summaryrefslogtreecommitdiffstats
path: root/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/arm/skyeye_common/vfp/vfpdouble.cpp')
-rw-r--r--src/core/arm/skyeye_common/vfp/vfpdouble.cpp1247
1 files changed, 0 insertions, 1247 deletions
diff --git a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
deleted file mode 100644
index e5cb54aab..000000000
--- a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
+++ /dev/null
@@ -1,1247 +0,0 @@
-/*
- vfp/vfpdouble.c - ARM VFPv3 emulation unit - SoftFloat double instruction
- Copyright (C) 2003 Skyeye Develop Group
- for help please send mail to <skyeye-developer@lists.gro.clinux.org>
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-*/
-
-/*
- * This code is derived in part from :
- * - Android kernel
- * - John R. Housers softfloat library, which
- * carries the following notice:
- *
- * ===========================================================================
- * This C source file is part of the SoftFloat IEC/IEEE Floating-point
- * Arithmetic Package, Release 2.
- *
- * Written by John R. Hauser. This work was made possible in part by the
- * International Computer Science Institute, located at Suite 600, 1947 Center
- * Street, Berkeley, California 94704. Funding was partially provided by the
- * National Science Foundation under grant MIP-9311980. The original version
- * of this code was written as part of a project to build a fixed-point vector
- * processor in collaboration with the University of California at Berkeley,
- * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- * arithmetic/softfloat.html'.
- *
- * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- *
- * Derivative works are acceptable, even for commercial purposes, so long as
- * (1) they include prominent notice that the work is derivative, and (2) they
- * include prominent notice akin to these three paragraphs for those parts of
- * this code that are retained.
- * ===========================================================================
- */
-
-#include <algorithm>
-#include "common/logging/log.h"
-#include "core/arm/skyeye_common/vfp/asm_vfp.h"
-#include "core/arm/skyeye_common/vfp/vfp.h"
-#include "core/arm/skyeye_common/vfp/vfp_helper.h"
-
-static struct vfp_double vfp_double_default_qnan = {
- 2047, 0, VFP_DOUBLE_SIGNIFICAND_QNAN,
-};
-
-static void vfp_double_dump(const char* str, struct vfp_double* d) {
- LOG_TRACE(Core_ARM, "VFP: %s: sign=%d exponent=%d significand=%016llx", str, d->sign != 0,
- d->exponent, d->significand);
-}
-
-static void vfp_double_normalise_denormal(struct vfp_double* vd) {
- int bits = 31 - fls((u32)(vd->significand >> 32));
- if (bits == 31)
- bits = 63 - fls((u32)vd->significand);
-
- vfp_double_dump("normalise_denormal: in", vd);
-
- if (bits) {
- vd->exponent -= bits - 1;
- vd->significand <<= bits;
- }
-
- vfp_double_dump("normalise_denormal: out", vd);
-}
-
-u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double* vd, u32 fpscr,
- u32 exceptions, const char* func) {
- u64 significand, incr;
- int exponent, shift, underflow;
- u32 rmode;
-
- vfp_double_dump("pack: in", vd);
-
- /*
- * Infinities and NaNs are a special case.
- */
- if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
- goto pack;
-
- /*
- * Special-case zero.
- */
- if (vd->significand == 0) {
- vd->exponent = 0;
- goto pack;
- }
-
- exponent = vd->exponent;
- significand = vd->significand;
-
- shift = 32 - fls((u32)(significand >> 32));
- if (shift == 32)
- shift = 64 - fls((u32)significand);
- if (shift) {
- exponent -= shift;
- significand <<= shift;
- }
-
-#if 1
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: normalised", vd);
-#endif
-
- /*
- * Tiny number?
- */
- underflow = exponent < 0;
- if (underflow) {
- significand = vfp_shiftright64jamming(significand, -exponent);
- exponent = 0;
-#if 1
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: tiny number", vd);
-#endif
- if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
- underflow = 0;
-
- int type = vfp_double_type(vd);
-
- if ((type & VFP_DENORMAL) && (fpscr & FPSCR_FLUSH_TO_ZERO)) {
- // Flush denormal to positive 0
- significand = 0;
-
- vd->sign = 0;
- vd->significand = significand;
-
- underflow = 0;
- exceptions |= FPSCR_UFC;
- }
- }
-
- /*
- * Select rounding increment.
- */
- incr = 0;
- rmode = fpscr & FPSCR_RMODE_MASK;
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 1ULL << VFP_DOUBLE_LOW_BITS;
- if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
- incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
-
- LOG_TRACE(Core_ARM, "VFP: rounding increment = 0x%08llx", incr);
-
- /*
- * Is our rounding going to overflow?
- */
- if ((significand + incr) < significand) {
- exponent += 1;
- significand = (significand >> 1) | (significand & 1);
- incr >>= 1;
-#if 1
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: overflow", vd);
-#endif
- }
-
- /*
- * If any of the low bits (which will be shifted out of the
- * number) are non-zero, the result is inexact.
- */
- if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
- exceptions |= FPSCR_IXC;
-
- /*
- * Do our rounding.
- */
- significand += incr;
-
- /*
- * Infinity?
- */
- if (exponent >= 2046) {
- exceptions |= FPSCR_OFC | FPSCR_IXC;
- if (incr == 0) {
- vd->exponent = 2045;
- vd->significand = 0x7fffffffffffffffULL;
- } else {
- vd->exponent = 2047; /* infinity */
- vd->significand = 0;
- }
- } else {
- if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
- exponent = 0;
- if (exponent || significand > 0x8000000000000000ULL)
- underflow = 0;
- if (underflow)
- exceptions |= FPSCR_UFC;
- vd->exponent = exponent;
- vd->significand = significand >> 1;
- }
-
-pack:
- vfp_double_dump("pack: final", vd);
- {
- s64 d = vfp_double_pack(vd);
- LOG_TRACE(Core_ARM, "VFP: %s: d(d%d)=%016llx exceptions=%08x", func, dd, d, exceptions);
- vfp_put_double(state, d, dd);
- }
- return exceptions;
-}
-
-/*
- * Propagate the NaN, setting exceptions if it is signalling.
- * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
- */
-static u32 vfp_propagate_nan(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm,
- u32 fpscr) {
- struct vfp_double* nan;
- int tn, tm = 0;
-
- tn = vfp_double_type(vdn);
-
- if (vdm)
- tm = vfp_double_type(vdm);
-
- if (fpscr & FPSCR_DEFAULT_NAN)
- /*
- * Default NaN mode - always returns a quiet NaN
- */
- nan = &vfp_double_default_qnan;
- else {
- /*
- * Contemporary mode - select the first signalling
- * NAN, or if neither are signalling, the first
- * quiet NAN.
- */
- if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
- nan = vdn;
- else
- nan = vdm;
- /*
- * Make the NaN quiet.
- */
- nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
- }
-
- *vdd = *nan;
-
- /*
- * If one was a signalling NAN, raise invalid operation.
- */
- return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
-}
-
-/*
- * Extended operations
- */
-static u32 vfp_double_fabs(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vfp_put_double(state, vfp_double_packed_abs(vfp_get_double(state, dm)), dd);
- return 0;
-}
-
-static u32 vfp_double_fcpy(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vfp_put_double(state, vfp_get_double(state, dm), dd);
- return 0;
-}
-
-static u32 vfp_double_fneg(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vfp_put_double(state, vfp_double_packed_negate(vfp_get_double(state, dm)), dd);
- return 0;
-}
-
-static u32 vfp_double_fsqrt(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vfp_double vdm, vdd, *vdp;
- int ret, tm;
- u32 exceptions = 0;
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
-
- tm = vfp_double_type(&vdm);
- if (tm & (VFP_NAN | VFP_INFINITY)) {
- vdp = &vdd;
-
- if (tm & VFP_NAN)
- ret = vfp_propagate_nan(vdp, &vdm, nullptr, fpscr);
- else if (vdm.sign == 0) {
- sqrt_copy:
- vdp = &vdm;
- ret = 0;
- } else {
- sqrt_invalid:
- vdp = &vfp_double_default_qnan;
- ret = FPSCR_IOC;
- }
- vfp_put_double(state, vfp_double_pack(vdp), dd);
- return ret;
- }
-
- /*
- * sqrt(+/- 0) == +/- 0
- */
- if (tm & VFP_ZERO)
- goto sqrt_copy;
-
- /*
- * Normalise a denormalised number
- */
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
-
- /*
- * sqrt(<0) = invalid
- */
- if (vdm.sign)
- goto sqrt_invalid;
-
- vfp_double_dump("sqrt", &vdm);
-
- /*
- * Estimate the square root.
- */
- vdd.sign = 0;
- vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
- vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
-
- vfp_double_dump("sqrt estimate1", &vdd);
-
- vdm.significand >>= 1 + (vdm.exponent & 1);
- vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
-
- vfp_double_dump("sqrt estimate2", &vdd);
-
- /*
- * And now adjust.
- */
- if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
- if (vdd.significand < 2) {
- vdd.significand = ~0ULL;
- } else {
- u64 termh, terml, remh, reml;
- vdm.significand <<= 2;
- mul64to128(&termh, &terml, vdd.significand, vdd.significand);
- sub128(&remh, &reml, vdm.significand, 0, termh, terml);
- while ((s64)remh < 0) {
- vdd.significand -= 1;
- shift64left(&termh, &terml, vdd.significand);
- terml |= 1;
- add128(&remh, &reml, remh, reml, termh, terml);
- }
- vdd.significand |= (remh | reml) != 0;
- }
- }
- vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
-
- exceptions |= vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fsqrt");
-
- return exceptions;
-}
-
-/*
- * Equal := ZC
- * Less than := N
- * Greater than := C
- * Unordered := CV
- */
-static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u32 fpscr) {
- s64 d, m;
- u32 ret = 0;
-
- LOG_TRACE(Core_ARM, "In %s, state=0x%p, fpscr=0x%x", __FUNCTION__, state, fpscr);
- m = vfp_get_double(state, dm);
- if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
- ret |= FPSCR_CFLAG | FPSCR_VFLAG;
- if (signal_on_qnan ||
- !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
-
- d = vfp_get_double(state, dd);
- if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
- ret |= FPSCR_CFLAG | FPSCR_VFLAG;
- if (signal_on_qnan ||
- !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
-
- if (ret == 0) {
- // printf("In %s, d=%lld, m =%lld\n ", __FUNCTION__, d, m);
- if (d == m || vfp_double_packed_abs(d | m) == 0) {
- /*
- * equal
- */
- ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
- // printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
- } else if (vfp_double_packed_sign(d ^ m)) {
- /*
- * different signs
- */
- if (vfp_double_packed_sign(d))
- /*
- * d is negative, so d < m
- */
- ret |= FPSCR_NFLAG;
- else
- /*
- * d is positive, so d > m
- */
- ret |= FPSCR_CFLAG;
- } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
- /*
- * d < m
- */
- ret |= FPSCR_NFLAG;
- } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
- /*
- * d > m
- */
- ret |= FPSCR_CFLAG;
- }
- }
- LOG_TRACE(Core_ARM, "In %s, state=0x%p, ret=0x%x", __FUNCTION__, state, ret);
-
- return ret;
-}
-
-static u32 vfp_double_fcmp(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_compare(state, dd, 0, dm, fpscr);
-}
-
-static u32 vfp_double_fcmpe(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_compare(state, dd, 1, dm, fpscr);
-}
-
-static u32 vfp_double_fcmpz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_compare(state, dd, 0, VFP_REG_ZERO, fpscr);
-}
-
-static u32 vfp_double_fcmpez(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr);
-}
-
-static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) {
- struct vfp_double vdm;
- struct vfp_single vsd;
- int tm;
- u32 exceptions = 0;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
-
- tm = vfp_double_type(&vdm);
-
- /*
- * If we have a signalling NaN, signal invalid operation.
- */
- if (tm == VFP_SNAN)
- exceptions = FPSCR_IOC;
-
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
-
- vsd.sign = vdm.sign;
- vsd.significand = vfp_hi64to32jamming(vdm.significand);
-
- /*
- * If we have an infinity or a NaN, the exponent must be 255
- */
- if (tm & (VFP_INFINITY | VFP_NAN)) {
- vsd.exponent = 255;
- if (tm == VFP_QNAN)
- vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
- goto pack_nan;
- } else if (tm & VFP_ZERO)
- vsd.exponent = 0;
- else
- vsd.exponent = vdm.exponent - (1023 - 127);
-
- return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts");
-
-pack_nan:
- vfp_put_float(state, vfp_single_pack(&vsd), sd);
- return exceptions;
-}
-
-static u32 vfp_double_fuito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- struct vfp_double vdm;
- u32 m = vfp_get_float(state, dm);
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vdm.sign = 0;
- vdm.exponent = 1023 + 63 - 1;
- vdm.significand = (u64)m;
-
- return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fuito");
-}
-
-static u32 vfp_double_fsito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- struct vfp_double vdm;
- u32 m = vfp_get_float(state, dm);
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vdm.sign = (m & 0x80000000) >> 16;
- vdm.exponent = 1023 + 63 - 1;
- vdm.significand = vdm.sign ? (~m + 1) : m;
-
- return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fsito");
-}
-
-static u32 vfp_double_ftoui(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) {
- struct vfp_double vdm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
-
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_double_type(&vdm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
-
- if (tm & VFP_NAN)
- vdm.sign = 1;
-
- if (vdm.exponent >= 1023 + 32) {
- d = vdm.sign ? 0 : 0xffffffff;
- exceptions = FPSCR_IOC;
- } else if (vdm.exponent >= 1023) {
- int shift = 1023 + 63 - vdm.exponent;
- u64 rem, incr = 0;
-
- /*
- * 2^0 <= m < 2^32-2^8
- */
- d = (u32)((vdm.significand << 1) >> shift);
- rem = vdm.significand << (65 - shift);
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x8000000000000000ULL;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
- incr = ~0ULL;
- }
-
- if ((rem + incr) < rem) {
- if (d < 0xffffffff)
- d += 1;
- else
- exceptions |= FPSCR_IOC;
- }
-
- if (d && vdm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- } else {
- d = 0;
- if (vdm.exponent | vdm.significand) {
- if (rmode == FPSCR_ROUND_NEAREST) {
- if (vdm.exponent >= 1022) {
- d = vdm.sign ? 0 : 1;
- exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC;
- } else {
- exceptions |= FPSCR_IXC;
- }
- } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) {
- d = 1;
- exceptions |= FPSCR_IXC;
- } else if (rmode == FPSCR_ROUND_MINUSINF) {
- exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC;
- } else {
- exceptions |= FPSCR_IXC;
- }
- }
- }
-
- LOG_TRACE(Core_ARM, "VFP: ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
-
- vfp_put_float(state, d, sd);
-
- return exceptions;
-}
-
-static u32 vfp_double_ftouiz(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_ftoui(state, sd, unused, dm,
- (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
-}
-
-static u32 vfp_double_ftosi(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) {
- struct vfp_double vdm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- vfp_double_dump("VDM", &vdm);
-
- /*
- * Do we have denormalised number?
- */
- tm = vfp_double_type(&vdm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
-
- if (tm & VFP_NAN) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (vdm.exponent >= 1023 + 31) {
- d = 0x7fffffff;
- if (vdm.sign)
- d = ~d;
- exceptions |= FPSCR_IOC;
- } else if (vdm.exponent >= 1023) {
- int shift = 1023 + 63 - vdm.exponent; /* 58 */
- u64 rem, incr = 0;
-
- d = (u32)((vdm.significand << 1) >> shift);
- rem = vdm.significand << (65 - shift);
-
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x8000000000000000ULL;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
- incr = ~0ULL;
- }
-
- if ((rem + incr) < rem && d < 0xffffffff)
- d += 1;
- if (d > (0x7fffffffU + (vdm.sign != 0))) {
- d = (0x7fffffffU + (vdm.sign != 0));
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
-
- if (vdm.sign)
- d = (~d + 1);
- } else {
- d = 0;
- if (vdm.exponent | vdm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_NEAREST) {
- if (vdm.exponent >= 1022) {
- d = vdm.sign ? 0xffffffff : 1;
- } else {
- d = 0;
- }
- } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) {
- d = 1;
- } else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
- d = 0xffffffff;
- }
- }
- }
-
- LOG_TRACE(Core_ARM, "VFP: ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
-
- vfp_put_float(state, (s32)d, sd);
-
- return exceptions;
-}
-
-static u32 vfp_double_ftosiz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_ftosi(state, dd, unused, dm,
- (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
-}
-
-static struct op fops_ext[] = {
- {vfp_double_fcpy, 0}, // 0x00000000 - FEXT_FCPY
- {vfp_double_fabs, 0}, // 0x00000001 - FEXT_FABS
- {vfp_double_fneg, 0}, // 0x00000002 - FEXT_FNEG
- {vfp_double_fsqrt, 0}, // 0x00000003 - FEXT_FSQRT
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_double_fcmp, OP_SCALAR}, // 0x00000008 - FEXT_FCMP
- {vfp_double_fcmpe, OP_SCALAR}, // 0x00000009 - FEXT_FCMPE
- {vfp_double_fcmpz, OP_SCALAR}, // 0x0000000A - FEXT_FCMPZ
- {vfp_double_fcmpez, OP_SCALAR}, // 0x0000000B - FEXT_FCMPEZ
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_double_fcvts, OP_SCALAR | OP_DD}, // 0x0000000F - FEXT_FCVT
- {vfp_double_fuito, OP_SCALAR | OP_SM}, // 0x00000010 - FEXT_FUITO
- {vfp_double_fsito, OP_SCALAR | OP_SM}, // 0x00000011 - FEXT_FSITO
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {nullptr, 0},
- {vfp_double_ftoui, OP_SCALAR | OP_SD}, // 0x00000018 - FEXT_FTOUI
- {vfp_double_ftouiz, OP_SCALAR | OP_SD}, // 0x00000019 - FEXT_FTOUIZ
- {vfp_double_ftosi, OP_SCALAR | OP_SD}, // 0x0000001A - FEXT_FTOSI
- {vfp_double_ftosiz, OP_SCALAR | OP_SD}, // 0x0000001B - FEXT_FTOSIZ
-};
-
-static u32 vfp_double_fadd_nonnumber(struct vfp_double* vdd, struct vfp_double* vdn,
- struct vfp_double* vdm, u32 fpscr) {
- struct vfp_double* vdp;
- u32 exceptions = 0;
- int tn, tm;
-
- tn = vfp_double_type(vdn);
- tm = vfp_double_type(vdm);
-
- if (tn & tm & VFP_INFINITY) {
- /*
- * Two infinities. Are they different signs?
- */
- if (vdn->sign ^ vdm->sign) {
- /*
- * different signs -> invalid
- */
- exceptions = FPSCR_IOC;
- vdp = &vfp_double_default_qnan;
- } else {
- /*
- * same signs -> valid
- */
- vdp = vdn;
- }
- } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
- /*
- * One infinity and one number -> infinity
- */
- vdp = vdn;
- } else {
- /*
- * 'n' is a NaN of some type
- */
- return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
- }
- *vdd = *vdp;
- return exceptions;
-}
-
-u32 vfp_double_add(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm,
- u32 fpscr) {
- u32 exp_diff;
- u64 m_sig;
-
- if (vdn->significand & (1ULL << 63) || vdm->significand & (1ULL << 63)) {
- LOG_INFO(Core_ARM, "VFP: bad FP values in %s", __func__);
- vfp_double_dump("VDN", vdn);
- vfp_double_dump("VDM", vdm);
- }
-
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vdn->exponent < vdm->exponent) {
- std::swap(vdm, vdn);
- }
-
- /*
- * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
- * infinity or a NaN here.
- */
- if (vdn->exponent == 2047)
- return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
-
- /*
- * We have two proper numbers, where 'vdn' is the larger magnitude.
- *
- * Copy 'n' to 'd' before doing the arithmetic.
- */
- *vdd = *vdn;
-
- /*
- * Align 'm' with the result.
- */
- exp_diff = vdn->exponent - vdm->exponent;
- m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
-
- /*
- * If the signs are different, we are really subtracting.
- */
- if (vdn->sign ^ vdm->sign) {
- m_sig = vdn->significand - m_sig;
- if ((s64)m_sig < 0) {
- vdd->sign = vfp_sign_negate(vdd->sign);
- m_sig = (~m_sig + 1);
- } else if (m_sig == 0) {
- vdd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
- }
- } else {
- m_sig += vdn->significand;
- }
- vdd->significand = m_sig;
-
- return 0;
-}
-
-u32 vfp_double_multiply(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm,
- u32 fpscr) {
- vfp_double_dump("VDN", vdn);
- vfp_double_dump("VDM", vdm);
-
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vdn->exponent < vdm->exponent) {
- std::swap(vdm, vdn);
- LOG_TRACE(Core_ARM, "VFP: swapping M <-> N");
- }
-
- vdd->sign = vdn->sign ^ vdm->sign;
-
- /*
- * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
- */
- if (vdn->exponent == 2047) {
- if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
- return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
- if ((vdm->exponent | vdm->significand) == 0) {
- *vdd = vfp_double_default_qnan;
- return FPSCR_IOC;
- }
- vdd->exponent = vdn->exponent;
- vdd->significand = 0;
- return 0;
- }
-
- /*
- * If 'm' is zero, the result is always zero. In this case,
- * 'n' may be zero or a number, but it doesn't matter which.
- */
- if ((vdm->exponent | vdm->significand) == 0) {
- vdd->exponent = 0;
- vdd->significand = 0;
- return 0;
- }
-
- /*
- * We add 2 to the destination exponent for the same reason
- * as the addition case - though this time we have +1 from
- * each input operand.
- */
- vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
- vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
-
- vfp_double_dump("VDD", vdd);
- return 0;
-}
-
-#define NEG_MULTIPLY (1 << 0)
-#define NEG_SUBTRACT (1 << 1)
-
-static u32 vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 fpscr,
- u32 negate, const char* func) {
- struct vfp_double vdd, vdp, vdn, vdm;
- u32 exceptions = 0;
-
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
-
- exceptions |= vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
- if (negate & NEG_MULTIPLY)
- vdp.sign = vfp_sign_negate(vdp.sign);
-
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dd), fpscr);
- if (vdn.exponent == 0 && vdn.significand != 0)
- vfp_double_normalise_denormal(&vdn);
-
- if (negate & NEG_SUBTRACT)
- vdn.sign = vfp_sign_negate(vdn.sign);
-
- exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
-
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, func);
-}
-
-/*
- * Standard operations
- */
-
-/*
- * sd = sd + (sn * sm)
- */
-static u32 vfp_double_fmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, 0, "fmac");
-}
-
-/*
- * sd = sd - (sn * sm)
- */
-static u32 vfp_double_fnmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
-}
-
-/*
- * sd = -sd + (sn * sm)
- */
-static u32 vfp_double_fmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
-}
-
-/*
- * sd = -sd - (sn * sm)
- */
-static u32 vfp_double_fnmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY,
- "fnmsc");
-}
-
-/*
- * sd = sn * sm
- */
-static u32 vfp_double_fmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
-
- exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fmul");
-}
-
-/*
- * sd = -(sn * sm)
- */
-static u32 vfp_double_fnmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
-
- exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
- vdd.sign = vfp_sign_negate(vdd.sign);
-
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fnmul");
-}
-
-/*
- * sd = sn + sm
- */
-static u32 vfp_double_fadd(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
-
- exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr);
-
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fadd");
-}
-
-/*
- * sd = sn - sm
- */
-static u32 vfp_double_fsub(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
-
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
-
- /*
- * Subtraction is like addition, but with a negated operand.
- */
- vdm.sign = vfp_sign_negate(vdm.sign);
-
- exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr);
-
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fsub");
-}
-
-/*
- * sd = sn / sm
- */
-static u32 vfp_double_fdiv(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
- int tm, tn;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr);
- exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr);
-
- vdd.sign = vdn.sign ^ vdm.sign;
-
- tn = vfp_double_type(&vdn);
- tm = vfp_double_type(&vdm);
-
- /*
- * Is n a NAN?
- */
- if (tn & VFP_NAN)
- goto vdn_nan;
-
- /*
- * Is m a NAN?
- */
- if (tm & VFP_NAN)
- goto vdm_nan;
-
- /*
- * If n and m are infinity, the result is invalid
- * If n and m are zero, the result is invalid
- */
- if (tm & tn & (VFP_INFINITY | VFP_ZERO))
- goto invalid;
-
- /*
- * If n is infinity, the result is infinity
- */
- if (tn & VFP_INFINITY)
- goto infinity;
-
- /*
- * If m is zero, raise div0 exceptions
- */
- if (tm & VFP_ZERO)
- goto divzero;
-
- /*
- * If m is infinity, or n is zero, the result is zero
- */
- if (tm & VFP_INFINITY || tn & VFP_ZERO)
- goto zero;
-
- if (tn & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdn);
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
-
- /*
- * Ok, we have two numbers, we can perform division.
- */
- vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
- vdm.significand <<= 1;
- if (vdm.significand <= (2 * vdn.significand)) {
- vdn.significand >>= 1;
- vdd.exponent++;
- }
- vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
- if ((vdd.significand & 0x1ff) <= 2) {
- u64 termh, terml, remh, reml;
- mul64to128(&termh, &terml, vdm.significand, vdd.significand);
- sub128(&remh, &reml, vdn.significand, 0, termh, terml);
- while ((s64)remh < 0) {
- vdd.significand -= 1;
- add128(&remh, &reml, remh, reml, 0, vdm.significand);
- }
- vdd.significand |= (reml != 0);
- }
- return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fdiv");
-
-vdn_nan:
- exceptions |= vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
-pack:
- vfp_put_double(state, vfp_double_pack(&vdd), dd);
- return exceptions;
-
-vdm_nan:
- exceptions |= vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
- goto pack;
-
-zero:
- vdd.exponent = 0;
- vdd.significand = 0;
- goto pack;
-
-divzero:
- exceptions |= FPSCR_DZC;
-infinity:
- vdd.exponent = 2047;
- vdd.significand = 0;
- goto pack;
-
-invalid:
- vfp_put_double(state, vfp_double_pack(&vfp_double_default_qnan), dd);
- return FPSCR_IOC;
-}
-
-static struct op fops[] = {
- {vfp_double_fmac, 0}, {vfp_double_fmsc, 0}, {vfp_double_fmul, 0},
- {vfp_double_fadd, 0}, {vfp_double_fnmac, 0}, {vfp_double_fnmsc, 0},
- {vfp_double_fnmul, 0}, {vfp_double_fsub, 0}, {vfp_double_fdiv, 0},
-};
-
-#define FREG_BANK(x) ((x)&0x0c)
-#define FREG_IDX(x) ((x)&3)
-
-u32 vfp_double_cpdo(ARMul_State* state, u32 inst, u32 fpscr) {
- u32 op = inst & FOP_MASK;
- u32 exceptions = 0;
- unsigned int dest;
- unsigned int dn = vfp_get_dn(inst);
- unsigned int dm;
- unsigned int vecitr, veclen, vecstride;
- struct op* fop;
-
- LOG_TRACE(Core_ARM, "In %s", __FUNCTION__);
- vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK));
-
- fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
-
- /*
- * fcvtds takes an sN register number as destination, not dN.
- * It also always operates on scalars.
- */
- if (fop->flags & OP_SD)
- dest = vfp_get_sd(inst);
- else
- dest = vfp_get_dd(inst);
-
- /*
- * f[us]ito takes a sN operand, not a dN operand.
- */
- if (fop->flags & OP_SM)
- dm = vfp_get_sm(inst);
- else
- dm = vfp_get_dm(inst);
-
- /*
- * If destination bank is zero, vector length is always '1'.
- * ARM DDI0100F C5.1.3, C5.3.2.
- */
- if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0))
- veclen = 0;
- else
- veclen = fpscr & FPSCR_LENGTH_MASK;
-
- LOG_TRACE(Core_ARM, "VFP: vecstride=%u veclen=%u", vecstride,
- (veclen >> FPSCR_LENGTH_BIT) + 1);
-
- if (!fop->fn) {
- printf("VFP: could not find double op %d\n", FEXT_TO_IDX(inst));
- goto invalid;
- }
-
- for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
- u32 except;
- char type;
-
- type = (fop->flags & OP_SD) ? 's' : 'd';
- if (op == FOP_EXT)
- LOG_TRACE(Core_ARM, "VFP: itr%d (%c%u) = op[%u] (d%u)", vecitr >> FPSCR_LENGTH_BIT,
- type, dest, dn, dm);
- else
- LOG_TRACE(Core_ARM, "VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)",
- vecitr >> FPSCR_LENGTH_BIT, type, dest, dn, FOP_TO_IDX(op), dm);
-
- except = fop->fn(state, dest, dn, dm, fpscr);
- LOG_TRACE(Core_ARM, "VFP: itr%d: exceptions=%08x", vecitr >> FPSCR_LENGTH_BIT, except);
-
- exceptions |= except & ~VFP_NAN_FLAG;
-
- /*
- * CHECK: It appears to be undefined whether we stop when
- * we encounter an exception. We continue.
- */
- dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3);
- dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3);
- if (FREG_BANK(dm) != 0)
- dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3);
- }
- return exceptions;
-
-invalid:
- return ~0;
-}