// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring>
#include <optional>
#include "common/assert.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/textures/texture.h"
namespace Tegra::Engines {
using VideoCore::QueryType;
/// First register id that is actually a Macro call.
constexpr u32 MacroRegistersStart = 0xE00;
Maxwell3D::Maxwell3D(Core::System& system_, MemoryManager& memory_manager_)
: system{system_}, memory_manager{memory_manager_}, macro_engine{GetMacroEngine(*this)},
upload_state{memory_manager, regs.upload} {
dirty.flags.flip();
InitializeRegisterDefaults();
}
Maxwell3D::~Maxwell3D() = default;
void Maxwell3D::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
void Maxwell3D::InitializeRegisterDefaults() {
// Initializes registers to their default values - what games expect them to be at boot. This is
// for certain registers that may not be explicitly set by games.
// Reset all registers to zero
std::memset(®s, 0, sizeof(regs));
// Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is
// needed for ARMS.
for (auto& viewport : regs.viewports) {
viewport.depth_range_near = 0.0f;
viewport.depth_range_far = 1.0f;
}
for (auto& viewport : regs.viewport_transform) {
viewport.swizzle.x.Assign(Regs::ViewportSwizzle::PositiveX);
viewport.swizzle.y.Assign(Regs::ViewportSwizzle::PositiveY);
viewport.swizzle.z.Assign(Regs::ViewportSwizzle::PositiveZ);
viewport.swizzle.w.Assign(Regs::ViewportSwizzle::PositiveW);
}
// Doom and Bomberman seems to use the uninitialized registers and just enable blend
// so initialize blend registers with sane values
regs.blend.equation_rgb = Regs::Blend::Equation::Add;
regs.blend.factor_source_rgb = Regs::Blend::Factor::One;
regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero;
regs.blend.equation_a = Regs::Blend::Equation::Add;
regs.blend.factor_source_a = Regs::Blend::Factor::One;
regs.blend.factor_dest_a = Regs::Blend::Factor::Zero;
for (auto& blend : regs.independent_blend) {
blend.equation_rgb = Regs::Blend::Equation::Add;
blend.factor_source_rgb = Regs::Blend::Factor::One;
blend.factor_dest_rgb = Regs::Blend::Factor::Zero;
blend.equation_a = Regs::Blend::Equation::Add;
blend.factor_source_a = Regs::Blend::Factor::One;
blend.factor_dest_a = Regs::Blend::Factor::Zero;
}
regs.stencil_front_op_fail = Regs::StencilOp::Keep;
regs.stencil_front_op_zfail = Regs::StencilOp::Keep;
regs.stencil_front_op_zpass = Regs::StencilOp::Keep;
regs.stencil_front_func_func = Regs::ComparisonOp::Always;
regs.stencil_front_func_mask = 0xFFFFFFFF;
regs.stencil_front_mask = 0xFFFFFFFF;
regs.stencil_two_side_enable = 1;
regs.stencil_back_op_fail = Regs::StencilOp::Keep;
regs.stencil_back_op_zfail = Regs::StencilOp::Keep;
regs.stencil_back_op_zpass = Regs::StencilOp::Keep;
regs.stencil_back_func_func = Regs::ComparisonOp::Always;
regs.stencil_back_func_mask = 0xFFFFFFFF;
regs.stencil_back_mask = 0xFFFFFFFF;
regs.depth_test_func = Regs::ComparisonOp::Always;
regs.front_face = Regs::FrontFace::CounterClockWise;
regs.cull_face = Regs::CullFace::Back;
// TODO(Rodrigo): Most games do not set a point size. I think this is a case of a
// register carrying a default value. Assume it's OpenGL's default (1).
regs.point_size = 1.0f;
// TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a
// default of enabled fixes rendering here.
for (auto& color_mask : regs.color_mask) {
color_mask.R.Assign(1);
color_mask.G.Assign(1);
color_mask.B.Assign(1);
color_mask.A.Assign(1);
}
for (auto& format : regs.vertex_attrib_format) {
format.constant.Assign(1);
}
// NVN games expect these values to be enabled at boot
regs.rasterize_enable = 1;
regs.rt_separate_frag_data = 1;
regs.framebuffer_srgb = 1;
regs.line_width_aliased = 1.0f;
regs.line_width_smooth = 1.0f;
regs.front_face = Maxwell3D::Regs::FrontFace::ClockWise;
regs.polygon_mode_back = Maxwell3D::Regs::PolygonMode::Fill;
regs.polygon_mode_front = Maxwell3D::Regs::PolygonMode::Fill;
shadow_state = regs;
mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_end_gl)] = true;
mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)] = true;
mme_inline[MAXWELL3D_REG_INDEX(vertex_buffer.count)] = true;
mme_inline[MAXWELL3D_REG_INDEX(index_array.count)] = true;
}
void Maxwell3D::ProcessMacro(u32 method, const u32* base_start, u32 amount, bool is_last_call) {
if (executing_macro == 0) {
// A macro call must begin by writing the macro method's register, not its argument.
ASSERT_MSG((method % 2) == 0,
"Can't start macro execution by writing to the ARGS register");
executing_macro = method;
}
macro_params.insert(macro_params.end(), base_start, base_start + amount);
// Call the macro when there are no more parameters in the command buffer
if (is_last_call) {
CallMacroMethod(executing_macro, macro_params);
macro_params.clear();
}
}
u32 Maxwell3D::ProcessShadowRam(u32 method, u32 argument) {
// Keep track of the register value in shadow_state when requested.
const auto control = shadow_state.shadow_ram_control;
if (control == Regs::ShadowRamControl::Track ||
control == Regs::ShadowRamControl::TrackWithFilter) {
shadow_state.reg_array[method] = argument;
return argument;
}
if (control == Regs::ShadowRamControl::Replay) {
return shadow_state.reg_array[method];
}
return argument;
}
void Maxwell3D::ProcessDirtyRegisters(u32 method, u32 argument) {
if (regs.reg_array[method] == argument) {
return;
}
regs.reg_array[method] = argument;
for (const auto& table : dirty.tables) {
dirty.flags[table[method]] = true;
}
}
void Maxwell3D::ProcessMethodCall(u32 method, u32 argument, u32 nonshadow_argument,
bool is_last_call) {
switch (method) {
case MAXWELL3D_REG_INDEX(wait_for_idle):
return rasterizer->WaitForIdle();
case MAXWELL3D_REG_INDEX(shadow_ram_control):
shadow_state.shadow_ram_control = static_cast<Regs::ShadowRamControl>(nonshadow_argument);
return;
case MAXWELL3D_REG_INDEX(macros.data):
return macro_engine->AddCode(regs.macros.upload_address, argument);
case MAXWELL3D_REG_INDEX(macros.bind):
return ProcessMacroBind(argument);
case MAXWELL3D_REG_INDEX(firmware[4]):
return ProcessFirmwareCall4();
case MAXWELL3D_REG_INDEX(const_buffer.cb_data):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 1:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 2:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 3:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 4:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 5:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 6:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 7:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 8:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 9:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 10:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 11:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 12:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 13:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 14:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 15:
return StartCBData(method);
case MAXWELL3D_REG_INDEX(cb_bind[0]):
return ProcessCBBind(0);
case MAXWELL3D_REG_INDEX(cb_bind[1]):
return ProcessCBBind(1);
case MAXWELL3D_REG_INDEX(cb_bind[2]):
return ProcessCBBind(2);
case MAXWELL3D_REG_INDEX(cb_bind[3]):
return ProcessCBBind(3);
case MAXWELL3D_REG_INDEX(cb_bind[4]):
return ProcessCBBind(4);
case MAXWELL3D_REG_INDEX(draw.vertex_end_gl):
return DrawArrays();
case MAXWELL3D_REG_INDEX(clear_buffers):
return ProcessClearBuffers();
case MAXWELL3D_REG_INDEX(query.query_get):
return ProcessQueryGet();
case MAXWELL3D_REG_INDEX(condition.mode):
return ProcessQueryCondition();
case MAXWELL3D_REG_INDEX(counter_reset):
return ProcessCounterReset();
case MAXWELL3D_REG_INDEX(sync_info):
return ProcessSyncPoint();
case MAXWELL3D_REG_INDEX(exec_upload):
return upload_state.ProcessExec(regs.exec_upload.linear != 0);
case MAXWELL3D_REG_INDEX(data_upload):
upload_state.ProcessData(argument, is_last_call);
if (is_last_call) {
OnMemoryWrite();
}
return;
case MAXWELL3D_REG_INDEX(fragment_barrier):
return rasterizer->FragmentBarrier();
case MAXWELL3D_REG_INDEX(tiled_cache_barrier):
return rasterizer->TiledCacheBarrier();
}
}
void Maxwell3D::CallMacroMethod(u32 method, const std::vector<u32>& parameters) {
// Reset the current macro.
executing_macro = 0;
// Lookup the macro offset
const u32 entry =
((method - MacroRegistersStart) >> 1) % static_cast<u32>(macro_positions.size());
// Execute the current macro.
macro_engine->Execute(*this, macro_positions[entry], parameters);
if (mme_draw.current_mode != MMEDrawMode::Undefined) {
FlushMMEInlineDraw();
}
}
void Maxwell3D::CallMethod(u32 method, u32 method_argument, bool is_last_call) {
if (method == cb_data_state.current) {
regs.reg_array[method] = method_argument;
ProcessCBData(method_argument);
return;
} else if (cb_data_state.current != null_cb_data) {
FinishCBData();
}
// It is an error to write to a register other than the current macro's ARG register before it
// has finished execution.
if (executing_macro != 0) {
ASSERT(method == executing_macro + 1);
}
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method >= MacroRegistersStart) {
ProcessMacro(method, &method_argument, 1, is_last_call);
return;
}
ASSERT_MSG(method < Regs::NUM_REGS,
"Invalid Maxwell3D register, increase the size of the Regs structure");
const u32 argument = ProcessShadowRam(method, method_argument);
ProcessDirtyRegisters(method, argument);
ProcessMethodCall(method, argument, method_argument, is_last_call);
}
void Maxwell3D::CallMultiMethod(u32 method, const u32* base_start, u32 amount,
u32 methods_pending) {
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method >= MacroRegistersStart) {
ProcessMacro(method, base_start, amount, amount == methods_pending);
return;
}
switch (method) {
case MAXWELL3D_REG_INDEX(const_buffer.cb_data):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 1:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 2:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 3:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 4:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 5:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 6:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 7:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 8:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 9:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 10:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 11:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 12:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 13:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 14:
case MAXWELL3D_REG_INDEX(const_buffer.cb_data) + 15:
ProcessCBMultiData(method, base_start, amount);
break;
default:
for (std::size_t i = 0; i < amount; i++) {
CallMethod(method, base_start[i], methods_pending - static_cast<u32>(i) <= 1);
}
break;
}
}
void Maxwell3D::StepInstance(const MMEDrawMode expected_mode, const u32 count) {
if (mme_draw.current_mode == MMEDrawMode::Undefined) {
if (mme_draw.gl_begin_consume) {
mme_draw.current_mode = expected_mode;
mme_draw.current_count = count;
mme_draw.instance_count = 1;
mme_draw.gl_begin_consume = false;
mme_draw.gl_end_count = 0;
}
return;
} else {
if (mme_draw.current_mode == expected_mode && count == mme_draw.current_count &&
mme_draw.instance_mode && mme_draw.gl_begin_consume) {
mme_draw.instance_count++;
mme_draw.gl_begin_consume = false;
return;
} else {
FlushMMEInlineDraw();
}
}
// Tail call in case it needs to retry.
StepInstance(expected_mode, count);
}
void Maxwell3D::CallMethodFromMME(u32 method, u32 method_argument) {
if (mme_inline[method]) {
regs.reg_array[method] = method_argument;
if (method == MAXWELL3D_REG_INDEX(vertex_buffer.count) ||
method == MAXWELL3D_REG_INDEX(index_array.count)) {
const MMEDrawMode expected_mode = method == MAXWELL3D_REG_INDEX(vertex_buffer.count)
? MMEDrawMode::Array
: MMEDrawMode::Indexed;
StepInstance(expected_mode, method_argument);
} else if (method == MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)) {
mme_draw.instance_mode =
(regs.draw.instance_next != 0) || (regs.draw.instance_cont != 0);
mme_draw.gl_begin_consume = true;
} else {
mme_draw.gl_end_count++;
}
} else {
if (mme_draw.current_mode != MMEDrawMode::Undefined) {
FlushMMEInlineDraw();
}
CallMethod(method, method_argument, true);
}
}
void Maxwell3D::FlushMMEInlineDraw() {
LOG_TRACE(HW_GPU, "called, topology={}, count={}", regs.draw.topology.Value(),
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
ASSERT(mme_draw.instance_count == mme_draw.gl_end_count);
// Both instance configuration registers can not be set at the same time.
ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont,
"Illegal combination of instancing parameters");
const bool is_indexed = mme_draw.current_mode == MMEDrawMode::Indexed;
if (ShouldExecute()) {
rasterizer->Draw(is_indexed, true);
}
// TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if
// the game is trying to draw indexed or direct mode. This needs to be verified on HW still -
// it's possible that it is incorrect and that there is some other register used to specify the
// drawing mode.
if (is_indexed) {
regs.index_array.count = 0;
} else {
regs.vertex_buffer.count = 0;
}
mme_draw.current_mode = MMEDrawMode::Undefined;
mme_draw.current_count = 0;
mme_draw.instance_count = 0;
mme_draw.instance_mode = false;
mme_draw.gl_begin_consume = false;
mme_draw.gl_end_count = 0;
}
void Maxwell3D::ProcessMacroUpload(u32 data) {
macro_engine->AddCode(regs.macros.upload_address++, data);
}
void Maxwell3D::ProcessMacroBind(u32 data) {
macro_positions[regs.macros.entry++] = data;
}
void Maxwell3D::ProcessFirmwareCall4() {
LOG_WARNING(HW_GPU, "(STUBBED) called");
// Firmware call 4 is a blob that changes some registers depending on its parameters.
// These registers don't affect emulation and so are stubbed by setting 0xd00 to 1.
regs.reg_array[0xd00] = 1;
}
void Maxwell3D::StampQueryResult(u64 payload, bool long_query) {
struct LongQueryResult {
u64_le value;
u64_le timestamp;
};
static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size");
const GPUVAddr sequence_address{regs.query.QueryAddress()};
if (long_query) {
// Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast
// GPU, this command may actually take a while to complete in real hardware due to GPU
// wait queues.
LongQueryResult query_result{payload, system.GPU().GetTicks()};
memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result));
} else {
memory_manager.Write<u32>(sequence_address, static_cast<u32>(payload));
}
}
void Maxwell3D::ProcessQueryGet() {
// TODO(Subv): Support the other query units.
if (regs.query.query_get.unit != Regs::QueryUnit::Crop) {
LOG_DEBUG(HW_GPU, "Units other than CROP are unimplemented");
}
switch (regs.query.query_get.operation) {
case Regs::QueryOperation::Release:
if (regs.query.query_get.fence == 1) {
rasterizer->SignalSemaphore(regs.query.QueryAddress(), regs.query.query_sequence);
} else {
StampQueryResult(regs.query.query_sequence, regs.query.query_get.short_query == 0);
}
break;
case Regs::QueryOperation::Acquire:
// TODO(Blinkhawk): Under this operation, the GPU waits for the CPU to write a value that
// matches the current payload.
UNIMPLEMENTED_MSG("Unimplemented query operation ACQUIRE");
break;
case Regs::QueryOperation::Counter:
if (const std::optional<u64> result = GetQueryResult()) {
// If the query returns an empty optional it means it's cached and deferred.
// In this case we have a non-empty result, so we stamp it immediately.
StampQueryResult(*result, regs.query.query_get.short_query == 0);
}
break;
case Regs::QueryOperation::Trap:
UNIMPLEMENTED_MSG("Unimplemented query operation TRAP");
break;
default:
UNIMPLEMENTED_MSG("Unknown query operation");
break;
}
}
void Maxwell3D::ProcessQueryCondition() {
const GPUVAddr condition_address{regs.condition.Address()};
switch (regs.condition.mode) {
case Regs::ConditionMode::Always: {
execute_on = true;
break;
}
case Regs::ConditionMode::Never: {
execute_on = false;
break;
}
case Regs::ConditionMode::ResNonZero: {
Regs::QueryCompare cmp;
memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp));
execute_on = cmp.initial_sequence != 0U && cmp.initial_mode != 0U;
break;
}
case Regs::ConditionMode::Equal: {
Regs::QueryCompare cmp;
memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp));
execute_on =
cmp.initial_sequence == cmp.current_sequence && cmp.initial_mode == cmp.current_mode;
break;
}
case Regs::ConditionMode::NotEqual: {
Regs::QueryCompare cmp;
memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp));
execute_on =
cmp.initial_sequence != cmp.current_sequence || cmp.initial_mode != cmp.current_mode;
break;
}
default: {
UNIMPLEMENTED_MSG("Uninplemented Condition Mode!");
execute_on = true;
break;
}
}
}
void Maxwell3D::ProcessCounterReset() {
switch (regs.counter_reset) {
case Regs::CounterReset::SampleCnt:
rasterizer->ResetCounter(QueryType::SamplesPassed);
break;
default:
LOG_DEBUG(Render_OpenGL, "Unimplemented counter reset={}", regs.counter_reset);
break;
}
}
void Maxwell3D::ProcessSyncPoint() {
const u32 sync_point = regs.sync_info.sync_point.Value();
const u32 increment = regs.sync_info.increment.Value();
[[maybe_unused]] const u32 cache_flush = regs.sync_info.unknown.Value();
if (increment) {
rasterizer->SignalSyncPoint(sync_point);
}
}
void Maxwell3D::DrawArrays() {
LOG_TRACE(HW_GPU, "called, topology={}, count={}", regs.draw.topology.Value(),
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
// Both instance configuration registers can not be set at the same time.
ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont,
"Illegal combination of instancing parameters");
if (regs.draw.instance_next) {
// Increment the current instance *before* drawing.
state.current_instance += 1;
} else if (!regs.draw.instance_cont) {
// Reset the current instance to 0.
state.current_instance = 0;
}
const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count};
if (ShouldExecute()) {
rasterizer->Draw(is_indexed, false);
}
// TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if
// the game is trying to draw indexed or direct mode. This needs to be verified on HW still -
// it's possible that it is incorrect and that there is some other register used to specify the
// drawing mode.
if (is_indexed) {
regs.index_array.count = 0;
} else {
regs.vertex_buffer.count = 0;
}
}
std::optional<u64> Maxwell3D::GetQueryResult() {
switch (regs.query.query_get.select) {
case Regs::QuerySelect::Zero:
return 0;
case Regs::QuerySelect::SamplesPassed:
// Deferred.
rasterizer->Query(regs.query.QueryAddress(), QueryType::SamplesPassed,
system.GPU().GetTicks());
return std::nullopt;
default:
LOG_DEBUG(HW_GPU, "Unimplemented query select type {}",
regs.query.query_get.select.Value());
return 1;
}
}
void Maxwell3D::ProcessCBBind(std::size_t stage_index) {
// Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage.
auto& shader = state.shader_stages[stage_index];
auto& bind_data = regs.cb_bind[stage_index];
ASSERT(bind_data.index < Regs::MaxConstBuffers);
auto& buffer = shader.const_buffers[bind_data.index];
buffer.enabled = bind_data.valid.Value() != 0;
buffer.address = regs.const_buffer.BufferAddress();
buffer.size = regs.const_buffer.cb_size;
}
void Maxwell3D::ProcessCBData(u32 value) {
const u32 id = cb_data_state.id;
cb_data_state.buffer[id][cb_data_state.counter] = value;
// Increment the current buffer position.
regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4;
cb_data_state.counter++;
}
void Maxwell3D::StartCBData(u32 method) {
constexpr u32 first_cb_data = MAXWELL3D_REG_INDEX(const_buffer.cb_data);
cb_data_state.start_pos = regs.const_buffer.cb_pos;
cb_data_state.id = method - first_cb_data;
cb_data_state.current = method;
cb_data_state.counter = 0;
ProcessCBData(regs.const_buffer.cb_data[cb_data_state.id]);
}
void Maxwell3D::ProcessCBMultiData(u32 method, const u32* start_base, u32 amount) {
if (cb_data_state.current != method) {
if (cb_data_state.current != null_cb_data) {
FinishCBData();
}
constexpr u32 first_cb_data = MAXWELL3D_REG_INDEX(const_buffer.cb_data);
cb_data_state.start_pos = regs.const_buffer.cb_pos;
cb_data_state.id = method - first_cb_data;
cb_data_state.current = method;
cb_data_state.counter = 0;
}
const std::size_t id = cb_data_state.id;
const std::size_t size = amount;
std::size_t i = 0;
for (; i < size; i++) {
cb_data_state.buffer[id][cb_data_state.counter] = start_base[i];
cb_data_state.counter++;
}
// Increment the current buffer position.
regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4 * amount;
}
void Maxwell3D::FinishCBData() {
// Write the input value to the current const buffer at the current position.
const GPUVAddr buffer_address = regs.const_buffer.BufferAddress();
ASSERT(buffer_address != 0);
// Don't allow writing past the end of the buffer.
ASSERT(regs.const_buffer.cb_pos <= regs.const_buffer.cb_size);
const GPUVAddr address{buffer_address + cb_data_state.start_pos};
const std::size_t size = regs.const_buffer.cb_pos - cb_data_state.start_pos;
const u32 id = cb_data_state.id;
memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size);
OnMemoryWrite();
cb_data_state.id = null_cb_data;
cb_data_state.current = null_cb_data;
}
Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const {
const GPUVAddr tic_address_gpu{regs.tic.Address() + tic_index * sizeof(Texture::TICEntry)};
Texture::TICEntry tic_entry;
memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry));
return tic_entry;
}
Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const {
const GPUVAddr tsc_address_gpu{regs.tsc.Address() + tsc_index * sizeof(Texture::TSCEntry)};
Texture::TSCEntry tsc_entry;
memory_manager.ReadBlockUnsafe(tsc_address_gpu, &tsc_entry, sizeof(Texture::TSCEntry));
return tsc_entry;
}
u32 Maxwell3D::GetRegisterValue(u32 method) const {
ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register");
return regs.reg_array[method];
}
void Maxwell3D::ProcessClearBuffers() {
rasterizer->Clear();
}
u32 Maxwell3D::AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const {
ASSERT(stage != ShaderType::Compute);
const auto& shader_stage = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& buffer = shader_stage.const_buffers[const_buffer];
return memory_manager.Read<u32>(buffer.address + offset);
}
SamplerDescriptor Maxwell3D::AccessBoundSampler(ShaderType stage, u64 offset) const {
return AccessBindlessSampler(stage, regs.tex_cb_index, offset * sizeof(Texture::TextureHandle));
}
SamplerDescriptor Maxwell3D::AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const {
ASSERT(stage != ShaderType::Compute);
const auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& tex_info_buffer = shader.const_buffers[const_buffer];
const GPUVAddr tex_info_address = tex_info_buffer.address + offset;
return AccessSampler(memory_manager.Read<u32>(tex_info_address));
}
SamplerDescriptor Maxwell3D::AccessSampler(u32 handle) const {
const Texture::TextureHandle tex_handle{handle};
const Texture::TICEntry tic = GetTICEntry(tex_handle.tic_id);
const Texture::TSCEntry tsc = GetTSCEntry(tex_handle.tsc_id);
SamplerDescriptor result = SamplerDescriptor::FromTIC(tic);
result.is_shadow.Assign(tsc.depth_compare_enabled.Value());
return result;
}
VideoCore::GuestDriverProfile& Maxwell3D::AccessGuestDriverProfile() {
return rasterizer->AccessGuestDriverProfile();
}
const VideoCore::GuestDriverProfile& Maxwell3D::AccessGuestDriverProfile() const {
return rasterizer->AccessGuestDriverProfile();
}
} // namespace Tegra::Engines