summaryrefslogtreecommitdiffstats
path: root/docs/client.md
blob: b4f351d353ade928dbdb713c252994d5b92b86ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

# G4F Client API Guide
 

## Table of Contents
   - [Introduction](#introduction)
   - [Getting Started](#getting-started)
   - [Switching to G4F Client](#switching-to-g4f-client)
   - [Initializing the Client](#initializing-the-client)
   - [Creating Chat Completions](#creating-chat-completions)
   - [Configuration](#configuration)
   - [Usage Examples](#usage-examples)
   - [Text Completions](#text-completions)
   - [Streaming Completions](#streaming-completions)
   - [Image Generation](#image-generation)
   - [Creating Image Variations](#creating-image-variations)
   - [Advanced Usage](#advanced-usage)
   - [Using a List of Providers with RetryProvider](#using-a-list-of-providers-with-retryprovider)
   - [Using GeminiProVision](#using-geminiprovision)
   - [Using a Vision Model](#using-a-vision-model)
   - [Command-line Chat Program](#command-line-chat-program)

  

## Introduction
Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI or Anthropic client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI and Anthropic API.

## Getting Started
### Switching to G4F Client
**To begin using the G4F Client, simply update your import statement in your Python code:**

**Old Import:**
```python
from openai import OpenAI
```

  

**New Import:**
```python
from g4f.client import Client as OpenAI
```

  

The G4F Client preserves the same familiar API interface as OpenAI or Anthropic, ensuring a smooth transition process.

## Initializing the Client
To utilize the G4F Client, create a new instance. **Below is an example showcasing custom providers:**
```python
from g4f.client import Client
from g4f.Provider import BingCreateImages, OpenaiChat, Gemini

client = Client(
    provider=OpenaiChat,
    image_provider=Gemini,
    # Add any other necessary parameters
)
```

## Creating Chat Completions
**Here’s an improved example of creating chat completions:**
```python
response = client.chat.completions.create(
    system="You are a helpful assistant.",
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ]
    # Add any other necessary parameters
)
```

**This example:**
   - Sets a system message to define the assistant's role
   - Asks a specific question `Say this is a test`
   - Configures various parameters like temperature and max_tokens for more control over the output
   - Disables streaming for a complete response

You can adjust these parameters based on your specific needs.
 

## Configuration
**You can set an `api_key` for your provider in the client and define a proxy for all outgoing requests:**
```python
from g4f.client import Client

client = Client(
    api_key="your_api_key_here",
    proxies="http://user:pass@host",
    # Add any other necessary parameters
)
```

  

## Usage Examples
### Text Completions
**Generate text completions using the `ChatCompletions` endpoint:** 
```python
from g4f.client import Client

client = Client()

response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ]
    # Add any other necessary parameters
)

print(response.choices[0].message.content)
```

  

### Streaming Completions
**Process responses incrementally as they are generated:**
```python
from g4f.client import Client

client = Client()

stream = client.chat.completions.create(
    model="gpt-4",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ],
    stream=True,
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content or "", end="")
```

  

### Image Generation
**Generate images using a specified prompt:**
```python
from g4f.client import Client

client = Client()

response = client.images.generate(
    model="flux",
    prompt="a white siamese cat"
    # Add any other necessary parameters
)

image_url = response.data[0].url

print(f"Generated image URL: {image_url}")
```


#### Base64 Response Format
```python
from g4f.client import Client

client = Client()

response = client.images.generate(
    model="flux",
    prompt="a white siamese cat",
    response_format="b64_json"
)

base64_text = response.data[0].b64_json
print(base64_text)
```

  

### Creating Image Variations
**Create variations of an existing image:**
```python
from g4f.client import Client

client = Client()

response = client.images.create_variation(
    image=open("cat.jpg", "rb"),
    model="bing"
    # Add any other necessary parameters
)

image_url = response.data[0].url

print(f"Generated image URL: {image_url}")
```

  

## Advanced Usage

### Using a List of Providers with RetryProvider
```python
from g4f.client import Client
from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots
import g4f.debug

g4f.debug.logging = True
g4f.debug.version_check = False

client = Client(
    provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False)
)

response = client.chat.completions.create(
    model="",
    messages=[
        {
            "role": "user",
            "content": "Hello"
        }
    ]
)

print(response.choices[0].message.content)
```

  
### Using GeminiProVision
```python
from g4f.client import Client
from g4f.Provider.GeminiPro import GeminiPro

client = Client(
    api_key="your_api_key_here",
    provider=GeminiPro
)

response = client.chat.completions.create(
    model="gemini-pro-vision",
    messages=[
        {
            "role": "user",
            "content": "What are on this image?"
        }
    ],
    image=open("docs/waterfall.jpeg", "rb")
)

print(response.choices[0].message.content)
```

  
### Using a Vision Model
**Analyze an image and generate a description:**
```python
import g4f
import requests
from g4f.client import Client

image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw
# Or: image = open("docs/cat.jpeg", "rb")

client = Client()

response = client.chat.completions.create(
    model=g4f.models.default,
    messages=[
        {
            "role": "user",
            "content": "What are on this image?"
        }
    ],
    provider=g4f.Provider.Bing,
    image=image
    # Add any other necessary parameters
)

print(response.choices[0].message.content)
```

  
## Command-line Chat Program
**Here's an example of a simple command-line chat program using the G4F Client:**
```python
import g4f
from g4f.client import Client

# Initialize the GPT client with the desired provider
client = Client()

# Initialize an empty conversation history
messages = []

while True:
    # Get user input
    user_input = input("You: ")

    # Check if the user wants to exit the chat
    if user_input.lower() == "exit":
        print("Exiting chat...")
        break  # Exit the loop to end the conversation

    # Update the conversation history with the user's message
    messages.append({"role": "user", "content": user_input})

    try:
        # Get GPT's response
        response = client.chat.completions.create(
            system="You are a helpful assistant.",
            messages=messages,
            model=g4f.models.default,
        )

        # Extract the GPT response and print it
        gpt_response = response.choices[0].message.content
        print(f"Bot: {gpt_response}")

        # Update the conversation history with GPT's response
        messages.append({"role": "assistant", "content": gpt_response})

    except Exception as e:
        print(f"An error occurred: {e}")
```
 
This guide provides a comprehensive overview of the G4F Client API, demonstrating its versatility in handling various AI tasks, from text generation to image analysis and creation. By leveraging these features, you can build powerful and responsive applications that harness the capabilities of advanced AI models.


---  
[Return to Home](/)