summaryrefslogtreecommitdiffstats
path: root/externals/tz/tz/tz.cpp
blob: 0c8b68217092407ee0a6ecbbc4563e317962e8bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-FileCopyrightText: 1996 Arthur David Olson
// SPDX-License-Identifier: BSD-2-Clause

#include <climits>
#include <cstring>
#include <ctime>

#include "tz.h"

namespace Tz {

namespace {
#define EINVAL 22

static Rule gmtmem{};
static Rule* const gmtptr = &gmtmem;

struct TzifHeader {
    std::array<char, 4> tzh_magic; // "TZif"
    std::array<char, 1> tzh_version;
    std::array<char, 15> tzh_reserved;
    std::array<char, 4> tzh_ttisutcnt;
    std::array<char, 4> tzh_ttisstdcnt;
    std::array<char, 4> tzh_leapcnt;
    std::array<char, 4> tzh_timecnt;
    std::array<char, 4> tzh_typecnt;
    std::array<char, 4> tzh_charcnt;
};
static_assert(sizeof(TzifHeader) == 0x2C, "TzifHeader has the wrong size!");

struct local_storage {
    // Binary layout:
    // char buf[2 * sizeof(TzifHeader) + 2 * sizeof(Rule) + 4 * TZ_MAX_TIMES];
    std::span<const u8> binary;
    Rule state;
};
static local_storage tzloadbody_local_storage;

enum rtype : s32 {
    JULIAN_DAY = 0,
    DAY_OF_YEAR = 1,
    MONTH_NTH_DAY_OF_WEEK = 2,
};

struct tzrule {
    rtype r_type;
    int r_day;
    int r_week;
    int r_mon;
    s64 r_time;
};
static_assert(sizeof(tzrule) == 0x18, "tzrule has the wrong size!");

constexpr static char UNSPEC[] = "-00";
constexpr static char TZDEFRULESTRING[] = ",M3.2.0,M11.1.0";

enum {
    SECSPERMIN = 60,
    MINSPERHOUR = 60,
    SECSPERHOUR = SECSPERMIN * MINSPERHOUR,
    HOURSPERDAY = 24,
    DAYSPERWEEK = 7,
    DAYSPERNYEAR = 365,
    DAYSPERLYEAR = DAYSPERNYEAR + 1,
    MONSPERYEAR = 12,
    YEARSPERREPEAT = 400 /* years before a Gregorian repeat */
};

#define SECSPERDAY ((s64)SECSPERHOUR * HOURSPERDAY)

#define DAYSPERREPEAT ((s64)400 * 365 + 100 - 4 + 1)
#define SECSPERREPEAT ((int_fast64_t)DAYSPERREPEAT * SECSPERDAY)
#define AVGSECSPERYEAR (SECSPERREPEAT / YEARSPERREPEAT)

enum {
    TM_SUNDAY,
    TM_MONDAY,
    TM_TUESDAY,
    TM_WEDNESDAY,
    TM_THURSDAY,
    TM_FRIDAY,
    TM_SATURDAY,
};

enum {
    TM_JANUARY,
    TM_FEBRUARY,
    TM_MARCH,
    TM_APRIL,
    TM_MAY,
    TM_JUNE,
    TM_JULY,
    TM_AUGUST,
    TM_SEPTEMBER,
    TM_OCTOBER,
    TM_NOVEMBER,
    TM_DECEMBER,
};

constexpr s32 TM_YEAR_BASE = 1900;
constexpr s32 TM_WDAY_BASE = TM_MONDAY;
constexpr s32 EPOCH_YEAR = 1970;
constexpr s32 EPOCH_WDAY = TM_THURSDAY;

#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))

static constexpr std::array<std::array<int, MONSPERYEAR>, 2> mon_lengths = { {
    {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
    {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
} };

static constexpr std::array<int, 2> year_lengths = {
    DAYSPERNYEAR,
    DAYSPERLYEAR,
};

constexpr static time_t leaps_thru_end_of_nonneg(time_t y) {
    return y / 4 - y / 100 + y / 400;
}

constexpr static time_t leaps_thru_end_of(time_t y) {
    return (y < 0 ? -1 - leaps_thru_end_of_nonneg(-1 - y) : leaps_thru_end_of_nonneg(y));
}

#define TWOS_COMPLEMENT(t) ((t) ~(t)0 < 0)

s32 detzcode(const char* const codep) {
    s32 result;
    int i;
    s32 one = 1;
    s32 halfmaxval = one << (32 - 2);
    s32 maxval = halfmaxval - 1 + halfmaxval;
    s32 minval = -1 - maxval;

    result = codep[0] & 0x7f;
    for (i = 1; i < 4; ++i) {
        result = (result << 8) | (codep[i] & 0xff);
    }

    if (codep[0] & 0x80) {
        /* Do two's-complement negation even on non-two's-complement machines.
            If the result would be minval - 1, return minval.  */
        result -= !TWOS_COMPLEMENT(s32) && result != 0;
        result += minval;
    }
    return result;
}

int_fast64_t detzcode64(const char* const codep) {
    int_fast64_t result;
    int i;
    int_fast64_t one = 1;
    int_fast64_t halfmaxval = one << (64 - 2);
    int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
    int_fast64_t minval = -static_cast<int_fast64_t>(TWOS_COMPLEMENT(int_fast64_t)) - maxval;

    result = codep[0] & 0x7f;
    for (i = 1; i < 8; ++i) {
        result = (result << 8) | (codep[i] & 0xff);
    }

    if (codep[0] & 0x80) {
        /* Do two's-complement negation even on non-two's-complement machines.
            If the result would be minval - 1, return minval.  */
        result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
        result += minval;
    }
    return result;
}

/* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX.  */
constexpr void init_ttinfo(ttinfo* s, s64 utoff, bool isdst, int desigidx) {
    s->tt_utoff = static_cast<s32>(utoff);
    s->tt_isdst = isdst;
    s->tt_desigidx = desigidx;
    s->tt_ttisstd = false;
    s->tt_ttisut = false;
}

/* Return true if SP's time type I does not specify local time.  */
bool ttunspecified(struct Rule const* sp, int i) {
    char const* abbr = &sp->chars[sp->ttis[i].tt_desigidx];
    /* memcmp is likely faster than strcmp, and is safe due to CHARS_EXTRA.  */
    return memcmp(abbr, UNSPEC, sizeof(UNSPEC)) == 0;
}

bool typesequiv(const Rule* sp, int a, int b) {
    bool result;

    if (sp == nullptr || a < 0 || a >= sp->typecnt || b < 0 || b >= sp->typecnt) {
        result = false;
    }
    else {
        /* Compare the relevant members of *AP and *BP.
        Ignore tt_ttisstd and tt_ttisut, as they are
        irrelevant now and counting them could cause
        sp->goahead to mistakenly remain false.  */
        const ttinfo* ap = &sp->ttis[a];
        const ttinfo* bp = &sp->ttis[b];
        result = (ap->tt_utoff == bp->tt_utoff && ap->tt_isdst == bp->tt_isdst &&
            (strcmp(&sp->chars[ap->tt_desigidx], &sp->chars[bp->tt_desigidx]) == 0));
    }
    return result;
}

constexpr const char* getqzname(const char* strp, const int delim) {
    int c;

    while ((c = *strp) != '\0' && c != delim) {
        ++strp;
    }
    return strp;
}

/* Is C an ASCII digit?  */
constexpr bool is_digit(char c) {
    return '0' <= c && c <= '9';
}

/*
** Given a pointer into a timezone string, scan until a character that is not
** a valid character in a time zone abbreviation is found.
** Return a pointer to that character.
*/

constexpr const char* getzname(const char* strp) {
    char c;

    while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && c != '+') {
        ++strp;
    }
    return strp;
}

static const char* getnum(const char* strp, int* const nump, const int min, const int max) {
    char c;
    int num;

    if (strp == nullptr || !is_digit(c = *strp)) {
        return nullptr;
    }
    num = 0;
    do {
        num = num * 10 + (c - '0');
        if (num > max) {
            return nullptr; /* illegal value */
        }
        c = *++strp;
    } while (is_digit(c));
    if (num < min) {
        return nullptr; /* illegal value */
    }
    *nump = num;
    return strp;
}

/*
** Given a pointer into a timezone string, extract a number of seconds,
** in hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the number
** of seconds.
*/

const char* getsecs(const char* strp, s64* const secsp) {
    int num;
    s64 secsperhour = SECSPERHOUR;

    /*
    ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    ** "M10.4.6/26", which does not conform to Posix,
    ** but which specifies the equivalent of
    ** "02:00 on the first Sunday on or after 23 Oct".
    */
    strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    if (strp == nullptr) {
        return nullptr;
    }
    *secsp = num * secsperhour;
    if (*strp == ':') {
        ++strp;
        strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
        if (strp == nullptr) {
            return nullptr;
        }
        *secsp += num * SECSPERMIN;
        if (*strp == ':') {
            ++strp;
            /* 'SECSPERMIN' allows for leap seconds.  */
            strp = getnum(strp, &num, 0, SECSPERMIN);
            if (strp == nullptr) {
                return nullptr;
            }
            *secsp += num;
        }
    }
    return strp;
}

/*
** Given a pointer into a timezone string, extract an offset, in
** [+-]hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/

const char* getoffset(const char* strp, s64* const offsetp) {
    bool neg = false;

    if (*strp == '-') {
        neg = true;
        ++strp;
    }
    else if (*strp == '+') {
        ++strp;
    }
    strp = getsecs(strp, offsetp);
    if (strp == nullptr) {
        return nullptr; /* illegal time */
    }
    if (neg) {
        *offsetp = -*offsetp;
    }
    return strp;
}

constexpr const char* getrule(const char* strp, tzrule* const rulep) {
    if (*strp == 'J') {
        /*
        ** Julian day.
        */
        rulep->r_type = JULIAN_DAY;
        ++strp;
        strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    }
    else if (*strp == 'M') {
        /*
        ** Month, week, day.
        */
        rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
        ++strp;
        strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
        if (strp == nullptr) {
            return nullptr;
        }
        if (*strp++ != '.') {
            return nullptr;
        }
        strp = getnum(strp, &rulep->r_week, 1, 5);
        if (strp == nullptr) {
            return nullptr;
        }
        if (*strp++ != '.') {
            return nullptr;
        }
        strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    }
    else if (is_digit(*strp)) {
        /*
        ** Day of year.
        */
        rulep->r_type = DAY_OF_YEAR;
        strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    }
    else {
        return nullptr;
    } /* invalid format */
    if (strp == nullptr) {
        return nullptr;
    }
    if (*strp == '/') {
        /*
        ** Time specified.
        */
        ++strp;
        strp = getoffset(strp, &rulep->r_time);
    }
    else {
        rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
    }
    return strp;
}

constexpr bool increment_overflow(int* ip, int j) {
    int const i = *ip;

    /*
    ** If i >= 0 there can only be overflow if i + j > INT_MAX
    ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
    ** If i < 0 there can only be overflow if i + j < INT_MIN
    ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
    */
    if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) {
        return true;
    }
    *ip += j;
    return false;
}

constexpr bool increment_overflow32(s64* const lp, int const m) {
    s64 const l = *lp;

    if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
        return true;
    *lp += m;
    return false;
}

constexpr bool increment_overflow_time(time_t* tp, s64 j) {
    /*
    ** This is like
    ** 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...',
    ** except that it does the right thing even if *tp + j would overflow.
    */
    if (!(j < 0 ? (std::is_signed_v<time_t> ? TIME_T_MIN - j <= *tp : -1 - j < *tp)
        : *tp <= TIME_T_MAX - j)) {
        return true;
    }
    *tp += j;
    return false;
}

CalendarTimeInternal* timesub(const time_t* timep, s64 offset, const Rule* sp,
    CalendarTimeInternal* tmp) {
    time_t tdays;
    const int* ip;
    s64 idays, rem, dayoff, dayrem;
    time_t y;

    /* Calculate the year, avoiding integer overflow even if
        time_t is unsigned.  */
    tdays = *timep / SECSPERDAY;
    rem = *timep % SECSPERDAY;
    rem += offset % SECSPERDAY + 3 * SECSPERDAY;
    dayoff = offset / SECSPERDAY + rem / SECSPERDAY - 3;
    rem %= SECSPERDAY;
    /* y = (EPOCH_YEAR
            + floor((tdays + dayoff) / DAYSPERREPEAT) * YEARSPERREPEAT),
        sans overflow.  But calculate against 1570 (EPOCH_YEAR -
        YEARSPERREPEAT) instead of against 1970 so that things work
        for localtime values before 1970 when time_t is unsigned.  */
    dayrem = tdays % DAYSPERREPEAT;
    dayrem += dayoff % DAYSPERREPEAT;
    y = (EPOCH_YEAR - YEARSPERREPEAT +
        ((1ull + dayoff / DAYSPERREPEAT + dayrem / DAYSPERREPEAT - ((dayrem % DAYSPERREPEAT) < 0) +
            tdays / DAYSPERREPEAT) *
            YEARSPERREPEAT));
        /* idays = (tdays + dayoff) mod DAYSPERREPEAT, sans overflow.  */
    idays = tdays % DAYSPERREPEAT;
    idays += dayoff % DAYSPERREPEAT + 2 * DAYSPERREPEAT;
    idays %= DAYSPERREPEAT;
    /* Increase Y and decrease IDAYS until IDAYS is in range for Y.  */
    while (year_lengths[isleap(y)] <= idays) {
        s64 tdelta = idays / DAYSPERLYEAR;
        s64 ydelta = tdelta + !tdelta;
        time_t newy = y + ydelta;
        int leapdays;
        leapdays = static_cast<s32>(leaps_thru_end_of(newy - 1) - leaps_thru_end_of(y - 1));
        idays -= ydelta * DAYSPERNYEAR;
        idays -= leapdays;
        y = newy;
    }

    if constexpr (!std::is_signed_v<time_t> && y < TM_YEAR_BASE) {
        int signed_y = static_cast<s32>(y);
        tmp->tm_year = signed_y - TM_YEAR_BASE;
    }
    else if ((!std::is_signed_v<time_t> || std::numeric_limits<s32>::min() + TM_YEAR_BASE <= y) &&
        y - TM_YEAR_BASE <= std::numeric_limits<s32>::max()) {
        tmp->tm_year = static_cast<s32>(y - TM_YEAR_BASE);
    }
    else {
        // errno = EOVERFLOW;
        return nullptr;
    }

    tmp->tm_yday = static_cast<s32>(idays);
    /*
    ** The "extra" mods below avoid overflow problems.
    */
    tmp->tm_wday = static_cast<s32>(
        TM_WDAY_BASE + ((tmp->tm_year % DAYSPERWEEK) * (DAYSPERNYEAR % DAYSPERWEEK)) +
        leaps_thru_end_of(y - 1) - leaps_thru_end_of(TM_YEAR_BASE - 1) + idays);
    tmp->tm_wday %= DAYSPERWEEK;
    if (tmp->tm_wday < 0) {
        tmp->tm_wday += DAYSPERWEEK;
    }
    tmp->tm_hour = static_cast<s32>(rem / SECSPERHOUR);
    rem %= SECSPERHOUR;
    tmp->tm_min = static_cast<s32>(rem / SECSPERMIN);
    tmp->tm_sec = static_cast<s32>(rem % SECSPERMIN);

    ip = mon_lengths[isleap(y)].data();
    for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) {
        idays -= ip[tmp->tm_mon];
    }
    tmp->tm_mday = static_cast<s32>(idays + 1);
    tmp->tm_isdst = 0;
    return tmp;
}

CalendarTimeInternal* gmtsub([[maybe_unused]] Rule const* sp, time_t const* timep,
    s64 offset, CalendarTimeInternal* tmp) {
    CalendarTimeInternal* result;

    result = timesub(timep, offset, gmtptr, tmp);
    return result;
}

CalendarTimeInternal* localsub(Rule const* sp, time_t const* timep, s64 setname,
    CalendarTimeInternal* const tmp) {
    const ttinfo* ttisp;
    int i;
    CalendarTimeInternal* result;
    const time_t t = *timep;

    if (sp == nullptr) {
        /* Don't bother to set tzname etc.; tzset has already done it.  */
        return gmtsub(gmtptr, timep, 0, tmp);
    }
    if ((sp->goback && t < sp->ats[0]) || (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
        time_t newt;
        time_t seconds;
        time_t years;

        if (t < sp->ats[0]) {
            seconds = sp->ats[0] - t;
        }
        else {
            seconds = t - sp->ats[sp->timecnt - 1];
        }
        --seconds;

        /* Beware integer overflow, as SECONDS might
            be close to the maximum time_t.  */
        years = seconds / SECSPERREPEAT * YEARSPERREPEAT;
        seconds = years * AVGSECSPERYEAR;
        years += YEARSPERREPEAT;
        if (t < sp->ats[0]) {
            newt = t + seconds + SECSPERREPEAT;
        }
        else {
            newt = t - seconds - SECSPERREPEAT;
        }

        if (newt < sp->ats[0] || newt > sp->ats[sp->timecnt - 1]) {
            return nullptr; /* "cannot happen" */
        }
        result = localsub(sp, &newt, setname, tmp);
        if (result) {
            int_fast64_t newy;

            newy = result->tm_year;
            if (t < sp->ats[0]) {
                newy -= years;
            }
            else {
                newy += years;
            }
            if (!(std::numeric_limits<s32>::min() <= newy &&
                newy <= std::numeric_limits<s32>::max())) {
                return nullptr;
            }
            result->tm_year = static_cast<s32>(newy);
        }
        return result;
    }
    if (sp->timecnt == 0 || t < sp->ats[0]) {
        i = sp->defaulttype;
    }
    else {
        int lo = 1;
        int hi = sp->timecnt;

        while (lo < hi) {
            int mid = (lo + hi) >> 1;

            if (t < sp->ats[mid])
                hi = mid;
            else
                lo = mid + 1;
        }
        i = sp->types[lo - 1];
    }
    ttisp = &sp->ttis[i];
    /*
    ** To get (wrong) behavior that's compatible with System V Release 2.0
    ** you'd replace the statement below with
    **	t += ttisp->tt_utoff;
    **	timesub(&t, 0L, sp, tmp);
    */
    result = timesub(&t, ttisp->tt_utoff, sp, tmp);
    if (result) {
        result->tm_isdst = ttisp->tt_isdst;

        if (ttisp->tt_desigidx > static_cast<s32>(sp->chars.size() - CHARS_EXTRA)) {
            return nullptr;
        }

        auto num_chars_to_copy{
            std::min(sp->chars.size() - ttisp->tt_desigidx, result->tm_zone.size()) - 1 };
        std::strncpy(result->tm_zone.data(), &sp->chars[ttisp->tt_desigidx], num_chars_to_copy);
        result->tm_zone[num_chars_to_copy] = '\0';

        auto original_size{ std::strlen(&sp->chars[ttisp->tt_desigidx]) };
        if (original_size > num_chars_to_copy) {
            return nullptr;
        }

        result->tm_utoff = ttisp->tt_utoff;
        result->time_index = i;
    }
    return result;
}

/*
** Given a year, a rule, and the offset from UT at the time that rule takes
** effect, calculate the year-relative time that rule takes effect.
*/

constexpr s64 transtime(const int year, const tzrule* const rulep,
    const s64 offset) {
    bool leapyear;
    s64 value;
    int i;
    int d, m1, yy0, yy1, yy2, dow;

    leapyear = isleap(year);
    switch (rulep->r_type) {
    case JULIAN_DAY:
        /*
        ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
        ** years.
        ** In non-leap years, or if the day number is 59 or less, just
        ** add SECSPERDAY times the day number-1 to the time of
        ** January 1, midnight, to get the day.
        */
        value = (rulep->r_day - 1) * SECSPERDAY;
        if (leapyear && rulep->r_day >= 60) {
            value += SECSPERDAY;
        }
        break;

    case DAY_OF_YEAR:
        /*
        ** n - day of year.
        ** Just add SECSPERDAY times the day number to the time of
        ** January 1, midnight, to get the day.
        */
        value = rulep->r_day * SECSPERDAY;
        break;

    case MONTH_NTH_DAY_OF_WEEK:
        /*
        ** Mm.n.d - nth "dth day" of month m.
        */

        /*
        ** Use Zeller's Congruence to get day-of-week of first day of
        ** month.
        */
        m1 = (rulep->r_mon + 9) % 12 + 1;
        yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
        yy1 = yy0 / 100;
        yy2 = yy0 % 100;
        dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
        if (dow < 0) {
            dow += DAYSPERWEEK;
        }

        /*
        ** "dow" is the day-of-week of the first day of the month. Get
        ** the day-of-month (zero-origin) of the first "dow" day of the
        ** month.
        */
        d = rulep->r_day - dow;
        if (d < 0) {
            d += DAYSPERWEEK;
        }
        for (i = 1; i < rulep->r_week; ++i) {
            if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1]) {
                break;
            }
            d += DAYSPERWEEK;
        }

        /*
        ** "d" is the day-of-month (zero-origin) of the day we want.
        */
        value = d * SECSPERDAY;
        for (i = 0; i < rulep->r_mon - 1; ++i) {
            value += mon_lengths[leapyear][i] * SECSPERDAY;
        }
        break;

    default:
        //UNREACHABLE();
        break;
    }

    /*
    ** "value" is the year-relative time of 00:00:00 UT on the day in
    ** question. To get the year-relative time of the specified local
    ** time on that day, add the transition time and the current offset
    ** from UT.
    */
    return value + rulep->r_time + offset;
}

bool tzparse(const char* name, Rule* sp) {
    const char* stdname{};
    const char* dstname{};
    s64 stdoffset;
    s64 dstoffset;
    char* cp;
    ptrdiff_t stdlen;
    ptrdiff_t dstlen{};
    ptrdiff_t charcnt;
    time_t atlo = TIME_T_MIN, leaplo = TIME_T_MIN;

    stdname = name;
    if (*name == '<') {
        name++;
        stdname = name;
        name = getqzname(name, '>');
        if (*name != '>') {
            return false;
        }
        stdlen = name - stdname;
        name++;
    }
    else {
        name = getzname(name);
        stdlen = name - stdname;
    }
    if (!(0 < stdlen && stdlen <= TZNAME_MAXIMUM)) {
        return false;
    }
    name = getoffset(name, &stdoffset);
    if (name == nullptr) {
        return false;
    }
    charcnt = stdlen + 1;
    if (charcnt > TZ_MAX_CHARS) {
        return false;
    }
    if (*name != '\0') {
        if (*name == '<') {
            dstname = ++name;
            name = getqzname(name, '>');
            if (*name != '>')
                return false;
            dstlen = name - dstname;
            name++;
        }
        else {
            dstname = name;
            name = getzname(name);
            dstlen = name - dstname; /* length of DST abbr. */
        }
        if (!(0 < dstlen && dstlen <= TZNAME_MAXIMUM)) {
            return false;
        }
        charcnt += dstlen + 1;
        if (charcnt > TZ_MAX_CHARS) {
            return false;
        }
        if (*name != '\0' && *name != ',' && *name != ';') {
            name = getoffset(name, &dstoffset);
            if (name == nullptr) {
                return false;
            }
        }
        else {
            dstoffset = stdoffset - SECSPERHOUR;
        }
        if (*name == '\0') {
            name = TZDEFRULESTRING;
        }
        if (*name == ',' || *name == ';') {
            struct tzrule start;
            struct tzrule end;
            int year;
            int timecnt;
            time_t janfirst;
            s64 janoffset = 0;
            int yearbeg, yearlim;

            ++name;
            if ((name = getrule(name, &start)) == nullptr) {
                return false;
            }
            if (*name++ != ',') {
                return false;
            }
            if ((name = getrule(name, &end)) == nullptr) {
                return false;
            }
            if (*name != '\0') {
                return false;
            }
            sp->typecnt = 2; /* standard time and DST */
            /*
            ** Two transitions per year, from EPOCH_YEAR forward.
            */
            init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
            init_ttinfo(&sp->ttis[1], -dstoffset, true, static_cast<s32>(stdlen + 1));
            sp->defaulttype = 0;
            timecnt = 0;
            janfirst = 0;
            yearbeg = EPOCH_YEAR;

            do {
                s64 yearsecs = year_lengths[isleap(yearbeg - 1)] * SECSPERDAY;
                yearbeg--;
                if (increment_overflow_time(&janfirst, -yearsecs)) {
                    janoffset = -yearsecs;
                    break;
                }
            } while (atlo < janfirst && EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg);

            while (true) {
                s64 yearsecs = year_lengths[isleap(yearbeg)] * SECSPERDAY;
                int yearbeg1 = yearbeg;
                time_t janfirst1 = janfirst;
                if (increment_overflow_time(&janfirst1, yearsecs) ||
                    increment_overflow(&yearbeg1, 1) || atlo <= janfirst1) {
                    break;
                }
                yearbeg = yearbeg1;
                janfirst = janfirst1;
            }

            yearlim = yearbeg;
            if (increment_overflow(&yearlim, YEARSPERREPEAT + 1)) {
                yearlim = INT_MAX;
            }
            for (year = yearbeg; year < yearlim; year++) {
                s64 starttime = transtime(year, &start, stdoffset),
                    endtime = transtime(year, &end, dstoffset);
                s64 yearsecs = (year_lengths[isleap(year)] * SECSPERDAY);
                bool reversed = endtime < starttime;
                if (reversed) {
                    s64 swap = starttime;
                    starttime = endtime;
                    endtime = swap;
                }
                if (reversed || (starttime < endtime && endtime - starttime < yearsecs)) {
                    if (TZ_MAX_TIMES - 2 < timecnt) {
                        break;
                    }
                    sp->ats[timecnt] = janfirst;
                    if (!increment_overflow_time(reinterpret_cast<time_t*>(&sp->ats[timecnt]), janoffset + starttime) &&
                        atlo <= sp->ats[timecnt]) {
                        sp->types[timecnt++] = !reversed;
                    }
                    sp->ats[timecnt] = janfirst;
                    if (!increment_overflow_time(reinterpret_cast<time_t*>(&sp->ats[timecnt]), janoffset + endtime) &&
                        atlo <= sp->ats[timecnt]) {
                        sp->types[timecnt++] = reversed;
                    }
                }
                if (endtime < leaplo) {
                    yearlim = year;
                    if (increment_overflow(&yearlim, YEARSPERREPEAT + 1)) {
                        yearlim = INT_MAX;
                    }
                }
                if (increment_overflow_time(&janfirst, janoffset + yearsecs)) {
                    break;
                }
                janoffset = 0;
            }
            sp->timecnt = timecnt;
            if (!timecnt) {
                sp->ttis[0] = sp->ttis[1];
                sp->typecnt = 1; /* Perpetual DST.  */
            }
            else if (YEARSPERREPEAT < year - yearbeg) {
                sp->goback = sp->goahead = true;
            }
        }
        else {
            s64 theirstdoffset;
            s64 theirdstoffset;
            s64 theiroffset;
            bool isdst;
            int i;
            int j;

            if (*name != '\0') {
                return false;
            }
            /*
            ** Initial values of theirstdoffset and theirdstoffset.
            */
            theirstdoffset = 0;
            for (i = 0; i < sp->timecnt; ++i) {
                j = sp->types[i];
                if (!sp->ttis[j].tt_isdst) {
                    theirstdoffset = -sp->ttis[j].tt_utoff;
                    break;
                }
            }
            theirdstoffset = 0;
            for (i = 0; i < sp->timecnt; ++i) {
                j = sp->types[i];
                if (sp->ttis[j].tt_isdst) {
                    theirdstoffset = -sp->ttis[j].tt_utoff;
                    break;
                }
            }
            /*
            ** Initially we're assumed to be in standard time.
            */
            isdst = false;
            /*
            ** Now juggle transition times and types
            ** tracking offsets as you do.
            */
            for (i = 0; i < sp->timecnt; ++i) {
                j = sp->types[i];
                sp->types[i] = sp->ttis[j].tt_isdst;
                if (sp->ttis[j].tt_ttisut) {
                    /* No adjustment to transition time */
                }
                else {
                    /*
                    ** If daylight saving time is in
                    ** effect, and the transition time was
                    ** not specified as standard time, add
                    ** the daylight saving time offset to
                    ** the transition time; otherwise, add
                    ** the standard time offset to the
                    ** transition time.
                    */
                    /*
                    ** Transitions from DST to DDST
                    ** will effectively disappear since
                    ** POSIX provides for only one DST
                    ** offset.
                    */
                    if (isdst && !sp->ttis[j].tt_ttisstd) {
                        sp->ats[i] += dstoffset - theirdstoffset;
                    }
                    else {
                        sp->ats[i] += stdoffset - theirstdoffset;
                    }
                }
                theiroffset = -sp->ttis[j].tt_utoff;
                if (sp->ttis[j].tt_isdst) {
                    theirdstoffset = theiroffset;
                }
                else {
                    theirstdoffset = theiroffset;
                }
            }
            /*
            ** Finally, fill in ttis.
            */
            init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
            init_ttinfo(&sp->ttis[1], -dstoffset, true, static_cast<s32>(stdlen + 1));
            sp->typecnt = 2;
            sp->defaulttype = 0;
        }
    }
    else {
        dstlen = 0;
        sp->typecnt = 1; /* only standard time */
        sp->timecnt = 0;
        init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
        sp->defaulttype = 0;
    }
    sp->charcnt = static_cast<s32>(charcnt);
    cp = &sp->chars[0];
    memcpy(cp, stdname, stdlen);
    cp += stdlen;
    *cp++ = '\0';
    if (dstlen != 0) {
        memcpy(cp, dstname, dstlen);
        *(cp + dstlen) = '\0';
    }
    return true;
}

int tzloadbody(Rule* sp, local_storage& local_storage) {
    int i;
    int stored;
    size_t nread{ local_storage.binary.size_bytes() };
    int tzheadsize = sizeof(struct TzifHeader);
    TzifHeader header{};

    //ASSERT(local_storage.binary.size_bytes() >= sizeof(TzifHeader));
    std::memcpy(&header, local_storage.binary.data(), sizeof(TzifHeader));

    sp->goback = sp->goahead = false;

    for (stored = 8; stored <= 8; stored *= 2) {
        s64 datablock_size;
        s32 ttisstdcnt = detzcode(header.tzh_ttisstdcnt.data());
        s32 ttisutcnt = detzcode(header.tzh_ttisutcnt.data());
        s32 leapcnt = detzcode(header.tzh_leapcnt.data());
        s32 timecnt = detzcode(header.tzh_timecnt.data());
        s32 typecnt = detzcode(header.tzh_typecnt.data());
        s32 charcnt = detzcode(header.tzh_charcnt.data());
        /* Although tzfile(5) currently requires typecnt to be nonzero,
            support future formats that may allow zero typecnt
            in files that have a TZ string and no transitions.  */
        if (!(0 <= leapcnt && leapcnt < TZ_MAX_LEAPS && 0 <= typecnt && typecnt < TZ_MAX_TYPES &&
            0 <= timecnt && timecnt < TZ_MAX_TIMES && 0 <= charcnt && charcnt < TZ_MAX_CHARS &&
            0 <= ttisstdcnt && ttisstdcnt < TZ_MAX_TYPES && 0 <= ttisutcnt &&
            ttisutcnt < TZ_MAX_TYPES)) {
            return EINVAL;
        }
        datablock_size = (timecnt * stored         /* ats */
            + timecnt                /* types */
            + typecnt * 6            /* ttinfos */
            + charcnt                /* chars */
            + leapcnt * (stored + 4) /* lsinfos */
            + ttisstdcnt             /* ttisstds */
            + ttisutcnt);            /* ttisuts */
        if (static_cast<s32>(local_storage.binary.size_bytes()) < tzheadsize + datablock_size) {
            return EINVAL;
        }
        if (!((ttisstdcnt == typecnt || ttisstdcnt == 0) &&
            (ttisutcnt == typecnt || ttisutcnt == 0))) {
            return EINVAL;
        }

        char const* p = (const char*)local_storage.binary.data() + tzheadsize;

        sp->timecnt = timecnt;
        sp->typecnt = typecnt;
        sp->charcnt = charcnt;

        /* Read transitions, discarding those out of time_t range.
            But pretend the last transition before TIME_T_MIN
            occurred at TIME_T_MIN.  */
        timecnt = 0;
        for (i = 0; i < sp->timecnt; ++i) {
            int_fast64_t at = stored == 4 ? detzcode(p) : detzcode64(p);
            sp->types[i] = at <= TIME_T_MAX;
            if (sp->types[i]) {
                time_t attime =
                    ((std::is_signed_v<time_t> ? at < TIME_T_MIN : at < 0) ? TIME_T_MIN : at);
                if (timecnt && attime <= sp->ats[timecnt - 1]) {
                    if (attime < sp->ats[timecnt - 1])
                        return EINVAL;
                    sp->types[i - 1] = 0;
                    timecnt--;
                }
                sp->ats[timecnt++] = attime;
            }
            p += stored;
        }

        timecnt = 0;
        for (i = 0; i < sp->timecnt; ++i) {
            unsigned char typ = *p++;
            if (sp->typecnt <= typ) {
                return EINVAL;
            }
            if (sp->types[i]) {
                sp->types[timecnt++] = typ;
            }
        }
        sp->timecnt = timecnt;
        for (i = 0; i < sp->typecnt; ++i) {
            struct ttinfo* ttisp;
            unsigned char isdst, desigidx;

            ttisp = &sp->ttis[i];
            ttisp->tt_utoff = detzcode(p);
            p += 4;
            isdst = *p++;
            if (!(isdst < 2)) {
                return EINVAL;
            }
            ttisp->tt_isdst = isdst != 0;
            desigidx = *p++;
            if (!(desigidx < sp->charcnt)) {
                return EINVAL;
            }
            ttisp->tt_desigidx = desigidx;
        }
        for (i = 0; i < sp->charcnt; ++i) {
            sp->chars[i] = *p++;
        }
        /* Ensure '\0'-terminated, and make it safe to call
            ttunspecified later.  */
        memset(&sp->chars[i], 0, CHARS_EXTRA);

        for (i = 0; i < sp->typecnt; ++i) {
            struct ttinfo* ttisp;

            ttisp = &sp->ttis[i];
            if (ttisstdcnt == 0) {
                ttisp->tt_ttisstd = false;
            }
            else {
                if (*(bool*)p != true && *(bool*)p != false) {
                    return EINVAL;
                }
                ttisp->tt_ttisstd = *(bool*)p++;
            }
        }
        for (i = 0; i < sp->typecnt; ++i) {
            struct ttinfo* ttisp;

            ttisp = &sp->ttis[i];
            if (ttisutcnt == 0) {
                ttisp->tt_ttisut = false;
            }
            else {
                if (*(bool*)p != true && *(bool*)p != false) {
                    return EINVAL;
                }
                ttisp->tt_ttisut = *(bool*)p++;
            }
        }

        nread += (ptrdiff_t)local_storage.binary.data() - (ptrdiff_t)p;
        if (nread < 0) {
            return EINVAL;
        }
    }

    std::array<char, 256> buf{};
    if (nread > buf.size()) {
        //ASSERT(false);
        return EINVAL;
    }
    memmove(buf.data(), &local_storage.binary[local_storage.binary.size_bytes() - nread], nread);

    if (nread > 2 && buf[0] == '\n' && buf[nread - 1] == '\n' && sp->typecnt + 2 <= TZ_MAX_TYPES) {
        Rule* ts = &local_storage.state;

        buf[nread - 1] = '\0';
        if (tzparse(&buf[1], ts) && local_storage.state.typecnt == 2) {

            /* Attempt to reuse existing abbreviations.
                Without this, America/Anchorage would be right on
                the edge after 2037 when TZ_MAX_CHARS is 50, as
                sp->charcnt equals 40 (for LMT AST AWT APT AHST
                AHDT YST AKDT AKST) and ts->charcnt equals 10
                (for AKST AKDT).  Reusing means sp->charcnt can
                stay 40 in this example.  */
            int gotabbr = 0;
            int charcnt = sp->charcnt;
            for (i = 0; i < ts->typecnt; i++) {
                char* tsabbr = &ts->chars[ts->ttis[i].tt_desigidx];
                int j;
                for (j = 0; j < charcnt; j++)
                    if (strcmp(&sp->chars[j], tsabbr) == 0) {
                        ts->ttis[i].tt_desigidx = j;
                        gotabbr++;
                        break;
                    }
                if (!(j < charcnt)) {
                    int tsabbrlen = static_cast<s32>(strlen(tsabbr));
                    if (j + tsabbrlen < TZ_MAX_CHARS) {
                        strcpy(&sp->chars[j], tsabbr);
                        charcnt = j + tsabbrlen + 1;
                        ts->ttis[i].tt_desigidx = j;
                        gotabbr++;
                    }
                }
            }
            if (gotabbr == ts->typecnt) {
                sp->charcnt = charcnt;

                /* Ignore any trailing, no-op transitions generated
                    by zic as they don't help here and can run afoul
                    of bugs in zic 2016j or earlier.  */
                while (1 < sp->timecnt &&
                    (sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 2])) {
                    sp->timecnt--;
                }

                for (i = 0; i < ts->timecnt && sp->timecnt < TZ_MAX_TIMES; i++) {
                    time_t t = ts->ats[i];
                    if (0 < sp->timecnt && t <= sp->ats[sp->timecnt - 1]) {
                        continue;
                    }
                    sp->ats[sp->timecnt] = t;
                    sp->types[sp->timecnt] = static_cast<u8>(sp->typecnt + ts->types[i]);
                    sp->timecnt++;
                }
                for (i = 0; i < ts->typecnt; i++) {
                    sp->ttis[sp->typecnt++] = ts->ttis[i];
                }
            }
        }
    }
    if (sp->typecnt == 0) {
        return EINVAL;
    }

    if (sp->timecnt > 1) {
        if (sp->ats[0] <= TIME_T_MAX - SECSPERREPEAT) {
            time_t repeatat = sp->ats[0] + SECSPERREPEAT;
            int repeattype = sp->types[0];
            for (i = 1; i < sp->timecnt; ++i) {
                if (sp->ats[i] == repeatat && typesequiv(sp, sp->types[i], repeattype)) {
                    sp->goback = true;
                    break;
                }
            }
        }
        if (TIME_T_MIN + SECSPERREPEAT <= sp->ats[sp->timecnt - 1]) {
            time_t repeatat = sp->ats[sp->timecnt - 1] - SECSPERREPEAT;
            int repeattype = sp->types[sp->timecnt - 1];
            for (i = sp->timecnt - 2; i >= 0; --i) {
                if (sp->ats[i] == repeatat && typesequiv(sp, sp->types[i], repeattype)) {
                    sp->goahead = true;
                    break;
                }
            }
        }
    }

    /* Infer sp->defaulttype from the data.  Although this default
        type is always zero for data from recent tzdb releases,
        things are trickier for data from tzdb 2018e or earlier.

        The first set of heuristics work around bugs in 32-bit data
        generated by tzdb 2013c or earlier.  The workaround is for
        zones like Australia/Macquarie where timestamps before the
        first transition have a time type that is not the earliest
        standard-time type.  See:
        https://mm.icann.org/pipermail/tz/2013-May/019368.html */
    /*
    ** If type 0 does not specify local time, or is unused in transitions,
    ** it's the type to use for early times.
    */
    for (i = 0; i < sp->timecnt; ++i) {
        if (sp->types[i] == 0) {
            break;
        }
    }
    i = i < sp->timecnt && !ttunspecified(sp, 0) ? -1 : 0;
    /*
    ** Absent the above,
    ** if there are transition times
    ** and the first transition is to a daylight time
    ** find the standard type less than and closest to
    ** the type of the first transition.
    */
    if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
        i = sp->types[0];
        while (--i >= 0) {
            if (!sp->ttis[i].tt_isdst) {
                break;
            }
        }
    }
    /* The next heuristics are for data generated by tzdb 2018e or
        earlier, for zones like EST5EDT where the first transition
        is to DST.  */
    /*
    ** If no result yet, find the first standard type.
    ** If there is none, punt to type zero.
    */
    if (i < 0) {
        i = 0;
        while (sp->ttis[i].tt_isdst) {
            if (++i >= sp->typecnt) {
                i = 0;
                break;
            }
        }
    }
    /* A simple 'sp->defaulttype = 0;' would suffice here if we
        didn't have to worry about 2018e-or-earlier data.  Even
        simpler would be to remove the defaulttype member and just
        use 0 in its place.  */
    sp->defaulttype = i;

    return 0;
}

constexpr int tmcomp(const CalendarTimeInternal* const atmp,
    const CalendarTimeInternal* const btmp) {
    int result;

    if (atmp->tm_year != btmp->tm_year) {
        return atmp->tm_year < btmp->tm_year ? -1 : 1;
    }
    if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
        (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
        (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
        (result = (atmp->tm_min - btmp->tm_min)) == 0) {
        result = atmp->tm_sec - btmp->tm_sec;
    }
    return result;
}

/* Copy to *DEST from *SRC.  Copy only the members needed for mktime,
    as other members might not be initialized.  */
constexpr void mktmcpy(struct CalendarTimeInternal* dest, struct CalendarTimeInternal const* src) {
    dest->tm_sec = src->tm_sec;
    dest->tm_min = src->tm_min;
    dest->tm_hour = src->tm_hour;
    dest->tm_mday = src->tm_mday;
    dest->tm_mon = src->tm_mon;
    dest->tm_year = src->tm_year;
    dest->tm_isdst = src->tm_isdst;
    dest->tm_zone = src->tm_zone;
    dest->tm_utoff = src->tm_utoff;
    dest->time_index = src->time_index;
}

constexpr bool normalize_overflow(int* const tensptr, int* const unitsptr, const int base) {
    int tensdelta;

    tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base);
    *unitsptr -= tensdelta * base;
    return increment_overflow(tensptr, tensdelta);
}

constexpr bool normalize_overflow32(s64* tensptr, int* unitsptr, int base) {
    int tensdelta;

    tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base);
    *unitsptr -= tensdelta * base;
    return increment_overflow32(tensptr, tensdelta);
}

int time2sub(time_t* out_time, CalendarTimeInternal* const tmp,
    CalendarTimeInternal* (*funcp)(Rule const*, time_t const*, s64,
        CalendarTimeInternal*),
    Rule const* sp, const s64 offset, bool* okayp, bool do_norm_secs) {
    int dir;
    int i, j;
    int saved_seconds;
    s64 li;
    time_t lo;
    time_t hi;
    s64 y;
    time_t newt;
    time_t t;
    CalendarTimeInternal yourtm, mytm;

    *okayp = false;
    mktmcpy(&yourtm, tmp);

    if (do_norm_secs) {
        if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN)) {
            return 1;
        }
    }
    if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) {
        return 1;
    }
    if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) {
        return 1;
    }
    y = yourtm.tm_year;
    if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) {
        return 1;
    }
    /*
    ** Turn y into an actual year number for now.
    ** It is converted back to an offset from TM_YEAR_BASE later.
    */
    if (increment_overflow32(&y, TM_YEAR_BASE)) {
        return 1;
    }
    while (yourtm.tm_mday <= 0) {
        if (increment_overflow32(&y, -1)) {
            return 1;
        }
        li = y + (1 < yourtm.tm_mon);
        yourtm.tm_mday += year_lengths[isleap(li)];
    }
    while (yourtm.tm_mday > DAYSPERLYEAR) {
        li = y + (1 < yourtm.tm_mon);
        yourtm.tm_mday -= year_lengths[isleap(li)];
        if (increment_overflow32(&y, 1)) {
            return 1;
        }
    }
    for (;;) {
        i = mon_lengths[isleap(y)][yourtm.tm_mon];
        if (yourtm.tm_mday <= i) {
            break;
        }
        yourtm.tm_mday -= i;
        if (++yourtm.tm_mon >= MONSPERYEAR) {
            yourtm.tm_mon = 0;
            if (increment_overflow32(&y, 1)) {
                return 1;
            }
        }
    }

    if (increment_overflow32(&y, -TM_YEAR_BASE)) {
        return 1;
    }
    if (!(INT_MIN <= y && y <= INT_MAX)) {
        return 1;
    }
    yourtm.tm_year = static_cast<s32>(y);

    if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) {
        saved_seconds = 0;
    }
    else if (yourtm.tm_year < EPOCH_YEAR - TM_YEAR_BASE) {
        /*
        ** We can't set tm_sec to 0, because that might push the
        ** time below the minimum representable time.
        ** Set tm_sec to 59 instead.
        ** This assumes that the minimum representable time is
        ** not in the same minute that a leap second was deleted from,
        ** which is a safer assumption than using 58 would be.
        */
        if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) {
            return 1;
        }
        saved_seconds = yourtm.tm_sec;
        yourtm.tm_sec = SECSPERMIN - 1;
    }
    else {
        saved_seconds = yourtm.tm_sec;
        yourtm.tm_sec = 0;
    }
    /*
    ** Do a binary search (this works whatever time_t's type is).
    */
    lo = TIME_T_MIN;
    hi = TIME_T_MAX;
    for (;;) {
        t = lo / 2 + hi / 2;
        if (t < lo) {
            t = lo;
        }
        else if (t > hi) {
            t = hi;
        }
        if (!funcp(sp, &t, offset, &mytm)) {
            /*
            ** Assume that t is too extreme to be represented in
            ** a struct tm; arrange things so that it is less
            ** extreme on the next pass.
            */
            dir = (t > 0) ? 1 : -1;
        }
        else {
            dir = tmcomp(&mytm, &yourtm);
        }
        if (dir != 0) {
            if (t == lo) {
                if (t == TIME_T_MAX) {
                    return 2;
                }
                ++t;
                ++lo;
            }
            else if (t == hi) {
                if (t == TIME_T_MIN) {
                    return 2;
                }
                --t;
                --hi;
            }
            if (lo > hi) {
                return 2;
            }
            if (dir > 0) {
                hi = t;
            }
            else {
                lo = t;
            }
            continue;
        }

        if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) {
            break;
        }
        /*
        ** Right time, wrong type.
        ** Hunt for right time, right type.
        ** It's okay to guess wrong since the guess
        ** gets checked.
        */
        if (sp == nullptr) {
            return 2;
        }
        for (i = sp->typecnt - 1; i >= 0; --i) {
            if (sp->ttis[i].tt_isdst != static_cast<bool>(yourtm.tm_isdst)) {
                continue;
            }
            for (j = sp->typecnt - 1; j >= 0; --j) {
                if (sp->ttis[j].tt_isdst == static_cast<bool>(yourtm.tm_isdst)) {
                    continue;
                }
                if (ttunspecified(sp, j)) {
                    continue;
                }
                newt = (t + sp->ttis[j].tt_utoff - sp->ttis[i].tt_utoff);
                if (!funcp(sp, &newt, offset, &mytm)) {
                    continue;
                }
                if (tmcomp(&mytm, &yourtm) != 0) {
                    continue;
                }
                if (mytm.tm_isdst != yourtm.tm_isdst) {
                    continue;
                }
                /*
                ** We have a match.
                */
                t = newt;
                goto label;
            }
        }
        return 2;
    }
label:
    newt = t + saved_seconds;
    t = newt;
    if (funcp(sp, &t, offset, tmp) || *okayp) {
        *okayp = true;
        *out_time = t;
        return 0;
    }
    return 2;
}

int time2(time_t* out_time, struct CalendarTimeInternal* const tmp,
    struct CalendarTimeInternal* (*funcp)(struct Rule const*, time_t const*, s64,
        struct CalendarTimeInternal*),
    struct Rule const* sp, const s64 offset, bool* okayp) {
    int res;

    /*
    ** First try without normalization of seconds
    ** (in case tm_sec contains a value associated with a leap second).
    ** If that fails, try with normalization of seconds.
    */
    res = time2sub(out_time, tmp, funcp, sp, offset, okayp, false);
    return *okayp ? res : time2sub(out_time, tmp, funcp, sp, offset, okayp, true);
}

int time1(time_t* out_time, CalendarTimeInternal* const tmp,
    CalendarTimeInternal* (*funcp)(Rule const*, time_t const*, s64,
        CalendarTimeInternal*),
    Rule const* sp, const s64 offset) {
    int samei, otheri;
    int sameind, otherind;
    int i;
    int nseen;
    char seen[TZ_MAX_TYPES];
    unsigned char types[TZ_MAX_TYPES];
    bool okay;

    if (tmp->tm_isdst > 1) {
        tmp->tm_isdst = 1;
    }
    auto res = time2(out_time, tmp, funcp, sp, offset, &okay);
    if (res == 0) {
        return res;
    }
    if (tmp->tm_isdst < 0) {
        return res;
    }
    /*
    ** We're supposed to assume that somebody took a time of one type
    ** and did some math on it that yielded a "struct tm" that's bad.
    ** We try to divine the type they started from and adjust to the
    ** type they need.
    */
    for (i = 0; i < sp->typecnt; ++i) {
        seen[i] = false;
    }

    if (sp->timecnt < 1) {
        return 2;
    }

    nseen = 0;
    for (i = sp->timecnt - 1; i >= 0; --i) {
        if (!seen[sp->types[i]] && !ttunspecified(sp, sp->types[i])) {
            seen[sp->types[i]] = true;
            types[nseen++] = sp->types[i];
        }
    }

    if (nseen < 1) {
        return 2;
    }

    for (sameind = 0; sameind < nseen; ++sameind) {
        samei = types[sameind];
        if (sp->ttis[samei].tt_isdst != static_cast<bool>(tmp->tm_isdst)) {
            continue;
        }
        for (otherind = 0; otherind < nseen; ++otherind) {
            otheri = types[otherind];
            if (sp->ttis[otheri].tt_isdst == static_cast<bool>(tmp->tm_isdst)) {
                continue;
            }
            tmp->tm_sec += (sp->ttis[otheri].tt_utoff - sp->ttis[samei].tt_utoff);
            tmp->tm_isdst = !tmp->tm_isdst;
            res = time2(out_time, tmp, funcp, sp, offset, &okay);
            if (res == 0) {
                return res;
            }
            tmp->tm_sec -= (sp->ttis[otheri].tt_utoff - sp->ttis[samei].tt_utoff);
            tmp->tm_isdst = !tmp->tm_isdst;
        }
    }
    return 2;
}

} // namespace

s32 ParseTimeZoneBinary(Rule& out_rule, std::span<const u8> binary) {
    tzloadbody_local_storage.binary = binary;
    if (tzloadbody(&out_rule, tzloadbody_local_storage)) {
        return 3;
    }
    return 0;
}

bool localtime_rz(CalendarTimeInternal* tmp, Rule* sp, time_t* timep) {
    return localsub(sp, timep, 0, tmp) == nullptr;
}

u32 mktime_tzname(time_t* out_time, Rule* sp, CalendarTimeInternal* tmp) {
    return time1(out_time, tmp, localsub, sp, 0);
}

} // namespace Tz