summaryrefslogtreecommitdiffstats
path: root/src/audio_core/renderer/command/resample/upsample.cpp
blob: 5f7db12caf8cacd1b23c66177595de86eee639db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <array>

#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/resample/upsample.h"
#include "audio_core/renderer/upsampler/upsampler_info.h"

namespace AudioCore::AudioRenderer {
/**
 * Upsampling impl. Input must be 8K, 16K or 32K, output is 48K.
 *
 * @param output              - Output buffer.
 * @param input               - Input buffer.
 * @param target_sample_count - Number of samples for output.
 * @param state               - Upsampler state, updated each call.
 */
static void SrcProcessFrame(std::span<s32> output, std::span<const s32> input,
                            const u32 target_sample_count, const u32 source_sample_count,
                            UpsamplerState* state) {
    constexpr u32 WindowSize = 10;
    constexpr std::array<Common::FixedPoint<17, 15>, WindowSize> WindowedSinc1{
        0.95376587f,   -0.12872314f, 0.060028076f,  -0.032470703f, 0.017669678f,
        -0.009124756f, 0.004272461f, -0.001739502f, 0.000579834f,  -0.000091552734f,
    };
    constexpr std::array<Common::FixedPoint<17, 15>, WindowSize> WindowedSinc2{
        0.8230896f,    -0.19161987f,  0.093444824f,  -0.05090332f,   0.027557373f,
        -0.014038086f, 0.0064697266f, -0.002532959f, 0.00079345703f, -0.00012207031f,
    };
    constexpr std::array<Common::FixedPoint<17, 15>, WindowSize> WindowedSinc3{
        0.6298828f,    -0.19274902f, 0.09725952f,    -0.05319214f,  0.028625488f,
        -0.014373779f, 0.006500244f, -0.0024719238f, 0.0007324219f, -0.000091552734f,
    };
    constexpr std::array<Common::FixedPoint<17, 15>, WindowSize> WindowedSinc4{
        0.4057312f,    -0.1468811f,  0.07601929f,    -0.041656494f,  0.022216797f,
        -0.011016846f, 0.004852295f, -0.0017700195f, 0.00048828125f, -0.000030517578f,
    };
    constexpr std::array<Common::FixedPoint<17, 15>, WindowSize> WindowedSinc5{
        0.1854248f,    -0.075164795f, 0.03967285f,    -0.021728516f,  0.011474609f,
        -0.005584717f, 0.0024108887f, -0.0008239746f, 0.00021362305f, 0.0f,
    };

    if (!state->initialized) {
        switch (source_sample_count) {
        case 40:
            state->window_size = WindowSize;
            state->ratio = 6.0f;
            state->history.fill(0);
            break;

        case 80:
            state->window_size = WindowSize;
            state->ratio = 3.0f;
            state->history.fill(0);
            break;

        case 160:
            state->window_size = WindowSize;
            state->ratio = 1.5f;
            state->history.fill(0);
            break;

        default:
            LOG_ERROR(Service_Audio, "Invalid upsampling source count {}!", source_sample_count);
            // This continues anyway, but let's assume 160 for sanity
            state->window_size = WindowSize;
            state->ratio = 1.5f;
            state->history.fill(0);
            break;
        }

        state->history_input_index = 0;
        state->history_output_index = 9;
        state->history_start_index = 0;
        state->history_end_index = UpsamplerState::HistorySize - 1;
        state->initialized = true;
    }

    if (target_sample_count == 0) {
        return;
    }

    u32 read_index{0};

    auto increment = [&]() -> void {
        state->history[state->history_input_index] = input[read_index++];
        state->history_input_index =
            static_cast<u16>((state->history_input_index + 1) % UpsamplerState::HistorySize);
        state->history_output_index =
            static_cast<u16>((state->history_output_index + 1) % UpsamplerState::HistorySize);
    };

    auto calculate_sample = [&state](std::span<const Common::FixedPoint<17, 15>> coeffs1,
                                     std::span<const Common::FixedPoint<17, 15>> coeffs2) -> s32 {
        auto output_index{state->history_output_index};
        u64 result{0};

        for (u32 coeff_index = 0; coeff_index < 10; coeff_index++) {
            result += static_cast<u64>(state->history[output_index].to_raw()) *
                      coeffs1[coeff_index].to_raw();

            output_index = output_index == state->history_start_index ? state->history_end_index
                                                                      : output_index - 1;
        }

        output_index =
            static_cast<u16>((state->history_output_index + 1) % UpsamplerState::HistorySize);

        for (u32 coeff_index = 0; coeff_index < 10; coeff_index++) {
            result += static_cast<u64>(state->history[output_index].to_raw()) *
                      coeffs2[coeff_index].to_raw();

            output_index = output_index == state->history_end_index ? state->history_start_index
                                                                    : output_index + 1;
        }

        return static_cast<s32>(result >> (8 + 15));
    };

    switch (state->ratio.to_int_floor()) {
    // 40 -> 240
    case 6:
        for (u32 write_index = 0; write_index < target_sample_count; write_index++) {
            switch (state->sample_index) {
            case 0:
                increment();
                output[write_index] = state->history[state->history_output_index].to_int_floor();
                break;

            case 1:
                output[write_index] = calculate_sample(WindowedSinc1, WindowedSinc5);
                break;

            case 2:
                output[write_index] = calculate_sample(WindowedSinc2, WindowedSinc4);
                break;

            case 3:
                output[write_index] = calculate_sample(WindowedSinc3, WindowedSinc3);
                break;

            case 4:
                output[write_index] = calculate_sample(WindowedSinc4, WindowedSinc2);
                break;

            case 5:
                output[write_index] = calculate_sample(WindowedSinc5, WindowedSinc1);
                break;
            }
            state->sample_index = static_cast<u8>((state->sample_index + 1) % 6);
        }
        break;

    // 80 -> 240
    case 3:
        for (u32 write_index = 0; write_index < target_sample_count; write_index++) {
            switch (state->sample_index) {
            case 0:
                increment();
                output[write_index] = state->history[state->history_output_index].to_int_floor();
                break;

            case 1:
                output[write_index] = calculate_sample(WindowedSinc2, WindowedSinc4);
                break;

            case 2:
                output[write_index] = calculate_sample(WindowedSinc4, WindowedSinc2);
                break;
            }
            state->sample_index = static_cast<u8>((state->sample_index + 1) % 3);
        }
        break;

    // 160 -> 240
    default:
        for (u32 write_index = 0; write_index < target_sample_count; write_index++) {
            switch (state->sample_index) {
            case 0:
                increment();
                output[write_index] = state->history[state->history_output_index].to_int_floor();
                break;

            case 1:
                output[write_index] = calculate_sample(WindowedSinc4, WindowedSinc2);
                break;

            case 2:
                increment();
                output[write_index] = calculate_sample(WindowedSinc2, WindowedSinc4);
                break;
            }
            state->sample_index = static_cast<u8>((state->sample_index + 1) % 3);
        }

        break;
    }
}

auto UpsampleCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
                           std::string& string) -> void {
    string += fmt::format("UpsampleCommand\n\tsource_sample_count {} source_sample_rate {}",
                          source_sample_count, source_sample_rate);
    const auto upsampler{reinterpret_cast<UpsamplerInfo*>(upsampler_info)};
    if (upsampler != nullptr) {
        string += fmt::format("\n\tUpsampler\n\t\tenabled {} sample count {}\n\tinputs: ",
                              upsampler->enabled, upsampler->sample_count);
        for (u32 i = 0; i < upsampler->input_count; i++) {
            string += fmt::format("{:02X}, ", upsampler->inputs[i]);
        }
    }
    string += "\n";
}

void UpsampleCommand::Process(const ADSP::CommandListProcessor& processor) {
    const auto info{reinterpret_cast<UpsamplerInfo*>(upsampler_info)};
    const auto input_count{std::min(info->input_count, buffer_count)};
    const std::span<const s16> inputs_{reinterpret_cast<const s16*>(inputs), input_count};

    for (u32 i = 0; i < input_count; i++) {
        const auto channel{inputs_[i]};

        if (channel >= 0 && channel < static_cast<s16>(processor.buffer_count)) {
            auto state{&info->states[i]};
            std::span<s32> output{
                reinterpret_cast<s32*>(samples_buffer + info->sample_count * channel * sizeof(s32)),
                info->sample_count};
            auto input{processor.mix_buffers.subspan(channel * processor.sample_count,
                                                     processor.sample_count)};

            SrcProcessFrame(output, input, info->sample_count, source_sample_count, state);
        }
    }
}

bool UpsampleCommand::Verify(const ADSP::CommandListProcessor& processor) {
    return true;
}

} // namespace AudioCore::AudioRenderer