1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
#include "common.h"
#include "Quaternion.h"
// TODO: move more stuff into here
void
CVector2D::Normalise(void)
{
float sq = MagnitudeSqr();
assert(sq != 0.0f); // just be safe here
//if(sq > 0.0f){
float invsqrt = RecipSqrt(sq);
x *= invsqrt;
y *= invsqrt;
//}else
// x = 1.0f;
}
void
CMatrix::SetRotate(float xAngle, float yAngle, float zAngle)
{
float cX = Cos(xAngle);
float sX = Sin(xAngle);
float cY = Cos(yAngle);
float sY = Sin(yAngle);
float cZ = Cos(zAngle);
float sZ = Sin(zAngle);
m_matrix.right.x = cZ * cY - (sZ * sX) * sY;
m_matrix.right.y = (cZ * sX) * sY + sZ * cY;
m_matrix.right.z = -cX * sY;
m_matrix.up.x = -sZ * cX;
m_matrix.up.y = cZ * cX;
m_matrix.up.z = sX;
m_matrix.at.x = (sZ * sX) * cY + cZ * sY;
m_matrix.at.y = sZ * sY - (cZ * sX) * cY;
m_matrix.at.z = cX * cY;
m_matrix.pos.x = 0.0f;
m_matrix.pos.y = 0.0f;
m_matrix.pos.z = 0.0f;
}
void
CMatrix::Rotate(float x, float y, float z)
{
// TODO? do this directly without creating another matrix
CMatrix rot;
rot.SetRotate(x, y, z);
*this = rot * *this;
}
void
CMatrix::RotateX(float x)
{
Rotate(x, 0.0f, 0.0f);
}
void
CMatrix::RotateY(float y)
{
Rotate(0.0f, y, 0.0f);
}
void
CMatrix::RotateZ(float z)
{
Rotate(0.0f, 0.0f, z);
}
void
CMatrix::Reorthogonalise(void)
{
CVector &r = GetRight();
CVector &f = GetForward();
CVector &u = GetUp();
u = CrossProduct(r, f);
u.Normalise();
r = CrossProduct(f, u);
r.Normalise();
f = CrossProduct(u, r);
}
CMatrix&
Invert(const CMatrix &src, CMatrix &dst)
{
// GTA handles this as a raw 4x4 orthonormal matrix
// and trashes the RW flags, let's not do that
// actual copy of librw code:
RwMatrix *d = &dst.m_matrix;
const RwMatrix *s = &src.m_matrix;
d->right.x = s->right.x;
d->right.y = s->up.x;
d->right.z = s->at.x;
d->up.x = s->right.y;
d->up.y = s->up.y;
d->up.z = s->at.y;
d->at.x = s->right.z;
d->at.y = s->up.z;
d->at.z = s->at.z;
d->pos.x = -(s->pos.x*s->right.x +
s->pos.y*s->right.y +
s->pos.z*s->right.z);
d->pos.y = -(s->pos.x*s->up.x +
s->pos.y*s->up.y +
s->pos.z*s->up.z);
d->pos.z = -(s->pos.x*s->at.x +
s->pos.y*s->at.y +
s->pos.z*s->at.z);
d->flags = rwMATRIXTYPEORTHONORMAL;
return dst;
}
CVector
operator*(const CMatrix &mat, const CVector &vec)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z + mat.m_matrix.pos.x,
mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z + mat.m_matrix.pos.y,
mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z + mat.m_matrix.pos.z);
}
CMatrix
operator*(const CMatrix &m1, const CMatrix &m2)
{
CMatrix out;
RwMatrix *dst = &out.m_matrix;
const RwMatrix *src1 = &m1.m_matrix;
const RwMatrix *src2 = &m2.m_matrix;
dst->right.x = src1->right.x*src2->right.x + src1->up.x*src2->right.y + src1->at.x*src2->right.z;
dst->right.y = src1->right.y*src2->right.x + src1->up.y*src2->right.y + src1->at.y*src2->right.z;
dst->right.z = src1->right.z*src2->right.x + src1->up.z*src2->right.y + src1->at.z*src2->right.z;
dst->up.x = src1->right.x*src2->up.x + src1->up.x*src2->up.y + src1->at.x*src2->up.z;
dst->up.y = src1->right.y*src2->up.x + src1->up.y*src2->up.y + src1->at.y*src2->up.z;
dst->up.z = src1->right.z*src2->up.x + src1->up.z*src2->up.y + src1->at.z*src2->up.z;
dst->at.x = src1->right.x*src2->at.x + src1->up.x*src2->at.y + src1->at.x*src2->at.z;
dst->at.y = src1->right.y*src2->at.x + src1->up.y*src2->at.y + src1->at.y*src2->at.z;
dst->at.z = src1->right.z*src2->at.x + src1->up.z*src2->at.y + src1->at.z*src2->at.z;
dst->pos.x = src1->right.x*src2->pos.x + src1->up.x*src2->pos.y + src1->at.x*src2->pos.z + src1->pos.x;
dst->pos.y = src1->right.y*src2->pos.x + src1->up.y*src2->pos.y + src1->at.y*src2->pos.z + src1->pos.y;
dst->pos.z = src1->right.z*src2->pos.x + src1->up.z*src2->pos.y + src1->at.z*src2->pos.z + src1->pos.z;
return out;
}
const CVector
Multiply3x3(const CMatrix &mat, const CVector &vec)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z,
mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z,
mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z);
}
const CVector
Multiply3x3(const CVector &vec, const CMatrix &mat)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.right.y * vec.y + mat.m_matrix.right.z * vec.z,
mat.m_matrix.up.x * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.up.z * vec.z,
mat.m_matrix.at.x * vec.x + mat.m_matrix.at.y * vec.y + mat.m_matrix.at.z * vec.z);
}
void
CQuaternion::Slerp(const CQuaternion &q1, const CQuaternion &q2, float theta, float invSin, float t)
{
if(theta == 0.0f)
*this = q2;
else{
float w1, w2;
if(theta > PI/2){
theta = PI - theta;
w1 = Sin((1.0f - t) * theta) * invSin;
w2 = -Sin(t * theta) * invSin;
}else{
w1 = Sin((1.0f - t) * theta) * invSin;
w2 = Sin(t * theta) * invSin;
}
*this = w1*q1 + w2*q2;
}
}
void
CQuaternion::Set(RwV3d *axis, float angle)
{
float halfCos = Cos(angle*0.5f);
float halfSin = Sin(angle*0.5f);
x = axis->x*halfSin;
y = axis->y*halfSin;
z = axis->z*halfSin;
w = halfCos;
}
void
CQuaternion::Get(RwMatrix *matrix)
{
float x2 = x+x;
float y2 = y+y;
float z2 = z+z;
float x_2x = x * x2;
float x_2y = x * y2;
float x_2z = x * z2;
float y_2y = y * y2;
float y_2z = y * z2;
float z_2z = z * z2;
float w_2x = w * x2;
float w_2y = w * y2;
float w_2z = w * z2;
matrix->right.x = 1.0f - (y_2y + z_2z);
matrix->up.x = x_2y - w_2z;
matrix->at.x = x_2z + w_2y;
matrix->right.y = x_2y + w_2z;
matrix->up.y = 1.0f - (x_2x + z_2z);
matrix->at.y = y_2z - w_2x;
matrix->right.z = x_2z - w_2y;
matrix->up.z = y_2z + w_2x;
matrix->at.z = 1.0f - (x_2x + y_2y);
}
|