summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/nexra/NexraLLaMA31.py
blob: d461f2b211d344d8ffd7bb13157e79d123f48c0c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import annotations

from aiohttp import ClientSession
import json

from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt


class NexraLLaMA31(AsyncGeneratorProvider, ProviderModelMixin):
    label = "Nexra LLaMA 3.1"
    url = "https://nexra.aryahcr.cc/documentation/llama-3.1/en"
    api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements"
    working = True
    supports_stream = True
    
    default_model = 'llama-3.1'
    models = [default_model]
    model_aliases = {
        "llama-3.1-8b": "llama-3.1",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases.get(model, cls.default_model)
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        stream: bool = False,
        markdown: bool = False,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)
        
        headers = {
            "Content-Type": "application/json"
        }

        async with ClientSession(headers=headers) as session:
            prompt = format_prompt(messages)
            data = {
                "messages": [
                    {
                        "role": "user",
                        "content": prompt
                    }
                ],
                "stream": stream,
                "markdown": markdown,
                "model": model
            }

            async with session.post(f"{cls.api_endpoint}", json=data, proxy=proxy) as response:
                response.raise_for_status()

                if stream:
                    # Streamed response handling
                    collected_message = ""
                    async for chunk in response.content.iter_any():
                        if chunk:
                            decoded_chunk = chunk.decode().strip().split("\x1e")
                            for part in decoded_chunk:
                                if part:
                                    message_data = json.loads(part)
                                    
                                    # Collect messages until 'finish': true
                                    if 'message' in message_data and message_data['message']:
                                        collected_message = message_data['message']
                                    
                                    # When finish is true, yield the final collected message
                                    if message_data.get('finish', False):
                                        yield collected_message
                                        return
                else:
                    # Non-streamed response handling
                    response_data = await response.json(content_type=None)
                    
                    # Yield the message directly from the response
                    if 'message' in response_data and response_data['message']:
                        yield response_data['message']
                        return