summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/svc.cpp
blob: 6588bd3b8adb6936bb188327954c9fe87cc88705 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cinttypes>
#include <iterator>
#include <mutex>
#include <vector>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/writable_event.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
#include "core/memory.h"

namespace Kernel {
namespace {

// Checks if address + size is greater than the given address
// This can return false if the size causes an overflow of a 64-bit type
// or if the given size is zero.
constexpr bool IsValidAddressRange(VAddr address, u64 size) {
    return address + size > address;
}

// Checks if a given address range lies within a larger address range.
constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin,
                                    VAddr address_range_end) {
    const VAddr end_address = address + size - 1;
    return address_range_begin <= address && end_address <= address_range_end - 1;
}

bool IsInsideAddressSpace(const VMManager& vm, VAddr address, u64 size) {
    return IsInsideAddressRange(address, size, vm.GetAddressSpaceBaseAddress(),
                                vm.GetAddressSpaceEndAddress());
}

bool IsInsideNewMapRegion(const VMManager& vm, VAddr address, u64 size) {
    return IsInsideAddressRange(address, size, vm.GetNewMapRegionBaseAddress(),
                                vm.GetNewMapRegionEndAddress());
}

// 8 GiB
constexpr u64 MAIN_MEMORY_SIZE = 0x200000000;

// Helper function that performs the common sanity checks for svcMapMemory
// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
// in the same order.
ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_addr, VAddr src_addr,
                                      u64 size) {
    if (!Common::Is4KBAligned(dst_addr)) {
        LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
        return ERR_INVALID_ADDRESS;
    }

    if (!Common::Is4KBAligned(src_addr)) {
        LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr);
        return ERR_INVALID_SIZE;
    }

    if (size == 0) {
        LOG_ERROR(Kernel_SVC, "Size is 0");
        return ERR_INVALID_SIZE;
    }

    if (!Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    if (!IsValidAddressRange(dst_addr, size)) {
        LOG_ERROR(Kernel_SVC,
                  "Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
                  dst_addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (!IsValidAddressRange(src_addr, size)) {
        LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
                  src_addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (!IsInsideAddressSpace(vm_manager, src_addr, size)) {
        LOG_ERROR(Kernel_SVC,
                  "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}",
                  src_addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (!IsInsideNewMapRegion(vm_manager, dst_addr, size)) {
        LOG_ERROR(Kernel_SVC,
                  "Destination is not within the new map region, addr=0x{:016X}, size=0x{:016X}",
                  dst_addr, size);
        return ERR_INVALID_MEMORY_RANGE;
    }

    const VAddr dst_end_address = dst_addr + size;
    if (dst_end_address > vm_manager.GetHeapRegionBaseAddress() &&
        vm_manager.GetHeapRegionEndAddress() > dst_addr) {
        LOG_ERROR(Kernel_SVC,
                  "Destination does not fit within the heap region, addr=0x{:016X}, "
                  "size=0x{:016X}, end_addr=0x{:016X}",
                  dst_addr, size, dst_end_address);
        return ERR_INVALID_MEMORY_RANGE;
    }

    if (dst_end_address > vm_manager.GetMapRegionBaseAddress() &&
        vm_manager.GetMapRegionEndAddress() > dst_addr) {
        LOG_ERROR(Kernel_SVC,
                  "Destination does not fit within the map region, addr=0x{:016X}, "
                  "size=0x{:016X}, end_addr=0x{:016X}",
                  dst_addr, size, dst_end_address);
        return ERR_INVALID_MEMORY_RANGE;
    }

    return RESULT_SUCCESS;
}

enum class ResourceLimitValueType {
    CurrentValue,
    LimitValue,
};

ResultVal<s64> RetrieveResourceLimitValue(Handle resource_limit, u32 resource_type,
                                          ResourceLimitValueType value_type) {
    const auto type = static_cast<ResourceType>(resource_type);
    if (!IsValidResourceType(type)) {
        LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type);
        return ERR_INVALID_ENUM_VALUE;
    }

    const auto& kernel = Core::System::GetInstance().Kernel();
    const auto* const current_process = kernel.CurrentProcess();
    ASSERT(current_process != nullptr);

    const auto resource_limit_object =
        current_process->GetHandleTable().Get<ResourceLimit>(resource_limit);
    if (!resource_limit_object) {
        LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}",
                  resource_limit);
        return ERR_INVALID_HANDLE;
    }

    if (value_type == ResourceLimitValueType::CurrentValue) {
        return MakeResult(resource_limit_object->GetCurrentResourceValue(type));
    }

    return MakeResult(resource_limit_object->GetMaxResourceValue(type));
}
} // Anonymous namespace

/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
    LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size);

    // Size must be a multiple of 0x200000 (2MB) and be equal to or less than 8GB.
    if ((heap_size % 0x200000) != 0) {
        LOG_ERROR(Kernel_SVC, "The heap size is not a multiple of 2MB, heap_size=0x{:016X}",
                  heap_size);
        return ERR_INVALID_SIZE;
    }

    if (heap_size >= 0x200000000) {
        LOG_ERROR(Kernel_SVC, "The heap size is not less than 8GB, heap_size=0x{:016X}", heap_size);
        return ERR_INVALID_SIZE;
    }

    auto& vm_manager = Core::CurrentProcess()->VMManager();
    const VAddr heap_base = vm_manager.GetHeapRegionBaseAddress();
    const auto alloc_result =
        vm_manager.HeapAllocate(heap_base, heap_size, VMAPermission::ReadWrite);

    if (alloc_result.Failed()) {
        return alloc_result.Code();
    }

    *heap_addr = *alloc_result;
    return RESULT_SUCCESS;
}

static ResultCode SetMemoryPermission(VAddr addr, u64 size, u32 prot) {
    LOG_TRACE(Kernel_SVC, "called, addr=0x{:X}, size=0x{:X}, prot=0x{:X}", addr, size, prot);

    if (!Common::Is4KBAligned(addr)) {
        LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        LOG_ERROR(Kernel_SVC, "Size is 0");
        return ERR_INVALID_SIZE;
    }

    if (!Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    if (!IsValidAddressRange(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
                  addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    const auto permission = static_cast<MemoryPermission>(prot);
    if (permission != MemoryPermission::None && permission != MemoryPermission::Read &&
        permission != MemoryPermission::ReadWrite) {
        LOG_ERROR(Kernel_SVC, "Invalid memory permission specified, Got memory permission=0x{:08X}",
                  static_cast<u32>(permission));
        return ERR_INVALID_MEMORY_PERMISSIONS;
    }

    auto* const current_process = Core::CurrentProcess();
    auto& vm_manager = current_process->VMManager();

    if (!IsInsideAddressSpace(vm_manager, addr, size)) {
        LOG_ERROR(Kernel_SVC,
                  "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
                  size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    const VMManager::VMAHandle iter = vm_manager.FindVMA(addr);
    if (!vm_manager.IsValidHandle(iter)) {
        LOG_ERROR(Kernel_SVC, "Unable to find VMA for address=0x{:016X}", addr);
        return ERR_INVALID_ADDRESS_STATE;
    }

    LOG_WARNING(Kernel_SVC, "Uniformity check on protected memory is not implemented.");
    // TODO: Performs a uniformity check to make sure only protected memory is changed (it doesn't
    // make sense to allow changing permissions on kernel memory itself, etc).

    const auto converted_permissions = SharedMemory::ConvertPermissions(permission);

    return vm_manager.ReprotectRange(addr, size, converted_permissions);
}

static ResultCode SetMemoryAttribute(VAddr address, u64 size, u32 mask, u32 attribute) {
    LOG_DEBUG(Kernel_SVC,
              "called, address=0x{:016X}, size=0x{:X}, mask=0x{:08X}, attribute=0x{:08X}", address,
              size, mask, attribute);

    if (!Common::Is4KBAligned(address)) {
        LOG_ERROR(Kernel_SVC, "Address not page aligned (0x{:016X})", address);
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0 || !Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Invalid size (0x{:X}). Size must be non-zero and page aligned.",
                  size);
        return ERR_INVALID_ADDRESS;
    }

    if (!IsValidAddressRange(address, size)) {
        LOG_ERROR(Kernel_SVC, "Address range overflowed (Address: 0x{:016X}, Size: 0x{:016X})",
                  address, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    const auto mem_attribute = static_cast<MemoryAttribute>(attribute);
    const auto mem_mask = static_cast<MemoryAttribute>(mask);
    const auto attribute_with_mask = mem_attribute | mem_mask;

    if (attribute_with_mask != mem_mask) {
        LOG_ERROR(Kernel_SVC,
                  "Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}",
                  attribute, mask);
        return ERR_INVALID_COMBINATION;
    }

    if ((attribute_with_mask | MemoryAttribute::Uncached) != MemoryAttribute::Uncached) {
        LOG_ERROR(Kernel_SVC, "Specified attribute isn't equal to MemoryAttributeUncached (8).");
        return ERR_INVALID_COMBINATION;
    }

    auto& vm_manager = Core::CurrentProcess()->VMManager();
    if (!IsInsideAddressSpace(vm_manager, address, size)) {
        LOG_ERROR(Kernel_SVC,
                  "Given address (0x{:016X}) is outside the bounds of the address space.", address);
        return ERR_INVALID_ADDRESS_STATE;
    }

    return vm_manager.SetMemoryAttribute(address, size, mem_mask, mem_attribute);
}

/// Maps a memory range into a different range.
static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
    LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
              src_addr, size);

    auto& vm_manager = Core::CurrentProcess()->VMManager();
    const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);

    if (result.IsError()) {
        return result;
    }

    return vm_manager.MirrorMemory(dst_addr, src_addr, size, MemoryState::Stack);
}

/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
    LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
              src_addr, size);

    auto& vm_manager = Core::CurrentProcess()->VMManager();
    const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);

    if (result.IsError()) {
        return result;
    }

    return vm_manager.UnmapRange(dst_addr, size);
}

/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToNamedPort(Handle* out_handle, VAddr port_name_address) {
    if (!Memory::IsValidVirtualAddress(port_name_address)) {
        LOG_ERROR(Kernel_SVC,
                  "Port Name Address is not a valid virtual address, port_name_address=0x{:016X}",
                  port_name_address);
        return ERR_NOT_FOUND;
    }

    static constexpr std::size_t PortNameMaxLength = 11;
    // Read 1 char beyond the max allowed port name to detect names that are too long.
    std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
    if (port_name.size() > PortNameMaxLength) {
        LOG_ERROR(Kernel_SVC, "Port name is too long, expected {} but got {}", PortNameMaxLength,
                  port_name.size());
        return ERR_OUT_OF_RANGE;
    }

    LOG_TRACE(Kernel_SVC, "called port_name={}", port_name);

    auto& kernel = Core::System::GetInstance().Kernel();
    auto it = kernel.FindNamedPort(port_name);
    if (!kernel.IsValidNamedPort(it)) {
        LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
        return ERR_NOT_FOUND;
    }

    auto client_port = it->second;

    SharedPtr<ClientSession> client_session;
    CASCADE_RESULT(client_session, client_port->Connect());

    // Return the client session
    auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    CASCADE_RESULT(*out_handle, handle_table.Create(client_session));
    return RESULT_SUCCESS;
}

/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Handle handle) {
    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    SharedPtr<ClientSession> session = handle_table.Get<ClientSession>(handle);
    if (!session) {
        LOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle);
        return ERR_INVALID_HANDLE;
    }

    LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());

    Core::System::GetInstance().PrepareReschedule();

    // TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server
    // responds and cause a reschedule.
    return session->SendSyncRequest(GetCurrentThread());
}

/// Get the ID for the specified thread.
static ResultCode GetThreadId(u64* thread_id, Handle thread_handle) {
    LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", thread_handle);
        return ERR_INVALID_HANDLE;
    }

    *thread_id = thread->GetThreadID();
    return RESULT_SUCCESS;
}

/// Gets the ID of the specified process or a specified thread's owning process.
static ResultCode GetProcessId(u64* process_id, Handle handle) {
    LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Process> process = handle_table.Get<Process>(handle);
    if (process) {
        *process_id = process->GetProcessID();
        return RESULT_SUCCESS;
    }

    const SharedPtr<Thread> thread = handle_table.Get<Thread>(handle);
    if (thread) {
        const Process* const owner_process = thread->GetOwnerProcess();
        if (!owner_process) {
            LOG_ERROR(Kernel_SVC, "Non-existent owning process encountered.");
            return ERR_INVALID_HANDLE;
        }

        *process_id = owner_process->GetProcessID();
        return RESULT_SUCCESS;
    }

    // NOTE: This should also handle debug objects before returning.

    LOG_ERROR(Kernel_SVC, "Handle does not exist, handle=0x{:08X}", handle);
    return ERR_INVALID_HANDLE;
}

/// Default thread wakeup callback for WaitSynchronization
static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
                                        SharedPtr<WaitObject> object, std::size_t index) {
    ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny);

    if (reason == ThreadWakeupReason::Timeout) {
        thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
        return true;
    }

    ASSERT(reason == ThreadWakeupReason::Signal);
    thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
    thread->SetWaitSynchronizationOutput(static_cast<u32>(index));
    return true;
};

/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Handle* index, VAddr handles_address, u64 handle_count,
                                      s64 nano_seconds) {
    LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
              handles_address, handle_count, nano_seconds);

    if (!Memory::IsValidVirtualAddress(handles_address)) {
        LOG_ERROR(Kernel_SVC,
                  "Handle address is not a valid virtual address, handle_address=0x{:016X}",
                  handles_address);
        return ERR_INVALID_POINTER;
    }

    static constexpr u64 MaxHandles = 0x40;

    if (handle_count > MaxHandles) {
        LOG_ERROR(Kernel_SVC, "Handle count specified is too large, expected {} but got {}",
                  MaxHandles, handle_count);
        return ERR_OUT_OF_RANGE;
    }

    auto* const thread = GetCurrentThread();

    using ObjectPtr = Thread::ThreadWaitObjects::value_type;
    Thread::ThreadWaitObjects objects(handle_count);
    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();

    for (u64 i = 0; i < handle_count; ++i) {
        const Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
        const auto object = handle_table.Get<WaitObject>(handle);

        if (object == nullptr) {
            LOG_ERROR(Kernel_SVC, "Object is a nullptr");
            return ERR_INVALID_HANDLE;
        }

        objects[i] = object;
    }

    // Find the first object that is acquirable in the provided list of objects
    auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
        return !object->ShouldWait(thread);
    });

    if (itr != objects.end()) {
        // We found a ready object, acquire it and set the result value
        WaitObject* object = itr->get();
        object->Acquire(thread);
        *index = static_cast<s32>(std::distance(objects.begin(), itr));
        return RESULT_SUCCESS;
    }

    // No objects were ready to be acquired, prepare to suspend the thread.

    // If a timeout value of 0 was provided, just return the Timeout error code instead of
    // suspending the thread.
    if (nano_seconds == 0) {
        return RESULT_TIMEOUT;
    }

    for (auto& object : objects) {
        object->AddWaitingThread(thread);
    }

    thread->SetWaitObjects(std::move(objects));
    thread->SetStatus(ThreadStatus::WaitSynchAny);

    // Create an event to wake the thread up after the specified nanosecond delay has passed
    thread->WakeAfterDelay(nano_seconds);
    thread->SetWakeupCallback(DefaultThreadWakeupCallback);

    Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();

    return RESULT_TIMEOUT;
}

/// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Handle thread_handle) {
    LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
                  thread_handle);
        return ERR_INVALID_HANDLE;
    }

    ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny);
    thread->SetWaitSynchronizationResult(ERR_SYNCHRONIZATION_CANCELED);
    thread->ResumeFromWait();
    return RESULT_SUCCESS;
}

/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Handle holding_thread_handle, VAddr mutex_addr,
                                Handle requesting_thread_handle) {
    LOG_TRACE(Kernel_SVC,
              "called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
              "requesting_current_thread_handle=0x{:08X}",
              holding_thread_handle, mutex_addr, requesting_thread_handle);

    if (Memory::IsKernelVirtualAddress(mutex_addr)) {
        LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
                  mutex_addr);
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (!Common::IsWordAligned(mutex_addr)) {
        LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
        return ERR_INVALID_ADDRESS;
    }

    auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    return Mutex::TryAcquire(handle_table, mutex_addr, holding_thread_handle,
                             requesting_thread_handle);
}

/// Unlock a mutex
static ResultCode ArbitrateUnlock(VAddr mutex_addr) {
    LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);

    if (Memory::IsKernelVirtualAddress(mutex_addr)) {
        LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
                  mutex_addr);
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (!Common::IsWordAligned(mutex_addr)) {
        LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
        return ERR_INVALID_ADDRESS;
    }

    return Mutex::Release(mutex_addr);
}

enum class BreakType : u32 {
    Panic = 0,
    AssertionFailed = 1,
    PreNROLoad = 3,
    PostNROLoad = 4,
    PreNROUnload = 5,
    PostNROUnload = 6,
};

struct BreakReason {
    union {
        u32 raw;
        BitField<0, 30, BreakType> break_type;
        BitField<31, 1, u32> signal_debugger;
    };
};

/// Break program execution
static void Break(u32 reason, u64 info1, u64 info2) {
    BreakReason break_reason{reason};
    bool has_dumped_buffer{};

    const auto handle_debug_buffer = [&](VAddr addr, u64 sz) {
        if (sz == 0 || addr == 0 || has_dumped_buffer) {
            return;
        }

        // This typically is an error code so we're going to assume this is the case
        if (sz == sizeof(u32)) {
            LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", Memory::Read32(addr));
        } else {
            // We don't know what's in here so we'll hexdump it
            std::vector<u8> debug_buffer(sz);
            Memory::ReadBlock(addr, debug_buffer.data(), sz);
            std::string hexdump;
            for (std::size_t i = 0; i < debug_buffer.size(); i++) {
                hexdump += fmt::format("{:02X} ", debug_buffer[i]);
                if (i != 0 && i % 16 == 0) {
                    hexdump += '\n';
                }
            }
            LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump);
        }
        has_dumped_buffer = true;
    };
    switch (break_reason.break_type) {
    case BreakType::Panic:
        LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}",
                     info1, info2);
        handle_debug_buffer(info1, info2);
        break;
    case BreakType::AssertionFailed:
        LOG_CRITICAL(Debug_Emulated,
                     "Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}",
                     info1, info2);
        handle_debug_buffer(info1, info2);
        break;
    case BreakType::PreNROLoad:
        LOG_WARNING(
            Debug_Emulated,
            "Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}",
            info1, info2);
        break;
    case BreakType::PostNROLoad:
        LOG_WARNING(Debug_Emulated,
                    "Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
                    info2);
        break;
    case BreakType::PreNROUnload:
        LOG_WARNING(
            Debug_Emulated,
            "Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}",
            info1, info2);
        break;
    case BreakType::PostNROUnload:
        LOG_WARNING(Debug_Emulated,
                    "Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
                    info2);
        break;
    default:
        LOG_WARNING(
            Debug_Emulated,
            "Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}",
            static_cast<u32>(break_reason.break_type.Value()), info1, info2);
        handle_debug_buffer(info1, info2);
        break;
    }

    if (!break_reason.signal_debugger) {
        LOG_CRITICAL(
            Debug_Emulated,
            "Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}",
            reason, info1, info2);
        handle_debug_buffer(info1, info2);
        Core::System::GetInstance()
            .ArmInterface(static_cast<std::size_t>(GetCurrentThread()->GetProcessorID()))
            .LogBacktrace();
        ASSERT(false);

        Core::CurrentProcess()->PrepareForTermination();

        // Kill the current thread
        GetCurrentThread()->Stop();
        Core::System::GetInstance().PrepareReschedule();
    }
}

/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(VAddr address, u64 len) {
    if (len == 0) {
        return;
    }

    std::string str(len, '\0');
    Memory::ReadBlock(address, str.data(), str.size());
    LOG_DEBUG(Debug_Emulated, "{}", str);
}

/// Gets system/memory information for the current process
static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id) {
    LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id,
              info_sub_id, handle);

    enum class GetInfoType : u64 {
        // 1.0.0+
        AllowedCPUCoreMask = 0,
        AllowedThreadPriorityMask = 1,
        MapRegionBaseAddr = 2,
        MapRegionSize = 3,
        HeapRegionBaseAddr = 4,
        HeapRegionSize = 5,
        TotalMemoryUsage = 6,
        TotalHeapUsage = 7,
        IsCurrentProcessBeingDebugged = 8,
        RegisterResourceLimit = 9,
        IdleTickCount = 10,
        RandomEntropy = 11,
        PerformanceCounter = 0xF0000002,
        // 2.0.0+
        ASLRRegionBaseAddr = 12,
        ASLRRegionSize = 13,
        NewMapRegionBaseAddr = 14,
        NewMapRegionSize = 15,
        // 3.0.0+
        IsVirtualAddressMemoryEnabled = 16,
        PersonalMmHeapUsage = 17,
        TitleId = 18,
        // 4.0.0+
        PrivilegedProcessId = 19,
        // 5.0.0+
        UserExceptionContextAddr = 20,
        ThreadTickCount = 0xF0000002,
    };

    const auto info_id_type = static_cast<GetInfoType>(info_id);

    switch (info_id_type) {
    case GetInfoType::AllowedCPUCoreMask:
    case GetInfoType::AllowedThreadPriorityMask:
    case GetInfoType::MapRegionBaseAddr:
    case GetInfoType::MapRegionSize:
    case GetInfoType::HeapRegionBaseAddr:
    case GetInfoType::HeapRegionSize:
    case GetInfoType::ASLRRegionBaseAddr:
    case GetInfoType::ASLRRegionSize:
    case GetInfoType::NewMapRegionBaseAddr:
    case GetInfoType::NewMapRegionSize:
    case GetInfoType::TotalMemoryUsage:
    case GetInfoType::TotalHeapUsage:
    case GetInfoType::IsVirtualAddressMemoryEnabled:
    case GetInfoType::PersonalMmHeapUsage:
    case GetInfoType::TitleId:
    case GetInfoType::UserExceptionContextAddr: {
        if (info_sub_id != 0) {
            return ERR_INVALID_ENUM_VALUE;
        }

        const auto& current_process_handle_table = Core::CurrentProcess()->GetHandleTable();
        const auto process = current_process_handle_table.Get<Process>(static_cast<Handle>(handle));
        if (!process) {
            return ERR_INVALID_HANDLE;
        }

        switch (info_id_type) {
        case GetInfoType::AllowedCPUCoreMask:
            *result = process->GetCoreMask();
            return RESULT_SUCCESS;

        case GetInfoType::AllowedThreadPriorityMask:
            *result = process->GetPriorityMask();
            return RESULT_SUCCESS;

        case GetInfoType::MapRegionBaseAddr:
            *result = process->VMManager().GetMapRegionBaseAddress();
            return RESULT_SUCCESS;

        case GetInfoType::MapRegionSize:
            *result = process->VMManager().GetMapRegionSize();
            return RESULT_SUCCESS;

        case GetInfoType::HeapRegionBaseAddr:
            *result = process->VMManager().GetHeapRegionBaseAddress();
            return RESULT_SUCCESS;

        case GetInfoType::HeapRegionSize:
            *result = process->VMManager().GetHeapRegionSize();
            return RESULT_SUCCESS;

        case GetInfoType::ASLRRegionBaseAddr:
            *result = process->VMManager().GetASLRRegionBaseAddress();
            return RESULT_SUCCESS;

        case GetInfoType::ASLRRegionSize:
            *result = process->VMManager().GetASLRRegionSize();
            return RESULT_SUCCESS;

        case GetInfoType::NewMapRegionBaseAddr:
            *result = process->VMManager().GetNewMapRegionBaseAddress();
            return RESULT_SUCCESS;

        case GetInfoType::NewMapRegionSize:
            *result = process->VMManager().GetNewMapRegionSize();
            return RESULT_SUCCESS;

        case GetInfoType::TotalMemoryUsage:
            *result = process->VMManager().GetTotalMemoryUsage();
            return RESULT_SUCCESS;

        case GetInfoType::TotalHeapUsage:
            *result = process->VMManager().GetTotalHeapUsage();
            return RESULT_SUCCESS;

        case GetInfoType::IsVirtualAddressMemoryEnabled:
            *result = process->IsVirtualMemoryEnabled();
            return RESULT_SUCCESS;

        case GetInfoType::TitleId:
            *result = process->GetTitleID();
            return RESULT_SUCCESS;

        case GetInfoType::UserExceptionContextAddr:
            LOG_WARNING(Kernel_SVC,
                        "(STUBBED) Attempted to query user exception context address, returned 0");
            *result = 0;
            return RESULT_SUCCESS;

        default:
            break;
        }

        LOG_WARNING(Kernel_SVC, "(STUBBED) Unimplemented svcGetInfo id=0x{:016X}", info_id);
        return ERR_INVALID_ENUM_VALUE;
    }

    case GetInfoType::IsCurrentProcessBeingDebugged:
        *result = 0;
        return RESULT_SUCCESS;

    case GetInfoType::RegisterResourceLimit: {
        if (handle != 0) {
            return ERR_INVALID_HANDLE;
        }

        if (info_sub_id != 0) {
            return ERR_INVALID_COMBINATION;
        }

        Process* const current_process = Core::CurrentProcess();
        HandleTable& handle_table = current_process->GetHandleTable();
        const auto resource_limit = current_process->GetResourceLimit();
        if (!resource_limit) {
            *result = KernelHandle::InvalidHandle;
            // Yes, the kernel considers this a successful operation.
            return RESULT_SUCCESS;
        }

        const auto table_result = handle_table.Create(resource_limit);
        if (table_result.Failed()) {
            return table_result.Code();
        }

        *result = *table_result;
        return RESULT_SUCCESS;
    }

    case GetInfoType::RandomEntropy:
        if (handle != 0) {
            LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}",
                      handle);
            return ERR_INVALID_HANDLE;
        }

        if (info_sub_id >= Process::RANDOM_ENTROPY_SIZE) {
            LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}",
                      Process::RANDOM_ENTROPY_SIZE, info_sub_id);
            return ERR_INVALID_COMBINATION;
        }

        *result = Core::CurrentProcess()->GetRandomEntropy(info_sub_id);
        return RESULT_SUCCESS;

    case GetInfoType::PrivilegedProcessId:
        LOG_WARNING(Kernel_SVC,
                    "(STUBBED) Attempted to query privileged process id bounds, returned 0");
        *result = 0;
        return RESULT_SUCCESS;

    case GetInfoType::ThreadTickCount: {
        constexpr u64 num_cpus = 4;
        if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) {
            LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus,
                      info_sub_id);
            return ERR_INVALID_COMBINATION;
        }

        const auto thread =
            Core::CurrentProcess()->GetHandleTable().Get<Thread>(static_cast<Handle>(handle));
        if (!thread) {
            LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
                      static_cast<Handle>(handle));
            return ERR_INVALID_HANDLE;
        }

        const auto& system = Core::System::GetInstance();
        const auto& scheduler = system.CurrentScheduler();
        const auto* const current_thread = scheduler.GetCurrentThread();
        const bool same_thread = current_thread == thread;

        const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
        u64 out_ticks = 0;
        if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
            const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();

            out_ticks = thread_ticks + (CoreTiming::GetTicks() - prev_ctx_ticks);
        } else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
            out_ticks = CoreTiming::GetTicks() - prev_ctx_ticks;
        }

        *result = out_ticks;
        return RESULT_SUCCESS;
    }

    default:
        LOG_WARNING(Kernel_SVC, "(STUBBED) Unimplemented svcGetInfo id=0x{:016X}", info_id);
        return ERR_INVALID_ENUM_VALUE;
    }
}

/// Sets the thread activity
static ResultCode SetThreadActivity(Handle handle, u32 activity) {
    LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity);
    if (activity > static_cast<u32>(ThreadActivity::Paused)) {
        return ERR_INVALID_ENUM_VALUE;
    }

    const auto* current_process = Core::CurrentProcess();
    const SharedPtr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
        return ERR_INVALID_HANDLE;
    }

    if (thread->GetOwnerProcess() != current_process) {
        LOG_ERROR(Kernel_SVC,
                  "The current process does not own the current thread, thread_handle={:08X} "
                  "thread_pid={}, "
                  "current_process_pid={}",
                  handle, thread->GetOwnerProcess()->GetProcessID(),
                  current_process->GetProcessID());
        return ERR_INVALID_HANDLE;
    }

    if (thread == GetCurrentThread()) {
        LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread");
        return ERR_BUSY;
    }

    thread->SetActivity(static_cast<ThreadActivity>(activity));
    return RESULT_SUCCESS;
}

/// Gets the thread context
static ResultCode GetThreadContext(VAddr thread_context, Handle handle) {
    LOG_DEBUG(Kernel_SVC, "called, context=0x{:08X}, thread=0x{:X}", thread_context, handle);

    const auto* current_process = Core::CurrentProcess();
    const SharedPtr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
        return ERR_INVALID_HANDLE;
    }

    if (thread->GetOwnerProcess() != current_process) {
        LOG_ERROR(Kernel_SVC,
                  "The current process does not own the current thread, thread_handle={:08X} "
                  "thread_pid={}, "
                  "current_process_pid={}",
                  handle, thread->GetOwnerProcess()->GetProcessID(),
                  current_process->GetProcessID());
        return ERR_INVALID_HANDLE;
    }

    if (thread == GetCurrentThread()) {
        LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread");
        return ERR_BUSY;
    }

    Core::ARM_Interface::ThreadContext ctx = thread->GetContext();
    // Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
    ctx.pstate &= 0xFF0FFE20;

    // If 64-bit, we can just write the context registers directly and we're good.
    // However, if 32-bit, we have to ensure some registers are zeroed out.
    if (!current_process->Is64BitProcess()) {
        std::fill(ctx.cpu_registers.begin() + 15, ctx.cpu_registers.end(), 0);
        std::fill(ctx.vector_registers.begin() + 16, ctx.vector_registers.end(), u128{});
    }

    Memory::WriteBlock(thread_context, &ctx, sizeof(ctx));
    return RESULT_SUCCESS;
}

/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(u32* priority, Handle handle) {
    LOG_TRACE(Kernel_SVC, "called");

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
        return ERR_INVALID_HANDLE;
    }

    *priority = thread->GetPriority();
    return RESULT_SUCCESS;
}

/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, u32 priority) {
    LOG_TRACE(Kernel_SVC, "called");

    if (priority > THREADPRIO_LOWEST) {
        LOG_ERROR(
            Kernel_SVC,
            "An invalid priority was specified, expected {} but got {} for thread_handle={:08X}",
            THREADPRIO_LOWEST, priority, handle);
        return ERR_INVALID_THREAD_PRIORITY;
    }

    const auto* const current_process = Core::CurrentProcess();

    SharedPtr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
        return ERR_INVALID_HANDLE;
    }

    thread->SetPriority(priority);

    Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
    return RESULT_SUCCESS;
}

/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber() {
    LOG_TRACE(Kernel_SVC, "called");
    return GetCurrentThread()->GetProcessorID();
}

static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size,
                                  u32 permissions) {
    LOG_TRACE(Kernel_SVC,
              "called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
              shared_memory_handle, addr, size, permissions);

    if (!Common::Is4KBAligned(addr)) {
        LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        LOG_ERROR(Kernel_SVC, "Size is 0");
        return ERR_INVALID_SIZE;
    }

    if (!Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    if (!IsValidAddressRange(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
                  addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    const auto permissions_type = static_cast<MemoryPermission>(permissions);
    if (permissions_type != MemoryPermission::Read &&
        permissions_type != MemoryPermission::ReadWrite) {
        LOG_ERROR(Kernel_SVC, "Expected Read or ReadWrite permission but got permissions=0x{:08X}",
                  permissions);
        return ERR_INVALID_MEMORY_PERMISSIONS;
    }

    auto* const current_process = Core::CurrentProcess();
    auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
    if (!shared_memory) {
        LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
                  shared_memory_handle);
        return ERR_INVALID_HANDLE;
    }

    const auto& vm_manager = current_process->VMManager();
    if (!vm_manager.IsWithinASLRRegion(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}",
                  addr, size);
        return ERR_INVALID_MEMORY_RANGE;
    }

    return shared_memory->Map(*current_process, addr, permissions_type, MemoryPermission::DontCare);
}

static ResultCode UnmapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size) {
    LOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}",
                shared_memory_handle, addr, size);

    if (!Common::Is4KBAligned(addr)) {
        LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        LOG_ERROR(Kernel_SVC, "Size is 0");
        return ERR_INVALID_SIZE;
    }

    if (!Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    if (!IsValidAddressRange(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
                  addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    auto* const current_process = Core::CurrentProcess();
    auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
    if (!shared_memory) {
        LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
                  shared_memory_handle);
        return ERR_INVALID_HANDLE;
    }

    const auto& vm_manager = current_process->VMManager();
    if (!vm_manager.IsWithinASLRRegion(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}",
                  addr, size);
        return ERR_INVALID_MEMORY_RANGE;
    }

    return shared_memory->Unmap(*current_process, addr);
}

static ResultCode QueryProcessMemory(VAddr memory_info_address, VAddr page_info_address,
                                     Handle process_handle, VAddr address) {
    LOG_TRACE(Kernel_SVC, "called process=0x{:08X} address={:X}", process_handle, address);
    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    SharedPtr<Process> process = handle_table.Get<Process>(process_handle);
    if (!process) {
        LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
                  process_handle);
        return ERR_INVALID_HANDLE;
    }

    const auto& vm_manager = process->VMManager();
    const MemoryInfo memory_info = vm_manager.QueryMemory(address);

    Memory::Write64(memory_info_address, memory_info.base_address);
    Memory::Write64(memory_info_address + 8, memory_info.size);
    Memory::Write32(memory_info_address + 16, memory_info.state);
    Memory::Write32(memory_info_address + 20, memory_info.attributes);
    Memory::Write32(memory_info_address + 24, memory_info.permission);
    Memory::Write32(memory_info_address + 32, memory_info.ipc_ref_count);
    Memory::Write32(memory_info_address + 28, memory_info.device_ref_count);
    Memory::Write32(memory_info_address + 36, 0);

    // Page info appears to be currently unused by the kernel and is always set to zero.
    Memory::Write32(page_info_address, 0);

    return RESULT_SUCCESS;
}

static ResultCode QueryMemory(VAddr memory_info_address, VAddr page_info_address,
                              VAddr query_address) {
    LOG_TRACE(Kernel_SVC,
              "called, memory_info_address=0x{:016X}, page_info_address=0x{:016X}, "
              "query_address=0x{:016X}",
              memory_info_address, page_info_address, query_address);

    return QueryProcessMemory(memory_info_address, page_info_address, CurrentProcess,
                              query_address);
}

/// Exits the current process
static void ExitProcess() {
    auto* current_process = Core::CurrentProcess();

    LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID());
    ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running,
               "Process has already exited");

    current_process->PrepareForTermination();

    // Kill the current thread
    GetCurrentThread()->Stop();

    Core::System::GetInstance().PrepareReschedule();
}

/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top,
                               u32 priority, s32 processor_id) {
    LOG_TRACE(Kernel_SVC,
              "called entrypoint=0x{:08X}, arg=0x{:08X}, stacktop=0x{:08X}, "
              "threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}",
              entry_point, arg, stack_top, priority, processor_id, *out_handle);

    auto* const current_process = Core::CurrentProcess();

    if (processor_id == THREADPROCESSORID_IDEAL) {
        // Set the target CPU to the one specified by the process.
        processor_id = current_process->GetIdealCore();
        ASSERT(processor_id != THREADPROCESSORID_IDEAL);
    }

    if (processor_id < THREADPROCESSORID_0 || processor_id > THREADPROCESSORID_3) {
        LOG_ERROR(Kernel_SVC, "Invalid thread processor ID: {}", processor_id);
        return ERR_INVALID_PROCESSOR_ID;
    }

    const u64 core_mask = current_process->GetCoreMask();
    if ((core_mask | (1ULL << processor_id)) != core_mask) {
        LOG_ERROR(Kernel_SVC, "Invalid thread core specified ({})", processor_id);
        return ERR_INVALID_PROCESSOR_ID;
    }

    if (priority > THREADPRIO_LOWEST) {
        LOG_ERROR(Kernel_SVC,
                  "Invalid thread priority specified ({}). Must be within the range 0-64",
                  priority);
        return ERR_INVALID_THREAD_PRIORITY;
    }

    if (((1ULL << priority) & current_process->GetPriorityMask()) == 0) {
        LOG_ERROR(Kernel_SVC, "Invalid thread priority specified ({})", priority);
        return ERR_INVALID_THREAD_PRIORITY;
    }

    const std::string name = fmt::format("thread-{:X}", entry_point);
    auto& kernel = Core::System::GetInstance().Kernel();
    CASCADE_RESULT(SharedPtr<Thread> thread,
                   Thread::Create(kernel, name, entry_point, priority, arg, processor_id, stack_top,
                                  *current_process));

    const auto new_guest_handle = current_process->GetHandleTable().Create(thread);
    if (new_guest_handle.Failed()) {
        LOG_ERROR(Kernel_SVC, "Failed to create handle with error=0x{:X}",
                  new_guest_handle.Code().raw);
        return new_guest_handle.Code();
    }
    thread->SetGuestHandle(*new_guest_handle);
    *out_handle = *new_guest_handle;

    Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();

    return RESULT_SUCCESS;
}

/// Starts the thread for the provided handle
static ResultCode StartThread(Handle thread_handle) {
    LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
                  thread_handle);
        return ERR_INVALID_HANDLE;
    }

    ASSERT(thread->GetStatus() == ThreadStatus::Dormant);

    thread->ResumeFromWait();

    if (thread->GetStatus() == ThreadStatus::Ready) {
        Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
    }

    return RESULT_SUCCESS;
}

/// Called when a thread exits
static void ExitThread() {
    LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CurrentArmInterface().GetPC());

    ExitCurrentThread();
    Core::System::GetInstance().PrepareReschedule();
}

/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
    LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);

    enum class SleepType : s64 {
        YieldWithoutLoadBalancing = 0,
        YieldWithLoadBalancing = -1,
        YieldAndWaitForLoadBalancing = -2,
    };

    if (nanoseconds <= 0) {
        auto& scheduler{Core::System::GetInstance().CurrentScheduler()};
        switch (static_cast<SleepType>(nanoseconds)) {
        case SleepType::YieldWithoutLoadBalancing:
            scheduler.YieldWithoutLoadBalancing(GetCurrentThread());
            break;
        case SleepType::YieldWithLoadBalancing:
            scheduler.YieldWithLoadBalancing(GetCurrentThread());
            break;
        case SleepType::YieldAndWaitForLoadBalancing:
            scheduler.YieldAndWaitForLoadBalancing(GetCurrentThread());
            break;
        default:
            UNREACHABLE_MSG("Unimplemented sleep yield type '{:016X}'!", nanoseconds);
        }
    } else {
        // Sleep current thread and check for next thread to schedule
        WaitCurrentThread_Sleep();

        // Create an event to wake the thread up after the specified nanosecond delay has passed
        GetCurrentThread()->WakeAfterDelay(nanoseconds);
    }

    // Reschedule all CPU cores
    for (std::size_t i = 0; i < Core::NUM_CPU_CORES; ++i)
        Core::System::GetInstance().CpuCore(i).PrepareReschedule();
}

/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr condition_variable_addr,
                                           Handle thread_handle, s64 nano_seconds) {
    LOG_TRACE(
        Kernel_SVC,
        "called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
        mutex_addr, condition_variable_addr, thread_handle, nano_seconds);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    ASSERT(thread);

    CASCADE_CODE(Mutex::Release(mutex_addr));

    SharedPtr<Thread> current_thread = GetCurrentThread();
    current_thread->SetCondVarWaitAddress(condition_variable_addr);
    current_thread->SetMutexWaitAddress(mutex_addr);
    current_thread->SetWaitHandle(thread_handle);
    current_thread->SetStatus(ThreadStatus::WaitMutex);
    current_thread->InvalidateWakeupCallback();

    current_thread->WakeAfterDelay(nano_seconds);

    // Note: Deliberately don't attempt to inherit the lock owner's priority.

    Core::System::GetInstance().CpuCore(current_thread->GetProcessorID()).PrepareReschedule();
    return RESULT_SUCCESS;
}

/// Signal process wide key
static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target) {
    LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
              condition_variable_addr, target);

    const auto RetrieveWaitingThreads = [](std::size_t core_index,
                                           std::vector<SharedPtr<Thread>>& waiting_threads,
                                           VAddr condvar_addr) {
        const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
        const auto& thread_list = scheduler.GetThreadList();

        for (const auto& thread : thread_list) {
            if (thread->GetCondVarWaitAddress() == condvar_addr)
                waiting_threads.push_back(thread);
        }
    };

    // Retrieve a list of all threads that are waiting for this condition variable.
    std::vector<SharedPtr<Thread>> waiting_threads;
    RetrieveWaitingThreads(0, waiting_threads, condition_variable_addr);
    RetrieveWaitingThreads(1, waiting_threads, condition_variable_addr);
    RetrieveWaitingThreads(2, waiting_threads, condition_variable_addr);
    RetrieveWaitingThreads(3, waiting_threads, condition_variable_addr);
    // Sort them by priority, such that the highest priority ones come first.
    std::sort(waiting_threads.begin(), waiting_threads.end(),
              [](const SharedPtr<Thread>& lhs, const SharedPtr<Thread>& rhs) {
                  return lhs->GetPriority() < rhs->GetPriority();
              });

    // Only process up to 'target' threads, unless 'target' is -1, in which case process
    // them all.
    std::size_t last = waiting_threads.size();
    if (target != -1)
        last = target;

    // If there are no threads waiting on this condition variable, just exit
    if (last > waiting_threads.size())
        return RESULT_SUCCESS;

    for (std::size_t index = 0; index < last; ++index) {
        auto& thread = waiting_threads[index];

        ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr);

        std::size_t current_core = Core::System::GetInstance().CurrentCoreIndex();

        auto& monitor = Core::System::GetInstance().Monitor();

        // Atomically read the value of the mutex.
        u32 mutex_val = 0;
        do {
            monitor.SetExclusive(current_core, thread->GetMutexWaitAddress());

            // If the mutex is not yet acquired, acquire it.
            mutex_val = Memory::Read32(thread->GetMutexWaitAddress());

            if (mutex_val != 0) {
                monitor.ClearExclusive();
                break;
            }
        } while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(),
                                           thread->GetWaitHandle()));

        if (mutex_val == 0) {
            // We were able to acquire the mutex, resume this thread.
            ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
            thread->ResumeFromWait();

            auto* const lock_owner = thread->GetLockOwner();
            if (lock_owner != nullptr) {
                lock_owner->RemoveMutexWaiter(thread);
            }

            thread->SetLockOwner(nullptr);
            thread->SetMutexWaitAddress(0);
            thread->SetCondVarWaitAddress(0);
            thread->SetWaitHandle(0);
        } else {
            // Atomically signal that the mutex now has a waiting thread.
            do {
                monitor.SetExclusive(current_core, thread->GetMutexWaitAddress());

                // Ensure that the mutex value is still what we expect.
                u32 value = Memory::Read32(thread->GetMutexWaitAddress());
                // TODO(Subv): When this happens, the kernel just clears the exclusive state and
                // retries the initial read for this thread.
                ASSERT_MSG(mutex_val == value, "Unhandled synchronization primitive case");
            } while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(),
                                               mutex_val | Mutex::MutexHasWaitersFlag));

            // The mutex is already owned by some other thread, make this thread wait on it.
            const Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
            const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
            auto owner = handle_table.Get<Thread>(owner_handle);
            ASSERT(owner);
            ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
            thread->InvalidateWakeupCallback();

            owner->AddMutexWaiter(thread);

            Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
        }
    }

    return RESULT_SUCCESS;
}

// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(VAddr address, u32 type, s32 value, s64 timeout) {
    LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}",
                address, type, value, timeout);
    // If the passed address is a kernel virtual address, return invalid memory state.
    if (Memory::IsKernelVirtualAddress(address)) {
        LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
        return ERR_INVALID_ADDRESS_STATE;
    }
    // If the address is not properly aligned to 4 bytes, return invalid address.
    if (!Common::IsWordAligned(address)) {
        LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
        return ERR_INVALID_ADDRESS;
    }

    switch (static_cast<AddressArbiter::ArbitrationType>(type)) {
    case AddressArbiter::ArbitrationType::WaitIfLessThan:
        return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, false);
    case AddressArbiter::ArbitrationType::DecrementAndWaitIfLessThan:
        return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, true);
    case AddressArbiter::ArbitrationType::WaitIfEqual:
        return AddressArbiter::WaitForAddressIfEqual(address, value, timeout);
    default:
        LOG_ERROR(Kernel_SVC,
                  "Invalid arbitration type, expected WaitIfLessThan, DecrementAndWaitIfLessThan "
                  "or WaitIfEqual but got {}",
                  type);
        return ERR_INVALID_ENUM_VALUE;
    }
}

// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(VAddr address, u32 type, s32 value, s32 num_to_wake) {
    LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
                address, type, value, num_to_wake);
    // If the passed address is a kernel virtual address, return invalid memory state.
    if (Memory::IsKernelVirtualAddress(address)) {
        LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
        return ERR_INVALID_ADDRESS_STATE;
    }
    // If the address is not properly aligned to 4 bytes, return invalid address.
    if (!Common::IsWordAligned(address)) {
        LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
        return ERR_INVALID_ADDRESS;
    }

    switch (static_cast<AddressArbiter::SignalType>(type)) {
    case AddressArbiter::SignalType::Signal:
        return AddressArbiter::SignalToAddress(address, num_to_wake);
    case AddressArbiter::SignalType::IncrementAndSignalIfEqual:
        return AddressArbiter::IncrementAndSignalToAddressIfEqual(address, value, num_to_wake);
    case AddressArbiter::SignalType::ModifyByWaitingCountAndSignalIfEqual:
        return AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(address, value,
                                                                             num_to_wake);
    default:
        LOG_ERROR(Kernel_SVC,
                  "Invalid signal type, expected Signal, IncrementAndSignalIfEqual "
                  "or ModifyByWaitingCountAndSignalIfEqual but got {}",
                  type);
        return ERR_INVALID_ENUM_VALUE;
    }
}

/// This returns the total CPU ticks elapsed since the CPU was powered-on
static u64 GetSystemTick() {
    LOG_TRACE(Kernel_SVC, "called");

    const u64 result{CoreTiming::GetTicks()};

    // Advance time to defeat dumb games that busy-wait for the frame to end.
    CoreTiming::AddTicks(400);

    return result;
}

/// Close a handle
static ResultCode CloseHandle(Handle handle) {
    LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);

    auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    return handle_table.Close(handle);
}

/// Clears the signaled state of an event or process.
static ResultCode ResetSignal(Handle handle) {
    LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();

    auto event = handle_table.Get<ReadableEvent>(handle);
    if (event) {
        return event->Reset();
    }

    auto process = handle_table.Get<Process>(handle);
    if (process) {
        return process->ClearSignalState();
    }

    LOG_ERROR(Kernel_SVC, "Invalid handle (0x{:08X})", handle);
    return ERR_INVALID_HANDLE;
}

/// Creates a TransferMemory object
static ResultCode CreateTransferMemory(Handle* handle, VAddr addr, u64 size, u32 permissions) {
    LOG_DEBUG(Kernel_SVC, "called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr, size,
              permissions);

    if (!Common::Is4KBAligned(addr)) {
        LOG_ERROR(Kernel_SVC, "Address ({:016X}) is not page aligned!", addr);
        return ERR_INVALID_ADDRESS;
    }

    if (!Common::Is4KBAligned(size) || size == 0) {
        LOG_ERROR(Kernel_SVC, "Size ({:016X}) is not page aligned or equal to zero!", size);
        return ERR_INVALID_ADDRESS;
    }

    if (!IsValidAddressRange(addr, size)) {
        LOG_ERROR(Kernel_SVC, "Address and size cause overflow! (address={:016X}, size={:016X})",
                  addr, size);
        return ERR_INVALID_ADDRESS_STATE;
    }

    const auto perms = static_cast<MemoryPermission>(permissions);
    if (perms != MemoryPermission::None && perms != MemoryPermission::Read &&
        perms != MemoryPermission::ReadWrite) {
        LOG_ERROR(Kernel_SVC, "Invalid memory permissions for transfer memory! (perms={:08X})",
                  permissions);
        return ERR_INVALID_MEMORY_PERMISSIONS;
    }

    auto& kernel = Core::System::GetInstance().Kernel();
    auto process = kernel.CurrentProcess();
    auto& handle_table = process->GetHandleTable();
    const auto shared_mem_handle = SharedMemory::Create(kernel, process, size, perms, perms, addr);

    CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle));
    return RESULT_SUCCESS;
}

static ResultCode GetThreadCoreMask(Handle thread_handle, u32* core, u64* mask) {
    LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
                  thread_handle);
        return ERR_INVALID_HANDLE;
    }

    *core = thread->GetIdealCore();
    *mask = thread->GetAffinityMask();

    return RESULT_SUCCESS;
}

static ResultCode SetThreadCoreMask(Handle thread_handle, u32 core, u64 mask) {
    LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, mask=0x{:016X}, core=0x{:X}", thread_handle,
              mask, core);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
    if (!thread) {
        LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
                  thread_handle);
        return ERR_INVALID_HANDLE;
    }

    if (core == static_cast<u32>(THREADPROCESSORID_IDEAL)) {
        const u8 ideal_cpu_core = thread->GetOwnerProcess()->GetIdealCore();

        ASSERT(ideal_cpu_core != static_cast<u8>(THREADPROCESSORID_IDEAL));

        // Set the target CPU to the ideal core specified by the process.
        core = ideal_cpu_core;
        mask = 1ULL << core;
    }

    if (mask == 0) {
        LOG_ERROR(Kernel_SVC, "Mask is 0");
        return ERR_INVALID_COMBINATION;
    }

    /// This value is used to only change the affinity mask without changing the current ideal core.
    static constexpr u32 OnlyChangeMask = static_cast<u32>(-3);

    if (core == OnlyChangeMask) {
        core = thread->GetIdealCore();
    } else if (core >= Core::NUM_CPU_CORES && core != static_cast<u32>(-1)) {
        LOG_ERROR(Kernel_SVC, "Invalid core specified, got {}", core);
        return ERR_INVALID_PROCESSOR_ID;
    }

    // Error out if the input core isn't enabled in the input mask.
    if (core < Core::NUM_CPU_CORES && (mask & (1ull << core)) == 0) {
        LOG_ERROR(Kernel_SVC, "Core is not enabled for the current mask, core={}, mask={:016X}",
                  core, mask);
        return ERR_INVALID_COMBINATION;
    }

    thread->ChangeCore(core, mask);

    return RESULT_SUCCESS;
}

static ResultCode CreateSharedMemory(Handle* handle, u64 size, u32 local_permissions,
                                     u32 remote_permissions) {
    LOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size,
              local_permissions, remote_permissions);
    if (size == 0) {
        LOG_ERROR(Kernel_SVC, "Size is 0");
        return ERR_INVALID_SIZE;
    }
    if (!Common::Is4KBAligned(size)) {
        LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    if (size >= MAIN_MEMORY_SIZE) {
        LOG_ERROR(Kernel_SVC, "Size is not less than 8GB, 0x{:016X}", size);
        return ERR_INVALID_SIZE;
    }

    const auto local_perms = static_cast<MemoryPermission>(local_permissions);
    if (local_perms != MemoryPermission::Read && local_perms != MemoryPermission::ReadWrite) {
        LOG_ERROR(Kernel_SVC,
                  "Invalid local memory permissions, expected Read or ReadWrite but got "
                  "local_permissions={}",
                  static_cast<u32>(local_permissions));
        return ERR_INVALID_MEMORY_PERMISSIONS;
    }

    const auto remote_perms = static_cast<MemoryPermission>(remote_permissions);
    if (remote_perms != MemoryPermission::Read && remote_perms != MemoryPermission::ReadWrite &&
        remote_perms != MemoryPermission::DontCare) {
        LOG_ERROR(Kernel_SVC,
                  "Invalid remote memory permissions, expected Read, ReadWrite or DontCare but got "
                  "remote_permissions={}",
                  static_cast<u32>(remote_permissions));
        return ERR_INVALID_MEMORY_PERMISSIONS;
    }

    auto& kernel = Core::System::GetInstance().Kernel();
    auto process = kernel.CurrentProcess();
    auto& handle_table = process->GetHandleTable();
    auto shared_mem_handle = SharedMemory::Create(kernel, process, size, local_perms, remote_perms);

    CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle));
    return RESULT_SUCCESS;
}

static ResultCode CreateEvent(Handle* write_handle, Handle* read_handle) {
    LOG_DEBUG(Kernel_SVC, "called");

    auto& kernel = Core::System::GetInstance().Kernel();
    const auto [readable_event, writable_event] =
        WritableEvent::CreateEventPair(kernel, ResetType::Sticky, "CreateEvent");

    HandleTable& handle_table = kernel.CurrentProcess()->GetHandleTable();

    const auto write_create_result = handle_table.Create(writable_event);
    if (write_create_result.Failed()) {
        return write_create_result.Code();
    }
    *write_handle = *write_create_result;

    const auto read_create_result = handle_table.Create(readable_event);
    if (read_create_result.Failed()) {
        handle_table.Close(*write_create_result);
        return read_create_result.Code();
    }
    *read_handle = *read_create_result;

    LOG_DEBUG(Kernel_SVC,
              "successful. Writable event handle=0x{:08X}, Readable event handle=0x{:08X}",
              *write_create_result, *read_create_result);
    return RESULT_SUCCESS;
}

static ResultCode ClearEvent(Handle handle) {
    LOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle);

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();

    auto writable_event = handle_table.Get<WritableEvent>(handle);
    if (writable_event) {
        writable_event->Clear();
        return RESULT_SUCCESS;
    }

    auto readable_event = handle_table.Get<ReadableEvent>(handle);
    if (readable_event) {
        readable_event->Clear();
        return RESULT_SUCCESS;
    }

    LOG_ERROR(Kernel_SVC, "Event handle does not exist, handle=0x{:08X}", handle);
    return ERR_INVALID_HANDLE;
}

static ResultCode SignalEvent(Handle handle) {
    LOG_DEBUG(Kernel_SVC, "called. Handle=0x{:08X}", handle);

    HandleTable& handle_table = Core::CurrentProcess()->GetHandleTable();
    auto writable_event = handle_table.Get<WritableEvent>(handle);

    if (!writable_event) {
        LOG_ERROR(Kernel_SVC, "Non-existent writable event handle used (0x{:08X})", handle);
        return ERR_INVALID_HANDLE;
    }

    writable_event->Signal();
    return RESULT_SUCCESS;
}

static ResultCode GetProcessInfo(u64* out, Handle process_handle, u32 type) {
    LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type);

    // This function currently only allows retrieving a process' status.
    enum class InfoType {
        Status,
    };

    const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
    const auto process = handle_table.Get<Process>(process_handle);
    if (!process) {
        LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
                  process_handle);
        return ERR_INVALID_HANDLE;
    }

    const auto info_type = static_cast<InfoType>(type);
    if (info_type != InfoType::Status) {
        LOG_ERROR(Kernel_SVC, "Expected info_type to be Status but got {} instead", type);
        return ERR_INVALID_ENUM_VALUE;
    }

    *out = static_cast<u64>(process->GetStatus());
    return RESULT_SUCCESS;
}

static ResultCode CreateResourceLimit(Handle* out_handle) {
    LOG_DEBUG(Kernel_SVC, "called");

    auto& kernel = Core::System::GetInstance().Kernel();
    auto resource_limit = ResourceLimit::Create(kernel);

    auto* const current_process = kernel.CurrentProcess();
    ASSERT(current_process != nullptr);

    const auto handle = current_process->GetHandleTable().Create(std::move(resource_limit));
    if (handle.Failed()) {
        return handle.Code();
    }

    *out_handle = *handle;
    return RESULT_SUCCESS;
}

static ResultCode GetResourceLimitLimitValue(u64* out_value, Handle resource_limit,
                                             u32 resource_type) {
    LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type);

    const auto limit_value = RetrieveResourceLimitValue(resource_limit, resource_type,
                                                        ResourceLimitValueType::LimitValue);
    if (limit_value.Failed()) {
        return limit_value.Code();
    }

    *out_value = static_cast<u64>(*limit_value);
    return RESULT_SUCCESS;
}

static ResultCode GetResourceLimitCurrentValue(u64* out_value, Handle resource_limit,
                                               u32 resource_type) {
    LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type);

    const auto current_value = RetrieveResourceLimitValue(resource_limit, resource_type,
                                                          ResourceLimitValueType::CurrentValue);
    if (current_value.Failed()) {
        return current_value.Code();
    }

    *out_value = static_cast<u64>(*current_value);
    return RESULT_SUCCESS;
}

static ResultCode SetResourceLimitLimitValue(Handle resource_limit, u32 resource_type, u64 value) {
    LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}, Value={}", resource_limit,
              resource_type, value);

    const auto type = static_cast<ResourceType>(resource_type);
    if (!IsValidResourceType(type)) {
        LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type);
        return ERR_INVALID_ENUM_VALUE;
    }

    auto& kernel = Core::System::GetInstance().Kernel();
    auto* const current_process = kernel.CurrentProcess();
    ASSERT(current_process != nullptr);

    auto resource_limit_object =
        current_process->GetHandleTable().Get<ResourceLimit>(resource_limit);
    if (!resource_limit_object) {
        LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}",
                  resource_limit);
        return ERR_INVALID_HANDLE;
    }

    const auto set_result = resource_limit_object->SetLimitValue(type, static_cast<s64>(value));
    if (set_result.IsError()) {
        LOG_ERROR(
            Kernel_SVC,
            "Attempted to lower resource limit ({}) for category '{}' below its current value ({})",
            resource_limit_object->GetMaxResourceValue(type), resource_type,
            resource_limit_object->GetCurrentResourceValue(type));
        return set_result;
    }

    return RESULT_SUCCESS;
}

namespace {
struct FunctionDef {
    using Func = void();

    u32 id;
    Func* func;
    const char* name;
};
} // namespace

static const FunctionDef SVC_Table[] = {
    {0x00, nullptr, "Unknown"},
    {0x01, SvcWrap<SetHeapSize>, "SetHeapSize"},
    {0x02, SvcWrap<SetMemoryPermission>, "SetMemoryPermission"},
    {0x03, SvcWrap<SetMemoryAttribute>, "SetMemoryAttribute"},
    {0x04, SvcWrap<MapMemory>, "MapMemory"},
    {0x05, SvcWrap<UnmapMemory>, "UnmapMemory"},
    {0x06, SvcWrap<QueryMemory>, "QueryMemory"},
    {0x07, SvcWrap<ExitProcess>, "ExitProcess"},
    {0x08, SvcWrap<CreateThread>, "CreateThread"},
    {0x09, SvcWrap<StartThread>, "StartThread"},
    {0x0A, SvcWrap<ExitThread>, "ExitThread"},
    {0x0B, SvcWrap<SleepThread>, "SleepThread"},
    {0x0C, SvcWrap<GetThreadPriority>, "GetThreadPriority"},
    {0x0D, SvcWrap<SetThreadPriority>, "SetThreadPriority"},
    {0x0E, SvcWrap<GetThreadCoreMask>, "GetThreadCoreMask"},
    {0x0F, SvcWrap<SetThreadCoreMask>, "SetThreadCoreMask"},
    {0x10, SvcWrap<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
    {0x11, SvcWrap<SignalEvent>, "SignalEvent"},
    {0x12, SvcWrap<ClearEvent>, "ClearEvent"},
    {0x13, SvcWrap<MapSharedMemory>, "MapSharedMemory"},
    {0x14, SvcWrap<UnmapSharedMemory>, "UnmapSharedMemory"},
    {0x15, SvcWrap<CreateTransferMemory>, "CreateTransferMemory"},
    {0x16, SvcWrap<CloseHandle>, "CloseHandle"},
    {0x17, SvcWrap<ResetSignal>, "ResetSignal"},
    {0x18, SvcWrap<WaitSynchronization>, "WaitSynchronization"},
    {0x19, SvcWrap<CancelSynchronization>, "CancelSynchronization"},
    {0x1A, SvcWrap<ArbitrateLock>, "ArbitrateLock"},
    {0x1B, SvcWrap<ArbitrateUnlock>, "ArbitrateUnlock"},
    {0x1C, SvcWrap<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
    {0x1D, SvcWrap<SignalProcessWideKey>, "SignalProcessWideKey"},
    {0x1E, SvcWrap<GetSystemTick>, "GetSystemTick"},
    {0x1F, SvcWrap<ConnectToNamedPort>, "ConnectToNamedPort"},
    {0x20, nullptr, "SendSyncRequestLight"},
    {0x21, SvcWrap<SendSyncRequest>, "SendSyncRequest"},
    {0x22, nullptr, "SendSyncRequestWithUserBuffer"},
    {0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
    {0x24, SvcWrap<GetProcessId>, "GetProcessId"},
    {0x25, SvcWrap<GetThreadId>, "GetThreadId"},
    {0x26, SvcWrap<Break>, "Break"},
    {0x27, SvcWrap<OutputDebugString>, "OutputDebugString"},
    {0x28, nullptr, "ReturnFromException"},
    {0x29, SvcWrap<GetInfo>, "GetInfo"},
    {0x2A, nullptr, "FlushEntireDataCache"},
    {0x2B, nullptr, "FlushDataCache"},
    {0x2C, nullptr, "MapPhysicalMemory"},
    {0x2D, nullptr, "UnmapPhysicalMemory"},
    {0x2E, nullptr, "GetFutureThreadInfo"},
    {0x2F, nullptr, "GetLastThreadInfo"},
    {0x30, SvcWrap<GetResourceLimitLimitValue>, "GetResourceLimitLimitValue"},
    {0x31, SvcWrap<GetResourceLimitCurrentValue>, "GetResourceLimitCurrentValue"},
    {0x32, SvcWrap<SetThreadActivity>, "SetThreadActivity"},
    {0x33, SvcWrap<GetThreadContext>, "GetThreadContext"},
    {0x34, SvcWrap<WaitForAddress>, "WaitForAddress"},
    {0x35, SvcWrap<SignalToAddress>, "SignalToAddress"},
    {0x36, nullptr, "Unknown"},
    {0x37, nullptr, "Unknown"},
    {0x38, nullptr, "Unknown"},
    {0x39, nullptr, "Unknown"},
    {0x3A, nullptr, "Unknown"},
    {0x3B, nullptr, "Unknown"},
    {0x3C, nullptr, "DumpInfo"},
    {0x3D, nullptr, "DumpInfoNew"},
    {0x3E, nullptr, "Unknown"},
    {0x3F, nullptr, "Unknown"},
    {0x40, nullptr, "CreateSession"},
    {0x41, nullptr, "AcceptSession"},
    {0x42, nullptr, "ReplyAndReceiveLight"},
    {0x43, nullptr, "ReplyAndReceive"},
    {0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
    {0x45, SvcWrap<CreateEvent>, "CreateEvent"},
    {0x46, nullptr, "Unknown"},
    {0x47, nullptr, "Unknown"},
    {0x48, nullptr, "MapPhysicalMemoryUnsafe"},
    {0x49, nullptr, "UnmapPhysicalMemoryUnsafe"},
    {0x4A, nullptr, "SetUnsafeLimit"},
    {0x4B, nullptr, "CreateCodeMemory"},
    {0x4C, nullptr, "ControlCodeMemory"},
    {0x4D, nullptr, "SleepSystem"},
    {0x4E, nullptr, "ReadWriteRegister"},
    {0x4F, nullptr, "SetProcessActivity"},
    {0x50, SvcWrap<CreateSharedMemory>, "CreateSharedMemory"},
    {0x51, nullptr, "MapTransferMemory"},
    {0x52, nullptr, "UnmapTransferMemory"},
    {0x53, nullptr, "CreateInterruptEvent"},
    {0x54, nullptr, "QueryPhysicalAddress"},
    {0x55, nullptr, "QueryIoMapping"},
    {0x56, nullptr, "CreateDeviceAddressSpace"},
    {0x57, nullptr, "AttachDeviceAddressSpace"},
    {0x58, nullptr, "DetachDeviceAddressSpace"},
    {0x59, nullptr, "MapDeviceAddressSpaceByForce"},
    {0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
    {0x5B, nullptr, "MapDeviceAddressSpace"},
    {0x5C, nullptr, "UnmapDeviceAddressSpace"},
    {0x5D, nullptr, "InvalidateProcessDataCache"},
    {0x5E, nullptr, "StoreProcessDataCache"},
    {0x5F, nullptr, "FlushProcessDataCache"},
    {0x60, nullptr, "DebugActiveProcess"},
    {0x61, nullptr, "BreakDebugProcess"},
    {0x62, nullptr, "TerminateDebugProcess"},
    {0x63, nullptr, "GetDebugEvent"},
    {0x64, nullptr, "ContinueDebugEvent"},
    {0x65, nullptr, "GetProcessList"},
    {0x66, nullptr, "GetThreadList"},
    {0x67, nullptr, "GetDebugThreadContext"},
    {0x68, nullptr, "SetDebugThreadContext"},
    {0x69, nullptr, "QueryDebugProcessMemory"},
    {0x6A, nullptr, "ReadDebugProcessMemory"},
    {0x6B, nullptr, "WriteDebugProcessMemory"},
    {0x6C, nullptr, "SetHardwareBreakPoint"},
    {0x6D, nullptr, "GetDebugThreadParam"},
    {0x6E, nullptr, "Unknown"},
    {0x6F, nullptr, "GetSystemInfo"},
    {0x70, nullptr, "CreatePort"},
    {0x71, nullptr, "ManageNamedPort"},
    {0x72, nullptr, "ConnectToPort"},
    {0x73, nullptr, "SetProcessMemoryPermission"},
    {0x74, nullptr, "MapProcessMemory"},
    {0x75, nullptr, "UnmapProcessMemory"},
    {0x76, SvcWrap<QueryProcessMemory>, "QueryProcessMemory"},
    {0x77, nullptr, "MapProcessCodeMemory"},
    {0x78, nullptr, "UnmapProcessCodeMemory"},
    {0x79, nullptr, "CreateProcess"},
    {0x7A, nullptr, "StartProcess"},
    {0x7B, nullptr, "TerminateProcess"},
    {0x7C, SvcWrap<GetProcessInfo>, "GetProcessInfo"},
    {0x7D, SvcWrap<CreateResourceLimit>, "CreateResourceLimit"},
    {0x7E, SvcWrap<SetResourceLimitLimitValue>, "SetResourceLimitLimitValue"},
    {0x7F, nullptr, "CallSecureMonitor"},
};

static const FunctionDef* GetSVCInfo(u32 func_num) {
    if (func_num >= std::size(SVC_Table)) {
        LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
        return nullptr;
    }
    return &SVC_Table[func_num];
}

MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));

void CallSVC(u32 immediate) {
    MICROPROFILE_SCOPE(Kernel_SVC);

    // Lock the global kernel mutex when we enter the kernel HLE.
    std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);

    const FunctionDef* info = GetSVCInfo(immediate);
    if (info) {
        if (info->func) {
            info->func();
        } else {
            LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name);
        }
    } else {
        LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate);
    }
}

} // namespace Kernel