summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/vm_manager.cpp
blob: b2dd21542fa8b12eb7aff4f4e1fd3671f85da32a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/assert.h"

#include "core/hle/kernel/vm_manager.h"
#include "core/memory_setup.h"

namespace Kernel {

bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
    ASSERT(base + size == next.base);
    if (permissions != next.permissions ||
            meminfo_state != next.meminfo_state ||
            type != next.type) {
        return false;
    }
    if (type == VMAType::AllocatedMemoryBlock &&
            (backing_block != next.backing_block || offset + size != next.offset)) {
        return false;
    }
    if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
        return false;
    }
    if (type == VMAType::MMIO && paddr + size != next.paddr) {
        return false;
    }
    return true;
}

VMManager::VMManager() {
    Reset();
}

void VMManager::Reset() {
    vma_map.clear();

    // Initialize the map with a single free region covering the entire managed space.
    VirtualMemoryArea initial_vma;
    initial_vma.size = MAX_ADDRESS;
    vma_map.emplace(initial_vma.base, initial_vma);

    UpdatePageTableForVMA(initial_vma);
}

VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
    return std::prev(vma_map.upper_bound(target));
}

ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
        std::shared_ptr<std::vector<u8>> block, u32 offset, u32 size, MemoryState state) {
    ASSERT(block != nullptr);
    ASSERT(offset + size <= block->size());

    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    final_vma.type = VMAType::AllocatedMemoryBlock;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.backing_block = block;
    final_vma.offset = offset;
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8 * memory, u32 size, MemoryState state) {
    ASSERT(memory != nullptr);

    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    final_vma.type = VMAType::BackingMemory;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.backing_memory = memory;
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state) {
    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    final_vma.type = VMAType::MMIO;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.paddr = paddr;
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

void VMManager::Unmap(VMAHandle vma_handle) {
    VMAIter iter = StripIterConstness(vma_handle);

    VirtualMemoryArea& vma = iter->second;
    vma.type = VMAType::Free;
    vma.permissions = VMAPermission::None;
    vma.meminfo_state = MemoryState::Free;

    vma.backing_block = nullptr;
    vma.offset = 0;
    vma.backing_memory = nullptr;
    vma.paddr = 0;

    UpdatePageTableForVMA(vma);

    MergeAdjacent(iter);
}

void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
    VMAIter iter = StripIterConstness(vma_handle);

    VirtualMemoryArea& vma = iter->second;
    vma.permissions = new_perms;
    UpdatePageTableForVMA(vma);

    MergeAdjacent(iter);
}

VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
    // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
    // non-const access to its container.
    return vma_map.erase(iter, iter); // Erases an empty range of elements
}

ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size);
    ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base);

    VMAIter vma_handle = StripIterConstness(FindVMA(base));
    if (vma_handle == vma_map.end()) {
        // Target address is outside the range managed by the kernel
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
                ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E01BF5
    }

    VirtualMemoryArea& vma = vma_handle->second;
    if (vma.type != VMAType::Free) {
        // Region is already allocated
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
                ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
    }

    u32 start_in_vma = base - vma.base;
    u32 end_in_vma = start_in_vma + size;

    if (end_in_vma > vma.size) {
        // Requested allocation doesn't fit inside VMA
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
                ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
    }

    if (end_in_vma != vma.size) {
        // Split VMA at the end of the allocated region
        SplitVMA(vma_handle, end_in_vma);
    }
    if (start_in_vma != 0) {
        // Split VMA at the start of the allocated region
        vma_handle = SplitVMA(vma_handle, start_in_vma);
    }

    return MakeResult<VMAIter>(vma_handle);
}

VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
    VirtualMemoryArea& old_vma = vma_handle->second;
    VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA

    // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
    // a bug. This restriction might be removed later.
    ASSERT(offset_in_vma < old_vma.size);
    ASSERT(offset_in_vma > 0);

    old_vma.size = offset_in_vma;
    new_vma.base += offset_in_vma;
    new_vma.size -= offset_in_vma;

    switch (new_vma.type) {
    case VMAType::Free:
        break;
    case VMAType::AllocatedMemoryBlock:
        new_vma.offset += offset_in_vma;
        break;
    case VMAType::BackingMemory:
        new_vma.backing_memory += offset_in_vma;
        break;
    case VMAType::MMIO:
        new_vma.paddr += offset_in_vma;
        break;
    }

    ASSERT(old_vma.CanBeMergedWith(new_vma));

    return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}

VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
    VMAIter next_vma = std::next(iter);
    if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
        iter->second.size += next_vma->second.size;
        vma_map.erase(next_vma);
    }

    if (iter != vma_map.begin()) {
        VMAIter prev_vma = std::prev(iter);
        if (prev_vma->second.CanBeMergedWith(iter->second)) {
            prev_vma->second.size += iter->second.size;
            vma_map.erase(iter);
            iter = prev_vma;
        }
    }

    return iter;
}

void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
    switch (vma.type) {
    case VMAType::Free:
        Memory::UnmapRegion(vma.base, vma.size);
        break;
    case VMAType::AllocatedMemoryBlock:
        Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_block->data() + vma.offset);
        break;
    case VMAType::BackingMemory:
        Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_memory);
        break;
    case VMAType::MMIO:
        // TODO(yuriks): Add support for MMIO handlers.
        Memory::MapIoRegion(vma.base, vma.size);
        break;
    }
}

}