diff options
author | kqlio67 <kqlio67@users.noreply.github.com> | 2024-09-29 22:38:25 +0200 |
---|---|---|
committer | kqlio67 <kqlio67@users.noreply.github.com> | 2024-09-29 22:38:25 +0200 |
commit | 58db9e03f0a25613cf90cf8184ebf159123e7477 (patch) | |
tree | e926d6f5551b4eb069e35b41479275056999e6c9 /g4f | |
parent | docs/providers-and-models.md (diff) | |
download | gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar.gz gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar.bz2 gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar.lz gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar.xz gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.tar.zst gpt4free-58db9e03f0a25613cf90cf8184ebf159123e7477.zip |
Diffstat (limited to 'g4f')
-rw-r--r-- | g4f/Provider/Nexra.py | 118 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraBing.py | 82 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraChatGPT.py | 66 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraChatGPT4o.py | 52 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraChatGPTWeb.py | 53 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraGeminiPro.py | 52 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraImageURL.py | 46 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraLlama.py | 52 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraQwen.py | 52 | ||||
-rw-r--r-- | g4f/Provider/nexra/__init__.py | 1 | ||||
-rw-r--r-- | g4f/models.py | 32 |
11 files changed, 532 insertions, 74 deletions
diff --git a/g4f/Provider/Nexra.py b/g4f/Provider/Nexra.py index b2b83837..33e794f6 100644 --- a/g4f/Provider/Nexra.py +++ b/g4f/Provider/Nexra.py @@ -1,32 +1,49 @@ from __future__ import annotations -import json -from aiohttp import ClientSession -from ..typing import AsyncResult, Messages +from aiohttp import ClientSession from .base_provider import AsyncGeneratorProvider, ProviderModelMixin from .helper import format_prompt -from ..image import ImageResponse +from .nexra.NexraBing import NexraBing +from .nexra.NexraChatGPT import NexraChatGPT +from .nexra.NexraChatGPT4o import NexraChatGPT4o +from .nexra.NexraChatGPTWeb import NexraChatGPTWeb +from .nexra.NexraGeminiPro import NexraGeminiPro +from .nexra.NexraImageURL import NexraImageURL +from .nexra.NexraLlama import NexraLlama +from .nexra.NexraQwen import NexraQwen class Nexra(AsyncGeneratorProvider, ProviderModelMixin): url = "https://nexra.aryahcr.cc" - chat_api_endpoint = "https://nexra.aryahcr.cc/api/chat/gpt" - image_api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" working = True supports_gpt_35_turbo = True supports_gpt_4 = True + supports_stream = True supports_system_message = True supports_message_history = True - default_model = 'gpt-3.5-turbo' - text_models = [ - 'gpt-4', 'gpt-4-0613', 'gpt-4-32k', 'gpt-4-0314', 'gpt-4-32k-0314', - 'gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301', - 'gpt-3', 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', - 'text-curie-001', 'text-babbage-001', 'text-ada-001', - 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002', - ] - image_models = ['dalle', 'dalle2', 'dalle-mini', 'emi'] - models = [*text_models, *image_models] + image_model = 'sdxl-turbo' + + models = ( + *NexraBing.models, + *NexraChatGPT.models, + *NexraChatGPT4o.models, + *NexraChatGPTWeb.models, + *NexraGeminiPro.models, + *NexraImageURL.models, + *NexraLlama.models, + *NexraQwen.models, + ) + + model_to_provider = { + **{model: NexraChatGPT for model in NexraChatGPT.models}, + **{model: NexraChatGPT4o for model in NexraChatGPT4o.models}, + **{model: NexraChatGPTWeb for model in NexraChatGPTWeb.models}, + **{model: NexraGeminiPro for model in NexraGeminiPro.models}, + **{model: NexraImageURL for model in NexraImageURL.models}, + **{model: NexraLlama for model in NexraLlama.models}, + **{model: NexraQwen for model in NexraQwen.models}, + **{model: NexraBing for model in NexraBing.models}, + } model_aliases = { "gpt-4": "gpt-4-0613", @@ -53,12 +70,20 @@ class Nexra(AsyncGeneratorProvider, ProviderModelMixin): "gpt-3": "babbage-002", "gpt-3": "davinci-002", + "gpt-4": "gptweb", + + "gpt-4": "Bing (Balanced)", + "gpt-4": "Bing (Creative)", + "gpt-4": "Bing (Precise)", + "dalle-2": "dalle2", + "sdxl": "sdxl-turbo", } - + + @classmethod def get_model(cls, model: str) -> str: - if model in cls.text_models or model in cls.image_models: + if model in cls.models: return model elif model in cls.model_aliases: return cls.model_aliases[model] @@ -66,6 +91,14 @@ class Nexra(AsyncGeneratorProvider, ProviderModelMixin): return cls.default_model @classmethod + def get_api_endpoint(cls, model: str) -> str: + provider_class = cls.model_to_provider.get(model) + + if provider_class: + return provider_class.api_endpoint + raise ValueError(f"API endpoint for model {model} not found.") + + @classmethod async def create_async_generator( cls, model: str, @@ -74,43 +107,12 @@ class Nexra(AsyncGeneratorProvider, ProviderModelMixin): **kwargs ) -> AsyncResult: model = cls.get_model(model) - - headers = { - "Content-Type": "application/json", - } - - async with ClientSession(headers=headers) as session: - if model in cls.image_models: - # Image generation - prompt = messages[-1]['content'] if messages else "" - data = { - "prompt": prompt, - "model": model, - "response": "url" - } - async with session.post(cls.image_api_endpoint, json=data, proxy=proxy) as response: - response.raise_for_status() - result = await response.text() - result_json = json.loads(result.strip('_')) - image_url = result_json['images'][0] if result_json['images'] else None - - if image_url: - yield ImageResponse(images=image_url, alt=prompt) - else: - # Text completion - data = { - "messages": messages, - "prompt": format_prompt(messages), - "model": model, - "markdown": False - } - async with session.post(cls.chat_api_endpoint, json=data, proxy=proxy) as response: - response.raise_for_status() - result = await response.text() - - try: - json_response = json.loads(result) - gpt_response = json_response.get('gpt', '') - yield gpt_response - except json.JSONDecodeError: - yield result + api_endpoint = cls.get_api_endpoint(model) + + provider_class = cls.model_to_provider.get(model) + + if provider_class: + async for response in provider_class.create_async_generator(model, messages, proxy, **kwargs): + yield response + else: + raise ValueError(f"Provider for model {model} not found.") diff --git a/g4f/Provider/nexra/NexraBing.py b/g4f/Provider/nexra/NexraBing.py new file mode 100644 index 00000000..59e06a3d --- /dev/null +++ b/g4f/Provider/nexra/NexraBing.py @@ -0,0 +1,82 @@ +from __future__ import annotations +from aiohttp import ClientSession +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt +import json + +class NexraBing(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra Bing" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + + bing_models = { + 'Bing (Balanced)': 'Balanced', + 'Bing (Creative)': 'Creative', + 'Bing (Precise)': 'Precise' + } + + models = [*bing_models.keys()] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json", + "Accept": "application/json", + "Origin": cls.url or "https://default-url.com", + "Referer": f"{cls.url}/chat" if cls.url else "https://default-url.com/chat", + } + + async with ClientSession(headers=headers) as session: + prompt = format_prompt(messages) + if prompt is None: + raise ValueError("Prompt cannot be None") + + data = { + "messages": [ + { + "role": "user", + "content": prompt + } + ], + "conversation_style": cls.bing_models.get(model, 'Balanced'), + "markdown": False, + "stream": True, + "model": "Bing" + } + + full_response = "" + last_message = "" + + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + + async for line in response.content: + if line: + raw_data = line.decode('utf-8').strip() + + parts = raw_data.split('') + for part in parts: + if part: + try: + json_data = json.loads(part) + except json.JSONDecodeError: + continue + + if json_data.get("error"): + raise Exception("Error in API response") + + if json_data.get("finish"): + break + + if message := json_data.get("message"): + if message != last_message: + full_response = message + last_message = message + + yield full_response.strip() diff --git a/g4f/Provider/nexra/NexraChatGPT.py b/g4f/Provider/nexra/NexraChatGPT.py new file mode 100644 index 00000000..8ed83f98 --- /dev/null +++ b/g4f/Provider/nexra/NexraChatGPT.py @@ -0,0 +1,66 @@ +from __future__ import annotations +from aiohttp import ClientSession +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt +import json + +class NexraChatGPT(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra ChatGPT" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/gpt" + + models = [ + 'gpt-4', 'gpt-4-0613', 'gpt-4-32k', 'gpt-4-0314', 'gpt-4-32k-0314', + 'gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', + 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301', + 'gpt-3', 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', + 'text-curie-001', 'text-babbage-001', 'text-ada-001', + 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002', + ] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Accept": "application/json", + "Content-Type": "application/json", + "Referer": f"{cls.url}/chat", + } + + async with ClientSession(headers=headers) as session: + prompt = format_prompt(messages) + data = { + "prompt": prompt, + "model": model, + "markdown": False, + "messages": messages or [], + } + + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + + content_type = response.headers.get('Content-Type', '') + if 'application/json' in content_type: + result = await response.json() + if result.get("status"): + yield result.get("gpt", "") + else: + raise Exception(f"Error in response: {result.get('message', 'Unknown error')}") + elif 'text/plain' in content_type: + text = await response.text() + try: + result = json.loads(text) + if result.get("status"): + yield result.get("gpt", "") + else: + raise Exception(f"Error in response: {result.get('message', 'Unknown error')}") + except json.JSONDecodeError: + yield text # If not JSON, return text + else: + raise Exception(f"Unexpected response type: {content_type}. Response text: {await response.text()}") + diff --git a/g4f/Provider/nexra/NexraChatGPT4o.py b/g4f/Provider/nexra/NexraChatGPT4o.py new file mode 100644 index 00000000..eb18d439 --- /dev/null +++ b/g4f/Provider/nexra/NexraChatGPT4o.py @@ -0,0 +1,52 @@ +from __future__ import annotations + +import json +from aiohttp import ClientSession + +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt + + +class NexraChatGPT4o(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra GPT-4o" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + models = ['gpt-4o'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json" + } + async with ClientSession(headers=headers) as session: + data = { + "messages": [ + {'role': 'assistant', 'content': ''}, + {'role': 'user', 'content': format_prompt(messages)} + ], + "markdown": False, + "stream": True, + "model": model + } + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + full_response = '' + async for line in response.content: + if line: + messages = line.decode('utf-8').split('\x1e') + for message_str in messages: + try: + message = json.loads(message_str) + if message.get('message'): + full_response = message['message'] + if message.get('finish'): + yield full_response.strip() + return + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraChatGPTWeb.py b/g4f/Provider/nexra/NexraChatGPTWeb.py new file mode 100644 index 00000000..e7738665 --- /dev/null +++ b/g4f/Provider/nexra/NexraChatGPTWeb.py @@ -0,0 +1,53 @@ +from __future__ import annotations +from aiohttp import ClientSession +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt +import json + +class NexraChatGPTWeb(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra ChatGPT Web" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/gptweb" + models = ['gptweb'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json", + } + + async with ClientSession(headers=headers) as session: + prompt = format_prompt(messages) + if prompt is None: + raise ValueError("Prompt cannot be None") + + data = { + "prompt": prompt, + "markdown": False + } + + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + + full_response = "" + async for chunk in response.content: + if chunk: + result = chunk.decode("utf-8").strip() + + try: + json_data = json.loads(result) + + if json_data.get("status"): + full_response = json_data.get("gpt", "") + else: + full_response = f"Error: {json_data.get('message', 'Unknown error')}" + except json.JSONDecodeError: + full_response = "Error: Invalid JSON response." + + yield full_response.strip() diff --git a/g4f/Provider/nexra/NexraGeminiPro.py b/g4f/Provider/nexra/NexraGeminiPro.py new file mode 100644 index 00000000..a57daed4 --- /dev/null +++ b/g4f/Provider/nexra/NexraGeminiPro.py @@ -0,0 +1,52 @@ +from __future__ import annotations + +import json +from aiohttp import ClientSession + +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt + + +class NexraGeminiPro(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra Gemini PRO" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + models = ['gemini-pro'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json" + } + async with ClientSession(headers=headers) as session: + data = { + "messages": [ + {'role': 'assistant', 'content': ''}, + {'role': 'user', 'content': format_prompt(messages)} + ], + "markdown": False, + "stream": True, + "model": model + } + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + full_response = '' + async for line in response.content: + if line: + messages = line.decode('utf-8').split('\x1e') + for message_str in messages: + try: + message = json.loads(message_str) + if message.get('message'): + full_response = message['message'] + if message.get('finish'): + yield full_response.strip() + return + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraImageURL.py b/g4f/Provider/nexra/NexraImageURL.py new file mode 100644 index 00000000..13d70757 --- /dev/null +++ b/g4f/Provider/nexra/NexraImageURL.py @@ -0,0 +1,46 @@ +from __future__ import annotations +from aiohttp import ClientSession +import json +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt +from ...image import ImageResponse + +class NexraImageURL(AsyncGeneratorProvider, ProviderModelMixin): + label = "Image Generation Provider" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + models = ['dalle', 'dalle2', 'dalle-mini', 'emi', 'sdxl-turbo', 'prodia'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json", + } + + async with ClientSession(headers=headers) as session: + prompt = format_prompt(messages) + data = { + "prompt": prompt, + "model": model, + "response": "url" + } + + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + response_text = await response.text() + + cleaned_response = response_text.lstrip('_') + response_json = json.loads(cleaned_response) + + images = response_json.get("images") + if images and len(images) > 0: + image_response = ImageResponse(images[0], alt="Generated Image") + yield image_response + else: + yield "No image URL found." diff --git a/g4f/Provider/nexra/NexraLlama.py b/g4f/Provider/nexra/NexraLlama.py new file mode 100644 index 00000000..9ed892e8 --- /dev/null +++ b/g4f/Provider/nexra/NexraLlama.py @@ -0,0 +1,52 @@ +from __future__ import annotations + +import json +from aiohttp import ClientSession + +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt + + +class NexraLlama(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra LLaMA 3.1" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + models = ['llama-3.1'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json" + } + async with ClientSession(headers=headers) as session: + data = { + "messages": [ + {'role': 'assistant', 'content': ''}, + {'role': 'user', 'content': format_prompt(messages)} + ], + "markdown": False, + "stream": True, + "model": model + } + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + full_response = '' + async for line in response.content: + if line: + messages = line.decode('utf-8').split('\x1e') + for message_str in messages: + try: + message = json.loads(message_str) + if message.get('message'): + full_response = message['message'] + if message.get('finish'): + yield full_response.strip() + return + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraQwen.py b/g4f/Provider/nexra/NexraQwen.py new file mode 100644 index 00000000..ae8e9a0e --- /dev/null +++ b/g4f/Provider/nexra/NexraQwen.py @@ -0,0 +1,52 @@ +from __future__ import annotations + +import json +from aiohttp import ClientSession + +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt + + +class NexraQwen(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra Qwen" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + models = ['qwen'] + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + proxy: str = None, + **kwargs + ) -> AsyncResult: + headers = { + "Content-Type": "application/json" + } + async with ClientSession(headers=headers) as session: + data = { + "messages": [ + {'role': 'assistant', 'content': ''}, + {'role': 'user', 'content': format_prompt(messages)} + ], + "markdown": False, + "stream": True, + "model": model + } + async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: + response.raise_for_status() + full_response = '' + async for line in response.content: + if line: + messages = line.decode('utf-8').split('\x1e') + for message_str in messages: + try: + message = json.loads(message_str) + if message.get('message'): + full_response = message['message'] + if message.get('finish'): + yield full_response.strip() + return + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/__init__.py b/g4f/Provider/nexra/__init__.py new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/g4f/Provider/nexra/__init__.py @@ -0,0 +1 @@ + diff --git a/g4f/models.py b/g4f/models.py index 8a8d4e18..2940b96a 100644 --- a/g4f/models.py +++ b/g4f/models.py @@ -115,7 +115,7 @@ gpt_4o = Model( name = 'gpt-4o', base_provider = 'OpenAI', best_provider = IterListProvider([ - Liaobots, Airforce, Chatgpt4o, ChatGptEs, + Liaobots, Nexra, Airforce, Chatgpt4o, ChatGptEs, OpenaiChat ]) ) @@ -211,7 +211,7 @@ llama_3_1_405b = Model( llama_3_1 = Model( name = "llama-3.1", base_provider = "Meta Llama", - best_provider = IterListProvider([llama_3_1_8b.best_provider, llama_3_1_70b.best_provider, llama_3_1_405b.best_provider,]) + best_provider = IterListProvider([Nexra, llama_3_1_8b.best_provider, llama_3_1_70b.best_provider, llama_3_1_405b.best_provider,]) ) @@ -273,7 +273,7 @@ phi_3_5_mini = Model( gemini_pro = Model( name = 'gemini-pro', base_provider = 'Google DeepMind', - best_provider = IterListProvider([GeminiPro, LiteIcoding, Blackbox, AIChatFree, GPROChat, Liaobots, Airforce]) + best_provider = IterListProvider([GeminiPro, LiteIcoding, Blackbox, AIChatFree, GPROChat, Nexra, Liaobots, Airforce]) ) gemini_flash = Model( @@ -285,10 +285,7 @@ gemini_flash = Model( gemini = Model( name = 'gemini', base_provider = 'Google DeepMind', - best_provider = IterListProvider([ - Gemini, - gemini_flash.best_provider, gemini_pro.best_provider - ]) + best_provider = IterListProvider([Gemini, gemini_flash.best_provider, gemini_pro.best_provider]) ) # gemma @@ -458,9 +455,7 @@ qwen_turbo = Model( qwen = Model( name = 'qwen', base_provider = 'Qwen', - best_provider = IterListProvider([ - qwen_1_5_14b.best_provider, qwen_1_5_72b.best_provider, qwen_1_5_110b.best_provider, qwen_2_72b.best_provider, qwen_turbo.best_provider - ]) + best_provider = IterListProvider([Nexra, qwen_1_5_14b.best_provider, qwen_1_5_72b.best_provider, qwen_1_5_110b.best_provider, qwen_2_72b.best_provider, qwen_turbo.best_provider]) ) @@ -639,7 +634,7 @@ sonar_chat = Model( sdxl = Model( name = 'sdxl', base_provider = 'Stability AI', - best_provider = IterListProvider([ReplicateHome, DeepInfraImage]) + best_provider = IterListProvider([ReplicateHome, Nexra, DeepInfraImage]) ) @@ -734,10 +729,7 @@ dalle_3 = Model( dalle = Model( name = 'dalle', base_provider = '', - best_provider = IterListProvider([ - Nexra, - dalle_2.best_provider, dalle_3.best_provider, - ]) + best_provider = IterListProvider([Nexra, dalle_2.best_provider, dalle_3.best_provider]) ) @@ -748,7 +740,7 @@ dalle_mini = Model( ) -### ### +### Other ### emi = Model( name = 'emi', base_provider = '', @@ -763,6 +755,13 @@ any_dark = Model( ) +prodia = Model( + name = 'prodia', + base_provider = '', + best_provider = IterListProvider([Nexra]) + +) + class ModelUtils: """ Utility class for mapping string identifiers to Model instances. @@ -985,6 +984,7 @@ class ModelUtils: 'dalle-mini': dalle_mini, 'emi': emi, 'any-dark': any_dark, +'prodia': prodia, } _all_models = list(ModelUtils.convert.keys()) |