summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/core/hle/kernel/thread.cpp588
-rw-r--r--src/core/hle/kernel/thread.h25
2 files changed, 543 insertions, 70 deletions
diff --git a/src/core/hle/kernel/thread.cpp b/src/core/hle/kernel/thread.cpp
index 0ed35de83..584276eec 100644
--- a/src/core/hle/kernel/thread.cpp
+++ b/src/core/hle/kernel/thread.cpp
@@ -11,10 +11,212 @@
#include "common/common.h"
+#include "core/core.h"
+#include "core/mem_map.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h"
-// Real CTR struct, don't change the fields.
+struct ThreadQueueList {
+ // Number of queues (number of priority levels starting at 0.)
+ static const int NUM_QUEUES = 128;
+ // Initial number of threads a single queue can handle.
+ static const int INITIAL_CAPACITY = 32;
+
+ struct Queue {
+ // Next ever-been-used queue (worse priority.)
+ Queue *next;
+ // First valid item in data.
+ int first;
+ // One after last valid item in data.
+ int end;
+ // A too-large array with room on the front and end.
+ UID *data;
+ // Size of data array.
+ int capacity;
+ };
+
+ ThreadQueueList() {
+ memset(queues, 0, sizeof(queues));
+ first = invalid();
+ }
+
+ ~ThreadQueueList() {
+ for (int i = 0; i < NUM_QUEUES; ++i) {
+ if (queues[i].data != NULL) {
+ free(queues[i].data);
+ }
+ }
+ }
+
+ // Only for debugging, returns priority level.
+ int contains(const UID uid) {
+ for (int i = 0; i < NUM_QUEUES; ++i) {
+ if (queues[i].data == NULL) {
+ continue;
+ }
+ Queue *cur = &queues[i];
+ for (int j = cur->first; j < cur->end; ++j) {
+ if (cur->data[j] == uid) {
+ return i;
+ }
+ }
+ }
+ return -1;
+ }
+
+ inline UID pop_first() {
+ Queue *cur = first;
+ while (cur != invalid()) {
+ if (cur->end - cur->first > 0) {
+ return cur->data[cur->first++];
+ }
+ cur = cur->next;
+ }
+
+ _dbg_assert_msg_(KERNEL, false, "ThreadQueueList should not be empty.");
+ return 0;
+ }
+
+ inline UID pop_first_better(u32 priority) {
+ Queue *cur = first;
+ Queue *stop = &queues[priority];
+ while (cur < stop) {
+ if (cur->end - cur->first > 0) {
+ return cur->data[cur->first++];
+ }
+ cur = cur->next;
+ }
+ return 0;
+ }
+
+ inline void push_front(u32 priority, const UID thread_id) {
+ Queue *cur = &queues[priority];
+ cur->data[--cur->first] = thread_id;
+ if (cur->first == 0) {
+ rebalance(priority);
+ }
+ }
+
+ inline void push_back(u32 priority, const UID thread_id)
+ {
+ Queue *cur = &queues[priority];
+ cur->data[cur->end++] = thread_id;
+ if (cur->end == cur->capacity) {
+ rebalance(priority);
+ }
+ }
+
+ inline void remove(u32 priority, const UID thread_id) {
+ Queue *cur = &queues[priority];
+ _dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
+
+ for (int i = cur->first; i < cur->end; ++i) {
+ if (cur->data[i] == thread_id) {
+ int remaining = --cur->end - i;
+ if (remaining > 0) {
+ memmove(&cur->data[i], &cur->data[i + 1], remaining * sizeof(UID));
+ }
+ return;
+ }
+ }
+
+ // Wasn't there.
+ }
+
+ inline void rotate(u32 priority) {
+ Queue *cur = &queues[priority];
+ _dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
+
+ if (cur->end - cur->first > 1) {
+ cur->data[cur->end++] = cur->data[cur->first++];
+ if (cur->end == cur->capacity) {
+ rebalance(priority);
+ }
+ }
+ }
+
+ inline void clear() {
+ for (int i = 0; i < NUM_QUEUES; ++i) {
+ if (queues[i].data != NULL) {
+ free(queues[i].data);
+ }
+ }
+ memset(queues, 0, sizeof(queues));
+ first = invalid();
+ }
+
+ inline bool empty(u32 priority) const {
+ const Queue *cur = &queues[priority];
+ return cur->first == cur->end;
+ }
+
+ inline void prepare(u32 priority) {
+ Queue *cur = &queues[priority];
+ if (cur->next == NULL) {
+ link(priority, INITIAL_CAPACITY);
+ }
+ }
+
+private:
+ Queue *invalid() const {
+ return (Queue *)-1;
+ }
+
+ void link(u32 priority, int size) {
+ _dbg_assert_msg_(KERNEL, queues[priority].data == NULL, "ThreadQueueList::Queue should only be initialized once.");
+
+ if (size <= INITIAL_CAPACITY) {
+ size = INITIAL_CAPACITY;
+ } else {
+ int goal = size;
+ size = INITIAL_CAPACITY;
+ while (size < goal)
+ size *= 2;
+ }
+ Queue *cur = &queues[priority];
+ cur->data = (UID*)malloc(sizeof(UID)* size);
+ cur->capacity = size;
+ cur->first = size / 2;
+ cur->end = size / 2;
+
+ for (int i = (int)priority - 1; i >= 0; --i) {
+ if (queues[i].next != NULL) {
+ cur->next = queues[i].next;
+ queues[i].next = cur;
+ return;
+ }
+ }
+
+ cur->next = first;
+ first = cur;
+ }
+
+ void rebalance(u32 priority) {
+ Queue *cur = &queues[priority];
+ int size = cur->end - cur->first;
+ if (size >= cur->capacity - 2) {
+ UID* new_data = (UID*)realloc(cur->data, cur->capacity * 2 * sizeof(UID));
+ if (new_data != NULL) {
+ cur->capacity *= 2;
+ cur->data = new_data;
+ }
+ }
+
+ int newFirst = (cur->capacity - size) / 2;
+ if (newFirst != cur->first) {
+ memmove(&cur->data[newFirst], &cur->data[cur->first], size * sizeof(UID));
+ cur->first = newFirst;
+ cur->end = newFirst + size;
+ }
+ }
+
+ // The first queue that's ever been used.
+ Queue* first;
+ // The priority level queues of thread ids.
+ Queue queues[NUM_QUEUES];
+};
+
+// Supposed to represent a real CTR struct... but not sure of the correct fields yet.
struct NativeThread {
//u32 Pointer to vtable
//u32 Reference count
@@ -25,6 +227,22 @@ struct NativeThread {
// if the beginning of this mapped page is 0xFF401000, this ptr would be 0xFF402000.
//KThread* Previous ? (virtual address)
//KThread* Next ? (virtual address)
+
+ u32_le native_size;
+ char name[KERNELOBJECT_MAX_NAME_LENGTH + 1];
+
+ // Threading stuff
+ u32_le status;
+ u32_le entry_point;
+ u32_le initial_stack;
+ u32_le stack_top;
+ u32_le stack_size;
+
+ u32_le arg;
+ u32_le processor_id;
+
+ s32_le initial_priority;
+ s32_le current_priority;
};
struct ThreadWaitInfo {
@@ -52,42 +270,23 @@ public:
//}
//static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_THID; }
- //static int GetStaticIDType() { return SCE_KERNEL_TMID_Thread; }
- //int GetIDType() const { return SCE_KERNEL_TMID_Thread; }
-
- //bool AllocateStack(u32 &stack_size) {
- // FreeStack();
-
- // bool fromTop = (nt.attr & PSP_THREAD_ATTR_LOW_STACK) == 0;
- // if (nt.attr & PSP_THREAD_ATTR_KERNEL)
- // {
- // // Allocate stacks for kernel threads (idle) in kernel RAM
- // currentStack.start = kernelMemory.Alloc(stack_size, fromTop, (std::string("stack/") + nt.name).c_str());
- // }
- // else
- // {
- // currentStack.start = userMemory.Alloc(stack_size, fromTop, (std::string("stack/") + nt.name).c_str());
- // }
- // if (currentStack.start == (u32)-1)
- // {
- // currentStack.start = 0;
- // nt.initialStack = 0;
- // ERROR_LOG(KERNEL, "Failed to allocate stack for thread");
- // return false;
- // }
-
- // nt.initialStack = currentStack.start;
- // nt.stack_size = stack_size;
- // return true;
- //}
+ static KernelIDType GetStaticIDType() { return KERNEL_ID_TYPE_THREAD; }
+ KernelIDType GetIDType() const { return KERNEL_ID_TYPE_THREAD; }
+
+ bool SetupStack(u32 stack_top, int stack_size) {
+ current_stack.start = stack_top;
+ nt.initial_stack = current_stack.start;
+ nt.stack_size = stack_size;
+ return true;
+ }
//bool FillStack() {
// // Fill the stack.
// if ((nt.attr & PSP_THREAD_ATTR_NO_FILLSTACK) == 0) {
- // Memory::Memset(currentStack.start, 0xFF, nt.stack_size);
+ // Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
// }
- // context.r[MIPS_REG_SP] = currentStack.start + nt.stack_size;
- // currentStack.end = context.r[MIPS_REG_SP];
+ // context.r[MIPS_REG_SP] = current_stack.start + nt.stack_size;
+ // current_stack.end = context.r[MIPS_REG_SP];
// // The k0 section is 256 bytes at the top of the stack.
// context.r[MIPS_REG_SP] -= 256;
// context.r[MIPS_REG_K0] = context.r[MIPS_REG_SP];
@@ -104,7 +303,7 @@ public:
//}
//void FreeStack() {
- // if (currentStack.start != 0) {
+ // if (current_stack.start != 0) {
// DEBUG_LOG(KERNEL, "Freeing thread stack %s", nt.name);
// if ((nt.attr & PSP_THREAD_ATTR_CLEAR_STACK) != 0 && nt.initialStack != 0) {
@@ -112,12 +311,12 @@ public:
// }
// if (nt.attr & PSP_THREAD_ATTR_KERNEL) {
- // kernelMemory.Free(currentStack.start);
+ // kernelMemory.Free(current_stack.start);
// }
// else {
- // userMemory.Free(currentStack.start);
+ // userMemory.Free(current_stack.start);
// }
- // currentStack.start = 0;
+ // current_stack.start = 0;
// }
//}
@@ -126,14 +325,14 @@ public:
// if (stack == (u32)-1)
// return false;
- // pushed_stacks.push_back(currentStack);
- // currentStack.start = stack;
- // currentStack.end = stack + size;
- // nt.initialStack = currentStack.start;
- // nt.stack_size = currentStack.end - currentStack.start;
+ // pushed_stacks.push_back(current_stack);
+ // current_stack.start = stack;
+ // current_stack.end = stack + size;
+ // nt.initialStack = current_stack.start;
+ // nt.stack_size = current_stack.end - current_stack.start;
- // // We still drop the threadID at the bottom and fill it, but there's no k0.
- // Memory::Memset(currentStack.start, 0xFF, nt.stack_size);
+ // // We still drop the thread_id at the bottom and fill it, but there's no k0.
+ // Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
// Memory::Write_U32(GetUID(), nt.initialStack);
// return true;
//}
@@ -142,16 +341,16 @@ public:
// if (pushed_stacks.size() == 0) {
// return false;
// }
- // userMemory.Free(currentStack.start);
- // currentStack = pushed_stacks.back();
+ // userMemory.Free(current_stack.start);
+ // current_stack = pushed_stacks.back();
// pushed_stacks.pop_back();
- // nt.initialStack = currentStack.start;
- // nt.stack_size = currentStack.end - currentStack.start;
+ // nt.initialStack = current_stack.start;
+ // nt.stack_size = current_stack.end - current_stack.start;
// return true;
//}
Thread() {
- currentStack.start = 0;
+ current_stack.start = 0;
}
// Can't use a destructor since savestates will call that too.
@@ -177,20 +376,20 @@ public:
ThreadWaitInfo getWaitInfo();
// Utils
- //inline bool isRunning() const { return (nt.status & THREADSTATUS_RUNNING) != 0; }
- //inline bool isStopped() const { return (nt.status & THREADSTATUS_DORMANT) != 0; }
- //inline bool isReady() const { return (nt.status & THREADSTATUS_READY) != 0; }
- //inline bool isWaiting() const { return (nt.status & THREADSTATUS_WAIT) != 0; }
- //inline bool isSuspended() const { return (nt.status & THREADSTATUS_SUSPEND) != 0; }
+ inline bool IsRunning() const { return (nt.status & THREADSTATUS_RUNNING) != 0; }
+ inline bool IsStopped() const { return (nt.status & THREADSTATUS_DORMANT) != 0; }
+ inline bool IsReady() const { return (nt.status & THREADSTATUS_READY) != 0; }
+ inline bool IsWaiting() const { return (nt.status & THREADSTATUS_WAIT) != 0; }
+ inline bool IsSuspended() const { return (nt.status & THREADSTATUS_SUSPEND) != 0; }
NativeThread nt;
ThreadWaitInfo waitInfo;
UID moduleId;
- bool isProcessingCallbacks;
- u32 currentMipscallId;
- UID currentCallbackId;
+ //bool isProcessingCallbacks;
+ //u32 currentMipscallId;
+ //UID currentCallbackId;
ThreadContext context;
@@ -206,7 +405,7 @@ public:
// These are stacks that aren't "active" right now, but will pop off once the func returns.
std::vector<StackInfo> pushed_stacks;
- StackInfo currentStack;
+ StackInfo current_stack;
// For thread end.
std::vector<UID> waiting_threads;
@@ -214,15 +413,276 @@ public:
std::map<UID, u64> paused_waits;
};
-void __KernelThreadingInit() {
+void ThreadContext::reset() {
+ for (int i = 0; i < 16; i++) {
+ reg[i] = 0;
+ }
+ reg[13] = Memory::SCRATCHPAD_VADDR_END;
+ cpsr = 0;
}
-void __KernelThreadingShutdown() {
+// Lists all thread ids that aren't deleted/etc.
+std::vector<UID> g_thread_queue;
+
+// Lists only ready thread ids
+ThreadQueueList g_thread_ready_queue;
+
+UID g_current_thread;
+Thread* g_current_thread_ptr;
+const char *g_hle_current_thread_name = NULL;
+
+Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority,
+ u32 entrypoint, u32 arg, u32 stack_top, u32 processor_id, int stack_size) {
+
+ Thread *t = new Thread;
+ id = g_kernel_objects.Create(t);
+
+ g_thread_queue.push_back(id);
+ g_thread_ready_queue.prepare(priority);
+
+ memset(&t->nt, 0xCD, sizeof(t->nt));
+
+ t->nt.entry_point = entrypoint;
+ t->nt.native_size = sizeof(t->nt);
+ t->nt.initial_priority = t->nt.current_priority = priority;
+ t->nt.status = THREADSTATUS_DORMANT;
+ t->nt.initial_stack = t->nt.stack_top = stack_top;
+ t->nt.stack_size = stack_size;
+ t->nt.processor_id = processor_id;
+
+ strncpy(t->nt.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
+ t->nt.name[KERNELOBJECT_MAX_NAME_LENGTH] = '\0';
+
+ t->nt.stack_size = stack_size;
+ t->SetupStack(stack_top, stack_size);
+
+ return t;
+}
+
+void __KernelResetThread(Thread *t, int lowest_priority) {
+ t->context.reset();
+ t->context.pc = t->nt.entry_point;
+
+ // If the thread would be better than lowestPriority, reset to its initial. Yes, kinda odd...
+ if (t->nt.current_priority < lowest_priority)
+ t->nt.current_priority = t->nt.initial_priority;
+
+ //t->nt.wait_type = WAITTYPE_NONE;
+ //t->nt.wait_id = 0;
+ memset(&t->waitInfo, 0, sizeof(t->waitInfo));
+
+ //t->nt.exitStatus = SCE_KERNEL_ERROR_NOT_DORMANT;
+ //t->isProcessingCallbacks = false;
+ //t->currentCallbackId = 0;
+ //t->currentMipscallId = 0;
+ //t->pendingMipsCalls.clear();
+
+ //t->context.r[MIPS_REG_RA] = threadReturnHackAddr; //hack! TODO fix
+ // TODO: Not sure if it's reset here, but this makes sense.
+ //t->context.r[MIPS_REG_GP] = t->nt.gpreg;
+ //t->FillStack();
+
+ //if (!t->waitingThreads.empty())
+ // ERROR_LOG(KERNEL, "Resetting thread with threads waiting on end?");
+}
+
+
+inline Thread *__GetCurrentThread() {
+ return g_current_thread_ptr;
+}
+
+inline void __SetCurrentThread(Thread *thread, UID thread_id, const char *name) {
+ g_current_thread = thread_id;
+ g_current_thread_ptr = thread;
+ g_hle_current_thread_name = name;
+}
+
+// TODO: Use __KernelChangeThreadState instead? It has other affects...
+void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready) {
+ // Passing the id as a parameter is just an optimization, if it's wrong it will cause havoc.
+ _dbg_assert_msg_(KERNEL, thread->GetUID() == thread_id, "Incorrect thread_id");
+ int prio = thread->nt.current_priority;
+
+ if (thread->IsReady()) {
+ if (!ready)
+ g_thread_ready_queue.remove(prio, thread_id);
+ } else if (ready) {
+ if (thread->IsRunning()) {
+ g_thread_ready_queue.push_front(prio, thread_id);
+ } else {
+ g_thread_ready_queue.push_back(prio, thread_id);
+ }
+ thread->nt.status = THREADSTATUS_READY;
+ }
+}
+
+void __KernelChangeReadyState(UID thread_id, bool ready) {
+ u32 error;
+ Thread *thread = g_kernel_objects.Get<Thread>(thread_id, error);
+ if (thread) {
+ __KernelChangeReadyState(thread, thread_id, ready);
+ } else {
+ WARN_LOG(KERNEL, "Trying to change the ready state of an unknown thread?");
+ }
+}
+
+// Returns NULL if the current thread is fine.
+Thread* __KernelNextThread() {
+ UID bestThread;
+
+ // If the current thread is running, it's a valid candidate.
+ Thread *cur = __GetCurrentThread();
+ if (cur && cur->IsRunning()) {
+ bestThread = g_thread_ready_queue.pop_first_better(cur->nt.current_priority);
+ if (bestThread != 0) {
+ __KernelChangeReadyState(cur, g_current_thread, true);
+ }
+ } else {
+ bestThread = g_thread_ready_queue.pop_first();
+ }
+
+ // Assume g_thread_ready_queue has not become corrupt.
+ if (bestThread != 0) {
+ return g_kernel_objects.GetFast<Thread>(bestThread);
+ } else {
+ return NULL;
+ }
+}
+
+// Saves the current CPU context
+void __KernelSaveContext(ThreadContext *ctx) {
+ ctx->reg[0] = Core::g_app_core->GetReg(0);
+ ctx->reg[1] = Core::g_app_core->GetReg(1);
+ ctx->reg[2] = Core::g_app_core->GetReg(2);
+ ctx->reg[3] = Core::g_app_core->GetReg(3);
+ ctx->reg[4] = Core::g_app_core->GetReg(4);
+ ctx->reg[5] = Core::g_app_core->GetReg(5);
+ ctx->reg[6] = Core::g_app_core->GetReg(6);
+ ctx->reg[7] = Core::g_app_core->GetReg(7);
+ ctx->reg[8] = Core::g_app_core->GetReg(8);
+ ctx->reg[9] = Core::g_app_core->GetReg(9);
+ ctx->reg[10] = Core::g_app_core->GetReg(10);
+ ctx->reg[11] = Core::g_app_core->GetReg(11);
+ ctx->reg[12] = Core::g_app_core->GetReg(12);
+ ctx->reg[13] = Core::g_app_core->GetReg(13);
+ ctx->reg[14] = Core::g_app_core->GetReg(14);
+ ctx->reg[15] = Core::g_app_core->GetReg(15);
+ ctx->pc = Core::g_app_core->GetPC();
+ ctx->cpsr = Core::g_app_core->GetCPSR();
+}
+
+// Loads a CPU context
+void __KernelLoadContext(ThreadContext *ctx) {
+ Core::g_app_core->SetReg(0, ctx->reg[0]);
+ Core::g_app_core->SetReg(1, ctx->reg[1]);
+ Core::g_app_core->SetReg(2, ctx->reg[2]);
+ Core::g_app_core->SetReg(3, ctx->reg[3]);
+ Core::g_app_core->SetReg(4, ctx->reg[4]);
+ Core::g_app_core->SetReg(5, ctx->reg[5]);
+ Core::g_app_core->SetReg(6, ctx->reg[6]);
+ Core::g_app_core->SetReg(7, ctx->reg[7]);
+ Core::g_app_core->SetReg(8, ctx->reg[8]);
+ Core::g_app_core->SetReg(9, ctx->reg[9]);
+ Core::g_app_core->SetReg(10, ctx->reg[10]);
+ Core::g_app_core->SetReg(11, ctx->reg[11]);
+ Core::g_app_core->SetReg(12, ctx->reg[12]);
+ Core::g_app_core->SetReg(13, ctx->reg[13]);
+ Core::g_app_core->SetReg(14, ctx->reg[14]);
+ Core::g_app_core->SetReg(15, ctx->reg[15]);
+ Core::g_app_core->SetPC(ctx->pc);
+ Core::g_app_core->SetCPSR(ctx->cpsr);
+}
+
+void __KernelSwitchContext(Thread *target, const char *reason) {
+ u32 oldPC = 0;
+ UID oldUID = 0;
+ const char *oldName = g_hle_current_thread_name != NULL ? g_hle_current_thread_name : "(none)";
+
+ Thread *cur = __GetCurrentThread();
+ if (cur) { // It might just have been deleted.
+ __KernelSaveContext(&cur->context);
+ oldPC = Core::g_app_core->GetPC();
+ oldUID = cur->GetUID();
+
+ // Normally this is taken care of in __KernelNextThread().
+ if (cur->IsRunning())
+ __KernelChangeReadyState(cur, oldUID, true);
+ }
+
+ if (target) {
+ __SetCurrentThread(target, target->GetUID(), target->nt.name);
+ __KernelChangeReadyState(target, g_current_thread, false);
+ target->nt.status = (target->nt.status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
+
+ __KernelLoadContext(&target->context);
+ } else {
+ __SetCurrentThread(NULL, 0, NULL);
+ }
+
+#if DEBUG_LEVEL <= MAX_LOGLEVEL || DEBUG_LOG == NOTICE_LOG
+ //bool fromIdle = oldUID == threadIdleID[0] || oldUID == threadIdleID[1];
+ //bool toIdle = currentThread == threadIdleID[0] || currentThread == threadIdleID[1];
+ //if (!(fromIdle && toIdle))
+ //{
+ // u64 nowCycles = CoreTiming::GetTicks();
+ // s64 consumedCycles = nowCycles - lastSwitchCycles;
+ // lastSwitchCycles = nowCycles;
+
+ // DEBUG_LOG(SCEKERNEL, "Context switch: %s -> %s (%i->%i, pc: %08x->%08x, %s) +%lldus",
+ // oldName, hleCurrentThreadName,
+ // oldUID, currentThread,
+ // oldPC, currentMIPS->pc,
+ // reason,
+ // cyclesToUs(consumedCycles));
+ //}
+#endif
+
+ if (target) {
+ //// No longer waiting.
+ //target->nt.waitType = WAITTYPE_NONE;
+ //target->nt.waitID = 0;
+
+ //__KernelExecutePendingARMCalls(target, true);
+ }
+}
+
+UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size) {
+ UID id;
+
+ Thread *thread = __KernelCreateThread(id, module_id, "root", prio, Core::g_app_core->GetPC(),
+ arg, Memory::SCRATCHPAD_VADDR_END, 0xFFFFFFFE, stack_size=stack_size);
+
+ if (thread->current_stack.start == 0) {
+ ERROR_LOG(KERNEL, "Unable to allocate stack for root thread.");
+ }
+ __KernelResetThread(thread, 0);
+
+ Thread *prev_thread = __GetCurrentThread();
+ if (prev_thread && prev_thread->IsRunning())
+ __KernelChangeReadyState(g_current_thread, true);
+ __SetCurrentThread(thread, id, "root");
+ thread->nt.status = THREADSTATUS_RUNNING; // do not schedule
+
+ strcpy(thread->nt.name, "root");
+
+ __KernelLoadContext(&thread->context);
+
+ // NOTE(bunnei): Not sure this is really correct, ignore args for now...
+ //Core::g_app_core->SetReg(0, args);
+ //Core::g_app_core->SetReg(13, (args + 0xf) & ~0xf); // Setup SP - probably not correct
+ //u32 location = Core::g_app_core->GetReg(13); // SP
+ //Core::g_app_core->SetReg(1, location);
+
+ //if (argp)
+ // Memory::Memcpy(location, argp, args);
+ //// Let's assume same as starting a new thread, 64 bytes for safety/kernel.
+ //Core::g_app_core->SetReg(13, Core::g_app_core->GetReg(13) - 64);
+
+ return id;
}
-//const char *__KernelGetThreadName(UID threadID);
-//
-//void __KernelSaveContext(ThreadContext *ctx);
-//void __KernelLoadContext(ThreadContext *ctx);
+void __KernelThreadingInit() {
+}
-//void __KernelSwitchContext(Thread *target, const char *reason); \ No newline at end of file
+void __KernelThreadingShutdown() {
+}
diff --git a/src/core/hle/kernel/thread.h b/src/core/hle/kernel/thread.h
index c3cdca31f..38180cb9b 100644
--- a/src/core/hle/kernel/thread.h
+++ b/src/core/hle/kernel/thread.h
@@ -7,12 +7,12 @@
#include "common/common_types.h"
enum ThreadStatus {
- THREADSTATUS_RUNNING = 1,
- THREADSTATUS_READY = 2,
- THREADSTATUS_WAIT = 4,
- THREADSTATUS_SUSPEND = 8,
- THREADSTATUS_DORMANT = 16,
- THREADSTATUS_DEAD = 32,
+ THREADSTATUS_RUNNING = 1,
+ THREADSTATUS_READY = 2,
+ THREADSTATUS_WAIT = 4,
+ THREADSTATUS_SUSPEND = 8,
+ THREADSTATUS_DORMANT = 16,
+ THREADSTATUS_DEAD = 32,
THREADSTATUS_WAITSUSPEND = THREADSTATUS_WAIT | THREADSTATUS_SUSPEND
};
@@ -25,6 +25,19 @@ struct ThreadContext {
u32 pc;
};
+class Thread;
+
+Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority, u32 entrypoint,
+ u32 arg, u32 stack_top, u32 processor_id, int stack_size=0x4000);
+void __KernelResetThread(Thread *t, int lowest_priority);
+void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready);
+void __KernelChangeReadyState(UID thread_id, bool ready);
+Thread* __KernelNextThread();
+void __KernelSaveContext(ThreadContext *ctx);
+void __KernelLoadContext(ThreadContext *ctx);
+void __KernelSwitchContext(Thread *target, const char *reason);
+UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size=0x4000);
+
void __KernelThreadingInit();
void __KernelThreadingShutdown();