summaryrefslogtreecommitdiffstats
path: root/src/common/math_util.cpp
blob: a83592dd26a40291942996d074190881394d6413 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.


#include "common/common.h"
#include "common/math_util.h"

#include <numeric> // Necessary on OS X, but not Linux

namespace MathUtil
{

u32 ClassifyDouble(double dvalue)
{
    // TODO: Optimize the below to be as fast as possible.
    IntDouble value;
    value.d = dvalue;
    u64 sign = value.i & DOUBLE_SIGN;
    u64 exp  = value.i & DOUBLE_EXP;
    if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
    {
        // Nice normalized number.
        return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
    }
    else
    {
        u64 mantissa = value.i & DOUBLE_FRAC;
        if (mantissa)
        {
            if (exp)
            {
                return PPC_FPCLASS_QNAN;
            }
            else
            {
                // Denormalized number.
                return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
            }
        }
        else if (exp)
        {
            //Infinite
            return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
        }
        else
        {
            //Zero
            return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
        }
    }
}

u32 ClassifyFloat(float fvalue)
{
    // TODO: Optimize the below to be as fast as possible.
    IntFloat value;
    value.f = fvalue;
    u32 sign = value.i & FLOAT_SIGN;
    u32 exp  = value.i & FLOAT_EXP;
    if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
    {
        // Nice normalized number.
        return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
    }
    else
    {
        u32 mantissa = value.i & FLOAT_FRAC;
        if (mantissa)
        {
            if (exp)
            {
                return PPC_FPCLASS_QNAN; // Quiet NAN
            }
            else
            {
                // Denormalized number.
                return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
            }
        }
        else if (exp)
        {
            // Infinite
            return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
        }
        else
        {
            //Zero
            return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
        }
    }
}


}  // namespace

inline void MatrixMul(int n, const float *a, const float *b, float *result)
{
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < n; ++j)
        {
            float temp = 0;
            for (int k = 0; k < n; ++k)
            {
                temp += a[i * n + k] * b[k * n + j];
            }
            result[i * n + j] = temp;
        }
    }
}

// Calculate sum of a float list
float MathFloatVectorSum(const std::vector<float>& Vec)
{
    return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
}

void Matrix33::LoadIdentity(Matrix33 &mtx)
{
    memset(mtx.data, 0, sizeof(mtx.data));
    mtx.data[0] = 1.0f;
    mtx.data[4] = 1.0f;
    mtx.data[8] = 1.0f;
}

void Matrix33::RotateX(Matrix33 &mtx, float rad)
{
    float s = sin(rad);
    float c = cos(rad);
    memset(mtx.data, 0, sizeof(mtx.data));
    mtx.data[0] = 1;
    mtx.data[4] = c;
    mtx.data[5] = -s;
    mtx.data[7] = s;
    mtx.data[8] = c;
}
void Matrix33::RotateY(Matrix33 &mtx, float rad)
{
    float s = sin(rad);
    float c = cos(rad);
    memset(mtx.data, 0, sizeof(mtx.data));
    mtx.data[0] = c;
    mtx.data[2] = s;
    mtx.data[4] = 1;
    mtx.data[6] = -s;
    mtx.data[8] = c;
}

void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
{
    MatrixMul(3, a.data, b.data, result.data);
}

void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
{
    for (int i = 0; i < 3; ++i) {
        result[i] = 0;
        for (int k = 0; k < 3; ++k) {
            result[i] += a.data[i * 3 + k] * vec[k];
        }
    }
}

void Matrix44::LoadIdentity(Matrix44 &mtx)
{
    memset(mtx.data, 0, sizeof(mtx.data));
    mtx.data[0] = 1.0f;
    mtx.data[5] = 1.0f;
    mtx.data[10] = 1.0f;
    mtx.data[15] = 1.0f;
}

void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
{
    for (int i = 0; i < 3; ++i)
    {
        for (int j = 0; j < 3; ++j)
        {
            mtx.data[i * 4 + j] = m33.data[i * 3 + j];
        }
    }

    for (int i = 0; i < 3; ++i)
    {
        mtx.data[i * 4 + 3] = 0;
        mtx.data[i + 12] = 0;
    }
    mtx.data[15] = 1.0f;
}

void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
{
    for(int i = 0; i < 16; ++i) {
        mtx.data[i] = mtxArray[i];
    }
}

void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
{
    LoadIdentity(mtx);
    mtx.data[3] = vec[0];
    mtx.data[7] = vec[1];
    mtx.data[11] = vec[2];
}

void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
{
    MatrixMul(4, a.data, b.data, result.data);
}