summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_page_table.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/k_page_table.cpp')
-rw-r--r--src/core/hle/kernel/k_page_table.cpp938
1 files changed, 731 insertions, 207 deletions
diff --git a/src/core/hle/kernel/k_page_table.cpp b/src/core/hle/kernel/k_page_table.cpp
index 2ebbc0819..02d93b12e 100644
--- a/src/core/hle/kernel/k_page_table.cpp
+++ b/src/core/hle/kernel/k_page_table.cpp
@@ -41,27 +41,12 @@ constexpr std::size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceT
}
}
-constexpr u64 GetAddressInRange(const KMemoryInfo& info, VAddr addr) {
- if (info.GetAddress() < addr) {
- return addr;
- }
- return info.GetAddress();
-}
-
-constexpr std::size_t GetSizeInRange(const KMemoryInfo& info, VAddr start, VAddr end) {
- std::size_t size{info.GetSize()};
- if (info.GetAddress() < start) {
- size -= start - info.GetAddress();
- }
- if (info.GetEndAddress() > end) {
- size -= info.GetEndAddress() - end;
- }
- return size;
-}
-
} // namespace
-KPageTable::KPageTable(Core::System& system_) : system{system_} {}
+KPageTable::KPageTable(Core::System& system_)
+ : general_lock{system_.Kernel()}, map_physical_memory_lock{system_.Kernel()}, system{system_} {}
+
+KPageTable::~KPageTable() = default;
ResultCode KPageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type,
bool enable_aslr, VAddr code_addr,
@@ -282,96 +267,228 @@ ResultCode KPageTable::MapProcessCode(VAddr addr, std::size_t num_pages, KMemory
R_UNLESS(this->CanContain(addr, size, state), ResultInvalidCurrentMemory);
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Verify that the destination memory is unmapped.
R_TRY(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
+ KPageLinkedList pg;
+ R_TRY(system.Kernel().MemoryManager().AllocateAndOpen(
+ &pg, num_pages,
+ KMemoryManager::EncodeOption(KMemoryManager::Pool::Application, allocation_option)));
- KPageLinkedList page_linked_list;
- R_TRY(system.Kernel().MemoryManager().Allocate(page_linked_list, num_pages, memory_pool,
- allocation_option));
- R_TRY(Operate(addr, num_pages, page_linked_list, OperationType::MapGroup));
+ R_TRY(Operate(addr, num_pages, pg, OperationType::MapGroup));
block_manager->Update(addr, num_pages, state, perm);
return ResultSuccess;
}
-ResultCode KPageTable::MapCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
-
- const std::size_t num_pages{size / PageSize};
+ResultCode KPageTable::MapCodeMemory(VAddr dst_address, VAddr src_address, std::size_t size) {
+ // Validate the mapping request.
+ R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
+ ResultInvalidMemoryRegion);
- KMemoryState state{};
- KMemoryPermission perm{};
- CASCADE_CODE(CheckMemoryState(&state, &perm, nullptr, nullptr, src_addr, size,
- KMemoryState::All, KMemoryState::Normal, KMemoryPermission::All,
- KMemoryPermission::UserReadWrite, KMemoryAttribute::Mask,
- KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped));
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
- if (IsRegionMapped(dst_addr, size)) {
- return ResultInvalidCurrentMemory;
- }
+ // Verify that the source memory is normal heap.
+ KMemoryState src_state{};
+ KMemoryPermission src_perm{};
+ std::size_t num_src_allocator_blocks{};
+ R_TRY(this->CheckMemoryState(&src_state, &src_perm, nullptr, &num_src_allocator_blocks,
+ src_address, size, KMemoryState::All, KMemoryState::Normal,
+ KMemoryPermission::All, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::All, KMemoryAttribute::None));
- KPageLinkedList page_linked_list;
- AddRegionToPages(src_addr, num_pages, page_linked_list);
+ // Verify that the destination memory is unmapped.
+ std::size_t num_dst_allocator_blocks{};
+ R_TRY(this->CheckMemoryState(&num_dst_allocator_blocks, dst_address, size, KMemoryState::All,
+ KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+ // Map the code memory.
{
- auto block_guard = detail::ScopeExit(
- [&] { Operate(src_addr, num_pages, perm, OperationType::ChangePermissions); });
+ // Determine the number of pages being operated on.
+ const std::size_t num_pages = size / PageSize;
- CASCADE_CODE(Operate(src_addr, num_pages, KMemoryPermission::None,
- OperationType::ChangePermissions));
- CASCADE_CODE(MapPages(dst_addr, page_linked_list, KMemoryPermission::None));
+ // Create page groups for the memory being mapped.
+ KPageLinkedList pg;
+ AddRegionToPages(src_address, num_pages, pg);
- block_guard.Cancel();
- }
+ // Reprotect the source as kernel-read/not mapped.
+ const auto new_perm = static_cast<KMemoryPermission>(KMemoryPermission::KernelRead |
+ KMemoryPermission::NotMapped);
+ R_TRY(Operate(src_address, num_pages, new_perm, OperationType::ChangePermissions));
- block_manager->Update(src_addr, num_pages, state, KMemoryPermission::None,
- KMemoryAttribute::Locked);
- block_manager->Update(dst_addr, num_pages, KMemoryState::AliasCode);
+ // Ensure that we unprotect the source pages on failure.
+ auto unprot_guard = SCOPE_GUARD({
+ ASSERT(this->Operate(src_address, num_pages, src_perm, OperationType::ChangePermissions)
+ .IsSuccess());
+ });
+
+ // Map the alias pages.
+ R_TRY(MapPages(dst_address, pg, new_perm));
+
+ // We successfully mapped the alias pages, so we don't need to unprotect the src pages on
+ // failure.
+ unprot_guard.Cancel();
+
+ // Apply the memory block updates.
+ block_manager->Update(src_address, num_pages, src_state, new_perm,
+ KMemoryAttribute::Locked);
+ block_manager->Update(dst_address, num_pages, KMemoryState::AliasCode, new_perm,
+ KMemoryAttribute::None);
+ }
return ResultSuccess;
}
-ResultCode KPageTable::UnmapCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ResultCode KPageTable::UnmapCodeMemory(VAddr dst_address, VAddr src_address, std::size_t size) {
+ // Validate the mapping request.
+ R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
+ ResultInvalidMemoryRegion);
+
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
- if (!size) {
- return ResultSuccess;
+ // Verify that the source memory is locked normal heap.
+ std::size_t num_src_allocator_blocks{};
+ R_TRY(this->CheckMemoryState(std::addressof(num_src_allocator_blocks), src_address, size,
+ KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked));
+
+ // Verify that the destination memory is aliasable code.
+ std::size_t num_dst_allocator_blocks{};
+ R_TRY(this->CheckMemoryStateContiguous(
+ std::addressof(num_dst_allocator_blocks), dst_address, size, KMemoryState::FlagCanCodeAlias,
+ KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Determine whether any pages being unmapped are code.
+ bool any_code_pages = false;
+ {
+ KMemoryBlockManager::const_iterator it = block_manager->FindIterator(dst_address);
+ while (true) {
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Check if the memory has code flag.
+ if ((info.GetState() & KMemoryState::FlagCode) != KMemoryState::None) {
+ any_code_pages = true;
+ break;
+ }
+
+ // Check if we're done.
+ if (dst_address + size - 1 <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
+ }
}
- const std::size_t num_pages{size / PageSize};
+ // Ensure that we maintain the instruction cache.
+ bool reprotected_pages = false;
+ SCOPE_EXIT({
+ if (reprotected_pages && any_code_pages) {
+ system.InvalidateCpuInstructionCacheRange(dst_address, size);
+ }
+ });
- CASCADE_CODE(CheckMemoryState(nullptr, nullptr, nullptr, nullptr, src_addr, size,
- KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None,
- KMemoryPermission::None, KMemoryAttribute::Mask,
- KMemoryAttribute::Locked, KMemoryAttribute::IpcAndDeviceMapped));
+ // Unmap.
+ {
+ // Determine the number of pages being operated on.
+ const std::size_t num_pages = size / PageSize;
- KMemoryState state{};
- CASCADE_CODE(CheckMemoryState(
- &state, nullptr, nullptr, nullptr, dst_addr, PageSize, KMemoryState::FlagCanCodeAlias,
- KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None,
- KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped));
- CASCADE_CODE(CheckMemoryState(dst_addr, size, KMemoryState::All, state, KMemoryPermission::None,
- KMemoryPermission::None, KMemoryAttribute::Mask,
- KMemoryAttribute::None));
- CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap));
+ // Unmap the aliased copy of the pages.
+ R_TRY(Operate(dst_address, num_pages, KMemoryPermission::None, OperationType::Unmap));
- block_manager->Update(dst_addr, num_pages, KMemoryState::Free);
- block_manager->Update(src_addr, num_pages, KMemoryState::Normal,
- KMemoryPermission::UserReadWrite);
+ // Try to set the permissions for the source pages back to what they should be.
+ R_TRY(Operate(src_address, num_pages, KMemoryPermission::UserReadWrite,
+ OperationType::ChangePermissions));
- system.InvalidateCpuInstructionCacheRange(dst_addr, size);
+ // Apply the memory block updates.
+ block_manager->Update(dst_address, num_pages, KMemoryState::None);
+ block_manager->Update(src_address, num_pages, KMemoryState::Normal,
+ KMemoryPermission::UserReadWrite);
+
+ // Note that we reprotected pages.
+ reprotected_pages = true;
+ }
return ResultSuccess;
}
+VAddr KPageTable::FindFreeArea(VAddr region_start, std::size_t region_num_pages,
+ std::size_t num_pages, std::size_t alignment, std::size_t offset,
+ std::size_t guard_pages) {
+ VAddr address = 0;
+
+ if (num_pages <= region_num_pages) {
+ if (this->IsAslrEnabled()) {
+ // Try to directly find a free area up to 8 times.
+ for (std::size_t i = 0; i < 8; i++) {
+ const std::size_t random_offset =
+ KSystemControl::GenerateRandomRange(
+ 0, (region_num_pages - num_pages - guard_pages) * PageSize / alignment) *
+ alignment;
+ const VAddr candidate =
+ Common::AlignDown((region_start + random_offset), alignment) + offset;
+
+ KMemoryInfo info = this->QueryInfoImpl(candidate);
+
+ if (info.state != KMemoryState::Free) {
+ continue;
+ }
+ if (region_start > candidate) {
+ continue;
+ }
+ if (info.GetAddress() + guard_pages * PageSize > candidate) {
+ continue;
+ }
+
+ const VAddr candidate_end = candidate + (num_pages + guard_pages) * PageSize - 1;
+ if (candidate_end > info.GetLastAddress()) {
+ continue;
+ }
+ if (candidate_end > region_start + region_num_pages * PageSize - 1) {
+ continue;
+ }
+
+ address = candidate;
+ break;
+ }
+ // Fall back to finding the first free area with a random offset.
+ if (address == 0) {
+ // NOTE: Nintendo does not account for guard pages here.
+ // This may theoretically cause an offset to be chosen that cannot be mapped. We
+ // will account for guard pages.
+ const std::size_t offset_pages = KSystemControl::GenerateRandomRange(
+ 0, region_num_pages - num_pages - guard_pages);
+ address = block_manager->FindFreeArea(region_start + offset_pages * PageSize,
+ region_num_pages - offset_pages, num_pages,
+ alignment, offset, guard_pages);
+ }
+ }
+
+ // Find the first free area.
+ if (address == 0) {
+ address = block_manager->FindFreeArea(region_start, region_num_pages, num_pages,
+ alignment, offset, guard_pages);
+ }
+ }
+
+ return address;
+}
+
ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size,
KPageTable& src_page_table, VAddr src_addr) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
const std::size_t num_pages{size / PageSize};
@@ -397,150 +514,482 @@ ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size,
return ResultSuccess;
}
-ResultCode KPageTable::MapPhysicalMemory(VAddr addr, std::size_t size) {
+ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
// Lock the physical memory lock.
- std::lock_guard phys_lk(map_physical_memory_lock);
+ KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
- // Lock the table.
- std::lock_guard lock{page_table_lock};
+ // Calculate the last address for convenience.
+ const VAddr last_address = address + size - 1;
- std::size_t mapped_size{};
- const VAddr end_addr{addr + size};
+ // Define iteration variables.
+ VAddr cur_address;
+ std::size_t mapped_size;
- block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
- if (info.state != KMemoryState::Free) {
- mapped_size += GetSizeInRange(info, addr, end_addr);
- }
- });
-
- if (mapped_size == size) {
- return ResultSuccess;
- }
+ // The entire mapping process can be retried.
+ while (true) {
+ // Check if the memory is already mapped.
+ {
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
+
+ // Iterate over the memory.
+ cur_address = address;
+ mapped_size = 0;
+
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ if (info.GetState() != KMemoryState::Free) {
+ mapped_size += (last_address + 1 - cur_address);
+ }
+ break;
+ }
+
+ // Track the memory if it's mapped.
+ if (info.GetState() != KMemoryState::Free) {
+ mapped_size += VAddr(info.GetEndAddress()) - cur_address;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
- const std::size_t remaining_size{size - mapped_size};
- const std::size_t remaining_pages{remaining_size / PageSize};
+ // If the size mapped is the size requested, we've nothing to do.
+ R_SUCCEED_IF(size == mapped_size);
+ }
- // Reserve the memory from the process resource limit.
- KScopedResourceReservation memory_reservation(
- system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory,
- remaining_size);
- if (!memory_reservation.Succeeded()) {
- LOG_ERROR(Kernel, "Could not reserve remaining {:X} bytes", remaining_size);
- return ResultLimitReached;
+ // Allocate and map the memory.
+ {
+ // Reserve the memory from the process resource limit.
+ KScopedResourceReservation memory_reservation(
+ system.Kernel().CurrentProcess()->GetResourceLimit(),
+ LimitableResource::PhysicalMemory, size - mapped_size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
+
+ // Allocate pages for the new memory.
+ KPageLinkedList pg;
+ R_TRY(system.Kernel().MemoryManager().AllocateAndOpenForProcess(
+ &pg, (size - mapped_size) / PageSize,
+ KMemoryManager::EncodeOption(memory_pool, allocation_option), 0, 0));
+
+ // Map the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
+
+ size_t num_allocator_blocks = 0;
+
+ // Verify that nobody has mapped memory since we first checked.
+ {
+ // Iterate over the memory.
+ size_t checked_mapped_size = 0;
+ cur_address = address;
+
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ const bool is_free = info.GetState() == KMemoryState::Free;
+ if (is_free) {
+ if (info.GetAddress() < address) {
+ ++num_allocator_blocks;
+ }
+ if (last_address < info.GetLastAddress()) {
+ ++num_allocator_blocks;
+ }
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ if (!is_free) {
+ checked_mapped_size += (last_address + 1 - cur_address);
+ }
+ break;
+ }
+
+ // Track the memory if it's mapped.
+ if (!is_free) {
+ checked_mapped_size += VAddr(info.GetEndAddress()) - cur_address;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // If the size now isn't what it was before, somebody mapped or unmapped
+ // concurrently. If this happened, retry.
+ if (mapped_size != checked_mapped_size) {
+ continue;
+ }
+ }
+
+ // Reset the current tracking address, and make sure we clean up on failure.
+ cur_address = address;
+ auto unmap_guard = detail::ScopeExit([&] {
+ if (cur_address > address) {
+ const VAddr last_unmap_address = cur_address - 1;
+
+ // Iterate, unmapping the pages.
+ cur_address = address;
+
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If the memory state is free, we mapped it and need to unmap it.
+ if (info.GetState() == KMemoryState::Free) {
+ // Determine the range to unmap.
+ const size_t cur_pages =
+ std::min(VAddr(info.GetEndAddress()) - cur_address,
+ last_unmap_address + 1 - cur_address) /
+ PageSize;
+
+ // Unmap.
+ ASSERT(Operate(cur_address, cur_pages, KMemoryPermission::None,
+ OperationType::Unmap)
+ .IsSuccess());
+ }
+
+ // Check if we're done.
+ if (last_unmap_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+ }
+ });
+
+ // Iterate over the memory.
+ auto pg_it = pg.Nodes().begin();
+ PAddr pg_phys_addr = pg_it->GetAddress();
+ size_t pg_pages = pg_it->GetNumPages();
+
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If it's unmapped, we need to map it.
+ if (info.GetState() == KMemoryState::Free) {
+ // Determine the range to map.
+ size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
+ last_address + 1 - cur_address) /
+ PageSize;
+
+ // While we have pages to map, map them.
+ while (map_pages > 0) {
+ // Check if we're at the end of the physical block.
+ if (pg_pages == 0) {
+ // Ensure there are more pages to map.
+ ASSERT(pg_it != pg.Nodes().end());
+
+ // Advance our physical block.
+ ++pg_it;
+ pg_phys_addr = pg_it->GetAddress();
+ pg_pages = pg_it->GetNumPages();
+ }
+
+ // Map whatever we can.
+ const size_t cur_pages = std::min(pg_pages, map_pages);
+ R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::UserReadWrite,
+ OperationType::Map, pg_phys_addr));
+
+ // Advance.
+ cur_address += cur_pages * PageSize;
+ map_pages -= cur_pages;
+
+ pg_phys_addr += cur_pages * PageSize;
+ pg_pages -= cur_pages;
+ }
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // We succeeded, so commit the memory reservation.
+ memory_reservation.Commit();
+
+ // Increase our tracked mapped size.
+ mapped_physical_memory_size += (size - mapped_size);
+
+ // Update the relevant memory blocks.
+ block_manager->Update(address, size / PageSize, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryState::Normal, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::None);
+
+ // Cancel our guard.
+ unmap_guard.Cancel();
+
+ return ResultSuccess;
+ }
+ }
}
+}
- KPageLinkedList page_linked_list;
+ResultCode KPageTable::UnmapPhysicalMemory(VAddr address, std::size_t size) {
+ // Lock the physical memory lock.
+ KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
- CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, remaining_pages,
- memory_pool, allocation_option));
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
- // We succeeded, so commit the memory reservation.
- memory_reservation.Commit();
+ // Calculate the last address for convenience.
+ const VAddr last_address = address + size - 1;
- // Map the memory.
- auto node{page_linked_list.Nodes().begin()};
- PAddr map_addr{node->GetAddress()};
- std::size_t src_num_pages{node->GetNumPages()};
- block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
- if (info.state != KMemoryState::Free) {
- return;
- }
+ // Define iteration variables.
+ VAddr cur_address = 0;
+ std::size_t mapped_size = 0;
+ std::size_t num_allocator_blocks = 0;
- std::size_t dst_num_pages{GetSizeInRange(info, addr, end_addr) / PageSize};
- VAddr dst_addr{GetAddressInRange(info, addr)};
+ // Check if the memory is mapped.
+ {
+ // Iterate over the memory.
+ cur_address = address;
+ mapped_size = 0;
+
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Verify the memory's state.
+ const bool is_normal = info.GetState() == KMemoryState::Normal &&
+ info.GetAttribute() == KMemoryAttribute::None;
+ const bool is_free = info.GetState() == KMemoryState::Free;
+ R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
+
+ if (is_normal) {
+ R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
+
+ if (info.GetAddress() < address) {
+ ++num_allocator_blocks;
+ }
+ if (last_address < info.GetLastAddress()) {
+ ++num_allocator_blocks;
+ }
+ }
- while (dst_num_pages) {
- if (!src_num_pages) {
- node = std::next(node);
- map_addr = node->GetAddress();
- src_num_pages = node->GetNumPages();
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ if (is_normal) {
+ mapped_size += (last_address + 1 - cur_address);
+ }
+ break;
}
- const std::size_t num_pages{std::min(src_num_pages, dst_num_pages)};
- Operate(dst_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::Map,
- map_addr);
+ // Track the memory if it's mapped.
+ if (is_normal) {
+ mapped_size += VAddr(info.GetEndAddress()) - cur_address;
+ }
- dst_addr += num_pages * PageSize;
- map_addr += num_pages * PageSize;
- src_num_pages -= num_pages;
- dst_num_pages -= num_pages;
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
}
- });
-
- mapped_physical_memory_size += remaining_size;
- const std::size_t num_pages{size / PageSize};
- block_manager->Update(addr, num_pages, KMemoryState::Free, KMemoryPermission::None,
- KMemoryAttribute::None, KMemoryState::Normal,
- KMemoryPermission::UserReadWrite, KMemoryAttribute::None);
+ // If there's nothing mapped, we've nothing to do.
+ R_SUCCEED_IF(mapped_size == 0);
+ }
- return ResultSuccess;
-}
+ // Make a page group for the unmap region.
+ KPageLinkedList pg;
+ {
+ auto& impl = this->PageTableImpl();
+
+ // Begin traversal.
+ Common::PageTable::TraversalContext context;
+ Common::PageTable::TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
+ bool cur_valid = false;
+ Common::PageTable::TraversalEntry next_entry;
+ bool next_valid = false;
+ size_t tot_size = 0;
+
+ cur_address = address;
+ next_valid = impl.BeginTraversal(next_entry, context, cur_address);
+ next_entry.block_size =
+ (next_entry.block_size - (next_entry.phys_addr & (next_entry.block_size - 1)));
+
+ // Iterate, building the group.
+ while (true) {
+ if ((!next_valid && !cur_valid) ||
+ (next_valid && cur_valid &&
+ next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
+ cur_entry.block_size += next_entry.block_size;
+ } else {
+ if (cur_valid) {
+ // ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
+ R_TRY(pg.AddBlock(cur_entry.phys_addr, cur_entry.block_size / PageSize));
+ }
+
+ // Update tracking variables.
+ tot_size += cur_entry.block_size;
+ cur_entry = next_entry;
+ cur_valid = next_valid;
+ }
-ResultCode KPageTable::UnmapPhysicalMemory(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ if (cur_entry.block_size + tot_size >= size) {
+ break;
+ }
- const VAddr end_addr{addr + size};
- ResultCode result{ResultSuccess};
- std::size_t mapped_size{};
+ next_valid = impl.ContinueTraversal(next_entry, context);
+ }
- // Verify that the region can be unmapped
- block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
- if (info.state == KMemoryState::Normal) {
- if (info.attribute != KMemoryAttribute::None) {
- result = ResultInvalidCurrentMemory;
- return;
+ // Add the last block.
+ if (cur_valid) {
+ // ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
+ R_TRY(pg.AddBlock(cur_entry.phys_addr, (size - tot_size) / PageSize));
+ }
+ }
+ ASSERT(pg.GetNumPages() == mapped_size / PageSize);
+
+ // Reset the current tracking address, and make sure we clean up on failure.
+ cur_address = address;
+ auto remap_guard = detail::ScopeExit([&] {
+ if (cur_address > address) {
+ const VAddr last_map_address = cur_address - 1;
+ cur_address = address;
+
+ // Iterate over the memory we unmapped.
+ auto it = block_manager->FindIterator(cur_address);
+ auto pg_it = pg.Nodes().begin();
+ PAddr pg_phys_addr = pg_it->GetAddress();
+ size_t pg_pages = pg_it->GetNumPages();
+
+ while (true) {
+ // Get the memory info for the pages we unmapped, convert to property.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If the memory is normal, we unmapped it and need to re-map it.
+ if (info.GetState() == KMemoryState::Normal) {
+ // Determine the range to map.
+ size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
+ last_map_address + 1 - cur_address) /
+ PageSize;
+
+ // While we have pages to map, map them.
+ while (map_pages > 0) {
+ // Check if we're at the end of the physical block.
+ if (pg_pages == 0) {
+ // Ensure there are more pages to map.
+ ASSERT(pg_it != pg.Nodes().end());
+
+ // Advance our physical block.
+ ++pg_it;
+ pg_phys_addr = pg_it->GetAddress();
+ pg_pages = pg_it->GetNumPages();
+ }
+
+ // Map whatever we can.
+ const size_t cur_pages = std::min(pg_pages, map_pages);
+ ASSERT(this->Operate(cur_address, cur_pages, info.GetPermission(),
+ OperationType::Map, pg_phys_addr) == ResultSuccess);
+
+ // Advance.
+ cur_address += cur_pages * PageSize;
+ map_pages -= cur_pages;
+
+ pg_phys_addr += cur_pages * PageSize;
+ pg_pages -= cur_pages;
+ }
+ }
+
+ // Check if we're done.
+ if (last_map_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
}
- mapped_size += GetSizeInRange(info, addr, end_addr);
- } else if (info.state != KMemoryState::Free) {
- result = ResultInvalidCurrentMemory;
}
});
- if (result.IsError()) {
- return result;
- }
+ // Iterate over the memory, unmapping as we go.
+ auto it = block_manager->FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != block_manager->end());
- if (!mapped_size) {
- return ResultSuccess;
- }
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
- // Unmap each region within the range
- KPageLinkedList page_linked_list;
- block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
- if (info.state == KMemoryState::Normal) {
- const std::size_t block_size{GetSizeInRange(info, addr, end_addr)};
- const std::size_t block_num_pages{block_size / PageSize};
- const VAddr block_addr{GetAddressInRange(info, addr)};
-
- AddRegionToPages(block_addr, block_size / PageSize, page_linked_list);
-
- if (result = Operate(block_addr, block_num_pages, KMemoryPermission::None,
- OperationType::Unmap);
- result.IsError()) {
- return;
- }
+ // If the memory state is normal, we need to unmap it.
+ if (info.GetState() == KMemoryState::Normal) {
+ // Determine the range to unmap.
+ const size_t cur_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
+ last_address + 1 - cur_address) /
+ PageSize;
+
+ // Unmap.
+ R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::None, OperationType::Unmap));
}
- });
- if (result.IsError()) {
- return result;
- }
- const std::size_t num_pages{size / PageSize};
- system.Kernel().MemoryManager().Free(page_linked_list, num_pages, memory_pool,
- allocation_option);
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
- block_manager->Update(addr, num_pages, KMemoryState::Free);
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+ // Release the memory resource.
+ mapped_physical_memory_size -= mapped_size;
auto process{system.Kernel().CurrentProcess()};
process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
- mapped_physical_memory_size -= mapped_size;
+
+ // Update memory blocks.
+ block_manager->Update(address, size / PageSize, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryAttribute::None);
+
+ // TODO(bunnei): This is a workaround until the next set of changes, where we add reference
+ // counting for mapped pages. Until then, we must manually close the reference to the page
+ // group.
+ system.Kernel().MemoryManager().Close(pg);
+
+ // We succeeded.
+ remap_guard.Cancel();
return ResultSuccess;
}
ResultCode KPageTable::MapMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryState src_state{};
CASCADE_CODE(CheckMemoryState(
@@ -579,7 +1028,7 @@ ResultCode KPageTable::MapMemory(VAddr dst_addr, VAddr src_addr, std::size_t siz
}
ResultCode KPageTable::UnmapMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryState src_state{};
CASCADE_CODE(CheckMemoryState(
@@ -622,6 +1071,8 @@ ResultCode KPageTable::UnmapMemory(VAddr dst_addr, VAddr src_addr, std::size_t s
ResultCode KPageTable::MapPages(VAddr addr, const KPageLinkedList& page_linked_list,
KMemoryPermission perm) {
+ ASSERT(this->IsLockedByCurrentThread());
+
VAddr cur_addr{addr};
for (const auto& node : page_linked_list.Nodes()) {
@@ -650,7 +1101,7 @@ ResultCode KPageTable::MapPages(VAddr address, KPageLinkedList& page_linked_list
R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Check the memory state.
R_TRY(this->CheckMemoryState(address, size, KMemoryState::All, KMemoryState::Free,
@@ -666,13 +1117,54 @@ ResultCode KPageTable::MapPages(VAddr address, KPageLinkedList& page_linked_list
return ResultSuccess;
}
+ResultCode KPageTable::MapPages(VAddr* out_addr, std::size_t num_pages, std::size_t alignment,
+ PAddr phys_addr, bool is_pa_valid, VAddr region_start,
+ std::size_t region_num_pages, KMemoryState state,
+ KMemoryPermission perm) {
+ ASSERT(Common::IsAligned(alignment, PageSize) && alignment >= PageSize);
+
+ // Ensure this is a valid map request.
+ R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
+ ResultInvalidCurrentMemory);
+ R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
+
+ // Find a random address to map at.
+ VAddr addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
+ this->GetNumGuardPages());
+ R_UNLESS(addr != 0, ResultOutOfMemory);
+ ASSERT(Common::IsAligned(addr, alignment));
+ ASSERT(this->CanContain(addr, num_pages * PageSize, state));
+ ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryAttribute::None)
+ .IsSuccess());
+
+ // Perform mapping operation.
+ if (is_pa_valid) {
+ R_TRY(this->Operate(addr, num_pages, perm, OperationType::Map, phys_addr));
+ } else {
+ UNIMPLEMENTED();
+ }
+
+ // Update the blocks.
+ block_manager->Update(addr, num_pages, state, perm);
+
+ // We successfully mapped the pages.
+ *out_addr = addr;
+ return ResultSuccess;
+}
+
ResultCode KPageTable::UnmapPages(VAddr addr, const KPageLinkedList& page_linked_list) {
+ ASSERT(this->IsLockedByCurrentThread());
+
VAddr cur_addr{addr};
for (const auto& node : page_linked_list.Nodes()) {
- const std::size_t num_pages{(addr - cur_addr) / PageSize};
- if (const auto result{
- Operate(addr, num_pages, KMemoryPermission::None, OperationType::Unmap)};
+ if (const auto result{Operate(cur_addr, node.GetNumPages(), KMemoryPermission::None,
+ OperationType::Unmap)};
result.IsError()) {
return result;
}
@@ -691,7 +1183,7 @@ ResultCode KPageTable::UnmapPages(VAddr addr, KPageLinkedList& page_linked_list,
R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Check the memory state.
R_TRY(this->CheckMemoryState(addr, size, KMemoryState::All, state, KMemoryPermission::None,
@@ -707,12 +1199,36 @@ ResultCode KPageTable::UnmapPages(VAddr addr, KPageLinkedList& page_linked_list,
return ResultSuccess;
}
+ResultCode KPageTable::UnmapPages(VAddr address, std::size_t num_pages, KMemoryState state) {
+ // Check that the unmap is in range.
+ const std::size_t size = num_pages * PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(general_lock);
+
+ // Check the memory state.
+ std::size_t num_allocator_blocks{};
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, state, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Perform the unmap.
+ R_TRY(Operate(address, num_pages, KMemoryPermission::None, OperationType::Unmap));
+
+ // Update the blocks.
+ block_manager->Update(address, num_pages, KMemoryState::Free, KMemoryPermission::None);
+
+ return ResultSuccess;
+}
+
ResultCode KPageTable::SetProcessMemoryPermission(VAddr addr, std::size_t size,
Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
@@ -766,7 +1282,7 @@ ResultCode KPageTable::SetProcessMemoryPermission(VAddr addr, std::size_t size,
}
KMemoryInfo KPageTable::QueryInfoImpl(VAddr addr) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
return block_manager->FindBlock(addr).GetMemoryInfo();
}
@@ -781,7 +1297,7 @@ KMemoryInfo KPageTable::QueryInfo(VAddr addr) {
}
ResultCode KPageTable::ReserveTransferMemory(VAddr addr, std::size_t size, KMemoryPermission perm) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryState state{};
KMemoryAttribute attribute{};
@@ -799,7 +1315,7 @@ ResultCode KPageTable::ReserveTransferMemory(VAddr addr, std::size_t size, KMemo
}
ResultCode KPageTable::ResetTransferMemory(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryState state{};
@@ -818,7 +1334,7 @@ ResultCode KPageTable::SetMemoryPermission(VAddr addr, std::size_t size,
const size_t num_pages = size / PageSize;
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
@@ -847,7 +1363,7 @@ ResultCode KPageTable::SetMemoryAttribute(VAddr addr, std::size_t size, u32 mask
KMemoryAttribute::SetMask);
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Verify we can change the memory attribute.
KMemoryState old_state;
@@ -878,7 +1394,7 @@ ResultCode KPageTable::SetMemoryAttribute(VAddr addr, std::size_t size, u32 mask
ResultCode KPageTable::SetMaxHeapSize(std::size_t size) {
// Lock the table.
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
// Only process page tables are allowed to set heap size.
ASSERT(!this->IsKernel());
@@ -889,15 +1405,15 @@ ResultCode KPageTable::SetMaxHeapSize(std::size_t size) {
}
ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) {
- // Lock the physical memory lock.
- std::lock_guard phys_lk(map_physical_memory_lock);
+ // Lock the physical memory mutex.
+ KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
// Try to perform a reduction in heap, instead of an extension.
VAddr cur_address{};
std::size_t allocation_size{};
{
// Lock the table.
- std::lock_guard lk(page_table_lock);
+ KScopedLightLock lk(general_lock);
// Validate that setting heap size is possible at all.
R_UNLESS(!is_kernel, ResultOutOfMemory);
@@ -955,14 +1471,21 @@ ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) {
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate pages for the heap extension.
- KPageLinkedList page_linked_list;
- R_TRY(system.Kernel().MemoryManager().Allocate(page_linked_list, allocation_size / PageSize,
- memory_pool, allocation_option));
+ KPageLinkedList pg;
+ R_TRY(system.Kernel().MemoryManager().AllocateAndOpen(
+ &pg, allocation_size / PageSize,
+ KMemoryManager::EncodeOption(memory_pool, allocation_option)));
+
+ // Clear all the newly allocated pages.
+ for (const auto& it : pg.Nodes()) {
+ std::memset(system.DeviceMemory().GetPointer(it.GetAddress()), heap_fill_value,
+ it.GetSize());
+ }
// Map the pages.
{
// Lock the table.
- std::lock_guard lk(page_table_lock);
+ KScopedLightLock lk(general_lock);
// Ensure that the heap hasn't changed since we began executing.
ASSERT(cur_address == current_heap_end);
@@ -976,7 +1499,7 @@ ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) {
// Map the pages.
const auto num_pages = allocation_size / PageSize;
- R_TRY(Operate(current_heap_end, num_pages, page_linked_list, OperationType::MapGroup));
+ R_TRY(Operate(current_heap_end, num_pages, pg, OperationType::MapGroup));
// Clear all the newly allocated pages.
for (std::size_t cur_page = 0; cur_page < num_pages; ++cur_page) {
@@ -1004,7 +1527,7 @@ ResultVal<VAddr> KPageTable::AllocateAndMapMemory(std::size_t needed_num_pages,
bool is_map_only, VAddr region_start,
std::size_t region_num_pages, KMemoryState state,
KMemoryPermission perm, PAddr map_addr) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
if (!CanContain(region_start, region_num_pages * PageSize, state)) {
return ResultInvalidCurrentMemory;
@@ -1024,8 +1547,9 @@ ResultVal<VAddr> KPageTable::AllocateAndMapMemory(std::size_t needed_num_pages,
R_TRY(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr));
} else {
KPageLinkedList page_group;
- R_TRY(system.Kernel().MemoryManager().Allocate(page_group, needed_num_pages, memory_pool,
- allocation_option));
+ R_TRY(system.Kernel().MemoryManager().AllocateAndOpenForProcess(
+ &page_group, needed_num_pages,
+ KMemoryManager::EncodeOption(memory_pool, allocation_option), 0, 0));
R_TRY(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup));
}
@@ -1035,7 +1559,7 @@ ResultVal<VAddr> KPageTable::AllocateAndMapMemory(std::size_t needed_num_pages,
}
ResultCode KPageTable::LockForDeviceAddressSpace(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryPermission perm{};
if (const ResultCode result{CheckMemoryState(
@@ -1058,7 +1582,7 @@ ResultCode KPageTable::LockForDeviceAddressSpace(VAddr addr, std::size_t size) {
}
ResultCode KPageTable::UnlockForDeviceAddressSpace(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryPermission perm{};
if (const ResultCode result{CheckMemoryState(
@@ -1081,7 +1605,7 @@ ResultCode KPageTable::UnlockForDeviceAddressSpace(VAddr addr, std::size_t size)
}
ResultCode KPageTable::LockForCodeMemory(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryPermission new_perm = KMemoryPermission::NotMapped | KMemoryPermission::KernelReadWrite;
@@ -1108,7 +1632,7 @@ ResultCode KPageTable::LockForCodeMemory(VAddr addr, std::size_t size) {
}
ResultCode KPageTable::UnlockForCodeMemory(VAddr addr, std::size_t size) {
- std::lock_guard lock{page_table_lock};
+ KScopedLightLock lk(general_lock);
KMemoryPermission new_perm = KMemoryPermission::UserReadWrite;
@@ -1232,7 +1756,7 @@ ResultCode KPageTable::Operate(VAddr addr, std::size_t num_pages, KMemoryPermiss
return ResultSuccess;
}
-constexpr VAddr KPageTable::GetRegionAddress(KMemoryState state) const {
+VAddr KPageTable::GetRegionAddress(KMemoryState state) const {
switch (state) {
case KMemoryState::Free:
case KMemoryState::Kernel:
@@ -1268,7 +1792,7 @@ constexpr VAddr KPageTable::GetRegionAddress(KMemoryState state) const {
}
}
-constexpr std::size_t KPageTable::GetRegionSize(KMemoryState state) const {
+std::size_t KPageTable::GetRegionSize(KMemoryState state) const {
switch (state) {
case KMemoryState::Free:
case KMemoryState::Kernel: