summaryrefslogtreecommitdiffstats
path: root/src/video_core
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core')
-rw-r--r--src/video_core/textures/astc.cpp566
1 files changed, 282 insertions, 284 deletions
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
index af5a6c4ce..dcfab4dad 100644
--- a/src/video_core/textures/astc.cpp
+++ b/src/video_core/textures/astc.cpp
@@ -21,6 +21,8 @@
#include <cstring>
#include <vector>
+#include "common/common_types.h"
+
#include "video_core/textures/astc.h"
class InputBitStream {
@@ -123,20 +125,20 @@ public:
Bits(const Bits&) = delete;
Bits& operator=(const Bits&) = delete;
- uint8_t operator[](uint32_t bitPos) const {
- return static_cast<uint8_t>((m_Bits >> bitPos) & 1);
+ u8 operator[](u32 bitPos) const {
+ return static_cast<u8>((m_Bits >> bitPos) & 1);
}
- IntType operator()(uint32_t start, uint32_t end) const {
+ IntType operator()(u32 start, u32 end) const {
if (start == end) {
return (*this)[start];
} else if (start > end) {
- uint32_t t = start;
+ u32 t = start;
start = end;
end = t;
}
- uint64_t mask = (1 << (end - start + 1)) - 1;
+ u64 mask = (1 << (end - start + 1)) - 1;
return (m_Bits >> start) & static_cast<IntType>(mask);
}
@@ -149,11 +151,11 @@ enum class IntegerEncoding { JustBits, Quint, Trit };
class IntegerEncodedValue {
private:
const IntegerEncoding m_Encoding;
- const uint32_t m_NumBits;
- uint32_t m_BitValue;
+ const u32 m_NumBits;
+ u32 m_BitValue;
union {
- uint32_t m_QuintValue;
- uint32_t m_TritValue;
+ u32 m_QuintValue;
+ u32 m_TritValue;
};
public:
@@ -164,34 +166,34 @@ public:
return *this;
}
- IntegerEncodedValue(IntegerEncoding encoding, uint32_t numBits)
+ IntegerEncodedValue(IntegerEncoding encoding, u32 numBits)
: m_Encoding(encoding), m_NumBits(numBits) {}
IntegerEncoding GetEncoding() const {
return m_Encoding;
}
- uint32_t BaseBitLength() const {
+ u32 BaseBitLength() const {
return m_NumBits;
}
- uint32_t GetBitValue() const {
+ u32 GetBitValue() const {
return m_BitValue;
}
- void SetBitValue(uint32_t val) {
+ void SetBitValue(u32 val) {
m_BitValue = val;
}
- uint32_t GetTritValue() const {
+ u32 GetTritValue() const {
return m_TritValue;
}
- void SetTritValue(uint32_t val) {
+ void SetTritValue(u32 val) {
m_TritValue = val;
}
- uint32_t GetQuintValue() const {
+ u32 GetQuintValue() const {
return m_QuintValue;
}
- void SetQuintValue(uint32_t val) {
+ void SetQuintValue(u32 val) {
m_QuintValue = val;
}
@@ -200,8 +202,8 @@ public:
}
// Returns the number of bits required to encode nVals values.
- uint32_t GetBitLength(uint32_t nVals) const {
- uint32_t totalBits = m_NumBits * nVals;
+ u32 GetBitLength(u32 nVals) const {
+ u32 totalBits = m_NumBits * nVals;
if (m_Encoding == IntegerEncoding::Trit) {
totalBits += (nVals * 8 + 4) / 5;
} else if (m_Encoding == IntegerEncoding::Quint) {
@@ -211,8 +213,8 @@ public:
}
// Count the number of bits set in a number.
- static inline uint32_t Popcnt(uint32_t n) {
- uint32_t c;
+ static inline u32 Popcnt(u32 n) {
+ u32 c;
for (c = 0; n; c++) {
n &= n - 1;
}
@@ -221,9 +223,9 @@ public:
// Returns a new instance of this struct that corresponds to the
// can take no more than maxval values
- static IntegerEncodedValue CreateEncoding(uint32_t maxVal) {
+ static IntegerEncodedValue CreateEncoding(u32 maxVal) {
while (maxVal > 0) {
- uint32_t check = maxVal + 1;
+ u32 check = maxVal + 1;
// Is maxVal a power of two?
if (!(check & (check - 1))) {
@@ -251,12 +253,12 @@ public:
// bitstream. We must know beforehand what the maximum possible
// value is, and how many values we're decoding.
static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result,
- InputBitStream& bits, uint32_t maxRange, uint32_t nValues) {
+ InputBitStream& bits, u32 maxRange, u32 nValues) {
// Determine encoding parameters
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
// Start decoding
- uint32_t nValsDecoded = 0;
+ u32 nValsDecoded = 0;
while (nValsDecoded < nValues) {
switch (val.GetEncoding()) {
case IntegerEncoding::Quint:
@@ -280,11 +282,11 @@ public:
private:
static void DecodeTritBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
- uint32_t nBitsPerValue) {
+ u32 nBitsPerValue) {
// Implement the algorithm in section C.2.12
- uint32_t m[5];
- uint32_t t[5];
- uint32_t T;
+ u32 m[5];
+ u32 t[5];
+ u32 T;
// Read the trit encoded block according to
// table C.2.14
@@ -299,9 +301,9 @@ private:
m[4] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBit() << 7;
- uint32_t C = 0;
+ u32 C = 0;
- Bits<uint32_t> Tb(T);
+ Bits<u32> Tb(T);
if (Tb(2, 4) == 7) {
C = (Tb(5, 7) << 2) | Tb(0, 1);
t[4] = t[3] = 2;
@@ -316,7 +318,7 @@ private:
}
}
- Bits<uint32_t> Cb(C);
+ Bits<u32> Cb(C);
if (Cb(0, 1) == 3) {
t[2] = 2;
t[1] = Cb[4];
@@ -331,7 +333,7 @@ private:
t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
}
- for (uint32_t i = 0; i < 5; i++) {
+ for (u32 i = 0; i < 5; i++) {
IntegerEncodedValue val(IntegerEncoding::Trit, nBitsPerValue);
val.SetBitValue(m[i]);
val.SetTritValue(t[i]);
@@ -340,11 +342,11 @@ private:
}
static void DecodeQuintBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
- uint32_t nBitsPerValue) {
+ u32 nBitsPerValue) {
// Implement the algorithm in section C.2.12
- uint32_t m[3];
- uint32_t q[3];
- uint32_t Q;
+ u32 m[3];
+ u32 q[3];
+ u32 Q;
// Read the trit encoded block according to
// table C.2.15
@@ -355,12 +357,12 @@ private:
m[2] = bits.ReadBits(nBitsPerValue);
Q |= bits.ReadBits(2) << 5;
- Bits<uint32_t> Qb(Q);
+ Bits<u32> Qb(Q);
if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
q[0] = q[1] = 4;
q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
} else {
- uint32_t C = 0;
+ u32 C = 0;
if (Qb(1, 2) == 3) {
q[2] = 4;
C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
@@ -369,7 +371,7 @@ private:
C = Qb(0, 4);
}
- Bits<uint32_t> Cb(C);
+ Bits<u32> Cb(C);
if (Cb(0, 2) == 5) {
q[1] = 4;
q[0] = Cb(3, 4);
@@ -379,7 +381,7 @@ private:
}
}
- for (uint32_t i = 0; i < 3; i++) {
+ for (u32 i = 0; i < 3; i++) {
IntegerEncodedValue val(IntegerEncoding::Quint, nBitsPerValue);
val.m_BitValue = m[i];
val.m_QuintValue = q[i];
@@ -391,17 +393,17 @@ private:
namespace ASTCC {
struct TexelWeightParams {
- uint32_t m_Width = 0;
- uint32_t m_Height = 0;
+ u32 m_Width = 0;
+ u32 m_Height = 0;
bool m_bDualPlane = false;
- uint32_t m_MaxWeight = 0;
+ u32 m_MaxWeight = 0;
bool m_bError = false;
bool m_bVoidExtentLDR = false;
bool m_bVoidExtentHDR = false;
- uint32_t GetPackedBitSize() const {
+ u32 GetPackedBitSize() const {
// How many indices do we have?
- uint32_t nIdxs = m_Height * m_Width;
+ u32 nIdxs = m_Height * m_Width;
if (m_bDualPlane) {
nIdxs *= 2;
}
@@ -409,8 +411,8 @@ struct TexelWeightParams {
return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
}
- uint32_t GetNumWeightValues() const {
- uint32_t ret = m_Width * m_Height;
+ u32 GetNumWeightValues() const {
+ u32 ret = m_Width * m_Height;
if (m_bDualPlane) {
ret *= 2;
}
@@ -422,7 +424,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
TexelWeightParams params;
// Read the entire block mode all at once
- uint16_t modeBits = static_cast<uint16_t>(strm.ReadBits(11));
+ u16 modeBits = static_cast<u16>(strm.ReadBits(11));
// Does this match the void extent block mode?
if ((modeBits & 0x01FF) == 0x1FC) {
@@ -457,7 +459,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
// of the block mode. Layout is determined by a number
// between 0 and 9 corresponding to table C.2.8 of the
// ASTC spec.
- uint32_t layout = 0;
+ u32 layout = 0;
if ((modeBits & 0x1) || (modeBits & 0x2)) {
// layout is in [0-4]
@@ -509,7 +511,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
assert(layout < 10);
// Determine R
- uint32_t R = !!(modeBits & 0x10);
+ u32 R = !!(modeBits & 0x10);
if (layout < 5) {
R |= (modeBits & 0x3) << 1;
} else {
@@ -520,54 +522,54 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
// Determine width & height
switch (layout) {
case 0: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 7) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 7) & 0x3;
params.m_Width = B + 4;
params.m_Height = A + 2;
break;
}
case 1: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 7) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 7) & 0x3;
params.m_Width = B + 8;
params.m_Height = A + 2;
break;
}
case 2: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 7) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 7) & 0x3;
params.m_Width = A + 2;
params.m_Height = B + 8;
break;
}
case 3: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 7) & 0x1;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 7) & 0x1;
params.m_Width = A + 2;
params.m_Height = B + 6;
break;
}
case 4: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 7) & 0x1;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 7) & 0x1;
params.m_Width = B + 2;
params.m_Height = A + 2;
break;
}
case 5: {
- uint32_t A = (modeBits >> 5) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
params.m_Width = 12;
params.m_Height = A + 2;
break;
}
case 6: {
- uint32_t A = (modeBits >> 5) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
params.m_Width = A + 2;
params.m_Height = 12;
break;
@@ -586,8 +588,8 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
}
case 9: {
- uint32_t A = (modeBits >> 5) & 0x3;
- uint32_t B = (modeBits >> 9) & 0x3;
+ u32 A = (modeBits >> 5) & 0x3;
+ u32 B = (modeBits >> 9) & 0x3;
params.m_Width = A + 6;
params.m_Height = B + 6;
break;
@@ -605,10 +607,10 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
bool H = (layout != 9) && (modeBits & 0x200);
if (H) {
- const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31};
+ const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
params.m_MaxWeight = maxWeights[R - 2];
} else {
- const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7};
+ const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
params.m_MaxWeight = maxWeights[R - 2];
}
@@ -617,32 +619,32 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
return params;
}
-static void FillVoidExtentLDR(InputBitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
- uint32_t blockHeight) {
+static void FillVoidExtentLDR(InputBitStream& strm, u32* const outBuf, u32 blockWidth,
+ u32 blockHeight) {
// Don't actually care about the void extent, just read the bits...
for (int i = 0; i < 4; ++i) {
strm.ReadBits(13);
}
// Decode the RGBA components and renormalize them to the range [0, 255]
- uint16_t r = static_cast<uint16_t>(strm.ReadBits(16));
- uint16_t g = static_cast<uint16_t>(strm.ReadBits(16));
- uint16_t b = static_cast<uint16_t>(strm.ReadBits(16));
- uint16_t a = static_cast<uint16_t>(strm.ReadBits(16));
+ u16 r = static_cast<u16>(strm.ReadBits(16));
+ u16 g = static_cast<u16>(strm.ReadBits(16));
+ u16 b = static_cast<u16>(strm.ReadBits(16));
+ u16 a = static_cast<u16>(strm.ReadBits(16));
- uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast<uint32_t>(b) & 0xFF00) << 8 |
- (static_cast<uint32_t>(a) & 0xFF00) << 16;
+ u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
+ (static_cast<u32>(a) & 0xFF00) << 16;
- for (uint32_t j = 0; j < blockHeight; j++) {
- for (uint32_t i = 0; i < blockWidth; i++) {
+ for (u32 j = 0; j < blockHeight; j++) {
+ for (u32 i = 0; i < blockWidth; i++) {
outBuf[j * blockWidth + i] = rgba;
}
}
}
-static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) {
- for (uint32_t j = 0; j < blockHeight; j++) {
- for (uint32_t i = 0; i < blockWidth; i++) {
+static void FillError(u32* outBuf, u32 blockWidth, u32 blockHeight) {
+ for (u32 j = 0; j < blockHeight; j++) {
+ for (u32 i = 0; i < blockWidth; i++) {
outBuf[j * blockWidth + i] = 0xFFFF00FF;
}
}
@@ -651,18 +653,18 @@ static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeigh
// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
// is the same as [(numBits - 1):0] and repeats all the way down.
template <typename IntType>
-static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
+static IntType Replicate(const IntType& val, u32 numBits, u32 toBit) {
if (numBits == 0)
return 0;
if (toBit == 0)
return 0;
IntType v = val & static_cast<IntType>((1 << numBits) - 1);
IntType res = v;
- uint32_t reslen = numBits;
+ u32 reslen = numBits;
while (reslen < toBit) {
- uint32_t comp = 0;
+ u32 comp = 0;
if (numBits > toBit - reslen) {
- uint32_t newshift = toBit - reslen;
+ u32 newshift = toBit - reslen;
comp = numBits - newshift;
numBits = newshift;
}
@@ -675,14 +677,14 @@ static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
class Pixel {
protected:
- using ChannelType = int16_t;
- uint8_t m_BitDepth[4] = {8, 8, 8, 8};
- int16_t color[4] = {};
+ using ChannelType = s16;
+ u8 m_BitDepth[4] = {8, 8, 8, 8};
+ s16 color[4] = {};
public:
Pixel() = default;
- Pixel(uint32_t a, uint32_t r, uint32_t g, uint32_t b, unsigned bitDepth = 8)
- : m_BitDepth{uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth)},
+ Pixel(u32 a, u32 r, u32 g, u32 b, unsigned bitDepth = 8)
+ : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}
@@ -691,22 +693,22 @@ public:
// significant bits when going from larger to smaller bit depth
// or by repeating the most significant bits when going from
// smaller to larger bit depths.
- void ChangeBitDepth(const uint8_t (&depth)[4]) {
- for (uint32_t i = 0; i < 4; i++) {
+ void ChangeBitDepth(const u8 (&depth)[4]) {
+ for (u32 i = 0; i < 4; i++) {
Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]);
m_BitDepth[i] = depth[i];
}
}
template <typename IntType>
- static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) {
+ static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
float denominator = static_cast<float>((1 << bitDepth) - 1);
return static_cast<float>(channel) / denominator;
}
// Changes the bit depth of a single component. See the comment
// above for how we do this.
- static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) {
+ static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth, u8 newDepth) {
assert(newDepth <= 8);
assert(oldDepth <= 8);
@@ -722,12 +724,11 @@ public:
if (newDepth == 0) {
return 0xFF;
} else {
- uint8_t bitsWasted = static_cast<uint8_t>(oldDepth - newDepth);
- uint16_t v = static_cast<uint16_t>(val);
- v = static_cast<uint16_t>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
- v = ::std::min<uint16_t>(::std::max<uint16_t>(0, v),
- static_cast<uint16_t>((1 << newDepth) - 1));
- return static_cast<uint8_t>(v);
+ u8 bitsWasted = static_cast<u8>(oldDepth - newDepth);
+ u16 v = static_cast<u16>(val);
+ v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
+ v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << newDepth) - 1));
+ return static_cast<u8>(v);
}
}
@@ -759,14 +760,14 @@ public:
ChannelType& B() {
return color[3];
}
- const ChannelType& Component(uint32_t idx) const {
+ const ChannelType& Component(u32 idx) const {
return color[idx];
}
- ChannelType& Component(uint32_t idx) {
+ ChannelType& Component(u32 idx) {
return color[idx];
}
- void GetBitDepth(uint8_t (&outDepth)[4]) const {
+ void GetBitDepth(u8 (&outDepth)[4]) const {
for (int i = 0; i < 4; i++) {
outDepth[i] = m_BitDepth[i];
}
@@ -776,12 +777,12 @@ public:
// and then pack each channel into an R8G8B8A8 32-bit integer. We assume
// that the architecture is little-endian, so the alpha channel will end
// up in the most-significant byte.
- uint32_t Pack() const {
+ u32 Pack() const {
Pixel eightBit(*this);
- const uint8_t eightBitDepth[4] = {8, 8, 8, 8};
+ const u8 eightBitDepth[4] = {8, 8, 8, 8};
eightBit.ChangeBitDepth(eightBitDepth);
- uint32_t r = 0;
+ u32 r = 0;
r |= eightBit.A();
r <<= 8;
r |= eightBit.B();
@@ -794,7 +795,7 @@ public:
// Clamps the pixel to the range [0,255]
void ClampByte() {
- for (uint32_t i = 0; i < 4; i++) {
+ for (u32 i = 0; i < 4; i++) {
color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
}
}
@@ -804,20 +805,20 @@ public:
}
};
-static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* modes,
- const uint32_t nPartitions, const uint32_t nBitsForColorData) {
+static void DecodeColorValues(u32* out, u8* data, const u32* modes, const u32 nPartitions,
+ const u32 nBitsForColorData) {
// First figure out how many color values we have
- uint32_t nValues = 0;
- for (uint32_t i = 0; i < nPartitions; i++) {
+ u32 nValues = 0;
+ for (u32 i = 0; i < nPartitions; i++) {
nValues += ((modes[i] >> 2) + 1) << 1;
}
// Then based on the number of values and the remaining number of bits,
// figure out the max value for each of them...
- uint32_t range = 256;
+ u32 range = 256;
while (--range > 0) {
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
- uint32_t bitLength = val.GetBitLength(nValues);
+ u32 bitLength = val.GetBitLength(nValues);
if (bitLength <= nBitsForColorData) {
// Find the smallest possible range that matches the given encoding
while (--range > 0) {
@@ -840,7 +841,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
// Once we have the decoded values, we need to dequantize them to the 0-255 range
// This procedure is outlined in ASTC spec C.2.13
- uint32_t outIdx = 0;
+ u32 outIdx = 0;
for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
// Have we already decoded all that we need?
if (outIdx >= nValues) {
@@ -848,12 +849,12 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
}
const IntegerEncodedValue& val = *itr;
- uint32_t bitlen = val.BaseBitLength();
- uint32_t bitval = val.GetBitValue();
+ u32 bitlen = val.BaseBitLength();
+ u32 bitval = val.GetBitValue();
assert(bitlen >= 1);
- uint32_t A = 0, B = 0, C = 0, D = 0;
+ u32 A = 0, B = 0, C = 0, D = 0;
// A is just the lsb replicated 9 times.
A = Replicate(bitval & 1, 1, 9);
@@ -876,35 +877,35 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
case 2: {
C = 93;
// B = b000b0bb0
- uint32_t b = (bitval >> 1) & 1;
+ u32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
} break;
case 3: {
C = 44;
// B = cb000cbcb
- uint32_t cb = (bitval >> 1) & 3;
+ u32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
} break;
case 4: {
C = 22;
// B = dcb000dcb
- uint32_t dcb = (bitval >> 1) & 7;
+ u32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
} break;
case 5: {
C = 11;
// B = edcb000ed
- uint32_t edcb = (bitval >> 1) & 0xF;
+ u32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
} break;
case 6: {
C = 5;
// B = fedcb000f
- uint32_t fedcb = (bitval >> 1) & 0x1F;
+ u32 fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
} break;
@@ -927,28 +928,28 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
case 2: {
C = 54;
// B = b0000bb00
- uint32_t b = (bitval >> 1) & 1;
+ u32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
} break;
case 3: {
C = 26;
// B = cb0000cbc
- uint32_t cb = (bitval >> 1) & 3;
+ u32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
} break;
case 4: {
C = 13;
// B = dcb0000dc
- uint32_t dcb = (bitval >> 1) & 7;
+ u32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
} break;
case 5: {
C = 6;
// B = edcb0000e
- uint32_t edcb = (bitval >> 1) & 0xF;
+ u32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
} break;
@@ -961,7 +962,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
} // switch(val.GetEncoding())
if (val.GetEncoding() != IntegerEncoding::JustBits) {
- uint32_t T = D * C + B;
+ u32 T = D * C + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
out[outIdx++] = T;
@@ -969,19 +970,19 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
}
// Make sure that each of our values is in the proper range...
- for (uint32_t i = 0; i < nValues; i++) {
+ for (u32 i = 0; i < nValues; i++) {
assert(out[i] <= 255);
}
}
-static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
- uint32_t bitval = val.GetBitValue();
- uint32_t bitlen = val.BaseBitLength();
+static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
+ u32 bitval = val.GetBitValue();
+ u32 bitlen = val.BaseBitLength();
- uint32_t A = Replicate(bitval & 1, 1, 7);
- uint32_t B = 0, C = 0, D = 0;
+ u32 A = Replicate(bitval & 1, 1, 7);
+ u32 B = 0, C = 0, D = 0;
- uint32_t result = 0;
+ u32 result = 0;
switch (val.GetEncoding()) {
case IntegerEncoding::JustBits:
result = Replicate(bitval, bitlen, 6);
@@ -993,7 +994,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
switch (bitlen) {
case 0: {
- uint32_t results[3] = {0, 32, 63};
+ u32 results[3] = {0, 32, 63};
result = results[D];
} break;
@@ -1003,13 +1004,13 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
case 2: {
C = 23;
- uint32_t b = (bitval >> 1) & 1;
+ u32 b = (bitval >> 1) & 1;
B = (b << 6) | (b << 2) | b;
} break;
case 3: {
C = 11;
- uint32_t cb = (bitval >> 1) & 3;
+ u32 cb = (bitval >> 1) & 3;
B = (cb << 5) | cb;
} break;
@@ -1025,7 +1026,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
switch (bitlen) {
case 0: {
- uint32_t results[5] = {0, 16, 32, 47, 63};
+ u32 results[5] = {0, 16, 32, 47, 63};
result = results[D];
} break;
@@ -1035,7 +1036,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
case 2: {
C = 13;
- uint32_t b = (bitval >> 1) & 1;
+ u32 b = (bitval >> 1) & 1;
B = (b << 6) | (b << 1);
} break;
@@ -1063,12 +1064,11 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
return result;
}
-static void UnquantizeTexelWeights(uint32_t out[2][144],
- const std::vector<IntegerEncodedValue>& weights,
- const TexelWeightParams& params, const uint32_t blockWidth,
- const uint32_t blockHeight) {
- uint32_t weightIdx = 0;
- uint32_t unquantized[2][144];
+static void UnquantizeTexelWeights(u32 out[2][144], const std::vector<IntegerEncodedValue>& weights,
+ const TexelWeightParams& params, const u32 blockWidth,
+ const u32 blockHeight) {
+ u32 weightIdx = 0;
+ u32 unquantized[2][144];
for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
@@ -1086,34 +1086,34 @@ static void UnquantizeTexelWeights(uint32_t out[2][144],
}
// Do infill if necessary (Section C.2.18) ...
- uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
- uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
+ u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
+ u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
- const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U;
- for (uint32_t plane = 0; plane < kPlaneScale; plane++)
- for (uint32_t t = 0; t < blockHeight; t++)
- for (uint32_t s = 0; s < blockWidth; s++) {
- uint32_t cs = Ds * s;
- uint32_t ct = Dt * t;
+ const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
+ for (u32 plane = 0; plane < kPlaneScale; plane++)
+ for (u32 t = 0; t < blockHeight; t++)
+ for (u32 s = 0; s < blockWidth; s++) {
+ u32 cs = Ds * s;
+ u32 ct = Dt * t;
- uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6;
- uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6;
+ u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
+ u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
- uint32_t js = gs >> 4;
- uint32_t fs = gs & 0xF;
+ u32 js = gs >> 4;
+ u32 fs = gs & 0xF;
- uint32_t jt = gt >> 4;
- uint32_t ft = gt & 0x0F;
+ u32 jt = gt >> 4;
+ u32 ft = gt & 0x0F;
- uint32_t w11 = (fs * ft + 8) >> 4;
- uint32_t w10 = ft - w11;
- uint32_t w01 = fs - w11;
- uint32_t w00 = 16 - fs - ft + w11;
+ u32 w11 = (fs * ft + 8) >> 4;
+ u32 w10 = ft - w11;
+ u32 w01 = fs - w11;
+ u32 w00 = 16 - fs - ft + w11;
- uint32_t v0 = js + jt * params.m_Width;
+ u32 v0 = js + jt * params.m_Width;
#define FIND_TEXEL(tidx, bidx) \
- uint32_t p##bidx = 0; \
+ u32 p##bidx = 0; \
do { \
if ((tidx) < (params.m_Width * params.m_Height)) { \
p##bidx = unquantized[plane][(tidx)]; \
@@ -1133,7 +1133,7 @@ static void UnquantizeTexelWeights(uint32_t out[2][144],
}
// Transfers a bit as described in C.2.14
-static inline void BitTransferSigned(int32_t& a, int32_t& b) {
+static inline void BitTransferSigned(s32& a, s32& b) {
b >>= 1;
b |= a & 0x80;
a >>= 1;
@@ -1144,14 +1144,14 @@ static inline void BitTransferSigned(int32_t& a, int32_t& b) {
// Adds more precision to the blue channel as described
// in C.2.14
-static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) {
- return Pixel(static_cast<int16_t>(a), static_cast<int16_t>((r + b) >> 1),
- static_cast<int16_t>((g + b) >> 1), static_cast<int16_t>(b));
+static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
+ return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
+ static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
}
// Partition selection functions as specified in
// C.2.21
-static inline uint32_t hash52(uint32_t p) {
+static inline u32 hash52(u32 p) {
p ^= p >> 15;
p -= p << 17;
p += p << 7;
@@ -1165,8 +1165,7 @@ static inline uint32_t hash52(uint32_t p) {
return p;
}
-static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
- int32_t partitionCount, int32_t smallBlock) {
+static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
if (1 == partitionCount)
return 0;
@@ -1178,34 +1177,34 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
seed += (partitionCount - 1) * 1024;
- uint32_t rnum = hash52(static_cast<uint32_t>(seed));
- uint8_t seed1 = static_cast<uint8_t>(rnum & 0xF);
- uint8_t seed2 = static_cast<uint8_t>((rnum >> 4) & 0xF);
- uint8_t seed3 = static_cast<uint8_t>((rnum >> 8) & 0xF);
- uint8_t seed4 = static_cast<uint8_t>((rnum >> 12) & 0xF);
- uint8_t seed5 = static_cast<uint8_t>((rnum >> 16) & 0xF);
- uint8_t seed6 = static_cast<uint8_t>((rnum >> 20) & 0xF);
- uint8_t seed7 = static_cast<uint8_t>((rnum >> 24) & 0xF);
- uint8_t seed8 = static_cast<uint8_t>((rnum >> 28) & 0xF);
- uint8_t seed9 = static_cast<uint8_t>((rnum >> 18) & 0xF);
- uint8_t seed10 = static_cast<uint8_t>((rnum >> 22) & 0xF);
- uint8_t seed11 = static_cast<uint8_t>((rnum >> 26) & 0xF);
- uint8_t seed12 = static_cast<uint8_t>(((rnum >> 30) | (rnum << 2)) & 0xF);
-
- seed1 = static_cast<uint8_t>(seed1 * seed1);
- seed2 = static_cast<uint8_t>(seed2 * seed2);
- seed3 = static_cast<uint8_t>(seed3 * seed3);
- seed4 = static_cast<uint8_t>(seed4 * seed4);
- seed5 = static_cast<uint8_t>(seed5 * seed5);
- seed6 = static_cast<uint8_t>(seed6 * seed6);
- seed7 = static_cast<uint8_t>(seed7 * seed7);
- seed8 = static_cast<uint8_t>(seed8 * seed8);
- seed9 = static_cast<uint8_t>(seed9 * seed9);
- seed10 = static_cast<uint8_t>(seed10 * seed10);
- seed11 = static_cast<uint8_t>(seed11 * seed11);
- seed12 = static_cast<uint8_t>(seed12 * seed12);
-
- int32_t sh1, sh2, sh3;
+ u32 rnum = hash52(static_cast<u32>(seed));
+ u8 seed1 = static_cast<u8>(rnum & 0xF);
+ u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
+ u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
+ u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
+ u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
+ u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
+ u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
+ u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
+ u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
+ u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
+ u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
+ u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);
+
+ seed1 = static_cast<u8>(seed1 * seed1);
+ seed2 = static_cast<u8>(seed2 * seed2);
+ seed3 = static_cast<u8>(seed3 * seed3);
+ seed4 = static_cast<u8>(seed4 * seed4);
+ seed5 = static_cast<u8>(seed5 * seed5);
+ seed6 = static_cast<u8>(seed6 * seed6);
+ seed7 = static_cast<u8>(seed7 * seed7);
+ seed8 = static_cast<u8>(seed8 * seed8);
+ seed9 = static_cast<u8>(seed9 * seed9);
+ seed10 = static_cast<u8>(seed10 * seed10);
+ seed11 = static_cast<u8>(seed11 * seed11);
+ seed12 = static_cast<u8>(seed12 * seed12);
+
+ s32 sh1, sh2, sh3;
if (seed & 1) {
sh1 = (seed & 2) ? 4 : 5;
sh2 = (partitionCount == 3) ? 6 : 5;
@@ -1215,23 +1214,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
}
sh3 = (seed & 0x10) ? sh1 : sh2;
- seed1 = static_cast<uint8_t>(seed1 >> sh1);
- seed2 = static_cast<uint8_t>(seed2 >> sh2);
- seed3 = static_cast<uint8_t>(seed3 >> sh1);
- seed4 = static_cast<uint8_t>(seed4 >> sh2);
- seed5 = static_cast<uint8_t>(seed5 >> sh1);
- seed6 = static_cast<uint8_t>(seed6 >> sh2);
- seed7 = static_cast<uint8_t>(seed7 >> sh1);
- seed8 = static_cast<uint8_t>(seed8 >> sh2);
- seed9 = static_cast<uint8_t>(seed9 >> sh3);
- seed10 = static_cast<uint8_t>(seed10 >> sh3);
- seed11 = static_cast<uint8_t>(seed11 >> sh3);
- seed12 = static_cast<uint8_t>(seed12 >> sh3);
-
- int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
- int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
- int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
- int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
+ seed1 = static_cast<u8>(seed1 >> sh1);
+ seed2 = static_cast<u8>(seed2 >> sh2);
+ seed3 = static_cast<u8>(seed3 >> sh1);
+ seed4 = static_cast<u8>(seed4 >> sh2);
+ seed5 = static_cast<u8>(seed5 >> sh1);
+ seed6 = static_cast<u8>(seed6 >> sh2);
+ seed7 = static_cast<u8>(seed7 >> sh1);
+ seed8 = static_cast<u8>(seed8 >> sh2);
+ seed9 = static_cast<u8>(seed9 >> sh3);
+ seed10 = static_cast<u8>(seed10 >> sh3);
+ seed11 = static_cast<u8>(seed11 >> sh3);
+ seed12 = static_cast<u8>(seed12 >> sh3);
+
+ s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
+ s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
+ s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
+ s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
a &= 0x3F;
b &= 0x3F;
@@ -1252,24 +1251,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
return 3;
}
-static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount,
- int32_t smallBlock) {
+static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
}
// Section C.2.14
-static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues,
- uint32_t colorEndpointMode) {
+static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
+ u32 colorEndpointMode) {
#define READ_UINT_VALUES(N) \
- uint32_t v[N]; \
- for (uint32_t i = 0; i < N; i++) { \
+ u32 v[N]; \
+ for (u32 i = 0; i < N; i++) { \
v[i] = *(colorValues++); \
}
#define READ_INT_VALUES(N) \
- int32_t v[N]; \
- for (uint32_t i = 0; i < N; i++) { \
- v[i] = static_cast<int32_t>(*(colorValues++)); \
+ s32 v[N]; \
+ for (u32 i = 0; i < N; i++) { \
+ v[i] = static_cast<s32>(*(colorValues++)); \
}
switch (colorEndpointMode) {
@@ -1281,8 +1279,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue
case 1: {
READ_UINT_VALUES(2)
- uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0);
- uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
+ u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
+ u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
ep1 = Pixel(0xFF, L0, L0, L0);
ep2 = Pixel(0xFF, L1, L1, L1);
} break;
@@ -1379,8 +1377,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue
#undef READ_INT_VALUES
}
-static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
- const uint32_t blockHeight, uint32_t* outBuf) {
+static void DecompressBlock(const u8 inBuf[16], const u32 blockWidth, const u32 blockHeight,
+ u32* outBuf) {
InputBitStream strm(inBuf);
TexelWeightParams weightParams = DecodeBlockInfo(strm);
@@ -1415,7 +1413,7 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
}
// Read num partitions
- uint32_t nPartitions = strm.ReadBits(2) + 1;
+ u32 nPartitions = strm.ReadBits(2) + 1;
assert(nPartitions <= 4);
if (nPartitions == 4 && weightParams.m_bDualPlane) {
@@ -1428,17 +1426,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
// each partition.
// Determine partitions, partition index, and color endpoint modes
- int32_t planeIdx = -1;
- uint32_t partitionIndex;
- uint32_t colorEndpointMode[4] = {0, 0, 0, 0};
+ s32 planeIdx = -1;
+ u32 partitionIndex;
+ u32 colorEndpointMode[4] = {0, 0, 0, 0};
// Define color data.
- uint8_t colorEndpointData[16];
+ u8 colorEndpointData[16];
memset(colorEndpointData, 0, sizeof(colorEndpointData));
OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
// Read extra config data...
- uint32_t baseCEM = 0;
+ u32 baseCEM = 0;
if (nPartitions == 1) {
colorEndpointMode[0] = strm.ReadBits(4);
partitionIndex = 0;
@@ -1446,14 +1444,14 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
partitionIndex = strm.ReadBits(10);
baseCEM = strm.ReadBits(6);
}
- uint32_t baseMode = (baseCEM & 3);
+ u32 baseMode = (baseCEM & 3);
// Remaining bits are color endpoint data...
- uint32_t nWeightBits = weightParams.GetPackedBitSize();
- int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead();
+ u32 nWeightBits = weightParams.GetPackedBitSize();
+ s32 remainingBits = 128 - nWeightBits - strm.GetBitsRead();
// Consider extra bits prior to texel data...
- uint32_t extraCEMbits = 0;
+ u32 extraCEMbits = 0;
if (baseMode) {
switch (nPartitions) {
case 2:
@@ -1473,17 +1471,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
remainingBits -= extraCEMbits;
// Do we have a dual plane situation?
- uint32_t planeSelectorBits = 0;
+ u32 planeSelectorBits = 0;
if (weightParams.m_bDualPlane) {
planeSelectorBits = 2;
}
remainingBits -= planeSelectorBits;
// Read color data...
- uint32_t colorDataBits = remainingBits;
+ u32 colorDataBits = remainingBits;
while (remainingBits > 0) {
- uint32_t nb = std::min(remainingBits, 8);
- uint32_t b = strm.ReadBits(nb);
+ u32 nb = std::min(remainingBits, 8);
+ u32 b = strm.ReadBits(nb);
colorEndpointStream.WriteBits(b, nb);
remainingBits -= 8;
}
@@ -1493,24 +1491,24 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
// Read the rest of the CEM
if (baseMode) {
- uint32_t extraCEM = strm.ReadBits(extraCEMbits);
- uint32_t CEM = (extraCEM << 6) | baseCEM;
+ u32 extraCEM = strm.ReadBits(extraCEMbits);
+ u32 CEM = (extraCEM << 6) | baseCEM;
CEM >>= 2;
bool C[4] = {0};
- for (uint32_t i = 0; i < nPartitions; i++) {
+ for (u32 i = 0; i < nPartitions; i++) {
C[i] = CEM & 1;
CEM >>= 1;
}
- uint8_t M[4] = {0};
- for (uint32_t i = 0; i < nPartitions; i++) {
+ u8 M[4] = {0};
+ for (u32 i = 0; i < nPartitions; i++) {
M[i] = CEM & 3;
CEM >>= 2;
assert(M[i] <= 3);
}
- for (uint32_t i = 0; i < nPartitions; i++) {
+ for (u32 i = 0; i < nPartitions; i++) {
colorEndpointMode[i] = baseMode;
if (!(C[i]))
colorEndpointMode[i] -= 1;
@@ -1518,35 +1516,35 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
colorEndpointMode[i] |= M[i];
}
} else if (nPartitions > 1) {
- uint32_t CEM = baseCEM >> 2;
- for (uint32_t i = 0; i < nPartitions; i++) {
+ u32 CEM = baseCEM >> 2;
+ for (u32 i = 0; i < nPartitions; i++) {
colorEndpointMode[i] = CEM;
}
}
// Make sure everything up till here is sane.
- for (uint32_t i = 0; i < nPartitions; i++) {
+ for (u32 i = 0; i < nPartitions; i++) {
assert(colorEndpointMode[i] < 16);
}
assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
// Decode both color data and texel weight data
- uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions
+ u32 colorValues[32]; // Four values, two endpoints, four maximum paritions
DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
colorDataBits);
Pixel endpoints[4][2];
- const uint32_t* colorValuesPtr = colorValues;
- for (uint32_t i = 0; i < nPartitions; i++) {
+ const u32* colorValuesPtr = colorValues;
+ for (u32 i = 0; i < nPartitions; i++) {
ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
}
// Read the texel weight data..
- uint8_t texelWeightData[16];
+ u8 texelWeightData[16];
memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
// Reverse everything
- for (uint32_t i = 0; i < 8; i++) {
+ for (u32 i = 0; i < 8; i++) {
// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i]));
@@ -1558,10 +1556,10 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
}
// Make sure that higher non-texel bits are set to zero
- const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
+ const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
texelWeightData[clearByteStart - 1] =
texelWeightData[clearByteStart - 1] &
- static_cast<uint8_t>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
+ static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
std::vector<IntegerEncodedValue> texelWeightValues;
@@ -1572,36 +1570,36 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
weightParams.GetNumWeightValues());
// Blocks can be at most 12x12, so we can have as many as 144 weights
- uint32_t weights[2][144];
+ u32 weights[2][144];
UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
// Now that we have endpoints and weights, we can interpolate and generate
// the proper decoding...
- for (uint32_t j = 0; j < blockHeight; j++)
- for (uint32_t i = 0; i < blockWidth; i++) {
- uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions,
- (blockHeight * blockWidth) < 32);
+ for (u32 j = 0; j < blockHeight; j++)
+ for (u32 i = 0; i < blockWidth; i++) {
+ u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
+ (blockHeight * blockWidth) < 32);
assert(partition < nPartitions);
Pixel p;
- for (uint32_t c = 0; c < 4; c++) {
- uint32_t C0 = endpoints[partition][0].Component(c);
+ for (u32 c = 0; c < 4; c++) {
+ u32 C0 = endpoints[partition][0].Component(c);
C0 = Replicate(C0, 8, 16);
- uint32_t C1 = endpoints[partition][1].Component(c);
+ u32 C1 = endpoints[partition][1].Component(c);
C1 = Replicate(C1, 8, 16);
- uint32_t plane = 0;
+ u32 plane = 0;
if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
plane = 1;
}
- uint32_t weight = weights[plane][j * blockWidth + i];
- uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
+ u32 weight = weights[plane][j * blockWidth + i];
+ u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
if (C == 65535) {
p.Component(c) = 255;
} else {
double Cf = static_cast<double>(C);
- p.Component(c) = static_cast<uint16_t>(255.0 * (Cf / 65536.0) + 0.5);
+ p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
}
}
@@ -1613,26 +1611,26 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
namespace Tegra::Texture::ASTC {
-std::vector<uint8_t> Decompress(const uint8_t* data, uint32_t width, uint32_t height,
- uint32_t depth, uint32_t block_width, uint32_t block_height) {
- uint32_t blockIdx = 0;
+std::vector<u8> Decompress(const u8* data, u32 width, u32 height, u32 depth, u32 block_width,
+ u32 block_height) {
+ u32 blockIdx = 0;
std::size_t depth_offset = 0;
- std::vector<uint8_t> outData(height * width * depth * 4);
- for (uint32_t k = 0; k < depth; k++) {
- for (uint32_t j = 0; j < height; j += block_height) {
- for (uint32_t i = 0; i < width; i += block_width) {
+ std::vector<u8> outData(height * width * depth * 4);
+ for (u32 k = 0; k < depth; k++) {
+ for (u32 j = 0; j < height; j += block_height) {
+ for (u32 i = 0; i < width; i += block_width) {
- const uint8_t* blockPtr = data + blockIdx * 16;
+ const u8* blockPtr = data + blockIdx * 16;
// Blocks can be at most 12x12
- uint32_t uncompData[144];
+ u32 uncompData[144];
ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
- uint32_t decompWidth = std::min(block_width, width - i);
- uint32_t decompHeight = std::min(block_height, height - j);
+ u32 decompWidth = std::min(block_width, width - i);
+ u32 decompHeight = std::min(block_height, height - j);
- uint8_t* outRow = depth_offset + outData.data() + (j * width + i) * 4;
- for (uint32_t jj = 0; jj < decompHeight; jj++) {
+ u8* outRow = depth_offset + outData.data() + (j * width + i) * 4;
+ for (u32 jj = 0; jj < decompHeight; jj++) {
memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4);
}