summaryrefslogtreecommitdiffstats
path: root/src/video_core/textures/astc.cpp
diff options
context:
space:
mode:
authorbunnei <bunneidev@gmail.com>2018-06-18 05:50:44 +0200
committerbunnei <bunneidev@gmail.com>2018-06-18 07:56:59 +0200
commit61779fa072fea906410eca3e29ba54fe1ee347d3 (patch)
treecf52473bbca8d54e6edfddf28d874d8a1e50856b /src/video_core/textures/astc.cpp
parentMerge pull request #569 from bunnei/fix-cache (diff)
downloadyuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar.gz
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar.bz2
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar.lz
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar.xz
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.tar.zst
yuzu-61779fa072fea906410eca3e29ba54fe1ee347d3.zip
Diffstat (limited to 'src/video_core/textures/astc.cpp')
-rw-r--r--src/video_core/textures/astc.cpp1646
1 files changed, 1646 insertions, 0 deletions
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
new file mode 100644
index 000000000..3c4ad1c9d
--- /dev/null
+++ b/src/video_core/textures/astc.cpp
@@ -0,0 +1,1646 @@
+// Copyright 2016 The University of North Carolina at Chapel Hill
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
+// <http://gamma.cs.unc.edu/FasTC/>
+
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <vector>
+
+#include "video_core/textures/astc.h"
+
+class BitStream {
+public:
+ BitStream(unsigned char* ptr, int nBits = 0, int start_offset = 0)
+ : m_BitsWritten(0), m_BitsRead(0), m_NumBits(nBits), m_CurByte(ptr),
+ m_NextBit(start_offset % 8), done(false) {}
+
+ int GetBitsWritten() const {
+ return m_BitsWritten;
+ }
+
+ ~BitStream() {}
+
+ void WriteBitsR(unsigned int val, unsigned int nBits) {
+ for (unsigned int i = 0; i < nBits; i++) {
+ WriteBit((val >> (nBits - i - 1)) & 1);
+ }
+ }
+
+ void WriteBits(unsigned int val, unsigned int nBits) {
+ for (unsigned int i = 0; i < nBits; i++) {
+ WriteBit((val >> i) & 1);
+ }
+ }
+
+ int GetBitsRead() const {
+ return m_BitsRead;
+ }
+
+ int ReadBit() {
+
+ int bit = *m_CurByte >> m_NextBit++;
+ while (m_NextBit >= 8) {
+ m_NextBit -= 8;
+ m_CurByte++;
+ }
+
+ m_BitsRead++;
+ return bit & 1;
+ }
+
+ unsigned int ReadBits(unsigned int nBits) {
+ unsigned int ret = 0;
+ for (unsigned int i = 0; i < nBits; i++) {
+ ret |= (ReadBit() & 1) << i;
+ }
+ return ret;
+ }
+
+private:
+ void WriteBit(int b) {
+
+ if (done)
+ return;
+
+ const unsigned int mask = 1 << m_NextBit++;
+
+ // clear the bit
+ *m_CurByte &= ~mask;
+
+ // Write the bit, if necessary
+ if (b)
+ *m_CurByte |= mask;
+
+ // Next byte?
+ if (m_NextBit >= 8) {
+ m_CurByte += 1;
+ m_NextBit = 0;
+ }
+
+ done = done || ++m_BitsWritten >= m_NumBits;
+ }
+
+ int m_BitsWritten;
+ const int m_NumBits;
+ unsigned char* m_CurByte;
+ int m_NextBit;
+ int m_BitsRead;
+
+ bool done;
+};
+
+template <typename IntType>
+class Bits {
+private:
+ const IntType& m_Bits;
+
+ // Don't copy
+ Bits() {}
+ Bits(const Bits&) {}
+ Bits& operator=(const Bits&) {}
+
+public:
+ explicit Bits(IntType& v) : m_Bits(v) {}
+
+ uint8_t operator[](uint32_t bitPos) {
+ return static_cast<uint8_t>((m_Bits >> bitPos) & 1);
+ }
+
+ IntType operator()(uint32_t start, uint32_t end) {
+ if (start == end) {
+ return (*this)[start];
+ } else if (start > end) {
+ uint32_t t = start;
+ start = end;
+ end = t;
+ }
+
+ uint64_t mask = (1 << (end - start + 1)) - 1;
+ return (m_Bits >> start) & mask;
+ }
+};
+
+enum EIntegerEncoding { eIntegerEncoding_JustBits, eIntegerEncoding_Quint, eIntegerEncoding_Trit };
+
+class IntegerEncodedValue {
+private:
+ const EIntegerEncoding m_Encoding;
+ const uint32_t m_NumBits;
+ uint32_t m_BitValue;
+ union {
+ uint32_t m_QuintValue;
+ uint32_t m_TritValue;
+ };
+
+public:
+ // Jank, but we're not doing any heavy lifting in this class, so it's
+ // probably OK. It allows us to use these in std::vectors...
+ IntegerEncodedValue& operator=(const IntegerEncodedValue& other) {
+ new (this) IntegerEncodedValue(other);
+ return *this;
+ }
+
+ IntegerEncodedValue(EIntegerEncoding encoding, uint32_t numBits)
+ : m_Encoding(encoding), m_NumBits(numBits) {}
+
+ EIntegerEncoding GetEncoding() const {
+ return m_Encoding;
+ }
+ uint32_t BaseBitLength() const {
+ return m_NumBits;
+ }
+
+ uint32_t GetBitValue() const {
+ return m_BitValue;
+ }
+ void SetBitValue(uint32_t val) {
+ m_BitValue = val;
+ }
+
+ uint32_t GetTritValue() const {
+ return m_TritValue;
+ }
+ void SetTritValue(uint32_t val) {
+ m_TritValue = val;
+ }
+
+ uint32_t GetQuintValue() const {
+ return m_QuintValue;
+ }
+ void SetQuintValue(uint32_t val) {
+ m_QuintValue = val;
+ }
+
+ bool MatchesEncoding(const IntegerEncodedValue& other) {
+ return m_Encoding == other.m_Encoding && m_NumBits == other.m_NumBits;
+ }
+
+ // Returns the number of bits required to encode nVals values.
+ uint32_t GetBitLength(uint32_t nVals) {
+ uint32_t totalBits = m_NumBits * nVals;
+ if (m_Encoding == eIntegerEncoding_Trit) {
+ totalBits += (nVals * 8 + 4) / 5;
+ } else if (m_Encoding == eIntegerEncoding_Quint) {
+ totalBits += (nVals * 7 + 2) / 3;
+ }
+ return totalBits;
+ }
+
+ // Count the number of bits set in a number.
+ static inline uint32_t Popcnt(uint32_t n) {
+ uint32_t c;
+ for (c = 0; n; c++) {
+ n &= n - 1;
+ }
+ return c;
+ }
+
+ // Returns a new instance of this struct that corresponds to the
+ // can take no more than maxval values
+ static IntegerEncodedValue CreateEncoding(uint32_t maxVal) {
+ while (maxVal > 0) {
+ uint32_t check = maxVal + 1;
+
+ // Is maxVal a power of two?
+ if (!(check & (check - 1))) {
+ return IntegerEncodedValue(eIntegerEncoding_JustBits, Popcnt(maxVal));
+ }
+
+ // Is maxVal of the type 3*2^n - 1?
+ if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
+ return IntegerEncodedValue(eIntegerEncoding_Trit, Popcnt(check / 3 - 1));
+ }
+
+ // Is maxVal of the type 5*2^n - 1?
+ if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
+ return IntegerEncodedValue(eIntegerEncoding_Quint, Popcnt(check / 5 - 1));
+ }
+
+ // Apparently it can't be represented with a bounded integer sequence...
+ // just iterate.
+ maxVal--;
+ }
+ return IntegerEncodedValue(eIntegerEncoding_JustBits, 0);
+ }
+
+ // Fills result with the values that are encoded in the given
+ // bitstream. We must know beforehand what the maximum possible
+ // value is, and how many values we're decoding.
+ static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result, BitStream& bits,
+ uint32_t maxRange, uint32_t nValues) {
+ // Determine encoding parameters
+ IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
+
+ // Start decoding
+ uint32_t nValsDecoded = 0;
+ while (nValsDecoded < nValues) {
+ switch (val.GetEncoding()) {
+ case eIntegerEncoding_Quint:
+ DecodeQuintBlock(bits, result, val.BaseBitLength());
+ nValsDecoded += 3;
+ break;
+
+ case eIntegerEncoding_Trit:
+ DecodeTritBlock(bits, result, val.BaseBitLength());
+ nValsDecoded += 5;
+ break;
+
+ case eIntegerEncoding_JustBits:
+ val.SetBitValue(bits.ReadBits(val.BaseBitLength()));
+ result.push_back(val);
+ nValsDecoded++;
+ break;
+ }
+ }
+ }
+
+private:
+ static void DecodeTritBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
+ uint32_t nBitsPerValue) {
+ // Implement the algorithm in section C.2.12
+ uint32_t m[5];
+ uint32_t t[5];
+ uint32_t T;
+
+ // Read the trit encoded block according to
+ // table C.2.14
+ m[0] = bits.ReadBits(nBitsPerValue);
+ T = bits.ReadBits(2);
+ m[1] = bits.ReadBits(nBitsPerValue);
+ T |= bits.ReadBits(2) << 2;
+ m[2] = bits.ReadBits(nBitsPerValue);
+ T |= bits.ReadBit() << 4;
+ m[3] = bits.ReadBits(nBitsPerValue);
+ T |= bits.ReadBits(2) << 5;
+ m[4] = bits.ReadBits(nBitsPerValue);
+ T |= bits.ReadBit() << 7;
+
+ uint32_t C = 0;
+
+ Bits<uint32_t> Tb(T);
+ if (Tb(2, 4) == 7) {
+ C = (Tb(5, 7) << 2) | Tb(0, 1);
+ t[4] = t[3] = 2;
+ } else {
+ C = Tb(0, 4);
+ if (Tb(5, 6) == 3) {
+ t[4] = 2;
+ t[3] = Tb[7];
+ } else {
+ t[4] = Tb[7];
+ t[3] = Tb(5, 6);
+ }
+ }
+
+ Bits<uint32_t> Cb(C);
+ if (Cb(0, 1) == 3) {
+ t[2] = 2;
+ t[1] = Cb[4];
+ t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
+ } else if (Cb(2, 3) == 3) {
+ t[2] = 2;
+ t[1] = 2;
+ t[0] = Cb(0, 1);
+ } else {
+ t[2] = Cb[4];
+ t[1] = Cb(2, 3);
+ t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
+ }
+
+ for (uint32_t i = 0; i < 5; i++) {
+ IntegerEncodedValue val(eIntegerEncoding_Trit, nBitsPerValue);
+ val.SetBitValue(m[i]);
+ val.SetTritValue(t[i]);
+ result.push_back(val);
+ }
+ }
+
+ static void DecodeQuintBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
+ uint32_t nBitsPerValue) {
+ // Implement the algorithm in section C.2.12
+ uint32_t m[3];
+ uint32_t q[3];
+ uint32_t Q;
+
+ // Read the trit encoded block according to
+ // table C.2.15
+ m[0] = bits.ReadBits(nBitsPerValue);
+ Q = bits.ReadBits(3);
+ m[1] = bits.ReadBits(nBitsPerValue);
+ Q |= bits.ReadBits(2) << 3;
+ m[2] = bits.ReadBits(nBitsPerValue);
+ Q |= bits.ReadBits(2) << 5;
+
+ Bits<uint32_t> Qb(Q);
+ if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
+ q[0] = q[1] = 4;
+ q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
+ } else {
+ uint32_t C = 0;
+ if (Qb(1, 2) == 3) {
+ q[2] = 4;
+ C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
+ } else {
+ q[2] = Qb(5, 6);
+ C = Qb(0, 4);
+ }
+
+ Bits<uint32_t> Cb(C);
+ if (Cb(0, 2) == 5) {
+ q[1] = 4;
+ q[0] = Cb(3, 4);
+ } else {
+ q[1] = Cb(3, 4);
+ q[0] = Cb(0, 2);
+ }
+ }
+
+ for (uint32_t i = 0; i < 3; i++) {
+ IntegerEncodedValue val(eIntegerEncoding_Quint, nBitsPerValue);
+ val.m_BitValue = m[i];
+ val.m_QuintValue = q[i];
+ result.push_back(val);
+ }
+ }
+};
+
+namespace ASTCC {
+
+struct TexelWeightParams {
+ uint32_t m_Width;
+ uint32_t m_Height;
+ bool m_bDualPlane;
+ uint32_t m_MaxWeight;
+ bool m_bError;
+ bool m_bVoidExtentLDR;
+ bool m_bVoidExtentHDR;
+
+ TexelWeightParams() {
+ memset(this, 0, sizeof(*this));
+ }
+
+ uint32_t GetPackedBitSize() {
+ // How many indices do we have?
+ uint32_t nIdxs = m_Height * m_Width;
+ if (m_bDualPlane) {
+ nIdxs *= 2;
+ }
+
+ return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
+ }
+
+ uint32_t GetNumWeightValues() const {
+ uint32_t ret = m_Width * m_Height;
+ if (m_bDualPlane) {
+ ret *= 2;
+ }
+ return ret;
+ }
+};
+
+TexelWeightParams DecodeBlockInfo(BitStream& strm) {
+ TexelWeightParams params;
+
+ // Read the entire block mode all at once
+ uint16_t modeBits = strm.ReadBits(11);
+
+ // Does this match the void extent block mode?
+ if ((modeBits & 0x01FF) == 0x1FC) {
+ if (modeBits & 0x200) {
+ params.m_bVoidExtentHDR = true;
+ } else {
+ params.m_bVoidExtentLDR = true;
+ }
+
+ // Next two bits must be one.
+ if (!(modeBits & 0x400) || !strm.ReadBit()) {
+ params.m_bError = true;
+ }
+
+ return params;
+ }
+
+ // First check if the last four bits are zero
+ if ((modeBits & 0xF) == 0) {
+ params.m_bError = true;
+ return params;
+ }
+
+ // If the last two bits are zero, then if bits
+ // [6-8] are all ones, this is also reserved.
+ if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
+ params.m_bError = true;
+ return params;
+ }
+
+ // Otherwise, there is no error... Figure out the layout
+ // of the block mode. Layout is determined by a number
+ // between 0 and 9 corresponding to table C.2.8 of the
+ // ASTC spec.
+ uint32_t layout = 0;
+
+ if ((modeBits & 0x1) || (modeBits & 0x2)) {
+ // layout is in [0-4]
+ if (modeBits & 0x8) {
+ // layout is in [2-4]
+ if (modeBits & 0x4) {
+ // layout is in [3-4]
+ if (modeBits & 0x100) {
+ layout = 4;
+ } else {
+ layout = 3;
+ }
+ } else {
+ layout = 2;
+ }
+ } else {
+ // layout is in [0-1]
+ if (modeBits & 0x4) {
+ layout = 1;
+ } else {
+ layout = 0;
+ }
+ }
+ } else {
+ // layout is in [5-9]
+ if (modeBits & 0x100) {
+ // layout is in [7-9]
+ if (modeBits & 0x80) {
+ // layout is in [7-8]
+ assert((modeBits & 0x40) == 0U);
+ if (modeBits & 0x20) {
+ layout = 8;
+ } else {
+ layout = 7;
+ }
+ } else {
+ layout = 9;
+ }
+ } else {
+ // layout is in [5-6]
+ if (modeBits & 0x80) {
+ layout = 6;
+ } else {
+ layout = 5;
+ }
+ }
+ }
+
+ assert(layout < 10);
+
+ // Determine R
+ uint32_t R = !!(modeBits & 0x10);
+ if (layout < 5) {
+ R |= (modeBits & 0x3) << 1;
+ } else {
+ R |= (modeBits & 0xC) >> 1;
+ }
+ assert(2 <= R && R <= 7);
+
+ // Determine width & height
+ switch (layout) {
+ case 0: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 7) & 0x3;
+ params.m_Width = B + 4;
+ params.m_Height = A + 2;
+ break;
+ }
+
+ case 1: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 7) & 0x3;
+ params.m_Width = B + 8;
+ params.m_Height = A + 2;
+ break;
+ }
+
+ case 2: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 7) & 0x3;
+ params.m_Width = A + 2;
+ params.m_Height = B + 8;
+ break;
+ }
+
+ case 3: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 7) & 0x1;
+ params.m_Width = A + 2;
+ params.m_Height = B + 6;
+ break;
+ }
+
+ case 4: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 7) & 0x1;
+ params.m_Width = B + 2;
+ params.m_Height = A + 2;
+ break;
+ }
+
+ case 5: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ params.m_Width = 12;
+ params.m_Height = A + 2;
+ break;
+ }
+
+ case 6: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ params.m_Width = A + 2;
+ params.m_Height = 12;
+ break;
+ }
+
+ case 7: {
+ params.m_Width = 6;
+ params.m_Height = 10;
+ break;
+ }
+
+ case 8: {
+ params.m_Width = 10;
+ params.m_Height = 6;
+ break;
+ }
+
+ case 9: {
+ uint32_t A = (modeBits >> 5) & 0x3;
+ uint32_t B = (modeBits >> 9) & 0x3;
+ params.m_Width = A + 6;
+ params.m_Height = B + 6;
+ break;
+ }
+
+ default:
+ assert(!"Don't know this layout...");
+ params.m_bError = true;
+ break;
+ }
+
+ // Determine whether or not we're using dual planes
+ // and/or high precision layouts.
+ bool D = (layout != 9) && (modeBits & 0x400);
+ bool H = (layout != 9) && (modeBits & 0x200);
+
+ if (H) {
+ const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31};
+ params.m_MaxWeight = maxWeights[R - 2];
+ } else {
+ const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7};
+ params.m_MaxWeight = maxWeights[R - 2];
+ }
+
+ params.m_bDualPlane = D;
+
+ return params;
+}
+
+void FillVoidExtentLDR(BitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
+ uint32_t blockHeight) {
+ // Don't actually care about the void extent, just read the bits...
+ for (int i = 0; i < 4; ++i) {
+ strm.ReadBits(13);
+ }
+
+ // Decode the RGBA components and renormalize them to the range [0, 255]
+ uint16_t r = strm.ReadBits(16);
+ uint16_t g = strm.ReadBits(16);
+ uint16_t b = strm.ReadBits(16);
+ uint16_t a = strm.ReadBits(16);
+
+ uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast<uint32_t>(b) & 0xFF00) << 8 |
+ (static_cast<uint32_t>(a) & 0xFF00) << 16;
+
+ for (uint32_t j = 0; j < blockHeight; j++)
+ for (uint32_t i = 0; i < blockWidth; i++) {
+ outBuf[j * blockWidth + i] = rgba;
+ }
+}
+
+void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) {
+ for (uint32_t j = 0; j < blockHeight; j++)
+ for (uint32_t i = 0; i < blockWidth; i++) {
+ outBuf[j * blockWidth + i] = 0xFFFF00FF;
+ }
+}
+
+// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
+// is the same as [(numBits - 1):0] and repeats all the way down.
+template <typename IntType>
+IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
+ if (numBits == 0)
+ return 0;
+ if (toBit == 0)
+ return 0;
+ IntType v = val & ((1 << numBits) - 1);
+ IntType res = v;
+ uint32_t reslen = numBits;
+ while (reslen < toBit) {
+ uint32_t comp = 0;
+ if (numBits > toBit - reslen) {
+ uint32_t newshift = toBit - reslen;
+ comp = numBits - newshift;
+ numBits = newshift;
+ }
+ res <<= numBits;
+ res |= v >> comp;
+ reslen += numBits;
+ }
+ return res;
+}
+
+class Pixel {
+protected:
+ typedef int16_t ChannelType;
+ uint8_t m_BitDepth[4];
+ int16_t color[4];
+
+public:
+ Pixel() {
+ for (int i = 0; i < 4; i++) {
+ m_BitDepth[i] = 8;
+ color[i] = 0;
+ }
+ }
+
+ Pixel(ChannelType a, ChannelType r, ChannelType g, ChannelType b, unsigned bitDepth = 8) {
+ for (int i = 0; i < 4; i++)
+ m_BitDepth[i] = bitDepth;
+
+ color[0] = a;
+ color[1] = r;
+ color[2] = g;
+ color[3] = b;
+ }
+
+ // Changes the depth of each pixel. This scales the values to
+ // the appropriate bit depth by either truncating the least
+ // significant bits when going from larger to smaller bit depth
+ // or by repeating the most significant bits when going from
+ // smaller to larger bit depths.
+ void ChangeBitDepth(const uint8_t (&depth)[4]) {
+ for (uint32_t i = 0; i < 4; i++) {
+ Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]);
+ m_BitDepth[i] = depth[i];
+ }
+ }
+
+ template <typename IntType>
+ static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) {
+ float denominator = static_cast<float>((1 << bitDepth) - 1);
+ return static_cast<float>(channel) / denominator;
+ }
+
+ // Changes the bit depth of a single component. See the comment
+ // above for how we do this.
+ static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) {
+ assert(newDepth <= 8);
+ assert(oldDepth <= 8);
+
+ if (oldDepth == newDepth) {
+ // Do nothing
+ return val;
+ } else if (oldDepth == 0 && newDepth != 0) {
+ return (1 << newDepth) - 1;
+ } else if (newDepth > oldDepth) {
+ return Replicate(val, oldDepth, newDepth);
+ } else {
+ // oldDepth > newDepth
+ if (newDepth == 0) {
+ return 0xFF;
+ } else {
+ uint8_t bitsWasted = oldDepth - newDepth;
+ uint16_t v = static_cast<uint16_t>(val);
+ v = (v + (1 << (bitsWasted - 1))) >> bitsWasted;
+ v = ::std::min<uint16_t>(::std::max<uint16_t>(0, v), (1 << newDepth) - 1);
+ return static_cast<uint8_t>(v);
+ }
+ }
+
+ assert(!"We shouldn't get here.");
+ return 0;
+ }
+
+ const ChannelType& A() const {
+ return color[0];
+ }
+ ChannelType& A() {
+ return color[0];
+ }
+ const ChannelType& R() const {
+ return color[1];
+ }
+ ChannelType& R() {
+ return color[1];
+ }
+ const ChannelType& G() const {
+ return color[2];
+ }
+ ChannelType& G() {
+ return color[2];
+ }
+ const ChannelType& B() const {
+ return color[3];
+ }
+ ChannelType& B() {
+ return color[3];
+ }
+ const ChannelType& Component(uint32_t idx) const {
+ return color[idx];
+ }
+ ChannelType& Component(uint32_t idx) {
+ return color[idx];
+ }
+
+ void GetBitDepth(uint8_t (&outDepth)[4]) const {
+ for (int i = 0; i < 4; i++) {
+ outDepth[i] = m_BitDepth[i];
+ }
+ }
+
+ // Take all of the components, transform them to their 8-bit variants,
+ // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
+ // that the architecture is little-endian, so the alpha channel will end
+ // up in the most-significant byte.
+ uint32_t Pack() const {
+ Pixel eightBit(*this);
+ const uint8_t eightBitDepth[4] = {8, 8, 8, 8};
+ eightBit.ChangeBitDepth(eightBitDepth);
+
+ uint32_t r = 0;
+ r |= eightBit.A();
+ r <<= 8;
+ r |= eightBit.B();
+ r <<= 8;
+ r |= eightBit.G();
+ r <<= 8;
+ r |= eightBit.R();
+ return r;
+ }
+
+ // Clamps the pixel to the range [0,255]
+ void ClampByte() {
+ for (uint32_t i = 0; i < 4; i++) {
+ color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
+ }
+ }
+
+ void MakeOpaque() {
+ A() = 255;
+ }
+};
+
+void DecodeColorValues(uint32_t* out, uint8_t* data, uint32_t* modes, const uint32_t nPartitions,
+ const uint32_t nBitsForColorData) {
+ // First figure out how many color values we have
+ uint32_t nValues = 0;
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ nValues += ((modes[i] >> 2) + 1) << 1;
+ }
+
+ // Then based on the number of values and the remaining number of bits,
+ // figure out the max value for each of them...
+ uint32_t range = 256;
+ while (--range > 0) {
+ IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
+ uint32_t bitLength = val.GetBitLength(nValues);
+ if (bitLength <= nBitsForColorData) {
+ // Find the smallest possible range that matches the given encoding
+ while (--range > 0) {
+ IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
+ if (!newval.MatchesEncoding(val)) {
+ break;
+ }
+ }
+
+ // Return to last matching range.
+ range++;
+ break;
+ }
+ }
+
+ // We now have enough to decode our integer sequence.
+ std::vector<IntegerEncodedValue> decodedColorValues;
+ BitStream colorStream(data);
+ IntegerEncodedValue::DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
+
+ // Once we have the decoded values, we need to dequantize them to the 0-255 range
+ // This procedure is outlined in ASTC spec C.2.13
+ uint32_t outIdx = 0;
+ std::vector<IntegerEncodedValue>::const_iterator itr;
+ for (itr = decodedColorValues.begin(); itr != decodedColorValues.end(); itr++) {
+ // Have we already decoded all that we need?
+ if (outIdx >= nValues) {
+ break;
+ }
+
+ const IntegerEncodedValue& val = *itr;
+ uint32_t bitlen = val.BaseBitLength();
+ uint32_t bitval = val.GetBitValue();
+
+ assert(bitlen >= 1);
+
+ uint32_t A = 0, B = 0, C = 0, D = 0;
+ // A is just the lsb replicated 9 times.
+ A = Replicate(bitval & 1, 1, 9);
+
+ switch (val.GetEncoding()) {
+ // Replicate bits
+ case eIntegerEncoding_JustBits:
+ out[outIdx++] = Replicate(bitval, bitlen, 8);
+ break;
+
+ // Use algorithm in C.2.13
+ case eIntegerEncoding_Trit: {
+
+ D = val.GetTritValue();
+
+ switch (bitlen) {
+ case 1: {
+ C = 204;
+ } break;
+
+ case 2: {
+ C = 93;
+ // B = b000b0bb0
+ uint32_t b = (bitval >> 1) & 1;
+ B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
+ } break;
+
+ case 3: {
+ C = 44;
+ // B = cb000cbcb
+ uint32_t cb = (bitval >> 1) & 3;
+ B = (cb << 7) | (cb << 2) | cb;
+ } break;
+
+ case 4: {
+ C = 22;
+ // B = dcb000dcb
+ uint32_t dcb = (bitval >> 1) & 7;
+ B = (dcb << 6) | dcb;
+ } break;
+
+ case 5: {
+ C = 11;
+ // B = edcb000ed
+ uint32_t edcb = (bitval >> 1) & 0xF;
+ B = (edcb << 5) | (edcb >> 2);
+ } break;
+
+ case 6: {
+ C = 5;
+ // B = fedcb000f
+ uint32_t fedcb = (bitval >> 1) & 0x1F;
+ B = (fedcb << 4) | (fedcb >> 4);
+ } break;
+
+ default:
+ assert(!"Unsupported trit encoding for color values!");
+ break;
+ } // switch(bitlen)
+ } // case eIntegerEncoding_Trit
+ break;
+
+ case eIntegerEncoding_Quint: {
+
+ D = val.GetQuintValue();
+
+ switch (bitlen) {
+ case 1: {
+ C = 113;
+ } break;
+
+ case 2: {
+ C = 54;
+ // B = b0000bb00
+ uint32_t b = (bitval >> 1) & 1;
+ B = (b << 8) | (b << 3) | (b << 2);
+ } break;
+
+ case 3: {
+ C = 26;
+ // B = cb0000cbc
+ uint32_t cb = (bitval >> 1) & 3;
+ B = (cb << 7) | (cb << 1) | (cb >> 1);
+ } break;
+
+ case 4: {
+ C = 13;
+ // B = dcb0000dc
+ uint32_t dcb = (bitval >> 1) & 7;
+ B = (dcb << 6) | (dcb >> 1);
+ } break;
+
+ case 5: {
+ C = 6;
+ // B = edcb0000e
+ uint32_t edcb = (bitval >> 1) & 0xF;
+ B = (edcb << 5) | (edcb >> 3);
+ } break;
+
+ default:
+ assert(!"Unsupported quint encoding for color values!");
+ break;
+ } // switch(bitlen)
+ } // case eIntegerEncoding_Quint
+ break;
+ } // switch(val.GetEncoding())
+
+ if (val.GetEncoding() != eIntegerEncoding_JustBits) {
+ uint32_t T = D * C + B;
+ T ^= A;
+ T = (A & 0x80) | (T >> 2);
+ out[outIdx++] = T;
+ }
+ }
+
+ // Make sure that each of our values is in the proper range...
+ for (uint32_t i = 0; i < nValues; i++) {
+ assert(out[i] <= 255);
+ }
+}
+
+uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
+ uint32_t bitval = val.GetBitValue();
+ uint32_t bitlen = val.BaseBitLength();
+
+ uint32_t A = Replicate(bitval & 1, 1, 7);
+ uint32_t B = 0, C = 0, D = 0;
+
+ uint32_t result = 0;
+ switch (val.GetEncoding()) {
+ case eIntegerEncoding_JustBits:
+ result = Replicate(bitval, bitlen, 6);
+ break;
+
+ case eIntegerEncoding_Trit: {
+ D = val.GetTritValue();
+ assert(D < 3);
+
+ switch (bitlen) {
+ case 0: {
+ uint32_t results[3] = {0, 32, 63};
+ result = results[D];
+ } break;
+
+ case 1: {
+ C = 50;
+ } break;
+
+ case 2: {
+ C = 23;
+ uint32_t b = (bitval >> 1) & 1;
+ B = (b << 6) | (b << 2) | b;
+ } break;
+
+ case 3: {
+ C = 11;
+ uint32_t cb = (bitval >> 1) & 3;
+ B = (cb << 5) | cb;
+ } break;
+
+ default:
+ assert(!"Invalid trit encoding for texel weight");
+ break;
+ }
+ } break;
+
+ case eIntegerEncoding_Quint: {
+ D = val.GetQuintValue();
+ assert(D < 5);
+
+ switch (bitlen) {
+ case 0: {
+ uint32_t results[5] = {0, 16, 32, 47, 63};
+ result = results[D];
+ } break;
+
+ case 1: {
+ C = 28;
+ } break;
+
+ case 2: {
+ C = 13;
+ uint32_t b = (bitval >> 1) & 1;
+ B = (b << 6) | (b << 1);
+ } break;
+
+ default:
+ assert(!"Invalid quint encoding for texel weight");
+ break;
+ }
+ } break;
+ }
+
+ if (val.GetEncoding() != eIntegerEncoding_JustBits && bitlen > 0) {
+ // Decode the value...
+ result = D * C + B;
+ result ^= A;
+ result = (A & 0x20) | (result >> 2);
+ }
+
+ assert(result < 64);
+
+ // Change from [0,63] to [0,64]
+ if (result > 32) {
+ result += 1;
+ }
+
+ return result;
+}
+
+void UnquantizeTexelWeights(uint32_t out[2][144], std::vector<IntegerEncodedValue>& weights,
+ const TexelWeightParams& params, const uint32_t blockWidth,
+ const uint32_t blockHeight) {
+ uint32_t weightIdx = 0;
+ uint32_t unquantized[2][144];
+ std::vector<IntegerEncodedValue>::const_iterator itr;
+ for (itr = weights.begin(); itr != weights.end(); itr++) {
+ unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
+
+ if (params.m_bDualPlane) {
+ itr++;
+ unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
+ if (itr == weights.end()) {
+ break;
+ }
+ }
+
+ if (++weightIdx >= (params.m_Width * params.m_Height))
+ break;
+ }
+
+ // Do infill if necessary (Section C.2.18) ...
+ uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
+ uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
+
+ const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U;
+ for (uint32_t plane = 0; plane < kPlaneScale; plane++)
+ for (uint32_t t = 0; t < blockHeight; t++)
+ for (uint32_t s = 0; s < blockWidth; s++) {
+ uint32_t cs = Ds * s;
+ uint32_t ct = Dt * t;
+
+ uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6;
+ uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6;
+
+ uint32_t js = gs >> 4;
+ uint32_t fs = gs & 0xF;
+
+ uint32_t jt = gt >> 4;
+ uint32_t ft = gt & 0x0F;
+
+ uint32_t w11 = (fs * ft + 8) >> 4;
+ uint32_t w10 = ft - w11;
+ uint32_t w01 = fs - w11;
+ uint32_t w00 = 16 - fs - ft + w11;
+
+ uint32_t v0 = js + jt * params.m_Width;
+
+#define FIND_TEXEL(tidx, bidx) \
+ uint32_t p##bidx = 0; \
+ do { \
+ if ((tidx) < (params.m_Width * params.m_Height)) { \
+ p##bidx = unquantized[plane][(tidx)]; \
+ } \
+ } while (0)
+
+ FIND_TEXEL(v0, 00);
+ FIND_TEXEL(v0 + 1, 01);
+ FIND_TEXEL(v0 + params.m_Width, 10);
+ FIND_TEXEL(v0 + params.m_Width + 1, 11);
+
+#undef FIND_TEXEL
+
+ out[plane][t * blockWidth + s] =
+ (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
+ }
+}
+
+// Transfers a bit as described in C.2.14
+static inline void BitTransferSigned(int32_t& a, int32_t& b) {
+ b >>= 1;
+ b |= a & 0x80;
+ a >>= 1;
+ a &= 0x3F;
+ if (a & 0x20)
+ a -= 0x40;
+}
+
+// Adds more precision to the blue channel as described
+// in C.2.14
+static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) {
+ return Pixel(static_cast<int16_t>(a), static_cast<int16_t>((r + b) >> 1),
+ static_cast<int16_t>((g + b) >> 1), static_cast<int16_t>(b));
+}
+
+// Partition selection functions as specified in
+// C.2.21
+static inline uint32_t hash52(uint32_t p) {
+ p ^= p >> 15;
+ p -= p << 17;
+ p += p << 7;
+ p += p << 4;
+ p ^= p >> 5;
+ p += p << 16;
+ p ^= p >> 7;
+ p ^= p >> 3;
+ p ^= p << 6;
+ p ^= p >> 17;
+ return p;
+}
+
+static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
+ int32_t partitionCount, int32_t smallBlock) {
+ if (1 == partitionCount)
+ return 0;
+
+ if (smallBlock) {
+ x <<= 1;
+ y <<= 1;
+ z <<= 1;
+ }
+
+ seed += (partitionCount - 1) * 1024;
+
+ uint32_t rnum = hash52(static_cast<uint32_t>(seed));
+ uint8_t seed1 = static_cast<uint8_t>(rnum & 0xF);
+ uint8_t seed2 = static_cast<uint8_t>((rnum >> 4) & 0xF);
+ uint8_t seed3 = static_cast<uint8_t>((rnum >> 8) & 0xF);
+ uint8_t seed4 = static_cast<uint8_t>((rnum >> 12) & 0xF);
+ uint8_t seed5 = static_cast<uint8_t>((rnum >> 16) & 0xF);
+ uint8_t seed6 = static_cast<uint8_t>((rnum >> 20) & 0xF);
+ uint8_t seed7 = static_cast<uint8_t>((rnum >> 24) & 0xF);
+ uint8_t seed8 = static_cast<uint8_t>((rnum >> 28) & 0xF);
+ uint8_t seed9 = static_cast<uint8_t>((rnum >> 18) & 0xF);
+ uint8_t seed10 = static_cast<uint8_t>((rnum >> 22) & 0xF);
+ uint8_t seed11 = static_cast<uint8_t>((rnum >> 26) & 0xF);
+ uint8_t seed12 = static_cast<uint8_t>(((rnum >> 30) | (rnum << 2)) & 0xF);
+
+ seed1 *= seed1;
+ seed2 *= seed2;
+ seed3 *= seed3;
+ seed4 *= seed4;
+ seed5 *= seed5;
+ seed6 *= seed6;
+ seed7 *= seed7;
+ seed8 *= seed8;
+ seed9 *= seed9;
+ seed10 *= seed10;
+ seed11 *= seed11;
+ seed12 *= seed12;
+
+ int32_t sh1, sh2, sh3;
+ if (seed & 1) {
+ sh1 = (seed & 2) ? 4 : 5;
+ sh2 = (partitionCount == 3) ? 6 : 5;
+ } else {
+ sh1 = (partitionCount == 3) ? 6 : 5;
+ sh2 = (seed & 2) ? 4 : 5;
+ }
+ sh3 = (seed & 0x10) ? sh1 : sh2;
+
+ seed1 >>= sh1;
+ seed2 >>= sh2;
+ seed3 >>= sh1;
+ seed4 >>= sh2;
+ seed5 >>= sh1;
+ seed6 >>= sh2;
+ seed7 >>= sh1;
+ seed8 >>= sh2;
+ seed9 >>= sh3;
+ seed10 >>= sh3;
+ seed11 >>= sh3;
+ seed12 >>= sh3;
+
+ int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
+ int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
+ int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
+ int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
+
+ a &= 0x3F;
+ b &= 0x3F;
+ c &= 0x3F;
+ d &= 0x3F;
+
+ if (partitionCount < 4)
+ d = 0;
+ if (partitionCount < 3)
+ c = 0;
+
+ if (a >= b && a >= c && a >= d)
+ return 0;
+ else if (b >= c && b >= d)
+ return 1;
+ else if (c >= d)
+ return 2;
+ return 3;
+}
+
+static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount,
+ int32_t smallBlock) {
+ return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
+}
+
+// Section C.2.14
+void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues,
+ uint32_t colorEndpointMode) {
+#define READ_UINT_VALUES(N) \
+ uint32_t v[N]; \
+ for (uint32_t i = 0; i < N; i++) { \
+ v[i] = *(colorValues++); \
+ }
+
+#define READ_INT_VALUES(N) \
+ int32_t v[N]; \
+ for (uint32_t i = 0; i < N; i++) { \
+ v[i] = static_cast<int32_t>(*(colorValues++)); \
+ }
+
+ switch (colorEndpointMode) {
+ case 0: {
+ READ_UINT_VALUES(2)
+ ep1 = Pixel(0xFF, v[0], v[0], v[0]);
+ ep2 = Pixel(0xFF, v[1], v[1], v[1]);
+ } break;
+
+ case 1: {
+ READ_UINT_VALUES(2)
+ uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0);
+ uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
+ ep1 = Pixel(0xFF, L0, L0, L0);
+ ep2 = Pixel(0xFF, L1, L1, L1);
+ } break;
+
+ case 4: {
+ READ_UINT_VALUES(4)
+ ep1 = Pixel(v[2], v[0], v[0], v[0]);
+ ep2 = Pixel(v[3], v[1], v[1], v[1]);
+ } break;
+
+ case 5: {
+ READ_INT_VALUES(4)
+ BitTransferSigned(v[1], v[0]);
+ BitTransferSigned(v[3], v[2]);
+ ep1 = Pixel(v[2], v[0], v[0], v[0]);
+ ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
+ ep1.ClampByte();
+ ep2.ClampByte();
+ } break;
+
+ case 6: {
+ READ_UINT_VALUES(4)
+ ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+ ep2 = Pixel(0xFF, v[0], v[1], v[2]);
+ } break;
+
+ case 8: {
+ READ_UINT_VALUES(6)
+ if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+ ep1 = Pixel(0xFF, v[0], v[2], v[4]);
+ ep2 = Pixel(0xFF, v[1], v[3], v[5]);
+ } else {
+ ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
+ ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
+ }
+ } break;
+
+ case 9: {
+ READ_INT_VALUES(6)
+ BitTransferSigned(v[1], v[0]);
+ BitTransferSigned(v[3], v[2]);
+ BitTransferSigned(v[5], v[4]);
+ if (v[1] + v[3] + v[5] >= 0) {
+ ep1 = Pixel(0xFF, v[0], v[2], v[4]);
+ ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+ } else {
+ ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+ ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
+ }
+ ep1.ClampByte();
+ ep2.ClampByte();
+ } break;
+
+ case 10: {
+ READ_UINT_VALUES(6)
+ ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+ ep2 = Pixel(v[5], v[0], v[1], v[2]);
+ } break;
+
+ case 12: {
+ READ_UINT_VALUES(8)
+ if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+ ep1 = Pixel(v[6], v[0], v[2], v[4]);
+ ep2 = Pixel(v[7], v[1], v[3], v[5]);
+ } else {
+ ep1 = BlueContract(v[7], v[1], v[3], v[5]);
+ ep2 = BlueContract(v[6], v[0], v[2], v[4]);
+ }
+ } break;
+
+ case 13: {
+ READ_INT_VALUES(8)
+ BitTransferSigned(v[1], v[0]);
+ BitTransferSigned(v[3], v[2]);
+ BitTransferSigned(v[5], v[4]);
+ BitTransferSigned(v[7], v[6]);
+ if (v[1] + v[3] + v[5] >= 0) {
+ ep1 = Pixel(v[6], v[0], v[2], v[4]);
+ ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+ } else {
+ ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+ ep2 = BlueContract(v[6], v[0], v[2], v[4]);
+ }
+ ep1.ClampByte();
+ ep2.ClampByte();
+ } break;
+
+ default:
+ assert(!"Unsupported color endpoint mode (is it HDR?)");
+ break;
+ }
+
+#undef READ_UINT_VALUES
+#undef READ_INT_VALUES
+}
+
+void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth, const uint32_t blockHeight,
+ uint32_t* outBuf) {
+ BitStream strm(inBuf);
+ TexelWeightParams weightParams = DecodeBlockInfo(strm);
+
+ // Was there an error?
+ if (weightParams.m_bError) {
+ assert(!"Invalid block mode");
+ FillError(outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ if (weightParams.m_bVoidExtentLDR) {
+ FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ if (weightParams.m_bVoidExtentHDR) {
+ assert(!"HDR void extent blocks are unsupported!");
+ FillError(outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ if (weightParams.m_Width > blockWidth) {
+ assert(!"Texel weight grid width should be smaller than block width");
+ FillError(outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ if (weightParams.m_Height > blockHeight) {
+ assert(!"Texel weight grid height should be smaller than block height");
+ FillError(outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ // Read num partitions
+ uint32_t nPartitions = strm.ReadBits(2) + 1;
+ assert(nPartitions <= 4);
+
+ if (nPartitions == 4 && weightParams.m_bDualPlane) {
+ assert(!"Dual plane mode is incompatible with four partition blocks");
+ FillError(outBuf, blockWidth, blockHeight);
+ return;
+ }
+
+ // Based on the number of partitions, read the color endpoint mode for
+ // each partition.
+
+ // Determine partitions, partition index, and color endpoint modes
+ int32_t planeIdx = -1;
+ uint32_t partitionIndex;
+ uint32_t colorEndpointMode[4] = {0, 0, 0, 0};
+
+ // Define color data.
+ uint8_t colorEndpointData[16];
+ memset(colorEndpointData, 0, sizeof(colorEndpointData));
+ BitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
+
+ // Read extra config data...
+ uint32_t baseCEM = 0;
+ if (nPartitions == 1) {
+ colorEndpointMode[0] = strm.ReadBits(4);
+ partitionIndex = 0;
+ } else {
+ partitionIndex = strm.ReadBits(10);
+ baseCEM = strm.ReadBits(6);
+ }
+ uint32_t baseMode = (baseCEM & 3);
+
+ // Remaining bits are color endpoint data...
+ uint32_t nWeightBits = weightParams.GetPackedBitSize();
+ int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead();
+
+ // Consider extra bits prior to texel data...
+ uint32_t extraCEMbits = 0;
+ if (baseMode) {
+ switch (nPartitions) {
+ case 2:
+ extraCEMbits += 2;
+ break;
+ case 3:
+ extraCEMbits += 5;
+ break;
+ case 4:
+ extraCEMbits += 8;
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ }
+ remainingBits -= extraCEMbits;
+
+ // Do we have a dual plane situation?
+ uint32_t planeSelectorBits = 0;
+ if (weightParams.m_bDualPlane) {
+ planeSelectorBits = 2;
+ }
+ remainingBits -= planeSelectorBits;
+
+ // Read color data...
+ uint32_t colorDataBits = remainingBits;
+ while (remainingBits > 0) {
+ uint32_t nb = std::min(remainingBits, 8);
+ uint32_t b = strm.ReadBits(nb);
+ colorEndpointStream.WriteBits(b, nb);
+ remainingBits -= 8;
+ }
+
+ // Read the plane selection bits
+ planeIdx = strm.ReadBits(planeSelectorBits);
+
+ // Read the rest of the CEM
+ if (baseMode) {
+ uint32_t extraCEM = strm.ReadBits(extraCEMbits);
+ uint32_t CEM = (extraCEM << 6) | baseCEM;
+ CEM >>= 2;
+
+ bool C[4] = {0};
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ C[i] = CEM & 1;
+ CEM >>= 1;
+ }
+
+ uint8_t M[4] = {0};
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ M[i] = CEM & 3;
+ CEM >>= 2;
+ assert(M[i] <= 3);
+ }
+
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ colorEndpointMode[i] = baseMode;
+ if (!(C[i]))
+ colorEndpointMode[i] -= 1;
+ colorEndpointMode[i] <<= 2;
+ colorEndpointMode[i] |= M[i];
+ }
+ } else if (nPartitions > 1) {
+ uint32_t CEM = baseCEM >> 2;
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ colorEndpointMode[i] = CEM;
+ }
+ }
+
+ // Make sure everything up till here is sane.
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ assert(colorEndpointMode[i] < 16);
+ }
+ assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
+
+ // Decode both color data and texel weight data
+ uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions
+ DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
+ colorDataBits);
+
+ Pixel endpoints[4][2];
+ const uint32_t* colorValuesPtr = colorValues;
+ for (uint32_t i = 0; i < nPartitions; i++) {
+ ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
+ }
+
+ // Read the texel weight data..
+ uint8_t texelWeightData[16];
+ memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
+
+ // Reverse everything
+ for (uint32_t i = 0; i < 8; i++) {
+// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
+#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
+ unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i]));
+ unsigned char b = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[15 - i]));
+#undef REVERSE_BYTE
+
+ texelWeightData[i] = b;
+ texelWeightData[15 - i] = a;
+ }
+
+ // Make sure that higher non-texel bits are set to zero
+ const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
+ texelWeightData[clearByteStart - 1] &= (1 << (weightParams.GetPackedBitSize() % 8)) - 1;
+ memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
+
+ std::vector<IntegerEncodedValue> texelWeightValues;
+ BitStream weightStream(texelWeightData);
+
+ IntegerEncodedValue::DecodeIntegerSequence(texelWeightValues, weightStream,
+ weightParams.m_MaxWeight,
+ weightParams.GetNumWeightValues());
+
+ // Blocks can be at most 12x12, so we can have as many as 144 weights
+ uint32_t weights[2][144];
+ UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
+
+ // Now that we have endpoints and weights, we can interpolate and generate
+ // the proper decoding...
+ for (uint32_t j = 0; j < blockHeight; j++)
+ for (uint32_t i = 0; i < blockWidth; i++) {
+ uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions,
+ (blockHeight * blockWidth) < 32);
+ assert(partition < nPartitions);
+
+ Pixel p;
+ for (uint32_t c = 0; c < 4; c++) {
+ uint32_t C0 = endpoints[partition][0].Component(c);
+ C0 = Replicate(C0, 8, 16);
+ uint32_t C1 = endpoints[partition][1].Component(c);
+ C1 = Replicate(C1, 8, 16);
+
+ uint32_t plane = 0;
+ if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
+ plane = 1;
+ }
+
+ uint32_t weight = weights[plane][j * blockWidth + i];
+ uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
+ if (C == 65535) {
+ p.Component(c) = 255;
+ } else {
+ double Cf = static_cast<double>(C);
+ p.Component(c) = static_cast<uint16_t>(255.0 * (Cf / 65536.0) + 0.5);
+ }
+ }
+
+ outBuf[j * blockWidth + i] = p.Pack();
+ }
+}
+
+} // namespace ASTCC
+
+namespace Tegra::Texture::ASTC {
+
+std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
+ uint32_t block_width, uint32_t block_height) {
+ uint32_t blockIdx = 0;
+ std::vector<uint8_t> outData;
+ outData.resize(height * width * 4);
+ for (uint32_t j = 0; j < height; j += block_height) {
+ for (uint32_t i = 0; i < width; i += block_width) {
+
+ uint8_t* blockPtr = data.data() + blockIdx * 16;
+
+ // Blocks can be at most 12x12
+ uint32_t uncompData[144];
+ ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
+
+ uint32_t decompWidth = std::min(block_width, width - i);
+ uint32_t decompHeight = std::min(block_height, height - j);
+
+ uint8_t* outRow = outData.data() + (j * width + i) * 4;
+ for (uint32_t jj = 0; jj < decompHeight; jj++) {
+ memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4);
+ }
+
+ blockIdx++;
+ }
+ }
+
+ return outData;
+}
+
+} // namespace Tegra::Texture::ASTC