// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/settings.h"
#include "core/core.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/textures/decoders.h"
MICROPROFILE_DECLARE(GPU_DMAEngine);
MICROPROFILE_DEFINE(GPU_DMAEngine, "GPU", "DMA Engine", MP_RGB(224, 224, 128));
namespace Tegra::Engines {
using namespace Texture;
MaxwellDMA::MaxwellDMA(Core::System& system_, MemoryManager& memory_manager_)
: system{system_}, memory_manager{memory_manager_} {}
MaxwellDMA::~MaxwellDMA() = default;
void MaxwellDMA::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
void MaxwellDMA::CallMethod(u32 method, u32 method_argument, bool is_last_call) {
ASSERT_MSG(method < NUM_REGS, "Invalid MaxwellDMA register");
regs.reg_array[method] = method_argument;
if (method == offsetof(Regs, launch_dma) / sizeof(u32)) {
Launch();
}
}
void MaxwellDMA::CallMultiMethod(u32 method, const u32* base_start, u32 amount,
u32 methods_pending) {
for (size_t i = 0; i < amount; ++i) {
CallMethod(method, base_start[i], methods_pending - static_cast<u32>(i) <= 1);
}
}
void MaxwellDMA::Launch() {
MICROPROFILE_SCOPE(GPU_DMAEngine);
LOG_TRACE(Render_OpenGL, "DMA copy 0x{:x} -> 0x{:x}", static_cast<GPUVAddr>(regs.offset_in),
static_cast<GPUVAddr>(regs.offset_out));
// TODO(Subv): Perform more research and implement all features of this engine.
const LaunchDMA& launch = regs.launch_dma;
ASSERT(launch.semaphore_type == LaunchDMA::SemaphoreType::NONE);
ASSERT(launch.interrupt_type == LaunchDMA::InterruptType::NONE);
ASSERT(launch.data_transfer_type == LaunchDMA::DataTransferType::NON_PIPELINED);
ASSERT(regs.dst_params.origin.x == 0);
ASSERT(regs.dst_params.origin.y == 0);
const bool is_src_pitch = launch.src_memory_layout == LaunchDMA::MemoryLayout::PITCH;
const bool is_dst_pitch = launch.dst_memory_layout == LaunchDMA::MemoryLayout::PITCH;
if (!is_src_pitch && !is_dst_pitch) {
// If both the source and the destination are in block layout, assert.
UNREACHABLE_MSG("Tiled->Tiled DMA transfers are not yet implemented");
return;
}
if (is_src_pitch && is_dst_pitch) {
CopyPitchToPitch();
} else {
ASSERT(launch.multi_line_enable == 1);
if (!is_src_pitch && is_dst_pitch) {
CopyBlockLinearToPitch();
} else {
CopyPitchToBlockLinear();
}
}
}
void MaxwellDMA::CopyPitchToPitch() {
// When `multi_line_enable` bit is enabled we copy a 2D image of dimensions
// (line_length_in, line_count).
// Otherwise the copy is performed as if we were copying a 1D buffer of length line_length_in.
const bool remap_enabled = regs.launch_dma.remap_enable != 0;
if (regs.launch_dma.multi_line_enable) {
UNIMPLEMENTED_IF(remap_enabled);
// Perform a line-by-line copy.
// We're going to take a subrect of size (line_length_in, line_count) from the source
// rectangle. There is no need to manually flush/invalidate the regions because CopyBlock
// does that for us.
for (u32 line = 0; line < regs.line_count; ++line) {
const GPUVAddr source_line = regs.offset_in + static_cast<size_t>(line) * regs.pitch_in;
const GPUVAddr dest_line = regs.offset_out + static_cast<size_t>(line) * regs.pitch_out;
memory_manager.CopyBlock(dest_line, source_line, regs.line_length_in);
}
return;
}
// TODO: allow multisized components.
auto& accelerate = rasterizer->AccessAccelerateDMA();
const bool is_const_a_dst = regs.remap_const.dst_x == RemapConst::Swizzle::CONST_A;
const bool is_buffer_clear = remap_enabled && is_const_a_dst;
if (is_buffer_clear) {
ASSERT(regs.remap_const.component_size_minus_one == 3);
accelerate.BufferClear(regs.offset_out, regs.line_length_in, regs.remap_consta_value);
std::vector<u32> tmp_buffer(regs.line_length_in, regs.remap_consta_value);
memory_manager.WriteBlockUnsafe(regs.offset_out, reinterpret_cast<u8*>(tmp_buffer.data()),
regs.line_length_in * sizeof(u32));
return;
}
UNIMPLEMENTED_IF(remap_enabled);
if (!accelerate.BufferCopy(regs.offset_in, regs.offset_out, regs.line_length_in)) {
std::vector<u8> tmp_buffer(regs.line_length_in);
memory_manager.ReadBlockUnsafe(regs.offset_in, tmp_buffer.data(), regs.line_length_in);
memory_manager.WriteBlock(regs.offset_out, tmp_buffer.data(), regs.line_length_in);
}
}
void MaxwellDMA::CopyBlockLinearToPitch() {
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
UNIMPLEMENTED_IF(regs.src_params.block_size.depth != 0);
UNIMPLEMENTED_IF(regs.src_params.layer != 0);
// Optimized path for micro copies.
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
if (dst_size < GOB_SIZE && regs.pitch_out <= GOB_SIZE_X &&
regs.src_params.height > GOB_SIZE_Y) {
FastCopyBlockLinearToPitch();
return;
}
// Deswizzle the input and copy it over.
UNIMPLEMENTED_IF(regs.launch_dma.remap_enable != 0);
const u32 bytes_per_pixel = regs.pitch_out / regs.line_length_in;
const Parameters& src_params = regs.src_params;
const u32 width = src_params.width;
const u32 height = src_params.height;
const u32 depth = src_params.depth;
const u32 block_height = src_params.block_size.height;
const u32 block_depth = src_params.block_size.depth;
const size_t src_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
UnswizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_out, width, bytes_per_pixel,
block_height, src_params.origin.x, src_params.origin.y, write_buffer.data(),
read_buffer.data());
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::CopyPitchToBlockLinear() {
UNIMPLEMENTED_IF_MSG(regs.dst_params.block_size.width != 0, "Block width is not one");
UNIMPLEMENTED_IF(regs.launch_dma.remap_enable != 0);
const auto& dst_params = regs.dst_params;
const u32 bytes_per_pixel = regs.pitch_in / regs.line_length_in;
const u32 width = dst_params.width;
const u32 height = dst_params.height;
const u32 depth = dst_params.depth;
const u32 block_height = dst_params.block_size.height;
const u32 block_depth = dst_params.block_size.depth;
const size_t dst_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t dst_layer_size =
CalculateSize(true, bytes_per_pixel, width, height, 1, block_height, block_depth);
const size_t src_size = static_cast<size_t>(regs.pitch_in) * regs.line_count;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
// If the input is linear and the output is tiled, swizzle the input and copy it over.
if (regs.dst_params.block_size.depth > 0) {
ASSERT(dst_params.layer == 0);
SwizzleSliceToVoxel(regs.line_length_in, regs.line_count, regs.pitch_in, width, height,
bytes_per_pixel, block_height, block_depth, dst_params.origin.x,
dst_params.origin.y, write_buffer.data(), read_buffer.data());
} else {
SwizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_in, width, bytes_per_pixel,
write_buffer.data() + dst_layer_size * dst_params.layer, read_buffer.data(),
block_height, dst_params.origin.x, dst_params.origin.y);
}
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::FastCopyBlockLinearToPitch() {
const u32 bytes_per_pixel = regs.pitch_out / regs.line_length_in;
const size_t src_size = GOB_SIZE;
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
u32 pos_x = regs.src_params.origin.x;
u32 pos_y = regs.src_params.origin.y;
const u64 offset = GetGOBOffset(regs.src_params.width, regs.src_params.height, pos_x, pos_y,
regs.src_params.block_size.height, bytes_per_pixel);
const u32 x_in_gob = 64 / bytes_per_pixel;
pos_x = pos_x % x_in_gob;
pos_y = pos_y % 8;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
UnswizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_out, regs.src_params.width,
bytes_per_pixel, regs.src_params.block_size.height, pos_x, pos_y,
write_buffer.data(), read_buffer.data());
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
} // namespace Tegra::Engines