1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
from __future__ import annotations
import json
import requests
from curl_cffi import requests as cf_reqs
from ..typing import CreateResult, Messages
from .base_provider import ProviderModelMixin, AbstractProvider
from .helper import format_prompt
class HuggingChat(AbstractProvider, ProviderModelMixin):
url = "https://huggingface.co/chat"
working = True
supports_stream = True
default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
models = [
'meta-llama/Meta-Llama-3.1-70B-Instruct',
'CohereForAI/c4ai-command-r-plus-08-2024',
'Qwen/Qwen2.5-72B-Instruct',
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
'Qwen/Qwen2.5-Coder-32B-Instruct',
'meta-llama/Llama-3.2-11B-Vision-Instruct',
'NousResearch/Hermes-3-Llama-3.1-8B',
'mistralai/Mistral-Nemo-Instruct-2407',
'microsoft/Phi-3.5-mini-instruct',
]
model_aliases = {
"llama-3.1-70b": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"command-r-plus": "CohereForAI/c4ai-command-r-plus-08-2024",
"qwen-2-72b": "Qwen/Qwen2.5-72B-Instruct",
"nemotron-70b": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"qwen-2.5-coder-32b": "Qwen/Qwen2.5-Coder-32B-Instruct",
"llama-3.2-11b": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"hermes-3": "NousResearch/Hermes-3-Llama-3.1-8B",
"mistral-nemo": "mistralai/Mistral-Nemo-Instruct-2407",
"phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool,
**kwargs
) -> CreateResult:
model = cls.get_model(model)
if model in cls.models:
session = cf_reqs.Session()
session.headers = {
'accept': '*/*',
'accept-language': 'en',
'cache-control': 'no-cache',
'origin': 'https://huggingface.co',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': 'https://huggingface.co/chat/',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
}
json_data = {
'model': model,
}
response = session.post('https://huggingface.co/chat/conversation', json=json_data)
if response.status_code != 200:
raise RuntimeError(f"Request failed with status code: {response.status_code}, response: {response.text}")
conversationId = response.json().get('conversationId')
# Get the data response and parse it properly
response = session.get(f'https://huggingface.co/chat/conversation/{conversationId}/__data.json?x-sveltekit-invalidated=11')
# Split the response content by newlines and parse each line as JSON
try:
json_data = None
for line in response.text.split('\n'):
if line.strip():
try:
parsed = json.loads(line)
if isinstance(parsed, dict) and "nodes" in parsed:
json_data = parsed
break
except json.JSONDecodeError:
continue
if not json_data:
raise RuntimeError("Failed to parse response data")
data: list = json_data["nodes"][1]["data"]
keys: list[int] = data[data[0]["messages"]]
message_keys: dict = data[keys[0]]
messageId: str = data[message_keys["id"]]
except (KeyError, IndexError, TypeError) as e:
raise RuntimeError(f"Failed to extract message ID: {str(e)}")
settings = {
"inputs": format_prompt(messages),
"id": messageId,
"is_retry": False,
"is_continue": False,
"web_search": False,
"tools": []
}
headers = {
'accept': '*/*',
'accept-language': 'en',
'cache-control': 'no-cache',
'origin': 'https://huggingface.co',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': f'https://huggingface.co/chat/conversation/{conversationId}',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
}
files = {
'data': (None, json.dumps(settings, separators=(',', ':'))),
}
response = requests.post(
f'https://huggingface.co/chat/conversation/{conversationId}',
cookies=session.cookies,
headers=headers,
files=files,
)
full_response = ""
for line in response.iter_lines():
if not line:
continue
try:
line = json.loads(line)
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {line}, error: {e}")
continue
if "type" not in line:
raise RuntimeError(f"Response: {line}")
elif line["type"] == "stream":
token = line["token"].replace('\u0000', '')
full_response += token
if stream:
yield token
elif line["type"] == "finalAnswer":
break
full_response = full_response.replace('<|im_end|', '').replace('\u0000', '').strip()
if not stream:
yield full_response
@classmethod
def supports_model(cls, model: str) -> bool:
"""Check if the model is supported by the provider."""
return model in cls.models or model in cls.model_aliases
|