diff options
Diffstat (limited to 'vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/LinearBestFit.php')
-rw-r--r-- | vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/LinearBestFit.php | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/LinearBestFit.php b/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/LinearBestFit.php new file mode 100644 index 0000000..83bc179 --- /dev/null +++ b/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/LinearBestFit.php @@ -0,0 +1,81 @@ +<?php
+
+namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
+
+class LinearBestFit extends BestFit
+{
+ /**
+ * Algorithm type to use for best-fit
+ * (Name of this Trend class).
+ *
+ * @var string
+ */
+ protected $bestFitType = 'linear';
+
+ /**
+ * Return the Y-Value for a specified value of X.
+ *
+ * @param float $xValue X-Value
+ *
+ * @return float Y-Value
+ */
+ public function getValueOfYForX($xValue)
+ {
+ return $this->getIntersect() + $this->getSlope() * $xValue;
+ }
+
+ /**
+ * Return the X-Value for a specified value of Y.
+ *
+ * @param float $yValue Y-Value
+ *
+ * @return float X-Value
+ */
+ public function getValueOfXForY($yValue)
+ {
+ return ($yValue - $this->getIntersect()) / $this->getSlope();
+ }
+
+ /**
+ * Return the Equation of the best-fit line.
+ *
+ * @param int $dp Number of places of decimal precision to display
+ *
+ * @return string
+ */
+ public function getEquation($dp = 0)
+ {
+ $slope = $this->getSlope($dp);
+ $intersect = $this->getIntersect($dp);
+
+ return 'Y = ' . $intersect . ' + ' . $slope . ' * X';
+ }
+
+ /**
+ * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
+ *
+ * @param float[] $yValues The set of Y-values for this regression
+ * @param float[] $xValues The set of X-values for this regression
+ * @param bool $const
+ */
+ private function linearRegression($yValues, $xValues, $const): void
+ {
+ $this->leastSquareFit($yValues, $xValues, $const);
+ }
+
+ /**
+ * Define the regression and calculate the goodness of fit for a set of X and Y data values.
+ *
+ * @param float[] $yValues The set of Y-values for this regression
+ * @param float[] $xValues The set of X-values for this regression
+ * @param bool $const
+ */
+ public function __construct($yValues, $xValues = [], $const = true)
+ {
+ parent::__construct($yValues, $xValues);
+
+ if (!$this->error) {
+ $this->linearRegression($yValues, $xValues, $const);
+ }
+ }
+}
|