summaryrefslogtreecommitdiffstats
path: root/src/core/arm/nce/arm_nce.cpp
blob: 1311e66a9063e79165ae562113e8bfa4664339e1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <cinttypes>
#include <memory>

#include "common/signal_chain.h"
#include "core/arm/nce/arm_nce.h"
#include "core/arm/nce/interpreter_visitor.h"
#include "core/arm/nce/patcher.h"
#include "core/core.h"
#include "core/memory.h"

#include "core/hle/kernel/k_process.h"

#include <signal.h>
#include <sys/syscall.h>
#include <unistd.h>

namespace Core {

namespace {

struct sigaction g_orig_bus_action;
struct sigaction g_orig_segv_action;

// Verify assembly offsets.
using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters;
static_assert(offsetof(NativeExecutionParameters, native_context) == TpidrEl0NativeContext);
static_assert(offsetof(NativeExecutionParameters, lock) == TpidrEl0Lock);
static_assert(offsetof(NativeExecutionParameters, magic) == TpidrEl0TlsMagic);

fpsimd_context* GetFloatingPointState(mcontext_t& host_ctx) {
    _aarch64_ctx* header = reinterpret_cast<_aarch64_ctx*>(&host_ctx.__reserved);
    while (header->magic != FPSIMD_MAGIC) {
        header = reinterpret_cast<_aarch64_ctx*>(reinterpret_cast<char*>(header) + header->size);
    }
    return reinterpret_cast<fpsimd_context*>(header);
}

using namespace Common::Literals;
constexpr u32 StackSize = 32_KiB;

} // namespace

void* ArmNce::RestoreGuestContext(void* raw_context) {
    // Retrieve the host context.
    auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;

    // Thread-local parameters will be located in x9.
    auto* tpidr = reinterpret_cast<NativeExecutionParameters*>(host_ctx.regs[9]);
    auto* guest_ctx = static_cast<GuestContext*>(tpidr->native_context);

    // Retrieve the host floating point state.
    auto* fpctx = GetFloatingPointState(host_ctx);

    // Save host callee-saved registers.
    std::memcpy(guest_ctx->host_ctx.host_saved_vregs.data(), &fpctx->vregs[8],
                sizeof(guest_ctx->host_ctx.host_saved_vregs));
    std::memcpy(guest_ctx->host_ctx.host_saved_regs.data(), &host_ctx.regs[19],
                sizeof(guest_ctx->host_ctx.host_saved_regs));

    // Save stack pointer.
    guest_ctx->host_ctx.host_sp = host_ctx.sp;

    // Restore all guest state except tpidr_el0.
    host_ctx.sp = guest_ctx->sp;
    host_ctx.pc = guest_ctx->pc;
    host_ctx.pstate = guest_ctx->pstate;
    fpctx->fpcr = guest_ctx->fpcr;
    fpctx->fpsr = guest_ctx->fpsr;
    std::memcpy(host_ctx.regs, guest_ctx->cpu_registers.data(), sizeof(host_ctx.regs));
    std::memcpy(fpctx->vregs, guest_ctx->vector_registers.data(), sizeof(fpctx->vregs));

    // Return the new thread-local storage pointer.
    return tpidr;
}

void ArmNce::SaveGuestContext(GuestContext* guest_ctx, void* raw_context) {
    // Retrieve the host context.
    auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;

    // Retrieve the host floating point state.
    auto* fpctx = GetFloatingPointState(host_ctx);

    // Save all guest registers except tpidr_el0.
    std::memcpy(guest_ctx->cpu_registers.data(), host_ctx.regs, sizeof(host_ctx.regs));
    std::memcpy(guest_ctx->vector_registers.data(), fpctx->vregs, sizeof(fpctx->vregs));
    guest_ctx->fpsr = fpctx->fpsr;
    guest_ctx->fpcr = fpctx->fpcr;
    guest_ctx->pstate = static_cast<u32>(host_ctx.pstate);
    guest_ctx->pc = host_ctx.pc;
    guest_ctx->sp = host_ctx.sp;

    // Restore stack pointer.
    host_ctx.sp = guest_ctx->host_ctx.host_sp;

    // Restore host callee-saved registers.
    std::memcpy(&host_ctx.regs[19], guest_ctx->host_ctx.host_saved_regs.data(),
                sizeof(guest_ctx->host_ctx.host_saved_regs));
    std::memcpy(&fpctx->vregs[8], guest_ctx->host_ctx.host_saved_vregs.data(),
                sizeof(guest_ctx->host_ctx.host_saved_vregs));

    // Return from the call on exit by setting pc to x30.
    host_ctx.pc = guest_ctx->host_ctx.host_saved_regs[11];

    // Clear esr_el1 and return it.
    host_ctx.regs[0] = guest_ctx->esr_el1.exchange(0);
}

bool ArmNce::HandleFailedGuestFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
    auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;
    auto* info = static_cast<siginfo_t*>(raw_info);

    // We can't handle the access, so determine why we crashed.
    const bool is_prefetch_abort = host_ctx.pc == reinterpret_cast<u64>(info->si_addr);

    // For data aborts, skip the instruction and return to guest code.
    // This will allow games to continue in many scenarios where they would otherwise crash.
    if (!is_prefetch_abort) {
        host_ctx.pc += 4;
        return true;
    }

    // This is a prefetch abort.
    guest_ctx->esr_el1.fetch_or(static_cast<u64>(HaltReason::PrefetchAbort));

    // Forcibly mark the context as locked. We are still running.
    // We may race with SignalInterrupt here:
    // - If we lose the race, then SignalInterrupt will send us a signal we are masking,
    //   and it will do nothing when it is unmasked, as we have already left guest code.
    // - If we win the race, then SignalInterrupt will wait for us to unlock first.
    auto& thread_params = guest_ctx->parent->m_running_thread->GetNativeExecutionParameters();
    thread_params.lock.store(SpinLockLocked);

    // Return to host.
    SaveGuestContext(guest_ctx, raw_context);
    return false;
}

bool ArmNce::HandleGuestAlignmentFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
    auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;
    auto* fpctx = GetFloatingPointState(host_ctx);
    auto& memory = guest_ctx->system->ApplicationMemory();

    // Match and execute an instruction.
    auto next_pc = MatchAndExecuteOneInstruction(memory, &host_ctx, fpctx);
    if (next_pc) {
        host_ctx.pc = *next_pc;
        return true;
    }

    // We couldn't handle the access.
    return HandleFailedGuestFault(guest_ctx, raw_info, raw_context);
}

bool ArmNce::HandleGuestAccessFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
    auto* info = static_cast<siginfo_t*>(raw_info);

    // Try to handle an invalid access.
    // TODO: handle accesses which split a page?
    const Common::ProcessAddress addr =
        (reinterpret_cast<u64>(info->si_addr) & ~Memory::YUZU_PAGEMASK);
    if (guest_ctx->system->ApplicationMemory().InvalidateNCE(addr, Memory::YUZU_PAGESIZE)) {
        // We handled the access successfully and are returning to guest code.
        return true;
    }

    // We couldn't handle the access.
    return HandleFailedGuestFault(guest_ctx, raw_info, raw_context);
}

void ArmNce::HandleHostAlignmentFault(int sig, void* raw_info, void* raw_context) {
    return g_orig_bus_action.sa_sigaction(sig, static_cast<siginfo_t*>(raw_info), raw_context);
}

void ArmNce::HandleHostAccessFault(int sig, void* raw_info, void* raw_context) {
    return g_orig_segv_action.sa_sigaction(sig, static_cast<siginfo_t*>(raw_info), raw_context);
}

void ArmNce::LockThread(Kernel::KThread* thread) {
    auto* thread_params = &thread->GetNativeExecutionParameters();
    LockThreadParameters(thread_params);
}

void ArmNce::UnlockThread(Kernel::KThread* thread) {
    auto* thread_params = &thread->GetNativeExecutionParameters();
    UnlockThreadParameters(thread_params);
}

HaltReason ArmNce::RunThread(Kernel::KThread* thread) {
    // Check if we're already interrupted.
    // If we are, we can just return immediately.
    HaltReason hr = static_cast<HaltReason>(m_guest_ctx.esr_el1.exchange(0));
    if (True(hr)) {
        return hr;
    }

    // Get the thread context.
    auto* thread_params = &thread->GetNativeExecutionParameters();
    auto* process = thread->GetOwnerProcess();

    // Assign current members.
    m_running_thread = thread;
    m_guest_ctx.parent = this;
    thread_params->native_context = &m_guest_ctx;
    thread_params->tpidr_el0 = m_guest_ctx.tpidr_el0;
    thread_params->tpidrro_el0 = m_guest_ctx.tpidrro_el0;
    thread_params->is_running = true;

    // TODO: finding and creating the post handler needs to be locked
    // to deal with dynamic loading of NROs.
    const auto& post_handlers = process->GetPostHandlers();
    if (auto it = post_handlers.find(m_guest_ctx.pc); it != post_handlers.end()) {
        hr = ReturnToRunCodeByTrampoline(thread_params, &m_guest_ctx, it->second);
    } else {
        hr = ReturnToRunCodeByExceptionLevelChange(m_thread_id, thread_params);
    }

    // Unload members.
    // The thread does not change, so we can persist the old reference.
    m_running_thread = nullptr;
    m_guest_ctx.tpidr_el0 = thread_params->tpidr_el0;
    thread_params->native_context = nullptr;
    thread_params->is_running = false;

    // Return the halt reason.
    return hr;
}

HaltReason ArmNce::StepThread(Kernel::KThread* thread) {
    return HaltReason::StepThread;
}

u32 ArmNce::GetSvcNumber() const {
    return m_guest_ctx.svc;
}

void ArmNce::GetSvcArguments(std::span<uint64_t, 8> args) const {
    for (size_t i = 0; i < 8; i++) {
        args[i] = m_guest_ctx.cpu_registers[i];
    }
}

void ArmNce::SetSvcArguments(std::span<const uint64_t, 8> args) {
    for (size_t i = 0; i < 8; i++) {
        m_guest_ctx.cpu_registers[i] = args[i];
    }
}

ArmNce::ArmNce(System& system, bool uses_wall_clock, std::size_t core_index)
    : ArmInterface{uses_wall_clock}, m_system{system}, m_core_index{core_index} {
    m_guest_ctx.system = &m_system;
}

ArmNce::~ArmNce() = default;

void ArmNce::Initialize() {
    if (m_thread_id == -1) {
        m_thread_id = gettid();
    }

    // Configure signal stack.
    if (!m_stack) {
        m_stack = std::make_unique<u8[]>(StackSize);

        stack_t ss{};
        ss.ss_sp = m_stack.get();
        ss.ss_size = StackSize;
        sigaltstack(&ss, nullptr);
    }

    // Set up signals.
    static std::once_flag flag;
    std::call_once(flag, [] {
        using HandlerType = decltype(sigaction::sa_sigaction);

        sigset_t signal_mask;
        sigemptyset(&signal_mask);
        sigaddset(&signal_mask, ReturnToRunCodeByExceptionLevelChangeSignal);
        sigaddset(&signal_mask, BreakFromRunCodeSignal);
        sigaddset(&signal_mask, GuestAlignmentFaultSignal);
        sigaddset(&signal_mask, GuestAccessFaultSignal);

        struct sigaction return_to_run_code_action {};
        return_to_run_code_action.sa_flags = SA_SIGINFO | SA_ONSTACK;
        return_to_run_code_action.sa_sigaction = reinterpret_cast<HandlerType>(
            &ArmNce::ReturnToRunCodeByExceptionLevelChangeSignalHandler);
        return_to_run_code_action.sa_mask = signal_mask;
        Common::SigAction(ReturnToRunCodeByExceptionLevelChangeSignal, &return_to_run_code_action,
                          nullptr);

        struct sigaction break_from_run_code_action {};
        break_from_run_code_action.sa_flags = SA_SIGINFO | SA_ONSTACK;
        break_from_run_code_action.sa_sigaction =
            reinterpret_cast<HandlerType>(&ArmNce::BreakFromRunCodeSignalHandler);
        break_from_run_code_action.sa_mask = signal_mask;
        Common::SigAction(BreakFromRunCodeSignal, &break_from_run_code_action, nullptr);

        struct sigaction alignment_fault_action {};
        alignment_fault_action.sa_flags = SA_SIGINFO | SA_ONSTACK;
        alignment_fault_action.sa_sigaction =
            reinterpret_cast<HandlerType>(&ArmNce::GuestAlignmentFaultSignalHandler);
        alignment_fault_action.sa_mask = signal_mask;
        Common::SigAction(GuestAlignmentFaultSignal, &alignment_fault_action, nullptr);

        struct sigaction access_fault_action {};
        access_fault_action.sa_flags = SA_SIGINFO | SA_ONSTACK | SA_RESTART;
        access_fault_action.sa_sigaction =
            reinterpret_cast<HandlerType>(&ArmNce::GuestAccessFaultSignalHandler);
        access_fault_action.sa_mask = signal_mask;
        Common::SigAction(GuestAccessFaultSignal, &access_fault_action, &g_orig_segv_action);
    });
}

void ArmNce::SetTpidrroEl0(u64 value) {
    m_guest_ctx.tpidrro_el0 = value;
}

void ArmNce::GetContext(Kernel::Svc::ThreadContext& ctx) const {
    for (size_t i = 0; i < 29; i++) {
        ctx.r[i] = m_guest_ctx.cpu_registers[i];
    }
    ctx.fp = m_guest_ctx.cpu_registers[29];
    ctx.lr = m_guest_ctx.cpu_registers[30];
    ctx.sp = m_guest_ctx.sp;
    ctx.pc = m_guest_ctx.pc;
    ctx.pstate = m_guest_ctx.pstate;
    ctx.v = m_guest_ctx.vector_registers;
    ctx.fpcr = m_guest_ctx.fpcr;
    ctx.fpsr = m_guest_ctx.fpsr;
    ctx.tpidr = m_guest_ctx.tpidr_el0;
}

void ArmNce::SetContext(const Kernel::Svc::ThreadContext& ctx) {
    for (size_t i = 0; i < 29; i++) {
        m_guest_ctx.cpu_registers[i] = ctx.r[i];
    }
    m_guest_ctx.cpu_registers[29] = ctx.fp;
    m_guest_ctx.cpu_registers[30] = ctx.lr;
    m_guest_ctx.sp = ctx.sp;
    m_guest_ctx.pc = ctx.pc;
    m_guest_ctx.pstate = ctx.pstate;
    m_guest_ctx.vector_registers = ctx.v;
    m_guest_ctx.fpcr = ctx.fpcr;
    m_guest_ctx.fpsr = ctx.fpsr;
    m_guest_ctx.tpidr_el0 = ctx.tpidr;
}

void ArmNce::SignalInterrupt(Kernel::KThread* thread) {
    // Add break loop condition.
    m_guest_ctx.esr_el1.fetch_or(static_cast<u64>(HaltReason::BreakLoop));

    // Lock the thread context.
    auto* params = &thread->GetNativeExecutionParameters();
    LockThreadParameters(params);

    if (params->is_running) {
        // We should signal to the running thread.
        // The running thread will unlock the thread context.
        syscall(SYS_tkill, m_thread_id, BreakFromRunCodeSignal);
    } else {
        // If the thread is no longer running, we have nothing to do.
        UnlockThreadParameters(params);
    }
}

void ArmNce::ClearInstructionCache() {
    // TODO: This is not possible to implement correctly on Linux because
    // we do not have any access to ic iallu.

    // Require accesses to complete.
    std::atomic_thread_fence(std::memory_order_seq_cst);
}

void ArmNce::InvalidateCacheRange(u64 addr, std::size_t size) {
    this->ClearInstructionCache();
}

} // namespace Core