summaryrefslogtreecommitdiffstats
path: root/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/core/arm/skyeye_common/vfp/vfpsingle.cpp1272
1 files changed, 0 insertions, 1272 deletions
diff --git a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
deleted file mode 100644
index 108f03aa9..000000000
--- a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
+++ /dev/null
@@ -1,1272 +0,0 @@
-/*
- vfp/vfpsingle.c - ARM VFPv3 emulation unit - SoftFloat single instruction
- Copyright (C) 2003 Skyeye Develop Group
- for help please send mail to <skyeye-developer@lists.gro.clinux.org>
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-*/
-
-/*
- * This code is derived in part from :
- * - Android kernel
- * - John R. Housers softfloat library, which
- * carries the following notice:
- *
- * ===========================================================================
- * This C source file is part of the SoftFloat IEC/IEEE Floating-point
- * Arithmetic Package, Release 2.
- *
- * Written by John R. Hauser. This work was made possible in part by the
- * International Computer Science Institute, located at Suite 600, 1947 Center
- * Street, Berkeley, California 94704. Funding was partially provided by the
- * National Science Foundation under grant MIP-9311980. The original version
- * of this code was written as part of a project to build a fixed-point vector
- * processor in collaboration with the University of California at Berkeley,
- * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- * arithmetic/softfloat.html'.
- *
- * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- *
- * Derivative works are acceptable, even for commercial purposes, so long as
- * (1) they include prominent notice that the work is derivative, and (2) they
- * include prominent notice akin to these three paragraphs for those parts of
- * this code that are retained.
- * ===========================================================================
- */
-
-#include <algorithm>
-#include <cinttypes>
-#include "common/common_funcs.h"
-#include "common/common_types.h"
-#include "common/logging/log.h"
-#include "core/arm/skyeye_common/vfp/asm_vfp.h"
-#include "core/arm/skyeye_common/vfp/vfp.h"
-#include "core/arm/skyeye_common/vfp/vfp_helper.h"
-
-static struct vfp_single vfp_single_default_qnan = {
- 255, 0, VFP_SINGLE_SIGNIFICAND_QNAN,
-};
-
-static void vfp_single_dump(const char* str, struct vfp_single* s) {
- LOG_TRACE(Core_ARM, "%s: sign=%d exponent=%d significand=%08x", str, s->sign != 0,
- s->exponent, s->significand);
-}
-
-static void vfp_single_normalise_denormal(struct vfp_single* vs) {
- int bits = 31 - fls(vs->significand);
-
- vfp_single_dump("normalise_denormal: in", vs);
-
- if (bits) {
- vs->exponent -= bits - 1;
- vs->significand <<= bits;
- }
-
- vfp_single_dump("normalise_denormal: out", vs);
-}
-
-u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single* vs, u32 fpscr,
- u32 exceptions, const char* func) {
- u32 significand, incr, rmode;
- int exponent, shift, underflow;
-
- vfp_single_dump("pack: in", vs);
-
- /*
- * Infinities and NaNs are a special case.
- */
- if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
- goto pack;
-
- /*
- * Special-case zero.
- */
- if (vs->significand == 0) {
- vs->exponent = 0;
- goto pack;
- }
-
- exponent = vs->exponent;
- significand = vs->significand;
-
- /*
- * Normalise first. Note that we shift the significand up to
- * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
- * significant bit.
- */
- shift = 32 - fls(significand);
- if (shift < 32 && shift) {
- exponent -= shift;
- significand <<= shift;
- }
-
-#if 1
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: normalised", vs);
-#endif
-
- /*
- * Tiny number?
- */
- underflow = exponent < 0;
- if (underflow) {
- significand = vfp_shiftright32jamming(significand, -exponent);
- exponent = 0;
-#if 1
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: tiny number", vs);
-#endif
- if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
- underflow = 0;
-
- int type = vfp_single_type(vs);
-
- if ((type & VFP_DENORMAL) && (fpscr & FPSCR_FLUSH_TO_ZERO)) {
- // Flush denormal to positive 0
- significand = 0;
-
- vs->sign = 0;
- vs->significand = significand;
-
- underflow = 0;
- exceptions |= FPSCR_UFC;
- }
- }
-
- /*
- * Select rounding increment.
- */
- incr = 0;
- rmode = fpscr & FPSCR_RMODE_MASK;
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 1 << VFP_SINGLE_LOW_BITS;
- if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
- incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
-
- LOG_TRACE(Core_ARM, "rounding increment = 0x%08x", incr);
-
- /*
- * Is our rounding going to overflow?
- */
- if ((significand + incr) < significand) {
- exponent += 1;
- significand = (significand >> 1) | (significand & 1);
- incr >>= 1;
-#if 1
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: overflow", vs);
-#endif
- }
-
- /*
- * If any of the low bits (which will be shifted out of the
- * number) are non-zero, the result is inexact.
- */
- if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
- exceptions |= FPSCR_IXC;
-
- /*
- * Do our rounding.
- */
- significand += incr;
-
- /*
- * Infinity?
- */
- if (exponent >= 254) {
- exceptions |= FPSCR_OFC | FPSCR_IXC;
- if (incr == 0) {
- vs->exponent = 253;
- vs->significand = 0x7fffffff;
- } else {
- vs->exponent = 255; /* infinity */
- vs->significand = 0;
- }
- } else {
- if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
- exponent = 0;
- if (exponent || significand > 0x80000000)
- underflow = 0;
- if (underflow)
- exceptions |= FPSCR_UFC;
- vs->exponent = exponent;
- vs->significand = significand >> 1;
- }
-
-pack:
- vfp_single_dump("pack: final", vs);
- {
- s32 d = vfp_single_pack(vs);
- LOG_TRACE(Core_ARM, "%s: d(s%d)=%08x exceptions=%08x", func, sd, d, exceptions);
- vfp_put_float(state, d, sd);
- }
-
- return exceptions;
-}
-
-/*
- * Propagate the NaN, setting exceptions if it is signalling.
- * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
- */
-static u32 vfp_propagate_nan(struct vfp_single* vsd, struct vfp_single* vsn, struct vfp_single* vsm,
- u32 fpscr) {
- struct vfp_single* nan;
- int tn, tm = 0;
-
- tn = vfp_single_type(vsn);
-
- if (vsm)
- tm = vfp_single_type(vsm);
-
- if (fpscr & FPSCR_DEFAULT_NAN)
- /*
- * Default NaN mode - always returns a quiet NaN
- */
- nan = &vfp_single_default_qnan;
- else {
- /*
- * Contemporary mode - select the first signalling
- * NAN, or if neither are signalling, the first
- * quiet NAN.
- */
- if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
- nan = vsn;
- else
- nan = vsm;
- /*
- * Make the NaN quiet.
- */
- nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
- }
-
- *vsd = *nan;
-
- /*
- * If one was a signalling NAN, raise invalid operation.
- */
- return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
-}
-
-/*
- * Extended operations
- */
-static u32 vfp_single_fabs(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- vfp_put_float(state, vfp_single_packed_abs(m), sd);
- return 0;
-}
-
-static u32 vfp_single_fcpy(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- vfp_put_float(state, m, sd);
- return 0;
-}
-
-static u32 vfp_single_fneg(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- vfp_put_float(state, vfp_single_packed_negate(m), sd);
- return 0;
-}
-
-static const u16 sqrt_oddadjust[] = {
- 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
- 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67,
-};
-
-static const u16 sqrt_evenadjust[] = {
- 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
- 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002,
-};
-
-u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) {
- int index;
- u32 z, a;
-
- if ((significand & 0xc0000000) != 0x40000000) {
- LOG_TRACE(Core_ARM, "invalid significand");
- }
-
- a = significand << 1;
- index = (a >> 27) & 15;
- if (exponent & 1) {
- z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
- z = ((a / z) << 14) + (z << 15);
- a >>= 1;
- } else {
- z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
- z = a / z + z;
- z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
- if (z <= a)
- return (s32)a >> 1;
- }
- {
- u64 v = (u64)a << 31;
- do_div(v, z);
- return (u32)(v + (z >> 1));
- }
-}
-
-static u32 vfp_single_fsqrt(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vsm, vsd, *vsp;
- int ret, tm;
- u32 exceptions = 0;
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- tm = vfp_single_type(&vsm);
- if (tm & (VFP_NAN | VFP_INFINITY)) {
- vsp = &vsd;
-
- if (tm & VFP_NAN)
- ret = vfp_propagate_nan(vsp, &vsm, nullptr, fpscr);
- else if (vsm.sign == 0) {
- sqrt_copy:
- vsp = &vsm;
- ret = 0;
- } else {
- sqrt_invalid:
- vsp = &vfp_single_default_qnan;
- ret = FPSCR_IOC;
- }
- vfp_put_float(state, vfp_single_pack(vsp), sd);
- return ret;
- }
-
- /*
- * sqrt(+/- 0) == +/- 0
- */
- if (tm & VFP_ZERO)
- goto sqrt_copy;
-
- /*
- * Normalise a denormalised number
- */
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
-
- /*
- * sqrt(<0) = invalid
- */
- if (vsm.sign)
- goto sqrt_invalid;
-
- vfp_single_dump("sqrt", &vsm);
-
- /*
- * Estimate the square root.
- */
- vsd.sign = 0;
- vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
- vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
-
- vfp_single_dump("sqrt estimate", &vsd);
-
- /*
- * And now adjust.
- */
- if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
- if (vsd.significand < 2) {
- vsd.significand = 0xffffffff;
- } else {
- u64 term;
- s64 rem;
- vsm.significand <<= static_cast<u32>((vsm.exponent & 1) == 0);
- term = (u64)vsd.significand * vsd.significand;
- rem = ((u64)vsm.significand << 32) - term;
-
- LOG_TRACE(Core_ARM, "term=%016" PRIx64 "rem=%016" PRIx64, term, rem);
-
- while (rem < 0) {
- vsd.significand -= 1;
- rem += ((u64)vsd.significand << 1) | 1;
- }
- vsd.significand |= rem != 0;
- }
- }
- vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
-
- exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fsqrt");
-
- return exceptions;
-}
-
-/*
- * Equal := ZC
- * Less than := N
- * Greater than := C
- * Unordered := CV
- */
-static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u32 fpscr) {
- s32 d;
- u32 ret = 0;
-
- d = vfp_get_float(state, sd);
- if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
- ret |= FPSCR_CFLAG | FPSCR_VFLAG;
- if (signal_on_qnan ||
- !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
-
- if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
- ret |= FPSCR_CFLAG | FPSCR_VFLAG;
- if (signal_on_qnan ||
- !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
-
- if (ret == 0) {
- if (d == m || vfp_single_packed_abs(d | m) == 0) {
- /*
- * equal
- */
- ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
- } else if (vfp_single_packed_sign(d ^ m)) {
- /*
- * different signs
- */
- if (vfp_single_packed_sign(d))
- /*
- * d is negative, so d < m
- */
- ret |= FPSCR_NFLAG;
- else
- /*
- * d is positive, so d > m
- */
- ret |= FPSCR_CFLAG;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
- /*
- * d < m
- */
- ret |= FPSCR_NFLAG;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
- /*
- * d > m
- */
- ret |= FPSCR_CFLAG;
- }
- }
- return ret;
-}
-
-static u32 vfp_single_fcmp(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_compare(state, sd, 0, m, fpscr);
-}
-
-static u32 vfp_single_fcmpe(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_compare(state, sd, 1, m, fpscr);
-}
-
-static u32 vfp_single_fcmpz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_compare(state, sd, 0, 0, fpscr);
-}
-
-static u32 vfp_single_fcmpez(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_compare(state, sd, 1, 0, fpscr);
-}
-
-static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vsm;
- struct vfp_double vdd;
- int tm;
- u32 exceptions = 0;
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
-
- tm = vfp_single_type(&vsm);
-
- /*
- * If we have a signalling NaN, signal invalid operation.
- */
- if (tm == VFP_SNAN)
- exceptions |= FPSCR_IOC;
-
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
-
- vdd.sign = vsm.sign;
- vdd.significand = (u64)vsm.significand << 32;
-
- /*
- * If we have an infinity or NaN, the exponent must be 2047.
- */
- if (tm & (VFP_INFINITY | VFP_NAN)) {
- vdd.exponent = 2047;
- if (tm == VFP_QNAN)
- vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
- goto pack_nan;
- } else if (tm & VFP_ZERO)
- vdd.exponent = 0;
- else
- vdd.exponent = vsm.exponent + (1023 - 127);
-
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fcvtd");
-
-pack_nan:
- vfp_put_double(state, vfp_double_pack(&vdd), dd);
- return exceptions;
-}
-
-static u32 vfp_single_fuito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vs;
-
- vs.sign = 0;
- vs.exponent = 127 + 31 - 1;
- vs.significand = (u32)m;
-
- return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fuito");
-}
-
-static u32 vfp_single_fsito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vs;
-
- vs.sign = (m & 0x80000000) >> 16;
- vs.exponent = 127 + 31 - 1;
- vs.significand = vs.sign ? -m : m;
-
- return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fsito");
-}
-
-static u32 vfp_single_ftoui(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- vfp_single_dump("VSM", &vsm);
-
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_single_type(&vsm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
-
- if (tm & VFP_NAN)
- vsm.sign = 1;
-
- if (vsm.exponent >= 127 + 32) {
- d = vsm.sign ? 0 : 0xffffffff;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
-
- /*
- * 2^0 <= m < 2^32-2^8
- */
- d = (vsm.significand << 1) >> shift;
- if (shift > 0) {
- rem = (vsm.significand << 1) << (32 - shift);
- } else {
- rem = 0;
- }
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
-
- if ((rem + incr) < rem) {
- if (d < 0xffffffff)
- d += 1;
- else
- exceptions |= FPSCR_IOC;
- }
-
- if (d && vsm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- if (rmode == FPSCR_ROUND_NEAREST) {
- if (vsm.exponent >= 126) {
- d = vsm.sign ? 0 : 1;
- exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC;
- } else {
- exceptions |= FPSCR_IXC;
- }
- } else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) {
- d = 1;
- exceptions |= FPSCR_IXC;
- } else if (rmode == FPSCR_ROUND_MINUSINF) {
- exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC;
- } else {
- exceptions |= FPSCR_IXC;
- }
- }
- }
-
- LOG_TRACE(Core_ARM, "ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
-
- vfp_put_float(state, d, sd);
-
- return exceptions;
-}
-
-static u32 vfp_single_ftouiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_single_ftoui(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
-}
-
-static u32 vfp_single_ftosi(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- vfp_single_dump("VSM", &vsm);
-
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_single_type(&vsm);
- if (vfp_single_type(&vsm) & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
-
- if (tm & VFP_NAN) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127 + 31) {
- /*
- * m >= 2^31-2^7: invalid
- */
- d = 0x7fffffff;
- if (vsm.sign)
- d = ~d;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
-
- /* 2^0 <= m <= 2^31-2^7 */
- d = (vsm.significand << 1) >> shift;
- rem = (vsm.significand << 1) << (32 - shift);
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
-
- if ((rem + incr) < rem && d < 0xffffffff)
- d += 1;
- if (d > (0x7fffffffu + (vsm.sign != 0))) {
- d = (0x7fffffffu + (vsm.sign != 0));
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
-
- if (vsm.sign)
- d = (~d + 1);
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_NEAREST) {
- if (vsm.exponent >= 126)
- d = vsm.sign ? 0xffffffff : 1;
- } else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) {
- d = 1;
- } else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
- d = 0xffffffff;
- }
- }
- }
-
- LOG_TRACE(Core_ARM, "ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
-
- vfp_put_float(state, (s32)d, sd);
-
- return exceptions;
-}
-
-static u32 vfp_single_ftosiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) {
- return vfp_single_ftosi(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
-}
-
-static struct op fops_ext[] = {
- {vfp_single_fcpy, 0}, // 0x00000000 - FEXT_FCPY
- {vfp_single_fabs, 0}, // 0x00000001 - FEXT_FABS
- {vfp_single_fneg, 0}, // 0x00000002 - FEXT_FNEG
- {vfp_single_fsqrt, 0}, // 0x00000003 - FEXT_FSQRT
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_single_fcmp, OP_SCALAR}, // 0x00000008 - FEXT_FCMP
- {vfp_single_fcmpe, OP_SCALAR}, // 0x00000009 - FEXT_FCMPE
- {vfp_single_fcmpz, OP_SCALAR}, // 0x0000000A - FEXT_FCMPZ
- {vfp_single_fcmpez, OP_SCALAR}, // 0x0000000B - FEXT_FCMPEZ
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_single_fcvtd, OP_SCALAR | OP_DD}, // 0x0000000F - FEXT_FCVT
- {vfp_single_fuito, OP_SCALAR}, // 0x00000010 - FEXT_FUITO
- {vfp_single_fsito, OP_SCALAR}, // 0x00000011 - FEXT_FSITO
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_single_ftoui, OP_SCALAR}, // 0x00000018 - FEXT_FTOUI
- {vfp_single_ftouiz, OP_SCALAR}, // 0x00000019 - FEXT_FTOUIZ
- {vfp_single_ftosi, OP_SCALAR}, // 0x0000001A - FEXT_FTOSI
- {vfp_single_ftosiz, OP_SCALAR}, // 0x0000001B - FEXT_FTOSIZ
-};
-
-static u32 vfp_single_fadd_nonnumber(struct vfp_single* vsd, struct vfp_single* vsn,
- struct vfp_single* vsm, u32 fpscr) {
- struct vfp_single* vsp;
- u32 exceptions = 0;
- int tn, tm;
-
- tn = vfp_single_type(vsn);
- tm = vfp_single_type(vsm);
-
- if (tn & tm & VFP_INFINITY) {
- /*
- * Two infinities. Are they different signs?
- */
- if (vsn->sign ^ vsm->sign) {
- /*
- * different signs -> invalid
- */
- exceptions |= FPSCR_IOC;
- vsp = &vfp_single_default_qnan;
- } else {
- /*
- * same signs -> valid
- */
- vsp = vsn;
- }
- } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
- /*
- * One infinity and one number -> infinity
- */
- vsp = vsn;
- } else {
- /*
- * 'n' is a NaN of some type
- */
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- }
- *vsd = *vsp;
- return exceptions;
-}
-
-static u32 vfp_single_add(struct vfp_single* vsd, struct vfp_single* vsn, struct vfp_single* vsm,
- u32 fpscr) {
- u32 exp_diff, m_sig;
-
- if (vsn->significand & 0x80000000 || vsm->significand & 0x80000000) {
- LOG_WARNING(Core_ARM, "bad FP values");
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
- }
-
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- std::swap(vsm, vsn);
- }
-
- /*
- * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
- * infinity or a NaN here.
- */
- if (vsn->exponent == 255)
- return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
-
- /*
- * We have two proper numbers, where 'vsn' is the larger magnitude.
- *
- * Copy 'n' to 'd' before doing the arithmetic.
- */
- *vsd = *vsn;
-
- /*
- * Align both numbers.
- */
- exp_diff = vsn->exponent - vsm->exponent;
- m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
-
- /*
- * If the signs are different, we are really subtracting.
- */
- if (vsn->sign ^ vsm->sign) {
- m_sig = vsn->significand - m_sig;
- if ((s32)m_sig < 0) {
- vsd->sign = vfp_sign_negate(vsd->sign);
- m_sig = (~m_sig + 1);
- } else if (m_sig == 0) {
- vsd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
- }
- } else {
- m_sig = vsn->significand + m_sig;
- }
- vsd->significand = m_sig;
-
- return 0;
-}
-
-static u32 vfp_single_multiply(struct vfp_single* vsd, struct vfp_single* vsn,
- struct vfp_single* vsm, u32 fpscr) {
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
-
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- std::swap(vsm, vsn);
- LOG_TRACE(Core_ARM, "swapping M <-> N");
- }
-
- vsd->sign = vsn->sign ^ vsm->sign;
-
- /*
- * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
- */
- if (vsn->exponent == 255) {
- if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- if ((vsm->exponent | vsm->significand) == 0) {
- *vsd = vfp_single_default_qnan;
- return FPSCR_IOC;
- }
- vsd->exponent = vsn->exponent;
- vsd->significand = 0;
- return 0;
- }
-
- /*
- * If 'm' is zero, the result is always zero. In this case,
- * 'n' may be zero or a number, but it doesn't matter which.
- */
- if ((vsm->exponent | vsm->significand) == 0) {
- vsd->exponent = 0;
- vsd->significand = 0;
- return 0;
- }
-
- /*
- * We add 2 to the destination exponent for the same reason as
- * the addition case - though this time we have +1 from each
- * input operand.
- */
- vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
- vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
-
- vfp_single_dump("VSD", vsd);
- return 0;
-}
-
-#define NEG_MULTIPLY (1 << 0)
-#define NEG_SUBTRACT (1 << 1)
-
-static u32 vfp_single_multiply_accumulate(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr,
- u32 negate, const char* func) {
- vfp_single vsd, vsp, vsn, vsm;
- u32 exceptions = 0;
- s32 v;
-
- v = vfp_get_float(state, sn);
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, v);
- exceptions |= vfp_single_unpack(&vsn, v, fpscr);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
-
- exceptions |= vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
-
- if (negate & NEG_MULTIPLY)
- vsp.sign = vfp_sign_negate(vsp.sign);
-
- v = vfp_get_float(state, sd);
- LOG_TRACE(Core_ARM, "s%u = %08x", sd, v);
- exceptions |= vfp_single_unpack(&vsn, v, fpscr);
- if (vsn.exponent == 0 && vsn.significand != 0)
- vfp_single_normalise_denormal(&vsn);
-
- if (negate & NEG_SUBTRACT)
- vsn.sign = vfp_sign_negate(vsn.sign);
-
- exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
-
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, func);
-}
-
-/*
- * Standard operations
- */
-
-/*
- * sd = sd + (sn * sm)
- */
-static u32 vfp_single_fmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd);
- return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, 0, "fmac");
-}
-
-/*
- * sd = sd - (sn * sm)
- */
-static u32 vfp_single_fnmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- // TODO: this one has its arguments inverted, investigate.
- LOG_TRACE(Core_ARM, "s%u = %08x", sd, sn);
- return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
-}
-
-/*
- * sd = -sd + (sn * sm)
- */
-static u32 vfp_single_fmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd);
- return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
-}
-
-/*
- * sd = -sd - (sn * sm)
- */
-static u32 vfp_single_fnmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd);
- return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY,
- "fnmsc");
-}
-
-/*
- * sd = sn * sm
- */
-static u32 vfp_single_fmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(state, sn);
-
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, n);
-
- exceptions |= vfp_single_unpack(&vsn, n, fpscr);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
-
- exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fmul");
-}
-
-/*
- * sd = -(sn * sm)
- */
-static u32 vfp_single_fnmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(state, sn);
-
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, n);
-
- exceptions |= vfp_single_unpack(&vsn, n, fpscr);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
-
- exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- vsd.sign = vfp_sign_negate(vsd.sign);
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fnmul");
-}
-
-/*
- * sd = sn + sm
- */
-static u32 vfp_single_fadd(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(state, sn);
-
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, n);
-
- /*
- * Unpack and normalise denormals.
- */
- exceptions |= vfp_single_unpack(&vsn, n, fpscr);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
-
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
-
- exceptions |= vfp_single_add(&vsd, &vsn, &vsm, fpscr);
-
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fadd");
-}
-
-/*
- * sd = sn - sm
- */
-static u32 vfp_single_fsub(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd);
- /*
- * Subtraction is addition with one sign inverted. Unpack the second operand to perform FTZ if
- * necessary, we can't let fadd do this because a denormal in m might get flushed to +0 in FTZ
- * mode, and the resulting sign of 0 OP +0 differs between fadd and fsub. We do not need to do
- * this for n because +0 OP 0 is always +0 for both fadd and fsub.
- */
- struct vfp_single vsm;
- u32 exceptions = vfp_single_unpack(&vsm, m, fpscr);
- if (exceptions & FPSCR_IDC) {
- // The value was flushed to zero, re-pack it.
- m = vfp_single_pack(&vsm);
- }
-
- if (m != 0x7FC00000) // Only negate if m isn't NaN.
- m = vfp_single_packed_negate(m);
-
- return vfp_single_fadd(state, sd, sn, m, fpscr) | exceptions;
-}
-
-/*
- * sd = sn / sm
- */
-static u32 vfp_single_fdiv(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(state, sn);
- int tm, tn;
-
- LOG_TRACE(Core_ARM, "s%u = %08x", sn, n);
-
- exceptions |= vfp_single_unpack(&vsn, n, fpscr);
- exceptions |= vfp_single_unpack(&vsm, m, fpscr);
-
- vsd.sign = vsn.sign ^ vsm.sign;
-
- tn = vfp_single_type(&vsn);
- tm = vfp_single_type(&vsm);
-
- /*
- * Is n a NAN?
- */
- if (tn & VFP_NAN)
- goto vsn_nan;
-
- /*
- * Is m a NAN?
- */
- if (tm & VFP_NAN)
- goto vsm_nan;
-
- /*
- * If n and m are infinity, the result is invalid
- * If n and m are zero, the result is invalid
- */
- if (tm & tn & (VFP_INFINITY | VFP_ZERO))
- goto invalid;
-
- /*
- * If n is infinity, the result is infinity
- */
- if (tn & VFP_INFINITY)
- goto infinity;
-
- /*
- * If m is zero, raise div0 exception
- */
- if (tm & VFP_ZERO)
- goto divzero;
-
- /*
- * If m is infinity, or n is zero, the result is zero
- */
- if (tm & VFP_INFINITY || tn & VFP_ZERO)
- goto zero;
-
- if (tn & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsn);
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
-
- /*
- * Ok, we have two numbers, we can perform division.
- */
- vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
- vsm.significand <<= 1;
- if (vsm.significand <= (2 * vsn.significand)) {
- vsn.significand >>= 1;
- vsd.exponent++;
- }
- {
- u64 significand = (u64)vsn.significand << 32;
- do_div(significand, vsm.significand);
- vsd.significand = (u32)significand;
- }
- if ((vsd.significand & 0x3f) == 0)
- vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
-
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fdiv");
-
-vsn_nan:
- exceptions |= vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
-pack:
- vfp_put_float(state, vfp_single_pack(&vsd), sd);
- return exceptions;
-
-vsm_nan:
- exceptions |= vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
- goto pack;
-
-zero:
- vsd.exponent = 0;
- vsd.significand = 0;
- goto pack;
-
-divzero:
- exceptions |= FPSCR_DZC;
-infinity:
- vsd.exponent = 255;
- vsd.significand = 0;
- goto pack;
-
-invalid:
- vfp_put_float(state, vfp_single_pack(&vfp_single_default_qnan), sd);
- return FPSCR_IOC;
-}
-
-static struct op fops[] = {
- {vfp_single_fmac, 0}, {vfp_single_fmsc, 0}, {vfp_single_fmul, 0},
- {vfp_single_fadd, 0}, {vfp_single_fnmac, 0}, {vfp_single_fnmsc, 0},
- {vfp_single_fnmul, 0}, {vfp_single_fsub, 0}, {vfp_single_fdiv, 0},
-};
-
-#define FREG_BANK(x) ((x)&0x18)
-#define FREG_IDX(x) ((x)&7)
-
-u32 vfp_single_cpdo(ARMul_State* state, u32 inst, u32 fpscr) {
- u32 op = inst & FOP_MASK;
- u32 exceptions = 0;
- unsigned int dest;
- unsigned int sn = vfp_get_sn(inst);
- unsigned int sm = vfp_get_sm(inst);
- unsigned int vecitr, veclen, vecstride;
- struct op* fop;
-
- vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
-
- fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
-
- /*
- * fcvtsd takes a dN register number as destination, not sN.
- * Technically, if bit 0 of dd is set, this is an invalid
- * instruction. However, we ignore this for efficiency.
- * It also only operates on scalars.
- */
- if (fop->flags & OP_DD)
- dest = vfp_get_dd(inst);
- else
- dest = vfp_get_sd(inst);
-
- /*
- * If destination bank is zero, vector length is always '1'.
- * ARM DDI0100F C5.1.3, C5.3.2.
- */
- if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
- veclen = 0;
- else
- veclen = fpscr & FPSCR_LENGTH_MASK;
-
- LOG_TRACE(Core_ARM, "vecstride=%u veclen=%u", vecstride, (veclen >> FPSCR_LENGTH_BIT) + 1);
-
- if (!fop->fn) {
- LOG_CRITICAL(Core_ARM, "could not find single op %d, inst=0x%x@0x%x", FEXT_TO_IDX(inst),
- inst, state->Reg[15]);
- Crash();
- goto invalid;
- }
-
- for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
- s32 m = vfp_get_float(state, sm);
- u32 except;
- char type;
-
- type = (fop->flags & OP_DD) ? 'd' : 's';
- if (op == FOP_EXT)
- LOG_TRACE(Core_ARM, "itr%d (%c%u) = op[%u] (s%u=%08x)", vecitr >> FPSCR_LENGTH_BIT,
- type, dest, sn, sm, m);
- else
- LOG_TRACE(Core_ARM, "itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)",
- vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, FOP_TO_IDX(op), sm, m);
-
- except = fop->fn(state, dest, sn, m, fpscr);
- LOG_TRACE(Core_ARM, "itr%d: exceptions=%08x", vecitr >> FPSCR_LENGTH_BIT, except);
-
- exceptions |= except & ~VFP_NAN_FLAG;
-
- /*
- * CHECK: It appears to be undefined whether we stop when
- * we encounter an exception. We continue.
- */
- dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
- sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
- if (FREG_BANK(sm) != 0)
- sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
- }
- return exceptions;
-
-invalid:
- return (u32)-1;
-}