// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
extern "C" {
#ifdef LIBVA_FOUND
// for querying VAAPI driver information
#include <libavutil/hwcontext_vaapi.h>
#endif
}
namespace FFmpeg {
namespace {
constexpr AVPixelFormat PreferredGpuFormat = AV_PIX_FMT_NV12;
constexpr AVPixelFormat PreferredCpuFormat = AV_PIX_FMT_YUV420P;
constexpr std::array PreferredGpuDecoders = {
AV_HWDEVICE_TYPE_CUDA,
#ifdef _WIN32
AV_HWDEVICE_TYPE_D3D11VA,
AV_HWDEVICE_TYPE_DXVA2,
#elif defined(__unix__)
AV_HWDEVICE_TYPE_VAAPI,
AV_HWDEVICE_TYPE_VDPAU,
#endif
// last resort for Linux Flatpak (w/ NVIDIA)
AV_HWDEVICE_TYPE_VULKAN,
};
AVPixelFormat GetGpuFormat(AVCodecContext* codec_context, const AVPixelFormat* pix_fmts) {
for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) {
if (*p == codec_context->pix_fmt) {
return codec_context->pix_fmt;
}
}
LOG_INFO(HW_GPU, "Could not find compatible GPU AV format, falling back to CPU");
av_buffer_unref(&codec_context->hw_device_ctx);
codec_context->pix_fmt = PreferredCpuFormat;
return codec_context->pix_fmt;
}
std::string AVError(int errnum) {
char errbuf[AV_ERROR_MAX_STRING_SIZE] = {};
av_make_error_string(errbuf, sizeof(errbuf) - 1, errnum);
return errbuf;
}
} // namespace
Packet::Packet(std::span<const u8> data) {
m_packet = av_packet_alloc();
m_packet->data = const_cast<u8*>(data.data());
m_packet->size = static_cast<s32>(data.size());
}
Packet::~Packet() {
av_packet_free(&m_packet);
}
Frame::Frame() {
m_frame = av_frame_alloc();
}
Frame::~Frame() {
av_frame_free(&m_frame);
}
Decoder::Decoder(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
const AVCodecID av_codec = [&] {
switch (codec) {
case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
return AV_CODEC_ID_H264;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
return AV_CODEC_ID_VP8;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
return AV_CODEC_ID_VP9;
default:
UNIMPLEMENTED_MSG("Unknown codec {}", codec);
return AV_CODEC_ID_NONE;
}
}();
m_codec = avcodec_find_decoder(av_codec);
}
bool Decoder::SupportsDecodingOnDevice(AVPixelFormat* out_pix_fmt, AVHWDeviceType type) const {
for (int i = 0;; i++) {
const AVCodecHWConfig* config = avcodec_get_hw_config(m_codec, i);
if (!config) {
LOG_DEBUG(HW_GPU, "{} decoder does not support device type {}", m_codec->name,
av_hwdevice_get_type_name(type));
break;
}
if ((config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX) != 0 &&
config->device_type == type) {
LOG_INFO(HW_GPU, "Using {} GPU decoder", av_hwdevice_get_type_name(type));
*out_pix_fmt = config->pix_fmt;
return true;
}
}
return false;
}
std::vector<AVHWDeviceType> HardwareContext::GetSupportedDeviceTypes() {
std::vector<AVHWDeviceType> types;
AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE;
while (true) {
current_device_type = av_hwdevice_iterate_types(current_device_type);
if (current_device_type == AV_HWDEVICE_TYPE_NONE) {
return types;
}
types.push_back(current_device_type);
}
}
HardwareContext::~HardwareContext() {
av_buffer_unref(&m_gpu_decoder);
}
bool HardwareContext::InitializeForDecoder(DecoderContext& decoder_context,
const Decoder& decoder) {
const auto supported_types = GetSupportedDeviceTypes();
for (const auto type : PreferredGpuDecoders) {
AVPixelFormat hw_pix_fmt;
if (std::ranges::find(supported_types, type) == supported_types.end()) {
LOG_DEBUG(HW_GPU, "{} explicitly unsupported", av_hwdevice_get_type_name(type));
continue;
}
if (!this->InitializeWithType(type)) {
continue;
}
if (decoder.SupportsDecodingOnDevice(&hw_pix_fmt, type)) {
decoder_context.InitializeHardwareDecoder(*this, hw_pix_fmt);
return true;
}
}
return false;
}
bool HardwareContext::InitializeWithType(AVHWDeviceType type) {
av_buffer_unref(&m_gpu_decoder);
if (const int ret = av_hwdevice_ctx_create(&m_gpu_decoder, type, nullptr, nullptr, 0);
ret < 0) {
LOG_DEBUG(HW_GPU, "av_hwdevice_ctx_create({}) failed: {}", av_hwdevice_get_type_name(type),
AVError(ret));
return false;
}
#ifdef LIBVA_FOUND
if (type == AV_HWDEVICE_TYPE_VAAPI) {
// We need to determine if this is an impersonated VAAPI driver.
auto* hwctx = reinterpret_cast<AVHWDeviceContext*>(m_gpu_decoder->data);
auto* vactx = static_cast<AVVAAPIDeviceContext*>(hwctx->hwctx);
const char* vendor_name = vaQueryVendorString(vactx->display);
if (strstr(vendor_name, "VDPAU backend")) {
// VDPAU impersonated VAAPI impls are super buggy, we need to skip them.
LOG_DEBUG(HW_GPU, "Skipping VDPAU impersonated VAAPI driver");
return false;
} else {
// According to some user testing, certain VAAPI drivers (Intel?) could be buggy.
// Log the driver name just in case.
LOG_DEBUG(HW_GPU, "Using VAAPI driver: {}", vendor_name);
}
}
#endif
return true;
}
DecoderContext::DecoderContext(const Decoder& decoder) {
m_codec_context = avcodec_alloc_context3(decoder.GetCodec());
av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0);
m_codec_context->thread_count = 0;
m_codec_context->thread_type &= ~FF_THREAD_FRAME;
}
DecoderContext::~DecoderContext() {
av_buffer_unref(&m_codec_context->hw_device_ctx);
avcodec_free_context(&m_codec_context);
}
void DecoderContext::InitializeHardwareDecoder(const HardwareContext& context,
AVPixelFormat hw_pix_fmt) {
m_codec_context->hw_device_ctx = av_buffer_ref(context.GetBufferRef());
m_codec_context->get_format = GetGpuFormat;
m_codec_context->pix_fmt = hw_pix_fmt;
}
bool DecoderContext::OpenContext(const Decoder& decoder) {
if (const int ret = avcodec_open2(m_codec_context, decoder.GetCodec(), nullptr); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_open2 error: {}", AVError(ret));
return false;
}
if (!m_codec_context->hw_device_ctx) {
LOG_INFO(HW_GPU, "Using FFmpeg software decoding");
}
return true;
}
bool DecoderContext::SendPacket(const Packet& packet) {
if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret));
return false;
}
return true;
}
std::unique_ptr<Frame> DecoderContext::ReceiveFrame(bool* out_is_interlaced) {
auto dst_frame = std::make_unique<Frame>();
const auto ReceiveImpl = [&](AVFrame* frame) {
if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret));
return false;
}
*out_is_interlaced =
#if defined(FF_API_INTERLACED_FRAME) || LIBAVUTIL_VERSION_MAJOR >= 59
(frame->flags & AV_FRAME_FLAG_INTERLACED) != 0;
#else
frame->interlaced_frame != 0;
#endif
return true;
};
if (m_codec_context->hw_device_ctx) {
// If we have a hardware context, make a separate frame here to receive the
// hardware result before sending it to the output.
Frame intermediate_frame;
if (!ReceiveImpl(intermediate_frame.GetFrame())) {
return {};
}
dst_frame->SetFormat(PreferredGpuFormat);
if (const int ret =
av_hwframe_transfer_data(dst_frame->GetFrame(), intermediate_frame.GetFrame(), 0);
ret < 0) {
LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
return {};
}
} else {
// Otherwise, decode the frame as normal.
if (!ReceiveImpl(dst_frame->GetFrame())) {
return {};
}
}
return dst_frame;
}
DeinterlaceFilter::DeinterlaceFilter(const Frame& frame) {
const AVFilter* buffer_src = avfilter_get_by_name("buffer");
const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
AVFilterInOut* inputs = avfilter_inout_alloc();
AVFilterInOut* outputs = avfilter_inout_alloc();
SCOPE_EXIT {
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
};
// Don't know how to get the accurate time_base but it doesn't matter for yadif filter
// so just use 1/1 to make buffer filter happy
std::string args = fmt::format("video_size={}x{}:pix_fmt={}:time_base=1/1", frame.GetWidth(),
frame.GetHeight(), static_cast<int>(frame.GetPixelFormat()));
m_filter_graph = avfilter_graph_alloc();
int ret = avfilter_graph_create_filter(&m_source_context, buffer_src, "in", args.c_str(),
nullptr, m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter source error: {}", AVError(ret));
return;
}
ret = avfilter_graph_create_filter(&m_sink_context, buffer_sink, "out", nullptr, nullptr,
m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter sink error: {}", AVError(ret));
return;
}
inputs->name = av_strdup("out");
inputs->filter_ctx = m_sink_context;
inputs->pad_idx = 0;
inputs->next = nullptr;
outputs->name = av_strdup("in");
outputs->filter_ctx = m_source_context;
outputs->pad_idx = 0;
outputs->next = nullptr;
const char* description = "yadif=1:-1:0";
ret = avfilter_graph_parse_ptr(m_filter_graph, description, &inputs, &outputs, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_parse_ptr error: {}", AVError(ret));
return;
}
ret = avfilter_graph_config(m_filter_graph, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_config error: {}", AVError(ret));
return;
}
m_initialized = true;
}
bool DeinterlaceFilter::AddSourceFrame(const Frame& frame) {
if (const int ret = av_buffersrc_add_frame_flags(m_source_context, frame.GetFrame(),
AV_BUFFERSRC_FLAG_KEEP_REF);
ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersrc_add_frame_flags error: {}", AVError(ret));
return false;
}
return true;
}
std::unique_ptr<Frame> DeinterlaceFilter::DrainSinkFrame() {
auto dst_frame = std::make_unique<Frame>();
const int ret = av_buffersink_get_frame(m_sink_context, dst_frame->GetFrame());
if (ret == AVERROR(EAGAIN) || ret == AVERROR(AVERROR_EOF)) {
return {};
}
if (ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersink_get_frame error: {}", AVError(ret));
return {};
}
return dst_frame;
}
DeinterlaceFilter::~DeinterlaceFilter() {
avfilter_graph_free(&m_filter_graph);
}
void DecodeApi::Reset() {
m_deinterlace_filter.reset();
m_hardware_context.reset();
m_decoder_context.reset();
m_decoder.reset();
}
bool DecodeApi::Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
this->Reset();
m_decoder.emplace(codec);
m_decoder_context.emplace(*m_decoder);
// Enable GPU decoding if requested.
if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Gpu) {
m_hardware_context.emplace();
m_hardware_context->InitializeForDecoder(*m_decoder_context, *m_decoder);
}
// Open the decoder context.
if (!m_decoder_context->OpenContext(*m_decoder)) {
this->Reset();
return false;
}
return true;
}
bool DecodeApi::SendPacket(std::span<const u8> packet_data, size_t configuration_size) {
FFmpeg::Packet packet(packet_data);
return m_decoder_context->SendPacket(packet);
}
void DecodeApi::ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue) {
// Receive raw frame from decoder.
bool is_interlaced;
auto frame = m_decoder_context->ReceiveFrame(&is_interlaced);
if (!frame) {
return;
}
if (!is_interlaced) {
// If the frame is not interlaced, we can pend it now.
frame_queue.push(std::move(frame));
} else {
// Create the deinterlacer if needed.
if (!m_deinterlace_filter) {
m_deinterlace_filter.emplace(*frame);
}
// Add the frame we just received.
if (!m_deinterlace_filter->AddSourceFrame(*frame)) {
return;
}
// Pend output fields.
while (true) {
auto filter_frame = m_deinterlace_filter->DrainSinkFrame();
if (!filter_frame) {
break;
}
frame_queue.push(std::move(filter_frame));
}
}
}
} // namespace FFmpeg