1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
from __future__ import annotations
from aiohttp import ClientSession
import json
from ..typing import AsyncResult, Messages, ImageType
from ..image import to_data_uri
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .helper import format_prompt
class DeepInfraChat(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://deepinfra.com/chat"
api_endpoint = "https://api.deepinfra.com/v1/openai/chat/completions"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'meta-llama/Meta-Llama-3.1-70B-Instruct'
models = [
'meta-llama/Meta-Llama-3.1-405B-Instruct',
'meta-llama/Meta-Llama-3.1-70B-Instruct',
'meta-llama/Meta-Llama-3.1-8B-Instruct',
'mistralai/Mixtral-8x22B-Instruct-v0.1',
'mistralai/Mixtral-8x7B-Instruct-v0.1',
'microsoft/WizardLM-2-8x22B',
'microsoft/WizardLM-2-7B',
'Qwen/Qwen2-72B-Instruct',
'microsoft/Phi-3-medium-4k-instruct',
'google/gemma-2-27b-it',
'openbmb/MiniCPM-Llama3-V-2_5', # Image upload is available
'mistralai/Mistral-7B-Instruct-v0.3',
'lizpreciatior/lzlv_70b_fp16_hf',
'openchat/openchat-3.6-8b',
'Phind/Phind-CodeLlama-34B-v2',
'cognitivecomputations/dolphin-2.9.1-llama-3-70b',
]
model_aliases = {
"llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"llama-3.1-70b": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"mixtral-8x22b": "mistralai/Mixtral-8x22B-Instruct-v0.1",
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"wizardlm-2-8x22b": "microsoft/WizardLM-2-8x22B",
"wizardlm-2-7b": "microsoft/WizardLM-2-7B",
"qwen-2-72b": "Qwen/Qwen2-72B-Instruct",
"phi-3-medium-4k": "microsoft/Phi-3-medium-4k-instruct",
"gemma-2b-27b": "google/gemma-2-27b-it",
"minicpm-llama-3-v2.5": "openbmb/MiniCPM-Llama3-V-2_5", # Image upload is available
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.3",
"lzlv-70b": "lizpreciatior/lzlv_70b_fp16_hf",
"openchat-3.6-8b": "openchat/openchat-3.6-8b",
"phind-codellama-34b-v2": "Phind/Phind-CodeLlama-34B-v2",
"dolphin-2.9.1-llama-3-70b": "cognitivecomputations/dolphin-2.9.1-llama-3-70b",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
image: ImageType = None,
image_name: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
'Accept-Language': 'en-US,en;q=0.9',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Pragma': 'no-cache',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36',
'X-Deepinfra-Source': 'web-embed',
'accept': 'text/event-stream',
'sec-ch-ua': '"Not;A=Brand";v="24", "Chromium";v="128"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
}
async with ClientSession(headers=headers) as session:
prompt = format_prompt(messages)
data = {
'model': model,
'messages': [
{'role': 'system', 'content': 'Be a helpful assistant'},
{'role': 'user', 'content': prompt}
],
'stream': True
}
if model == 'openbmb/MiniCPM-Llama3-V-2_5' and image is not None:
data['messages'][-1]['content'] = [
{
'type': 'image_url',
'image_url': {
'url': to_data_uri(image)
}
},
{
'type': 'text',
'text': messages[-1]['content']
}
]
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
async for line in response.content:
if line:
decoded_line = line.decode('utf-8').strip()
if decoded_line.startswith('data:'):
json_part = decoded_line[5:].strip()
if json_part == '[DONE]':
break
try:
data = json.loads(json_part)
choices = data.get('choices', [])
if choices:
delta = choices[0].get('delta', {})
content = delta.get('content', '')
if content:
yield content
except json.JSONDecodeError:
print(f"JSON decode error: {json_part}")
|