1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
from __future__ import annotations
import json
import uuid
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse
from ..requests import StreamSession, raise_for_status
from ..errors import ResponseStatusError
class AmigoChat(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://amigochat.io/chat/"
chat_api_endpoint = "https://api.amigochat.io/v1/chat/completions"
image_api_endpoint = "https://api.amigochat.io/v1/images/generations"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'gpt-4o-mini'
chat_models = [
'gpt-4o',
default_model,
'o1-preview',
'o1-mini',
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
'claude-3-sonnet-20240229',
'gemini-1.5-pro',
]
image_models = [
'flux-pro/v1.1',
'flux-realism',
'flux-pro',
'dalle-e-3',
]
models = [*chat_models, *image_models]
model_aliases = {
"o1": "o1-preview",
"llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
"llama-3.2-90b": "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
"claude-3.5-sonnet": "claude-3-sonnet-20240229",
"gemini-pro": "gemini-1.5-pro",
"flux-pro": "flux-pro/v1.1",
"dalle-3": "dalle-e-3",
}
persona_ids = {
'gpt-4o': "gpt",
'gpt-4o-mini': "amigo",
'o1-preview': "openai-o-one",
'o1-mini': "openai-o-one-mini",
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo': "llama-three-point-one",
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo': "llama-3-2",
'claude-3-sonnet-20240229': "claude",
'gemini-1.5-pro': "gemini-1-5-pro",
'flux-pro/v1.1': "flux-1-1-pro",
'flux-realism': "flux-realism",
'flux-pro': "flux-pro",
'dalle-e-3': "dalle-three",
}
@classmethod
def get_personaId(cls, model: str) -> str:
return cls.persona_ids[model]
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
stream: bool = False,
timeout: int = 300,
frequency_penalty: float = 0,
max_tokens: int = 4000,
presence_penalty: float = 0,
temperature: float = 0.5,
top_p: float = 0.95,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
device_uuid = str(uuid.uuid4())
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"authorization": "Bearer",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"priority": "u=1, i",
"referer": f"{cls.url}/",
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
"x-device-language": "en-US",
"x-device-platform": "web",
"x-device-uuid": device_uuid,
"x-device-version": "1.0.41"
}
async with StreamSession(headers=headers, proxy=proxy) as session:
if model not in cls.image_models:
data = {
"messages": messages,
"model": model,
"personaId": cls.get_personaId(model),
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens,
"presence_penalty": presence_penalty,
"stream": stream,
"temperature": temperature,
"top_p": top_p
}
async with session.post(cls.chat_api_endpoint, json=data, timeout=timeout) as response:
await raise_for_status(response)
async for line in response.iter_lines():
line = line.decode('utf-8').strip()
if line.startswith('data: '):
if line == 'data: [DONE]':
break
try:
chunk = json.loads(line[6:]) # Remove 'data: ' prefix
if 'choices' in chunk and len(chunk['choices']) > 0:
choice = chunk['choices'][0]
if 'delta' in choice:
content = choice['delta'].get('content')
elif 'text' in choice:
content = choice['text']
else:
content = None
if content:
yield content
except json.JSONDecodeError:
pass
else:
# Image generation
prompt = messages[-1]['content']
data = {
"prompt": prompt,
"model": model,
"personaId": cls.get_personaId(model)
}
async with session.post(cls.image_api_endpoint, json=data) as response:
await raise_for_status(response)
response_data = await response.json()
if "data" in response_data:
image_urls = []
for item in response_data["data"]:
if "url" in item:
image_url = item["url"]
image_urls.append(image_url)
if image_urls:
yield ImageResponse(image_urls, prompt)
else:
yield None
break
except (ResponseStatusError, Exception) as e:
retry_count += 1
if retry_count >= max_retries:
raise e
device_uuid = str(uuid.uuid4())
|