summaryrefslogtreecommitdiffstats
path: root/src/audio_core/renderer/command/effect/light_limiter.cpp
blob: 63aa06f5c3d9c76e127d75beec2aae7ab3631020 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "audio_core/adsp/apps/audio_renderer/command_list_processor.h"
#include "audio_core/renderer/command/effect/light_limiter.h"

namespace AudioCore::Renderer {
/**
 * Update the LightLimiterInfo state according to the given parameters.
 * A no-op.
 *
 * @param params - Input parameters to update the state.
 * @param state  - State to be updated.
 */
static void UpdateLightLimiterEffectParameter(const LightLimiterInfo::ParameterVersion2& params,
                                              LightLimiterInfo::State& state) {}

/**
 * Initialize a new LightLimiterInfo state according to the given parameters.
 *
 * @param params     - Input parameters to update the state.
 * @param state      - State to be updated.
 * @param workbuffer - Game-supplied memory for the state. (Unused)
 */
static void InitializeLightLimiterEffect(const LightLimiterInfo::ParameterVersion2& params,
                                         LightLimiterInfo::State& state, const CpuAddr workbuffer) {
    state = {};
    state.samples_average.fill(0.0f);
    state.compression_gain.fill(1.0f);
    state.look_ahead_sample_offsets.fill(0);
    for (u32 i = 0; i < params.channel_count; i++) {
        state.look_ahead_sample_buffers[i].resize(params.look_ahead_samples_max, 0.0f);
    }
}

/**
 * Apply a light limiter effect if enabled, according to the current state, on the input mix
 * buffers, saving the results to the output mix buffers.
 *
 * @param params       - Input parameters to use.
 * @param state        - State to use, must be initialized (see InitializeLightLimiterEffect).
 * @param enabled      - If enabled, limiter will be applied, otherwise input is copied to output.
 * @param inputs       - Input mix buffers to perform the limiter on.
 * @param outputs      - Output mix buffers to receive the limited samples.
 * @param sample_count - Number of samples to process.
 * @params statistics  - Optional output statistics, only used with version 2.
 */
static void ApplyLightLimiterEffect(const LightLimiterInfo::ParameterVersion2& params,
                                    LightLimiterInfo::State& state, const bool enabled,
                                    std::span<std::span<const s32>> inputs,
                                    std::span<std::span<s32>> outputs, const u32 sample_count,
                                    LightLimiterInfo::StatisticsInternal* statistics) {
    constexpr s64 min{std::numeric_limits<s32>::min()};
    constexpr s64 max{std::numeric_limits<s32>::max()};

    const auto recip_estimate = [](f64 a) -> f64 {
        s32 q, s;
        f64 r;
        q = (s32)(a * 512.0);               /* a in units of 1/512 rounded down */
        r = 1.0 / (((f64)q + 0.5) / 512.0); /* reciprocal r */
        s = (s32)(256.0 * r + 0.5);         /* r in units of 1/256 rounded to nearest */
        return ((f64)s / 256.0);
    };

    if (enabled) {
        if (statistics && params.statistics_reset_required) {
            for (u32 i = 0; i < params.channel_count; i++) {
                statistics->channel_compression_gain_min[i] = 1.0f;
                statistics->channel_max_sample[i] = 0;
            }
        }

        for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
            for (u32 channel = 0; channel < params.channel_count; channel++) {
                auto sample{(Common::FixedPoint<49, 15>(inputs[channel][sample_index]) /
                             Common::FixedPoint<49, 15>::one) *
                            params.input_gain};
                auto abs_sample{sample};
                if (sample < 0.0f) {
                    abs_sample = -sample;
                }
                auto coeff{abs_sample > state.samples_average[channel] ? params.attack_coeff
                                                                       : params.release_coeff};
                state.samples_average[channel] +=
                    ((abs_sample - state.samples_average[channel]) * coeff).to_float();

                // Reciprocal estimate
                auto new_average_sample{Common::FixedPoint<49, 15>(
                    recip_estimate(state.samples_average[channel].to_double()))};
                if (params.processing_mode != LightLimiterInfo::ProcessingMode::Mode1) {
                    // Two Newton-Raphson steps
                    auto temp{2.0 - (state.samples_average[channel] * new_average_sample)};
                    new_average_sample = 2.0 - (state.samples_average[channel] * temp);
                }

                auto above_threshold{state.samples_average[channel] > params.threshold};
                auto attenuation{above_threshold ? params.threshold * new_average_sample : 1.0f};
                coeff = attenuation < state.compression_gain[channel] ? params.attack_coeff
                                                                      : params.release_coeff;
                state.compression_gain[channel] +=
                    (attenuation - state.compression_gain[channel]) * coeff;

                auto lookahead_sample{
                    state.look_ahead_sample_buffers[channel]
                                                   [state.look_ahead_sample_offsets[channel]]};

                state.look_ahead_sample_buffers[channel][state.look_ahead_sample_offsets[channel]] =
                    sample;
                state.look_ahead_sample_offsets[channel] =
                    (state.look_ahead_sample_offsets[channel] + 1) % params.look_ahead_samples_min;

                outputs[channel][sample_index] = static_cast<s32>(
                    std::clamp((lookahead_sample * state.compression_gain[channel] *
                                params.output_gain * Common::FixedPoint<49, 15>::one)
                                   .to_long(),
                               min, max));

                if (statistics) {
                    statistics->channel_max_sample[channel] =
                        std::max(statistics->channel_max_sample[channel], abs_sample.to_float());
                    statistics->channel_compression_gain_min[channel] =
                        std::min(statistics->channel_compression_gain_min[channel],
                                 state.compression_gain[channel].to_float());
                }
            }
        }
    } else {
        for (u32 i = 0; i < params.channel_count; i++) {
            if (params.inputs[i] != params.outputs[i]) {
                std::memcpy(outputs[i].data(), inputs[i].data(), outputs[i].size_bytes());
            }
        }
    }
}

void LightLimiterVersion1Command::Dump(
    [[maybe_unused]] const AudioRenderer::CommandListProcessor& processor, std::string& string) {
    string += fmt::format("LightLimiterVersion1Command\n\tinputs: ");
    for (u32 i = 0; i < MaxChannels; i++) {
        string += fmt::format("{:02X}, ", inputs[i]);
    }
    string += "\n\toutputs: ";
    for (u32 i = 0; i < MaxChannels; i++) {
        string += fmt::format("{:02X}, ", outputs[i]);
    }
    string += "\n";
}

void LightLimiterVersion1Command::Process(const AudioRenderer::CommandListProcessor& processor) {
    std::array<std::span<const s32>, MaxChannels> input_buffers{};
    std::array<std::span<s32>, MaxChannels> output_buffers{};

    for (u32 i = 0; i < parameter.channel_count; i++) {
        input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
                                                         processor.sample_count);
        output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
                                                          processor.sample_count);
    }

    auto state_{reinterpret_cast<LightLimiterInfo::State*>(state)};

    if (effect_enabled) {
        if (parameter.state == LightLimiterInfo::ParameterState::Updating) {
            UpdateLightLimiterEffectParameter(parameter, *state_);
        } else if (parameter.state == LightLimiterInfo::ParameterState::Initialized) {
            InitializeLightLimiterEffect(parameter, *state_, workbuffer);
        }
    }

    LightLimiterInfo::StatisticsInternal* statistics{nullptr};
    ApplyLightLimiterEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
                            processor.sample_count, statistics);
}

bool LightLimiterVersion1Command::Verify(const AudioRenderer::CommandListProcessor& processor) {
    return true;
}

void LightLimiterVersion2Command::Dump(
    [[maybe_unused]] const AudioRenderer::CommandListProcessor& processor, std::string& string) {
    string += fmt::format("LightLimiterVersion2Command\n\tinputs: \n");
    for (u32 i = 0; i < MaxChannels; i++) {
        string += fmt::format("{:02X}, ", inputs[i]);
    }
    string += "\n\toutputs: ";
    for (u32 i = 0; i < MaxChannels; i++) {
        string += fmt::format("{:02X}, ", outputs[i]);
    }
    string += "\n";
}

void LightLimiterVersion2Command::Process(const AudioRenderer::CommandListProcessor& processor) {
    std::array<std::span<const s32>, MaxChannels> input_buffers{};
    std::array<std::span<s32>, MaxChannels> output_buffers{};

    for (u32 i = 0; i < parameter.channel_count; i++) {
        input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
                                                         processor.sample_count);
        output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
                                                          processor.sample_count);
    }

    auto state_{reinterpret_cast<LightLimiterInfo::State*>(state)};

    if (effect_enabled) {
        if (parameter.state == LightLimiterInfo::ParameterState::Updating) {
            UpdateLightLimiterEffectParameter(parameter, *state_);
        } else if (parameter.state == LightLimiterInfo::ParameterState::Initialized) {
            InitializeLightLimiterEffect(parameter, *state_, workbuffer);
        }
    }

    auto statistics{reinterpret_cast<LightLimiterInfo::StatisticsInternal*>(result_state)};
    ApplyLightLimiterEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
                            processor.sample_count, statistics);
}

bool LightLimiterVersion2Command::Verify(const AudioRenderer::CommandListProcessor& processor) {
    return true;
}

} // namespace AudioCore::Renderer