summaryrefslogblamecommitdiffstats
path: root/src/video_core/shader/glsl_decompiler.cpp
blob: 3ca3fae6d0b0452659d17d8b27588596589594a2 (plain) (tree)
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361


































































































































































































































































































































































                                                                                                   
                                       
























































































































































                                                                                                    
                  
























































                                                                                                    
                     

















                                                                                                 
                     



















































































































                                                                                                    
                               
















































































































































































































































































































































































































































































































































































































































































                                                                                                    
                                                                                         



































                                                                                                    
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <string>
#include <string_view>
#include <variant>

#include <fmt/format.h>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/shader/glsl_decompiler.h"
#include "video_core/shader/shader_ir.h"

namespace OpenGL::GLShader {

using Tegra::Shader::Attribute;
using Tegra::Shader::Header;
using Tegra::Shader::IpaInterpMode;
using Tegra::Shader::IpaMode;
using Tegra::Shader::IpaSampleMode;
using namespace VideoCommon::Shader;

using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ShaderStage = Tegra::Engines::Maxwell3D::Regs::ShaderStage;
using Operation = const OperationNode&;

enum : u32 { POSITION_VARYING_LOCATION = 0, GENERIC_VARYING_START_LOCATION = 1 };
constexpr u32 MAX_CONSTBUFFER_ELEMENTS = 65536 / 16; // TODO(Rodrigo): Use rasterizer's value

enum class Type { Bool, Float, Int, Uint, HalfFloat };

class ShaderWriter {
public:
    void AddExpression(std::string_view text) {
        DEBUG_ASSERT(scope >= 0);
        if (!text.empty()) {
            AppendIndentation();
        }
        shader_source += text;
    }

    void AddLine(std::string_view text) {
        AddExpression(text);
        AddNewLine();
    }

    void AddLine(char character) {
        DEBUG_ASSERT(scope >= 0);
        AppendIndentation();
        shader_source += character;
        AddNewLine();
    }

    void AddNewLine() {
        DEBUG_ASSERT(scope >= 0);
        shader_source += '\n';
    }

    std::string GenerateTemporal() {
        std::string temporal = "tmp";
        temporal += std::to_string(temporal_index++);
        return temporal;
    }

    std::string GetResult() {
        return std::move(shader_source);
    }

    s32 scope = 0;

private:
    void AppendIndentation() {
        shader_source.append(static_cast<std::size_t>(scope) * 4, ' ');
    }

    std::string shader_source;
    u32 temporal_index = 1;
};

/// Generates code to use for a swizzle operation.
static std::string GetSwizzle(u32 elem) {
    ASSERT(elem <= 3);
    std::string swizzle = ".";
    swizzle += "xyzw"[elem];
    return swizzle;
}

static bool IsPrecise(Operation operand) {
    const auto& meta = operand.GetMeta();

    if (std::holds_alternative<MetaArithmetic>(meta)) {
        return std::get<MetaArithmetic>(meta).precise;
    }
    if (std::holds_alternative<MetaHalfArithmetic>(meta)) {
        return std::get<MetaHalfArithmetic>(meta).precise;
    }
    return false;
}

static bool IsPrecise(Node node) {
    if (!std::holds_alternative<OperationNode>(*node)) {
        return false;
    }
    return IsPrecise(std::get<OperationNode>(*node));
}

class GLSLDecompiler final {
public:
    explicit GLSLDecompiler(const ShaderIR& ir, ShaderStage stage, std::string suffix)
        : ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {}

    void Decompile() {
        DeclareVertex();
        DeclareRegisters();
        DeclarePredicates();
        DeclareLocalMemory();
        DeclareInternalFlags();
        DeclareInputAttributes();
        DeclareOutputAttributes();
        DeclareConstantBuffers();
        DeclareSamplers();

        code.AddLine("void execute_" + suffix + "() {");
        ++code.scope;

        // VM's program counter
        const auto first_address = ir.GetBasicBlocks().begin()->first;
        code.AddLine("uint jmp_to = " + std::to_string(first_address) + "u;");

        // TODO(Subv): Figure out the actual depth of the flow stack, for now it seems
        // unlikely that shaders will use 20 nested SSYs and PBKs.
        constexpr u32 FLOW_STACK_SIZE = 20;
        code.AddLine(fmt::format("uint flow_stack[{}];", FLOW_STACK_SIZE));
        code.AddLine("uint flow_stack_top = 0u;");

        code.AddLine("while (true) {");
        ++code.scope;

        code.AddLine("switch (jmp_to) {");

        for (const auto& pair : ir.GetBasicBlocks()) {
            const auto [address, bb] = pair;
            code.AddLine(fmt::format("case 0x{:x}u: {{", address));
            ++code.scope;

            VisitBasicBlock(bb);

            --code.scope;
            code.AddLine('}');
        }

        code.AddLine("default: return;");
        code.AddLine('}');

        for (std::size_t i = 0; i < 2; ++i) {
            --code.scope;
            code.AddLine('}');
        }
    }

    std::string GetResult() {
        return code.GetResult();
    }

    ShaderEntries GetShaderEntries() const {
        ShaderEntries entries;
        for (const auto& cbuf : ir.GetConstantBuffers()) {
            ConstBufferEntry desc(cbuf.second, stage, GetConstBufferBlock(cbuf.first), cbuf.first);
            entries.const_buffers.push_back(desc);
        }
        for (const auto& sampler : ir.GetSamplers()) {
            SamplerEntry desc(sampler, stage, GetSampler(sampler));
            entries.samplers.push_back(desc);
        }
        entries.clip_distances = ir.GetClipDistances();
        entries.shader_length = ir.GetLength();
        return entries;
    }

private:
    using OperationDecompilerFn = std::string (GLSLDecompiler::*)(Operation);
    using OperationDecompilersArray =
        std::array<OperationDecompilerFn, static_cast<std::size_t>(OperationCode::Amount)>;

    void DeclareVertex() {
        if (stage != ShaderStage::Vertex)
            return;

        bool clip_distances_declared = false;

        code.AddLine("out gl_PerVertex {");
        ++code.scope;

        code.AddLine("vec4 gl_Position;");

        for (const auto o : ir.GetOutputAttributes()) {
            if (o == Attribute::Index::PointSize)
                code.AddLine("float gl_PointSize;");
            if (!clip_distances_declared && (o == Attribute::Index::ClipDistances0123 ||
                                             o == Attribute::Index::ClipDistances4567)) {
                code.AddLine("float gl_ClipDistance[];");
                clip_distances_declared = true;
            }
        }

        --code.scope;
        code.AddLine("};");
        code.AddNewLine();
    }

    void DeclareRegisters() {
        const auto& registers = ir.GetRegisters();
        for (const u32 gpr : registers) {
            code.AddLine("float " + GetRegister(gpr) + " = 0;");
        }
        if (!registers.empty())
            code.AddNewLine();
    }

    void DeclarePredicates() {
        const auto& predicates = ir.GetPredicates();
        for (const auto pred : predicates) {
            code.AddLine("bool " + GetPredicate(pred) + " = false;");
        }
        if (!predicates.empty())
            code.AddNewLine();
    }

    void DeclareLocalMemory() {
        if (const u64 local_memory_size = header.GetLocalMemorySize(); local_memory_size > 0) {
            const auto element_count = Common::AlignUp(local_memory_size, 4) / 4;
            code.AddLine("float " + GetLocalMemory() + '[' + std::to_string(element_count) + "];");
            code.AddNewLine();
        }
    }

    void DeclareInternalFlags() {
        for (u32 flag = 0; flag < static_cast<u32>(InternalFlag::Amount); flag++) {
            const InternalFlag flag_code = static_cast<InternalFlag>(flag);
            code.AddLine("bool " + GetInternalFlag(flag_code) + " = false;");
        }
        code.AddNewLine();
    }

    std::string GetInputFlags(const IpaMode& input_mode) {
        const IpaSampleMode sample_mode = input_mode.sampling_mode;
        const IpaInterpMode interp_mode = input_mode.interpolation_mode;
        std::string out;

        switch (interp_mode) {
        case IpaInterpMode::Flat:
            out += "flat ";
            break;
        case IpaInterpMode::Linear:
            out += "noperspective ";
            break;
        case IpaInterpMode::Perspective:
            // Default, Smooth
            break;
        default:
            UNIMPLEMENTED_MSG("Unhandled IPA interp mode: {}", static_cast<u32>(interp_mode));
        }
        switch (sample_mode) {
        case IpaSampleMode::Centroid:
            // It can be implemented with the "centroid " keyword in GLSL
            UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode centroid");
            break;
        case IpaSampleMode::Default:
            // Default, n/a
            break;
        default:
            UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode: {}", static_cast<u32>(sample_mode));
        }
        return out;
    }

    void DeclareInputAttributes() {
        const auto& attributes = ir.GetInputAttributes();
        for (const auto element : attributes) {
            const Attribute::Index index = element.first;
            const IpaMode& input_mode = *element.second.begin();
            if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
                // Skip when it's not a generic attribute
                continue;
            }

            ASSERT(element.second.size() > 0);
            // UNIMPLEMENTED_IF_MSG(element.second.size() > 1,
            //                     "Multiple input flag modes are not supported in GLSL");

            // TODO(bunnei): Use proper number of elements for these
            u32 idx = static_cast<u32>(index) - static_cast<u32>(Attribute::Index::Attribute_0);
            if (stage != ShaderStage::Vertex) {
                // If inputs are varyings, add an offset
                idx += GENERIC_VARYING_START_LOCATION;
            }

            std::string attr = GetInputAttribute(index);
            if (stage == ShaderStage::Geometry) {
                attr = "gs_" + attr + "[]";
            }
            code.AddLine("layout (location = " + std::to_string(idx) + ") " +
                         GetInputFlags(input_mode) + "in vec4 " + attr + ';');
        }
        if (!attributes.empty())
            code.AddNewLine();
    }

    void DeclareOutputAttributes() {
        const auto& attributes = ir.GetOutputAttributes();
        for (const auto index : attributes) {
            if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
                // Skip when it's not a generic attribute
                continue;
            }
            // TODO(bunnei): Use proper number of elements for these
            const auto idx = static_cast<u32>(index) -
                             static_cast<u32>(Attribute::Index::Attribute_0) +
                             GENERIC_VARYING_START_LOCATION;
            code.AddLine("layout (location = " + std::to_string(idx) + ") out vec4 " +
                         GetOutputAttribute(index) + ';');
        }
        if (!attributes.empty())
            code.AddNewLine();
    }

    void DeclareConstantBuffers() {
        for (const auto& entry : ir.GetConstantBuffers()) {
            const auto [index, size] = entry;
            code.AddLine("layout (std140) uniform " + GetConstBufferBlock(index) + " {");
            code.AddLine("    vec4 " + GetConstBuffer(index) + "[MAX_CONSTBUFFER_ELEMENTS];");
            code.AddLine("};");
            code.AddNewLine();
        }
    }

    void DeclareSamplers() {
        const auto& samplers = ir.GetSamplers();
        for (const auto& sampler : samplers) {
            std::string sampler_type = [&]() {
                switch (sampler.GetType()) {
                case Tegra::Shader::TextureType::Texture1D:
                    return "sampler1D";
                case Tegra::Shader::TextureType::Texture2D:
                    return "sampler2D";
                case Tegra::Shader::TextureType::Texture3D:
                    return "sampler3D";
                case Tegra::Shader::TextureType::TextureCube:
                    return "samplerCube";
                default:
                    UNREACHABLE();
                    return "sampler2D";
                }
            }();
            if (sampler.IsArray())
                sampler_type += "Array";
            if (sampler.IsShadow())
                sampler_type += "Shadow";

            code.AddLine("uniform " + sampler_type + ' ' + GetSampler(sampler) + ';');
        }
        if (!samplers.empty())
            code.AddNewLine();
    }

    void VisitBasicBlock(const BasicBlock& bb) {
        for (const Node node : bb) {
            if (const std::string expr = Visit(node); !expr.empty()) {
                code.AddLine(expr);
            }
        }
    }

    std::string Visit(Node node) {
        if (const auto operation = std::get_if<OperationNode>(node)) {
            const auto operation_index = static_cast<std::size_t>(operation->GetCode());
            const auto decompiler = operation_decompilers[operation_index];
            if (decompiler == nullptr) {
                UNREACHABLE_MSG("Operation decompiler {} not defined", operation_index);
            }
            return (this->*decompiler)(*operation);

        } else if (const auto gpr = std::get_if<GprNode>(node)) {
            const u32 index = gpr->GetIndex();
            if (index == RZ) {
                return "0";
            }
            return GetRegister(index);

        } else if (const auto immediate = std::get_if<ImmediateNode>(node)) {
            const u32 value = immediate->GetValue();
            if (value < 10) {
                // For eyecandy avoid using hex numbers on single digits
                return fmt::format("utof({}u)", immediate->GetValue());
            }
            return fmt::format("utof(0x{:x}u)", immediate->GetValue());

        } else if (const auto predicate = std::get_if<PredicateNode>(node)) {
            const auto value = [&]() -> std::string {
                switch (const auto index = predicate->GetIndex(); index) {
                case Tegra::Shader::Pred::UnusedIndex:
                    return "true";
                case Tegra::Shader::Pred::NeverExecute:
                    return "false";
                default:
                    return GetPredicate(index);
                }
            }();
            if (predicate->IsNegated()) {
                return "!(" + value + ')';
            }
            return value;

        } else if (const auto abuf = std::get_if<AbufNode>(node)) {
            const auto attribute = abuf->GetIndex();
            const auto element = abuf->GetElement();

            switch (attribute) {
            case Attribute::Index::Position:
                return element == 3 ? "1.0f" : "gl_FragCoord" + GetSwizzle(element);
            case Attribute::Index::PointCoord:
                switch (element) {
                case 0:
                    return "gl_PointCoord.x";
                case 1:
                    return "gl_PointCoord.y";
                case 2:
                case 3:
                    return "0";
                }
                UNREACHABLE();
                return "0";
            case Attribute::Index::TessCoordInstanceIDVertexID:
                // TODO(Subv): Find out what the values are for the first two elements when inside a
                // vertex shader, and what's the value of the fourth element when inside a Tess Eval
                // shader.
                ASSERT(stage == ShaderStage::Vertex);
                switch (element) {
                case 2:
                    // Config pack's first value is instance_id.
                    return "uintBitsToFloat(config_pack[0])";
                case 3:
                    return "uintBitsToFloat(gl_VertexID)";
                }
                UNIMPLEMENTED_MSG("Unmanaged TessCoordInstanceIDVertexID element={}", element);
                return "0";
            case Attribute::Index::FrontFacing:
                // TODO(Subv): Find out what the values are for the other elements.
                ASSERT(stage == ShaderStage::Fragment);
                switch (element) {
                case 3:
                    return "itof(gl_FrontFacing ? -1 : 0)";
                }
                UNIMPLEMENTED_MSG("Unmanaged FrontFacing element={}", element);
                return "0";
            default:
                if (attribute >= Attribute::Index::Attribute_0 &&
                    attribute <= Attribute::Index::Attribute_31) {
                    return GetInputAttribute(attribute) + GetSwizzle(abuf->GetElement());
                }
                break;
            }
            UNIMPLEMENTED_MSG("Unhandled input attribute: {}", static_cast<u32>(attribute));

        } else if (const auto cbuf = std::get_if<CbufNode>(node)) {
            const Node offset = cbuf->GetOffset();
            if (const auto immediate = std::get_if<ImmediateNode>(offset)) {
                // Direct access
                const u32 offset_imm = immediate->GetValue();
                return fmt::format("{}[{}][{}]", GetConstBuffer(cbuf->GetIndex()), offset_imm / 4,
                                   offset_imm % 4);

            } else if (std::holds_alternative<OperationNode>(*offset)) {
                // Indirect access
                const std::string final_offset = code.GenerateTemporal();
                code.AddLine("uint " + final_offset + " = (ftou(" + Visit(offset) + ") / 4) & " +
                             std::to_string(MAX_CONSTBUFFER_ELEMENTS - 1) + ';');
                return fmt::format("{}[{} / 4][{} % 4]", GetConstBuffer(cbuf->GetIndex()),
                                   final_offset, final_offset);

            } else {
                UNREACHABLE_MSG("Unmanaged offset node type");
            }

        } else if (const auto lmem = std::get_if<LmemNode>(node)) {
            return fmt::format("{}[ftou({}) / 4]", GetLocalMemory(), Visit(lmem->GetAddress()));

        } else if (const auto internal_flag = std::get_if<InternalFlagNode>(node)) {
            return GetInternalFlag(internal_flag->GetFlag());

        } else if (const auto conditional = std::get_if<ConditionalNode>(node)) {
            // It's invalid to call conditional on nested nodes, use an operation instead
            code.AddLine("if (" + Visit(conditional->GetCondition()) + ") {");
            ++code.scope;

            VisitBasicBlock(conditional->GetCode());

            --code.scope;
            code.AddLine('}');
            return {};

        } else if (const auto comment = std::get_if<CommentNode>(node)) {
            return "// " + comment->GetText();
        }
        UNREACHABLE();
        return {};
    }

    std::string ApplyPrecise(Operation operation, const std::string& value) {
        if (!IsPrecise(operation)) {
            return value;
        }
        // There's a bug in NVidia's proprietary drivers that makes precise fail on fragment shaders
        const std::string precise = stage != ShaderStage::Fragment ? "precise " : "";

        const std::string temporal = code.GenerateTemporal();
        code.AddLine(precise + "float " + temporal + " = " + value + ';');
        return temporal;
    }

    std::string VisitOperand(Operation operation, std::size_t operand_index) {
        const auto& operand = operation[operand_index];
        const bool parent_precise = IsPrecise(operation);
        const bool child_precise = IsPrecise(operand);
        const bool child_trivial = !std::holds_alternative<OperationNode>(*operand);
        if (!parent_precise || child_precise || child_trivial) {
            return Visit(operand);
        }

        const std::string temporal = code.GenerateTemporal();
        code.AddLine("float " + temporal + " = " + Visit(operand) + ';');
        return temporal;
    }

    std::string VisitOperand(Operation operation, std::size_t operand_index, Type type) {
        std::string value = VisitOperand(operation, operand_index);

        switch (type) {
        case Type::Bool:
        case Type::Float:
            return value;
        case Type::Int:
            return "ftoi(" + value + ')';
        case Type::Uint:
            return "ftou(" + value + ')';
        case Type::HalfFloat:
            if (!std::holds_alternative<MetaHalfArithmetic>(operation.GetMeta())) {
                value = "toHalf2(" + value + ')';
            }

            const auto& half_meta = std::get<MetaHalfArithmetic>(operation.GetMeta());
            switch (half_meta.types.at(operand_index)) {
            case Tegra::Shader::HalfType::H0_H1:
                return "toHalf2(" + value + ')';
            case Tegra::Shader::HalfType::F32:
                return "vec2(" + value + ')';
            case Tegra::Shader::HalfType::H0_H0:
                return "vec2(toHalf2(" + value + ")[0])";
            case Tegra::Shader::HalfType::H1_H1:
                return "vec2(toHalf2(" + value + ")[1])";
            }
        }
        UNREACHABLE();
        return value;
    }

    std::string BitwiseCastResult(std::string value, Type type, bool needs_parenthesis = false) {
        switch (type) {
        case Type::Bool:
        case Type::Float:
            if (needs_parenthesis) {
                return '(' + value + ')';
            }
            return value;
        case Type::Int:
            return "itof(" + value + ')';
        case Type::Uint:
            return "utof(" + value + ')';
        case Type::HalfFloat:
            return "fromHalf2(" + value + ')';
        }
        UNREACHABLE();
        return value;
    }

    std::string GenerateUnary(Operation operation, const std::string& func, Type result_type,
                              Type type_a, bool needs_parenthesis = true) {
        return ApplyPrecise(operation,
                            BitwiseCastResult(func + '(' + VisitOperand(operation, 0, type_a) + ')',
                                              result_type, needs_parenthesis));
    }

    std::string GenerateBinaryInfix(Operation operation, const std::string& func, Type result_type,
                                    Type type_a, Type type_b) {
        const std::string op_a = VisitOperand(operation, 0, type_a);
        const std::string op_b = VisitOperand(operation, 1, type_b);

        return ApplyPrecise(
            operation, BitwiseCastResult('(' + op_a + ' ' + func + ' ' + op_b + ')', result_type));
    }

    std::string GenerateBinaryCall(Operation operation, const std::string& func, Type result_type,
                                   Type type_a, Type type_b) {
        const std::string op_a = VisitOperand(operation, 0, type_a);
        const std::string op_b = VisitOperand(operation, 1, type_b);

        return ApplyPrecise(operation,
                            BitwiseCastResult(func + '(' + op_a + ", " + op_b + ')', result_type));
    }

    std::string GenerateTernary(Operation operation, const std::string& func, Type result_type,
                                Type type_a, Type type_b, Type type_c) {
        const std::string op_a = VisitOperand(operation, 0, type_a);
        const std::string op_b = VisitOperand(operation, 1, type_b);
        const std::string op_c = VisitOperand(operation, 2, type_c);

        return ApplyPrecise(
            operation,
            BitwiseCastResult(func + '(' + op_a + ", " + op_b + ", " + op_c + ')', result_type));
    }

    std::string GenerateQuaternary(Operation operation, const std::string& func, Type result_type,
                                   Type type_a, Type type_b, Type type_c, Type type_d) {
        const std::string op_a = VisitOperand(operation, 0, type_a);
        const std::string op_b = VisitOperand(operation, 1, type_b);
        const std::string op_c = VisitOperand(operation, 2, type_c);
        const std::string op_d = VisitOperand(operation, 3, type_d);

        return ApplyPrecise(operation, BitwiseCastResult(func + '(' + op_a + ", " + op_b + ", " +
                                                             op_c + ", " + op_d + ')',
                                                         result_type));
    }

    std::string GenerateTexture(Operation operation, const std::string& func,
                                const std::string& extra_cast = "") {
        constexpr std::array<const char*, 4> coord_constructors = {"float", "vec2", "vec3", "vec4"};

        const auto& meta = std::get<MetaTexture>(operation.GetMeta());
        const auto count = static_cast<u32>(operation.GetOperandsCount());

        std::string expr = func;
        expr += '(';
        expr += GetSampler(meta.sampler);
        expr += ", ";

        expr += coord_constructors[meta.coords_count - 1];
        expr += '(';
        for (u32 i = 0; i < count; ++i) {
            const bool is_extra = i >= meta.coords_count;
            const bool do_cast = is_extra && !extra_cast.empty();
            if (do_cast) {
                expr += extra_cast;
                expr += '(';
            }
            expr += Visit(operation[i]);
            if (do_cast) {
                expr += ')';
            }
            if (i + 1 == meta.coords_count) {
                expr += ')';
            }
            if (i + 1 < count) {
                expr += ", ";
            }
        }
        expr += ')';
        return expr;
    }

    std::string Assign(Operation operation) {
        const Node dest = operation[0];
        const Node src = operation[1];

        std::string target;
        if (const auto gpr = std::get_if<GprNode>(dest)) {
            if (gpr->GetIndex() == RZ) {
                // Writing to RZ is a no op
                return {};
            }
            target = GetRegister(gpr->GetIndex());

        } else if (const auto abuf = std::get_if<AbufNode>(dest)) {
            target = [&]() -> std::string {
                switch (const auto attribute = abuf->GetIndex(); abuf->GetIndex()) {
                case Attribute::Index::Position:
                    return "position" + GetSwizzle(abuf->GetElement());
                case Attribute::Index::PointSize:
                    return "gl_PointSize";
                case Attribute::Index::ClipDistances0123:
                    return "gl_ClipDistance[" + std::to_string(abuf->GetElement()) + ']';
                case Attribute::Index::ClipDistances4567:
                    return "gl_ClipDistance[" + std::to_string(abuf->GetElement() + 4) + ']';
                default:
                    if (attribute >= Attribute::Index::Attribute_0 &&
                        attribute <= Attribute::Index::Attribute_31) {
                        return GetOutputAttribute(attribute) + GetSwizzle(abuf->GetElement());
                    }
                    UNIMPLEMENTED_MSG("Unhandled output attribute: {}",
                                      static_cast<u32>(attribute));
                    return "0";
                }
            }();

        } else if (const auto lmem = std::get_if<LmemNode>(dest)) {
            target = GetLocalMemory() + "[ftou(" + Visit(lmem->GetAddress()) + ") / 4]";

        } else {
            UNREACHABLE_MSG("Assign called without a proper target");
        }

        code.AddLine(target + " = " + Visit(src) + ';');
        return {};
    }

    std::string AssignComposite(Operation operation) {
        const auto& meta = std::get<MetaComponents>(operation.GetMeta());

        const std::string composite = code.GenerateTemporal();
        code.AddLine("vec4 " + composite + " = " + Visit(operation[0]) + ';');

        constexpr u32 composite_size = 4;
        for (u32 i = 0; i < composite_size; ++i) {
            const auto gpr = std::get<GprNode>(*operation[i + 1]).GetIndex();
            if (gpr == RZ) {
                continue;
            }
            code.AddLine(GetRegister(gpr) + " = " + composite +
                         GetSwizzle(meta.GetSourceComponent(i)) + ';');
        }
        return {};
    }

    std::string Composite(Operation operation) {
        std::string value = "vec4(";
        for (std::size_t i = 0; i < 4; ++i) {
            value += Visit(operation[i]);
            if (i < 3)
                value += ", ";
        }
        value += ')';
        return value;
    }

    template <Type type>
    std::string Add(Operation operation) {
        return GenerateBinaryInfix(operation, "+", type, type, type);
    }

    template <Type type>
    std::string Mul(Operation operation) {
        return GenerateBinaryInfix(operation, "*", type, type, type);
    }

    template <Type type>
    std::string Div(Operation operation) {
        return GenerateBinaryInfix(operation, "/", type, type, type);
    }

    std::string FFma(Operation operation) {
        return GenerateTernary(operation, "fma", Type::Float, Type::Float, Type::Float,
                               Type::Float);
    }

    template <Type type>
    std::string Negate(Operation operation) {
        return GenerateUnary(operation, "-", type, type, true);
    }

    template <Type type>
    std::string Absolute(Operation operation) {
        return GenerateUnary(operation, "abs", type, type, false);
    }

    std::string FClamp(Operation operation) {
        return GenerateTernary(operation, "clamp", Type::Float, Type::Float, Type::Float,
                               Type::Float);
    }

    template <Type type>
    std::string Min(Operation operation) {
        return GenerateBinaryCall(operation, "min", type, type, type);
    }

    template <Type type>
    std::string Max(Operation operation) {
        return GenerateBinaryCall(operation, "max", type, type, type);
    }

    std::string Select(Operation operation) {
        const std::string condition = Visit(operation[0]);
        const std::string true_case = Visit(operation[1]);
        const std::string false_case = Visit(operation[2]);
        return ApplyPrecise(operation,
                            '(' + condition + " ? " + true_case + " : " + false_case + ')');
    }

    std::string FCos(Operation operation) {
        return GenerateUnary(operation, "cos", Type::Float, Type::Float, false);
    }

    std::string FSin(Operation operation) {
        return GenerateUnary(operation, "sin", Type::Float, Type::Float, false);
    }

    std::string FExp2(Operation operation) {
        return GenerateUnary(operation, "exp2", Type::Float, Type::Float, false);
    }

    std::string FLog2(Operation operation) {
        return GenerateUnary(operation, "log2", Type::Float, Type::Float, false);
    }

    std::string FInverseSqrt(Operation operation) {
        return GenerateUnary(operation, "inversesqrt", Type::Float, Type::Float, false);
    }

    std::string FSqrt(Operation operation) {
        return GenerateUnary(operation, "sqrt", Type::Float, Type::Float, false);
    }

    std::string FRoundEven(Operation operation) {
        return GenerateUnary(operation, "roundEven", Type::Float, Type::Float, false);
    }

    std::string FFloor(Operation operation) {
        return GenerateUnary(operation, "floor", Type::Float, Type::Float, false);
    }

    std::string FCeil(Operation operation) {
        return GenerateUnary(operation, "ceil", Type::Float, Type::Float, false);
    }

    std::string FTrunc(Operation operation) {
        return GenerateUnary(operation, "trunc", Type::Float, Type::Float, false);
    }

    template <Type type>
    std::string FCastInteger(Operation operation) {
        return GenerateUnary(operation, "float", Type::Float, type, false);
    }

    std::string ICastFloat(Operation operation) {
        return GenerateUnary(operation, "int", Type::Int, Type::Float, false);
    }

    std::string ICastUnsigned(Operation operation) {
        return GenerateUnary(operation, "int", Type::Int, Type::Uint, false);
    }

    template <Type type>
    std::string LogicalShiftLeft(Operation operation) {
        return GenerateBinaryInfix(operation, "<<", type, type, Type::Uint);
    }

    std::string ILogicalShiftRight(Operation operation) {
        const std::string op_a = VisitOperand(operation, 0, Type::Uint);
        const std::string op_b = VisitOperand(operation, 1, Type::Uint);

        return ApplyPrecise(operation,
                            BitwiseCastResult("int(" + op_a + " >> " + op_b + ')', Type::Int));
    }

    std::string IArithmeticShiftRight(Operation operation) {
        return GenerateBinaryInfix(operation, ">>", Type::Int, Type::Int, Type::Uint);
    }

    template <Type type>
    std::string BitwiseAnd(Operation operation) {
        return GenerateBinaryInfix(operation, "&", type, type, type);
    }

    template <Type type>
    std::string BitwiseOr(Operation operation) {
        return GenerateBinaryInfix(operation, "|", type, type, type);
    }

    template <Type type>
    std::string BitwiseXor(Operation operation) {
        return GenerateBinaryInfix(operation, "^", type, type, type);
    }

    template <Type type>
    std::string BitwiseNot(Operation operation) {
        return GenerateUnary(operation, "~", type, type, false);
    }

    std::string UCastFloat(Operation operation) {
        return GenerateUnary(operation, "uint", Type::Uint, Type::Float, false);
    }

    std::string UCastSigned(Operation operation) {
        return GenerateUnary(operation, "uint", Type::Uint, Type::Int, false);
    }

    std::string UShiftRight(Operation operation) {
        return GenerateBinaryInfix(operation, ">>", Type::Uint, Type::Uint, Type::Uint);
    }

    template <Type type>
    std::string BitfieldInsert(Operation operation) {
        return GenerateQuaternary(operation, "bitfieldInsert", type, type, type, Type::Int,
                                  Type::Int);
    }

    std::string HNegate(Operation operation) {
        const auto GetNegate = [&](std::size_t index) -> std::string {
            if (const auto pred = std::get_if<PredicateNode>(operation[index])) {
                if (!pred->IsNegated()) {
                    switch (pred->GetIndex()) {
                    case Tegra::Shader::Pred::UnusedIndex:
                        return "-1";
                    case Tegra::Shader::Pred::NeverExecute:
                        return "1";
                    }
                }
            }
            return VisitOperand(operation, index, Type::Bool) + " ? -1 : 1";
        };
        const std::string value = '(' + VisitOperand(operation, 0, Type::HalfFloat) + " * vec2(" +
                                  GetNegate(1) + ", " + GetNegate(2) + "))";
        return BitwiseCastResult(value, Type::HalfFloat);
    }

    std::string HMergeF32(Operation operation) {
        return "float(toHalf2(" + Visit(operation[0]) + ")[0])";
    }

    std::string HMergeH0(Operation operation) {
        return "fromHalf2(vec2(toHalf2(" + Visit(operation[0]) + ")[1], toHalf2(" +
               Visit(operation[1]) + ")[0]))";
    }

    std::string HMergeH1(Operation operation) {
        return "fromHalf2(vec2(toHalf2(" + Visit(operation[0]) + ")[0], toHalf2(" +
               Visit(operation[1]) + ")[1]))";
    }

    template <Type type>
    std::string LogicalLessThan(Operation operation) {
        return GenerateBinaryInfix(operation, "<", Type::Bool, type, type);
    }

    template <Type type>
    std::string LogicalEqual(Operation operation) {
        return GenerateBinaryInfix(operation, "==", Type::Bool, type, type);
    }

    template <Type type>
    std::string LogicalLessEqual(Operation operation) {
        return GenerateBinaryInfix(operation, "<=", Type::Bool, type, type);
    }

    template <Type type>
    std::string LogicalGreaterThan(Operation operation) {
        return GenerateBinaryInfix(operation, ">", Type::Bool, type, type);
    }

    template <Type type>
    std::string LogicalNotEqual(Operation operation) {
        return GenerateBinaryInfix(operation, "!=", Type::Bool, type, type);
    }

    template <Type type>
    std::string LogicalGreaterEqual(Operation operation) {
        return GenerateBinaryInfix(operation, ">=", Type::Bool, type, type);
    }

    std::string LogicalFIsNan(Operation operation) {
        return GenerateUnary(operation, "isnan", Type::Bool, Type::Float, false);
    }

    std::string LogicalAssign(Operation operation) {
        const Node dest = operation[0];
        const Node src = operation[1];

        std::string target;

        if (const auto pred = std::get_if<PredicateNode>(dest)) {
            ASSERT_MSG(!pred->IsNegated(), "Negating logical assignment");

            const auto index = pred->GetIndex();
            switch (index) {
            case Tegra::Shader::Pred::NeverExecute:
            case Tegra::Shader::Pred::UnusedIndex:
                // Writing to these predicates is a no-op
                return {};
            }
            target = GetPredicate(index);
        } else if (const auto flag = std::get_if<InternalFlagNode>(dest)) {
            target = GetInternalFlag(flag->GetFlag());
        }

        code.AddLine(target + " = " + Visit(src) + ';');
        return {};
    }

    std::string LogicalAnd(Operation operation) {
        return GenerateBinaryInfix(operation, "&&", Type::Bool, Type::Bool, Type::Bool);
    }

    std::string LogicalOr(Operation operation) {
        return GenerateBinaryInfix(operation, "||", Type::Bool, Type::Bool, Type::Bool);
    }

    std::string LogicalXor(Operation operation) {
        return GenerateBinaryInfix(operation, "^^", Type::Bool, Type::Bool, Type::Bool);
    }

    std::string LogicalNegate(Operation operation) {
        return GenerateUnary(operation, "!", Type::Bool, Type::Bool, false);
    }

    std::string LogicalHComparison(Operation operation, const std::string& func) {
        const auto& meta = std::get<MetaHalfArithmetic>(operation.GetMeta());
        const std::string op_a = VisitOperand(operation, 0, Type::HalfFloat);
        const std::string op_b = VisitOperand(operation, 1, Type::HalfFloat);

        std::string value = meta.and_comparison ? "all" : "any";
        value += '(' + func + '(' + op_a + ", " + op_b + "))";
        return value;
    }

    std::string LogicalHLessThan(Operation operation) {
        return LogicalHComparison(operation, "lessThan");
    }

    std::string LogicalHEqual(Operation operation) {
        return LogicalHComparison(operation, "equal");
    }

    std::string LogicalHLessEqual(Operation operation) {
        return LogicalHComparison(operation, "lessThanEqual");
    }

    std::string LogicalHGreaterThan(Operation operation) {
        return LogicalHComparison(operation, "greaterThan");
    }

    std::string LogicalHNotEqual(Operation operation) {
        return LogicalHComparison(operation, "notEqual");
    }

    std::string LogicalHGreaterEqual(Operation operation) {
        return LogicalHComparison(operation, "greaterThanEqual");
    }

    std::string F4Texture(Operation operation) {
        std::string expr = GenerateTexture(operation, "texture");
        if (std::get<MetaTexture>(operation.GetMeta()).sampler.IsShadow()) {
            expr = "vec4(" + expr + ')';
        }
        return expr;
    }

    std::string F4TextureLod(Operation operation) {
        std::string expr = GenerateTexture(operation, "textureLod");
        if (std::get<MetaTexture>(operation.GetMeta()).sampler.IsShadow()) {
            expr = "vec4(" + expr + ')';
        }
        return expr;
    }

    std::string F4TextureGather(Operation operation) {
        return GenerateTexture(operation, "textureGather", "int");
    }

    std::string F4TextureQueryDimensions(Operation operation) {
        const auto& meta = std::get<MetaTexture>(operation.GetMeta());
        const std::string sampler = GetSampler(meta.sampler);
        const std::string lod = VisitOperand(operation, 0, Type::Int);

        const std::string sizes = code.GenerateTemporal();
        code.AddLine("ivec2 " + sizes + " = textureSize(" + sampler + ", " + lod + ");");

        const std::string mip_level = "textureQueryLevels(" + sampler + ')';

        return "itof(ivec4(" + sizes + ", 0, " + mip_level + "))";
    }

    std::string F4TextureQueryLod(Operation operation) {
        const std::string tmp = code.GenerateTemporal();
        code.AddLine("vec2 " + tmp + " = " + GenerateTexture(operation, "textureQueryLod") +
                     " * vec2(256);");

        return "vec4(itof(int(" + tmp + ".y)), utof(uint(" + tmp + ".x)), 0, 0)";
    }

    std::string Ipa(Operation operation) {
        const auto& attribute = operation[0];
        // TODO(Rodrigo): Special IPA attribute interactions
        return Visit(attribute);
    }

    std::string Bra(Operation operation) {
        const auto target = std::get<ImmediateNode>(*operation[0]);
        code.AddLine(fmt::format("jmp_to = 0x{:x}u;", target.GetValue()));
        code.AddLine("break;");
        return {};
    }

    std::string PushFlowStack(Operation operation) {
        const auto target = std::get<ImmediateNode>(*operation[0]);
        code.AddLine(fmt::format("flow_stack[flow_stack_top] = 0x{:x}u;", target.GetValue()));
        code.AddLine("flow_stack_top++;");
        return {};
    }

    std::string PopFlowStack(Operation operation) {
        code.AddLine("flow_stack_top--;");
        code.AddLine("jmp_to = flow_stack[flow_stack_top];");
        code.AddLine("break;");
        return {};
    }

    std::string Exit(Operation operation) {
        if (stage != ShaderStage::Fragment) {
            code.AddLine("return;");
            return {};
        }
        const auto& used_registers = ir.GetRegisters();
        const auto SafeGetRegister = [&](u32 reg) -> std::string {
            // TODO(Rodrigo): Replace with contains once C++20 releases
            if (used_registers.find(reg) != used_registers.end()) {
                return GetRegister(reg);
            }
            return "0.0f";
        };

        UNIMPLEMENTED_IF_MSG(header.ps.omap.sample_mask != 0, "Sample mask write is unimplemented");

        code.AddLine("if (alpha_test[0] != 0) {");
        ++code.scope;
        // We start on the register containing the alpha value in the first RT.
        u32 current_reg = 3;
        for (u32 render_target = 0; render_target < Maxwell::NumRenderTargets; ++render_target) {
            // TODO(Blinkhawk): verify the behavior of alpha testing on hardware when
            // multiple render targets are used.
            if (header.ps.IsColorComponentOutputEnabled(render_target, 0) ||
                header.ps.IsColorComponentOutputEnabled(render_target, 1) ||
                header.ps.IsColorComponentOutputEnabled(render_target, 2) ||
                header.ps.IsColorComponentOutputEnabled(render_target, 3)) {
                code.AddLine(
                    fmt::format("if (!AlphaFunc({})) discard;", SafeGetRegister(current_reg)));
                current_reg += 4;
            }
        }
        --code.scope;
        code.AddLine('}');

        // Write the color outputs using the data in the shader registers, disabled
        // rendertargets/components are skipped in the register assignment.
        current_reg = 0;
        for (u32 render_target = 0; render_target < Maxwell::NumRenderTargets; ++render_target) {
            // TODO(Subv): Figure out how dual-source blending is configured in the Switch.
            for (u32 component = 0; component < 4; ++component) {
                if (header.ps.IsColorComponentOutputEnabled(render_target, component)) {
                    code.AddLine(fmt::format("FragColor{}[{}] = {};", render_target, component,
                                             SafeGetRegister(current_reg)));
                    ++current_reg;
                }
            }
        }

        if (header.ps.omap.depth) {
            // The depth output is always 2 registers after the last color output, and current_reg
            // already contains one past the last color register.
            code.AddLine("gl_FragDepth = " + SafeGetRegister(current_reg + 1) + ';');
        }

        code.AddLine("return;");
        return {};
    }

    std::string Kil(Operation operation) {
        // Enclose "discard" in a conditional, so that GLSL compilation does not complain
        // about unexecuted instructions that may follow this.
        code.AddLine("if (true) {");
        ++code.scope;
        code.AddLine("discard;");
        --code.scope;
        code.AddLine("}");
        return {};
    }

    std::string YNegate(Operation operation) {
        // Config pack's third value is Y_NEGATE's state.
        return "uintBitsToFloat(config_pack[2])";
    }

    static constexpr OperationDecompilersArray operation_decompilers = {
        &Assign,
        &AssignComposite,

        &Composite,
        &Select,

        &Add<Type::Float>,
        &Mul<Type::Float>,
        &Div<Type::Float>,
        &FFma,
        &Negate<Type::Float>,
        &Absolute<Type::Float>,
        &FClamp,
        &Min<Type::Float>,
        &Max<Type::Float>,
        &FCos,
        &FSin,
        &FExp2,
        &FLog2,
        &FInverseSqrt,
        &FSqrt,
        &FRoundEven,
        &FFloor,
        &FCeil,
        &FTrunc,
        &FCastInteger<Type::Int>,
        &FCastInteger<Type::Uint>,

        &Add<Type::Int>,
        &Mul<Type::Int>,
        &Div<Type::Int>,
        &Negate<Type::Int>,
        &Absolute<Type::Int>,
        &Min<Type::Int>,
        &Max<Type::Int>,

        &ICastFloat,
        &ICastUnsigned,
        &LogicalShiftLeft<Type::Int>,
        &ILogicalShiftRight,
        &IArithmeticShiftRight,
        &BitwiseAnd<Type::Int>,
        &BitwiseOr<Type::Int>,
        &BitwiseXor<Type::Int>,
        &BitwiseNot<Type::Int>,
        &BitfieldInsert<Type::Int>,

        &Add<Type::Uint>,
        &Mul<Type::Uint>,
        &Div<Type::Uint>,
        &Min<Type::Uint>,
        &Max<Type::Uint>,
        &UCastFloat,
        &UCastSigned,
        &LogicalShiftLeft<Type::Uint>,
        &UShiftRight,
        &UShiftRight,
        &BitwiseAnd<Type::Uint>,
        &BitwiseOr<Type::Uint>,
        &BitwiseXor<Type::Uint>,
        &BitwiseNot<Type::Uint>,
        &BitfieldInsert<Type::Uint>,

        &Add<Type::HalfFloat>,
        &Mul<Type::HalfFloat>,
        &Absolute<Type::HalfFloat>,
        &HNegate,
        &HMergeF32,
        &HMergeH0,
        &HMergeH1,

        &LogicalAssign,
        &LogicalAnd,
        &LogicalOr,
        &LogicalXor,
        &LogicalNegate,

        &LogicalLessThan<Type::Float>,
        &LogicalEqual<Type::Float>,
        &LogicalLessEqual<Type::Float>,
        &LogicalGreaterThan<Type::Float>,
        &LogicalNotEqual<Type::Float>,
        &LogicalGreaterEqual<Type::Float>,
        &LogicalFIsNan,

        &LogicalLessThan<Type::Int>,
        &LogicalEqual<Type::Int>,
        &LogicalLessEqual<Type::Int>,
        &LogicalGreaterThan<Type::Int>,
        &LogicalNotEqual<Type::Int>,
        &LogicalGreaterEqual<Type::Int>,

        &LogicalLessThan<Type::Uint>,
        &LogicalEqual<Type::Uint>,
        &LogicalLessEqual<Type::Uint>,
        &LogicalGreaterThan<Type::Uint>,
        &LogicalNotEqual<Type::Uint>,
        &LogicalGreaterEqual<Type::Uint>,

        &LogicalHLessThan,
        &LogicalHEqual,
        &LogicalHLessEqual,
        &LogicalHGreaterThan,
        &LogicalHNotEqual,
        &LogicalHGreaterEqual,

        &F4Texture,
        &F4TextureLod,
        &F4TextureGather,
        &F4TextureQueryDimensions,
        &F4TextureQueryLod,

        &Ipa,

        &Bra,
        &PushFlowStack, // Ssy
        &PushFlowStack, // Brk
        &PopFlowStack,  // Sync
        &PopFlowStack,  // Brk
        &Exit,
        &Kil,

        &YNegate,
    };

    std::string GetRegister(u32 index) const {
        return GetDeclarationWithSuffix(index, "gpr");
    }

    std::string GetPredicate(Tegra::Shader::Pred pred) const {
        return GetDeclarationWithSuffix(static_cast<u32>(pred), "pred");
    }

    std::string GetInputAttribute(Attribute::Index attribute) const {
        const auto index{static_cast<u32>(attribute) -
                         static_cast<u32>(Attribute::Index::Attribute_0)};
        return GetDeclarationWithSuffix(index, "input_attr");
    }

    std::string GetOutputAttribute(Attribute::Index attribute) const {
        const auto index{static_cast<u32>(attribute) -
                         static_cast<u32>(Attribute::Index::Attribute_0)};
        return GetDeclarationWithSuffix(index, "output_attr");
    }

    std::string GetConstBuffer(u32 index) const {
        return GetDeclarationWithSuffix(index, "cbuf");
    }

    std::string GetConstBufferBlock(u32 index) const {
        return GetDeclarationWithSuffix(index, "cbuf_block");
    }

    std::string GetLocalMemory() const {
        return "lmem_" + suffix;
    }

    std::string GetInternalFlag(InternalFlag flag) const {
        constexpr std::array<const char*, 4> InternalFlagNames = {"zero_flag", "sign_flag",
                                                                  "carry_flag", "overflow_flag"};
        const auto index = static_cast<u32>(flag);
        ASSERT(index < static_cast<u32>(InternalFlag::Amount));

        return std::string(InternalFlagNames[index]) + '_' + suffix;
    }

    std::string GetSampler(const Sampler& sampler) const {
        return GetDeclarationWithSuffix(static_cast<u32>(sampler.GetIndex()), "sampler");
    }

    std::string GetDeclarationWithSuffix(u32 index, const std::string& name) const {
        return name + '_' + std::to_string(index) + '_' + suffix;
    }

    const ShaderIR& ir;
    const ShaderStage stage;
    const std::string suffix;
    const Header header;

    ShaderWriter code;
};

std::string GetCommonDeclarations() {
    return "#define MAX_CONSTBUFFER_ELEMENTS " + std::to_string(MAX_CONSTBUFFER_ELEMENTS) +
           "\n"
           "#define ftoi floatBitsToInt\n"
           "#define ftou floatBitsToUint\n"
           "#define itof intBitsToFloat\n"
           "#define utof uintBitsToFloat\n\n"
           "float fromHalf2(vec2 pair) {\n"
           "    return utof(packHalf2x16(pair));\n"
           "}\n\n"
           "vec2 toHalf2(float value) {\n"
           "    return unpackHalf2x16(ftou(value));\n"
           "}\n\n";
}

ProgramResult Decompile(const ShaderIR& ir, Maxwell::ShaderStage stage, const std::string& suffix) {
    GLSLDecompiler decompiler(ir, stage, suffix);
    decompiler.Decompile();
    return {decompiler.GetResult(), decompiler.GetShaderEntries()};
}

} // namespace OpenGL::GLShader