diff options
Diffstat (limited to 'admin/survey/excel/PHPExcel/Shared/JAMA/examples/LevenbergMarquardt.php')
-rw-r--r-- | admin/survey/excel/PHPExcel/Shared/JAMA/examples/LevenbergMarquardt.php | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/admin/survey/excel/PHPExcel/Shared/JAMA/examples/LevenbergMarquardt.php b/admin/survey/excel/PHPExcel/Shared/JAMA/examples/LevenbergMarquardt.php new file mode 100644 index 0000000..01c4acc --- /dev/null +++ b/admin/survey/excel/PHPExcel/Shared/JAMA/examples/LevenbergMarquardt.php @@ -0,0 +1,185 @@ +<?php
+
+// Levenberg-Marquardt in PHP
+
+// http://www.idiom.com/~zilla/Computer/Javanumeric/LM.java
+
+class LevenbergMarquardt {
+
+ /**
+ * Calculate the current sum-squared-error
+ *
+ * Chi-squared is the distribution of squared Gaussian errors,
+ * thus the name.
+ *
+ * @param double[][] $x
+ * @param double[] $a
+ * @param double[] $y,
+ * @param double[] $s,
+ * @param object $f
+ */
+ function chiSquared($x, $a, $y, $s, $f) {
+ $npts = count($y);
+ $sum = 0.0;
+
+ for ($i = 0; $i < $npts; ++$i) {
+ $d = $y[$i] - $f->val($x[$i], $a);
+ $d = $d / $s[$i];
+ $sum = $sum + ($d*$d);
+ }
+
+ return $sum;
+ } // function chiSquared()
+
+
+ /**
+ * Minimize E = sum {(y[k] - f(x[k],a)) / s[k]}^2
+ * The individual errors are optionally scaled by s[k].
+ * Note that LMfunc implements the value and gradient of f(x,a),
+ * NOT the value and gradient of E with respect to a!
+ *
+ * @param x array of domain points, each may be multidimensional
+ * @param y corresponding array of values
+ * @param a the parameters/state of the model
+ * @param vary false to indicate the corresponding a[k] is to be held fixed
+ * @param s2 sigma^2 for point i
+ * @param lambda blend between steepest descent (lambda high) and
+ * jump to bottom of quadratic (lambda zero).
+ * Start with 0.001.
+ * @param termepsilon termination accuracy (0.01)
+ * @param maxiter stop and return after this many iterations if not done
+ * @param verbose set to zero (no prints), 1, 2
+ *
+ * @return the new lambda for future iterations.
+ * Can use this and maxiter to interleave the LM descent with some other
+ * task, setting maxiter to something small.
+ */
+ function solve($x, $a, $y, $s, $vary, $f, $lambda, $termepsilon, $maxiter, $verbose) {
+ $npts = count($y);
+ $nparm = count($a);
+
+ if ($verbose > 0) {
+ print("solve x[".count($x)."][".count($x[0])."]");
+ print(" a[".count($a)."]");
+ println(" y[".count(length)."]");
+ }
+
+ $e0 = $this->chiSquared($x, $a, $y, $s, $f);
+
+ //double lambda = 0.001;
+ $done = false;
+
+ // g = gradient, H = hessian, d = step to minimum
+ // H d = -g, solve for d
+ $H = array();
+ $g = array();
+
+ //double[] d = new double[nparm];
+
+ $oos2 = array();
+
+ for($i = 0; $i < $npts; ++$i) {
+ $oos2[$i] = 1./($s[$i]*$s[$i]);
+ }
+ $iter = 0;
+ $term = 0; // termination count test
+
+ do {
+ ++$iter;
+
+ // hessian approximation
+ for( $r = 0; $r < $nparm; ++$r) {
+ for( $c = 0; $c < $nparm; ++$c) {
+ for( $i = 0; $i < $npts; ++$i) {
+ if ($i == 0) $H[$r][$c] = 0.;
+ $xi = $x[$i];
+ $H[$r][$c] += ($oos2[$i] * $f->grad($xi, $a, $r) * $f->grad($xi, $a, $c));
+ } //npts
+ } //c
+ } //r
+
+ // boost diagonal towards gradient descent
+ for( $r = 0; $r < $nparm; ++$r)
+ $H[$r][$r] *= (1. + $lambda);
+
+ // gradient
+ for( $r = 0; $r < $nparm; ++$r) {
+ for( $i = 0; $i < $npts; ++$i) {
+ if ($i == 0) $g[$r] = 0.;
+ $xi = $x[$i];
+ $g[$r] += ($oos2[$i] * ($y[$i]-$f->val($xi,$a)) * $f->grad($xi, $a, $r));
+ }
+ } //npts
+
+ // scale (for consistency with NR, not necessary)
+ if ($false) {
+ for( $r = 0; $r < $nparm; ++$r) {
+ $g[$r] = -0.5 * $g[$r];
+ for( $c = 0; $c < $nparm; ++$c) {
+ $H[$r][$c] *= 0.5;
+ }
+ }
+ }
+
+ // solve H d = -g, evaluate error at new location
+ //double[] d = DoubleMatrix.solve(H, g);
+// double[] d = (new Matrix(H)).lu().solve(new Matrix(g, nparm)).getRowPackedCopy();
+ //double[] na = DoubleVector.add(a, d);
+// double[] na = (new Matrix(a, nparm)).plus(new Matrix(d, nparm)).getRowPackedCopy();
+// double e1 = chiSquared(x, na, y, s, f);
+
+// if (verbose > 0) {
+// System.out.println("\n\niteration "+iter+" lambda = "+lambda);
+// System.out.print("a = ");
+// (new Matrix(a, nparm)).print(10, 2);
+// if (verbose > 1) {
+// System.out.print("H = ");
+// (new Matrix(H)).print(10, 2);
+// System.out.print("g = ");
+// (new Matrix(g, nparm)).print(10, 2);
+// System.out.print("d = ");
+// (new Matrix(d, nparm)).print(10, 2);
+// }
+// System.out.print("e0 = " + e0 + ": ");
+// System.out.print("moved from ");
+// (new Matrix(a, nparm)).print(10, 2);
+// System.out.print("e1 = " + e1 + ": ");
+// if (e1 < e0) {
+// System.out.print("to ");
+// (new Matrix(na, nparm)).print(10, 2);
+// } else {
+// System.out.println("move rejected");
+// }
+// }
+
+ // termination test (slightly different than NR)
+// if (Math.abs(e1-e0) > termepsilon) {
+// term = 0;
+// } else {
+// term++;
+// if (term == 4) {
+// System.out.println("terminating after " + iter + " iterations");
+// done = true;
+// }
+// }
+// if (iter >= maxiter) done = true;
+
+ // in the C++ version, found that changing this to e1 >= e0
+ // was not a good idea. See comment there.
+ //
+// if (e1 > e0 || Double.isNaN(e1)) { // new location worse than before
+// lambda *= 10.;
+// } else { // new location better, accept new parameters
+// lambda *= 0.1;
+// e0 = e1;
+// // simply assigning a = na will not get results copied back to caller
+// for( int i = 0; i < nparm; i++ ) {
+// if (vary[i]) a[i] = na[i];
+// }
+// }
+ } while(!$done);
+
+ return $lambda;
+ } // function solve()
+
+} // class LevenbergMarquardt
|