInc;
+}
+
+void
+cBuoyancy::SimpleCalcBuoyancy(void)
+{
+ float x, y;
+ int ix, i;
+ tWaterLevel waterPosition;
+
+ // Floater is divided into 3x3 parts. Process and sum each of them
+ ix = 0;
+ for(x = m_dimMin.x; x <= m_dimMax.x; x += m_step.x){
+ i = ix;
+ for(y = m_dimMin.y; y <= m_dimMax.y; y += m_step.y){
+ CVector waterLevel(x, y, 0.0f);
+ FindWaterLevel(m_positionZ, &waterLevel, &waterPosition);
+ fVolMultiplier = m_isBoat ? fBoatVolumeDistribution[i] : 1.0f;
+ if(waterPosition != FLOATER_ABOVE_WATER)
+ SimpleSumBuoyancyData(waterLevel, waterPosition);
+ i += 3;
+ }
+ ix++;
+ }
+
+ m_volumeUnderWater /= (m_dimMax.z - m_dimMin.z)*sq(m_numSteps+1.0f);
+}
+
+float
+cBuoyancy::SimpleSumBuoyancyData(CVector &waterLevel, tWaterLevel waterPosition)
+{
+ static float fThisVolume;
+ static CVector AverageOfWaterLevel;
+ static float fFraction;
+ static float fRemainingSlice;
+
+ float submerged = Abs(waterLevel.z - m_dimMin.z);
+ // subtract empty space from submerged volume
+ fThisVolume = submerged - (1.0f - fVolMultiplier);
+ if(fThisVolume < 0.0f)
+ return 0.0f;
+
+ if(m_isBoat){
+ fThisVolume *= fVolMultiplier;
+ if(fThisVolume < 0.5f)
+ fThisVolume = 2.0f*sq(fThisVolume);
+ if(fThisVolume < 1.0f)
+ fThisVolume = sq(fThisVolume);
+ fThisVolume = sq(fThisVolume);
+ }
+
+ m_volumeUnderWater += fThisVolume;
+
+ AverageOfWaterLevel.x = waterLevel.x * m_stepRatio.x;
+ AverageOfWaterLevel.y = waterLevel.y * m_stepRatio.y;
+ AverageOfWaterLevel.z = (waterLevel.z+m_dimMin.z)/2.0f * m_stepRatio.z;
+
+ if(m_flipAverage)
+ AverageOfWaterLevel = -AverageOfWaterLevel;
+
+ fFraction = 1.0f/m_numPartialVolumes;
+ fRemainingSlice = 1.0f - fFraction;
+ m_impulse = m_impulse*fRemainingSlice + AverageOfWaterLevel*fThisVolume*fFraction;
+ m_numPartialVolumes += 1.0f;
+ m_haveVolume = true;
+ return fThisVolume;
+}
+
+void
+cBuoyancy::FindWaterLevel(const CVector &zpos, CVector *waterLevel, tWaterLevel *waterPosition)
+{
+ *waterPosition = FLOATER_IN_WATER;
+ // waterLevel is a local x,y point
+ // m_position is the global position of our floater
+ // zpos is the global z coordinate of our floater
+ CVector xWaterLevel = Multiply3x3(m_matrix, *waterLevel);
+ CWaterLevel::GetWaterLevel(xWaterLevel.x + m_position.x, xWaterLevel.y + m_position.y, m_position.z,
+ &waterLevel->z, true);
+ waterLevel->z -= xWaterLevel.z + zpos.z; // make local
+ if(waterLevel->z > m_dimMax.z){
+ waterLevel->z = m_dimMax.z;
+ *waterPosition = FLOATER_UNDER_WATER;
+ }else if(waterLevel->z < m_dimMin.z){
+ waterLevel->z = m_dimMin.z;
+ *waterPosition = FLOATER_ABOVE_WATER;
+ }
+}
+
+bool
+cBuoyancy::CalcBuoyancyForce(CPhysical *phys, CVector *impulse, CVector *point)
+{
+ if(!m_haveVolume)
+ return false;
+
+ *impulse = Multiply3x3(m_matrix, m_impulse);
+ *point = CVector(0.0f, 0.0f, m_volumeUnderWater*m_buoyancy*CTimer::GetTimeStep());
+ return true;
+}
+
+STARTPATCHES
+ InjectHook(0x546270, &cBuoyancy::ProcessBuoyancy, PATCH_JUMP);
+ InjectHook(0x546360, &cBuoyancy::PreCalcSetup, PATCH_JUMP);
+ InjectHook(0x5466F0, &cBuoyancy::SimpleCalcBuoyancy, PATCH_JUMP);
+ InjectHook(0x546820, &cBuoyancy::SimpleSumBuoyancyData, PATCH_JUMP);
+ InjectHook(0x546620, &cBuoyancy::FindWaterLevel, PATCH_JUMP);
+ InjectHook(0x5465A0, &cBuoyancy::CalcBuoyancyForce, PATCH_JUMP);
+ENDPATCHES