summaryrefslogtreecommitdiffstats
path: root/src/core/arm/dynarmic/arm_dynarmic_32.cpp
blob: c78cfd5287a37a47684331c88b994205841ef7e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/settings.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/dynarmic_cp15.h"
#include "core/arm/dynarmic/dynarmic_exclusive_monitor.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_process.h"

namespace Core {

using namespace Common::Literals;

class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks {
public:
    explicit DynarmicCallbacks32(ArmDynarmic32& parent, Kernel::KProcess* process)
        : m_parent{parent}, m_memory(process->GetMemory()),
          m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()},
          m_check_memory_access{m_debugger_enabled ||
                                !Settings::values.cpuopt_ignore_memory_aborts.GetValue()} {}

    u8 MemoryRead8(u32 vaddr) override {
        CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Read);
        return m_memory.Read8(vaddr);
    }
    u16 MemoryRead16(u32 vaddr) override {
        CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Read);
        return m_memory.Read16(vaddr);
    }
    u32 MemoryRead32(u32 vaddr) override {
        CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Read);
        return m_memory.Read32(vaddr);
    }
    u64 MemoryRead64(u32 vaddr) override {
        CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Read);
        return m_memory.Read64(vaddr);
    }
    std::optional<u32> MemoryReadCode(u32 vaddr) override {
        if (!m_memory.IsValidVirtualAddressRange(vaddr, sizeof(u32))) {
            return std::nullopt;
        }
        return m_memory.Read32(vaddr);
    }

    void MemoryWrite8(u32 vaddr, u8 value) override {
        if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) {
            m_memory.Write8(vaddr, value);
        }
    }
    void MemoryWrite16(u32 vaddr, u16 value) override {
        if (CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Write)) {
            m_memory.Write16(vaddr, value);
        }
    }
    void MemoryWrite32(u32 vaddr, u32 value) override {
        if (CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Write)) {
            m_memory.Write32(vaddr, value);
        }
    }
    void MemoryWrite64(u32 vaddr, u64 value) override {
        if (CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Write)) {
            m_memory.Write64(vaddr, value);
        }
    }

    bool MemoryWriteExclusive8(u32 vaddr, u8 value, u8 expected) override {
        return CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write) &&
               m_memory.WriteExclusive8(vaddr, value, expected);
    }
    bool MemoryWriteExclusive16(u32 vaddr, u16 value, u16 expected) override {
        return CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Write) &&
               m_memory.WriteExclusive16(vaddr, value, expected);
    }
    bool MemoryWriteExclusive32(u32 vaddr, u32 value, u32 expected) override {
        return CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Write) &&
               m_memory.WriteExclusive32(vaddr, value, expected);
    }
    bool MemoryWriteExclusive64(u32 vaddr, u64 value, u64 expected) override {
        return CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Write) &&
               m_memory.WriteExclusive64(vaddr, value, expected);
    }

    void InterpreterFallback(u32 pc, std::size_t num_instructions) override {
        m_parent.LogBacktrace(m_process);
        LOG_ERROR(Core_ARM,
                  "Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
                  num_instructions, m_memory.Read32(pc));
    }

    void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
        switch (exception) {
        case Dynarmic::A32::Exception::NoExecuteFault:
            LOG_CRITICAL(Core_ARM, "Cannot execute instruction at unmapped address {:#08x}", pc);
            ReturnException(pc, PrefetchAbort);
            return;
        default:
            if (m_debugger_enabled) {
                ReturnException(pc, InstructionBreakpoint);
                return;
            }

            m_parent.LogBacktrace(m_process);
            LOG_CRITICAL(Core_ARM,
                         "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X}, thumb = {})",
                         exception, pc, m_memory.Read32(pc), m_parent.IsInThumbMode());
        }
    }

    void CallSVC(u32 swi) override {
        m_parent.m_svc_swi = swi;
        m_parent.m_jit->HaltExecution(SupervisorCall);
    }

    void AddTicks(u64 ticks) override {
        ASSERT_MSG(!m_parent.m_uses_wall_clock, "Dynarmic ticking disabled");

        // Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
        // rough approximation of the amount of executed ticks in the system, it may be thrown off
        // if not all cores are doing a similar amount of work. Instead of doing this, we should
        // device a way so that timing is consistent across all cores without increasing the ticks 4
        // times.
        u64 amortized_ticks = ticks / Core::Hardware::NUM_CPU_CORES;
        // Always execute at least one tick.
        amortized_ticks = std::max<u64>(amortized_ticks, 1);

        m_parent.m_system.CoreTiming().AddTicks(amortized_ticks);
    }

    u64 GetTicksRemaining() override {
        ASSERT_MSG(!m_parent.m_uses_wall_clock, "Dynarmic ticking disabled");

        return std::max<s64>(m_parent.m_system.CoreTiming().GetDowncount(), 0);
    }

    bool CheckMemoryAccess(u64 addr, u64 size, Kernel::DebugWatchpointType type) {
        if (!m_check_memory_access) {
            return true;
        }

        if (!m_memory.IsValidVirtualAddressRange(addr, size)) {
            LOG_CRITICAL(Core_ARM, "Stopping execution due to unmapped memory access at {:#x}",
                         addr);
            m_parent.m_jit->HaltExecution(PrefetchAbort);
            return false;
        }

        if (!m_debugger_enabled) {
            return true;
        }

        const auto match{m_parent.MatchingWatchpoint(addr, size, type)};
        if (match) {
            m_parent.m_halted_watchpoint = match;
            m_parent.m_jit->HaltExecution(DataAbort);
            return false;
        }

        return true;
    }

    void ReturnException(u32 pc, Dynarmic::HaltReason hr) {
        m_parent.GetContext(m_parent.m_breakpoint_context);
        m_parent.m_breakpoint_context.pc = pc;
        m_parent.m_breakpoint_context.r[15] = pc;
        m_parent.m_jit->HaltExecution(hr);
    }

    ArmDynarmic32& m_parent;
    Core::Memory::Memory& m_memory;
    Kernel::KProcess* m_process{};
    const bool m_debugger_enabled{};
    const bool m_check_memory_access{};
    static constexpr u64 MinimumRunCycles = 10000U;
};

std::shared_ptr<Dynarmic::A32::Jit> ArmDynarmic32::MakeJit(Common::PageTable* page_table) const {
    Dynarmic::A32::UserConfig config;
    config.callbacks = m_cb.get();
    config.coprocessors[15] = m_cp15;
    config.define_unpredictable_behaviour = true;

    if (page_table) {
        constexpr size_t PageBits = 12;
        constexpr size_t NumPageTableEntries = 1 << (32 - PageBits);

        config.page_table = reinterpret_cast<std::array<std::uint8_t*, NumPageTableEntries>*>(
            page_table->pointers.data());
        config.absolute_offset_page_table = true;
        config.page_table_pointer_mask_bits = Common::PageTable::ATTRIBUTE_BITS;
        config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
        config.only_detect_misalignment_via_page_table_on_page_boundary = true;

        config.fastmem_pointer = page_table->fastmem_arena;

        config.fastmem_exclusive_access = config.fastmem_pointer != nullptr;
        config.recompile_on_exclusive_fastmem_failure = true;
    }

    // Multi-process state
    config.processor_id = m_core_index;
    config.global_monitor = &m_exclusive_monitor.monitor;

    // Timing
    config.wall_clock_cntpct = m_uses_wall_clock;
    config.enable_cycle_counting = !m_uses_wall_clock;

    // Code cache size
#ifdef ARCHITECTURE_arm64
    config.code_cache_size = 128_MiB;
#else
    config.code_cache_size = 512_MiB;
#endif

    // Allow memory fault handling to work
    if (m_system.DebuggerEnabled()) {
        config.check_halt_on_memory_access = true;
    }

    // null_jit
    if (!page_table) {
        // Don't waste too much memory on null_jit
        config.code_cache_size = 8_MiB;
    }

    // Safe optimizations
    if (Settings::values.cpu_debug_mode) {
        if (!Settings::values.cpuopt_page_tables) {
            config.page_table = nullptr;
        }
        if (!Settings::values.cpuopt_block_linking) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
        }
        if (!Settings::values.cpuopt_return_stack_buffer) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
        }
        if (!Settings::values.cpuopt_fast_dispatcher) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
        }
        if (!Settings::values.cpuopt_context_elimination) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
        }
        if (!Settings::values.cpuopt_const_prop) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
        }
        if (!Settings::values.cpuopt_misc_ir) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
        }
        if (!Settings::values.cpuopt_reduce_misalign_checks) {
            config.only_detect_misalignment_via_page_table_on_page_boundary = false;
        }
        if (!Settings::values.cpuopt_fastmem) {
            config.fastmem_pointer = nullptr;
            config.fastmem_exclusive_access = false;
        }
        if (!Settings::values.cpuopt_fastmem_exclusives) {
            config.fastmem_exclusive_access = false;
        }
        if (!Settings::values.cpuopt_recompile_exclusives) {
            config.recompile_on_exclusive_fastmem_failure = false;
        }
        if (!Settings::values.cpuopt_ignore_memory_aborts) {
            config.check_halt_on_memory_access = true;
        }
    } else {
        // Unsafe optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CpuAccuracy::Unsafe) {
            config.unsafe_optimizations = true;
            if (Settings::values.cpuopt_unsafe_unfuse_fma) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
            }
            if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
            }
            if (Settings::values.cpuopt_unsafe_ignore_standard_fpcr) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreStandardFPCRValue;
            }
            if (Settings::values.cpuopt_unsafe_inaccurate_nan) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
            }
            if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
            }
        }

        // Curated optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CpuAccuracy::Auto) {
            config.unsafe_optimizations = true;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreStandardFPCRValue;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
        }

        // Paranoia mode for debugging optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CpuAccuracy::Paranoid) {
            config.unsafe_optimizations = false;
            config.optimizations = Dynarmic::no_optimizations;
        }
    }

    return std::make_unique<Dynarmic::A32::Jit>(config);
}

static std::pair<u32, u32> FpscrToFpsrFpcr(u32 fpscr) {
    // FPSCR bits [31:27] are mapped to FPSR[31:27].
    // FPSCR bit [7] is mapped to FPSR[7].
    // FPSCR bits [4:0] are mapped to FPSR[4:0].
    const u32 nzcv = fpscr & 0xf8000000;
    const u32 idc = fpscr & 0x80;
    const u32 fiq = fpscr & 0x1f;
    const u32 fpsr = nzcv | idc | fiq;

    // FPSCR bits [26:15] are mapped to FPCR[26:15].
    // FPSCR bits [12:8] are mapped to FPCR[12:8].
    const u32 round = fpscr & 0x7ff8000;
    const u32 trap = fpscr & 0x1f00;
    const u32 fpcr = round | trap;

    return {fpsr, fpcr};
}

static u32 FpsrFpcrToFpscr(u64 fpsr, u64 fpcr) {
    auto [s, c] = FpscrToFpsrFpcr(static_cast<u32>(fpsr | fpcr));
    return s | c;
}

bool ArmDynarmic32::IsInThumbMode() const {
    return (m_jit->Cpsr() & 0x20) != 0;
}

HaltReason ArmDynarmic32::RunThread(Kernel::KThread* thread) {
    m_jit->ClearExclusiveState();
    return TranslateHaltReason(m_jit->Run());
}

HaltReason ArmDynarmic32::StepThread(Kernel::KThread* thread) {
    m_jit->ClearExclusiveState();
    return TranslateHaltReason(m_jit->Step());
}

u32 ArmDynarmic32::GetSvcNumber() const {
    return m_svc_swi;
}

void ArmDynarmic32::GetSvcArguments(std::span<uint64_t, 8> args) const {
    Dynarmic::A32::Jit& j = *m_jit;
    auto& gpr = j.Regs();

    for (size_t i = 0; i < 8; i++) {
        args[i] = gpr[i];
    }
}

void ArmDynarmic32::SetSvcArguments(std::span<const uint64_t, 8> args) {
    Dynarmic::A32::Jit& j = *m_jit;
    auto& gpr = j.Regs();

    for (size_t i = 0; i < 8; i++) {
        gpr[i] = static_cast<u32>(args[i]);
    }
}

const Kernel::DebugWatchpoint* ArmDynarmic32::HaltedWatchpoint() const {
    return m_halted_watchpoint;
}

void ArmDynarmic32::RewindBreakpointInstruction() {
    this->SetContext(m_breakpoint_context);
}

ArmDynarmic32::ArmDynarmic32(System& system, bool uses_wall_clock, Kernel::KProcess* process,
                             DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index)
    : ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor},
      m_cb(std::make_unique<DynarmicCallbacks32>(*this, process)),
      m_cp15(std::make_shared<DynarmicCP15>(*this)), m_core_index{core_index} {
    auto& page_table_impl = process->GetPageTable().GetBasePageTable().GetImpl();
    m_jit = MakeJit(&page_table_impl);
}

ArmDynarmic32::~ArmDynarmic32() = default;

void ArmDynarmic32::SetTpidrroEl0(u64 value) {
    m_cp15->uro = static_cast<u32>(value);
}

void ArmDynarmic32::GetContext(Kernel::Svc::ThreadContext& ctx) const {
    Dynarmic::A32::Jit& j = *m_jit;
    auto& gpr = j.Regs();
    auto& fpr = j.ExtRegs();

    for (size_t i = 0; i < 16; i++) {
        ctx.r[i] = gpr[i];
    }

    ctx.fp = gpr[11];
    ctx.sp = gpr[13];
    ctx.lr = gpr[14];
    ctx.pc = gpr[15];
    ctx.pstate = j.Cpsr();

    static_assert(sizeof(fpr) <= sizeof(ctx.v));
    std::memcpy(ctx.v.data(), &fpr, sizeof(fpr));

    auto [fpsr, fpcr] = FpscrToFpsrFpcr(j.Fpscr());
    ctx.fpcr = fpcr;
    ctx.fpsr = fpsr;
    ctx.tpidr = m_cp15->uprw;
}

void ArmDynarmic32::SetContext(const Kernel::Svc::ThreadContext& ctx) {
    Dynarmic::A32::Jit& j = *m_jit;
    auto& gpr = j.Regs();
    auto& fpr = j.ExtRegs();

    for (size_t i = 0; i < 16; i++) {
        gpr[i] = static_cast<u32>(ctx.r[i]);
    }

    j.SetCpsr(ctx.pstate);

    static_assert(sizeof(fpr) <= sizeof(ctx.v));
    std::memcpy(&fpr, ctx.v.data(), sizeof(fpr));

    j.SetFpscr(FpsrFpcrToFpscr(ctx.fpsr, ctx.fpcr));
    m_cp15->uprw = static_cast<u32>(ctx.tpidr);
}

void ArmDynarmic32::SignalInterrupt(Kernel::KThread* thread) {
    m_jit->HaltExecution(BreakLoop);
}

void ArmDynarmic32::ClearInstructionCache() {
    m_jit->ClearCache();
}

void ArmDynarmic32::InvalidateCacheRange(u64 addr, std::size_t size) {
    m_jit->InvalidateCacheRange(static_cast<u32>(addr), size);
}

} // namespace Core