summaryrefslogtreecommitdiffstats
path: root/src/audio_core/audio_renderer.cpp
blob: 7dba739b45a69ae28ed2137488cc6697ead9a5da (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <limits>
#include <vector>

#include "audio_core/audio_out.h"
#include "audio_core/audio_renderer.h"
#include "audio_core/common.h"
#include "audio_core/info_updater.h"
#include "audio_core/voice_context.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core_timing.h"
#include "core/memory.h"

namespace {
[[nodiscard]] static constexpr s16 ClampToS16(s32 value) {
    return static_cast<s16>(std::clamp(value, s32{std::numeric_limits<s16>::min()},
                                       s32{std::numeric_limits<s16>::max()}));
}

[[nodiscard]] static constexpr s16 Mix2To1(s16 l_channel, s16 r_channel) {
    // Mix 50% from left and 50% from right channel
    constexpr float l_mix_amount = 50.0f / 100.0f;
    constexpr float r_mix_amount = 50.0f / 100.0f;
    return ClampToS16(static_cast<s32>((static_cast<float>(l_channel) * l_mix_amount) +
                                       (static_cast<float>(r_channel) * r_mix_amount)));
}

[[maybe_unused, nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2(
    s16 fl_channel, s16 fr_channel, s16 fc_channel, [[maybe_unused]] s16 lf_channel, s16 bl_channel,
    s16 br_channel) {
    // Front channels are mixed 36.94%, Center channels are mixed to be 26.12% & the back channels
    // are mixed to be 36.94%

    constexpr float front_mix_amount = 36.94f / 100.0f;
    constexpr float center_mix_amount = 26.12f / 100.0f;
    constexpr float back_mix_amount = 36.94f / 100.0f;

    // Mix 50% from left and 50% from right channel
    const auto left = front_mix_amount * static_cast<float>(fl_channel) +
                      center_mix_amount * static_cast<float>(fc_channel) +
                      back_mix_amount * static_cast<float>(bl_channel);

    const auto right = front_mix_amount * static_cast<float>(fr_channel) +
                       center_mix_amount * static_cast<float>(fc_channel) +
                       back_mix_amount * static_cast<float>(br_channel);

    return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))};
}

[[nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2WithCoefficients(
    s16 fl_channel, s16 fr_channel, s16 fc_channel, s16 lf_channel, s16 bl_channel, s16 br_channel,
    const std::array<float_le, 4>& coeff) {
    const auto left =
        static_cast<float>(fl_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
        static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(bl_channel) * coeff[3];

    const auto right =
        static_cast<float>(fr_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
        static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(br_channel) * coeff[3];

    return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))};
}

} // namespace

namespace AudioCore {
constexpr s32 NUM_BUFFERS = 2;

AudioRenderer::AudioRenderer(Core::Timing::CoreTiming& core_timing_, Core::Memory::Memory& memory_,
                             AudioCommon::AudioRendererParameter params,
                             Stream::ReleaseCallback&& release_callback,
                             std::size_t instance_number)
    : worker_params{params}, memory_pool_info(params.effect_count + params.voice_count * 4),
      voice_context(params.voice_count), effect_context(params.effect_count), mix_context(),
      sink_context(params.sink_count), splitter_context(),
      voices(params.voice_count), memory{memory_},
      command_generator(worker_params, voice_context, mix_context, splitter_context, effect_context,
                        memory),
      core_timing{core_timing_} {
    behavior_info.SetUserRevision(params.revision);
    splitter_context.Initialize(behavior_info, params.splitter_count,
                                params.num_splitter_send_channels);
    mix_context.Initialize(behavior_info, params.submix_count + 1, params.effect_count);
    audio_out = std::make_unique<AudioCore::AudioOut>();
    stream = audio_out->OpenStream(
        core_timing, params.sample_rate, AudioCommon::STREAM_NUM_CHANNELS,
        fmt::format("AudioRenderer-Instance{}", instance_number), std::move(release_callback));
    process_event = Core::Timing::CreateEvent(
        fmt::format("AudioRenderer-Instance{}-Process", instance_number),
        [this](std::uintptr_t, std::chrono::nanoseconds) { ReleaseAndQueueBuffers(); });
    for (s32 i = 0; i < NUM_BUFFERS; ++i) {
        QueueMixedBuffer(i);
    }
}

AudioRenderer::~AudioRenderer() = default;

ResultCode AudioRenderer::Start() {
    audio_out->StartStream(stream);
    ReleaseAndQueueBuffers();
    return ResultSuccess;
}

ResultCode AudioRenderer::Stop() {
    audio_out->StopStream(stream);
    return ResultSuccess;
}

u32 AudioRenderer::GetSampleRate() const {
    return worker_params.sample_rate;
}

u32 AudioRenderer::GetSampleCount() const {
    return worker_params.sample_count;
}

u32 AudioRenderer::GetMixBufferCount() const {
    return worker_params.mix_buffer_count;
}

Stream::State AudioRenderer::GetStreamState() const {
    return stream->GetState();
}

ResultCode AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_params,
                                              std::vector<u8>& output_params) {
    std::scoped_lock lock{mutex};
    InfoUpdater info_updater{input_params, output_params, behavior_info};

    if (!info_updater.UpdateBehaviorInfo(behavior_info)) {
        LOG_ERROR(Audio, "Failed to update behavior info input parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (!info_updater.UpdateMemoryPools(memory_pool_info)) {
        LOG_ERROR(Audio, "Failed to update memory pool parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (!info_updater.UpdateVoiceChannelResources(voice_context)) {
        LOG_ERROR(Audio, "Failed to update voice channel resource parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (!info_updater.UpdateVoices(voice_context, memory_pool_info, 0)) {
        LOG_ERROR(Audio, "Failed to update voice parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    // TODO(ogniK): Deal with stopped audio renderer but updates still taking place
    if (!info_updater.UpdateEffects(effect_context, true)) {
        LOG_ERROR(Audio, "Failed to update effect parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (behavior_info.IsSplitterSupported()) {
        if (!info_updater.UpdateSplitterInfo(splitter_context)) {
            LOG_ERROR(Audio, "Failed to update splitter parameters");
            return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
        }
    }

    const auto mix_result = info_updater.UpdateMixes(mix_context, worker_params.mix_buffer_count,
                                                     splitter_context, effect_context);

    if (mix_result.IsError()) {
        LOG_ERROR(Audio, "Failed to update mix parameters");
        return mix_result;
    }

    // TODO(ogniK): Sinks
    if (!info_updater.UpdateSinks(sink_context)) {
        LOG_ERROR(Audio, "Failed to update sink parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    // TODO(ogniK): Performance buffer
    if (!info_updater.UpdatePerformanceBuffer()) {
        LOG_ERROR(Audio, "Failed to update performance buffer parameters");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (!info_updater.UpdateErrorInfo(behavior_info)) {
        LOG_ERROR(Audio, "Failed to update error info");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    if (behavior_info.IsElapsedFrameCountSupported()) {
        if (!info_updater.UpdateRendererInfo(elapsed_frame_count)) {
            LOG_ERROR(Audio, "Failed to update renderer info");
            return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
        }
    }
    // TODO(ogniK): Statistics

    if (!info_updater.WriteOutputHeader()) {
        LOG_ERROR(Audio, "Failed to write output header");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }

    // TODO(ogniK): Check when all sections are implemented

    if (!info_updater.CheckConsumedSize()) {
        LOG_ERROR(Audio, "Audio buffers were not consumed!");
        return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
    }
    return ResultSuccess;
}

void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
    command_generator.PreCommand();
    // Clear mix buffers before our next operation
    command_generator.ClearMixBuffers();

    // If the splitter is not in use, sort our mixes
    if (!splitter_context.UsingSplitter()) {
        mix_context.SortInfo();
    }
    // Sort our voices
    voice_context.SortInfo();

    // Handle samples
    command_generator.GenerateVoiceCommands();
    command_generator.GenerateSubMixCommands();
    command_generator.GenerateFinalMixCommands();

    command_generator.PostCommand();
    // Base sample size
    std::size_t BUFFER_SIZE{worker_params.sample_count};
    // Samples, making sure to clear
    std::vector<s16> buffer(BUFFER_SIZE * stream->GetNumChannels(), 0);

    if (sink_context.InUse()) {
        const auto stream_channel_count = stream->GetNumChannels();
        const auto buffer_offsets = sink_context.OutputBuffers();
        const auto channel_count = buffer_offsets.size();
        const auto& final_mix = mix_context.GetFinalMixInfo();
        const auto& in_params = final_mix.GetInParams();
        std::vector<std::span<s32>> mix_buffers(channel_count);
        for (std::size_t i = 0; i < channel_count; i++) {
            mix_buffers[i] =
                command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]);
        }

        for (std::size_t i = 0; i < BUFFER_SIZE; i++) {
            if (channel_count == 1) {
                const auto sample = ClampToS16(mix_buffers[0][i]);

                // Place sample in all channels
                for (u32 channel = 0; channel < stream_channel_count; channel++) {
                    buffer[i * stream_channel_count + channel] = sample;
                }

                if (stream_channel_count == 6) {
                    // Output stream has a LF channel, mute it!
                    buffer[i * stream_channel_count + 3] = 0;
                }

            } else if (channel_count == 2) {
                const auto l_sample = ClampToS16(mix_buffers[0][i]);
                const auto r_sample = ClampToS16(mix_buffers[1][i]);
                if (stream_channel_count == 1) {
                    buffer[i * stream_channel_count + 0] = Mix2To1(l_sample, r_sample);
                } else if (stream_channel_count == 2) {
                    buffer[i * stream_channel_count + 0] = l_sample;
                    buffer[i * stream_channel_count + 1] = r_sample;
                } else if (stream_channel_count == 6) {
                    buffer[i * stream_channel_count + 0] = l_sample;
                    buffer[i * stream_channel_count + 1] = r_sample;

                    // Combine both left and right channels to the center channel
                    buffer[i * stream_channel_count + 2] = Mix2To1(l_sample, r_sample);

                    buffer[i * stream_channel_count + 4] = l_sample;
                    buffer[i * stream_channel_count + 5] = r_sample;
                }

            } else if (channel_count == 6) {
                const auto fl_sample = ClampToS16(mix_buffers[0][i]);
                const auto fr_sample = ClampToS16(mix_buffers[1][i]);
                const auto fc_sample = ClampToS16(mix_buffers[2][i]);
                const auto lf_sample = ClampToS16(mix_buffers[3][i]);
                const auto bl_sample = ClampToS16(mix_buffers[4][i]);
                const auto br_sample = ClampToS16(mix_buffers[5][i]);

                if (stream_channel_count == 1) {
                    // Games seem to ignore the center channel half the time, we use the front left
                    // and right channel for mixing as that's where majority of the audio goes
                    buffer[i * stream_channel_count + 0] = Mix2To1(fl_sample, fr_sample);
                } else if (stream_channel_count == 2) {
                    // Mix all channels into 2 channels
                    const auto [left, right] = Mix6To2WithCoefficients(
                        fl_sample, fr_sample, fc_sample, lf_sample, bl_sample, br_sample,
                        sink_context.GetDownmixCoefficients());
                    buffer[i * stream_channel_count + 0] = left;
                    buffer[i * stream_channel_count + 1] = right;
                } else if (stream_channel_count == 6) {
                    // Pass through
                    buffer[i * stream_channel_count + 0] = fl_sample;
                    buffer[i * stream_channel_count + 1] = fr_sample;
                    buffer[i * stream_channel_count + 2] = fc_sample;
                    buffer[i * stream_channel_count + 3] = lf_sample;
                    buffer[i * stream_channel_count + 4] = bl_sample;
                    buffer[i * stream_channel_count + 5] = br_sample;
                }
            }
        }
    }

    audio_out->QueueBuffer(stream, tag, std::move(buffer));
    elapsed_frame_count++;
    voice_context.UpdateStateByDspShared();
}

void AudioRenderer::ReleaseAndQueueBuffers() {
    if (!stream->IsPlaying()) {
        return;
    }

    {
        std::scoped_lock lock{mutex};
        const auto released_buffers{audio_out->GetTagsAndReleaseBuffers(stream)};
        for (const auto& tag : released_buffers) {
            QueueMixedBuffer(tag);
        }
    }

    const f32 sample_rate = static_cast<f32>(GetSampleRate());
    const f32 sample_count = static_cast<f32>(GetSampleCount());
    const f32 consume_rate = sample_rate / (sample_count * (sample_count / 240));
    const s32 ms = (1000 / static_cast<s32>(consume_rate)) - 1;
    const std::chrono::milliseconds next_event_time(std::max(ms / NUM_BUFFERS, 1));
    core_timing.ScheduleEvent(next_event_time, process_event, {});
}

} // namespace AudioCore