summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_process.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/k_process.cpp')
-rw-r--r--src/core/hle/kernel/k_process.cpp1442
1 files changed, 991 insertions, 451 deletions
diff --git a/src/core/hle/kernel/k_process.cpp b/src/core/hle/kernel/k_process.cpp
index 7fa34d693..1f4b0755d 100644
--- a/src/core/hle/kernel/k_process.cpp
+++ b/src/core/hle/kernel/k_process.cpp
@@ -1,515 +1,598 @@
-// SPDX-FileCopyrightText: 2015 Citra Emulator Project
+// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
-#include <algorithm>
-#include <bitset>
-#include <ctime>
-#include <memory>
#include <random>
-#include "common/alignment.h"
-#include "common/assert.h"
-#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
-#include "core/file_sys/program_metadata.h"
-#include "core/hle/kernel/code_set.h"
-#include "core/hle/kernel/k_memory_block_manager.h"
-#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
-#include "core/hle/kernel/k_resource_limit.h"
-#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_shared_memory_info.h"
-#include "core/hle/kernel/k_thread.h"
-#include "core/hle/kernel/kernel.h"
-#include "core/hle/kernel/svc_results.h"
-#include "core/memory.h"
+#include "core/hle/kernel/k_thread_local_page.h"
+#include "core/hle/kernel/k_thread_queue.h"
+#include "core/hle/kernel/k_worker_task_manager.h"
namespace Kernel {
-namespace {
-/**
- * Sets up the primary application thread
- *
- * @param system The system instance to create the main thread under.
- * @param owner_process The parent process for the main thread
- * @param priority The priority to give the main thread
- */
-void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority,
- KProcessAddress stack_top) {
- const KProcessAddress entry_point = owner_process.GetEntryPoint();
- ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::ThreadCountMax, 1));
-
- KThread* thread = KThread::Create(system.Kernel());
- SCOPE_EXIT({ thread->Close(); });
-
- ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
- owner_process.GetIdealCoreId(),
- std::addressof(owner_process))
- .IsSuccess());
-
- // Register 1 must be a handle to the main thread
- Handle thread_handle{};
- owner_process.GetHandleTable().Add(std::addressof(thread_handle), thread);
-
- thread->GetContext32().cpu_registers[0] = 0;
- thread->GetContext64().cpu_registers[0] = 0;
- thread->GetContext32().cpu_registers[1] = thread_handle;
- thread->GetContext64().cpu_registers[1] = thread_handle;
-
- if (system.DebuggerEnabled()) {
- thread->RequestSuspend(SuspendType::Debug);
- }
- // Run our thread.
- void(thread->Run());
-}
-} // Anonymous namespace
+namespace {
-Result KProcess::Initialize(KProcess* process, Core::System& system, std::string process_name,
- ProcessType type, KResourceLimit* res_limit) {
- auto& kernel = system.Kernel();
+Result TerminateChildren(KernelCore& kernel, KProcess* process,
+ const KThread* thread_to_not_terminate) {
+ // Request that all children threads terminate.
+ {
+ KScopedLightLock proc_lk(process->GetListLock());
+ KScopedSchedulerLock sl(kernel);
+
+ if (thread_to_not_terminate != nullptr &&
+ process->GetPinnedThread(GetCurrentCoreId(kernel)) == thread_to_not_terminate) {
+ // NOTE: Here Nintendo unpins the current thread instead of the thread_to_not_terminate.
+ // This is valid because the only caller which uses non-nullptr as argument uses
+ // GetCurrentThreadPointer(), but it's still notable because it seems incorrect at
+ // first glance.
+ process->UnpinCurrentThread();
+ }
- process->name = std::move(process_name);
- process->m_resource_limit = res_limit;
- process->m_system_resource_address = 0;
- process->m_state = State::Created;
- process->m_program_id = 0;
- process->m_process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
- : kernel.CreateNewUserProcessID();
- process->m_capabilities.InitializeForMetadatalessProcess();
- process->m_is_initialized = true;
+ auto& thread_list = process->GetThreadList();
+ for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
+ if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
+ if (thread->GetState() != ThreadState::Terminated) {
+ thread->RequestTerminate();
+ }
+ }
+ }
+ }
- std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
- : static_cast<u32>(std::time(nullptr)));
- std::uniform_int_distribution<u64> distribution;
- std::generate(process->m_random_entropy.begin(), process->m_random_entropy.end(),
- [&] { return distribution(rng); });
+ // Wait for all children threads to terminate.
+ while (true) {
+ // Get the next child.
+ KThread* cur_child = nullptr;
+ {
+ KScopedLightLock proc_lk(process->GetListLock());
+
+ auto& thread_list = process->GetThreadList();
+ for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
+ if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
+ if (thread->GetState() != ThreadState::Terminated) {
+ if (thread->Open()) {
+ cur_child = thread;
+ break;
+ }
+ }
+ }
+ }
+ }
- kernel.AppendNewProcess(process);
+ // If we didn't find any non-terminated children, we're done.
+ if (cur_child == nullptr) {
+ break;
+ }
- // Clear remaining fields.
- process->m_num_running_threads = 0;
- process->m_is_signaled = false;
- process->m_exception_thread = nullptr;
- process->m_is_suspended = false;
- process->m_schedule_count = 0;
- process->m_is_handle_table_initialized = false;
- process->m_is_hbl = false;
+ // Terminate and close the thread.
+ SCOPE_EXIT({ cur_child->Close(); });
- // Open a reference to the resource limit.
- process->m_resource_limit->Open();
+ if (const Result terminate_result = cur_child->Terminate();
+ ResultTerminationRequested == terminate_result) {
+ R_THROW(terminate_result);
+ }
+ }
R_SUCCEED();
}
-void KProcess::DoWorkerTaskImpl() {
- UNIMPLEMENTED();
-}
-
-KResourceLimit* KProcess::GetResourceLimit() const {
- return m_resource_limit;
-}
+class ThreadQueueImplForKProcessEnterUserException final : public KThreadQueue {
+private:
+ KThread** m_exception_thread;
-void KProcess::IncrementRunningThreadCount() {
- ASSERT(m_num_running_threads.load() >= 0);
- ++m_num_running_threads;
-}
+public:
+ explicit ThreadQueueImplForKProcessEnterUserException(KernelCore& kernel, KThread** t)
+ : KThreadQueue(kernel), m_exception_thread(t) {}
-void KProcess::DecrementRunningThreadCount() {
- ASSERT(m_num_running_threads.load() > 0);
+ virtual void EndWait(KThread* waiting_thread, Result wait_result) override {
+ // Set the exception thread.
+ *m_exception_thread = waiting_thread;
- if (const auto prev = m_num_running_threads--; prev == 1) {
- // TODO(bunnei): Process termination to be implemented when multiprocess is supported.
+ // Invoke the base end wait handler.
+ KThreadQueue::EndWait(waiting_thread, wait_result);
}
-}
-u64 KProcess::GetTotalPhysicalMemoryAvailable() {
- const u64 capacity{m_resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
- m_page_table.GetNormalMemorySize() + GetSystemResourceSize() + m_image_size +
- m_main_thread_stack_size};
- if (const auto pool_size = m_kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
- capacity != pool_size) {
- LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
- }
- if (capacity < m_memory_usage_capacity) {
- return capacity;
+ virtual void CancelWait(KThread* waiting_thread, Result wait_result,
+ bool cancel_timer_task) override {
+ // Remove the thread as a waiter on its mutex owner.
+ waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
+
+ // Invoke the base cancel wait handler.
+ KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
- return m_memory_usage_capacity;
-}
+};
-u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() {
- return this->GetTotalPhysicalMemoryAvailable() - this->GetSystemResourceSize();
+void GenerateRandom(std::span<u64> out_random) {
+ std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
+ : static_cast<u32>(std::time(nullptr)));
+ std::uniform_int_distribution<u64> distribution;
+ std::generate(out_random.begin(), out_random.end(), [&] { return distribution(rng); });
}
-u64 KProcess::GetTotalPhysicalMemoryUsed() {
- return m_image_size + m_main_thread_stack_size + m_page_table.GetNormalMemorySize() +
- this->GetSystemResourceSize();
-}
+} // namespace
-u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
- return this->GetTotalPhysicalMemoryUsed() - this->GetSystemResourceSize();
-}
+void KProcess::Finalize() {
+ // Delete the process local region.
+ this->DeleteThreadLocalRegion(m_plr_address);
-bool KProcess::ReleaseUserException(KThread* thread) {
- KScopedSchedulerLock sl{m_kernel};
+ // Get the used memory size.
+ const size_t used_memory_size = this->GetUsedNonSystemUserPhysicalMemorySize();
- if (m_exception_thread == thread) {
- m_exception_thread = nullptr;
+ // Finalize the page table.
+ m_page_table.Finalize();
- // Remove waiter thread.
- bool has_waiters{};
- if (KThread* next = thread->RemoveKernelWaiterByKey(
- std::addressof(has_waiters),
- reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)));
- next != nullptr) {
- next->EndWait(ResultSuccess);
+ // Finish using our system resource.
+ if (m_system_resource) {
+ if (m_system_resource->IsSecureResource()) {
+ // Finalize optimized memory. If memory wasn't optimized, this is a no-op.
+ m_kernel.MemoryManager().FinalizeOptimizedMemory(this->GetId(), m_memory_pool);
}
- KScheduler::SetSchedulerUpdateNeeded(m_kernel);
-
- return true;
- } else {
- return false;
+ m_system_resource->Close();
+ m_system_resource = nullptr;
}
-}
-
-void KProcess::PinCurrentThread(s32 core_id) {
- ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
- // Get the current thread.
- KThread* cur_thread =
- m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
+ // Free all shared memory infos.
+ {
+ auto it = m_shared_memory_list.begin();
+ while (it != m_shared_memory_list.end()) {
+ KSharedMemoryInfo* info = std::addressof(*it);
+ KSharedMemory* shmem = info->GetSharedMemory();
- // If the thread isn't terminated, pin it.
- if (!cur_thread->IsTerminationRequested()) {
- // Pin it.
- this->PinThread(core_id, cur_thread);
- cur_thread->Pin(core_id);
+ while (!info->Close()) {
+ shmem->Close();
+ }
+ shmem->Close();
- // An update is needed.
- KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+ it = m_shared_memory_list.erase(it);
+ KSharedMemoryInfo::Free(m_kernel, info);
+ }
}
-}
-void KProcess::UnpinCurrentThread(s32 core_id) {
- ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
-
- // Get the current thread.
- KThread* cur_thread =
- m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
+ // Our thread local page list must be empty at this point.
+ ASSERT(m_partially_used_tlp_tree.empty());
+ ASSERT(m_fully_used_tlp_tree.empty());
- // Unpin it.
- cur_thread->Unpin();
- this->UnpinThread(core_id, cur_thread);
+ // Release memory to the resource limit.
+ if (m_resource_limit != nullptr) {
+ ASSERT(used_memory_size >= m_memory_release_hint);
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, used_memory_size,
+ used_memory_size - m_memory_release_hint);
+ m_resource_limit->Close();
+ }
- // An update is needed.
- KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+ // Perform inherited finalization.
+ KSynchronizationObject::Finalize();
}
-void KProcess::UnpinThread(KThread* thread) {
- ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
-
- // Get the thread's core id.
- const auto core_id = thread->GetActiveCore();
+Result KProcess::Initialize(const Svc::CreateProcessParameter& params, KResourceLimit* res_limit,
+ bool is_real) {
+ // TODO: remove this special case
+ if (is_real) {
+ // Create and clear the process local region.
+ R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
+ this->GetMemory().ZeroBlock(m_plr_address, Svc::ThreadLocalRegionSize);
+ }
- // Unpin it.
- this->UnpinThread(core_id, thread);
- thread->Unpin();
+ // Copy in the name from parameters.
+ static_assert(sizeof(params.name) < sizeof(m_name));
+ std::memcpy(m_name.data(), params.name.data(), sizeof(params.name));
+ m_name[sizeof(params.name)] = 0;
+
+ // Set misc fields.
+ m_state = State::Created;
+ m_main_thread_stack_size = 0;
+ m_used_kernel_memory_size = 0;
+ m_ideal_core_id = 0;
+ m_flags = params.flags;
+ m_version = params.version;
+ m_program_id = params.program_id;
+ m_code_address = params.code_address;
+ m_code_size = params.code_num_pages * PageSize;
+ m_is_application = True(params.flags & Svc::CreateProcessFlag::IsApplication);
+
+ // Set thread fields.
+ for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
+ m_running_threads[i] = nullptr;
+ m_pinned_threads[i] = nullptr;
+ m_running_thread_idle_counts[i] = 0;
+ m_running_thread_switch_counts[i] = 0;
+ }
- // An update is needed.
- KScheduler::SetSchedulerUpdateNeeded(m_kernel);
-}
+ // Set max memory based on address space type.
+ switch ((params.flags & Svc::CreateProcessFlag::AddressSpaceMask)) {
+ case Svc::CreateProcessFlag::AddressSpace32Bit:
+ case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
+ case Svc::CreateProcessFlag::AddressSpace64Bit:
+ m_max_process_memory = m_page_table.GetHeapRegionSize();
+ break;
+ case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
+ m_max_process_memory = m_page_table.GetHeapRegionSize() + m_page_table.GetAliasRegionSize();
+ break;
+ default:
+ UNREACHABLE();
+ }
-Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] KProcessAddress address,
- [[maybe_unused]] size_t size) {
- // Lock ourselves, to prevent concurrent access.
- KScopedLightLock lk(m_state_lock);
+ // Generate random entropy.
+ GenerateRandom(m_entropy);
- // Try to find an existing info for the memory.
- KSharedMemoryInfo* shemen_info = nullptr;
- const auto iter = std::find_if(
- m_shared_memory_list.begin(), m_shared_memory_list.end(),
- [shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
- if (iter != m_shared_memory_list.end()) {
- shemen_info = *iter;
- }
+ // Clear remaining fields.
+ m_num_running_threads = 0;
+ m_num_process_switches = 0;
+ m_num_thread_switches = 0;
+ m_num_fpu_switches = 0;
+ m_num_supervisor_calls = 0;
+ m_num_ipc_messages = 0;
- if (shemen_info == nullptr) {
- shemen_info = KSharedMemoryInfo::Allocate(m_kernel);
- R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
+ m_is_signaled = false;
+ m_exception_thread = nullptr;
+ m_is_suspended = false;
+ m_memory_release_hint = 0;
+ m_schedule_count = 0;
+ m_is_handle_table_initialized = false;
- shemen_info->Initialize(shmem);
- m_shared_memory_list.push_back(shemen_info);
- }
+ // Open a reference to our resource limit.
+ m_resource_limit = res_limit;
+ m_resource_limit->Open();
- // Open a reference to the shared memory and its info.
- shmem->Open();
- shemen_info->Open();
+ // We're initialized!
+ m_is_initialized = true;
R_SUCCEED();
}
-void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] KProcessAddress address,
- [[maybe_unused]] size_t size) {
- // Lock ourselves, to prevent concurrent access.
- KScopedLightLock lk(m_state_lock);
+Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPageGroup& pg,
+ std::span<const u32> caps, KResourceLimit* res_limit,
+ KMemoryManager::Pool pool, bool immortal) {
+ ASSERT(res_limit != nullptr);
+ ASSERT((params.code_num_pages * PageSize) / PageSize ==
+ static_cast<size_t>(params.code_num_pages));
+
+ // Set members.
+ m_memory_pool = pool;
+ m_is_default_application_system_resource = false;
+ m_is_immortal = immortal;
+
+ // Setup our system resource.
+ if (const size_t system_resource_num_pages = params.system_resource_num_pages;
+ system_resource_num_pages != 0) {
+ // Create a secure system resource.
+ KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
+ R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
+
+ ON_RESULT_FAILURE {
+ secure_resource->Close();
+ };
+
+ // Initialize the secure resource.
+ R_TRY(secure_resource->Initialize(system_resource_num_pages * PageSize, res_limit,
+ m_memory_pool));
+
+ // Set our system resource.
+ m_system_resource = secure_resource;
+ } else {
+ // Use the system-wide system resource.
+ const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
+ m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
+ : m_kernel.GetSystemSystemResource());
- KSharedMemoryInfo* shemen_info = nullptr;
- const auto iter = std::find_if(
- m_shared_memory_list.begin(), m_shared_memory_list.end(),
- [shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
- if (iter != m_shared_memory_list.end()) {
- shemen_info = *iter;
+ m_is_default_application_system_resource = is_app;
+
+ // Open reference to the system resource.
+ m_system_resource->Open();
}
- ASSERT(shemen_info != nullptr);
+ // Ensure we clean up our secure resource, if we fail.
+ ON_RESULT_FAILURE {
+ m_system_resource->Close();
+ m_system_resource = nullptr;
+ };
- if (shemen_info->Close()) {
- m_shared_memory_list.erase(iter);
- KSharedMemoryInfo::Free(m_kernel, shemen_info);
+ // Setup page table.
+ {
+ const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
+ const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
+ const bool enable_das_merge =
+ False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
+ R_TRY(m_page_table.InitializeForProcess(
+ as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address,
+ params.code_num_pages * PageSize, m_system_resource, res_limit, this->GetMemory()));
}
+ ON_RESULT_FAILURE_2 {
+ m_page_table.Finalize();
+ };
- // Close a reference to the shared memory.
- shmem->Close();
-}
+ // Ensure we can insert the code region.
+ R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
+ KMemoryState::Code),
+ ResultInvalidMemoryRegion);
-void KProcess::RegisterThread(KThread* thread) {
- KScopedLightLock lk{m_list_lock};
+ // Map the code region.
+ R_TRY(m_page_table.MapPageGroup(params.code_address, pg, KMemoryState::Code,
+ KMemoryPermission::KernelRead));
- m_thread_list.push_back(thread);
-}
+ // Initialize capabilities.
+ R_TRY(m_capabilities.InitializeForKip(caps, std::addressof(m_page_table)));
-void KProcess::UnregisterThread(KThread* thread) {
- KScopedLightLock lk{m_list_lock};
+ // Initialize the process id.
+ m_process_id = m_kernel.CreateNewUserProcessID();
+ ASSERT(InitialProcessIdMin <= m_process_id);
+ ASSERT(m_process_id <= InitialProcessIdMax);
- m_thread_list.remove(thread);
-}
+ // Initialize the rest of the process.
+ R_TRY(this->Initialize(params, res_limit, true));
-u64 KProcess::GetFreeThreadCount() const {
- if (m_resource_limit != nullptr) {
- const auto current_value =
- m_resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
- const auto limit_value = m_resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
- return limit_value - current_value;
- } else {
- return 0;
- }
+ // We succeeded!
+ R_SUCCEED();
}
-Result KProcess::Reset() {
- // Lock the process and the scheduler.
- KScopedLightLock lk(m_state_lock);
- KScopedSchedulerLock sl{m_kernel};
+Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
+ std::span<const u32> user_caps, KResourceLimit* res_limit,
+ KMemoryManager::Pool pool) {
+ ASSERT(res_limit != nullptr);
- // Validate that we're in a state that we can reset.
- R_UNLESS(m_state != State::Terminated, ResultInvalidState);
- R_UNLESS(m_is_signaled, ResultInvalidState);
+ // Set members.
+ m_memory_pool = pool;
+ m_is_default_application_system_resource = false;
+ m_is_immortal = false;
- // Clear signaled.
- m_is_signaled = false;
- R_SUCCEED();
-}
+ // Get the memory sizes.
+ const size_t code_num_pages = params.code_num_pages;
+ const size_t system_resource_num_pages = params.system_resource_num_pages;
+ const size_t code_size = code_num_pages * PageSize;
+ const size_t system_resource_size = system_resource_num_pages * PageSize;
-Result KProcess::SetActivity(ProcessActivity activity) {
- // Lock ourselves and the scheduler.
- KScopedLightLock lk{m_state_lock};
- KScopedLightLock list_lk{m_list_lock};
- KScopedSchedulerLock sl{m_kernel};
+ // Reserve memory for our code resource.
+ KScopedResourceReservation memory_reservation(
+ res_limit, Svc::LimitableResource::PhysicalMemoryMax, code_size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
- // Validate our state.
- R_UNLESS(m_state != State::Terminating, ResultInvalidState);
- R_UNLESS(m_state != State::Terminated, ResultInvalidState);
+ // Setup our system resource.
+ if (system_resource_num_pages != 0) {
+ // Create a secure system resource.
+ KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
+ R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
- // Either pause or resume.
- if (activity == ProcessActivity::Paused) {
- // Verify that we're not suspended.
- R_UNLESS(!m_is_suspended, ResultInvalidState);
+ ON_RESULT_FAILURE {
+ secure_resource->Close();
+ };
- // Suspend all threads.
- for (auto* thread : this->GetThreadList()) {
- thread->RequestSuspend(SuspendType::Process);
- }
+ // Initialize the secure resource.
+ R_TRY(secure_resource->Initialize(system_resource_size, res_limit, m_memory_pool));
+
+ // Set our system resource.
+ m_system_resource = secure_resource;
- // Set ourselves as suspended.
- this->SetSuspended(true);
} else {
- ASSERT(activity == ProcessActivity::Runnable);
+ // Use the system-wide system resource.
+ const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
+ m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
+ : m_kernel.GetSystemSystemResource());
- // Verify that we're suspended.
- R_UNLESS(m_is_suspended, ResultInvalidState);
+ m_is_default_application_system_resource = is_app;
- // Resume all threads.
- for (auto* thread : this->GetThreadList()) {
- thread->Resume(SuspendType::Process);
- }
+ // Open reference to the system resource.
+ m_system_resource->Open();
+ }
- // Set ourselves as resumed.
- this->SetSuspended(false);
+ // Ensure we clean up our secure resource, if we fail.
+ ON_RESULT_FAILURE {
+ m_system_resource->Close();
+ m_system_resource = nullptr;
+ };
+
+ // Setup page table.
+ {
+ const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
+ const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
+ const bool enable_das_merge =
+ False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
+ R_TRY(m_page_table.InitializeForProcess(as_type, enable_aslr, enable_das_merge,
+ !enable_aslr, pool, params.code_address, code_size,
+ m_system_resource, res_limit, this->GetMemory()));
+ }
+ ON_RESULT_FAILURE_2 {
+ m_page_table.Finalize();
+ };
+
+ // Ensure we can insert the code region.
+ R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
+ ResultInvalidMemoryRegion);
+
+ // Map the code region.
+ R_TRY(m_page_table.MapPages(params.code_address, code_num_pages, KMemoryState::Code,
+ KMemoryPermission::KernelRead | KMemoryPermission::NotMapped));
+
+ // Initialize capabilities.
+ R_TRY(m_capabilities.InitializeForUser(user_caps, std::addressof(m_page_table)));
+
+ // Initialize the process id.
+ m_process_id = m_kernel.CreateNewUserProcessID();
+ ASSERT(ProcessIdMin <= m_process_id);
+ ASSERT(m_process_id <= ProcessIdMax);
+
+ // If we should optimize memory allocations, do so.
+ if (m_system_resource->IsSecureResource() &&
+ True(params.flags & Svc::CreateProcessFlag::OptimizeMemoryAllocation)) {
+ R_TRY(m_kernel.MemoryManager().InitializeOptimizedMemory(m_process_id, pool));
}
+ // Initialize the rest of the process.
+ R_TRY(this->Initialize(params, res_limit, true));
+
+ // We succeeded, so commit our memory reservation.
+ memory_reservation.Commit();
R_SUCCEED();
}
-Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
- bool is_hbl) {
- m_program_id = metadata.GetTitleID();
- m_ideal_core = metadata.GetMainThreadCore();
- m_is_64bit_process = metadata.Is64BitProgram();
- m_system_resource_size = metadata.GetSystemResourceSize();
- m_image_size = code_size;
- m_is_hbl = is_hbl;
+void KProcess::DoWorkerTaskImpl() {
+ // Terminate child threads.
+ TerminateChildren(m_kernel, this, nullptr);
- if (metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit) {
- // For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
- // However, some (buggy) programs/libraries like skyline incorrectly depend on the
- // existence of ASLR pages before the entry point, so we will adjust the load address
- // to point to about 2GiB into the ASLR region.
- m_code_address = 0x8000'0000;
- } else {
- // All other processes can be mapped at the beginning of the code region.
- if (metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is36Bit) {
- m_code_address = 0x800'0000;
- } else {
- m_code_address = 0x20'0000;
- }
+ // Finalize the handle table, if we're not immortal.
+ if (!m_is_immortal && m_is_handle_table_initialized) {
+ this->FinalizeHandleTable();
}
- KScopedResourceReservation memory_reservation(
- m_resource_limit, LimitableResource::PhysicalMemoryMax, code_size + m_system_resource_size);
- if (!memory_reservation.Succeeded()) {
- LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
- code_size + m_system_resource_size);
- R_RETURN(ResultLimitReached);
- }
- // Initialize process address space
- if (const Result result{m_page_table.InitializeForProcess(
- metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
- this->GetEntryPoint(), code_size, std::addressof(m_kernel.GetAppSystemResource()),
- m_resource_limit, m_kernel.System().ApplicationMemory())};
- result.IsError()) {
- R_RETURN(result);
- }
-
- // Map process code region
- if (const Result result{m_page_table.MapProcessCode(this->GetEntryPoint(), code_size / PageSize,
- KMemoryState::Code,
- KMemoryPermission::None)};
- result.IsError()) {
- R_RETURN(result);
- }
-
- // Initialize process capabilities
- const auto& caps{metadata.GetKernelCapabilities()};
- if (const Result result{
- m_capabilities.InitializeForUserProcess(caps.data(), caps.size(), m_page_table)};
- result.IsError()) {
- R_RETURN(result);
- }
-
- // Set memory usage capacity
- switch (metadata.GetAddressSpaceType()) {
- case FileSys::ProgramAddressSpaceType::Is32Bit:
- case FileSys::ProgramAddressSpaceType::Is36Bit:
- case FileSys::ProgramAddressSpaceType::Is39Bit:
- m_memory_usage_capacity =
- m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart();
- break;
+ // Finish termination.
+ this->FinishTermination();
+}
- case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
- m_memory_usage_capacity =
- (m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart()) +
- (m_page_table.GetAliasRegionEnd() - m_page_table.GetAliasRegionStart());
- break;
+Result KProcess::StartTermination() {
+ // Finalize the handle table when we're done, if the process isn't immortal.
+ SCOPE_EXIT({
+ if (!m_is_immortal) {
+ this->FinalizeHandleTable();
+ }
+ });
- default:
- ASSERT(false);
- break;
- }
+ // Terminate child threads other than the current one.
+ R_RETURN(TerminateChildren(m_kernel, this, GetCurrentThreadPointer(m_kernel)));
+}
- // Create TLS region
- R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
- memory_reservation.Commit();
+void KProcess::FinishTermination() {
+ // Only allow termination to occur if the process isn't immortal.
+ if (!m_is_immortal) {
+ // Release resource limit hint.
+ if (m_resource_limit != nullptr) {
+ m_memory_release_hint = this->GetUsedNonSystemUserPhysicalMemorySize();
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, 0,
+ m_memory_release_hint);
+ }
+
+ // Change state.
+ {
+ KScopedSchedulerLock sl(m_kernel);
+ this->ChangeState(State::Terminated);
+ }
- R_RETURN(m_handle_table.Initialize(m_capabilities.GetHandleTableSize()));
+ // Close.
+ this->Close();
+ }
}
-void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
- ASSERT(this->AllocateMainThreadStack(stack_size) == ResultSuccess);
- m_resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
+void KProcess::Exit() {
+ // Determine whether we need to start terminating
+ bool needs_terminate = false;
+ {
+ KScopedLightLock lk(m_state_lock);
+ KScopedSchedulerLock sl(m_kernel);
+
+ ASSERT(m_state != State::Created);
+ ASSERT(m_state != State::CreatedAttached);
+ ASSERT(m_state != State::Crashed);
+ ASSERT(m_state != State::Terminated);
+ if (m_state == State::Running || m_state == State::RunningAttached ||
+ m_state == State::DebugBreak) {
+ this->ChangeState(State::Terminating);
+ needs_terminate = true;
+ }
+ }
- const std::size_t heap_capacity{m_memory_usage_capacity -
- (m_main_thread_stack_size + m_image_size)};
- ASSERT(!m_page_table.SetMaxHeapSize(heap_capacity).IsError());
+ // If we need to start termination, do so.
+ if (needs_terminate) {
+ this->StartTermination();
- this->ChangeState(State::Running);
+ // Register the process as a work task.
+ m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
+ }
- SetupMainThread(m_kernel.System(), *this, main_thread_priority, m_main_thread_stack_top);
+ // Exit the current thread.
+ GetCurrentThread(m_kernel).Exit();
}
-void KProcess::PrepareForTermination() {
- this->ChangeState(State::Terminating);
+Result KProcess::Terminate() {
+ // Determine whether we need to start terminating.
+ bool needs_terminate = false;
+ {
+ KScopedLightLock lk(m_state_lock);
- const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
- for (auto* thread : in_thread_list) {
- if (thread->GetOwnerProcess() != this)
- continue;
+ // Check whether we're allowed to terminate.
+ R_UNLESS(m_state != State::Created, ResultInvalidState);
+ R_UNLESS(m_state != State::CreatedAttached, ResultInvalidState);
- if (thread == GetCurrentThreadPointer(m_kernel))
- continue;
+ KScopedSchedulerLock sl(m_kernel);
- // TODO(Subv): When are the other running/ready threads terminated?
- ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
- "Exiting processes with non-waiting threads is currently unimplemented");
+ if (m_state == State::Running || m_state == State::RunningAttached ||
+ m_state == State::Crashed || m_state == State::DebugBreak) {
+ this->ChangeState(State::Terminating);
+ needs_terminate = true;
+ }
+ }
- thread->Exit();
+ // If we need to terminate, do so.
+ if (needs_terminate) {
+ // Start termination.
+ if (R_SUCCEEDED(this->StartTermination())) {
+ // Finish termination.
+ this->FinishTermination();
+ } else {
+ // Register the process as a work task.
+ m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit,
+ this);
}
- };
+ }
- stop_threads(m_kernel.System().GlobalSchedulerContext().GetThreadList());
+ R_SUCCEED();
+}
- this->DeleteThreadLocalRegion(m_plr_address);
- m_plr_address = 0;
+Result KProcess::AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
+ // Lock ourselves, to prevent concurrent access.
+ KScopedLightLock lk(m_state_lock);
- if (m_resource_limit) {
- m_resource_limit->Release(LimitableResource::PhysicalMemoryMax,
- m_main_thread_stack_size + m_image_size);
+ // Try to find an existing info for the memory.
+ KSharedMemoryInfo* info = nullptr;
+ for (auto it = m_shared_memory_list.begin(); it != m_shared_memory_list.end(); ++it) {
+ if (it->GetSharedMemory() == shmem) {
+ info = std::addressof(*it);
+ break;
+ }
}
- this->ChangeState(State::Terminated);
-}
+ // If we didn't find an info, create one.
+ if (info == nullptr) {
+ // Allocate a new info.
+ info = KSharedMemoryInfo::Allocate(m_kernel);
+ R_UNLESS(info != nullptr, ResultOutOfResource);
-void KProcess::Finalize() {
- // Free all shared memory infos.
- {
- auto it = m_shared_memory_list.begin();
- while (it != m_shared_memory_list.end()) {
- KSharedMemoryInfo* info = *it;
- KSharedMemory* shmem = info->GetSharedMemory();
+ // Initialize the info and add it to our list.
+ info->Initialize(shmem);
+ m_shared_memory_list.push_back(*info);
+ }
- while (!info->Close()) {
- shmem->Close();
- }
+ // Open a reference to the shared memory and its info.
+ shmem->Open();
+ info->Open();
- shmem->Close();
+ R_SUCCEED();
+}
- it = m_shared_memory_list.erase(it);
- KSharedMemoryInfo::Free(m_kernel, info);
+void KProcess::RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
+ // Lock ourselves, to prevent concurrent access.
+ KScopedLightLock lk(m_state_lock);
+
+ // Find an existing info for the memory.
+ KSharedMemoryInfo* info = nullptr;
+ auto it = m_shared_memory_list.begin();
+ for (; it != m_shared_memory_list.end(); ++it) {
+ if (it->GetSharedMemory() == shmem) {
+ info = std::addressof(*it);
+ break;
}
}
+ ASSERT(info != nullptr);
- // Release memory to the resource limit.
- if (m_resource_limit != nullptr) {
- m_resource_limit->Close();
- m_resource_limit = nullptr;
+ // Close a reference to the info and its memory.
+ if (info->Close()) {
+ m_shared_memory_list.erase(it);
+ KSharedMemoryInfo::Free(m_kernel, info);
}
- // Finalize the page table.
- m_page_table.Finalize();
-
- // Perform inherited finalization.
- KSynchronizationObject::Finalize();
+ shmem->Close();
}
Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
@@ -518,7 +601,7 @@ Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
// See if we can get a region from a partially used TLP.
{
- KScopedSchedulerLock sl{m_kernel};
+ KScopedSchedulerLock sl(m_kernel);
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
@@ -538,7 +621,9 @@ Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
- auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(m_kernel, tlp); });
+ ON_RESULT_FAILURE {
+ KThreadLocalPage::Free(m_kernel, tlp);
+ };
// Initialize the new page.
R_TRY(tlp->Initialize(m_kernel, this));
@@ -549,7 +634,7 @@ Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
// Insert into our tree.
{
- KScopedSchedulerLock sl{m_kernel};
+ KScopedSchedulerLock sl(m_kernel);
if (tlp->IsAllUsed()) {
m_fully_used_tlp_tree.insert(*tlp);
} else {
@@ -558,7 +643,6 @@ Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
}
// We succeeded!
- tlp_guard.Cancel();
*out = tlr;
R_SUCCEED();
}
@@ -568,7 +652,7 @@ Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
// Release the region.
{
- KScopedSchedulerLock sl{m_kernel};
+ KScopedSchedulerLock sl(m_kernel);
// Try to find the page in the partially used list.
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
@@ -611,95 +695,213 @@ Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
R_SUCCEED();
}
-bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
- const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
- return wp.type == DebugWatchpointType::None;
- })};
+bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value) {
+ if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
+ return rl->Reserve(which, value);
+ } else {
+ return true;
+ }
+}
- if (watch == m_watchpoints.end()) {
- return false;
+bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value, s64 timeout) {
+ if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
+ return rl->Reserve(which, value, timeout);
+ } else {
+ return true;
}
+}
- watch->start_address = addr;
- watch->end_address = addr + size;
- watch->type = type;
+void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value) {
+ if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
+ rl->Release(which, value);
+ }
+}
- for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
- page += PageSize) {
- m_debug_page_refcounts[page]++;
- this->GetMemory().MarkRegionDebug(page, PageSize, true);
+void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value, s64 hint) {
+ if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
+ rl->Release(which, value, hint);
}
+}
- return true;
+void KProcess::IncrementRunningThreadCount() {
+ ASSERT(m_num_running_threads.load() >= 0);
+
+ ++m_num_running_threads;
}
-bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
- const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
- return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
- })};
+void KProcess::DecrementRunningThreadCount() {
+ ASSERT(m_num_running_threads.load() > 0);
- if (watch == m_watchpoints.end()) {
+ if (const auto prev = m_num_running_threads--; prev == 1) {
+ this->Terminate();
+ }
+}
+
+bool KProcess::EnterUserException() {
+ // Get the current thread.
+ KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
+ ASSERT(this == cur_thread->GetOwnerProcess());
+
+ // Check that we haven't already claimed the exception thread.
+ if (m_exception_thread == cur_thread) {
return false;
}
- watch->start_address = 0;
- watch->end_address = 0;
- watch->type = DebugWatchpointType::None;
+ // Create the wait queue we'll be using.
+ ThreadQueueImplForKProcessEnterUserException wait_queue(m_kernel,
+ std::addressof(m_exception_thread));
- for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
- page += PageSize) {
- m_debug_page_refcounts[page]--;
- if (!m_debug_page_refcounts[page]) {
- this->GetMemory().MarkRegionDebug(page, PageSize, false);
+ // Claim the exception thread.
+ {
+ // Lock the scheduler.
+ KScopedSchedulerLock sl(m_kernel);
+
+ // Check that we're not terminating.
+ if (cur_thread->IsTerminationRequested()) {
+ return false;
+ }
+
+ // If we don't have an exception thread, we can just claim it directly.
+ if (m_exception_thread == nullptr) {
+ m_exception_thread = cur_thread;
+ KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+ return true;
}
+
+ // Otherwise, we need to wait until we don't have an exception thread.
+
+ // Add the current thread as a waiter on the current exception thread.
+ cur_thread->SetKernelAddressKey(
+ reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
+ m_exception_thread->AddWaiter(cur_thread);
+
+ // Wait to claim the exception thread.
+ cur_thread->BeginWait(std::addressof(wait_queue));
}
- return true;
+ // If our wait didn't end due to thread termination, we succeeded.
+ return ResultTerminationRequested != cur_thread->GetWaitResult();
}
-void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
- const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
- Svc::MemoryPermission permission) {
- m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
- };
+bool KProcess::LeaveUserException() {
+ return this->ReleaseUserException(GetCurrentThreadPointer(m_kernel));
+}
- this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
+bool KProcess::ReleaseUserException(KThread* thread) {
+ KScopedSchedulerLock sl(m_kernel);
- ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
- ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
- ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
+ if (m_exception_thread == thread) {
+ m_exception_thread = nullptr;
+
+ // Remove waiter thread.
+ bool has_waiters;
+ if (KThread* next = thread->RemoveKernelWaiterByKey(
+ std::addressof(has_waiters),
+ reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
+ next != nullptr) {
+ next->EndWait(ResultSuccess);
+ }
+
+ KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+
+ return true;
+ } else {
+ return false;
+ }
}
-bool KProcess::IsSignaled() const {
- ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
- return m_is_signaled;
+void KProcess::RegisterThread(KThread* thread) {
+ KScopedLightLock lk(m_list_lock);
+
+ m_thread_list.push_back(*thread);
}
-KProcess::KProcess(KernelCore& kernel)
- : KAutoObjectWithSlabHeapAndContainer{kernel}, m_page_table{m_kernel.System()},
- m_handle_table{m_kernel}, m_address_arbiter{m_kernel.System()},
- m_condition_var{m_kernel.System()}, m_state_lock{m_kernel}, m_list_lock{m_kernel} {}
+void KProcess::UnregisterThread(KThread* thread) {
+ KScopedLightLock lk(m_list_lock);
-KProcess::~KProcess() = default;
+ m_thread_list.erase(m_thread_list.iterator_to(*thread));
+}
+
+size_t KProcess::GetUsedUserPhysicalMemorySize() const {
+ const size_t norm_size = m_page_table.GetNormalMemorySize();
+ const size_t other_size = m_code_size + m_main_thread_stack_size;
+ const size_t sec_size = this->GetRequiredSecureMemorySizeNonDefault();
-void KProcess::ChangeState(State new_state) {
- if (m_state == new_state) {
- return;
+ return norm_size + other_size + sec_size;
+}
+
+size_t KProcess::GetTotalUserPhysicalMemorySize() const {
+ // Get the amount of free and used size.
+ const size_t free_size =
+ m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
+ const size_t max_size = m_max_process_memory;
+
+ // Determine used size.
+ // NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
+ // GetUsedUserPhysicalMemorySize().
+ const size_t norm_size = m_page_table.GetNormalMemorySize();
+ const size_t other_size = m_code_size + m_main_thread_stack_size;
+ const size_t sec_size = this->GetRequiredSecureMemorySize();
+ const size_t used_size = norm_size + other_size + sec_size;
+
+ // NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
+ // does it this way.
+ if (used_size + free_size > max_size) {
+ return max_size;
+ } else {
+ return free_size + this->GetUsedUserPhysicalMemorySize();
}
+}
- m_state = new_state;
- m_is_signaled = true;
- this->NotifyAvailable();
+size_t KProcess::GetUsedNonSystemUserPhysicalMemorySize() const {
+ const size_t norm_size = m_page_table.GetNormalMemorySize();
+ const size_t other_size = m_code_size + m_main_thread_stack_size;
+
+ return norm_size + other_size;
+}
+
+size_t KProcess::GetTotalNonSystemUserPhysicalMemorySize() const {
+ // Get the amount of free and used size.
+ const size_t free_size =
+ m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
+ const size_t max_size = m_max_process_memory;
+
+ // Determine used size.
+ // NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
+ // GetUsedUserPhysicalMemorySize().
+ const size_t norm_size = m_page_table.GetNormalMemorySize();
+ const size_t other_size = m_code_size + m_main_thread_stack_size;
+ const size_t sec_size = this->GetRequiredSecureMemorySize();
+ const size_t used_size = norm_size + other_size + sec_size;
+
+ // NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
+ // does it this way.
+ if (used_size + free_size > max_size) {
+ return max_size - this->GetRequiredSecureMemorySizeNonDefault();
+ } else {
+ return free_size + this->GetUsedNonSystemUserPhysicalMemorySize();
+ }
}
-Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
+Result KProcess::Run(s32 priority, size_t stack_size) {
+ // Lock ourselves, to prevent concurrent access.
+ KScopedLightLock lk(m_state_lock);
+
+ // Validate that we're in a state where we can initialize.
+ const auto state = m_state;
+ R_UNLESS(state == State::Created || state == State::CreatedAttached, ResultInvalidState);
+
+ // Place a tentative reservation of a thread for this process.
+ KScopedResourceReservation thread_reservation(this, Svc::LimitableResource::ThreadCountMax);
+ R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
+
// Ensure that we haven't already allocated stack.
ASSERT(m_main_thread_stack_size == 0);
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
- // R_UNLESS(stack_size + image_size <= m_max_process_memory, ResultOutOfMemory);
- R_UNLESS(stack_size + m_image_size >= m_image_size, ResultOutOfMemory);
+ R_UNLESS(stack_size + m_code_size <= m_max_process_memory, ResultOutOfMemory);
+ R_UNLESS(stack_size + m_code_size >= m_code_size, ResultOutOfMemory);
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
@@ -707,21 +909,359 @@ Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
// Allocate and map our stack.
+ KProcessAddress stack_top = 0;
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
- m_main_thread_stack_top = stack_bottom + stack_size;
+ stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
+ // Ensure our stack is safe to clean up on exit.
+ ON_RESULT_FAILURE {
+ if (m_main_thread_stack_size) {
+ ASSERT(R_SUCCEEDED(m_page_table.UnmapPages(stack_top - m_main_thread_stack_size,
+ m_main_thread_stack_size / PageSize,
+ KMemoryState::Stack)));
+ m_main_thread_stack_size = 0;
+ }
+ };
+
+ // Set our maximum heap size.
+ R_TRY(m_page_table.SetMaxHeapSize(m_max_process_memory -
+ (m_main_thread_stack_size + m_code_size)));
+
+ // Initialize our handle table.
+ R_TRY(this->InitializeHandleTable(m_capabilities.GetHandleTableSize()));
+ ON_RESULT_FAILURE_2 {
+ this->FinalizeHandleTable();
+ };
+
+ // Create a new thread for the process.
+ KThread* main_thread = KThread::Create(m_kernel);
+ R_UNLESS(main_thread != nullptr, ResultOutOfResource);
+ SCOPE_EXIT({ main_thread->Close(); });
+
+ // Initialize the thread.
+ R_TRY(KThread::InitializeUserThread(m_kernel.System(), main_thread, this->GetEntryPoint(), 0,
+ stack_top, priority, m_ideal_core_id, this));
+
+ // Register the thread, and commit our reservation.
+ KThread::Register(m_kernel, main_thread);
+ thread_reservation.Commit();
+
+ // Add the thread to our handle table.
+ Handle thread_handle;
+ R_TRY(m_handle_table.Add(std::addressof(thread_handle), main_thread));
+
+ // Set the thread arguments.
+ main_thread->GetContext32().cpu_registers[0] = 0;
+ main_thread->GetContext64().cpu_registers[0] = 0;
+ main_thread->GetContext32().cpu_registers[1] = thread_handle;
+ main_thread->GetContext64().cpu_registers[1] = thread_handle;
+
+ // Update our state.
+ this->ChangeState((state == State::Created) ? State::Running : State::RunningAttached);
+ ON_RESULT_FAILURE_2 {
+ this->ChangeState(state);
+ };
+
+ // Suspend for debug, if we should.
+ if (m_kernel.System().DebuggerEnabled()) {
+ main_thread->RequestSuspend(SuspendType::Debug);
+ }
+
+ // Run our thread.
+ R_TRY(main_thread->Run());
+
+ // Open a reference to represent that we're running.
+ this->Open();
+
// We succeeded! Commit our memory reservation.
mem_reservation.Commit();
R_SUCCEED();
}
+Result KProcess::Reset() {
+ // Lock the process and the scheduler.
+ KScopedLightLock lk(m_state_lock);
+ KScopedSchedulerLock sl(m_kernel);
+
+ // Validate that we're in a state that we can reset.
+ R_UNLESS(m_state != State::Terminated, ResultInvalidState);
+ R_UNLESS(m_is_signaled, ResultInvalidState);
+
+ // Clear signaled.
+ m_is_signaled = false;
+ R_SUCCEED();
+}
+
+Result KProcess::SetActivity(Svc::ProcessActivity activity) {
+ // Lock ourselves and the scheduler.
+ KScopedLightLock lk(m_state_lock);
+ KScopedLightLock list_lk(m_list_lock);
+ KScopedSchedulerLock sl(m_kernel);
+
+ // Validate our state.
+ R_UNLESS(m_state != State::Terminating, ResultInvalidState);
+ R_UNLESS(m_state != State::Terminated, ResultInvalidState);
+
+ // Either pause or resume.
+ if (activity == Svc::ProcessActivity::Paused) {
+ // Verify that we're not suspended.
+ R_UNLESS(!m_is_suspended, ResultInvalidState);
+
+ // Suspend all threads.
+ auto end = this->GetThreadList().end();
+ for (auto it = this->GetThreadList().begin(); it != end; ++it) {
+ it->RequestSuspend(SuspendType::Process);
+ }
+
+ // Set ourselves as suspended.
+ this->SetSuspended(true);
+ } else {
+ ASSERT(activity == Svc::ProcessActivity::Runnable);
+
+ // Verify that we're suspended.
+ R_UNLESS(m_is_suspended, ResultInvalidState);
+
+ // Resume all threads.
+ auto end = this->GetThreadList().end();
+ for (auto it = this->GetThreadList().begin(); it != end; ++it) {
+ it->Resume(SuspendType::Process);
+ }
+
+ // Set ourselves as resumed.
+ this->SetSuspended(false);
+ }
+
+ R_SUCCEED();
+}
+
+void KProcess::PinCurrentThread() {
+ ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
+
+ // Get the current thread.
+ const s32 core_id = GetCurrentCoreId(m_kernel);
+ KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
+
+ // If the thread isn't terminated, pin it.
+ if (!cur_thread->IsTerminationRequested()) {
+ // Pin it.
+ this->PinThread(core_id, cur_thread);
+ cur_thread->Pin(core_id);
+
+ // An update is needed.
+ KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+ }
+}
+
+void KProcess::UnpinCurrentThread() {
+ ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
+
+ // Get the current thread.
+ const s32 core_id = GetCurrentCoreId(m_kernel);
+ KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
+
+ // Unpin it.
+ cur_thread->Unpin();
+ this->UnpinThread(core_id, cur_thread);
+
+ // An update is needed.
+ KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+}
+
+void KProcess::UnpinThread(KThread* thread) {
+ ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
+
+ // Get the thread's core id.
+ const auto core_id = thread->GetActiveCore();
+
+ // Unpin it.
+ this->UnpinThread(core_id, thread);
+ thread->Unpin();
+
+ // An update is needed.
+ KScheduler::SetSchedulerUpdateNeeded(m_kernel);
+}
+
+Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
+ s32 max_out_count) {
+ // TODO: use current memory reference
+ auto& memory = m_kernel.System().ApplicationMemory();
+
+ // Lock the list.
+ KScopedLightLock lk(m_list_lock);
+
+ // Iterate over the list.
+ s32 count = 0;
+ auto end = this->GetThreadList().end();
+ for (auto it = this->GetThreadList().begin(); it != end; ++it) {
+ // If we're within array bounds, write the id.
+ if (count < max_out_count) {
+ // Get the thread id.
+ KThread* thread = std::addressof(*it);
+ const u64 id = thread->GetId();
+
+ // Copy the id to userland.
+ memory.Write64(out_thread_ids + count * sizeof(u64), id);
+ }
+
+ // Increment the count.
+ ++count;
+ }
+
+ // We successfully iterated the list.
+ *out_num_threads = count;
+ R_SUCCEED();
+}
+
+void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
+
+KProcess::KProcess(KernelCore& kernel)
+ : KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel.System()},
+ m_state_lock{kernel}, m_list_lock{kernel}, m_cond_var{kernel.System()},
+ m_address_arbiter{kernel.System()}, m_handle_table{kernel} {}
+KProcess::~KProcess() = default;
+
+Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
+ bool is_hbl) {
+ // Create a resource limit for the process.
+ const auto physical_memory_size =
+ m_kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application);
+ auto* res_limit =
+ Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
+
+ // Ensure we maintain a clean state on exit.
+ SCOPE_EXIT({ res_limit->Close(); });
+
+ // Declare flags and code address.
+ Svc::CreateProcessFlag flag{};
+ u64 code_address{};
+
+ // We are an application.
+ flag |= Svc::CreateProcessFlag::IsApplication;
+
+ // If we are 64-bit, create as such.
+ if (metadata.Is64BitProgram()) {
+ flag |= Svc::CreateProcessFlag::Is64Bit;
+ }
+
+ // Set the address space type and code address.
+ switch (metadata.GetAddressSpaceType()) {
+ case FileSys::ProgramAddressSpaceType::Is39Bit:
+ flag |= Svc::CreateProcessFlag::AddressSpace64Bit;
+
+ // For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
+ // However, some (buggy) programs/libraries like skyline incorrectly depend on the
+ // existence of ASLR pages before the entry point, so we will adjust the load address
+ // to point to about 2GiB into the ASLR region.
+ code_address = 0x8000'0000;
+ break;
+ case FileSys::ProgramAddressSpaceType::Is36Bit:
+ flag |= Svc::CreateProcessFlag::AddressSpace64BitDeprecated;
+ code_address = 0x800'0000;
+ break;
+ case FileSys::ProgramAddressSpaceType::Is32Bit:
+ flag |= Svc::CreateProcessFlag::AddressSpace32Bit;
+ code_address = 0x20'0000;
+ break;
+ case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
+ flag |= Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias;
+ code_address = 0x20'0000;
+ break;
+ }
+
+ Svc::CreateProcessParameter params{
+ .name = {},
+ .version = {},
+ .program_id = metadata.GetTitleID(),
+ .code_address = code_address,
+ .code_num_pages = static_cast<s32>(code_size / PageSize),
+ .flags = flag,
+ .reslimit = Svc::InvalidHandle,
+ .system_resource_num_pages = static_cast<s32>(metadata.GetSystemResourceSize() / PageSize),
+ };
+
+ // Set the process name.
+ const auto& name = metadata.GetName();
+ static_assert(sizeof(params.name) <= sizeof(name));
+ std::memcpy(params.name.data(), name.data(), sizeof(params.name));
+
+ // Initialize for application process.
+ R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit,
+ KMemoryManager::Pool::Application));
+
+ // Assign remaining properties.
+ m_is_hbl = is_hbl;
+ m_ideal_core_id = metadata.GetMainThreadCore();
+
+ // We succeeded.
+ R_SUCCEED();
+}
+
+void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
+ const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
+ Svc::MemoryPermission permission) {
+ m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
+ };
+
+ this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
+
+ ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
+ ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
+ ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
+}
+
+bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
+ const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
+ return wp.type == DebugWatchpointType::None;
+ })};
+
+ if (watch == m_watchpoints.end()) {
+ return false;
+ }
+
+ watch->start_address = addr;
+ watch->end_address = addr + size;
+ watch->type = type;
+
+ for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
+ page += PageSize) {
+ m_debug_page_refcounts[page]++;
+ this->GetMemory().MarkRegionDebug(page, PageSize, true);
+ }
+
+ return true;
+}
+
+bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
+ const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
+ return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
+ })};
+
+ if (watch == m_watchpoints.end()) {
+ return false;
+ }
+
+ watch->start_address = 0;
+ watch->end_address = 0;
+ watch->type = DebugWatchpointType::None;
+
+ for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
+ page += PageSize) {
+ m_debug_page_refcounts[page]--;
+ if (!m_debug_page_refcounts[page]) {
+ this->GetMemory().MarkRegionDebug(page, PageSize, false);
+ }
+ }
+
+ return true;
+}
+
Core::Memory::Memory& KProcess::GetMemory() const {
// TODO: per-process memory
return m_kernel.System().ApplicationMemory();