1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
|
page ,132
subttl emexcept.asm - Microsoft exception handler
;***
;emexcept.asm - Microsoft exception handler
;
; Copyright (c) 1987-89, Microsoft Corporation
;
;Purpose:
; Microsoft exception handler
;
; This Module contains Proprietary Information of Microsoft
; Corporation and should be treated as Confidential.
;
;Revision History: (Also see emulator.hst.)
;
; 12-08-89 WAJ Add fld tbyte ptr [mem] denormal check.
;
;*******************************************************************************
;----------------------------------------------------------------------
; Structure for FSTENV and FLDENV, Store and Load 8087 Environment
;----------------------------------------------------------------------
glb <ENV_ControlWord,ENV_StatusWord,ENV_TagWord,ENV_IP>
glb <ENV_Opcode,ENV_OperandPointer,ENV_ControlMask>
glb <ENV_CallOffset,ENV_CallSegment,ENV_CallFwait,ENV_Call8087Inst>
glb <ENV_CallLongRet>
ENV_DS EQU -4
ENV_BX EQU -2
ENV_ControlWord EQU 0
ENV_StatusWord EQU 2
ENV_TagWord EQU 4
ENV_IP EQU 6
ENV_Opcode EQU 8
ENV_OperandPointer EQU 10
ENV_ControlMask EQU 16
ENV_Temp EQU 18 ; Note ENV_Temp occupies
ENV_CallOffset EQU 18 ; the same space as ENV_Call*.
ENV_CallSegment EQU 20 ; This is possible because there
ENV_CallFwait EQU 22 ; is never simultaneous use of
ENV_Call8087Inst EQU 23 ; this space
ENV_CallLongRet EQU 25
ENV_OldBP EQU 28
ENV_OldAX EQU 30
ENV_IRETadd EQU 32
ENV_Size EQU 28
; UNDONE 386 version is bad - 387 environment is longer
PAGE
;----------------------------------------------------------------------------
;
; 8087 EXCEPTION HANDLER - Fields 8087 stack over flow and under flow.
;
;----------------------------------------------------------------------------
;
; I. The 8087 state vector.
;
; Upon the execution of a FSAVE or FSTENV instruction the state of the
; 8087 is saved in a user defined state vector. The first seven words
; saved in the state vector by the two instructions are identical. The
; definition of the words is:
;
; Word. Bits. Bytes. Function.
; ----- ----- ------ ---------
; 0 15..0 1..0 Control word.
; 1 15..0 3..2 Status word. ( 8087 stack
; pointer and condition codes.
; 2 15..0 5..4 Tag word ( 8087 stack slot usage
; flags ).
; 3 15..0 7..6 Instruction pointer. Operator
; segment offset.
; 4 15..12 8 Operator paragraph bits ( (
; bits 16..19 ) of address ).
; 4 11 8 Always zero.
; 4 10..8 8 Upper opcode bits ( major opcode ).
; 4 7..0 9 Lower opcode bits ( minor opcode ).
; 5 15..0 11..10 Operand Segment offset.
; 6 15..12 12 Operand paragraph bits.
; 6 11..0 Not used. Must be zero.
;
; II. Restarting instructions.
;
; Of interest in this handler is the necessity of restarting
; 8087 instructions which fail because of 8087 stack overflow
; and underflow. Even though the 8087 saves enough information
; to restart an instruction, it is incapable of doing so. The
; instruction restart must be done in software.
;
; There are two cases which must be considered after the stack
; exception has been dealt with.
;
; 1. The faulting instruction deals with top of stack.
; 2. The faulting instruction deals with memory.
;
; The first case is handled by changing the upper five bits (
; 15..11 ) of vector word four ( 4 ) to "11011B". This changes
; word four into an "escape opcode" 8087 instruction. The
; modified opcode is placed in the interrupt code segment and
; executed.
;
; The second case is handled by changing the upper five bits
; ( 15..11 ) of vector word four ( 4 ) to "11011B", changing
; the MOD of the opcode to "00B" ( 0 displacement ), loading
; the operand address into DS:SI, and changing the RM field of
; the opcode to "100B" (SI+DISP addressing). The faulting
; instruction may be restarted as above.
;
; Instruction restart may also be accomplished by building an
; instruction stream in the interrupt stack and calling the
; instruction stream indirectly. This method is the preferred
; method because it is reentrant.
;
; III. Data Segment Considerations.
;
; DS is restored from the task interrupt vector. DS is used for
; stack overflow memory.
;
;
; Documentation of the invalid exception handling code for the stand-alone
; 8087/80287 emulator
;
; The emulator software is being enhanced for the cmerge 4.0 generation of
; languages to support a larger subset of the numeric processor instruction
; set. In addition to providing instructions which were not previously
; emulated, the model for representing the numeric processor stack is also
; being modified. The 4.0 languages and their predecessors are object compat-
; ible so it will be possible for programs to be developed which will contain
; code generated by the old model as well as the new model. For this reason
; it is important to understand the characteristics of both models and how
; the two models will interact.
;
; I. The Old Model: Infinite Stack
;
; The old model used an infinite stack model as the basis of its
; emulation of the numeric processor. Only the classical stack form of
; instructions with operands were emulated so only ST(0) (top of stack)
; and ST(1) (next to top of stack) were referenced by any given instruction.
; In addition, the stack was allowed to overflow beyond the eight registers
; available on the chip into a memory stack overflow area. The code genera-
; tor did not attempt to maintain all of its register data in the first eight
; register slots but instead made use of this overflow area. In order to
; maintain compatible behavior with or without the presence of the chip, this
; model made it necessary to handle and recover from stack overflow exceptions
; in the case where the chip is present as well as when it is being emulated.
;
; This stack overflow exception handling could in turn generate a recoverable
; stack underflow exception since a situation could arise where a desired
; operand had been pushed into the memory overflow area (during stack overflow)
; and was not available in the on-chip register area when needed. This
; scenario would signal an invalid exception due to stack underflow.
; It is recoverable because the required operand is still available in the
; overflow area and simply needs to be moved into a register on the chip.
;
; II. The New Model: Finite Stack
;
; The new model uses a finite stack model: only the eight registers on the
; chip are available for use, so in the new model the invalid exception
; would never be signalled due to stack overflow. In addition, it extends
; the emulated instruction set to include the general register form of
; instructions with operands (operands can be ST(i),ST or ST,ST(i)). Since
; the new code generator is aware of how many items it has placed on the stack,
; it does not allow stack overflow or stack underflow to occur. It can remove
; items from the registers either by storing to memory (FST or FSTP), or by
; using FFREE to mark the register as empty (this instruction is being added
; to the emulated instruction set). The new model uses FFREE in a well-defined
; manner: it will only free registers from the boundaries of the block of
; registers it is using. For example, if the new code is using ST(0)-ST(6),
; it must free the registers in the order ST(6),ST(5),ST(4),... and so on.
; It cannot create gaps of free registers within the block of registers
; it is using.
;
; III. The Hybrid Model: Combination of New and Old Code
;
; Due to the possibility of mixture of code generated using both of the above
; models, the new exception handling and emulation software has to be able to
; handle all situations which can arise as a result of the interaction of the
; two models. The following summarizes the behavior of the two models and
; restrictions placed on their interaction.
;
; New Code:
;
; 1. Cannot call anyone with any active entries on the stack.
; The new model is always at a conceptual stack level of zero
; when it makes external calls. Thus old code will never
; incorrectly make use of register data that was placed on the
; register stack by new code.
;
; 2. May create gaps of free registers in the register stack.
; It will not create gaps in the memory stack overflow area.
;
; 3. Only causes stack overflow by pushing old code entries off of
; the register stack and into the memory stack overflow area.
; It will never overflow its own entries into the memory stack
; overflow area.
;
; 4. Cannot cause stack underflow.
;
;
; Old Code:
;
; 1. Can only reference ST(0), ST(1).
;
; 2. Can cause stack overflow by pushing too many entries onto the
; register stack.
;
; 3. Can cause stack underflow in two situations:
;
; a. It is trying to get something that is in the memory stack
; overflow area (stack overflow occurred previously).
;
; b. There are free entries on the chip. This situation could
; arise if new code creates free entries then calls old code,
; so this is a situation that could not have existed before
; the new model was introduced.
;
; IV. Stack Overflow/Underflow Exception Handling
;
; The following algorithms will be used for detecting and recovering from
; stack overflow and underflow conditions (signalled via the invalid
; exception). All invalid exceptions are "before" exceptions so that
; the instruction has to be reexecuted once the exception has been handled.
;
; A. Stack Overflow
;
; If ST(7) is used (possible stack overflow) then {
; check for instructions which could cause stack overflow
; (includes FLD,FPTAN,...)
; if instruction could cause stack overflow then {
; save ST(7) in stack overflow area at [CURstk]
; mark ST(7) empty
; if FLD ST(7) instruction then
; FLD [CURstk] or rotate chip (clear exceptions)
; else reexecute the instruction with ST(7) empty
; }
; }
;
; B. Stack Underflow
;
; If ST(0) is free then assume stack underflow since the stack
; overflow case has already been handled (if the invalid
; is due to a denormal exception, the exception will occur
; again when the instruction is reexecuted):
;
; if chip has any registers in use (check the tag word) then {
; rotate chip until ST(0) is not empty
; rotate tag word to reflect state of chip
; }
; else (no registers in use)
; if operand is in stack overflow area then {
; load into ST(0) from stack overflow area
; mark ST(0) full
; }
; else {
; indicate true stack underflow
; go print error
; }
; if ST(1) is empty then {
; if any of ST(2) thru ST(7) are in use then {
; rotate chip until ST(1) is not empty
; (to share code with first chip rotation above:
; store pop st(0) into temp
; rotate chip until st(0) is not free
; load st(0) back onto chip)
; update tag word appropriately
; }
; else
; load ST(1) from overflow area if there
; }
;
; At this point, ST(0) and ST(1) have been filled if possible.
; Now we must categorize the instructions to determine which
; of these is required. Then we will either issue true stack
; underflow or reexecute the instruction with the compressed
; stack.
;----------------------------------------------------------------------------
;
; References:
; Intel 8086 Family Numerics Supplement. 121586-001 Rev A.
; Intel iAPX 86,88 User's Manual.
;
;----------------------------------------------------------------------------
;----------------------------------------------------------------------------
;
; All registers must be saved by __FPEXCEPTION87 except CS,IP,SS,SP.
;
;----------------------------------------------------------------------------
ifdef WINDOWS
; stack consists of IRET frame and status word before FCLEX
;
; Since the environment is different in protect mode, reconstruct
; the opcode like in real mode.
lab protiret
iret
lab protexskipsegovr
inc bx ; bump past segment override
jmp short protexsegovr ; try again
public __FPEXCEPTION87P
__FPEXCEPTION87P:
lab protexception
push eax ; save user ax
push ebp
sub esp,ENV_Size ; get Enough bytes for Environment
mov ebp,esp ; set up for rational offsets.
fstenv word ptr [ebp] ; save environment.
mov eax,offset protiret ; set up for near return address
xchg ax,[ebp+ENV_Size+4] ; swap status word and near ret addr
mov ENV_StatusWord[ebp],ax ; save status word into environment
push ebx
push ds ; save a few more registers
lds ebx,dword ptr ENV_IP[ebp] ; get address of instruction
lab protexsegovr
mov ax,[ebx] ; get 1st 2 bytes of instruction
add al,28h ; add -(ESC 0)
jnc protexskipsegovr ; wasn't ESC - skip seg. override
xchg al,ah ; swap bytes to make real opcode
mov ENV_Opcode[ebp],ax ; save it in environment
sti
jmp short exceptionhandler
endif ;WINDOWS
ifdef DOS5
; stack consists of IRET frame and status word before FCLEX
;
; Since the environment is different in protect mode, reconstruct
; the opcode like in real mode.
lab protiret
iret
lab protexskipsegovr
inc bx ; bump past segment override
jmp short protexsegovr ; try again
lab protexception
push eax ; save user ax
push ebp
sub esp,ENV_Size ; get Enough bytes for Environment
mov ebp,esp ; set up for rational offsets.
fstenv word ptr [ebp] ; save environment.
mov eax,offset protiret ; set up for near return address
xchg ax,[ebp+ENV_Size+4] ; swap status word and near ret addr
mov ENV_StatusWord[ebp],ax ; save status word into environment
push ebx
push ds ; save a few more registers
lds ebx,dword ptr ENV_IP[ebp] ; get address of instruction
lab protexsegovr
mov ax,[ebx] ; get 1st 2 bytes of instruction
add al,28h ; add -(ESC 0)
jnc protexskipsegovr ; wasn't ESC - skip seg. override
xchg al,ah ; swap bytes to make real opcode
mov ENV_Opcode[ebp],ax ; save it in environment
endif ;DOS5
ifdef DOS3and5
jmp short exceptionhandler
endif ;DOS3and5
ifdef DOS3
public __FPEXCEPTION87
__FPEXCEPTION87:
PUSH AX ; Save user's AX next to IRET
PUSH BP
SUB SP,ENV_Size ; Get Enough bytes for Environment
; 8087 status.
MOV BP,SP ; Set up for rational offsets.
;Caveat Programmer!
;FSTENV does an implicit set of all exception masks.
FNSTENV WORD PTR [BP] ; Save environment.
FCLEX ; Clear exceptions.
STI ; Restore host interrupts.
PUSH BX
PUSH DS ; Need access to user data
endif ;DOS3
;----------------------------------------------------------------------------
; In a multitasking environment one would not want to restore
; interrupts at this point. One would wait until the 8087 had been
; flushed and any operand data copied to a storage area.
;----------------------------------------------------------------------------
;---------------
; Inside of the while exception loop and Redo8087Instruction
; registers AX and BX must contain the values as described
; below:
; AL bit 0 = 1 indicates invalid exception
; bit 1 = 1 indicates denormal exception
; bit 2 = 1 indicates divide by zero exception
; bit 3 = 1 indicates numeric overflow
; bit 4 = 1 indicates numeric underflow
; bit 5 = 1 indicates precision loss
; bit 6 = unused by 8087
; bit 7 = 1 indicates sqrt of negative number
; (this flag is not from the NPX status word, but
; is set after all other exceptions have been
; handled if the opcode is FSQRT)
; AH bit 0 = unused
; bit 1 = 1 indicates stack overflow
; bit 2 = 1 indicates stack underflow
; bit 3 = unused
; bit 4 = unused
; bit 5 = 1 indicates memory operand
; bit 6 = 1 indicates instruction was reexcuted
; bit 7 = 1 indicates ST relative operand
; BL = The complement of the exception masks copied from
; UserControlWord altered so that Denormal and Invalid
; exceptions are always unmasked, while the reserved
; bits are masked.
; BH bit 0 = 1 indicates 8087 only invalid handling complete
; bit 1 = 1 indicates 8087 only denormal handling complete
; bit 2 = 1 indicates 8087 only divide by zero handling complete
; bit 3 = 1 indicates 8087 only numeric overflow handling complete
; bit 4 = 1 indicates 8087 only numeric underflow handling complete
; bit 5 = 1 indicates 8087 only precision loss handling complete
; bit 6 = unused
; bit 7 = unused
;
; Algorithm: Handle 8087 exceptions which do not occur in the
; emulator and then jump to the common exception handling code.
;
; To handle 8087 only exceptions we must first determine if the
; exception occured before the 8087 executed the instruction
; or afterward. Invalid, denormal (except FLD) and divide by
; zero exceptions all occur before 8087 instruction execution,
; others occur afterward. "Before" exceptions must set the
; "before" flag in AH and then reexecute the instruction. After
; reexecution (while all exceptions are masked) all of the
; exceptions resulting from the current 8087 instruction will
; be known and can be handled as a group. "After" exceptions
; are handled individually since reexecution of an already
; executed instruction will destroy the validity of the 8087 stack.
; A flag in AH is used by Redo8087instruction to avoid reexecuting
; an instruction twice. At the beginning of Redo8087instruction
; the flag is checked, and if it is set the instruction is not
; redone.
;
; "Before" exceptions must be reexecuted because it is
; difficult to determine stack over/underflow if reexecution
; is not performed. Stack over/underflow is signaled by
; an invalid exception. The current algorithm for stack over/
; underflow detection is as follows:
;
; ...
;
;---------------
ProfBegin EXCEPT
lab exceptionhandler
ifdef MTHREAD
LOADthreadDS ; macro in emthread.asm
; loads thread's DS; trashes AX
else ;MTHREAD
ifdef standalone
XOR AX,AX ; Prepare to access vector, clear flags
MOV DS,AX
MOV DS,DS:[4*TSKINT+2] ; DS = emulator task data segment
elseifdef _COM_
mov ds, [__EmDataSeg]
xor ax,ax
else
mov ax, edataBASE
mov ds,ax
xor ax,ax
endif
endif ;MTHREAD
MOV AL,ENV_StatusWord[eBP] ; Get 8087 status flags.
XOR BH,BH ; Clear out 8087 handling flags
;----------------------------------------------------------------------------
;
; Can the interrupt be serviced by this routine? Dispatch exceptional
; conditions.
;
; Multi-pass algorithm
; Handle exception and reexcute instruction if necessary
; Loop back to WhileException and handle additional exceptions
;
; AX = status before exception handling
; BX = flag indicating exception handled
;
;----------------------------------------------------------------------------
cmp [ExtendStack], 0 ; check if the extended stack was
jne WhileException ; turned off.
or bh, Invalid
lab WhileException
ifndef _NOSTKEXCHLR ; no stack overflow/underflow handler
TEST BH,Invalid ; stack over/underflow already handled?
JNZ short NotOverUnderflow ; Yes - forget stack over/underflow
TEST AL,Invalid ; Invalid exception?
JZ short NotOverUnderflow ; No - bypass over/underflow checking
OR BH,Invalid ; Indicate stack over/undeflow checked
JMP ProcessOverUnderflow ; See about stack over/underflow
endif ;_NOSTKEXCHLR
lab NotOverUnderflow
; Either the exception was not an invalid or stack over/underflow has
; already been handled.
; check for denormal exception - completely resolved on pass 1
TEST AL,Denormal ; Denormal exception?
JZ short NotDenormal ; No - bypass denormal handling
JMP ProcessDenormal ; Process the denormal
lab NotDenormal
; check for zero divide exception
TEST BH,ZeroDivide ; Divide by zero already handled?
JNZ short NotZeroDivide ; Yes - bypass divide by zero handling
TEST AL,ZeroDivide ; Divide by zero exception?
JZ short NotZeroDivide ; No - bypass divide by zero handling
OR BH,ZeroDivide ; Indicate divide by zero handled
CALL ReDo8087Instruction ; Process divide by zero exception
JMP WhileException
lab NotZeroDivide
; check for numeric overflow exception
TEST BH,Overflow ; Overflow already handled?
JNZ short AllExceptionsHandled ; Yes - bypass overflow handling
TEST AL,Overflow ; Overflow exception?
JZ short AllExceptionsHandled ; No - bypass overflow handling
OR BH,Overflow ; Indicate overflow handled
JMP ProcessNumericOverflow ; Process numeric overflow
lab AllExceptionsHandled
; We have already handled any exceptions which require instruction
; reexecution.
; At this point 8087 instruction reexecution is done. We need
; to extract a little more information for error message
; generation.
MOV BL, BYTE PTR UserControlWord ; 8087 exception masks
OR BL, 0C0H ; Mask reserved
AND BL, 0FDH ; Unmask denormal. DON'T unmask invalid
; here. (Otherwiae user has no way of
; masking invalids.)
NOT BL ; complement
AND AL, BL ; eliminate all masked exceptions
; from AL
TEST AL,Invalid ; Possibly square root of neg?
JZ short NotFLDshortorlongNaN ; No - don't set square root flag
PUSH AX ; ... Use AX as scratch ...
MOV AX,ENV_Opcode[eBP] ; Get the instruction op code
AND AH,7 ; Mask off the junk
CMP AX,001FAh ; Square root op code?
JNE short NotSquareRootError ; No - don't set square root flag
POP AX ; ... Restore AX ...
OR AL,SquareRootNeg ; Set the square root flag
JMP short NotFLDshortorlongNaN
;-----------------------------------------------------------------------------
; Test for invalid exception caused by an FLD of a NaN underflow or overflow.
;-----------------------------------------------------------------------------
lab NotSquareRootError ; Next check for FLD of a NaN
; (only happens for SNaNs on
; the 80387; not for 8087/287)
MOV AX,ENV_Opcode[eBP]
AND AX,0338h ; Mask off the inessential bits
CMP AX,0100h ; Check for possible FLD
; of short/long real from memory.
; We are assuming that an invalid
; exception means FLD of a NaN
; since stack over/under-flow
; has already been dealt with.
; (we don't handle FLD ST(n) or
; FLD temp real in this way)
POP AX ; ... Restore AX ...
JNE short NotFLDshortorlongNaN
;
; (MOD==11 case: no special code)
; We don't handle FLD ST(n) here since it isn't properly
; handled in our stack overlow checking code either and
; it doesn't generate an invalid in the case of an SNaN
; without a stack overflow; FFREE ST(n) will not cause
; an Invalid exception.
;
; FLD TBYTE PTR ... shouldn't cause an Invalid due to a NaN
;
XOR AL,Invalid ; Turn off invalid exception.
; There should be a NaN in ST(0);
; we will just leave it there.
lab NotFLDshortorlongNaN
FCLEX
FLDCW ENV_ControlWord[eBP] ; Restore original Control Word
lab CleanUpHost
or [UserStatusWord],ax ; OR into user status word
POP DS
POP eBX
ADD eSP,ENV_Size ; Point to users BP
POP eBP
TEST AX,0FFFFh-Reexecuted ; exceptions?
JNZ Exceptions8087 ; Process other exceptions as emulator
POP eAX ; Now just IRET address on stack
ret ; return to OEM interrupt exit routine
lab Exceptions8087
; toss OEM routine return address
push eax
push ebx
mov ebx,esp
; UNDONE - this does not work for 386
mov eax,ss:[ebx+4] ; get original AX
mov ss:[ebx+6],eax ; overwrite OEM routine return address
pop ebx
pop eax
ifdef i386
add esp,4 ; remove original AX
else
add sp,2 ; remove original AX
endif
JMP CommonExceptions
PAGE
;-----------------------------------------------------------------------------
; Test for stack underflow or overflow.
;-----------------------------------------------------------------------------
; There are eight sets of tag bits in the tag word. Each set
; denotes the state of one of the 8087 stack elements.
; 00 - normal
; 01 - true zero
; 10 - special: nan,infinity,unnormal
; 11 - empty
; If all are empty we have underflow, if all are full we have overflow
; There was an invalid exception: check to see if it was stack
; overflow or underflow.
; Register usage in this code block:
; BX = tag word, complemented
; CL = NPX stack ptr
ifndef _NOSTKEXCHLR ; no stack overflow/underflow handler
lab ProcessOverUnderflow
PUSH eSI
PUSH eBX ; Make room for local temps
PUSH eCX
PUSH eDX
PUSH eDI
MOV BX,ENV_TagWord[eBP] ; Get tag word.
MOV CX,ENV_StatusWord[eBP] ; Get status word
NOT BX ; Tag zero means empty, else full
MOV CL,CH ; Get stack pointer into CL
AND CL,038h ; Mask to stack pointer
SHR CL,1
SHR CL,1 ; compute number of bits to shift
ROR BX,CL ; tag ST(0) in low BL.
; To service stack overflow we must make sure there is an empty space
; above the top of stack before the instruction is reexecuted. If
; after reexecution we again get an invalid exception, then we
; know there was something besides stack overflow causing the invalid
; exception.
; We check for stack overflow by seeing if ST(7) is empty. We make
; the check by testing the complemented, rotated tag word in BX.
TEST BH,0C0h ; Possible stack overflow?
JZ short StackUnderflowCheck ; No - bypass offloading stack
; ST(7) is not empty, so we may have stack overflow. We verify that
; we have stack overflow by looking at the instruction to be sure
; that it can generate stack overflow (i.e., it puts more stuff on
; the stack than it removes).
; Note that a subset of the 287 instruction set is being decoded
; here; only those instructions which can generate invalid exceptions
; get to this point in the code (see Table 2-14 in the Numeric
; Supplement for list of instructions and possible exceptions).
;
; The instructions which can generate stack overflow are:
; all memory FLDs,FILDs,FBLDs,constant instructions,
; FPTAN and FXTRACT
MOV DX,ENV_Opcode[eBP] ; Get the instruction op code
XOR DX,001E0h ; Toggle arith, mod and special bits
; Test for mod of 0,1, or 2 (indicates memory operand)
TEST DL,0C0h ; Memory operand instruction?
JNZ short MemoryFLDCheck ; Yes - go see what kind
; Test bits 5 & 8 of instruction opcode: of remaining instructions, only those
; with stack relative operands do NOT have both of these bits as 1 in the opcode
; (remember these bits are toggled).
TEST DX,00120h ; ST Relative Op group?
JNZ short StackUnderflowCheck ; Yes - ST Relative Ops
; cannot cause stack overflow
; Test bit 4 of the instruction opcode: of remaining instructions, only the
; transcendentals have this bit set.
TEST DL,010h ; Constant or arith instruction?
JNZ short TransCheck ; No - must be Transcendental
; Test bit 3 of the instruction opcode: of remaining instructions, only the
; constant instructions have this bit set.
TEST DL,008h ; Constant instruction?
JNZ short StackOverflowVerified ; Yes, can cause stack overflow
; The instructions which get to this point are FCHS, FABS, FTST and FXAM.
; None of these can cause stack overflow.
JMP StackUnderflowCheck ; so go check for stack underflow
lab TransCheck
; The instruction was a transcendental. Of the transcendentals, only
; FPTAN and FXTRACT can cause stack overflow, so check for these.
CMP DL,012h ; is this FPTAN
JE short StackOverflowVerified ; yes, can cause stack overflow
CMP DL,014h ; is this FXTRACT
JE short StackOverflowVerified ; yes, can cause stack overflow
JMP StackUnderflowCheck ; not either one, won't cause overflow
lab MemoryFLDCheck
TEST DX,00110h ; FLD memory instruction?
JNZ short StackUnderflowCheck ; no - go check for stack underflow
lab StackOverflowVerified
; ST(7) was not empty and the instruction can cause stack overflow.
; To recover from stack overflow, move ST(7) contents to the
; stack extension area, modifying the tag word appropriately.
AND BH,0FFh-0C0h ; Indicate 1st above TOS is free
PUSHST ; Let PUSHST make room for value.
FDECSTP ; Point to bottom stack element.
FSTP TBYTE PTR [eSI] ; Store out bottom stack element.
JMP InvalidReexecute ; No - reexecute instruction
lab StackUnderflowCheck
; To service stack underflow we must make sure all the operands the
; instruction requires are placed on the stack before the instruction
; is reexecuted. If after reexecution we again get an invalid
; exception, then its due to something else.
TEST BL,003h ; Is ST(0) empty?
JZ short UFMemoryFLDcheck ; yes - first check for memory FLD
JMP ST1EmptyCheck ; No - Let's try to fill ST(1), too.
; We may need it!
;
; This block of code is for making sure that FLD memory operand is not
; among those instructions where stack underflow could occur; this is
; so FLD of SNaN can be detected (under the AllExceptionsHandled
; section) for the case of the 80387.
;
lab UFMemoryFLDcheck
MOV DX,ENV_Opcode[eBP] ; Get the instruction opcode
XOR DX,001E0h ; Toggle arith, mod and special bits
TEST DL,0C0h ; Memory operand instruction?
JZ ST0Empty ; No - continue underflow processing
; Try to fill ST(0)
TEST DX,00110h ; FLD memory instruction?
JNZ ST0Empty ; No - continue underflow processing
; Try to fill ST(0)
JMP ST1EmptyCheck ; Let's try to fill ST(1), too.
; We may need it!
; Formerly we did JMP InvalidReexecute here; but this caused
; an "invalid" to be reported for instructions with two stack
; operands. (Doing JMP ST1EMptyCheck fixes this bug:
; Fortran 4.01 BCP #1767.)
;
; This fixes the underflow-handling case of instructions
; needing both ST0 and ST1 under the conditions that ST0
; is full but ST1 is empty.
lab ST0Empty
; assume stack underflow since ST(0) is empty and we did not have
; stack overflow
OR BX,BX ; Are any registers on the chip in
; use? (BX = 0 if not)
JZ short LoadST0FromMemory ; No, load ST(0) from memory stack
CALL RotateChip ; yes, then point ST(0) at first
; valid register and update tag in BX
JMP ST1EmptyCheck ; go check if ST(1) is empty
lab LoadST0FromMemory
MOV eSI,[CURstk] ; Get pointer to memory stack
CMP eSI,[BASstk] ; Anything in memory to load?
JNE short LoadST0 ; Yes, go load it
JMP TrueUnderflow ; No, go issue error
lab LoadST0
OR BL,003h ; Indicate ST(0) is full
FINCSTP ; Avoid altering stack pointer.
FLD TBYTE PTR [eSI] ; Load value from memory.
POPST ; Let POPST decrement memory pointer.
lab ST1EmptyCheck
TEST BL,00Ch ; Is ST(1) empty?
JNZ short EndST1EmptyCheck ; No - so don't load from memory
MOV SI,BX ; move tag word to SI
AND SI,0FFF0h ; mask off ST(0),ST(1)
OR SI,SI ; Are any of ST(2)-ST(7) in use?
; (SI = 0 if not)
JZ short LoadST1FromMemory ; No, try to get ST(1) from memory
FSTP TBYTE PTR [REG8087ST0] ; offload ST(0) temporarily
SHR BX,1
SHR BX,1 ; ST(1) becomes ST(0) in tag word
CALL RotateChip ; get 1st in-use register into ST(1)
FLD TBYTE PTR [REG8087ST0] ; reload ST(0)
SHL BX,1
SHL BX,1 ; adjust tag word for reloaded ST(0)
OR BL,003h ; Indicate ST(0) is full
JMP SHORT EndST1EmptyCheck ; ST(0) and ST(1) are full
lab LoadST1FromMemory
MOV eSI,[CURstk] ; Get pointer to memory stack
CMP eSI,[BASstk] ; Anything in memory to load?
JE short EndST1EmptyCheck ; No, so don't load it.
OR BL,00Ch ; Indicate ST(1) is full
FINCSTP ; Point to ST(1)
FINCSTP ; Point to ST(2)
FLD TBYTE PTR [eSI] ; Load value from memory into ST(1).
FDECSTP ; Point to ST(0)
POPST ; Let POPST decrement memory pointer.
lab EndST1EmptyCheck
; At this point we know that ST(0) is full. ST(1) may or may not be full
; and may or may not be needed.
; Now we look at the instruction opcode and begin categorizing instructions
; to determine whether they can cause stack underflow and if so, whether
; they require ST(0) only or ST(1) as well.
MOV DX,ENV_Opcode[eBP] ; Get the instruction op code
XOR DX,001E0h ; Toggle arith, mod, and special bits
; Test for mod of 0,1, or 2 (indicates memory operand)
TEST DL,0C0h ; Memory operand instruction?
JNZ short StackUnderflowServiced ; Yes, then stack underflow cannot
; be a problem since memory instructions
; require at most one stack operand
; and we know that ST(0) is full
; Test bits 5 & 8 of instruction opcode: of remaining instructions, only those
; with stack relative operands do NOT have both of these bits as 1 in the opcode
; (remember these bits are toggled).
TEST DX,00120h ; ST Relative Op group?
JNZ short STRelativeOpGroup ; Yes - ST Relative Ops
lab ConstOrTrans
; Test bit 4 of the instruction opcode: of remaining instructions, only the
; transcendentals have this bit set.
TEST DL,010h ; Constant or arith instruction?
JNZ short TranscendentalInst ; No - must be Transcendental
; The instructions that get to here are the constant instructions and
; FCHS, FABS, FTST and FXAM. The constant instructions do not have any
; stack operands; the others require ST(0) which we know is valid.
; Therefore, none of the remaining instructions can cause stack underflow.
lab StackUnderflowServiced
JMP InvalidReexecute ; Stack underflow corrected
; reexecute instruction
lab TranscendentalInst
; Transcendentals may require one or two stack elements as operands.
; Here we decide whether or not ST(1) needs to be present.
MOV CL,DL ; Need low op code in CL
AND CL,00Fh ; Mask to low four bits
; Read the next block of comments column-wise. It shows the transcendental
; instructions represented by each bit in the constant loaded into DX below.
; Note: as it turns out, of the instructions requiring two operands below,
; only FSCALE and FPREM generate invalid exceptions when the second operand
; is missing.
; FFFFFRFFFFFRFFRR
; 2YPPXEDIPYSERSEE
; XLTATSENRLQSNCSS
; M2ATRECCE2REDAEE
; 1XNAARSSMXTRILRR
; ...NCVTT.P.VNEVV
; ....TEPP.1.ET.EE
; .....D.....D..DD
MOV DX,0101000011000100b ; 1's for 2 operand instructions
SHL DX,CL ; Get corresponding bit into sign
JNS short StackUnderflowServiced ; If just ST(0) needed we're O.K.
TEST BL,00Ch ; ST(1) full?
JNZ short StackUnderflowServiced ; Yes - stack underflow no problem
lab STRelativeOpGroup
; The following code block handles the general operand ST(x) even though
; the original code generator only uses ST(0) and ST(1) as operands.
; The current code generator uses ST(x) but will never cause stack underflow
; exceptions.
AND DX,00007h ; Mask to relative register number
SHL DL,1 ; Compute tag word shift amount
MOV CX,DX ; Get amount into CL
MOV DX,BX ; Get tag into DX
ROR DX,CL ; Shift operand tag into low DL
TEST DL,003h ; Is operand register empty?
JNZ short InvalidReexecute ; No - go reexecute
; The following conditions could cause a true underflow error to be
; erroneously generated at this point:
; FST ST(x) signals an invalid because ST(0) is empty. ST(0) gets filled
; by the stack underflow recovery code in this handler, but then
; the instruction is classified as an STRelative instruction and the
; above paragraph of code checks if ST(x) is empty. HOWEVER, FST ST(x) does
; not require ST(x) to be empty so a true underflow error should not occur.
; This code should be changed if this situation can ever occur.
JMP TrueUnderflow ; true stack underflow
;*** RotateChip - rotate coprocessor registers
;
; ENTRY
; BX: tag word, complemented
; ST(0): empty
; at least one other register on the chip is non-empty
; (or else this routine will loop infinitely)
;
; RETURNS
; BX: updated tag word, complemented
; ST(0): non-empty
;
; DESCRIPTION
; This routine rotates the registers on the coprocessor
; until the first in-use register is in ST(0). This
; will correct a stack underflow exception which has been
; caused by old model code encountering a gap of free
; registers created by new model code. The complemented
; tag word is also updated appropriately.
;
lab RotateChip
ROR BX,1 ; Rotate tag word
ROR BX,1
FINCSTP ; Point to new ST(0)
TEST BX,00003h ; Is this register empty?
JZ short RotateChip ; No, go rotate again
RET
lab TrueUnderflow
OR AH,StackUnderflow/256 ; indicate true stack underflow
MOV BYTE PTR ENV_StatusWord[eBP],0 ; Clear exceptions
FLDENV WORD PTR [eBP] ; Restore old environment.
POP eDI
POP eDX
POP eCX
POP eBX
POP eSI
JMP CleanUpHost ; Leave exception handler.
lab InvalidReexecute
AND AL,0FFH-Invalid ; Reset invalid flag.
CALL ReDo8087Instruction ; Was invalid so redo instruction.
POP eDI
POP eDX
POP eCX
POP eBX
POP eSI
JMP WhileException
endif ;_NOSTKEXCHLR
;----------------------------------------------------------------------------
PAGE
lab ProcessDenormal
; Correct 8087 bug. The FLD instruction signals a denormal
; exception AFTER it has completed. Reexecuting FLD for a
; denormal exception would thus mess up the 8087 stack. INTEL
; documentation states denormal exceptions are BEFORE
; exceptions, so there is a contradiction. To avoid reexecution
; of FLD we do as follows: And op code with 138H to mask out
; MOD, RM, ESC and memory format bits. Compare with 100H to
; distinguish FLD from other instructions which could possibly
; generate a denormal exception.
or byte ptr [UserStatusWord],Denormal ; set denorm bit
push ecx
mov cx,ENV_Opcode[eBP] ; see if we have a reg,reg operation
and cl, bMOD
cmp cl, bMOD ; if MOD = 11b then we have a reg,reg op
je notMemOpDenormal
mov cx,ENV_Opcode[eBP]
and cx, not (0fc00h or bMOD or bRM) ; remove escape, OpSizeBit, MOD and R/M
cmp cx,0008h ; check for FMUL real-memory
je short isMemOpDenormal
cmp cx,0010h ; check for FCOM real-memory
je short isMemOpDenormal
and cl,30h ; clear low opcode bit
cmp cx,0030h ; check for FDIV/FDIVR real-memory
jne short notMemOpDenormal
; have FDIV/FDIVR real-memory
; have FMUL real-memory
; have FCOM real-memory
;
; do the following steps
; 1. free ST(7) if not free to avoid stack overflow
; 2. change instruction to FLD real-memory and redo
; 3. normalize TOS
; 4. change instruction to FMUL or FDIV[R]P ST(1),ST and redo
lab isMemOpDenormal
TEST BH,0C0h ; 1. Possible stack overflow?
JZ short nostkovr ; No - bypass offloading stack
AND BH,0FFh-0C0h ; Indicate 1st above TOS is free
PUSHST ; Let PUSHST make room for value.
FDECSTP ; Point to bottom stack element.
FSTP TBYTE PTR [eSI] ; Store out bottom stack element.
lab nostkovr
mov cx,ENV_Opcode[ebp] ; 2. get original instruction
push cx ; save it for later
and cx,0400h
add cx,0104h ; changed to FLD real DS:[SI]
mov ENV_Opcode[ebp],cx ; change for redo
call ReDoIt ; do FLD denormal
call normalize ; 3. normalize TOS
pop cx ; 4. restore original instruction
and cx,0038h ; reduce to operation
cmp cl,08h ; is it FMUL
je short isFMUL ; yes
cmp cl,10h ; is it FCOM
je short isFCOM ; yes
xor cl,08h ; must be FDIV[R] - flip R bit
lab isFMUL
or cx,06C1h ; or to FoprP ST(1),ST
mov ENV_Opcode[ebp],cx ; change for redo
call ReDo8087Instruction ; do FDIV[R]P ST(1),ST
jmp short denormaldone ; done with FDIV[R] denormal
lab notMemOpDenormal
MOV cx,ENV_Opcode[eBP]
and cx, 0738h
cmp cx, 0328h
je short noredo ; check for FLD long double
AND cx,0138H
CMP cx,0100H ; check for FLD float/double
JZ short noredo
CALL ReDo8087Instruction ; redo other instructions
lab noredo
call normalize
jmp short denormaldone
; FCOM is a little more complicated to recover because of status
;
; FCOM is like FDIV in that the operands need to be exchanged
; and the value loaded onto the chip needs to be popped.
;
; This routine is like a mini ReDo8087Instruction
lab isFCOM
OR AH,Reexecuted/256 ; Flag instruction reexecuted
FCLEX ; clear exceptions
FXCH ; swap ST(0) and ST(1)
FCOM ST(1) ; so that ST(1) is the "source"
FXCH
FSTP ST(0) ; toss stack entry
FSTSW [NewStatusWord] ; get status word
FWAIT
OR AL,BYTE PTR [NewStatusWord] ; Include new with unhandled exceptions
lab denormaldone
pop ecx
AND AL,0FFh-Denormal ; clear denormal exception
jmp WhileException
lab normalize
fstp tbyte ptr ENV_Temp[ebp] ; save denormal/unnormal
fwait
mov cx,ENV_Temp[ebp+8] ; get old exponent
test cx,07FFFh ; test for zero exponent
jz short isdenormal ; denormal temp real
test byte ptr ENV_Temp[ebp+7],80h ; test for unnormal
jnz short isnormal ; no - skip normalization
fild qword ptr ENV_Temp[ebp] ; load mantissa as integer*8
fstp tbyte ptr ENV_Temp[ebp] ; save mantissa
fwait
cmp word ptr ENV_Temp[ebp+8],0 ; check for 0.0
je short isdenormal ; yes - we had a pseudo-zero
sub cx,403Eh ; exponent adjust (3fff+3f)
add ENV_Temp[ebp+8],cx ; add to mantissa exponent
lab isnormal
fld tbyte ptr ENV_Temp[ebp] ; reload normalized number
ret
lab isdenormal
xor cx,cx ; make it into a zero
mov ENV_Temp[ebp],cx
mov ENV_Temp[ebp+2],cx
mov ENV_Temp[ebp+4],cx
mov ENV_Temp[ebp+6],cx
mov ENV_Temp[ebp+8],cx
jmp isnormal ; reload it as zero
PAGE
lab ProcessNumericOverflow
; We must reexecute for numeric overflow only if the instruction
; was an FST or FSTP. This is because only these instructions
; signal the exception before the instruction is executed.
; If we reexecute under other conditions the state of the 8087
; will be destroyed. Only memory operand versions of FST and
; FSTP can produce the Overflow exception, and of all the
; non-arithmetic memory operand instructions, only FST and
; FSTP produce overflow exceptions. Thus it is sufficient
; to reexecute only in case of non-arithmetic memory operand
; instructions. To check for these and the op code with 001C0H
; to mask down to the arith and MOD fields, flip the arith
; bit by xoring with 00100H and if the result is below 000C0H
; then we have a non-arithmetic memory operand instruction.
PUSH eAX
MOV AX,ENV_Opcode[eBP]
AND AX,001C0H
XOR AH,001H
CMP AX,000C0H
POP eAX
JAE short NumericOverflowRet
CALL ReDo8087Instruction
lab NumericOverflowRet
JMP WhileException
PAGE
;----------------------------------------------------------------------------
; Reexecute aborted 8087 instruction, and include any exceptions in ENV [BP]
;----------------------------------------------------------------------------
ifdef WINDOWS
lab ReDo8087InstructionRet
ret
endif
lab ReDo8087Instruction
TEST AH,Reexecuted/256 ; Already reexecuted?
JNZ short ReDo8087InstructionRet ; If so don't do it again
OR AH,Reexecuted/256 ; Flag instruction reexecuted
lab ReDoIt
PUSH DS
PUSH eDI
PUSH eSI
PUSH eCX
PUSH eBX
FCLEX ; clear error summary flags
ifdef WINDOWS
mov di, ss ; assume SS
mov bx, __WINFLAGS
test bx, WF_PMODE
jz SkipSSAlias
push es
; push ax ; CHICAGO needs 32-bit register saves ...
; push dx
push eax ; for CHICAGO
push ebx ; for CHICAGO
push ecx ; for CHICAGO
push edx ; for CHICAGO
push ebp ; for CHICAGO
push esi ; for CHICAGO
push edi ; for CHICAGO
push ss
call ALLOCDSTOCSALIAS
pop edi ; for CHICAGO
mov di, ax
; pop dx ; CHICAGO needs 32-bit register restores
; pop ax
pop esi ; for CHICAGO
pop ebp ; for CHICAGO
pop edx ; for CHICAGO
pop ecx ; for CHICAGO
pop ebx ; for CHICAGO
pop eax ; for CHICAGO
pop es
or di, di
jz ReExecuteRestoreRet
lab SkipSSAlias
else ;not WINDOWS
ifdef DOS3and5
mov di,ss ; assume SS
cmp [protmode],0 ; check if protect mode
je noSSalias ; no - don't get SS alias
endif ;DOS3and5
ifdef DOS5
ifdef SQL_EMMT
push ax
push ss ; The SQL server may have switched stacks
push ds ; so update SSalias.
mov ax,offset SSalias
push ax
os2call DOSCREATECSALIAS
pop ax
endif ;SQL_EMMT
mov di,[SSalias] ; Get segment alias to stack
endif ;DOS5
endif ;not WINDOWS
ifdef DOS3and5
lab noSSalias
endif ;DOS3and5
MOV CX,ENV_Opcode[eBP] ; Get aborted 8087 instruction.
MOV BX,CX ; Copy instruction.
AND CH,07H ; Clear upper 5 bits.
OR CH,0D8H ; "OR" in escape code.
AND BL,0C0H ; Mask to MOD field.
XOR BL,0C0H ; If MOD = "11" (no memory operand)
JZ short REEXECUTE ; then address mode modification code
; must be bypassed.
AND CL,38H ; Clear MOD and RM fields,
OR CL,4H ; Turn on bits in MOD and RM fields
; to force DS:[SI+0] addressing.
LDS SI,ENV_OperandPointer[eBP] ; DS:SI <-- operand address
lab REEXECUTE
XCHG CH,CL ; convert to non-byte swapped
; code format
;
; Stack restart method. Restart instruction in interrupt stack
; frame. Code is reentrant.
;
ifdef WINDOWS
mov ENV_CallSegment[ebp],di ; Code segment alias to stack
elseifdef DOS5
mov ENV_CallSegment[ebp],di ; Code segment alias to stack
else
MOV ENV_CallSegment[eBP],SS ; Stack segment
endif
LEA eDI,ENV_CallFwait[eBP] ; Offset to code in stack.
MOV ENV_CallOffset[BP],eDI
MOV BYTE PTR ENV_CallFwait[eBP],09BH ; FWAIT.
MOV ENV_Call8087Inst[eBP],CX ; 8087 instruction.
MOV BYTE PTR ENV_CallLongRet[eBP],0CBH ; Intra segment return.
CALL DWORD PTR ENV_CallOffset[eBP] ; Reexecute instruction.
ifdef WINDOWS
mov bx, __WINFLAGS
test bx, WF_PMODE
jz ReExecuteRestoreRet
push es ; if in PMODE, free alias
; push ax ; CHICAGO needs 32-bit register saves
; push dx
push eax ; for CHICAGO
push ebx ; for CHICAGO
push ecx ; for CHICAGO
push edx ; for CHICAGO
push ebp ; for CHICAGO
push esi ; for CHICAGO
push edi ; for CHICAGO
push ENV_CallSegment[eBP]
call FREESELECTOR
; pop dx ; CHICAGO needs 32-bit register restores
; pop ax
pop edi ; for CHICAGO
pop esi ; for CHICAGO
pop ebp ; for CHICAGO
pop edx ; for CHICAGO
pop ecx ; for CHICAGO
pop ebx ; for CHICAGO
pop eax ; for CHICAGO
pop es
endif ;WINDOWS
lab ReExecuteRestoreRet
POP eBX
POP eCX
POP eSI
POP eDI
POP DS
ifdef SQL_EMMT
push ax ; free the ss alias because we always
push [SSalias] ; get a new one for the SQL_EMMT
os2call DOSFREESEG
pop ax
endif ;SQL_EMMT
FSTSW [NewStatusWord] ; 8/18/84 GFW need proper DS set
FWAIT
OR AL,BYTE PTR [NewStatusWord] ; Include new with unhandled exceptions
ifndef WINDOWS
lab ReDo8087InstructionRet
endif
RET
ProfEnd EXCEPT
|