summaryrefslogtreecommitdiffstats
path: root/src/core/arm/dynarmic/arm_dynarmic_64.cpp
blob: 67073c84d7db13d3257890da18f2d812a4a0fc41 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <cinttypes>
#include <memory>
#include <dynarmic/interface/A64/a64.h>
#include <dynarmic/interface/A64/config.h>
#include "common/assert.h"
#include "common/literals.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "common/settings.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/debugger/debugger.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"

namespace Core {

using Vector = Dynarmic::A64::Vector;
using namespace Common::Literals;

class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public:
    explicit DynarmicCallbacks64(ARM_Dynarmic_64& parent_)
        : parent{parent_},
          memory(parent.system.Memory()), debugger_enabled{parent.system.DebuggerEnabled()},
          check_memory_access{debugger_enabled ||
                              !Settings::values.cpuopt_ignore_memory_aborts.GetValue()} {}

    u8 MemoryRead8(u64 vaddr) override {
        CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Read);
        return memory.Read8(vaddr);
    }
    u16 MemoryRead16(u64 vaddr) override {
        CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Read);
        return memory.Read16(vaddr);
    }
    u32 MemoryRead32(u64 vaddr) override {
        CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Read);
        return memory.Read32(vaddr);
    }
    u64 MemoryRead64(u64 vaddr) override {
        CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Read);
        return memory.Read64(vaddr);
    }
    Vector MemoryRead128(u64 vaddr) override {
        CheckMemoryAccess(vaddr, 16, Kernel::DebugWatchpointType::Read);
        return {memory.Read64(vaddr), memory.Read64(vaddr + 8)};
    }
    std::optional<u32> MemoryReadCode(u64 vaddr) override {
        if (!memory.IsValidVirtualAddressRange(vaddr, sizeof(u32))) {
            return std::nullopt;
        }
        return memory.Read32(vaddr);
    }

    void MemoryWrite8(u64 vaddr, u8 value) override {
        if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) {
            memory.Write8(vaddr, value);
        }
    }
    void MemoryWrite16(u64 vaddr, u16 value) override {
        if (CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Write)) {
            memory.Write16(vaddr, value);
        }
    }
    void MemoryWrite32(u64 vaddr, u32 value) override {
        if (CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Write)) {
            memory.Write32(vaddr, value);
        }
    }
    void MemoryWrite64(u64 vaddr, u64 value) override {
        if (CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Write)) {
            memory.Write64(vaddr, value);
        }
    }
    void MemoryWrite128(u64 vaddr, Vector value) override {
        if (CheckMemoryAccess(vaddr, 16, Kernel::DebugWatchpointType::Write)) {
            memory.Write64(vaddr, value[0]);
            memory.Write64(vaddr + 8, value[1]);
        }
    }

    bool MemoryWriteExclusive8(u64 vaddr, std::uint8_t value, std::uint8_t expected) override {
        return CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write) &&
               memory.WriteExclusive8(vaddr, value, expected);
    }
    bool MemoryWriteExclusive16(u64 vaddr, std::uint16_t value, std::uint16_t expected) override {
        return CheckMemoryAccess(vaddr, 2, Kernel::DebugWatchpointType::Write) &&
               memory.WriteExclusive16(vaddr, value, expected);
    }
    bool MemoryWriteExclusive32(u64 vaddr, std::uint32_t value, std::uint32_t expected) override {
        return CheckMemoryAccess(vaddr, 4, Kernel::DebugWatchpointType::Write) &&
               memory.WriteExclusive32(vaddr, value, expected);
    }
    bool MemoryWriteExclusive64(u64 vaddr, std::uint64_t value, std::uint64_t expected) override {
        return CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Write) &&
               memory.WriteExclusive64(vaddr, value, expected);
    }
    bool MemoryWriteExclusive128(u64 vaddr, Vector value, Vector expected) override {
        return CheckMemoryAccess(vaddr, 16, Kernel::DebugWatchpointType::Write) &&
               memory.WriteExclusive128(vaddr, value, expected);
    }

    void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
        parent.LogBacktrace();
        LOG_ERROR(Core_ARM,
                  "Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
                  num_instructions, memory.Read32(pc));
        ReturnException(pc, ARM_Interface::no_execute);
    }

    void InstructionCacheOperationRaised(Dynarmic::A64::InstructionCacheOperation op,
                                         u64 value) override {
        switch (op) {
        case Dynarmic::A64::InstructionCacheOperation::InvalidateByVAToPoU: {
            static constexpr u64 ICACHE_LINE_SIZE = 64;

            const u64 cache_line_start = value & ~(ICACHE_LINE_SIZE - 1);
            parent.system.InvalidateCpuInstructionCacheRange(cache_line_start, ICACHE_LINE_SIZE);
            break;
        }
        case Dynarmic::A64::InstructionCacheOperation::InvalidateAllToPoU:
            parent.system.InvalidateCpuInstructionCaches();
            break;
        case Dynarmic::A64::InstructionCacheOperation::InvalidateAllToPoUInnerSharable:
        default:
            LOG_DEBUG(Core_ARM, "Unprocesseed instruction cache operation: {}", op);
            break;
        }

        parent.jit.load()->HaltExecution(Dynarmic::HaltReason::CacheInvalidation);
    }

    void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
        switch (exception) {
        case Dynarmic::A64::Exception::WaitForInterrupt:
        case Dynarmic::A64::Exception::WaitForEvent:
        case Dynarmic::A64::Exception::SendEvent:
        case Dynarmic::A64::Exception::SendEventLocal:
        case Dynarmic::A64::Exception::Yield:
            return;
        case Dynarmic::A64::Exception::NoExecuteFault:
            LOG_CRITICAL(Core_ARM, "Cannot execute instruction at unmapped address {:#016x}", pc);
            ReturnException(pc, ARM_Interface::no_execute);
            return;
        default:
            if (debugger_enabled) {
                ReturnException(pc, ARM_Interface::breakpoint);
                return;
            }

            parent.LogBacktrace();
            LOG_CRITICAL(Core_ARM, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
                         static_cast<std::size_t>(exception), pc, memory.Read32(pc));
        }
    }

    void CallSVC(u32 swi) override {
        parent.svc_swi = swi;
        parent.jit.load()->HaltExecution(ARM_Interface::svc_call);
    }

    void AddTicks(u64 ticks) override {
        if (parent.uses_wall_clock) {
            return;
        }

        // Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
        // rough approximation of the amount of executed ticks in the system, it may be thrown off
        // if not all cores are doing a similar amount of work. Instead of doing this, we should
        // device a way so that timing is consistent across all cores without increasing the ticks 4
        // times.
        u64 amortized_ticks = ticks / Core::Hardware::NUM_CPU_CORES;
        // Always execute at least one tick.
        amortized_ticks = std::max<u64>(amortized_ticks, 1);

        parent.system.CoreTiming().AddTicks(amortized_ticks);
    }

    u64 GetTicksRemaining() override {
        if (parent.uses_wall_clock) {
            if (!IsInterrupted()) {
                return minimum_run_cycles;
            }
            return 0U;
        }

        return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0);
    }

    u64 GetCNTPCT() override {
        return parent.system.CoreTiming().GetClockTicks();
    }

    bool CheckMemoryAccess(u64 addr, u64 size, Kernel::DebugWatchpointType type) {
        if (!check_memory_access) {
            return true;
        }

        if (!memory.IsValidVirtualAddressRange(addr, size)) {
            LOG_CRITICAL(Core_ARM, "Stopping execution due to unmapped memory access at {:#x}",
                         addr);
            parent.jit.load()->HaltExecution(ARM_Interface::no_execute);
            return false;
        }

        if (!debugger_enabled) {
            return true;
        }

        const auto match{parent.MatchingWatchpoint(addr, size, type)};
        if (match) {
            parent.halted_watchpoint = match;
            parent.jit.load()->HaltExecution(ARM_Interface::watchpoint);
            return false;
        }

        return true;
    }

    void ReturnException(u64 pc, Dynarmic::HaltReason hr) {
        parent.SaveContext(parent.breakpoint_context);
        parent.breakpoint_context.pc = pc;
        parent.jit.load()->HaltExecution(hr);
    }

    bool IsInterrupted() {
        return parent.system.Kernel().PhysicalCore(parent.core_index).IsInterrupted();
    }

    ARM_Dynarmic_64& parent;
    Core::Memory::Memory& memory;
    u64 tpidrro_el0 = 0;
    u64 tpidr_el0 = 0;
    const bool debugger_enabled{};
    const bool check_memory_access{};
    static constexpr u64 minimum_run_cycles = 10000U;
};

std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable* page_table,
                                                             std::size_t address_space_bits) const {
    Dynarmic::A64::UserConfig config;

    // Callbacks
    config.callbacks = cb.get();

    // Memory
    if (page_table) {
        config.page_table = reinterpret_cast<void**>(page_table->pointers.data());
        config.page_table_address_space_bits = address_space_bits;
        config.page_table_pointer_mask_bits = Common::PageTable::ATTRIBUTE_BITS;
        config.silently_mirror_page_table = false;
        config.absolute_offset_page_table = true;
        config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
        config.only_detect_misalignment_via_page_table_on_page_boundary = true;

        config.fastmem_pointer = page_table->fastmem_arena;
        config.fastmem_address_space_bits = address_space_bits;
        config.silently_mirror_fastmem = false;

        config.fastmem_exclusive_access = config.fastmem_pointer != nullptr;
        config.recompile_on_exclusive_fastmem_failure = true;
    }

    // Multi-process state
    config.processor_id = core_index;
    config.global_monitor = &exclusive_monitor.monitor;

    // System registers
    config.tpidrro_el0 = &cb->tpidrro_el0;
    config.tpidr_el0 = &cb->tpidr_el0;
    config.dczid_el0 = 4;
    config.ctr_el0 = 0x8444c004;
    config.cntfrq_el0 = Hardware::CNTFREQ;

    // Unpredictable instructions
    config.define_unpredictable_behaviour = true;

    // Timing
    config.wall_clock_cntpct = uses_wall_clock;
    config.enable_cycle_counting = true;

    // Code cache size
#ifdef ARCHITECTURE_arm64
    config.code_cache_size = 128_MiB;
#else
    config.code_cache_size = 512_MiB;
#endif

    // Allow memory fault handling to work
    if (system.DebuggerEnabled()) {
        config.check_halt_on_memory_access = true;
    }

    // null_jit
    if (!page_table) {
        // Don't waste too much memory on null_jit
        config.code_cache_size = 8_MiB;
    }

    // Safe optimizations
    if (Settings::values.cpu_debug_mode) {
        if (!Settings::values.cpuopt_page_tables) {
            config.page_table = nullptr;
        }
        if (!Settings::values.cpuopt_block_linking) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
        }
        if (!Settings::values.cpuopt_return_stack_buffer) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
        }
        if (!Settings::values.cpuopt_fast_dispatcher) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
        }
        if (!Settings::values.cpuopt_context_elimination) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
        }
        if (!Settings::values.cpuopt_const_prop) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
        }
        if (!Settings::values.cpuopt_misc_ir) {
            config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
        }
        if (!Settings::values.cpuopt_reduce_misalign_checks) {
            config.only_detect_misalignment_via_page_table_on_page_boundary = false;
        }
        if (!Settings::values.cpuopt_fastmem) {
            config.fastmem_pointer = nullptr;
            config.fastmem_exclusive_access = false;
        }
        if (!Settings::values.cpuopt_fastmem_exclusives) {
            config.fastmem_exclusive_access = false;
        }
        if (!Settings::values.cpuopt_recompile_exclusives) {
            config.recompile_on_exclusive_fastmem_failure = false;
        }
        if (!Settings::values.cpuopt_ignore_memory_aborts) {
            config.check_halt_on_memory_access = true;
        }
    } else {
        // Unsafe optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CPUAccuracy::Unsafe) {
            config.unsafe_optimizations = true;
            if (Settings::values.cpuopt_unsafe_unfuse_fma) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
            }
            if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
            }
            if (Settings::values.cpuopt_unsafe_inaccurate_nan) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
            }
            if (Settings::values.cpuopt_unsafe_fastmem_check) {
                config.fastmem_address_space_bits = 64;
            }
            if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
                config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
            }
        }

        // Curated optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CPUAccuracy::Auto) {
            config.unsafe_optimizations = true;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
            config.fastmem_address_space_bits = 64;
            config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
        }

        // Paranoia mode for debugging optimizations
        if (Settings::values.cpu_accuracy.GetValue() == Settings::CPUAccuracy::Paranoid) {
            config.unsafe_optimizations = false;
            config.optimizations = Dynarmic::no_optimizations;
        }
    }

    return std::make_shared<Dynarmic::A64::Jit>(config);
}

Dynarmic::HaltReason ARM_Dynarmic_64::RunJit() {
    return jit.load()->Run();
}

Dynarmic::HaltReason ARM_Dynarmic_64::StepJit() {
    return jit.load()->Step();
}

u32 ARM_Dynarmic_64::GetSvcNumber() const {
    return svc_swi;
}

const Kernel::DebugWatchpoint* ARM_Dynarmic_64::HaltedWatchpoint() const {
    return halted_watchpoint;
}

void ARM_Dynarmic_64::RewindBreakpointInstruction() {
    LoadContext(breakpoint_context);
}

ARM_Dynarmic_64::ARM_Dynarmic_64(System& system_, bool uses_wall_clock_,
                                 ExclusiveMonitor& exclusive_monitor_, std::size_t core_index_)
    : ARM_Interface{system_, uses_wall_clock_},
      cb(std::make_unique<DynarmicCallbacks64>(*this)), core_index{core_index_},
      exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor_)},
      null_jit{MakeJit(nullptr, 48)}, jit{null_jit.get()} {}

ARM_Dynarmic_64::~ARM_Dynarmic_64() = default;

void ARM_Dynarmic_64::SetPC(u64 pc) {
    jit.load()->SetPC(pc);
}

u64 ARM_Dynarmic_64::GetPC() const {
    return jit.load()->GetPC();
}

u64 ARM_Dynarmic_64::GetSP() const {
    return jit.load()->GetSP();
}

u64 ARM_Dynarmic_64::GetReg(int index) const {
    return jit.load()->GetRegister(index);
}

void ARM_Dynarmic_64::SetReg(int index, u64 value) {
    jit.load()->SetRegister(index, value);
}

u128 ARM_Dynarmic_64::GetVectorReg(int index) const {
    return jit.load()->GetVector(index);
}

void ARM_Dynarmic_64::SetVectorReg(int index, u128 value) {
    jit.load()->SetVector(index, value);
}

u32 ARM_Dynarmic_64::GetPSTATE() const {
    return jit.load()->GetPstate();
}

void ARM_Dynarmic_64::SetPSTATE(u32 pstate) {
    jit.load()->SetPstate(pstate);
}

u64 ARM_Dynarmic_64::GetTlsAddress() const {
    return cb->tpidrro_el0;
}

void ARM_Dynarmic_64::SetTlsAddress(u64 address) {
    cb->tpidrro_el0 = address;
}

u64 ARM_Dynarmic_64::GetTPIDR_EL0() const {
    return cb->tpidr_el0;
}

void ARM_Dynarmic_64::SetTPIDR_EL0(u64 value) {
    cb->tpidr_el0 = value;
}

void ARM_Dynarmic_64::SaveContext(ThreadContext64& ctx) {
    Dynarmic::A64::Jit* j = jit.load();
    ctx.cpu_registers = j->GetRegisters();
    ctx.sp = j->GetSP();
    ctx.pc = j->GetPC();
    ctx.pstate = j->GetPstate();
    ctx.vector_registers = j->GetVectors();
    ctx.fpcr = j->GetFpcr();
    ctx.fpsr = j->GetFpsr();
    ctx.tpidr = cb->tpidr_el0;
}

void ARM_Dynarmic_64::LoadContext(const ThreadContext64& ctx) {
    Dynarmic::A64::Jit* j = jit.load();
    j->SetRegisters(ctx.cpu_registers);
    j->SetSP(ctx.sp);
    j->SetPC(ctx.pc);
    j->SetPstate(ctx.pstate);
    j->SetVectors(ctx.vector_registers);
    j->SetFpcr(ctx.fpcr);
    j->SetFpsr(ctx.fpsr);
    SetTPIDR_EL0(ctx.tpidr);
}

void ARM_Dynarmic_64::SignalInterrupt() {
    jit.load()->HaltExecution(break_loop);
}

void ARM_Dynarmic_64::ClearInterrupt() {
    jit.load()->ClearHalt(break_loop);
}

void ARM_Dynarmic_64::ClearInstructionCache() {
    jit.load()->ClearCache();
}

void ARM_Dynarmic_64::InvalidateCacheRange(u64 addr, std::size_t size) {
    jit.load()->InvalidateCacheRange(addr, size);
}

void ARM_Dynarmic_64::ClearExclusiveState() {
    jit.load()->ClearExclusiveState();
}

void ARM_Dynarmic_64::PageTableChanged(Common::PageTable& page_table,
                                       std::size_t new_address_space_size_in_bits) {
    ThreadContext64 ctx{};
    SaveContext(ctx);

    auto key = std::make_pair(&page_table, new_address_space_size_in_bits);
    auto iter = jit_cache.find(key);
    if (iter != jit_cache.end()) {
        jit.store(iter->second.get());
        LoadContext(ctx);
        return;
    }
    std::shared_ptr new_jit = MakeJit(&page_table, new_address_space_size_in_bits);
    jit.store(new_jit.get());
    LoadContext(ctx);
    jit_cache.emplace(key, std::move(new_jit));
}

std::vector<ARM_Interface::BacktraceEntry> ARM_Dynarmic_64::GetBacktrace(Core::System& system,
                                                                         u64 fp, u64 lr, u64 pc) {
    std::vector<BacktraceEntry> out;
    auto& memory = system.Memory();

    out.push_back({"", 0, pc, 0, ""});

    // fp (= x29) points to the previous frame record.
    // Frame records are two words long:
    // fp+0 : pointer to previous frame record
    // fp+8 : value of lr for frame
    for (size_t i = 0; i < 256; i++) {
        out.push_back({"", 0, lr, 0, ""});
        if (!fp || (fp % 4 != 0) || !memory.IsValidVirtualAddressRange(fp, 16)) {
            break;
        }
        lr = memory.Read64(fp + 8);
        fp = memory.Read64(fp);
    }

    SymbolicateBacktrace(system, out);

    return out;
}

std::vector<ARM_Interface::BacktraceEntry> ARM_Dynarmic_64::GetBacktraceFromContext(
    System& system, const ThreadContext64& ctx) {
    const auto& reg = ctx.cpu_registers;
    return GetBacktrace(system, reg[29], reg[30], ctx.pc);
}

std::vector<ARM_Interface::BacktraceEntry> ARM_Dynarmic_64::GetBacktrace() const {
    return GetBacktrace(system, GetReg(29), GetReg(30), GetPC());
}

} // namespace Core