summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/Airforce.py
blob: e7907cec4c3d7b2e55f15aeec08a04911b8ff04f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import annotations
import random
import json
import re
from aiohttp import ClientSession
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse

def split_long_message(message: str, max_length: int = 4000) -> list[str]:
    return [message[i:i+max_length] for i in range(0, len(message), max_length)]

class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://api.airforce"
    image_api_endpoint = "https://api.airforce/imagine2"
    text_api_endpoint = "https://api.airforce/chat/completions"
    working = True
    
    default_model = 'llama-3-70b-chat'
    
    supports_gpt_35_turbo = True
    supports_gpt_4 = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    text_models = [
        'claude-3-haiku-20240307', 
        'claude-3-sonnet-20240229', 
        'claude-3-5-sonnet-20240620', 
        'claude-3-opus-20240229', 
        'chatgpt-4o-latest', 
        'gpt-4', 
        'gpt-4-turbo', 
        'gpt-4o-mini-2024-07-18', 
        'gpt-4o-mini', 
        'gpt-3.5-turbo', 
        'gpt-3.5-turbo-0125', 
        'gpt-3.5-turbo-1106', 
        default_model,
        'llama-3-70b-chat-turbo', 
        'llama-3-8b-chat', 
        'llama-3-8b-chat-turbo', 
        'llama-3-70b-chat-lite', 
        'llama-3-8b-chat-lite', 
        'llama-2-13b-chat', 
        'llama-3.1-405b-turbo', 
        'llama-3.1-70b-turbo', 
        'llama-3.1-8b-turbo', 
        'LlamaGuard-2-8b', 
        'Llama-Guard-7b', 
        'Llama-3.2-90B-Vision-Instruct-Turbo',
        'Mixtral-8x7B-Instruct-v0.1', 
        'Mixtral-8x22B-Instruct-v0.1', 
        'Mistral-7B-Instruct-v0.1', 
        'Mistral-7B-Instruct-v0.2', 
        'Mistral-7B-Instruct-v0.3', 
        'Qwen1.5-7B-Chat', 
        'Qwen1.5-14B-Chat', 
        'Qwen1.5-72B-Chat', 
        'Qwen1.5-110B-Chat', 
        'Qwen2-72B-Instruct', 
        'gemma-2b-it', 
        'gemma-2-9b-it', 
        'gemma-2-27b-it', 
        'gemini-1.5-flash', 
        'gemini-1.5-pro', 
        'deepseek-llm-67b-chat', 
        'Nous-Hermes-2-Mixtral-8x7B-DPO', 
        'Nous-Hermes-2-Yi-34B', 
        'WizardLM-2-8x22B', 
        'SOLAR-10.7B-Instruct-v1.0', 
        'MythoMax-L2-13b', 
        'cosmosrp', 
    ]
    
    image_models = [
        'flux',
        'flux-realism',
        'flux-anime',
        'flux-3d',
        'flux-disney',
        'flux-pixel',
        'flux-4o',
        'any-dark',
        'dall-e-3',
    ]
    
    models = [
        *text_models,
        *image_models,
    ]
    
    model_aliases = {
        "claude-3-haiku": "claude-3-haiku-20240307",
        "claude-3-sonnet": "claude-3-sonnet-20240229",
        "gpt-4o": "chatgpt-4o-latest",
        "llama-3-70b": "llama-3-70b-chat",
        "llama-3-8b": "llama-3-8b-chat",
        "mixtral-8x7b": "Mixtral-8x7B-Instruct-v0.1",
        "qwen-1.5-7b": "Qwen1.5-7B-Chat",
        "gemma-2b": "gemma-2b-it",
        "gemini-flash": "gemini-1.5-flash",
        "mythomax-l2-13b": "MythoMax-L2-13b",
        "solar-10.7b": "SOLAR-10.7B-Instruct-v1.0",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases.get(model, cls.default_model)
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1",
        stream: bool = False,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)

        if model in cls.image_models:
            async for result in cls._generate_image(model, messages, proxy, seed, size):
                yield result
        elif model in cls.text_models:
            async for result in cls._generate_text(model, messages, proxy, stream):
                yield result
    
    @classmethod
    async def _generate_image(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1",
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "origin": "https://llmplayground.net",
            "user-agent": "Mozilla/5.0"
        }

        if seed is None:
            seed = random.randint(0, 100000)

        prompt = messages[0]['content']

        async with ClientSession(headers=headers) as session:
            params = {
                "model": model,
                "prompt": prompt,
                "size": size,
                "seed": seed
            }
            async with session.get(f"{cls.image_api_endpoint}", params=params, proxy=proxy) as response:
                response.raise_for_status()
                content_type = response.headers.get('Content-Type', '').lower()

                if 'application/json' in content_type:
                    async for chunk in response.content.iter_chunked(1024):
                        if chunk:
                            yield chunk.decode('utf-8')
                elif 'image' in content_type:
                    image_data = b""
                    async for chunk in response.content.iter_chunked(1024):
                        if chunk:
                            image_data += chunk
                    image_url = f"{cls.image_api_endpoint}?model={model}&prompt={prompt}&size={size}&seed={seed}"
                    alt_text = f"Generated image for prompt: {prompt}"
                    yield ImageResponse(images=image_url, alt=alt_text)

    @classmethod
    async def _generate_text(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        stream: bool = False,
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "authorization": "Bearer missing api key",
            "content-type": "application/json",
            "user-agent": "Mozilla/5.0"
        }

        async with ClientSession(headers=headers) as session:
            formatted_prompt = cls._format_messages(messages)
            prompt_parts = split_long_message(formatted_prompt)
            full_response = ""

            for part in prompt_parts:
                data = {
                    "messages": [{"role": "user", "content": part}],
                    "model": model,
                    "max_tokens": 4096,
                    "temperature": 1,
                    "top_p": 1,
                    "stream": stream
                }
                async with session.post(cls.text_api_endpoint, json=data, proxy=proxy) as response:
                    response.raise_for_status()
                    part_response = ""
                    if stream:
                        async for line in response.content:
                            if line:
                                line = line.decode('utf-8').strip()
                                if line.startswith("data: ") and line != "data: [DONE]":
                                    json_data = json.loads(line[6:])
                                    content = json_data['choices'][0]['delta'].get('content', '')
                                    part_response += content
                    else:
                        json_data = await response.json()
                        content = json_data['choices'][0]['message']['content']
                        part_response = content

                    # Видаляємо повідомлення про перевищення ліміту символів
                    part_response = re.sub(
                        r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
                        '',
                        part_response
                    )
                    
                    part_response = re.sub(
                        r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
                        '',
                        part_response
                    )

                    full_response += part_response
            yield full_response

    @classmethod
    def _format_messages(cls, messages: Messages) -> str:
        return " ".join([msg['content'] for msg in messages])